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Abstract 

Building on previous research demonstrating prospective memory (PM) deficits in ecstasy 

users the purpose of this thesis was to explore the specific nature of these deficits focussing 

on establishing dose related effects and exploring possible mediators. Using laboratory-based 

measures of PM and a detailed background drug use questionnaire, the extent to which the 

typical dose of ecstasy per session can predict PM performance was examined. In Chapter 7, 

increased dose of ecstasy per session (typical dose of ecstasy per session in the 12 months 

prior to the test-session) was associated with poor short-term time-based PM performance. 

Chapter 8 examined the effects of concurrent alcohol and ecstasy use on PM performance. 

The use of alcohol and ecstasy together was not associated with additional PM performance 

deficits. Chapter 10 investigated the role of executive functioning processes in accounting 

PM deficits in ecstasy users. Verbal word fluency, updating, shifting and inhibition executive 

functions did not predict PM performance in ecstasy users. Chapter 11 used correlational 

analyses to investigate the effects of long- and short-term indicators of ecstasy, cannabis and 

cocaine use on PM performance. Clear relationships were established between long-term 

indicators of ecstasy and cocaine use and PM performance. Total lifetime ecstasy and cocaine 

consumption and the long-term average dose of ecstasy and cocaine per session were related 

to PM performance. For both drugs, increased lifetime consumption and larger doses 

consumed in a typical session were associated with adverse outcomes on PM tasks.  

PM impairments in ecstasy users were found in all studies in this thesis. These findings have 

important implications for those individuals who use ecstasy. Firstly, the use of ecstasy is 

detrimental to PM performance and therefore can potentially be debilitating to normal 

everyday functioning. More specifically, those individuals who consume higher doses of 

ecstasy per session may be more likely to display PM impairments compared to those 

individuals who consume lower doses. This information should be used to educate ecstasy 

users as to the possible consequences of its use. Future research should further explore the 

importance of typical dose of ecstasy per session in relation to cognitive performance in 

general. In addition to the administration of laboratory-based measures of PM, the use of 

neuroimaging techniques could be employed. This would allow researchers to potentially 

identify specific brain regions that may be implicated in PM deficits in those ecstasy users 

who consume large doses of ecstasy in a representative session.  
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Chapter 1: Overview of thesis 

Chapter one provides a brief overview of the thesis. Chapters 2, 3, 4, 5 and 6 are all literature 

review chapters. Chapter 2 provides an introduction and a general background to prospective 

memory (PM) and the realisation of delayed intentions. Chapter 3 identifies the different 

brain regions that are implicated in event-and time-based PM tasks and investigates the extent 

to which these areas are affected by the use of licit and illicit drugs. Chapter 4 discusses the 

neurotoxic potential of licit and illicit drugs. Particular attention is given to the effects of 

cannabis, ecstasy and cocaine on the neural system. Chapter 5 describes a range of self-report 

and laboratory-based objective measures of PM that are commonly used in the literature. 

Issues of reliability and validity are also discussed. Chapter 6 provides a detailed overview of 

the effects of licit and illicit drugs on PM. Chapters 7 and 8 detail the first empirical chapters 

of this thesis. Chapter 7 investigates the effect of the typical dose of ecstasy consumed in 

representative session on PM performance. Chapter 8 explores the extent to which concurrent 

alcohol and ecstasy consumption can impair PM performance. Chapter 9 contains a further 

literature review that provides a detailed overview of executive functioning (EF) and its 

relationship with PM. Chapter 10 is the third empirical chapter and investigates the extent to 

which underlying impairments in EF processes (verbal word fluency, updating, shifting and 

inhibition) can explain PM deficits in ecstasy users. The Chapter also seeks to evaluate 

whether the effects of ecstasy on PM were independent of any effects associated with verbal 

word fluency, updating, shifting and inhibition. Chapter 11 is the final empirical chapter 

where correlational analyses are used to explore the relationships between long- and short-

term indicators of ecstasy, cannabis and cocaine use and PM performance outcomes. Chapter 

12 is a general discussion of the results and evaluates the findings in terms of the implications 

for ecstasy users and the implications for the future study of PM and other cognitive 

processes.  
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Chapter 2: Defining prospective memory: The realisation of delayed intentions 

Chapter Outline 

The present chapter outlines a distinct cognitive ability that is commonly known as 

prospective memory. The construct of intentions is introduced with the aim of providing an 

explicit definition of delayed intentions.  Different approaches to and models of prospective 

memory are discussed together with the potential role of retrospective memory in everyday 

prospective remembering. Different classifications and frameworks of prospective memory 

(PM) are outlined in order to provide a thorough insight into the subject. Particular attention 

is given to the retrieval phase and in particular to the underlying differences between event- 

and time-based PM. 

 

2.1 Intentions 

When people complain of having problems with their memory, they do not often refer to 

difficulties they have in remembering things that they did the previous day or remembering 

stories that they had heard on the news. Rather, they commonly refer to forgetting to carry 

out everyday tasks such as remembering to take medication or remembering to attend 

appointments (see Kliegel, Jäger & Phillips, 2008). These types of real-world memory lapses 

whereby one forgets to carry out previously formed intentions in the future are known as 

prospective memory (PM) failures (Meacham & Singer, 1977). Since PM primarily concerns 

the forgetting of intentions, it is important to briefly consider the nature of intentions. For 

example, what are intentions and how do they relate to human behaviour? (Kvavilashvili & 

Ellis, 1996). The answers to these questions will potentially improve our understanding of the 

underlying processes involved in PM tasks.  

 Intentions are a key feature of the activities and tasks performed in our everyday lives. 

However, providing a single definition of an intention is difficult given the wide variety of 

intentions we carry out on an everyday basis (Gauld & Shotter, 1977). Kvavilashvili and Ellis 

(1996) describe intentions as a person’s readiness to act at some point in the future. It is this 

readiness to act that governs the decision that is made to carry out an intention (Ellis, 1996). 

Aside from this, several other aspects of intentions should be also be acknowledged including 

what (i.e., the retention of an action), where (i.e., location or place associated with an action), 

when (i.e., when the memory for an action should be retrieved), who (i.e., with, to or from 
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whom) and how an intention might be retrieved (actions associated with satisfying an 

intention).  

 There are two main types of intentions; prior intentions where an intention is formed 

before an action and intentions in action where an intention is formed spontaneously with 

little time to plan for an action. A definitive feature of a prior intention is that they occur 

following a conscious decision to carry out behaviour (Brand, 1984; Heckhausen & Kuhl, 

1985). It is not possible for a prior intention to be formed unless a person has made a 

conscious decision to act. There are two further subcomponents of prior intentions – 

Immediate actions refer to intentions that can be carried out shortly after the conscious 

decision has been made to act. In contrast, delayed intentions involve a delay between the 

decision to act and any actions directed towards the fulfilment of an intention (Gauld & 

Shotter, 1996). The term PM can also be used to describe the underlying processes and 

mechanisms involved in the retrieval and subsequent fulfilment of a delayed intention 

(Kvavilashvili & Ellis, 1996).  

 

2.2 The realisation of delayed intentions 

The ability to form, retain, recall and realise intentions is fundamental to everyday 

functioning (Baddeley & Wilkins, 1984; Ellis, 1996; Ellis, Kvavilashvili & Milne, 1999 

Harris, 1984). Thus, it is interesting to note that up to 70% of everyday memory failures are 

concerned with the forgetting of an intention (Terry, 1988).  In many cases, intentions can be 

performed immediately after they are formed. However, there are times when intentions must 

be postponed and carried out at some point in the future. For example, if we are asked to pass 

on a message to a friend when we see them, we may not be able to pass on the message until 

we next meet that person. PM (Meacham & Leiman, 1982) or the realisation of delayed 

intentions (Ellis, 1996; Ellis & Kvavilashvili, 2000) refers to the process whereby intentions 

are formed and carried out at some point in the future. As a result, successful prospective 

remembering is dependent on the recall of content and its retrieval at an appropriate time for 

action (Ellis & Kvavilashvili, 2000). 

 According to Ellis and Kvavilashvili (2000), PM tasks can be identified by the 

following three characteristics. First, PM tasks involve a delay between the formation of an 

intention and its fulfilment. For example, an appointment with a doctor may have to be 

arranged several days in advance.  Second, PM tasks do not involve an explicit reminder to 
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perform the intention. Using the same example, the doctor surgery will not often remind 

people that they have an appointment. Finally, a person may need to interrupt ongoing 

everyday activities and tasks in order to successfully perform an intended action (Ellis & 

Kvavilashvili, 2000). In this case, there may be a need to interrupt an ongoing job-related 

task (e.g., attending to work emails or filing) prior to attending the appointment with the 

doctor. In order to fulfil this intention, one’s attention must switch from the ongoing task to 

thinking about the intended action and then fulfilling it (McDaniel & Einstein, 2000). 

 Despite being a distinct aspect of human cognition, PM is not entirely independent of 

other memory processes. Retrospective memory (RM) refers to processes associated with the 

recall of information and primarily concerns information related to what it is that has to be 

done (Cockburn, 1995; Einstein & McDaniel, 1996). Although the realisation of delayed 

intentions involves components of both RM and PM in that they both require the memory for 

content, they are separable with PM being reliant upon a self-initiated cue for retrieval. For 

example, a common feature of a laboratory-based RM task is the formation and encoding of 

an intention and action (Ellis, 1996). Einstein and McDaniel (1990) suggest that in an RM 

task an experimenter directs a participant's attention towards the retrieval of a previously 

experienced episode (Tulving, 1983). By contrast, PM tasks require people to remember to 

carry out an intention after a target event has occurred or after a period of time has elapsed. 

Thus in PM tasks, there is no specific request for a search of memory (i.e., from an 

experimenter) and rather, memory retrieval is entirely dependent on a person’s ability to 

interrupt ongoing activities and perform an intended action (Einstein et al., 2005). 

 Ellis’ (1996) conceptual framework is useful for explaining the different retrospective 

and prospective processes involved in the realisation of delayed intentions. The first stage of 

this five component model is focused on RM and relates to the processes associated with the 

retention of an action (i.e., what the intent is including well-learned or novel tasks), the intent 

itself (i.e., that conscious decision to carry out an action or the readiness to act), and the 

retrieval context (i.e., when the memory for an intention should be retrieved). The retrieval 

context identifies cues and characteristics that should prompt the initiation of an action at 

some point in the future).  

The remaining four stages of Ellis’ (1996) framework refer to various PM processes 

involved in the realisation of delayed intentions. The retention interval describes the delay 

between the formation of an intention and the initiation of an action. The delay period can 
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typically vary from several seconds to a number of minutes or hours and this has led to the 

classification of short- and long-term delayed intentions (Baddeley & Wilkins, 1984). 

Retrieval in a performance interval is a distinct stage, which is based on the realisation that a 

particular situation presents a retrieval context where an intention should be retrieved and 

performed. However, successful realisation can only occur if the perceived situation 

corresponds to the encoded retrieval context. A further stage examines how the initiation and 

execution of an intended action can influence its realisation. This is a complex stage that 

includes events that could potentially affect the outcome of a delayed intention such as 

distractions during the execution of an action or interference from unexpected extraneous 

circumstances. For example, an intention to return a book to the library might be interrupted 

after meeting a friend on the way or fail because the library is closed. In both situations, the 

intention has not been satisfied and thus, there is a requirement for the re-planning of an 

intention and the associated encoding of a revised retrieval context (Ellis, 1996). Stage five 

refers to the evaluation of an action and involves a comparative process between a goal state 

(information relating to that, what, where, who and how an intention is realised) and current 

state (i.e., the outcome of an executed or unexecuted intention; see Ellis, 1996; Newell & 

Simon, 1972). Evaluative processes maintain efficiency by ensuring that executed actions, 

which have satisfied a delayed intention, are not repeated. Further, they ensure that future 

actions are directed towards the recovery of earlier actions that have failed to satisfy a 

delayed intention (Ellis, 1996). 

 Another theory put forward by Shapiro and Krishnan (1999) further highlights the 

involvement of RM in the realisation of delayed intentions. Shapiro and Krishnan (1999) 

suggest that the memory for content of an intended action is retrospective whereas, actually 

remembering to carry out an intended action is prospective. The authors examined both 

components (retrospective and prospective) in situations where several intentions were 

present and investigated the extent to which important intentions affected RM and PM for 

less important intentions. Findings indicated that both retrospective and prospective 

remembering were better for more important intentions relative to less important intentions. 

However, influence of an important intention on memory for a less important intention was 

mediated by order of intention and type of memory component. PM was better for 

unimportant intentions that were completed before important intentions whereas RM was 

unaffected by order of intention. Aside from highlighting retrospective and prospective 

components of PM tasks, further findings from Krishnan and Shapiro’s (1999) study suggest 



19 
 

that the retrospective and prospective components of memory are theoretically and 

empirically separable and may be mediated by different underlying processes.  

Even so, if a person is impaired on RM tasks, some level of impairment may also be expected 

in PM. This assertion is supported by recent research that has identified an association 

between better RM and increased performance on PM measures (Hadjiefthyvoulou, Fisk, 

Montgomery & Bridges, 2011a).  Furthermore, PM tasks with a high RM load have been 

shown to increase PM response times (Wang, Kliegel, Liu & Yang, 2008). Clearly, RM is an 

important aspect of prospective remembering, however, the remainder of this Chapter and 

indeed the later empirical work focuses solely on the prospective component of PM tasks.  

 

2.3 Classes of prospective memory 

Due to the complex nature of prospective remembering, a unified theoretical framework has 

not been established (Marsh & Hicks, 1998). However, in recent years, research has been 

directed towards the study of PM and different theoretical constructs have begun to emerge. 

An important question in the research surrounding PM is why people perform well in some 

situations but then fail to realise delayed intentions in other contexts. Possible reasons for 

performance differences can be drawn from the different classifications of PM that have been 

proposed in the literature (Kliegel, Martin, McDaniel & Einstein, 2004).  

  Kvavilashvili and Ellis (1996) suggest that PM can be distinguished according to four 

main phases of information processing including (a) the encoding phase (b) the retention 

phase (c) the retrieval phase and (d) the performance phase.  Further distinctions of PM 

include PM proper and vigilance/monitoring (Uttl, 2008). PM proper involves bringing back 

to awareness previously formed intentions in the right context (when and where an intention 

should be retrieved). An example of PM proper is a person passing a message on to a friend 

when they next see them. If there is a long delay period between the formation of the original 

intention and when the person next sees their friend, it is likely that the intention will be 

temporarily suppressed. Thus, this PM task requires a person to bring the intention (i.e., 

passing on a message) back into conscious thought upon the presentation of the PM cue (i.e., 

seeing the friend). Vigilance/monitoring differs from PM proper in that the plan to execute a 

specific action remains in consciousness until the intention is fulfilled. For example, a train 

conductor maintains a plan to issue a set of instructions to train drivers and other train 

personnel. This plan is maintained in consciousness as the train conductor monitors for 
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specific PM cues (i.e., trains arriving and leaving the station, the platform being clear of 

people). When PM cues are recognised, the train conductor should deliver a set of 

instructions to drivers and other personnel (see Uttl, 2008). 

Even though there is a clear difference between PM proper and vigilance/monitoring, PM 

studies rarely distinguish between the two. Nonetheless, a basic understanding of the 

fundamental differences between the two might be useful to identify the specific PM task 

(PM proper or vigilance/monitoring) used in particular studies. Despite this, more explicit 

distinctions are commonly made in regard to the retrieval phase and the difference between 

event- and time-based PM tasks. This Chapter discusses the theory behind event- and time-

based PM tasks and provides a detailed account of the different strategies that people may use 

for accurate PM retrieval. The empirical work in this thesis will use a number of laboratory-

based event- and time-based PM tasks to explore PM deficits in ecstasy users. 

 

2.3.1 Encoding 

PM tasks can be identified according to the planning processes implicated during the initial 

coding of an intention. For instance, whether an intention is perceived to be important or 

unimportant, based on simple or difficult decisions, or generated by one or others can all 

affect PM performance. 

 

Important and unimportant intentions 

Task context and in particular, the perceived importance of a delayed intention is an 

important factor which can be used to explain performance differences across PM tasks. This 

proposal is based on the assumption that when forming an intention, a person will often make 

a subjective judgement based on the intention’s importance. This assessment is dependent on 

several factors including the benefits or consequences of success and failure, respectively 

(Kvavilashvili & Ellis, 1996).  In relation to this, it is plausible to suggest that people will 

perform better on PM tasks which are perceived to be important relative to those that are 

perceived to be unimportant (Kliegel et al., 2004). Consistent with this proposal, research has 

shown that perceived task importance has beneficial effects on PM performance 

(Kvavilashvili, 1987; Kliegel, Martin, McDaniel & Einstein, 2001; Kliegel et al., 2004; 

Meacham & Singer, 1977; Somerville, Wellman & Cultice, 1983). 
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 Studies have shown that prospective remembering is highest for important 

appointments (Andrzejewski, Moore, Corvette, Herrmann, 1991) and highly interesting 

activities (Somerville et al., 1983). Similarly, Ellis (1988) found a positive relationship 

between the recollection of an intention and its perceived importance .One possible reason 

for this is that the encoding of a seemingly important intention produces a series of 

integrative and organisational processes which in turn provide several cues for the retrieval of 

a delayed intention (Kvavilashvili & Ellis, 1996). In adding further understanding to the role 

of task importance in prospective remembering, Meacham and Singer (1977) found that 

delayed intentions are more likely to be realised if they are associated with a high incentive. 

While there appears to be substantial support for the role of task importance on PM, some 

results suggest that the subjective importance of a delayed intention has no effect on its 

realisation (Goschke & Kuhl, 1993). Further, the early literature has failed to identify specific 

task conditions that might accentuate or attenuate the effect of task importance on PM 

performance. Later research, however, has indicated that task importance has a positive effect 

on time-based but not on event-based PM tasks (Kliegel et al., 2001). The authors propose 

that the increased attentional resources demanded by time-based PM tasks actually aid 

prospective remembering. The same effect may not have been found for event-based PM 

since there is an explicit cue for retrieval and thus, the same level of monitoring required in 

time-based tasks is not necessary. To test this proposal, the same authors (Kliegel et al., 

2004) conducted another study whereby the attentional demands of event-based tasks were 

manipulated. Crucially, an importance effect was only found for event-based tasks that relied 

on demanding monitoring processes. Overall, the literature indicates that higher subjective 

task importance has a positive effect on prospective remembering especially on PM tasks, 

which demand increased levels of monitoring and attentional resources.  

 

Intentions based on simple or difficult decisions 

The decisions that operate prior to the formation of an intention can influence later 

realisation. For example, intentions can be formed following a simple or more difficult 

decision and as such, the planning processes associated with each can be different. 

Specifically, it is thought that simple decisions are likely to be followed by less complicated 

planning processes than those evoked by more difficult decisions (Kvavilashvili & Ellis, 

1996). Similarly, intentions that involve the reorganisation of a previously planned activity or 
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the prioritisation of activities are likely require intricate attentional resources which then lead 

to the detailed processing of that intention.  

 

Self- or other- generated intentions 

During initial encoding, a delayed intention is either formed following a personal need to do 

something or after a specific request from another person. These are referred to as self-

generated and other-generated intentions, respectively (Cohen & Conway, 2007; Ellis & 

Nimmo-Smith, 1993). The primary difference between the two is derived from the origin of 

the intention. For example, self-generated intentions follow an intrinsic need to do something. 

By contrast, other-generated intentions are based on extrinsic needs or instructions from 

others (see Kvavilashvili & Ellis, 1996). In this way, it is much easier for other-generated 

intentions to be tested within the laboratory since experimental tasks often require explicit 

instruction from an experimenter. Nonetheless, questionnaire studies have been used to test 

the effects of the origin of an intention on prospective remembering (Kvavilashvili & Ellis, 

1996). 

 

2.3.2 The retention phase 

The length of the interval between the formation of an intention and the time when an 

intention should be retrieved from memory can further distinguish prospective remembering 

(Baddeley & Wilkins, 1984; Dobbs & Reeves, 1996). Two types of PM task have been 

identified alongside this proposal; short-term PM tasks, and long-term PM tasks. By way of 

illustration, the event or time which governs when an intention should be carried out might 

occur a short-time (e.g., several seconds or a number of minutes) after the intention was 

defined (short-term PM tasks), or several days, weeks, or months later (long-term PM tasks; 

Dobbs & Reeves, 1996). Evidence within the literature suggests that PM performance 

declines for PM tasks with longer delay periods (Brandimonte & Passolunghi, 1994; Meier et 

al., 2006).  

 Brandimonte and Passolunghi (1994) found significant declines in PM performance 

with increased delay periods between PM instruction and the presentation of a PM cue. 

Importantly, PM declines were found for delay periods as short as three-minutes suggesting 

that PM forgetting occurs in a relatively short time frame. One interpretation of these findings 

is that the memory processes associated with short- and long- delay intervals might be very 
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different (Dobbs & Reeves, 1996; McBride, Beckner & Abney, 2011). For example, the 

planning processes and monitoring strategies involved in meeting a friend in 2-minutes 

(short-term) might be qualitatively different from those required to realise an intention of 

meeting a friend in five days (long-term). In line with this proposal, Meacham & Leiman 

(1976, p.328) suggest that short-term PM tasks may be no different to “maintaining one’s 

vigilance or attention”. Kvavilashvili and Fisher (2007) propose that a person is likely to keep 

short-term intentions in their mind for short delay periods. For example, a person might 

maintain a short-term intention in memory by consciously thinking about the intention 

throughout delay period. By way of contrast, Einstein and McDaniel (1990) argue that long-

term delayed intentions require extended periods of conscious awareness. This is because 

there is additional opportunity for the memory for an intention to dissipate over longer delay 

periods. For example, distractions in the environment or the completion of other tasks may 

detract attention from long-term intentions. Furthermore, since PM performance is dependent 

on the use of monitoring processes for accurate PM retrieval (Einstein & McDaniel, 2010), 

people may have difficulty in maintaining monitoring processes for longer delay periods. 

 Research indicates that declines in monitoring occur in the first few minutes after a 

PM intention has been formed (Brandimonte & Passolunghi, 1994; Einstein et al., 2005). 

Other studies suggest that monitoring processes decline over extended periods of up to  

20-minutes (Loft, Kearney & Remington, 2008) and PM performance becomes worse as the 

retention interval is increased (Martin, Brown & Hicks, 2011). Nonetheless, the extent to 

which people use monitoring process to aid prospective remembering is highly dependent on 

PM task type. For example, focal PM tasks (see Chapter 2, Section 2.3.3.1) are suggested to 

require significantly less monitoring processes compared to non-focal PM tasks. This is 

because in focal PM tasks, the PM task is crucial to the stimuli which are processed in the 

ongoing task. For example, if the PM cue is a specific word, then the use of a lexical decision 

task or a category identification ongoing task would encourage focal processing of the PM 

cue. This is because the PM cue is directly processed as part of the stimuli encoded in the 

ongoing task. On the other hand, non-focal processing of a PM cue occurs when the PM cue 

is not directly processed in the ongoing task. For example, if a PM cue is a specific feature of 

a word (i.e., a syllable, the starting letter), then the use of a lexical decision task or a category 

identification ongoing task would encourage non-focal processing of the PM cue. In order to 

process the PM cue, a person is required to process additional information that is not required 

to complete the ongoing task (i.e., syllables and starting letters of each word). Thus, 
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compared to focal PM tasks, non-focal PM tasks are suggested to depend more on monitoring 

processes for retrieval (Einstein & McDaniel, 2005). Despite this, in Loft et al’s (2008) study 

which used a focal PM task, monitoring process were still evident for time periods of up to 

20-minutes. In summary, focal and non-focal PM tasks involve the use of monitoring 

processes for retrieval.  Nonetheless, the extent to which monitoring processes are used in 

each task may be very different. For example, non-focal PM tasks rely more on a directed 

search for retrieval and thus depend more on monitoring processes compared to focal PM 

tasks (Einstein & McDaniel, 1996) 

 More recent research (McBride et al., 2011) has attempted to explore the nature of 

PM forgetting in the context of the retention phase. By manipulating the delay period 

between PM instructions and PM target presentations, McBride et al. (2011) were able to 

investigate the extent to which longer delay periods increase PM forgetting. PM performance 

was measured for delays of 2–20 minutes in Experiment 1 and for delays of 1–10 minutes in 

Experiment 2. Further manipulations included PM task type such that some PM responses 

were governed by focal PM cues and others by non-focal PM cues (see Chapter 2, Section 

2.3.3.1). The results suggest that there was a rapid decline in non-focal PM performance for 

shorter delay intervals and a slower decline in non-focal PM performance for longer delay 

intervals (Experiment 1). No effect of delay period was found for the focal PM condition in 

Experiment 1 or Experiment 2. These findings suggest that in non-focal PM tasks, PM 

declines in a non-linear fashion such that there is a rapid deterioration in the initial stages of 

the delay period followed by a slower decline towards the end of the delay period. Given that 

PM retrieval in non-focal PM tasks is suggested to require attention demanding processes, it 

is possible that participants were engaging in high levels of monitoring at the beginning of 

the ongoing task but had difficulty in maintaining the same level of monitoring for more than 

a couple of minutes. Following an initial sharp decline in monitoring levels, monitoring 

levels become sustainable with much slower declines towards the end of the delay period. 

This interpretation of the findings is consistent with research which has found significant 

deterioration of monitoring levels within three-minutes of when an intention was first formed 

(Brandimonte & Passolunghi, 1994). Overall, there is conclusive evidence which indicates 

that PM performance declines in a non-linear fashion when the delay between PM instruction 

and PM cue presentation is increased (Brandimonte & Passolunghi, 1994; Loft et al., 2008; 

McBride et al., 2011). This is especially true for non-focal PM tasks that require self-initiated 

monitoring processes for retrieval (McBride et al., 2011). 
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2.3.3 The retrieval phase 

The retrieval phase is a period during PM tasks where the opportunity for an appropriate 

response occurs. Kvavilashvili (1990) identified three main types of retrieval occasion; event-

based (a delayed intention which is externally cued by the environment), activity-based (a 

delayed intention which is governed by an activity in which a person engages), and time-

based (delayed intentions which are cued by the monitoring of time). Other researchers have 

argued that event- and activity-based intentions are very similar and as a result, there is no 

need to distinguish between the two (Einstein & McDaniel, 1990; also see Kvavilashvili & 

Ellis, 1996). Outlined below are the different frameworks and concepts surrounding event- 

and time-based delayed intentions. 

 

2.3.3.1 Event-based prospective memory 

Event-based PM tasks involve remembering to perform a specific action after an external 

event has occurred (Einstein & McDaniel, 1990). In terms of PM, an event is an episode 

which occurs as a result of a person, object or location (Kvavilashvili & Ellis, 1996). For 

example, if a person has to pass on a message to a friend, actually seeing that person (i.e., the 

event) may act as a cue for retrieval. Typical laboratory tasks which aim to investigate event-

based PM involve an ongoing task such as judging whether two abstract patterns are the same 

(Fisk & Warr, 1996). Then, for a PM element, participants are typically asked to make a 

predetermined response (i.e., pressing a key) following the presentation of a target event 

during the ongoing task.  

 However, laboratory-based paradigms fail to capture the processes involved in 

complex PM situations. Ellis (1996) proposes that laboratory-based PM tasks do not account 

for the planning processes involved in real-life event-cued PM. For example, in real-life 

event-based prospective remembering, there is often a requirement to organise and plan 

several activities according to their subjective importance. Thus, some laboratory tasks make 

it difficult to investigate the full range of processes involved the planning and execution of 

event-based intentions. Despite this, other PM studies have used alternative PM tasks which 

aim to directly discriminate between the planning and execution stages of prospective 

remembering.  

As discussed previously, Kliegel et al., (2000) used a complex six element task (see Shallice 

& Burgess, 1991) where participants were required to self-initiate six different subtasks 
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during a limited time period. Each subtask had to be scheduled and prioritised in such a way 

that would allow for the completion of as many subtasks within the time period. In an attempt 

to capture the planning processes associated with complex PM situations, participants were 

also asked to generate a plan for the execution of the six element task. This method is 

considered to closely reflect the active planning processes associated with real-life PM tasks. 

Moreover, this method allows for authors to separate the planning stage from the execution 

stage of PM tasks.  Studies which have used this six element task have been able to clearly 

distinguish between the planning, initiation and execution stages of event-based PM tasks 

(Kliegel et al., 2000). A whole host of other laboratory based tasks have been developed to 

investigate event-based PM performance and these are discussed in detail in Chapter 6. 

 

Theoretical models of event-based PM 

Theoretical models of event-based PM aim to identify the underlying processes and 

mechanisms which allow people to successfully perform event-based PM tasks. Monitoring 

theories of event-based PM (Einstein et al., 2005; Guynn, 2003) suggest that after the 

formation of an intention, an executive attentional system such as the Supervisory Attentional 

System (SAS; Shallice & Burgess, 1991) monitors the environment in an attempt to identify a 

target event. If a target event is present, the SAS interrupts any ongoing tasks and initiates a 

series of processes associated with the retrieval of an intention. In relation to this, Guynn 

(2003) argues that laboratory tasks of event-based PM require a series of recognition checks 

to test whether a particular cue represents a target event or not. Once again, if a recognition 

check signals that a target event is present, the SAS triggers the retrieval of an intention. 

Monitoring theories (Einstein et al., 2005; Guynn, 2003) of event-based PM assume that the 

retrieval of an intention is a controlled process which places significant demand on 

preparatory processes during the performance interval (i.e., the period of time between the 

formation of an intention and the occurrence of a target event) (Smith, 2003). Findings which 

are consistent with this perspective have shown that dividing attention during retrieval has a 

negative effect on event-based PM performance (Einstein et al., 1997; Marsh & Hicks, 1998, 

Park, Hertzog, Kidder, Morrel & Mayhorn, 1997).  

 Additional findings which support monitoring theories of event-based PM show that 

task processing is slowed during ongoing tasks when people are required to concurrently 

search the environment for target events (i.e., a PM task; Smith, 2003). In an ongoing task, 
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Smith (2003) asked participants to make lexical decisions as quickly as possible. Then, to 

provide a PM element to the study, participants were asked to “press a key” when any one of 

six target events occurred. There were two experimental conditions; in condition one,  

participants performed only the on going task whereas in condition two participants 

performed the ongoing task and the PM task together. For people who performed the ongoing 

task and the PM task, task processing was slowed on non-PM target trials. Thus, even if a 

target event is not present, the recognition check/monitoring slows processing on the ongoing 

task. This is because significant resources are expended whilst people search the environment 

for a target event.  

 Although some PM tasks require effortful monitoring of stimuli for a target event, 

relatively little is understood about the specific monitoring patterns which are used by people 

to aid prospective remembering. For example, it is possible that there are individual 

differences in monitoring patterns used by different people. A recent study by Savine, 

McDaniel, Shelton and Scullin (2012) has identified three candidate models which 

characterise the range of monitoring processes used by different people; attentional focus, 

secondary memory retrieval and information thresholding. Each of the three models are 

largely based on theories of working memory and concern the active maintenance or 

manipulation of information in the focus of attention. Savine and colleagues (2012) 

conceptualisation of the monitoring processes involved in prospective remembering are in 

concert with the proposal that there is a significant link between working memory and PM 

(Brewer, Knight, Marsh & Unsworth, 2012; Rendell, McDaniel, Aberle & Kliegel, 2010) 

 The attentional focus model comes from one of the two working memory components 

put forward by William James (1980) and Unsworth and Engle (2006; 2007). The attentional 

focus model proposes that details of PM targets, requisite actions and other ongoing task 

demands are maintained in the focus of attention. Maintaining the PM intention in the focus 

of attention allows for the representation of the PM target to be compared to each individual 

stimulus within the environment. A one-to-one comparison between the current stimulus and 

each PM target is made until the PM intention has been carried out or until it is recognised 

that a PM response is not appropriate. 

 The Secondary Memory retrieval model is based on the second component of 

working memory (James, 1890; Unsworth & Engle, 2006) and, in contrast to the attentional 

focus model, the specific PM intention is not loaded into the focus of attention. Rather, a 
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more general memory trace is formulated which simply reminds a person that they need to do 

something at a specific point in the future. This allows people to proactively shift attention 

from the ongoing task to active attempts of retrieval of the specific details of the PM 

intention from secondary memory. If the initial attempt of PM retrieval is unsuccessful (i.e., 

as a consequence of complex environmental demands or PM stimuli) then further retrieval 

attempts may be necessary. 

 The information thresholding model is based on Cowan’s (1995; 2005) embedded-

process model of working memory which concerns the focus of attention and an activated 

portion of secondary memory. The information thresholding model suggests that ongoing 

task performance is maintained in the focus of attention while a PM intention is maintained in 

an activated portion of secondary memory which can be easily accessed without loading on 

attention demanding resources. As a result, no performance cost to ongoing task performance 

should be observed.  

 Savine et al. (2012) developed two experiments which attempted to demonstrate  

a) which of the three monitoring patterns are typically used by people to detect PM targets,  

b) which monitoring pattern leads to the greatest performance cost to an ongoing task,  

c) which of the three monitoring patterns produces the best PM performance, d) whether 

people consistently use the same monitoring patterns for PM tasks, and e) how task, 

personality and cognitive factors influences the use of different monitoring patterns. The 

Complex Ongoing Serial Task (COST; Savine et al., 2012) was used to categorise 

participants according to the monitoring strategies that they each used for retrieval.        

  In the COST, participants are presented with a letter string (e.g., COFFEE) and asked 

to make a complex response based on four different decisions (four total button presses): 

lexical decision (word or nonword), syllable judgement (two syllables or not two syllables), 

colour discrimination (primary or secondary) and font discrimination (serif or sans serif). 

Decisions are made in a set sequence of key presses and the letter string remains on the 

screen until all four responses had been made. A 37-trial practice block of the four tasks is 

given before the COST. 

 In Savine and co-workers’ (2012) study, participants were allocated to either a PM 

condition or a control condition. In the first Phase of the experiment (Phase 1), participants in 

both groups completed two COST blocks (36 trials each without PM instruction) to 

determine baseline COST performance. Participants were specifically instructed to make 



29 
 

each decision sequentially as opposed to processing all decisions at once and rapidly 

performing all four responses. This procedure served to better separate the processing and 

response of each decision during the completion of the COST. Participants received feedback 

across each COST trial.  

 In the second Phase of the experiment (Phase 2), the control group completed five 

COST blocks consisting of 48 trials each without PM instruction. In contrast, the PM group 

received detailed PM instructions where they were instructed to press the “6” key on a 

keyboard whenever they were presented with a target cue. Participants were informed that 

there were eight PM conditions in total. In the few-attribute, specific cue condition, the PM 

target was the one-two syllable word PLANE. In the several-attribute, specific-cue condition, 

the PM target was the non-two syllable word, PLANE written in red ink and in Arial font. In 

the few-attribute, categorical cue condition, the PM target was any non-two syllable word 

whereas in the several attribute, categorical-cue condition, the PM target was any two 

syllable word written in a primary colour and Serif font. To ensure that the PM responses had 

been encoded correctly, participants were asked to recite each of the PM response 

contingencies to the experimenter. Participants only began the COST of the second Phase 

when all PM response contingencies had been recited. No PM targets were presented in the 

first COST block but two PM targets were presented in the other four COST blocks. In each 

case, the PM target was the word, PLANE (written in red ink and in Arial font). Upon 

completion of the five COST blocks in the second Phase of the experiment, participants were 

required to verbally inform the experimenter of the PM responses contingency which was 

used in the task (i.e., what were the cue attributes and the appropriate response button). 

  The authors were able to identify the different monitoring patterns used by different 

people (based on the three candidate models outlined above) by calculating cost profiles 

based on differences in COST performance between Phase 1 and Phase 2. Cluster analysis 

was also performed on these data to determine whether there were objective, data-based 

differences in resource allocation patterns consistent with the three proposed monitoring 

models. Evidence for all three monitoring patterns was observed. Savine et al. (2012) found 

that monitoring patterns were higher for information thresholding and attentional focus 

relative to secondary memory retrieval. Both information thresholding and attentional focus 

produced high PM performance while secondary memory retrieval was associated with 

declines in PM performance. Ongoing task performance was only preserved in cases where 

information thresholding was used. Engaging in attentional focus and secondary memory 
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monitoring patterns produced inefficient ongoing task performance.  Other factors including 

personality and cognitive factors influenced monitoring patterns. For example, people who 

scored high in openness were more likely to use information thresholding. Furthermore, 

higher working memory capacity was associated with better PM performance when 

participants were using the attentional focus monitoring pattern. Although the present study 

identified three key monitoring patterns used by people to aid event-based PM retrieval, there 

may be some situations where it might be more efficient for people to rely less on capacity-

demanding processes. 
 
 Spontaneous retrieval processes (Einstein & McDaniel, 1996; McDaniel & Einstein, 

2000; McDaniel et al., 2004) are fundamental in some PM situations since humans have a 

limited capacity for conscious control over behaviour (Bargh & Chartrand, 1999) and as 

such, depending entirely on capacity-demanding processes would be maladaptive (Einstein & 

McDaniel, 2005). This assertion is supported by self-report data that indicates that intentions 

spontaneously “pop” into mind during ongoing tasks (Einstein & McDaniel, 1990). 

 The reflexive associative theory has been proposed to explain how spontaneous 

retrieval might occur (Einstein & McDaniel, 1996; McDaniel & Einstein, 2000; McDaniel et 

al., 2004). This theory suggests that during planning, people form an association between a 

target cue and an intended action. Then when a target cue occurs, the intention is brought to 

consciousness via an automatic-associative memory system (Moscovitch, 1994) and without 

the need for executive resources (e.g., SAS; Shallice & Burgess, 1991). Moscovitch (1994) 

explains that this process is relatively automatic and occurs without the need for cognitive 

resources. Nonetheless, a sufficient association needs to be formed between a target cue and 

an intention for retrieval to occur. Following this, the target cue then needs to be processed 

sufficiently for accurate retrieval. 

 

 Einstein and McDaniel (1996) offer two further accounts of how spontaneous 

retrieval may occur for event-based prospective intentions. The simple activation model 

assumes that retrieval is automatic and entirely independent of “intervening controlled 

retrieval processes” (Einstein & McDaniel, 1996, p.125). The model assumes that when a 

person is given a PM task, an association is formed between the target cue and the intended 

action. However, as people attend to other ongoing activities, activation of this association 

falls to levels which are below conscious awareness. Activation levels continue to dissipate 

over time unless a person encounters a target cue or begins to think about the future intention. 
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Accordingly, when activation levels decrease, the probability of the future intention re-

entering consciousness also decreases. This view is consistent with findings which show 

better PM performance when people are provided with specific instructions relative to 

general instructions about a target cue. In one study, Einstein and McDaniel (1996) asked 

younger and older adults to make prospective responses to either specific target cues or 

general target cues. In the specific target condition, participants were required to make a 

prospective response to a particular animal (i.e., lion-press a key). In the general target 

condition, participants were required to make a prospective response after the presentation of 

any animal (i.e., animal-press a key). Both younger and older adults made more successful 

prospective responses to specific target cues than they did to general target cues. The simple 

activation model would suggest that people form stronger cue-action pairings to specific 

targets than they do to general targets. If this proposal is correct, specific cue-action pairings 

are likely to receive greater activation compared to general cue-action pairings (see Einstein 

& McDaniel, 1996) which, in turn may increase the likelihood of the intended action being 

retrieved. 

 From an alternative standpoint is the Noticing and Search model (Einstein 

&McDaniel, 1996) which assumes that encounters with a target cue evokes feelings of 

familiarity, perceptual fluency, or other internal responses that allow the target cue to be 

noticed. Noticing a target may then initiate further probes of memory in the form of a 

directed search to identify the significance of the target cue. Whether or not an intention is 

retrieved and fulfilled is dependent on this directed search process.  

 Both the simple activation model (Einstein & McDaniel, 1996) and the noticing and 

search model (Einstein & McDaniel, 1996) emphasise the spontaneous retrieval processes 

associated with event-based PM retrieval. Nonetheless, it is important to note that the simple 

activation model views the retrieval of an intention as an entirely automatic process without 

the need for external resources or capacity demanding processes. If this assertion is correct 

and presuming that older persons are able to form the initial association (i.e., between an 

event-based cue and a prospective response), one would not expect to find age-related 

differences on event-based PM tasks. This is because the automatic retrieval processes 

assumed to be implicated in event-based PM tasks appear to be relatively unaffected by age 

(Light, 1991).  
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 In contrast, the noticing and search model assumes that successful prospective 

remembering is dependent on both automatic and directed retrieval processes (Einstein & 

McDaniel, 1996). Since directed retrieval processes are suggested to decline with age (Light, 

1991), the noticing and search model might predict that older adults will perform worse than 

younger adults on event-based PM tasks. Although PM has received much attention in the 

cognitive aging literature, there has been much debate as to whether aging induces a specific 

deficit in more difficult, attention demanding PM tasks or a general deficit across all aspects 

of PM performance. Some studies have even reported no differences between younger and 

older adults on event-based PM tasks (McDaniel & Einstein, 2007; Reese & Cherry, 2002). 

Reese and Cherry (2002) examined event-based PM performance in younger and older adults 

and found comparable levels of PM performance between the groups. Furthermore, there was 

little evidence from Reese and Cherry’s (2002) study to suggest the use of strategic 

monitoring processes for retrieval. Both, younger and older adults made little reference (less 

that 5%) to thoughts about a PM intention during an ongoing task. Instead, their attention 

appeared to be focused primarily on ongoing task performance (69% of the time). If 

participants were relying on capacity demanding monitoring processes for retrieval of the 

intention, one would expect increased reports of conscious thoughts about the PM task. 

Rather, the current data suggests that both younger and older adults relied on spontaneous 

retrieval processes for retrieval. Similarly, McDaniel and Einstein (2007) found no evidence 

of age-related declines in focal PM performance. They concluded that this was because of an 

automatic, reflexive or obligatory retrieval of the plan upon presentation of the focal PM cue.  

Overall, the evidence from Reece and Cherry (2002) and McDaniel and Einstein (2007) 

provides support for spontaneous retrieval theories of event-based PM. 

 Conversely, there are a number of studies within the literature which show clear 

event-based PM impairment in older adults. An early investigation by Park et al. (1997) 

asked participants to complete a working memory task (ongoing task) and to perform an 

event- or time-based prospective action upon the presentation of a PM cue or after a specific 

time period. Age-related declines in performance were found for event-and time-based PM 

tasks. However, performance of the event-based PM action had a higher performance cost to 

the working memory task than the time-based PM tasks did. The performance cost to the 

ongoing task is significant as it suggests that event-based PM loads heavily on attention 

demanding processes which detract from performance on ongoing tasks. More recent data 

suggests that older adults are impaired on event-based PM tasks which are conducted in the 
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laboratory (Kvavilashvili, Cockburn and Kornbrot, 2013) and in more naturalistic settings 

(Shum, Levin & Chan, 2011). Kliegel et al. (2001) argue that event-based PM impairments in 

older adults are underpinned by deficits in planning, initiation and execution stages of event-

based PM tasks (Kliegel et al., 2001). Indeed, event-based PM performance is improved 

when older adults are given additional planning time prior to the completion of a PM task 

(Shum, Cahill, Hohaus, O’Gorman & Chan, 2013). Overall, these findings are consistent with 

the noticing and search model and indicate that some event-based PM tasks may require the 

use of strategic monitoring processes for accurate retrieval.  

 

 In conjunction with the inconclusive findings in relation to event-based PM retrieval 

and aging, McDaniel and Einstein (2000) argue that it is adaptive for people to have a 

flexible system where intentions can be retrieved through several mechanisms. The 

multiprocess theory (McDaniel & Einstein, 2000) assumes that retrieval can occur through 

monitoring and/or spontaneous retrieval processes. However, the processing method used for 

retrieval depends on several factors including the nature of the PM task (important vs. 

unimportant), the target event and the ongoing task. If this assertion is true, it may help to 

explain the inconclusive findings regarding the effects of aging on event-based PM. 

 One dimension of the multiprocess theory refers to the association between a target 

and an intended action. Specifically, improved PM performance has been found under 

conditions where there is a strong association between a PM cue and an intended action 

(McDaniel et al., 2004). This is because PM cues which are highly associated with an 

intention involve automatic retrieval processes (McDaniel, Robinson-Reigler & Einstein, 

1998). For example, in the case of buying some fruit when passing the grocery store, the 

target (grocery story) typically has a common association with the intended action (buying 

fruit). Conversely, less highly associated target-intended action pairings may be formed if 

one had to buy a CD from the grocery store. This is because the target (grocery store) may 

not normally be associated with the intended action (buying a CD). In relation to this, 

McDaniel and Einstein (2000) argue that when a highly associated target-intended action 

pairing has been formed, the presence of a target event is likely to elicit automatic 

(spontaneous) retrieval of an intended action. On the other hand, poorly associated target-

intended action pairings are likely to require more refined monitoring processes for retrieval 

(McDaniel & Einstein, 2000).  
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 The multiprocess theory also highlights the importance of focal and non-focal 

processing of the target event in the retrieval of an intention. In terms of cue focality, PM 

target cues are suggested to be more focal when the ongoing task involves processing the 

defining features of the PM targets compared to when ongoing task processing is more 

peripheral (Rose, Rendell, McDaniel, Aberle & Kliegel. 2010). Thus, for focal PM tasks, PM 

targets are processed in a manner which will allow spontaneous retrieval of an intended 

action. An everyday example of focal processing may include remembering to return a 

borrowed DVD to a friend. In this example, the intention may not be fulfilled until a person 

next decides to watch a film. In this case, the multiprocess theory would suggest that when 

the DVD’s become a focus of the ongoing task (choosing a DVD to watch), an automatic 

retrieval process is elicited which reminds a person of the previously formed intention (to 

return the borrowed DVD to a friend). 

 On the other hand, if an ongoing task involves non-focal processing of a target (a 

target is encountered but is not a part of the stimuli processed in the ongoing task, i.e., if a 

person decides to go out for a meal rather than watching a DVD, the DVD’s are unlikely to 

receive focal processing), strategic monitoring might be needed to ensure that attention is 

diverted from the ongoing task and towards the non-focal target (McDaniel & Einstein, 

2000). Furthermore, non-focal PM cues which demand significant strategic and monitoring 

resources produce more consistent declines in longer delay conditions compared to focal PM 

cues (Einstein et al., 2005). 

 Considering the particular cognitive processes which underpin focal and non-focal 

PM tasks, one may expect older adults to perform worse on non-focal PM tasks compared to 

focal PM tasks. This is because older adults are impaired in strategic, effortful processes and 

less so in automatic cognitive processes (Kliegel et al., 2008). Findings which suggest that 

age-related differences are more pronounced when targets are non-focal to the ongoing task 

compared to when targets are focal to the ongoing task support this proposal (Rendell & 

Craik, 2000; Rendell, McDaniel, Forbes & Einstein, 2007). With relatively few researchers 

distinguishing between the use of either focal or non-focal PM tasks in their studies, Kliegel 

and colleagues’ (2008) attempted to quantitatively analyse all available literature on age-

related differences in event-based PM. PM tasks from each study were distinguished 

according to their use of either focal or non-focal PM cues. Overall data from 4709 

participants provided clear evidence for age-related declines in non-focal PM tasks relative to 

focal PM tasks.  Given that non-focal PM tasks load heavily on effortful attentional processes 
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and processing resources are suggested to decline with age (Craik, 1986), these findings 

provide substantial support for the role of monitoring in the processing of non-focal target 

cues and the involvement of automatic retrieval in the processing of focal target cues. 

 The multiprocess theory was explored thoroughly in Einstein et al’s (2005) five-study 

investigation.  Einstein et al’s (2005) research was similar to an approach adopted by Smith 

(2003) and evaluated the costs of performing a PM task on the speed and accuracy of 

performing non-target ongoing task items. If the completion of a PM task is shown to 

increase the time taken to perform an ongoing task (for non-target items), then this is 

suggested to reflect the use of monitoring processes for retrieval. In contrast, spontaneous 

retrieval processes are thought to be implicated in cases where no performance costs are 

observed.  

 

    Einstein et al’s (2005) first experiment involved an ongoing task whereby participants 

were presented with a single word with a category heading and asked to decide whether the 

single word was a member of the category or not. There were two experimental conditions. 

Focal processing conditions required participants to press a key (i.e., the prospective 

response) after being presented with a target word (e.g., tortoise) whereas non-focal 

processing conditions required participants to press a key whenever a target syllable (e.g., 

tor) was presented. By way of testing the effect of task importance on PM performance, 

Einstein et al. (2005) also manipulated the degree to which each PM task was emphasised 

during task instruction. Significant performance costs to the ongoing task were observed in 

conditions which involved non-focal processing of a target. It is likely that this performance 

cost can be accounted for by the use of strategic monitoring processes where a person 

searches the environment for non-focal targets. It is noteworthy that no significant 

performance costs were found in conditions which involved focal processing of the target. As 

assumed by the multiprocess theory, PM tasks which involved focal processing of a target 

relied primarily on the use of spontaneous retrieval strategies. Furthermore, PM performance 

remained high under the focal processing condition suggesting that monitoring is not always 

essential for accurate PM retrieval. In addition, higher performance costs to the ongoing task 

were found when PM tasks had been highly emphasised in the task instructions. It is assumed 

that high emphasis instructions led to greater monitoring which in turn may have 

compromised performance costs to the ongoing task. Critically, however, compromised 

performance was only apparent in non-focal conditions. Einstein et al. (2005) explain that the 
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spontaneous retrieval processes associated with focal processing of targets is sufficient 

enough to allow for accurate retrieval. Thus, the completion of focal PM tasks does not 

impair ongoing task performance as there is little need for the use of resource demanding 

monitoring processes.  

 

 The aforementioned findings were replicated in Einstein et al’s (2005) second 

experiment.  That is, the nature of the target event (focal vs. non-focal) was an accurate 

predictor of the process employed for retrieval. In contrast to Study 1 where task importance 

was manipulated, all participants in Study 2 received moderate emphasis instructions relating 

to the PM tasks. Furthermore, the presentation of the word-pairs was counterbalanced such 

that the authors were able to evaluate performance across the experiment without the possible 

limitation of item effects. Experiment 2 showed that monitoring processes declined across 

trials in the non-focal target condition. This finding is in line with the assumption that 

monitoring is a controlled process (Smith, 2003) and that people have a limited capacity for 

controlled processing (Bargh & Chartrand, 1999). Furthermore, decreased monitoring in the 

non-focal condition was associated with PM performance decrements. Importantly, this effect 

was not found in the focal condition further evidencing the use of spontaneous retrieval 

strategies in PM tasks which involve the focal processing of a target.   

  Einstein et al’s (2005) third experiment attempted to test an alternative perspective 

that performance costs can be found in focal conditions with more complex PM demands, as 

proposed by Smith, (2003). Einstein et al. (2005) compared performance costs on an ongoing 

task were compared with either one or six target events. The findings showed that performing 

a PM task with one focal-target event did not induce performance costs on an ongoing task. 

Conversely, for PM tasks with six focal-target events, performance of the PM tasks did 

produce a significant performance cost in the accuracy and speed of performing the ongoing 

task. This finding supports Smith’s (2003) proposal that PM task demands can mediate the 

strategies used for retrieval. Where participants were asked to respond to a number of PM 

targets as opposed to a single PM target, it would appear that they were using monitoring 

strategies for retrieval albeit at the expense of processing of the ongoing task. 

 Einstein et al’s (2005) fourth experiment explored the individual differences 

underlying different PM processes. Experiment 4 identified the potential use of both 

spontaneous retrieval processes and monitoring processes in PM situations. Importantly, 

some participants were shown to use monitoring processes in conditions which are suggested 
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to encourage spontaneous retrieval processes (focal PM tasks). Furthermore PM differences 

were not observed between participants who used spontaneous retrieval processes or 

monitoring processes. Overall, these findings confirm assumptions of monitoring theory that 

people rely on multiple retrieval processes in different PM situations. 

 One of the main characteristics of spontaneous retrieval processes is that they should 

occur without intention (Einstein et al., 2005). With this in mind, experiment 5 aimed to 

explicitly test the existence of spontaneous retrieval processes by investigating whether there 

was any evidence of PM retrieval in situations where participants were instructed to ignore a 

PM intention. This was done by giving participants a PM instruction and asking them 

complete a lexical decision task with no PM intention and an ongoing task where the PM 

intention had to be retrieved. In the lexical decision task, participants were instructed to 

ignore the PM task and to simply respond as quickly as possible. Thus, there was no 

requirement for the PM intention to be fulfilled during the lexical decision task and as such 

there should have been no monitoring of the items for the PM target. According to the 

spontaneous retrieval view, the presentation of a PM cue even in cases when no PM intention 

is required (i.e., in the lexical decision task) should trigger retrieval processes which slow 

down the making of a lexical decision. In addition, the instruction to disregard the PM task 

was included to discourage the use of monitoring processes for retrieval. Despite being 

instructed to ignore PM targets, participants were slower to respond to PM targets compared 

to non-PM targets in the lexical decision task. This finding confirms the use of spontaneous 

retrieval processes in PM situations. 

 Overall, the findings from Einstein and colleagues’ (2005) five study investigation 

support the multiprocess theory. First, the findings provide significant evidence for the 

existence of spontaneous retrieval processes and highlight their utility in supporting good 

PM. Furthermore, it appears that people rely on different retrieval strategies (i.e., monitoring 

or spontaneous retrieval processes) according to the demands of PM situations. In situations 

that require the focal processing of a target event, people are more likely to use spontaneous 

retrieval processes. On the other hand, monitoring processes are suggested to be implicated 

when PM tasks involve the non-focal processing of a target event.  

More recent data from McBride and Abney (2012) further supports the multiprocess view of 

PM. By comparing PM task accuracy and ongoing task completion speed in baseline and 

different PM conditions (focal and non-focal), McBride and Abney (2012) found that PM 
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task completion rates were higher for focal PM task conditions relative to non-focal PM task 

conditions. According to assumptions of the multiprocess view, it is likely that focal PM 

targets are processed in a manner which allows for spontaneous retrieval of an intended 

action. In comparison, non-focal PM targets require attention demanding resources and 

strategic monitoring processes. It is therefore possible that the specific monitoring patterns 

that were used by participants in the non-focal PM task conditions compromised PM 

performance. According to Savine et al. (2012), the PM deficits observed on non-focal PM 

task conditions are likely to be a result of the use of secondary memory retrieval monitoring 

patterns. Secondary memory retrieval is a monitoring pattern where people formulate a 

general memory trace of an intended action and consistently shift attention from an ongoing 

task to active attempts of retrieval of specific details of the PM intention. However, adopting 

this detailed monitoring process has been associated with declines in PM performance 

(Savine et al., 2012). 

 

2.3.3.2 Time-based Prospective Memory 

Intentions whereby the execution of an action is governed by the passage of time rather than 

by the presence of an external cue or event are called time-based PM tasks (Einstein & 

McDaniel, 1990). Intentions that need to be performed at a specific time or after a predefined 

period of time have elapsed both fall under this term. Typical time-based PM tasks might 

include remembering to attend an appointment at a specific time (e.g., 10am) or remembering 

to take the dinner from the oven after a cooking period has elapsed (e.g., after 20-minutes has 

passed). In each case, the realisation of an intention is dependent on the strategic monitoring 

of time. Laboratory tasks which are commonly used to investigate time-based PM involve 

remembering to mail items to an experimenter on a specific date (see Dobbs & Rule, 1987; 

Meacham & Leiman, 1982) or remembering to complete a questionnaire at various time-

intervals during the test-session (Hadjiefthvoulou et al., 2011a; for further details see Chapter 

5, Section 5.2). 

The estimation of time during time-based PM tasks is known as prospective timing. 

Conclusions from a recent meta-analytic review (Block, Hancock & Zackay, 2010) suggests 

that prospective timing is dependent on an attentionally driven internal clock mechanism and 

not by memory for interval information (i.e., the information required to be remembered 

during a specific time-interval). To test this proposal, Waldum and Sahakyan (2012) gave 
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participants an ongoing task with a time-based PM element and asked them to produce an 

estimation of time after the entire time interval (Experiment 1). During the time interval, 

participants were required to complete a lexical decision task (ongoing task) while a number 

of songs were played in the background. Longer verbal time estimates were produced when 

participants remembered more songs from the time interval. This finding is not in concert 

with conclusions from Block et al. (2010) and rather suggests that prospective timing is 

affected by memory for interval information. One possible implication of this finding might 

be that people who display accuracy in terms of prospective timing do so at the expense of 

memory for interval information. Furthermore, this finding implies that people who 

remember to carry out PM tasks may do so at the expense of other ongoing everyday 

activities. 

Early investigations of time-based PM have explored the strategies employed by 

people to aid prospective remembering and indeed prospective timing (Ceci & 

Bronfenbrenner, 1985; Harris & Wilkins, 1982). One of the first strategies to be explicitly 

identified in the literature is strategic time monitoring. Strategic time monitoring can be 

characterised by the following three phases; a) an early calibration phase where people 

engage in frequent clock-monitoring in an attempt to synchronise their own psychological 

clocks, b) an intermediate phase where clock-monitoring is less frequent and the person 

concentrates on other activities, c) a scalloping phase where a period of intense clock-

checking occurs a short time before the delayed intention has to be realised (Ceci & 

Bronfenbrenner, 1985). Consistent with this proposal, Harris and Wilkins (1982) found that 

their sample of adult women engaged in frequent clock-checking behaviour shortly after 

being asked to complete a time-based PM task. This was followed by a period of less 

frequent clock-checking where the women were able to focus on other ongoing tasks. Finally, 

there was a strategic burst of clock-monitoring just before the delayed intention should have 

been realised. Importantly, time-based prospective remembering was enhanced when 

participants intensified their clock-monitoring behaviour towards the end of the target period.  

A further study of a younger sample of 10 and 14 year old children showed similar 

findings (Ceci & Bronfenbrenner, 1985). Children were given the task of removing cupcakes 

from an oven following a 30-minute time-delay. There were two experimental conditions 

whereby participants either completed the task in a familiar (i.e., their own home) or an 

unfamiliar context (i.e., a laboratory). A clock was provided for time monitoring and children 

were given the opportunity to play a video game during the delay interval. Total number of 
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clock checks did not predict time-based PM performance. Rather, increased clock-monitoring 

towards the end of the baking period increased prospective remembering suggesting that this 

may also have increased accuracy in prospective timing. Age-related differences in time-

based prospective remembering were also found. Specifically, older children (14 year olds) 

made more efficient use of strategic time monitoring, especially towards the end of the 

baking period This particular study has highlighted improved PM performance as children 

become young adults. However PM performance does not remain stable throughout 

adulthood with a growing body of literature suggesting PM performance becomes impaired 

in older adults. 

 

Theoretical Models of time-based PM 

An important characteristic of prospective remembering is that the recollection of an 

intention occurs without an explicit request for retrieval. Below several theories which 

attempt to explain how people might retrieve time-based intentions from memory are 

outlined.  

 Harris and Wilkins’ (1982) model of time-based PM (Test-Wait-Test-Exit; TWTE 

model) suggests that a PM task is encoded and a test of memory is conducted after a period 

of time has elapsed. If the time for retrieval is not correct, further tests of memory are 

conducted until a test is performed during a critical period (i.e., the time when it is 

appropriate for an intention to be realised). It is at this point when a person should then 

perform an action directed towards the realisation of an intention. This model of time-based 

PM assumes that the monitoring of time leads to better PM performance. Studies which have 

shown evidence of strategic time monitoring during time-based PM tasks and in particular 

during the period preceding the target time support the TWTE model (Einstein & McDaniel, 

1990; Harris & Wilkins, 1982). While it is assumed that monitoring is a deliberate and self-

initiated process which is reliant upon a person’s attentional resources (Einstein et al., 1995; 

Park et al., 1997), the TWTE model fails to explain how a person makes themselves aware of 

time in the absence of cues (Sellen, Louie, Harris & Wilkins, 1997, p.484). Harris and 

Wilkins (1982) suggest that an intention might spontaneously appear in a person’s mind for 

no apparent reason. Findings which have presented self-report accounts of spontaneous 

recollections for real-life intentions support this possibility (Ellis & Nimmo-Smith, 1993).  
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 Alternatively, Wilkins and Baddeley’s (1978) “Random Walk” model suggests that 

time-based PM retrieval is dependent entirely on incidental factors rather than self-initiated 

processes. The “Random Walk” model is based on the concept that the mind is a 

multidimensional space. They suggest that a trace which represents the intention is placed in 

this space when it is first formulated. However, during the time interval between the 

formation of an intention and its retrieval from memory, a person’s thoughts are displaced 

throughout this space. The areas in which a person’s thoughts become distributed are 

dependent upon the stimuli in the environment and the activities that they engage in during 

the time interval. The likelihood that an intention will be realised is increased if a person’s 

thoughts are located around the trace for an intention at the appropriate time for retrieval.  

 In a recent investigation, Kvavilashvili and Fisher (2007) examined the extent to 

which the TWTE model and The “Random Walk” model can explain the retrieval processes 

involved in event- and time-based PM. The authors compared self-reported rehearsal 

processes involved in time- (Study 1 and Study 2) and event-based (Study 3) PM tasks. 

Participants were required to phone the experimenter at a specific time (time-based PM) or 

after they received a text message (event-based PM). In order to identify the underlying 

retrieval processes involved in PM retrieval, participants were asked to keep a record of the 

occasions on which they thought about an intention during a seven day time interval. 

Findings confirmed assumptions of the TWTE model (Harris & Wilkins, 1982) and showed 

that time-based intentions were either triggered by incidental cues or appeared in a person’s 

mind for no obvious reason. Despite these findings, there were a few reports of self-initiated 

rehearsals where participants used effortful retrieval processes to aid remembering for time-

based intentions.  

 

 In addition to this, Kvavilashvili and Fisher (2007) suggest that the delay period 

between the formation of an intention and its retrieval from memory (retention phase) can 

influence the retrieval process. First, they propose that a person will keep short-term 

intentions in their mind for the entire delay period (i.e., conscious thoughts about the 

intention). This suggestion is in line with Harris and Wilkins’ TWTE model (1982) in that it 

assumes that time-based PM tasks involve self-initiated retrieval processes. However, the 

process of retrieval for long-term PM tasks appears to be very different. This is because there 

is additional opportunity for the intention memory to dissipate over longer delay periods. 

Reports from participants in Kvavilashvili and Fisher’s (2007) investigation showed low 
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levels of self-initiated rehearsal in long-term PM tasks. Instead, there were increased 

incidences of rehearsals which were triggered by incidental cues completely unrelated to the 

intention. Once again, this finding is consistent with assumptions of Harris and Wilkins 

(1982). Further evidence for this model of time-based PM comes from findings which 

suggest that people use incidental cues including clocks, calendars and timetables to aid time-

based PM (Harris & Wilkins, 1982; Sellen et al., 1997). 

 

While Kvavilashvili and Fisher’s (2007) investigation provides substantial support for Harris 

and Wilkins’ TWTE model (1982) of time-based PM, some other important conclusions must 

be acknowledged. The overall findings suggest that time- and event-based PM are not 

mediated by different retrieval processes and that thoughts about each type of intention 

(event- or time-based) occur through one or a combination of the following routes. 

Rehearsals are either prompted by incidental cues, by self-initiated planning processes, or by 

no apparent triggers. In relation to this finding, it seems that the difference between the 

retrieval processes for time- and event-based PM is quantitative rather than qualitative. For 

example, the low activation levels of event-based PM tasks appear to be constant, yet 

sufficient to sensitise a person towards a target. Nonetheless, this level of activation may not 

be enough for the task to pop into one’s mind. In contrast, the activation levels of time-based 

tasks appear to be higher and fluctuate over time resulting in episodic conscious thoughts 

about the task.   

 

2.4 Age-related deficits in prospective memory 

According to Einstein and McDaniel (1999), there are a number of cognitive processes which 

are more susceptible to the effects of aging than others. For example, aging may have 

detrimental effects to memory tasks that require self-initiated retrieval processes (Craik, 

1986). If this proposal is true, one would expect older adults to perform worse than younger 

adults on memory tasks with little external support from the environment for retrieval. This 

assumption is consistent with findings which show higher age-related decrements on free 

recall tasks compared to recognition based tasks (Craik, 1986; Craik & McDowd, 1987). 

Considering that free recall tasks involve some instruction for a memory search by an 

experimenter and PM is dependent on the ability to remember, an age-related decrement in 

PM performance might also be expected (Craik, 1986).  

  As previously noted, a number of studies have found age-related impairments in 

event-based PM performance (Kvavilashvili et al., 2012; Park et al., 2007; Shum et al., 2013) 
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whilst others have not (McDaniel & Einstein, 1996; McDaniel & Einstein, 2007; Reese & 

Cherry, 2002). The differences between these findings might be explained by differences in 

the processing of PM target cues across studies. To demonstrate, there is considerable 

evidence to suggest that older adults display impairment on PM tasks with non-focal PM 

targets but not on PM tasks with focal PM targets (Rendell & Craik, 2000; see Kliegel et al., 

2008). This is because non-focal PM tasks are dependent on the use of self-initiated 

monitoring strategies which are known to be impaired in older adults (Kliegel et al., 2008).  

  Moreover, event- and time-based PM tasks do not involve the same self-initiated or 

attention demanding processes (Einstein & McDaniel, 1990). For example, in event-based 

PM tasks, a memory for an intention is externally cued by some aspect of the environment 

(e.g., a person, an object, etc.). By way of contrast, time-based PM tasks require the use of 

self-initiated retrieval strategies (see Ceci & Bronfenbrenner, 1985; Harris & Wilkins, 1982). 

As a result event- and time-based PM may be differentially affected by aging. Support for 

this proposal has emerged from studies which have shown age-related decrements in time- 

but not in event-based PM performance (Bastin & Meulemans, 2002; Einstein et al., 1995; 

Katai, Maruyama, Hashimoto, & Ikeda, 2003; Kliegel et al., 2001; Khan, Sharma & Dixit, 

2008).  

 Findings from a meta-analytic review by Henry, MacLeod, Phillips and Crawford. (2004) 

suggest that older adults  perform worse than younger adults on event-based PM tasks which 

load heavily on controlled strategic processes (see meta-analytic review by Henry et al., 

2004). Henry et al. (2004) also argue that age-related declines in PM are smaller for PM tasks 

which involve relatively automatic processes (focal event-based PM tasks) and larger for PM 

tasks which involve relatively effortful processes (non-focal PM tasks or time-based PM 

tasks). Despite these conclusions, a more recent meta-analysis (Uttl, 2008) has criticised 

Henry et al’s (2004) conclusions on the basis that they failed to account for prevalent ceiling 

effects which ultimately reduce the effects sizes reported in their meta-analysis. That is, there 

is no difference between younger and older adults on easy PM tasks since both groups 

achieve perfect or near perfect scores. In contrast, there is a large age-related decline in 

performance on more difficult PM tasks.    

 A summary of Uttl’s (2008) meta-analysis indicates that while event-based PM proper 

and vigilance/monitoring decline with aging, the decline is much larger in the latter. In 

furthering the current understanding of age-related declines in PM, Uttl (2008) suggests that 
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the decline is relatively small until a person is in their 50’s or 60’s but accelerates thereafter. 

Importantly, Uttl’s (2008) meta-analysis provides no indication that aging may spare any 

particular aspect of PM performance. That is, event- and time-based PM performance decline 

with age.  They argue that previous claims of no age-related declines in PM performance 

(McDaniel & Einstein, 1996; McDaniel & Einstein, 2007; Reese & Cherry, 2002) are likely 

to be related to methodological and conceptual issues including age confounds, ceiling affects 

and lower statistical power.   

Acknowledgement of the aforementioned cognitive aging literature is highly relevant to the 

current project since illicit drug users exhibit similar kinds of executive function deficits as 

are found in older persons. Specifically, older adults (Herman, Mirelman, Gilardi & 

Schweiger, 2010; Prakash et al., 2009) and drug users (Gouzoulis-Mayfrank et al., 2000; 

Gouzoulis-Mayfrank & Daumann, 2009; Zakzanis, Campbell, & Jovanovski, 2007) 

demonstrate impairment in executive functions which are regulated by the frontal lobes. This 

is significant since PM performance is also mediated by areas of the prefrontal cortex (Cheng 

et al., 2008; Okuda et al., 2007) and as such, PM impairment in older persons might be 

suggestive of the possibility of PM deficits in illicit drug users.  

 

2.5 Strategies used for remembering 

PM performance can be influenced by the strength of an association between a PM cue and 

an intended action (see section 2.3.3.1). However, the impact that a strong cue-action 

association can have on PM performance is also believed to underpin the effectiveness of an 

important retrieval strategy (McFarland & Glisky, 2012). Gollwitzer (1999) developed a 

technique to improve PM by integrating two fundamental components of delayed intentions; 

the situation (i.e., the retrieval context) which provides an opportunity for a person to execute 

an intention (where and when an intention should be retrieved) and the intended action (what 

it is that has to be done). This combination of information allows people to form a verbal 

commitment or an association in the structure of “if X occurs, then I will do Y”. Gollwitzer 

called these verbal commitments, implementation intentions and there is a substantial amount 

of research which suggests that this technique is an effective means of fulfilling delayed 

intentions (Chasteen, Park & Shwarz, 2001; Cohen & Gollwitzer, 2006; Kardiasmenos, 

Clawson, Wilken & Wallin, 2008; Schnitzspahn & Kliegel, 2009). 
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 Further research has explored the extent to which the use of imagery techniques can 

improve prospective remembering. To demonstrate, in normal event-based PM tasks, 

participants are asked to respond to an environmental cue during the completion of an 

ongoing task. By using imagery techniques, participants are able to visualise themselves 

witnessing and responding to PM related stimuli during an ongoing task (e.g., responding to 

an animal word (PM cue) during a lexical decision task) (Brewer, Knight, Thadeus meeks & 

Marsh, 2011). Of the few studies that have investigated the effects of imagery techniques on 

PM performance, overall findings have been relatively inconclusive. Guynn, McDaniel and 

Einstein (1998) found that participants who were asked to visualise PM cues in the context of 

their occurrence (i.e., imagine the PM cue appearing in an ongoing task) performed similarly 

to participants who were given standard instructions (no instruction to visualise the PM cue). 

Similarly, McDaniel et al. (2008) failed to find any effect of imagery instruction on PM 

performance. In contrast to these findings, other studies have reported improved PM 

performance when participants are explicitly instructed to imagine the presentation of the PM 

cue during an ongoing task (Brewer et al., 2011; Meeks & Marsh, 2010; Paraskevaides et al., 

2010). Brewer and colleagues (2011) explain that imagery fosters a cue-to-context 

association and in doing so, reduces interference to irrelevant information in the ongoing task 

(i.e., lures).  In addition, imagining may increase PM performance by increasing the salience 

of PM cues so that they are detected more easily when they are presented (Paraskevaides et 

al., 2010).  

 

An alternative explanation suggests that PM performance is enhanced because 

participants rely on episodic memory to imagine future contexts (Brewer & Marsh, 2010). 

Findings from Brewer and Marsh (2010) have shown increased prospective remembering 

when participants are provided with additional episodic information about the context in 

which PM cues will occur before encoding. Brewer and Marsh (2010) suggest that the 

additional episodic information about the context in which PM cues will later appear allows 

participants to encode a more detailed representation of their future context. Conclusions 

from this particular study suggest that the extent to which PM performance is improved by 

the use of imagery is highly dependent on episodic memory simulation. If this is the case, this 

concept may explain why some studies have failed to report positive effects of imagery on 

prospective remembering (McDaniel et al., 2008). That is, participants may have failed to 

produce detailed cue-to-context representations due to a lack of episodic information relating 

to the PM cue and its future context before encoding. 
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  Forming strong cue-to-context representations can have several consequences to 

processing in the ongoing task (Brewer et al., 2010). First, following a strengthened 

association between PM cues and future context where they are expected to occur, the 

encoded intention becomes almost immediately active when the appropriate context arises. 

Ultimately, this is proposed to lead to higher levels of PM performance (see also Marsh, 

Hicks & Cook, 2006). Second, in cases where the context is a critical component of the 

encoded intention (e.g., during the COST where the PM response involves pressing a 

particular key whenever you see the word, PLANE written in red ink and in Arial font), the 

use of imagery techniques allows for people to verify that the PM cue is present and in the 

correct context. In this situation, the PM response should not be executed unless the PM 

target (i.e., PLANE) is presented in the correct context (i.e., it must be written in red ink and 

in Arial font). Third, information that is not related to the intention but occurs in the correct 

context is recognised and subsequently rejected provided that a strong cue-to-context 

association has been formed.  

 

 Given that implementation intentions and imagery techniques have both been shown 

to have positive effects on prospective remembering, research has begun to investigate 

whether or not the combined use of both strategies can improve PM performance beyond the 

use of either strategy alone. Once again, the findings surrounding this proposal have been 

inconclusive. McDaniel et al. (2008) found that imagery instruction which included a verbal 

“if...then” commitment (combined imagery and implementation intention group) enhanced 

PM performance. However, no difference in PM performance was found between 

participants who were provided with imagery instruction alone and participants were 

provided with standard instructions (i.e., no explicit instruction to visualise). Overall, these 

findings appear to indicate that the verbal commitment (implementation intention) was the 

vital component of the combined imagery and implementation intention group which 

improved PM performance. 

 

  In a more recent study, McFarland and Glisky (2011) divided a sample of 64 

undergraduate students into one of four instructional conditions (read only, implementation 

intention only, imagery only, combined implementation intention and imagery). Performance 

on a laboratory based PM task was measured. Participants in the implementation intention 

only, imagery only and the combined implementation intention and imagery groups all 

performed significantly better than participants in the read-only group. However, there was 
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no difference in PM performance between the three other instructional groups. Thus, there 

does not appear to be any additional benefit to PM performance when implementation 

intention and imagery techniques are used together compared to when either strategy is used 

alone. This finding supports Cohen and Gollwitzer’s (2008) suggestion that imagery is not a 

vital component of implementation intentions.     

 Other strategies that have been linked to improved remembering include 

metacognitive factors. More specifically, making performance predictions (i.e. 

metacognition) has been shown to increase performance on RM tasks (Spellman & Bjork, 

1992). Given that RM has been associated with PM performance; it is plausible that PM may 

also be affected by metacognitive factors. Only a few studies have directly investigated the 

effects of metacognition on PM (Devolder, Brigham, & Pressley, 1990; Knight, Harnett, & 

Titov, 2005; Meeks, Hicks, & Marsh, 2007). However, the research that is available suggests 

that people with higher general memory self-efficacy (beliefs about one’s own memory 

abilities) perform better in laboratory-based PM tasks compared to participants with lower 

memory self-efficacy (McDonald-Miszczak, Gould, & Tychynski, 1999; Zeintl, Kliegel, 

Rast, & Zimprich, 2006).  

 

  In another study, Meeks et al. (2007) asked participants to complete a lexical decision 

task (i.e., an ongoing task) and to make a PM response following the presentation of an 

animal word (animal condition) or a word containing the syllable tor (syllable condition). 

Overall, participants were shown to underestimate PM performance and these findings are 

consistent with those from another study in the literature (Knight et al., 2005). Further 

findings showed that performance predictions were positive correlated with overall success in 

the animal condition. Although findings from Meeks et al. (2007) suggest that people are 

aware of their PM ability, the findings have been criticised on methodological grounds. For 

example, performance predictions were made in reference to overall PM performance 

(animal condition & syllable condition combined) which may have resulted in inaccurate and 

vague performance predictions (Meier, von Wartburg, Matter, Rothen, & Reber, 2011). For 

example, in cases where participants reported confidence in their ability to perform PM tasks, 

it is unclear as to whether they were particularly confident in one particular condition or both 

conditions.   
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 Knight et al. (2005) controlled for this factor by asking participants to provide a 

performance prediction for every PM cue in a PM task. Knight and colleagues investigated 

differences in predicted PM performance and actual PM performance between a group of 

traumatic brain injury (TBI) patients and healthy controls. Participants watched a video 

where they took the role of a person driving and walking through a city. Participants were 

required to remember to execute several PM tasks (e.g., buy bread) when presented with one 

of 20 PM cues (e.g., bakery). Using a 4-point scale, participants were asked to indicate how 

likely they thought they were to execute each specific PM task. Patients overestimated their 

PM performance while the control group underestimated their PM performance. Correlational 

analyses revealed that both groups had metacognitive awareness of their PM performance. 

 

 A recent study by Meier et al. (2011) attempted to explore the extent to which making 

a PM performance prediction can enhance prospective remembering. One-hundred and forty 

undergraduate students performed a complex short-term memory task with a PM element. 

Half of the participants were then asked to give performance predictions prior to performing 

a PM task. The specificity of the PM task was also manipulated. Participants were either 

instructed to make a prospective response to the presentation of a word that is a musical 

instrument (categorical condition) or to respond to the word “trumpet” (specific condition). 

Performance predictions improved PM performance for the categorical condition only. 

 

 Several explanations have been put forward for this finding. First, Meier et al. (2011) 

suggest that simply thinking about carrying out a future intention leads to a more realistic 

opinion about task difficulty. This then results in the use of more efficient retrieval strategies 

which in turn enhance PM performance. Second, Meier and colleagues (2011) propose that 

making performance predictions strengthens the association between the PM cue and the 

retrieval context (information relating to where and when an intention should be retrieved). 

Thus, when a PM cue is encountered in the correct context, the PM intention is likely to be 

retrieved. Third, Meier et al. (2011) argue that making performance predictions may alter the 

dynamics of the PM tasks. For example, making a performance prediction might increase 

participants’ commitment and/or motivation towards the PM task. The resultant increase in 

commitment and/or motivation may accentuate perceived task importance (see Meier et al., 

2011). This is noteworthy considering that higher perceived task importance has been linked 

to increased PM performance (Kliegel et al., 2004) 
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Further evidence from Meier et al’s (2011) study showed that cue specificity (categorical or 

specific) had a significant effect on retrieval experience. Specific PM instructions (i.e., 

respond to the word “trumpet”) encouraged the use of spontaneous retrieval strategies. 

Although speculative, it is likely that participants in the specific PM instruction condition 

formed specific cue-action pairings whereas participants in the categorical PM instruction 

condition formed more general cue-action pairings. Einstein and McDaniel (1996) propose 

that specific cue-action pairings receive greater activation compared to general cue-action 

pairings. Increased activation resulting from the formation of specific cue-action pairings 

increases the likelihood of the intended action being retrieved when the PM cue is presented. 

Importantly, PM cues which are highly associated with an intention are suggested to involve 

automatic retrieval processes (McDaniel et al., 1998). 

 

2.6 Chapter summary 

There are a number of different classifications of PM which can be identified according to 

different phases of information processing (encoding, retention, retrieval and performance; 

Kvavilashvili & Ellis, 1996). With regard to the encoding phase, PM tasks can be 

distinguished according to the perceived importance of the delayed intention (important and 

unimportant intentions), the decisions which operate prior to the formation of an intention 

(intentions based on simple or difficult decisions) and whether the intention has been formed 

by oneself or another person (self or other generated intentions).  

  Further, PM intentions can be characterised by the length of the interval between the 

formation of an intention and the time when an intention should be retrieved from memory 

(the retention phase; short- and long-term PM tasks). Overall evidence within the literature 

indicates that PM performance decreases as the retention interval is increased (Brandimonte 

& Passolunghi, 1994; McBride et al., 2011; Meier, Doerfler, Hawes, Hicklin, & Rocha, 

2006). This is because delayed intentions with longer delay intervals require extended periods 

of conscious awareness compared delayed intentions with shorter delay intervals (Einstein & 

McDaniel, 1990; Kvavilashvili & Fisher, 2007). In addition, there is increased opportunity 

for a delayed intention to dissipate over time during longer delay intervals. As such, there is 

additional need for the use of monitoring strategies in long-term PM tasks. Given that 

monitoring processes decline over extended delay periods (Einstein et al., 2005; Loft et al., 

2008), it is perhaps unsurprising that there is a decline in PM performance for longer delay 
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intervals. This effect is particularly evident for non-focal PM tasks which require self-

initiated monitoring processes for retrieval (McBride et al., 2011). 

In addition, PM tasks can be identified according to whether they are governed by an external 

episode (i.e., a person, object or location) or by the passage of time where there is no explicit 

request for retrieval. These are termed event- and time-based PM tasks respectively. Overall, 

event- and time-based PM tasks share the same retrieval characteristics in that they both 

require some degree of self-initiated and/or automatic retrieval processes (Harris & Wilkins, 

1982; Kvavilashvili & Fisher, 2007; Wilkins & Baddeley, 1978). However, the extent to 

which these retrieval processes are employed is dependent on other features of the PM task 

including whether the PM target cue is focal or non-focal to the ongoing task and whether 

there is short or long delay between the formation of an intention and its retrieval from 

memory (Einstein et al., 2005; Kvavilashvili & Fisher, 2007). The use of monitoring 

strategies are increased in event-based PM tasks when the PM target cue is non-focal to the 

ongoing task compared to when the PM target is focal to the ongoing task (McBride & 

Abney, 2012). Monitoring strategies are also more likely to be used for more complex event-

based PM tasks (non-focal PM tasks, Einstein et al., 2005; Smith, 2003) and time-based PM 

tasks which have extended delay intervals (Kvavilashvili & Fisher, 2007). Overall, it appears 

that event- and time- based PM tasks do not differ in terms of specific retrieval processes but 

rather can be separated according to the quantitative involvement of rehearsal, self-initiated 

planning or spontaneous triggers (Kvavilashvili & Fisher, 2007). 
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Chapter 3: The neuropsychology of prospective memory 

Chapter Outline 

PM is a complex memory process which involves several components including the planning 

of an intention, the retrieval of an intention at an appropriate time, and the execution of an 

intended action (Dobbs & Reeves, 1996). Consequently, it is likely that the processes 

employed by each component rely on different parts of the neural system. Amongst a body of 

existing literature, there is a general consensus for PM’s dependence on medial temporal 

hippocampal processes, areas of the prefrontal cortex (PFC), and different areas within 

these regions (West, 2005). The current Chapter examines how the aforementioned brain 

regions are differentially challenged by event- and time-based PM situations.  

   

3.1 Neuropsychology of event-based prospective memory 

As previously discussed, event-based PM retrieval can be supported by the use of monitoring 

and/or spontaneous retrieval processes (McDaniel & Einstein, 2000). However, each retrieval 

method appears to challenge different aspects of the neural system. For example, there is a 

general consensus that monitoring processes are supported by frontal regions (Burgess, Scott 

& Frith, 2003; Reynolds, West & Braver, 2009). As a result, McDaniel and Einstein (2011) 

argue that non-focal processing of targets in event-based PM tasks (where there is thought to 

be a need for monitoring processes; see Rendell & Craik, 2000; Rendell, McDaniel, Forbes & 

Einstein, 2007) depend significantly on frontal processes (McDaniel & Einstein, 2011). 

Alternatively, spontaneous retrieval processes are thought to mediate a reflexive associative 

system (see McDaniel & Einstein, 2000) which places significant demand on medial 

temporal structures including the hippocampus (Moscovitch, 1994). The paragraphs below 

outline recent neuroimaging work that has attempted to determine the role of 

neuropsychological process in event- (focal and non-focal) and time-based PM tasks. 

Neuropsychology of non-focal (event-based) Prospective Memory tasks 

In a neuroimaging study, Burgess et al. (2003) employed PET and examined changes in 

regional cerebral blood flow (rCBF) across four experimental conditions. rCBF was 

examined in a baseline condition, an ongoing task only condition, an ongoing task plus a 

delayed intention condition (unpracticed) and an ongoing task plus a delayed intention 

condition (practiced). A number of ongoing tasks were used which each involved the 
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presentation of different stimuli types. In a number condition, participants were presented 

with a pair of numbers and asked to identify whether the highest number was on the left- or 

right-hand side of the computer screen. For the PM task, participants were required to make a 

predefined response when two even numbers were presented together in the same trial. In a 

letter condition, pairs of letters were presented and participants had to decide which of the 

two letters (i.e., the left- or right-hand side of the computer screen) appeared first in the 

alphabet. For the PM task, participants were required to make a predefined response if two 

vowels were presented together in the same trial. Under these conditions (non-focal) 

successful PM performance is dependent on participants using information that goes beyond 

the processing requirements of the ongoing task (i.e., the ongoing tasks do not require 

participants to respond to two even numbers or two vowels). Accordingly, one would expect 

the aforementioned PM tasks to involve non-focal processing of the target cues. In line with 

this idea, there should be significant reliance on monitoring processes (see McDaniel & 

Einstein, 2000).  PET analysis revealed changes in rCBF in areas of the anterior prefrontal 

cortex during prospective remembering. Increased PM demand was linked to decreased rCBF 

in the large left superior rostral medial frontal region of BA 10 as well as the middle temporal 

gyrus. Increased activation of the right dorsomedial thalamus was also observed with task 

conditions that required a PM component. The authors concluded that the medial and lateral 

rostral PFC are differentially involved in PM tasks such that the former is implicated in the 

suppression of intention generated thoughts and the latter in the maintenance of information.   

  

  A similar pattern of results was reported in a functional magnetic resonance imaging 

(fMRI) study which examined brain activation during different components of a PM task 

(Simons, Schölvinck, Gilbert, Frith, & Burgess 2006). Simons et al. (2006) manipulated the 

extent to which PM tasks depended on recognising the appropriate context to act (cue 

identification) and remembering the action to be performed (intention retrieval). While there 

were clear behavioural differences between cue identification and intention retrieval 

conditions, both PM components were associated with hemodynamic changes in the anterior 

prefrontal cortex (BA 10). Specifically, lateral BA 10 activation was accompanied by medial 

BA 10 deactivation especially when the demands on intention retrieval were high. A further 

fMRI study supported these findings by showing increased anterior prefrontal cortex 

activation during PM tasks which involved non-focal processing of a target (Reynolds et al., 

2009). 
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Overall findings from the studies reported here (Burgess et al., 2003; Simons et al., 2006) 

highlight the involvement of anterior prefrontal cortex during non-focal (event-based) PM 

tasks. Burgess et al. (2003) explain that prefrontal activity may reflect processes associated 

with the maintenance of an intention including rehearsal in working memory (Gilbert 

Gollwitzer, Cohen, Oettingen & Burgess, 2009) and/or monitoring for a target (McDaniel & 

Einstein, 2011). If this assumption is correct, older adults might be expected to display 

impairment on non-focal PM tasks. This is because anterior prefrontal processes are 

suggested to decline with age (Jimura & Braver, 2010). Findings from behavioural studies are 

consistent with this proposal and demonstrate that older adults perform worse than younger 

adults on non-focal PM tasks (see Kliegel et al., 2008 for review). 

 

 
Neuropsychology of focal (event-based) Prospective Memory tasks 

Okuda et al. (1998) used PET to examine changes in rCBF in localised brain regions when 

participants were completing a focal PM task and a control task. Both tasks were 

accompanied by three isolated periods, i.e., a pre-PET scan period, a PET scan period and a 

post-PET scan period. Participants were aurally presented with Japanese nouns during the 

pre-PET scan period and the PET-scan period. During the pre-PET scan period, participants 

were presented with a list of 10 stimuli three times in a row. Participants were required to 

memorize the Japanese nouns as target stimuli and were also asked to try to retain them in 

memory for the duration of the PET scan period. During the PET scan period, participants 

were presented with 10 sets of five stimuli immediately followed by an inter-set blank 

duration. Participants were required to orally repeat the sequence of stimuli during the inter-

set blank duration. In the post-PET scan period, participants were required to recall the 10 

Japanese nouns which had previously been identified as target stimuli. The aforementioned 

procedures were identical for the focal PM task and the control task. However, in the focal 

PM task condition, participants were informed that the PET scan period would include some 

of the target stimuli. Since the target stimuli were encountered as a central aspect of the 

stimuli encoded during the PET scan period, this PM task is suggested to require focal 

processing of a target cue. Participants were instructed to tap with their left hand when they 

had orally repeated a target stimulus. No target stimuli were presented in the PET scan period 

of the control task. Participants completed both the focal PM task condition and the control 

task condition twice.  
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 Surprisingly, several frontal regions were activated during focal PM task conditions 

relative to control task conditions. The right dorsolateral and vertrolateral prefrontal cortices, 

the left frontal pole and anterior cingulate gyrus, the left parahippocampal gyrus and midline 

medial frontal lobe all showed increased activation in the focal PM task conditions compared 

to control conditions. Increased activation in the right dorsolateral and ventrolateral 

prefrontal cortices was associated with holding and maintaining the intention of a future 

behaviour in memory. This result is consistent with a more recent finding which highlighted 

significant involvement of the dorsolateral prefrontal cortex in retaining the content for a 

future intention (Momennejad & Haynes, 2012). The dorsolateral prefrontal cortex has been 

linked to wider PM functions including responding to cues and retrieving a future intention 

from memory (Simons et al., 2006). In contrast, it is likely that the division of attention 

between two cognitive operations (repeating stimuli during the PET scan period whilst 

simultaneously checking for the presentation of target stimuli) caused increased activation in 

the medial frontal region. Furthermore, increased activation of the left parahippocampal 

region during the focal PM task may represent the process of novelty detection required for 

checking for target stimuli. The significant activation of several frontal regions in this study 

can be explained by the possible use of monitoring processes (Einstein et al., 2005) which are 

suggested to load on the frontal systems (Reynolds et al., 2009; Burgess, Scott & Frith, 

2003). 

 In another study, Martin et al. (2007) used magnetoencephalogy (MEG) to examine 

neural activation during focal PM tasks. A total of five ongoing tasks were used and 

participants were required to respond to the presentation of focal targets. A number of the 

ongoing tasks required participants to identify which of two colours a circle appeared in, 

whilst one further task involved synchronous tapping to a flashing circle. In a focal PM task, 

participants were instructed to press a target key following the presentation of a target shape. 

The target shape was changed after each block of trials and in each case the target shape was 

presented on normal ongoing task trials. Thus, if a target shape was presented, participants 

were required to make a prospective response instead of an ongoing task response. Two 

further trials were included. Catch trials were distinguished by the presentation of non-target 

shapes (oddball) in which participants were instructed to ignore. RM trials involved the 

presentation of cue labelled “memory” where participants were required to press a particular 

key which was previously encoded with a target shape. MEG revealed different patterns of 

activation for PM conditions relative to oddball and RM conditions. With regard to the 
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posterior parietal region, onset latency was significantly faster after PM targets relative to 

oddball and RM targets. Furthermore, onset latency was faster in hippocampal regions on PM 

trials compared to oddball trials. Activation of the frontal region did not differ significantly 

across PM, oddball and RM trials. In conclusion, the research suggests that the posterior 

parietal region is implicated in noticing a focal target whilst the hippocampal region is 

involved in retrieving the intended action associated with a focal target 

 Assuming that focal PM tasks are generally less dependent than non-focal PM tasks 

on prefrontal regions and rely more on areas of the hippocampus, it might be expected that 

older adults to be relatively unimpaired on these tasks.  This is because declines in prefrontal 

systems associated with aging (Jimura & Braver, 2010) should not lead to impairment on 

focal PM tasks. Findings which have shown no difference between older and younger adults 

on focal PM tasks support this view (Cherry & LeCompte, 1999; Reese & Cherry, 2002). 

More interestingly, a review of 18 studies reported an average 11% difference in focal 

processing between older and younger adults. This compared to an average 23% difference in 

non-focal PM tasks (McDaniel & Einstein, 2007). Thus, it might be that prefrontal regions 

have little involvement in focal PM tasks and as such age related declines in frontal processes 

have little effect on focal PM task performance. 

Notwithstanding, the literature has been inconsistent. Some studies report increased 

activation in several frontal regions during focal PM task conditions (Okuda et al., 1998). 

Further classifications of focal PM task conditions including the length of the retention 

interval and/or perceived task importance may govern the extent to which these tasks rely on 

prefrontal systems. 

 

3.2 Neuropsychology of time-based prospective memory 

As noted previously, PM can be subdivided in terms of the retrieval cues available to people 

(i.e., event- and time-based PM tasks). We have already established that event-and time-

based PM tasks differ in terms of the quantitative involvement of rehearsal, self-initiated 

planning or spontaneous triggers (Kvavilashvili & Fisher, 2007). It is therefore possible that 

event- and time-based PM tasks place different demands on the neural system. To an extent, 

this proposal is supported in the literature and research has shown that patients who display 

abnormalities within the prefrontal cortex (e.g., cerebrovascular stroke; Brooks, Rose, Potter, 

Jayawardena & Morling, 2004 & Parkinson’s disease; Katai Maruyama, Hashimoto & Ikeda, 
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2003) demonstrate superior performance on time-based PM compared to event-based PM. 

Similar findings have been reported in patients with lesions to the prefrontal cortex. Cheng, 

Wang, Xi, Niu & Fu (2008) found significantly more event-based PM impairments in 

patients with lesions to the prefrontal cortex compared to healthy control participants (Cheng 

et al., 2008). However, findings from the same study failed to show any group differences in 

time-based PM performance.  

  In light of the apparent absence of time-based PM impairments in patients who have 

abnormalities in the prefrontal cortex, it is possible that time-based PM tasks implicate 

different aspects of the neural system. However, it is important to note that time-based PM 

tasks can be divided according to the duration of the delay between the formation of an 

intention and intention retrieval. As mentioned previously, short-term time-based PM tasks 

involve a relatively short delay interval between the formation of an intention and intention 

retrieval while long-term time-based PM tasks are governed by longer delay intervals. Thus, 

it might be that short- and long-term time-based PM place very different demands on the 

neural system.  

 

 Despite assertions that event-based PM may be more dependent on frontal regions 

compared to time-based PM tasks (Cheng et al., 2008; Katai et al., 2003), neuroimaging 

evidence has shown some evidence of frontal activation (as well as medial temporal 

activation) during the completion of time-based PM tasks with shorter delay intervals. Okuda 

et al. (2002) examined rCBF during an ongoing task, an ongoing task with an event-based 

PM cue and an ongoing task with a short-term time-based PM cue. While completing the 

ongoing task, participants were either asked to clasp their hands after a target cue had been 

presented (event-based PM) or after a specific time point (time-based PM). The total delay 

interval for the short-term time-based PM task was two-minutes where participants were 

required to clasp their hands once in the first 30 seconds, twice in the next 30 seconds, once 

in the third 30 seconds an once in the final 30 seconds. No clocks were available for 

participants to conduct regular time-checks and as such successful prospective remembering 

was entirely dependent on the self-estimation of time. Increased rCBF was observed in 

frontal and medial-temporal regions in both the event- and time-based conditions relative to 

the ongoing task only condition. However, initial analyses did not compare brain activation 

between event- and time-based PM tasks. 
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 When Okuda et al‘s (2002) original data were analysed (Okuda et al., 2007) activation 

differences were found in the rostral prefrontal cortex during event- and short-term time-

based PM tasks. Specifically, Okuda and colleagues’ (2007) reanalysis revealed significant 

rCBF increases in the left superior frontal gyrus (including in the lateral BA 10) in short-term 

time-based PM conditions relative to event-based PM conditions. Increased activation of the 

left superior frontal gyrus is suggested to represent the mental processes associated with the 

time estimation demands of time-based PM tasks. This assertion is supported by brain 

imaging data that has shown similar left superior frontal activation for tasks that require time 

estimation (Macar et al., 2002; Rao, Mayer & Harrington, 2001). Rao et al. (2001) found that 

activity in the left superior frontal area was heightened when participants engaged in time 

estimation as opposed to maintaining an intention with a requirement to act at a specific time.  

  Although left lateral BA 10 activation has also been associated with the maintenance 

of a delayed intention in event-based PM tasks (Burgess, Quayle & Frith, 2001), the region 

which was activated during the time-based PM tasks in the present study appear to be more 

superior to that area (Okuda et al., 2007). Furthermore, in the present study (Okuda et al., 

2007), the location of the BA 10 which was activated during time-based PM tasks was not 

activated during event-based PM tasks. These findings suggest that there are multiple lateral 

BA 10 areas that are differentially involved in event- and time-based PM tasks. To be 

specific, Okuda et al. (2007) suggest that left BA 10 activation reflects a processing 

contribution to time-based PM tasks beyond that associated with the maintenance of 

intentions during event-based prospective memory tasks. On the other hand, event-based PM 

performance has been linked to deactivation of the medial BA 10.  

 Findings from a second study (Study 2) in Okuda and colleagues’ (2007) reanalysis 

identified regions of the rostral prefrontal cortex including the right superior frontal gyrus, 

the anterior medial frontal lobe and the anterior cingulate gyrus which were more active in 

short-term time-based PM conditions relative to event-based PM conditions.  Characteristics 

of time-based PM tasks such as whether a clock is present and the subsequent removal of 

time estimation processes or not mediated the activation of the rostral prefrontal cortex.  

 

  To date, very few studies have explicitly explored the neural basis of long-term time-

based PM tasks. One noteworthy investigation studied longer-term time based PM 

performance in patients with mesial temporal sclerosis (Adda et al., 2008). Mesial temporal 

sclerosis is a disorder which is characterised by selective neuronal loss in areas of the 
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hippocampus and thus any evidence of PM deficits is likely demonstrative of hippocampal 

degeneration.  Adda et al. (2008) asked 48 patients with mesial temporal sclerosis (26 right 

lesions and 22 left lesions) and 26 control participants to complete an adapted version of the 

Cambridge Prospective Memory test (CAMPROMPT; Wilson et al., 2002). The 

CAMPROMPT is a laboratory task which consists of three event-based and three time-based 

PM tasks. However, in contrast to many studies which typically use PM tasks with short 

delay intervals (Einstein et al., 1995; Guynn et al., 1998; Smith, 2003), the current study 

adapted the CBPMT to include PM tasks with longer delay intervals. Level of time-based 

impairment was found to be significantly higher in patients who had left hippocampal 

lesions. There was a tendency for patients with left hippocampal lesions to perform worse 

than controls on event-based PM tasks although this difference fell just short of statistical 

significance. Adda and colleagues (2008) concluded that the hippocampus and in particular, 

the left hippocampal region is crucial to the performance of time-based PM tasks with long 

delay intervals.  

 

In summary of the abovementioned findings, a number of rostral prefrontal regions appear to 

be implicated in short-term time-based PM performance. Specifically, the right superior 

frontal gyrus, anterior medial frontal lobe and anterior cingulate gyrus were associated with 

short-term time-based PM task performance (Okuda et al., 2002; 2007). By contrast, and on 

the basis of only one study that is available, the left hippocampal region appears to be 

involved in time-based PM tasks with long delay intervals (Adda et al., 2008). Clearly, 

further research is needed to explore the differing processing demands of short- and long-

term time-based PM tasks.  

 

3.3  Neurotransmitters and prospective memory 

As noted previously, both the prefrontal cortex and the hippocampus are implicated in PM 

functioning. However interconnections between these regions may be fundamental for 

accurate PM performance. For example, the hippocampus sends direct excitory afferents to 

the prefrontal cortex to stimulate the activation on neurons and interneurons (Jay & Witter, 

1991). The prefrontal cortex then sends indirect feedback projections to the hippocampus via 

the temporal cortex (Fuster, 1997). Damage to the prefrontal cortex has been linked to 

abnormal hippocampal neural activation associated with spatial localisation (Kyd & Bilkey, 

2003). Thus, it appears that the prefrontal cortex plays a critical role in the activation of 

neurons in the hippocampus. It is suggested that mesocortical dopamine projections to the 
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prefrontal cortex are essential in the modulation of information processing by hippocampus-

prefrontal cortex interactions (Bertolino et al., 2006; Seamans, Floresco & Phillips, 1998). 

For example, Bertolino et al. (2006) found that genetic deficits to a molecule involved in the 

clearance of dopamine in the prefrontal cortex (catechol-o-methyl transferase) affects 

hippocampus-prefrontal cortex interactions during memory processing.  

 

  In the context of PM, Goto and Grace (2008) found that retrospective information has 

to be incorporated into the prefrontal cortex to induce prospective information processing. 

This process is though to be mediated by the mesocortical dopamine system. Dopamine D1 

receptor activation is involved in transporting hippocampal-based retrospective information 

to the prefrontal cortex. Once retrospective information is in the prefrontal cortex, dopamine 

D2 receptor activation is required for further processing of information to effect preparation 

of future intentions.  

 

The serotonergic stystem also appears to be implicated in PM tasks. Meneses, Perez-

Garcia, Ponce-Lopez, Tellez and Castillo (2001) suggest that serotonin (5-HT) has a 

modulatory role for neurocognition and, in particular that 5-HT uptake sites and HT 1-7 

receptors are implicated in memory consolidation. Nonetheless, relatively little is understood 

about the neuropsychological function of 5-HT (Cowen & Lucki, 2011).  Despite this, the 

serotonergic neurotoxicity that has been found in ecstasy users may in part explain the role of 

5-HT in PM tasks. Increased lifetime ecstasy consumption has been linked to structural 

abnormalities within the serotonergic system including the degeneration of 5-HT axonal 

projections, abnormal regulation of 5-HT pathways and increased 5-HT2A receptor levels as a 

neuroadaptive response to reduced serotonin activity (Di lorio et al., 2012; Fischer 

Hatzidimitriou, Wlos, Katz & Ricaurte 1995).  In an important study by Kish et al. (2010), 

reduced levels of 5-HT transporter binding were observed in all areas of the cerebral cortex 

and the hippocampus of ecstasy users. Importantly, serotonin transporter loss was reported at 

an average of 17% in the frontal cortex and 31% in the hippocampus in ecstasy users. Kish 

and colleagues (2010) concluded that chronic ecstasy use might induce degeneration of 

serotonergic neurons within the cerebral cortex and the hippocampus. In addition, the authors 

note the possibility that 5-HT changes may mediate behavioural problems observed in some 

ecstasy users. These findings have important implications for PM performance and may go 

some way to explaining the modulatory effect of 5-HT in performance. For instance, it is 

understood that the hippocampus is involved in event-based PM tasks that require 
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spontaneous retrieval processes (Moscovitch, 1998), in checking for target stimuli (Okuda et 

al., 1998) and in the retrieval of delayed intentions associated with target stimuli (Martins et 

al., 2007). Furthermore, Adda et al. (2008) found that the hippocampus plays an important 

role in time-based PM tasks where there is a long delay between the formation of an intention 

and its subsequent retrieval from memory (i.e., in long-term time-based PM tasks). Thus, 

degeneration of the %-HT system within the hippocampus may clearly impair event- and 

time-based PM performance. The PFC is also implicated in PM tasks and is associated with 

the maintenance of an intention (Gilbert et al., 2009) and the monitoring for PM targets 

(McDaniel & Einstein, 2011) in event-based PM tasks. The PFC is also involved in time-

based PM tasks and, in particular during the encoding of information relating to “what” an 

intention is and “when” it should be carried out (Momennejad & Haynes, 2012). To 

summarize, the lower serotonin transporter densities that have found in PM-related brain 

regions in ecstasy users (the hippocampus and the PFC; Kish et al., 2010) could have 

negative implications for both event- and time-based PM performance.  

 

 

3.4 Chapter Summary 

The current Chapter has identified several regions of the neural system that appear to be 

implicated during event- and time-based PM tasks.  Event-based PM tasks that require non-

focal processing of target events have been linked to the anterior prefrontal cortex (Burgess et 

al., 2003; Reynolds et al., 2009) and more specifically to lateral BA 10 activations and medial 

BA 10 deactivations. Neurological changes within the prefrontal regions might reflect the 

processes associated with the maintenance of an intention (Burgess et al., 2003; Momennejad 

& Haynes, 2012), retrieving the future intention from memory (Simons et al., 2006) and/or 

the monitoring processes associated with a directed search for a target event (McDaniel & 

Einstein, 2000).  Event-based PM tasks that require focal processing of target events appear 

to load on medial temporal regions including the hippocampus. Activation changes within the 

hippocampus have been linked to the retrieval of an intention associated with a focal target 

(Okuda et al., 1998). 

 

  Several areas of the rostral prefrontal cortex also appear to be implicated in time-

based PM tasks. Activation of the left superior frontal region is suggested to reflect the 

processes associated with time estimation whereas activation of more diverse regions of the 
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rostral prefrontal cortex (e.g., right superior frontal gyrus, anterior medial frontal lobe, 

anterior cingulated gyrus) has been found in time-based PM tasks where time estimation is 

not needed (i.e., where clocks are provided) (Okuda et al., 2007). Overall, the literature 

suggests that event- and time-based PM tasks place different demands on the rostral 

prefrontal cortex with some event- (i.e., focal PM tasks) and time-based tasks (i.e., those with 

longer delay periods, Adda et al., 2008) also loading on medial temporal regions.  

  Aside from frontal and medial temporal regions, the parietal cortex has also been 

linked to PM functioning. For example, the BA7 is suggested to have important implications 

in event- and time-based PM tasks in storing future intentions in memory (Benoit, Gilbert, 

Frith & Burgess, 2012) while lateral and more superior regions have been linked to 

responding to cues and retrieval of future intentions from memory (Simons et al., 2006) 

In discussing drug-related neurotoxicity, Chapter 4 explains how cannabis, ecstasy, cocaine 

and other drugs may affect brain regions associated with PM performance. In consideration 

of the present thesis which aims to explore PM deficits in ecstasy users, specific emphasis is 

placed on how the neural effects of ecstasy use might be linked to PM impairments.  
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Chapter 4: The neurotoxic potential of drug use 

 

Chapter outline  

In consideration of the evidence put forward in Chapter 3 which provides a thorough account 

of the brain regions and neural networks implicated in PM tasks, the present Chapter 

discusses the neurotoxic potential of licit and illicit drugs. The literature is used to determine 

whether impairments to specific brain regions and/or neurotransmitters may mediate 

apparent PM deficits in drug users. Particular attention is given to the neurotoxic potential 

of ecstasy use and to whether potential neural abnormalities may impair performance on PM 

tasks.     

 

4.1 Neurotoxic potential of cannabis 

The acute effects of cannabis use include loss of internal control and cognitive impairment in 

attention and memory (Hall, Johnston & Donnelly, 1999). However, the psychological effects 

and health implications of chronic cannabis use are unclear. On the whole, it seems that 

cannabis use can induce cognitive impairments which persist beyond acute intoxication. A 

recent investigation that used an extensive battery of event- and time-based measures of PM 

found clear evidence of PM deficits in currently abstinent cannabis users (Hadjiefthyvoulou 

et al., 2011a). Other studies have however failed to demonstrate conclusive evidence for 

cannabis-related impairments in PM (McHale & Hunt, 2008). McHale and Hunt (2008) 

found no differences between chronic cannabis users and non-users in terms of event-based 

PM on the Rivermead Behavioural Memory Test (Message Subset). However, chronic 

cannabis users did differ significantly from non-users on both short- and long-term, time-

based measures of PM. The inconsistency between the findings warrants the possibility that 

some cannabis-related PM impairments may be reversible after a prolonged period of 

abstinence from the drug (Lundqvist, 2005). Alternatively, cannabis use may only affect the 

neural mechanisms associated with specific types of PM tasks whilst leaving other regions 

relatively unaffected.  In order to investigate this proposal and to identify specific brain 

regions and neuromodulatory mechanisms that might underpin PM impairment, it is 

important to consider the neurotoxic potential of cannabis use. 

 Cannabis is a plant that is made up of several chemical agents known as cannabinoids. 
9tetrahydrocannabinol (THC) is one particular cannabinoid that has been linked to the 

psychoactive properties of cannabis (Gaoni & Mechoulam, 1964). THC is a highly lipophilic 
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component that exerts its effects by binding to CB1 cannabinoid receptors (Ameri, 1999). 

The majority of CB1 binding sites are distributed within several regions of the brain 

including the basal ganglia, the molecular layer of the cerebellum, the dentate gyrus and 

some layers of the cortex (Ameri, 1999). Furthermore, high densities of CB1 receptors are 

located in brain regions implicated in PM functioning, including within the prefrontal cortex 

(PFC) and the hippocampal regions (Herkenham et al., 1990). A range of functional and 

structural neuroimaging techniques have been used to investigate changes within the brain 

resulting from cannabis use. Data relating to the effects of cannabis use on PM-related brain 

regions is discussed below. 

 The use of cannabis has been associated with significant functional abnormalities in 

areas of the frontal cortex. Matthew and Wilson (1991) used single-photon emission 

computed tomography (SPECT) and found that acute administration of cannabis in humans 

was associated with increased cerebral blood velocity and bilateral increases in cerebral 

blood flow in the frontal region. Importantly, abnormalities in the frontal region appear to 

remain for several weeks after last exposure to the drug. However, it is important to clarify 

that increased activity in the PFC appears to follow acute cannabis intoxication while 

diminished activity in this region has been linked to chronic exposure to the drug.   For 

example, chronic exposure to cannabis in rats results in decreased mesolimbic dopaminergic 

activity and diminished activation in the PFC (Diana, Melis, Muntoni & Gessa, 1998; 

Verrico, Jentsch & Roth, 2003). Similar findings are reported in humans. Lundqvist, Jönsson 

and Warkentin (2001) found reduced blood flow in the right frontal region of cannabis 

dependent persons. In another study, Eldreth, Matochik, Cadet and Bolla (2004) employed 

positron emission tomography and used a modified version of the Stroop task to examine 

brain activation and executive functions in 25-day abstinent cannabis users. Cannabis users 

displayed no deficits in executive functions relative to nonusers. However, hypoactivity in 

the left lateral PFC was observed in cannabis users suggesting that cannabis use has 

persistent effects on brain activity.  

Data from animal studies have highlighted significant morphological changes in the 

hippocampus after administration of THC (Rubino et al, 2008; Tagliaferro et al, 2006). 

Rubino et al. (2008) administered THC via an ethanol, cremophor and saline solution to a 

sample of rats (35 to 45 post natal days). The rats were then left undisturbed until adulthood 

(75 post natal days) where aversive and spatial working memory was assessed. THC treated 

rats performed worse than rats were not treated with THC on the spatial working memory 
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task. After reviewing levels of marker proteins within the hippocampus, Rubino and 

colleagues (2008) concluded that the administration of THC dampens synaptic contacts 

and/or synaptic connections throughout the hippocampus and this effect may underpin 

cognitive deficits that follow THC treatments. 

In consideration of the functional neuroimaging evidence, data from EEG studies 

suggests that THC reduces the activation of a number of frequency bands in the hippocampus 

and neocortex in humans, rabbit and rodents (Ilan, Smith & Gevins, 2004; Buonamici, Young 

& Khazan, 1982; Robbe et al., 2006; Willinsky, Loizzo & Longo, 1975). In one study, Robbe 

et al. (2006) examined local field potential recordings in rats and found evidence that both 

THC and the CB1 agonist, CP, 55940 decrease the power of theta (4-10 Hz), gamma (30-8- 

Hz) and fast ripple (100-200 Hz) oscillations in the hippocampus. This is significant in terms 

of PM functioning and the formation of new memories because hippocampal theta and 

gamma oscillations are involved in the coordination of synchronous firing between the 

hippocampus and the cortex (Siapas, Lubenov & Wilson, 2005).  The abnormalities found in 

the fast ripple oscillations are also important in that they appear to facilitate the transfer of 

hippocampal memory traces to neocortical circuits for long-term memory storage (Karlsson 

& Frank, 2009). This is particularly important in the context of long-term PM tasks where 

there are long delay periods between the formation of an intention and its subsequent 

retrieval from memory. Abnormal functioning of fast ripple oscillations may therefore lead to 

problems in the transfer of delayed intentions to long-term memory.  

Using PET, Mathew et al. (2002) found increased cerebral blood flow in the 

hippocampus after THC infusion. However, increased cerebral blood flow in the 

hippocampus was specific to the acute effects of THC infusion. Hippocampal-related changes 

in cerebral blood flow returned to baseline levels 60-minutes after THC infusion. Similar 

findings were reported by Block et al. (2002) who used PET to compare memory-related 

regional cerebral blood flow between cannabis users (average abstinence period of 28 hours) 

and nonusers. Relative to nonusers, cannabis users displayed increased blood flow in 

memory-relevant regions of the cerebellum, altered lateralisation in the hippocampus as well 

as decreased blood flow in the PFC. Importantly, these changes were accompanied by verbal 

learning deficits in cannabis users. Nonetheless, given that participants in this study were 

only abstinent for a period of 26 hours, post intoxication effects may have confounded the 

results. This view is consistent with findings from another task-based study which showed 
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that verbal learning was impaired in cannabis users at seven days post drug use but returned 

to baseline after 28 days (Pope, Gruber, Hudson, Huestis, & Yurgelun-Todd, 2001).  

Some studies have also associated cannabis use with decreased activation in the 

hippocampus. Functional magnetic resonance imaging data has shown that that cannabis 

users (who had abstained from cannabis use for 7 days prior to testing) display decreased 

activation in the hippocampus and the right dorsolateral PFC compared to nonusers during 

the completion of an associative learning task (Jager et al., 2007). However, this abnormality 

was not accompanied by a deficit in associative learning. Thus, it appears that decreased 

brain activation in the hippocampus does not always predict cognitive performance. By way 

of explanation, it is possible that frequent cannabis users were experiencing withdrawal 

effects after abstaining for the seven day period. For example, withdrawal effects may have 

dampened activity within memory-related regions of the brain without directly affecting 

cognitive performance (Jager et al., 2007). 

 The different activation levels of PM-related brain regions which have been observed 

in the literature may reflect differences between the abstinence periods and overall lifetime 

exposure to cannabis across studies. For example, cannabis users in Jager et al’s (2007) study 

abstained from cannabis use for a period of seven days prior to testing. This compares to 

considerably shorter abstinence periods in studies which have found cannabis related 

increases in the activation of memory-related brain regions (Block, Erwin & Ghoneim, 2002; 

Kanayama, Rogowska, Pope, Gruben & Yurgelun-Todd, 2004). Thus, studies with lower 

abstinence periods may reflect the post acute effects of cannabis use while studies with 

longer abstinence periods (Jager et al., 2007) might demonstrate the more sustained effects of 

the drug.  

  In humans, the evidence is mixed as to whether cannabis induces structural changes 

in the hippocampus. Jager et al. (2007) used voxel-based morphometry and found no 

differences in hippocampal brain tissue composition between cannabis users and nonusers. 

This finding is consistent with several studies which report no evidence of hippocampal 

structural changes in adolescent cannabis users (Block et al., 2000; Tzilos et al., 2005). 

Alternatively, some studies have shown clear structural abnormalities in the hippocampus of 

cannabis users. Matochik, Eldreth, Cadet & Bolla (2005) found that chronic cannabis use was 

associated with abnormalities in gray matter tissue composition in the parahippocampal gyrus 

and with increased white matter density in the parahippocampal gyri. Two more recent 
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studies have also found reduced hippocampal volumes in heavy cannabis users (Cousijn et 

al., 2012; Schacht, Hutchinson & Filbey, 2012). Cousijn et al. (2012) found that increased 

use of cannabis was associated with lower grey matter volumes in the hippocampus in heavy 

cannabis users. Further research from Yucel et al. (2008) noted a 12% reduction in 

hippocampal volumes of long-term heavy cannabis users relative to non-cannabis users. 

More recent evidence lends support to these findings and has also observed significantly 

reduced hippocampal volumes in heavy cannabis users relative to healthy controls (Schacht 

et al., 2012).  

To conclude, there is strong evidence for the neurotoxic potential of cannabis use in animals 

and in humans. Cannabis’ effects on PM-related brain regions such as the PFC and the 

hippocampus have been well documented. Heavy cannabis use has been associated with 

structural changes in the hippocampus but not in the PFC. Despite this, there appears to be 

increased activity within the PFC and the hippocampus during immediate exposure to 

cannabis and a dampened response during abstinence.  

  

4.2  Neurotoxic potential of ecstasy/MDMA 

Ecstasy is a recreational drug (Curran et al., 2004) which acts primarily by stimulating the 

release of monoamines such as serotonin (5-HT) and dopamine (DA) (Green, Cross & 

Goodwin, 1995; Ricaurte & McCann, 2001). Long-term exposure to ecstasy may also induce 

decrements in markers of monoamine neurons (Ricaurte et al., 1988). It does this through its 

principle ingredient, 3,4Methylenedioxymethamphetamine which in currently abstinent users 

has been associated with reduced levels of brain 5-HT, its primary metabolite 5-hydroxy-

indoleacetic acid (5-HIAA), the 5-HT transporter (SERT) and tryptophan hydroxylase 

(Ricaurte DeLanney, Wiener, Irwin & Langston, 1988a; Ricaurte, Martello, Katz & Martello 

1992). Moreover, abnormalities in monoamine neurons appear to persist for years after last 

exposure to ecstasy suggesting that any observed effects may be long-lasting (Taffe et al., 

2003; Reneman et al., 2002). 

 

 In humans, exposure to ecstasy is followed by the acute release of 5-HT from pre-

synaptic 5-HT neurons (Nishisawa, Mzengeza & Diksic, 1999). This is often associated with 

short-term “positive” feelings of elevated mood (Liechti & Vollenweider, 2001), extroversion 

and increased sensory perception (Farré et al., 2007). However, repeated exposure to ecstasy 
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can induce long-term damage to 5-HT neurons in PM-related brain regions. Pharmacological 

challenges have been used to identify abnormalities in the regulation of endocrine secretion 

because of imbalances in the 5-HT system (Gouzoulis-Mayfrank & Daumann, 2006). 

Specifically, pharmacological challenge studies aim to increase the rate of production of 5-

HT via the administration of 5-HT agonists such as fenfluramine or L-Tryptophan. The 

subsequent secretion of cortisol, prolactin and other hormones, and in particular their 

concentrations in the peripheral blood are then measured to investigate any irregularities in 

their homeostatic regulation.  

 

Gerra et al. (2000) found that compared to control participants, ecstasy users (abstinent for 3-

months) displayed reduced prolactin and cortisol responses to fenfluramine. Similarly, Price, 

Ricaurte, Krystal & Heninger (1989) found impairments in prolactin responses to L-

Tryptophan in participants with a history of heavy ecstasy use.  Due to the involvement of 5-

HT in the secretion of prolactin and cortisol, it appears that ecstasy use might induce long-

term 5-HT neurotoxicity. Nonetheless, it is worth noting that in Gerra et al’s (2000) study, 

prolactin and cortisol responses in ecstasy users were equivalent to those of nonusers 

following a 12-month period of abstinence from the drug. This suggests that apparent long-

term damage to 5-HT integrity may be reversed after a sustained period of abstinence from 

the drug.  

 Neuroimaging techniques have also been used to examine 5-HT functioning in 

ecstasy users. These studies commonly compare individual levels of SERT binding to 

examine brain 5-HT integrity in ecstasy users and nonusers. SERT is the site on 5-HT 

neurons which is responsible for taking 5-HT back into the neuron. Decreased brain SERT 

levels are found in animals exposed to serotonergic neurotoxins and as such SERT binding is 

suggested to reflect 5-HT neuron integrity (Brown & Molliver, 2000). Radioligand-based 

methods are commonly used to measure SERT binding in ecstasy users. Using PET, McCann 

Szabo, Scheffel, Dannals & Ricaurte (1998) reported reduced densities of 5-HT transporter 

sites in ecstasy users compared to nonusers. Crucially, these abnormalities were apparent in 

PM-related and non PM-related brain regions including the frontal cortex, the hypothalamus, 

the cingulate cortex and the occiptal and parietal cortex.  

 

 In another neuroimaging investigation of SERT binding, Semple et al. (1999) used the 

radioligand, [123I]b-CIT in  a SPECT procedure in 10 ecstasy users and 10 nonuser controls. 
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In contrast to McCann et al’s (1998) findings, Semple and colleagues (1999) found normal 

SERT binding levels in the striatum, midbrain, and thalamus in ecstasy users. Ecstasy users 

displayed slight reductions in SERT binding in non PM-related areas of the cerebral cortex 

(occiptical, cingulate, and calcarine). Despite this finding, the use of the [123I]b-CIT as a 

measure of SERT is questionable. This is because [123I]b-CIT is not specific to SERT 

binding and is sensitive to both dopamine and noradrenaline transporters (Kish, 2002). 

Moreover, Heinz and Jones (2000) criticise that the use of [123I]b-CIT for measurements of 

SERT binding in areas of very low SERT density. The cerebral cortex is one area of the 

human brain which is packed with several transporters and where SERT density is relatively 

low (Heinz & Jones, 2000). As a result, it is difficult to determine whether diminished 

cortical [123I]b-CIT binding reported in Semple et al’s (1999) investigation is demonstrative 

of decreased levels of SERT or other transporters.  

 

 In addressing the issues outlined above, Kish et al. (2010) employed SERT binding as 

a primary outcome measure and used a PET radioligand ([11C]DASB) which has the specific 

ability to assess regional binding in the cerebral cortex and subcortical areas. Magnetic 

resonance imaging (MRI) for PET image co-registration and structural analyses were 

conducted on a relatively large sample of 49 chronic ecstasy users (mean abstinence period of 

45 days) and 50 nonuser controls. Reduced levels of 5-HT transporter binding were observed 

in all areas of the cerebral cortex and the hippocampus of ecstasy users. In terms of PM-

related brain regions, SERT loss was reported at an average of 17% in the frontal cortex and 

31% in the hippocampus in ecstasy users. Interestingly, ecstasy users displayed normal levels 

of 5-HT transporter binding in the striatum despite this region being heavily packed with 

serotonergic neurons.  Kish et al. (2010) concluded that serotonergic neurons within the 

cerebral cortex and the hippocampus are particularly susceptible to the effects of chronic 

ecstasy use and that behavioural problems observed in some ecstasy users may be mediated 

by 5-HT transporter changes within the cerebral cortex. Cortical thinning was evident 

especially in left hemisphere locations including the superior (BA6) middle  (BA10 and BA9) 

and inferior (BA47) frontal gyri, inferior parietal (BA40), middle temporal gyrus (BA22), 

occipital cortex (BA17) and right inferior parietal. Furthermore the neural deficits evident in 

ecstasy/polydrug users were associated with aspects of prior ecstasy consumption (Kish et al., 

2010). 
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 Neuronal damage in ecstasy users has been further investigated through post-mortem 

brain examination. One advantage of post-mortem investigations over and above 

neuroimaging studies is that they allow for detailed examination of all markers of 5-HT nerve 

terminal integrity. In a post-mortem investigation of a chronic ecstasy user, who also used 

cocaine and opiate drugs, Kish (2000) found low levels (between 60% and 77% reductions) 

of 5-HT but normal dopamine concentration in the striatum. Findings which have shown no 

reduction of 5-HT in cocaine (Wilson et al., 1996) and heroin (Kish et al., 2001) users would 

suggest that the observed effects are attributable to the long-term use of ecstasy.  
 

Aside from MDMA-induced 5-HT neurotoxicity, MDMA exposure can also result in 

abnormalities within the DA system (Crespi, Mennini & Gobbi, 1997; Koch & Galloway, 

1997; Mann, Ladenheim, Hirata, Moran & Cadet, 1997). Shortly after MDMA 

administration, acute increases in DA can be found across several brain regions including the 

nucleus accumbens (Cadoni et al., 2005) the PFC (Nair & Gudelski, 2004) and the 

hippocampus (Shankaran & Gudelski, 1998). Gerra et al. (2002) used a pharmacological 

challenge test to investigate the long-term effects of MDMA exposure on DA. The DA 

agonist, Bromocriptine (BROM) was administered to a sample of ecstasy users (abstinent for 

three weeks) and drug naive controls to investigate its effects on prolactin (PRL) and growth 

hormone (GH) levels. Findings showed that BROM suppression elicited no differences 

between the PRL responses of ecstasy users and nonusers. However, significantly lower GH 

levels were observed in ecstasy users compared to non-users following BROM stimulation. 

Conclusions from this study suggest that the reduced GH levels in ecstasy users may reflect 

an abnormal sensitivity of D2 receptors in the hypothalamus as a consequence of continued 

MDMA exposure.  This finding is particularly interesting in light of animal data showing a 

direct link between DA receptors and PM performance. Specifically, D1 receptors are 

suggested to support functions of RM tasks while D2 receptors support functions of PM tasks 

(Goto & Grace, 2008). Abnormal DA functioning in ecstasy users was also found by Sekine 

et al.  (2003). The authors used PET analysis and found that relative to non-users, ecstasy 

users exhibited lower levels of DA transporters in several brain regions including the PFC 

(Sekine et al., 2003). This finding is significant considering that successful PM performance 

is dependent on prefrontal executive processes.  

 More recent investigations have suggested an important role of cortisol in MDMA 

neurotoxicity. For example, in laboratory studies, administration of MDMA stimulates the 
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hypothalamus-pituitary adrenal (HPA) axis resulting in increased plasma concentrations of 

cortisol (Parrott, 2009). In a study which examined salivary cortisol in ecstasy users, Parrott, 

Lock, Conner, Kissling & Thome (2008) found increases of up to 800% in participants who 

were clubbing and on drug compared with baseline and compared with dancing when drug 

free. In a similar study, Wolff et al. (2012) evaluated cortisol levels pre and post clubbing. At 

baseline, cortisol levels were elevated in clubbers compared with normal population and 

diurnal norms. The post clubbing data revealed that clubbers who had consumed ecstasy 

tablets also had elevated cortisol levels compared with those individuals who had not 

consumed ecstasy. Genetic based differences in drug metabolism mediated these effects. 

More specifically, post-clubbing increases in cortisol were largely limited to two CYP2D6 

phenotypes characterised by poor or intermediate metabolism. Furthermore, those 

participants with the COMT genotype (met/met) which is associated with low activity drug 

metabolism, registered large increases in cortisol post clubbing regardless of whether they 

had taken ecstasy or not.  Overall, it appears that the regular use of ecstasy may give rise to 

HPA axis dysregulation. In light of this evidence, it is possible that MDMA induced, cortisol 

mediated, HPA dysregulation may be responsible for some of the cognitive deficits observed 

in ecstasy users. For example, cortisol is highlight implicated in learning and memory as well 

as attentional processes. This effect is characterised by an inverted-U shaped curve where too 

much or too little cortisol can lead to cognitive impairment. Crucially, cortisol is implicated 

during the regulation of DA which is important for PM functioning (Goto & Grace, 2008). 

Moreover, chronically elevated levels of cortisol have been linked to PM-related brain 

regions including the PFC and the hippocampus (Erickson, Drevets & Schulkin, 2003). 

Overall, it seems that the use of MDMA may increase cortisol and thus, disrupt dopamine 

regulation in PM-related brain regions.  

  In summary, there is evidence for serotonergic and to a lesser extent dopaminergic 

neurotoxicity in ecstasy users. Ecstasy use has been shown to induce serotonergic damage in 

PM-related brain regions including in the frontal cortex (McCann et al., 1998; Kish et al., 

2010) and in the hippocampus (Kish et al., 2010). Impairments of 5-HT functioning in these 

regions may underpin PM deficits in ecstasy users. Ecstasy users also display lower levels of 

DA transporters in the PFC. Importantly, abnormalities that have been found in the 

functioning of DA D2 receptors in ecstasy users (Gerra et al., 2002) are those that are thought 

to be an integral component of successful PM functioning (Goto & Grace, 2008).  
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  Aside from evidencing ecstasy-related deficits in the serotonergic and dopaminergic 

systems, the literature has identified clear structural changes in PM-related brain regions in 

ecstasy users. Daumann et al. (2011) examined the extent to which increased exposure to 

MDMA can affect the structure of different brain regions.  Daumann and colleagues (2011) 

studied gray and white matter densities in 20 frequent ecstasy users, 42 less frequent users 

and 16 drug-naive controls. Using fMRI and voxel-based morphometry, Daumann and 

colleagues (2011) compared grey matter volume in a number of brain regions between the 

groups. Compared to the low frequency group, frequent ecstasy users demonstrated lower 

grey matter volume in medial frontal regions including in the orbital and medial frontal 

cortex. These results support previous findings which have shown that ecstasy users display 

decreased grey matter in a number of brain regions localised to the neocortex in bilateral 

occiptical cortex (BA10), the left middle temporal gyrus (BA21) and the left inferior frontal 

gyrus (BA45). The implications of the findings suggest that repeated exposure to ecstasy may 

increase structural changes in medial frontal regions. Given the role of frontal regions in 

prospective remembering, structural changes in the medial frontal region may compromise 

ecstasy users’ functioning on PM tasks. 

Further structural changes have been observed in other PM-related brain regions. A recent 

study by Hollander et al. (2012) examined hippocampal volume in chronic ecstasy users and 

polydrug user controls. Significantly smaller hippocampal volumes were found in ecstasy 

users relative to polydrug user controls. To be specific, hippocampal volumes were, on 

average, 10.5 % smaller in ecstasy users compared to polydrug user controls. The only 

significant difference between the two user groups was the extent of prior ecstasy use. 

Participants in the ecstasy user group had each consumed a minimum of 50 ecstasy tablets 

whereas participants in the polydrug user control group reported no ecstasy use. Crucially, 

participants in the ecstasy user group were on average drug free for more than two months 

suggesting that ecstasy use can induce a long-lasting decrease in hippocampal volume.  

  

4.3 Neurotoxic potential of cocaine 

The following paragraphs discuss the effects of cocaine on brain function and structure in an 

attempt to identify the underlying mechanisms that underpin psychological impairments. 

Animal-based studies point towards diminished DA integrity in the rodent brain following 

exposure to cocaine. With regard to PM-related brain regions, Wyatt, Karoum, Suddath & 
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Fawcett (1988) found decreased levels of DA in the frontal cortex of rats that were injected 

with a cocaine solution twice daily for a period of seven days. Although this finding could 

potentially have important implications for PM functioning, the drug regimen used in this 

study does not reflect typical cocaine consumption patterns in humans. That is, cocaine users 

may have a tendency to binge over a number of days and then remain abstinent for an 

extended period of time (see Zeigler, Lipton, Toga & Ellison, 1991). In an attempt to 

investigate the patterns of binging which are commonly seen in human cocaine users, Zeigler 

et al. (1991) employed a silastic pellet technique which released cocaine at a steady rate over 

a number of days. Rats were either administered with continuous cocaine (silastic pellet), 

cocaine injections, continuous amphetamine (silastic pellet) or a control solution containing 

no drug over a five-day period. This was followed by a drug free period of 30 days. In vitro 

autoradiography showed large increases in D2 binding and large decreases in D1 binding in 

DA rich regions after continuous amphetamine administration. Conversely, continuous 

cocaine administration was followed by increased benzodiazepine binding in the cortex and 

the amygdala and decreased muscarinic acetylcholine receptor binding in the hippocampus. 

These alterations in brain chemistry show that amphetamine and cocaine can induce long-

lasting effects on neurochemical systems and neural regions associated with PM functioning 

(e.g., D2 receptors and the hippocampus).  

  Tomasi et al. (2007) investigated the possibility that cognitive dysfunction in cocaine 

users might be linked to impairments of cortical and subcortical regions modulated by 

dopamine. The authors used fMRI to study brain activation during a verbal working memory 

task in cocaine abusers and healthy controls. Cocaine abusers displayed hypoactivation in the 

mesencephalon compared to controls. This is interesting given that this region is densely 

populated with dopamine neurons. Relative to controls, cocaine users also showed larger 

deactivation in dopamine projection regions (putamen, anterior cingulate, parahippocampal 

gyrus, and amygdala) and hyperactivation in cortical regions involved with attention 

(prefrontal and parietal cortices) and PM (PFC). In the working memory task, activation was 

lower in the prefrontal and parietal cortices in cocaine abusers when compared with controls. 

This finding may demonstrate limited network capacity in cocaine users compared to 

nonusers. This is particularly potent in the context of PM and in light of evidence that 

suggests that PM is mediated by executive functioning processes (Heffernan & Bellis, 2012; 

Kopp & Thöne-Otto, 2003; Martin et al., 2003). Overall, these findings provide evidence of 

impaired function of brain regions involved with executive control, attention and PM in 
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cocaine abusers. These neurofunctional abnormalities together with abnormal dopamine 

functioning might underpin cognitive deficits during early cocaine abstinence. 

 

  Structural neuroimaging evidence has shown lower densities of gray matter in the 

PFC of cocaine users compared to nonusers (Matochik et al., 2003). Lower levels of gray 

matter were found in the cingulate gyrus, lateral PFC, and medial and lateral parts of the 

orbitofrontal cortex. These findings are in line with other structural neuroimaging studies 

which have shown reduced gray matter volumes in the frontal cortex of cocaine users 

(Franklin et al., 2002; Sim et al., 2007). Thus, it appears that the frontal cortex is particularly 

susceptible to cocaine-related volume changes and that abnormalities in the prefrontal region 

may contribute to any PM dysfunction observed in cocaine users. These findings are further 

supported by functional neuroimaging work which has shown clear dysfunction of the PFC of 

cocaine users (Bolla et al., 2004; Volkow, Mullani, Gould, Adler & Krajewski, 1988; 

Volkow et al., 1992). Using PET, Volkow et al. (1988) found decreased rCBF in chronic 

cocaine users compared to nonusers. Additionally, lower levels of metabolic activity have 

been found in the PFC of cocaine users compared to nonusers (Volkow et al., 1992). 

Importantly, deficits within the PFC persist after a period of abstinence from cocaine use (10 

days, Volkow et al., 1998; 3 weeks, Volkow et al., 1992).  

  Similarly, Bolla et al. (2004) employed PET and found that compared to nonuser 

controls, cocaine users displayed abnormal functional activation in the PFC whilst 

completing an executive functioning task. This finding is of particular interest in the context 

of PM performance since PM has been shown to recruit executive resources (Martin et al., 

2003). Compared to nonusers, cocaine users displayed lower levels of activation in PM-

related brain regions including in the anterior cingulate cortex (Okuda et al., 1998; 2007) and 

the lateral PFC (Okuda et al., 2007). Specifically, average dose of cocaine (per week) was 

negatively correlated with activity in the rostral anterior cingulate cortex and the lateral PFC. 

 

4.4 Neurotoxic potential of tobacco and alcohol 

A number of studies have associated chronic cigarette smoking with global brain 

impairments (Akiyama et al., 1997; Hayee, Haque, Anwarullah & Rabbani, 2003). Moreover, 

chronic smoking has been linked to abnormalities in PM-related brain regions including the 
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PFC (Sutherland, Ross, Shakleya, Huestis & Stein, 2010; Zhang, Stein & Hong, 2011), 

anterior frontal lobe (Brody et al., 2004), cingulate gyrus (Gallinat et al., 2006) and the 

hippocampus (Gallinat et al., 2007; Li, Park, Bahk & Kim, 2002). Zhang et al. (2011) 

explored white matter integrity and gray matter density in 48 smokers and 48 non-smokers. 

Voxel-based morphometry revealed that smokers displayed lower gray matter density in the 

PFC. Prefrontal cortical gray matter density was negatively correlated with total lifetime 

tobacco use. In addition, fractional anisotropy showed that smokers who were heavily 

dependent on tobacco displayed significant lower fibre integrity in the left PFC. These 

findings are consistent with other studies which have reported prefrontal cortical damage in 

cigarette smokers (Brody et al., 2004; Gallinat et al., 2006). Sutherland et al. (2010) used 

fMRI and found that relative to non-smokers, smokers displayed greater tonic activation in 

the medial superior frontal cortex, right anterior insula and the bilateral anterior PFC during 

working memory task completion. These findings show that smokers require additional 

recruitment of working memory and supervisory control operation to perform working 

memory tasks. Sutherland and colleagues’ findings may have important implications for PM 

task performance given that both the PFC and working memory (Heffernan & Bellis, 2012) 

have been linked to PM. Thus, it is plausible that smokers may need to recruit additional PM 

operations including enhanced PFC activation to carry out PM tasks. Further smoking-related 

damage to the PFC was found by Gallinat et al. (2006). Gallinat and co-workers used MRI 

and found that smokers displayed lower gray mater volumes in frontal, temporal and occipital 

regions relative to non-smokers.   Similar findings were reported by Brody et al. (2004). MRI 

data showed that smokers displayed lower volumes and densities in PFC and anterior frontal 

lobe gray matter. Smokers also showed smaller volume of the left dorsal anterior cingulate 

gyrus, and lower gray matter density of the right cerebellum relative to non-smokers.  

  Damage to other PM–related brain regions has also been found in cigarette smokers. 

For example, lower N-acetylaspartate levels have also been found in the left hippocampus of 

smokers compared to non-smokers (Gallinat et al., 2007). Furthermore, human post-mortem 

studies of lifelong smokers have shown evidence of increased binding of nicotine in the 

hippocampus (Breese et al., 1997). A significant positive correlation was found between 

exposure to tobacco and the number of nicotine receptor binding sites in the hippocampus. 

Although a dose-dependent increase in hippocampal-nicotinic receptor binding was observed, 

these changes were shown to be reversible after a prolonged period of abstinence from 

cigarette smoking.  
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  The use of other licit drugs can have detrimental affects on the brain. For example,  

there is substantial evidence that chronic alcohol consumption has profound effects on the 

structure and function of the PFC and the hippocampus. This evidence stems from human and 

animal studies, behavioural, brain imaging and molecular and cellular observations. For 

example, the chronic use of alcohol has been associated with changes in the structural 

morphology and integrity of the PFC. Early research has shown that alcohol dependent 

subjects display lower levels of gray matter in the PFC (Jernigan et al., 1991) and reduced 

white matter in the cortex (de la Monte, 1998). Furthermore, long-term chronic alcohol 

exposure has been associated with volume loss within the frontal lobes (Pfefferbaum, 

Sullivan, Mathalon & Lim, 1997). More recent findings have linked the chronic use of 

alcohol to reduced integrity of prefrontal white matter (Pfefferbaum & Sullivan, 2005; Harris 

et al., 2008).  

Chronic alcohol users also display functional abnormalities in the PFC (Pfefferbaum 

et al., 2001). They found that alcohol users display differential patterns of activation in the 

PFC during the completion of executive functioning tasks. This finding suggests that there 

are alterations to the way in which the brain performs these tasks. Similarly, Crego et al. 

(2010) found that compared to control subjects, binge drinkers had hyperactivation of the 

right PFC. Furthermore, research indicates that poor performance on executive function tasks 

might be linked to alcohol-related prefrontal impairments. Adams et al. (1993) found that 

performance on an executive functioning task was associated with decreased medial frontal 

glucose metabolism. Similarly, Oscar-Berman and Marinkovíc (2007) found that alcohol-

related deficits in executive functions that involve monitoring processes were related to 

abnormal prefrontal activation. The evidence outlined above shows a clear relationship 

between the chronic use of alcohol and PFC impairment. Importantly prefrontal 

abnormalities which result from alcohol abuse have been associated with executive 

functioning deficits. This finding is noteworthy in the context of this thesis given the 

potential  role of executive processes in PM performance (Heffernan & Bellis, 2012). 

Abnormalities in more diverse brain regions in additional to those found in PFC have 

been observed following chronic alcohol exposure. For example, chronic alcohol 

administration has been associated with significant proteomic changes in the hippocampus of 

rats (Hargreaves, Quinn, Kashem, Matsumoto & McGregor, 2009), as well as reduced 

hippocampal serotonin transporter density in monkeys (Burnett, Davenport, Grant & 

Friedman, 2012). Further animal research with rats has associated chronic alcohol exposure 
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with hippocampal neurogenesis (He, Nixon, Shetty & Crews, 2005). Hippocampal 

neurogenesis may have negative consequences for cognitive performance given that it is 

associated with lower cell survival and altered morphological maturation of new-born 

neurons (Morris, Eaves, Smith & Nixon, 2010). 

In humans, the chronic use of alcohol has been associated with hippocampal 

dysmorphology. Beresford et al. (2006) used MRI to examine hippocampal volumes in 

chronic alcohol-dependent subjects with a history of heavy drinking and light drinking non-

alcohol-dependent controls. Alcohol dependent subjects with a history of heavy drinking 

displayed reduced total and left hippocampal volumes compared to light drinkers who were 

not alcohol dependent. A number of other studies have observed structural abnormalities 

within the hippocampus of adolescent drinkers. De Bellis et al. (2000) used MRI to compare 

hippocampal volumes between subjects with alcohol use disorders and healthy controls. 

Findings showed significantly reduced left and right hippocampal volumes in alcohol 

dependent participants relative to healthy controls. Reduced hippocampal volumes were 

found in those subjects who began using alcohol at an early age and who had been diagnosed 

with an alcohol use disorder for a longer period of time. Evidence from Medina, 

Schweinsburg, Cohen-Zion, Nagel & Tapert (2007) is consistent with these findings and 

suggests that adolescent drinking has a detrimental affect to the structure of the hippocampus. 

The authors found significant aberrations in hippocampal asymmetry and left hippocampal 

volumes in heavy adolescent drinkers. Interestingly, hippocampal asymmetry was related to 

learning abnormalities in these subjects. 

The literature outlined above indicates that chronic exposure to cigarette smoking and alcohol 

use might give rise to the development of abnormalities within the brain. The prefrontal 

cortex and the hippocampus are two brain regions affected by chronic cigarette smoking and 

alcohol use. These findings are significant based on the understanding that these brain 

regions are heavily implicated in PM tasks (Burgess et al., 2003; Okuda et al., 1998; 2007).  

 

4.5 Chapter Summary  

The present Chapter has examined significant evidence that suggests that both illicit and licit 

drugs have the potential to damage a wide range of brain regions including frontal, medial 

temporal and posterior areas. Taken together, these findings might be useful in explaining 

observed PM deficits in substance users. Chapter 5 explores the variety of self-report and 
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laboratory-based measures available to researchers who want to study PM. Chapter 6 

examines the research which has used these measures to investigate PM performance in illicit 

and licit substance users.  
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Chapter 5: Assessment of prospective memory 

 

Chapter Outline 

The present Chapter introduces some of the most commonly used self-report and laboratory-

based measures of PM. The reliability and validity of self-report measures are discussed. 

Particular attention is given to measures that have previously been used in drug-related 

literature and to those which have been used in the empirical work of the thesis. 

 

 

5.1 Self-report measures of prospective memory 

 

The Prospective Memory Questionnaire (PMQ; Hannon et al., 1995)    

The PMQ is a self-report measure of PM that provides measures of three classes of PM. 

These include short-term habitual PM, long-term episodic PM and internally cued PM. Each 

aspect of PM is measured on a scale of 1-9. Fourteen questions measure short-term habitual 

PM (e.g. “I forgot to lock the door when leaving my apartment or house”), while fourteen 

items measure long-term episodic PM (e.g. “I forgot to send a card for a birthday or 

anniversary”) and ten questions measure internally cued PM (e.g. “I forgot what I came in the 

room to get”. A further fourteen questions provide a measure of the strategies used to 

facilitate remembering (e.g. “I make lists of things I need to do”).  

 

The Prospective Retrospective Memory Questionnaire (PRMQ; Crawford, Smith, Maylor, 

Della Sala & Logie, 2003)  

The PRMQ is a self-report measure of PM that also incorporates measures of RM. Eight 

questions refer to PM failures (e.g. “Do you decide to do something in a few minutes time 

and then forget to do it?”), while a further eight investigate RM failures (e.g. “Do you fail to 

recognise a place you have visited before?”). Both of these components of real-world 

memory are measured on a 5-point Likert Scale ranging from “very often” to “never”. 

Participants are required to specify how often each item happens to them in everyday life. 

Ratings are assigned numerical values of 5 (very often) to 1 (never) in order to provide a total 

score for each subscale (PM and RM). Each subscale has a minimum score of 8 and 

maximum score of 40 where higher scores are suggestive of more memory problems.    The 

effectiveness of these self-report instruments in measuring PM has been demonstrated across 
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a body of psychological research including investigations of the effects of personality 

(Heffernan & Ling, 2001), age (Heffernan & Elmirghani, 2000), and drug use on successful 

prospective remembering. Research that has used these measures to investigate the effects of 

substance use on PM has found evidence for alcohol (Heffernan et al., 2006) and nicotine-

related (Heffernan et al., 2005) PM deficits. Although these findings demonstrate drug-

related PM impairments, this report will focus primarily on the effects of ecstasy use and, to a 

lesser extent, the effects of cannabis use on PM.  

 

Comprehensive Assessment of Prospective Memory (CAPM; Roche, Moody, Szabo, Fleming 

& Shum, 2007) 

The CAPM is a 54-item questionnaire that is divided into three subcategories. Section A 

(CAPM/A) is compromised of 39 items and assesses frequency of PM lapses. Ten items 

focus on the basic activities in everyday living (e.g., “forgetting to eat a meal”). Twenty-three 

items focus on the instrumental activities of everyday living (e.g., “forgetting to pay a bill”). 

Six further items are unclassified and contribute to a CAPM/A overall score. Section B 

(CAPM/B) is based on the same 39-items used for calculating PM lapses in section A but this 

time participants are asked to indicate their degree of concern about each PM failure. 

 

Items in section A and B are rated using a 5-point Likert scale: 1=never, 2=rarely 

(once/month), 3=occasionally (2-3 times/month), 4=often (once/week), 5=very often/daily, 

n/a=not applicable. Item responses are averaged for all items within each scale such that 

higher scores indicate higher PM failures (section A) and increased concern about PM 

failures (section B). Section C (CAPM/C) includes 15 items which concentrate on specific 

reasons for PM failures (e.g., “the more things (say two or three) I have to do, the more likely 

I will forget to do them”. Participants are asked to indicate the degree to which they agree 

with each statement using a 4-point Likert scale: 1=strongly disagree, 2=disagree, 3=agree, 

and 4=strongly agree.  

 

Time-Cued Prospective Memory Questionnaire (TCPMQ; Cuttler & Graf, 2009) 

The TCPMQ is a 50-item questionnaire that is divided into three sections. The first section 

includes 39-items and assesses the frequency of time-cued PM failures. Participants indicate 

how often they forget to carry out time-based PM intentions (e.g., “I forgot to go to my 

dentist appointment”) using a 5-point scale: 1=never, 2=seldom, 3=sometimes, 4=often, 



 80 

5=very often and n/a=not applicable. Item responses are averaged across all items with higher 

scores indicating increased frequency of time-based PM forgetting. The second section of the 

questionnaire is focused on time-cued PM punctuality. Participants are presented with the 

same 39-items and are asked to indicate how punctual they are when performing each task. 

The third section is an 11-item questionnaire which measures the use of memory aiding 

strategies. Items concentrate on a number of memory aiding strategies including the use of 

post-it notes, alarms, cell phones and reminder services (e.g., “I use the alarm services on my 

PDA to help me remember to do things on time”). Items are scored on a 5-point Likert scale: 

1=never, 2=seldom, 3=sometimes, 4=often, 5=very often and n/a=not applicable. Item 

responses are averaged across all 11-items with higher scores demonstrating increased use of 

memory aids and strategies. 

 

 5.2 Reliability and validity of self-report measures of prospective memory 

A review of the literature shows that both the PMQ (Hannon et al., 1995) and the PRMQ 

(Crawford et al., 2003) have acceptable to very good levels of reliability but poor levels of 

validity (Hannon et al., 1995; Kliegel & Jäger, 2006; Mäntylä, 2003). For example, evidence 

for convergent validity (i.e., the degree to which two measures or constructs that should be 

related, are in fact related; Uttl & Kibreab, 2011) is lacking such that correlations with 

objective measures of PM are extremely low (PMQ; Hannon et al., 1995; PRMQ; Kliegel & 

Jäger, 2006; Mantyla, 2003), Nonetheless, these studies have been criticised on the basis that 

they have used unreliable binary measures of PM (Uttl & Kibreab, 2011). Thus, the lack of 

convergent validity found in previous studies may be explained by poor criterion objective 

measures of PM (Uttl & Kibreab, 2011). The use of more continuous measures of PM may be 

more useful when measuring the convergent validity of self-report measures of PM.  

   To test this proposal, Uttl and Kibreab (2011) developed their own continuous 

objective measure of PM. Participants were asked to circle presentations of a PM cue while 

they were working through a series of questionnaires. The PM cue was presented a total of 

four times in an intrusive visual form. The PM cue which was first circled was used as an 

indication of PM performance.  Participants received four points if they circled the first PM 

cue and one point if they only circled the last PM cue. No points were received if participants 

failed to circle any of the PM cues. In order to assess convergent and divergent validity (i.e., 

the extent to which two measures of different constructs do not correlate with each other) of 

self-report measures of PM, Uttl and Kibreab (2011) asked participants to complete several 
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self-report measures of PM (PMQ; Hannon et al., 1995, PRMQ; Crawford et al., 2003, 

CAPM; Roche et al., 2007, TCPMQ; Cuttler & Graf, 2009) and RM. For a self-report 

measure of PM to have high convergent validity, it should have a high correlation with other 

self-report measures of PM. In contrast, if a self-report measure of PM has high divergent 

validity, it should have a low correlation with measures of other constructs (in this case, RM). 

The authors also examined the convergent and divergent validity of self-reports of PM 

against objective measures of PM. To be valid here, self-report measures of PM should have 

a high correlation with objective measures of PM and a low correlation with objective 

measures of other constructs. Despite using a newly developed, continuous measure of PM, 

the results showed poor convergent and divergent validity for self-report measures of PM. 

Overall findings within the literature demonstrate high levels of reliability but low levels of 

validity of self-report measures of PM. 

 

5.3 Laboratory-based measures of prospective memory 

 

The Call-In Prospective Memory Test (Cuttler, Graf, Pawluski & Galea, 2011) 

The Call-in PM Test is a time-based PM task where participants are required to call the 

laboratory one week after the initial test-session. Participants select their own time window 

which governs when they should call the laboratory. Two points are awarded to participants 

who call the laboratory on the correct day and at the right time. One point is awarded to 

participants who call the laboratory at the incorrect time. No points are awarded if 

participants fail to call the laboratory. 

 

The Cambridge Prospective Memory test (Wilson et al., 2005) 

The Cambridge Prospective Memory test (CAMPROMPT) includes three measures of event-

based PM and 3 measures of time-based PM. Over a 20-minute period, participants are asked 

to partake in some distracter tasks in the form of either a word-finder puzzle or a general 

knowledge quiz. Meanwhile, participants are also required to complete several PM tasks. 

Participants are provided with a kitchen timer for the first two time-based PM tasks. The first 

time-based PM task requires participants to remind the experimenter to remember an item 

(e.g. a mug, keys) 7-minutes before the end of the scheduled 20-minute period. When the 

timer displays 16-minutes, the participant receives a reminder that they need to stop whatever 

task they are doing and move to another “in 7-minutes time”. This is the second time-based 
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PM task. The final time-based is governed by a wall-clock where the participant is given a 

specific time (e.g. 5-minutes after the test-session is complete) at which they need to remind 

the experimenter to ring the garage/reception.  

The first event-based task concerns the general knowledge quiz and involves the participant 

returning a book to the experimenter following the presentation of a question on the 

television series, “Eastenders”. The second event-based task requires the participant to return 

an envelope labelled “MESSAGE” to the experimenter following the receipt of a reminder 

that there are only 5-minutes left until the end of the test-session. After being informed that 

the test-session is complete, participants are asked to remind the experimenter of the location 

of 5 items that were hidden at the start of the test-session. The maximum score for each of the 

six subtasks is six. A score of six is given if the task is completed without the need for a 

prompt from the experimenter. Four points are awarded if the task is completed successfully 

following the receipt of a single prompt from the experimenter. Thereafter, participants are 

awarded two points if the task is completed upon the receipt of a second prompt, one point if 

prompting is received but the task is only completed at the second attempt and no points if 

after prompting, the task has not been completed successfully.  A total score for time-based 

PM and event-based PM is then calculated based on a maximum score of 18 for each. Higher 

scores represent superior performance on each of these PM measures.  

 

The Karolinska fatigue PM task (Hadjiefthyvoulou et al., 2011a) 

The Karolinska fatigue PM Task is a medium-term measure of time-based PM. Upon 

entering the laboratory, participants are asked indicate their current level of fatigue on the 

“Karolinska Sleepiness Scale” (see Gillberg et al., 1994). Participants are asked to provide an 

indication of their fatigue every 20-minutes, up until the end of the test-session. Participants 

receive two scores as percentages based on the number of times that they remember to 

complete the scale during the first and second halves of the test-session. Participants who 

forget to complete a questionnaire receive a prompt from the experimenter. 

 

The Fruit Prospective Memory Task (Cuttler et al., 2011) 

Participants are instructed that they will see pictures of fruit at some time during the test-

session. Upon presentation of the fruit, participants are required to stop what they are doing 

and press the “p” key on a computer keyboard.  A total of four pictures are presented during 
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the test-session and participants receive one point for each correct prospective response that 

is made.  

 

The JAAM assessment (Jansari, Agnew, Akesson & Murphy, 2004) 

The JAAM assessment is a virtual reality assessment whereby participants take the role of 

someone working in an office environment helping to set up a meeting.  Participants are 

given a scenario to read which describes the virtual environment and their role for the task. 

Participants are instructed and shown how to navigate around the virtual environment.  

Participants are provided with a list of tasks that need to be completed for their “office 

manager” (e.g., arranging for items of post to be collected, setting up tables and chairs for a 

meeting, turning on the coffee machine when the first person arrives for the meeting). Further 

to the tasks that participants are aware of at the beginning of the task, they are also given a 

number of memos during the experiment which require them to perform additional tasks or 

amend a current task.  

   

  The JAAM assessment consists of eight subscales: The Planning subscale requires 

participants to order items in a logical manner rather than their perceived importance. As 

such, participants have to identify the tasks that should logically be carried out first. The 

Prioritisation subscale requires participants to order items according to their relative 

importance. This requires participants to order the most important items first and the less 

important items last. The Selection subscale requires participants to choose between two or 

more tasks by deciding which of the tasks is most important. For example, the participant has 

a number of items of post that need to be sent to different locations and with differing levels 

of urgency.  Participants must therefore select the appropriate postal service to collect the 

letters and parcels based on their relative urgencies and locations. The Creative Thinking 

subscale requires participants to solve a number of problems. Participants must find their own 

solutions to the problems. In one case, participants are required to find a way to cover up 

some graffiti which has been written in permanent ink.  The Adaptive thinking subscale tests 

participant’s ability to put forward suitable solutions to new problems as they arise.   

   

 The three remaining subscales measure PM. The Action-based prospective memory subscale 

requires participants to execute a task/action cued by a stimulus in the task they are already 

engaged with. For example, when participants receive a message about new items of post that 
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need to be sent, they must update the post diary accordingly. In the Event-based prospective 

memory subscale, participants must remember to execute an event-based PM task. For 

example, participants are asked to note the specific time of the fire alarms on their notes for 

the manager.  In the Time-based prospective memory subscale, participants must remember to 

perform a time-based PM task. For example, participants are asked to turn on the overhead 

projector 10 min before the start of the meeting. Participants are given a rating of 0 (no 

attempt made), 1 (satisfactory performance) or 2 (perfect performance) for each subscale of 

each construct. Participants are given a total score as a percentage by summing the raw scores 

for each subscale, dividing by the total possible score and multiplying by 100. 

 

The long-term delayed recall task (Hadjiefthyvoulou et al., 2011a) 

This task is based on a paradigm developed by Einstein et al. (1995) and Mathias and 

Mansfield (2005). The Rey Auditory Verbal Learning Task (RAVLT) is amended to provide 

a long-term measure of PM. The RAVLT consists of two lists of 15 words that the researcher 

reads to each participant. For 5 consecutive trials, the researcher reads the list to the 

participant who is then asked to recall as many words as possible. Following the fifth trial, 

the researcher reads a separate list of 15 words to the participant. This is called the 

interference trial. Upon completing the interference trial, the participant is asked to write 

down as many words from the first word list without hearing the list again. Twenty-minutes 

later, the participant is asked to write down as many words from the first list as possible. This 

is the seventh trial. The prospective component of this task involves the participant being 

asked to write down as many words as they can recall from the first list, one, two, and three 

weeks after the time of testing. Each time, the participant is asked to date their response sheet 

and to return it to the experimenter in an envelope provided for them. Participants receive a 

score out of three based on the number of delayed recall test sheets returned. Higher scores 

are indicative of better PM performance. 

 

The Memory for Intentions Screening Test (Raskin, Buckheit, & Sherrod, 2010) 

The Memory for Intentions Screening Test is a 30-minute laboratory-based measure of PM 

which is compromised of four, two-minute trials (e.g., “When I hand you a request for 

records form, write your doctors’ names on it”) and four 15-minute trials (e.g., “In 15 

minutes, use that paper to write the number of medications you are currently taking”) during 

which the participant is engaged in an ongoing distractor task (i.e., a standardised word 
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search). Both sets of trials (two-minute and 15-minute trials) are balanced on time- and event-

based cues and all cues are non-focal. Responses are scored on a scale of 0–2 for each item, 

such that scores for the two-minute and 15-minute trials range from 0–8. Higher scores are 

indicative of better PM performance 

 

The F1 event-based PM task (Hadjiefthyvoulou et al., 2011a) 

The F1 event-based PM task is based on Fisk and Warr’s (1996) processing speed task. 

However, recent amendments have included the addition of an event-based measure of PM. 

Firstly participants are presented with two patterns; one located at the top; and one located at 

the bottom of a computer screen. The participant is then required to indicate whether they 

believe the two patterns are the same or different. The “same” responses are programmed to 

the “/” key on a keyboard and the “different” responses are programmed to the “z” key on a 

keyboard.   

In an event-based PM component, participants are also required to press the “F1” key 

following the presentation of the words “Please wait a moment” in the top left hand corner of 

the computer screen. Participants are informed that this will store their responses in the 

memory of the computer. In the event that a participant does not press “F1”, their scores are 

reported as “errors”. In total, this task is completed three times, in each case at three levels of 

complexity, and a final event-based PM score is calculated based upon the number of times 

that a participant forgets to press the “F1” key. 

 

The Real World Prospective Memory Task  (Heffernan, O’Neill & Moss, 2012)  

The Real World PM Task is a measure of objective everyday PM. Participants are presented 

with a list of 15 specific locations around a university campus (e.g., “when you reach the 

Students Union”), accompanied by a list of associated actions (e.g., “Ask if there is a job 

available”). The participant is given 1.5 min to memorise the list before receiving a short tour 

of the university. Participants are required to verbally recall both the location and the 

associated action, but only when they reached a location that was on the original list. The 

order of the location-action pairings on the tour are different to the order of the location-

action pairings on the original list.  

 

A number of non-target locations that are not included on the original list are also included 

which act as non-target distracter locations (e.g., passing a coffee shop on campus). 
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Interruptions are included whereby the participant engages in a conversation with the 

researcher about everyday university life. One point is given for each location–action 

combination correctly recalled. Scores range from 0 to 15 with the higher score indicating 

better PM performance. 

 

 

The Rivermead Behavioural Memory Test- Extended Version (RBMT; Wilson et al., 1985) 

The RBMT consists of 8 subtasks relating to aspects of everyday memory functioning. The 

PM components of the RBMT consist of three subtasks. The Belonging subtask provides a 

measure of event-based PM. At the start of the test-session, the experimenter hides an object 

(e.g. a pen) in a specific location (e.g. on a shelf). The participant is required to remind the 

experimenter of the object and its location at the end of the test-session. A maximum score of 

two is awarded if the object and its location are correctly recalled. A score of one is awarded 

if the object and its location are correctly recalled after the receipt of a prompt. A score of 

zero is awarded if the object and its location are not recalled. 

  

  The Appointment subtask provides a measure of time-based PM. An alarm is set for a 

period of 20-minutes. The participant is required to ask a predefined question at the end of 

the 20-minute period. A score of two is awarded if the question is recalled without the receipt 

of a prompt. A score of one is awarded if the question is asked following the receipt of a 

prompt. A score of zero is awarded if the participant does not recall the question.  

 

The message subtask provides a measure of event-based PM. The experimenter demonstrates 

a Route, consisting of five sections, to the participant depositing a message at a specific 

location on the way. Participants are required to replicate the Route whilst depositing the 

message at the correct location. This task is completed immediately after the initial 

observation and after a delay. A maximum score of three is awarded if no errors are made 

during the two attempts. Scores then gradually decrease according to the total number of 

errors made during both attempts. The minimum score for this task is zero.  

 

The Reminder Prospective Memory Task (Cuttler & Graf, 2009)  

Participants are asked to give the experimenter a reminder once they have completed a 

number of cognitive tasks. Participants are provided with details relating to the final 
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cognitive task that they will complete. However, motivation to carry out the PM intention is 

manipulated in two conditions; high motivation and low motivation. In a high motivation 

condition, participants are asked to remind the experimenter to award them with their 

participant research credits. In a low motivation condition, participants are asked to remind 

the experimenter to email their supervisor. Two points are awarded if participants give the 

reminder at the correct time. One point is awarded if participants give the reminder at the 

incorrect time. No points are awarded if participants fail to give the reminder.  

 

The Video-based prospective memory task (Bartholomew, Holroyd & Heffernan, 2010) 

The video-based PM task is based on a modified version of a paradigm developed by Titov 

and Knight (2001). Participants are presented with a list of 17 specific locations (e.g., “at 

HMV”) and associated actions. Participants are required to carry out a task (e.g., “buy a CD”) 

or answer a question about something at the location (e.g., “what colour is that stall’s 

canopy?”) upon presentation of location cues. During the task itself, participants are 

presented with a 10-minute video depicting a shopping area. Shop fronts and passers-by 

provide location cues where participants should then recall location–action combinations. 

Participants are given a total score between 0 and 17 depending on the number of location-

action pairings correctly recalled. One point is awarded for every location–action 

combination correctly recalled. Participants receive no points if only one member of the pair 

is correctly identified. 

 

The Virtual Week task (Rendell & Craik, 2000) 

The Virtual Week is a laboratory based task that aims to capture features of real-life PM tasks 

by including recurring PM tasks, non-recurring PM tasks, event-based PM tasks and time-

based PM tasks. The Virtual Week itself is a board game where players move around a board 

via the roll of a dice. Several times of day where people are most likely to be awake are listed 

at various points around the board. Each circuit of the board that a player completes 

constitutes one “day” in the game. Each “day” contains 10 PM tasks; 4 “regular” PM tasks; 4 

“irregular” PM tasks; and 2 time-checks.  

 

The regular tasks are made up of two event-based PM tasks where participants are instructed 

to take some antibiotics with breakfast and dinner, and two time-based PM tasks where 
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participants are required to take asthma medication at 11 a.m and 9 p.m. In the two time-

check tasks, a stop-clock is started at the beginning of each circuit of the board and  

participants are required to complete two lung tests, at 2-minutes 30 seconds and at 4-minutes 

and 15 seconds. Importantly, these times are different to the times which are listed on the 

board.  The two time-check tasks serve to provide a “breaking set” from the board game 

activity. Players must move around the board seven times to complete the “Virtual Week” 

(see Rendell et al., 2007). 

 

5.4 Chapter summary 

The PMQ and The PRMQ are two self-report measures which have been used to investigate 

the effects of illicit drugs on PM (see Cuttler et al., 2012; Fisk & Montgomery, 2008; 

Heffernan, Clark, Bartholomew & Stephens, 2010a). However, the validity of each of these 

measures is questionable (PMQ; Hannon et al., 1995; Uttl & Kibreab, 2011; PRMQ; Kliegel 

& Jäger, 2006; Mäntylä, 2003; Uttl & Kibreab, 2011) and this has given rise to the increased 

use of laboratory-based measures in many studies. Laboratory-based measures provide 

researchers with a more objective way of investigating PM deficits across samples. The 

Virtual Week task (Rendell & Craik, 2000), the F1 event-based PM task (Hadjiefthyvoulou et 

al., 2011a), the long-term delayed recall PM task (Hadjiefthyvoulou et al., 2011a), the fatigue 

PM task (Hadjiefthyvoulou et al., 2011a) and the CAMPROMPT (Wilson et al., 2005) are 

among the laboratory-based PM measures commonly used in drug-related research. This 

literature is discussed at length in Chapter 6.  
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Chapter 6: The effects of licit and illicit drugs on prospective memory 

Chapter overview 

The present Chapter outlines the literature which has investigated the effects of licit and 

illicit drugs on PM. PM deficits in cannabis, ecstasy, cocaine, tobacco and alcohol users are 

examined. The extent to which drug users exhibit deficits in event- and or time-based PM are 

discussed. For the purpose of the empirical work in this thesis, particular attention is given 

to the effects of ecstasy/polydrug use on PM.    

 

6.1 Prospective memory deficits in cannabis users 

Findings from studies investigating the self-reported PM problems in cannabis users have 

been inconsistent with some studies showing a significant correlation between cannabis use 

and PM deficits (Cuttler et al., 2012; Fisk & Montgomery, 2008; Rodgers et al., 2001; 

Montgomery & Fisk, 2007) and other studies failing to demonstrate this effect (Bartholomew 

et al., 2010; Rodgers et al., 2003).  

 

Some studies have shown cannabis-related impairments on specific subscales of the 

PMQ (episodic and internally cued PM, Cuttler et al., 2012, Study 1; short-term and 

internally-cued PM, Rodgers et al., 2001) while other studies demonstrate clear cannabis-

related impairments on all subscales of this measure (short-term habitual; long-term episodic; 

and internally cued PM; Fisk and Montgomery, 2008). Further inconsistencies are found in 

recent data which has shown no significant differences between cannabis users and non-users 

on any of the PM subscales of the PMQ (Bartholomew et al., 2010). However, the somewhat 

equivocal findings are accompanied by a large variance in the ages of cannabis users across 

studies. For example, the sample of cannabis users in Bartholomew and colleague’s (2010) 

study were younger (median=19) than cannabis users in Cuttler et al’s (2012; mean=20.75) 

Fisk and Montgomery’s (2008; mean=21) and Rodgers et al’s (2001; modal age group=21-

25) research. Thus, relative to the cannabis users in Bartholomew and colleague’s (2010) 

study , it is possible that the cannabis users in the latter three studies had been using cannabis 

for an extended period of time. Ultimately, this may reflect a higher total lifetime exposure to 

cannabis, perhaps explaining why increased cannabis-related deficits in PM have been 

observed in cannabis users in some studies (Fisk & Montgomery, 2008; Rodgers et al., 2001). 
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  Laboratory-based measures of PM have highlighted PM deficits in cannabis users. 

However, findings in the literature have, once again been inconclusive with some studies 

showing clear cannabis-related PM deficits on objective PM measures (Hadjiefthyvoulou et 

al., 2011a; Hadjiefthyvoulou et al., 2011b; McHale & Hunt, 2008) and others showing no 

evidence of an impairment (Cuttler et al., 2012; Study 2). In one study, McHale and Hunt 

(2008) used the RBMT and found significant short-term and long-term time-based PM 

impairment in chronic cannabis users. In contrast, there was no evidence of event-based PM 

deficits in chronic cannabis users (Message Subset). This finding is not consistent with 

Hadjiefthyvoulou et al. (2011a) who also used the RBMT and found that frequency of 

cannabis use was associated with unique variance on both, the event-based, Message subset 

of the RBMT and the time-based, long-term recall PM task among ecstasy/polydrug users. 

Specifically, increased frequency of cannabis use was associated with poorer performance on 

both PM measures.  

   

  In another study from the same laboratory, Hadjiefthyvoulou and colleagues (2011b) 

used the CAMPROMPT to investigate drug-related deficits in PM. One advantage of the 

CAMPROMPT over other laboratory-based measures of PM is that it is more sensitive to 

individual differences in both clinical and normal populations (Hadjiefthyvoulou et al., 

2011b). Overall, there were no differences between cannabis-only users and non-illicit drug 

users on event- and time-based PM subtasks of the CAMPROMPT (Hadjiefthyvoulou et al., 

2011b). However, increased levels of cannabis consumption in the 30 days leading up to the 

test-session and increased frequency of cannabis use were associated with inferior 

performance on event-based PM tasks in ecstasy/polydrug users.  

  

  A more recent study that used three self-report PM measures (PMQ, PRMQ, 

TCPMQ) and three objective PM measures (Fruit PM test, Reminder PM test, Call-in PM 

test) failed to find clear cannabis-related impairments in PM (Cuttler et al., 2012; Study 2). 

For example, chronic cannabis users (people who has used cannabis three times a week for a 

year or more) only reported significantly more PM failures compared to experimental 

cannabis users (people who had used cannabis five or fewer times in their lifetime) and non-

drug users on one subscale of the PMQ (internally cued PM). Furthermore, this impairment 

dropped to below statistical significance after controlling for RM processes. In addition, 

chronic cannabis users showed no impairment on any of the objective PM measures 

compared to experimental cannabis users and nonusers. These findings do not support 
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previous research which has demonstrated cannabis-related impairment on laboratory-based 

measures of PM (McHale & Hunt, 2008; Hadjiefthyvoulou et al., 2011a; Hadjiefthyvoulou et 

al., 2011b). One possible reason for this difference may concern the laboratory-based PM 

tasks that were used in Cutller et al’s (2012) study. Cuttler and colleagues (2012) 

acknowledge that their laboratory-based PM measures lack sensitivity in detecting problems 

in PM. This is because none of the three laboratory-based measures that were used contain a 

large number of PM trails. Thus, detecting any PM problems which may have been evident 

among the chronic cannabis users or the experimental cannabis users was difficult. It is also 

interesting to note that subjective PM performance was mediated by RM processes (Cuttler et 

al., 2012; Study 1 and Study 2). Cuttler et al. (2012) note they deliberately used laboratory-

based PM measures which placed minimal demands on RM. If PM performance is in fact 

underpinned by RM, it is not surprising that the authors failed to detect cannabis-related 

deficits on the laboratory-based measures.  

 

 A number of self-report (Cuttler et al., 2012; Fisk & Montgomery, 2008; Rodgers et al., 

2001; Montgomery & Fisk, 2007) and laboratory-based measures (McHale & Hunt, 2008; 

Hadjiefthyvoulou et al., 2011a; Hadjiefthyvoulou et al., 2011b) have demonstrated PM 

impairment in cannabis users.  Total cannabis consumption and frequency of cannabis use 

may mediate the extent to which cannabis users display PM deficits. This appears to be 

especially true for ecstasy/polydrug users (Hadjiefthyvoulou et al., 2011a; 2011b).  
 

6.2 Prospective memory deficits in ecstasy users 

In one of the primary investigations of the effects of ecstasy use on self-perceived PM 

deficits, Heffernan, Ling and Scholey (2001a) found increased reports of PM errors in ecstasy 

users compared to non-users. While these self-reported deficits were consistent across the 

three PM subscales measured by the PMQ (short-term habitual PM; long-term episodic PM; 

internally cued PM), ecstasy users and non-users did not differ significantly in terms of the 

strategies used to aid PM remembering. Importantly, these group differences were still 

evident even after controlling for covariates such as other drug use. Although these findings 

were supported in a second paper (Heffernan, Jarvis, Rodgers, Scholey & Ling, 2001b), more 

recent research has not been consistent (Montgomery & Fisk, 2007).  Montgomery and Fisk 

(2007) found cannabis use to be a significant predictor of PM errors in ecstasy users on the 

short-term habitual, long-term episodic and internally cued PM subscales of the PMQ. 
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However, the increased reports of lifetime cannabis use reported in this study (Montgomery 

& Fisk, 2007) compared to previous investigations (Heffernan et al., 2001a; 2001b) may 

explain the different findings. 

  The laboratory-based PM data is generally consistent with self-report data in showing 

clear ecstasy-related impairments in PM. In one of the first investigations to administer a 

laboratory-based measure of PM to illicit drug users, Rendell et al. (2007) found evidence of 

PM impairment in both “frequent” and “infrequent” ecstasy users on The “Virtual Week” 

task. In stark contrast to cannabis users (McHale and Hunt, 2008), both “frequent” and 

“infrequent” ecstasy users displayed deficits in both event- and time-based PM. Nevertheless, 

event- and time-based PM deficits were attenuated among “infrequent” ecstasy users 

(Rendell et al., 2007) suggesting that there may be a lifetime dose-related effect of ecstasy 

use on PM impairment. Interestingly, former users of ecstasy also exhibit event- and time-

based impairments in PM on the “Virtual Week” task highlighting the potential long-term 

deficits resulting from MDMA exposure (Rendell, Mazur & Henry, 2009). Despite these 

findings, the use of The “Virtual Week” task as an objective PM measure has been criticised 

on several grounds. Hadjiefthyvoulou and colleagues (2011a) argue that successful 

performance on The “Virtual Week” task is highly dependent on components of associative 

learning. For example, prior to the completion of the PM task components, participants must 

ensure that they are aware of specific responses/behaviours that are paired to different 

locations on the board. Given that ecstasy users display impairments in paired associative 

learning (Gallagher et al., 2012; Montgomery et al., 2005), it is possible that poor PM 

performance observed on The “Virtual Week” task reflects a deficit in associative learning 

rather than PM itself.   

  In light of the potential limitations of The “Virtual Week” paradigm, a number of 

studies have used alternative measures of PM. Zakzanis, Young and Campbell (2003) used 

the RBMT and found that abstinent ecstasy users made significantly more PM errors than 

non-users on both event- (Message) and time-based (Appointment) subsets of the measure. 

These findings have not been supported by more recent research which has used the RBMT 

(Hadjiefthvouolou et al., 2011a). Hadjiefthyvoulou and colleagues found that ecstasy users 

performed similarly to non users on the time-based Appointment and event-based Message 

subsets of the RBMT but significantly worse than non users on the time-based Belonging 

subset.  
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Other event-and time-based measures of PM that were used in Hadjiefthyvoulou et 

al’s (2011a) investigation included The F1 event-based PM task, The long-term recall PM 

test and the Karolinska fatigue PM task. In terms of event-based PM performance, ecstasy 

users exhibited more problems than non-users in remembering to press “F1” during the F1 

event-based PM task. Ecstasy/polydrug users were two to three times more likely than non-

users to forget to press “F1” on the F1 event-based PM task.   

In relation to short-term time-based PM performance, ecstasy/polydrug users had 

particular difficulty in completing the Karolinska fatigue PM task, especially during the final 

half of the experiment. Ecstasy/polydrug users only remembered to complete 51% of the 

fatigue questionnaires that were completed by non-users. With regard to more long-term 

time-based performance, non-users posted back significantly more delayed recall response 

sheets than ecstasy users during the 3 week period that followed the initial test-session (long-

term delayed recall PM task). Importantly, the evidence from this study is indicative of 

ecstasy-related impairments on event-based PM tasks as well as short-term and more long-

term measures of time-based PM. Findings from this study suggest that ecstasy use induces a 

globalised deficit in PM. Importantly, the observed group effects remained statistically 

significant after controlling for several covariates including frequency of cannabis use, total 

lifetime cannabis use, and current alcohol and tobacco intake. Further analyses of RM and 

executive functioning (EF) suggested that ecstasy/polydrug-related deficits in PM were not 

attributable to group differences in these memory processes. These findings increase the 

likelihood that the PM deficits found among ecstasy/polydrug users can be attributed to the 

use of ecstasy rather than the use of other illicit drug use or deficits in other aspects of 

memory.  

A further study by Hadjiefthyvoulou and colleagues (2011b) used the sensitive 

CAMPROMPT measure to investigate differences in PM functioning between 

ecstasy/polydrug users, cannabis only users and non-illicit drug users. Measures of RM and 

EF were included to establish whether any observed ecstasy/polydrug-related impairments in 

PM were attributable to group differences in these processes. Findings showed that ecstasy 

users performed significantly worse than both cannabis only users and non illicit drug users 

on event-based subtasks of the CAMPROMPT. Ecstasy users were also significantly 

impaired on the time-based subtasks on the CAMPROMPT compared to non illicit drug 

users. Although better RM and EF performance was associated with improved PM 
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performance, this trend only approached statistical significance and did not underpin the PM 

impairments that were observed.   

While Hadjiefthyvoulou and colleagues (2011a; 2011b) found substantial evidence 

for a globalised PM deficit among ecstasy/polydrug users, evidence from other studies are 

inconsistent. Weinborn, Woods, Nulsen and Park (2011) used the Memory for Intention 

Screening Test and found that ecstasy users were significantly impaired on long-term PM 

tasks (15-minute delay intervals) compared to high-risk alcohol users and non illicit drug 

users.  This effect was particularly apparent for time-based PM tasks. No group differences 

were found for short-term PM tasks (2-minute delay intervals). RM and executive functions 

were not associated with long-term PM performance in ecstasy users confirming findings 

from previous research (Hadjiefthyvoulou et al., 2011a; 2011b). Long-term PM impairment 

in ecstasy users was attributed to risky decision making behaviour. From a multiprocess 

perspective (McDaniel & Einstein, 2000), it is feasible that ecstasy users have particular 

difficulty in strategic target monitoring over longer delay periods and that this deficit is 

accentuated in time-based PM tasks. In other words, ecstasy users may be less able to 

maintain cue-action pairings over longer delay periods compared to non illicit drug users.  

The absence of short-term PM deficits in ecstasy users in this study might be explained by 

the low levels of lifetime ecstasy use. For example, the ecstasy users sampled in Weinborn et 

al’s (2011) investigation had a relatively low level of lifetime consumption (mean=56.5 

tablets) compared to other studies where short-term PM deficits have been found 

(Hadjiefthyvoulou et al., 2011a, mean=668.90; Hadjiefthyvoulou et al., 2011b, 

mean=640.90). This is crucial considering that there is an association between lifetime 

ecstasy use and cognitive performance (Bedi & Redman, 2008).  

  

6.3 Prospective memory deficits in cocaine users  

Until recently, there has been a lack of evidence to suggest that cocaine use has detrimental 

effects to PM performance. However, two recent studies have found a relationship between 

cocaine use and PM (Hadjiefthyvoulou et al., 2011a; 2011b). In one study, Hadjiefthyvoulou 

et al. (2011a) found that lifetime cocaine use correlated with performance on the Appointment 

and Belonging subscales of the RBMT, the Karolinska fatigue PM task and the long-term 

delayed recall PM task in a group of ecstasy/polydrug users. Performance on these PM 

measures decreased as lifetime use of cocaine increased. Frequency of cocaine use was also 
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associated with performance on the Appointment and Belonging subscales of the RBMT task, 

the Karolinska fatigue PM task, the F1 event-based PM task and the long-term delayed recall 

PM task. Increased frequency of cocaine use was associated with worse performance in all 

cases. Although the polydrug user group was primarily identified by ecstasy use, cocaine use 

was clearly implicated in the event-and time-based PM deficits that were found. These 

findings were confirmed in another study from the same laboratory which found a clear 

relationship between cocaine use and event-based PM performance on the CAMPROMPT 

(Hadjiefthyvoulou et al., 2011b).  Specifically, increased lifetime dose, greater consumption 

in the last 30 days and increased frequency of use were all associated with poorer event-based 

PM performance on the CAMPROMPT. 

 

  Hadjiefthvouolou et al. (2011b) propose that PM deficits in cocaine users may stem 

from disruptions within the dopaminergic system. For example, exposure to cocaine has been 

linked to dysfunction of the dopaminegic system in PM-related brain regions such as the 

prefrontal cortex (Tomasi et al., 2007). Furthermore, the specific dopaminergic systems 

which are suggested to be affected by cocaine use play an important role in EF processes. 

This is significant given the potential role of EF in PM processes (Kopp & Thöne-Otto, 

2003; Heffernan & Bellis, 2012; Martin et al., 2003). Thus, abnormalities within the 

dopaminergic systems involved in executive functions may explain the negative association 

between cocaine use and PM functioning. 

   

  PM deficits that have been observed in Parkinson’s patients (Kliegel et al., 2005) are 

also significant given that the disease is associated with impairment to dopaminergic 

functioning in the corticostriatal pathway (Hadjiefthyvoulou et al., 2011b). The mesocortical 

dopaminergic system has an important function in PM processes (Goto & Grace, 2008) and 

in line with this association, administration of L-dopa improves PM performance in 

Parkinson’s patients (Costa et al., 2008). Thus, abnormalities which have been found in the 

dopaminergic system of cocaine users (Ziegler, Lipton, Toga & Ellison, 1991; Tomasi et al., 

2007) may be at the heart of cocaine-related impairments in PM. 

 

Alternatively, cocaine-related deficits in PM may stem from medial temporal (Matochik et 

al., 2003; Sim et al., 2007) and hippocampal impairments (Tomasi et al., 2007; Zeigler et al., 

1991). This proposal is consistent with findings which have found cocaine-related 

impairment on the RAVLT (Fox, Jackson & Sinha, 2009). Cocaine users recalled fewer 



 96 

correct responses on the RAVLT compared to controls.  Cocaine-related deficits on the 

RAVLT were related to self-reported stress levels and elevated early morning cortisol levels. 

Importantly, stress-related increases in cortisol levels and the associated cognitive 

impairments were attributed to hippocampal damage resulting from cocaine use. Thus, it is 

feasible that the recall aspect of PM performance may be particularly susceptible to the 

effects of cocaine use. This might explain the association between cocaine use and PM found 

by Hadjiefthyvoulou et al. (2011a; 2011b). 

 

 

6.4 Prospective memory deficits in tobacco and alcohol users 

Only a handful of studies have focused on the impact of persistent tobacco smoking on PM. 

After controlling for other drug use, Heffernan et al. (2005) found that regular tobacco 

smokers reported significantly more everyday PM lapses on the PMQ compared to people 

who had never smoked. A later study by Heffernan, O’Neill and Moss (2010b) aimed to 

further investigate PM deficits in tobacco smokers by using an alternative self-report measure 

of PM (PRMQ) and a laboratory-based measure of PM (CAMPROMPT). No difference was 

found on the PRMQ between existing smokers and people who had never smoked. This 

finding is not consistent with previous research which used the PMQ (Heffernan et al., 2005) 

Differences in the sample size (40; Heffernan et al., 2005 and 763; Heffernan et al., 2010b) 

across these studies may explain the difference in the findings. For example, it is feasible that 

the Heffernan et al. (2010b) study did not have sufficient power to identify different 

characteristics by small effect sizes. A subsequent study from the same laboratory (Heffernan 

& O’Neill, 2011) aimed to investigate the extent to which different subgroups of tobacco 

smokers (regular smokers vs. social smokers) differ in their PM abilities. In doing so, the 

authors were able to test to see whether there is a dose-response relationship between 

smoking and PM. Twenty-eight regular smokers (daily), 28 social smokers (weekend) and 28 

non-smokers were compared on The Video-based PM task (see Bartholomew et al., 2010). 

Non smokers performed significantly better than regular smokers and social smokers on the 

objective PM task while no differences were observed between regular smokers and social 

smokers. These findings indicate that tobacco smokers are impaired on objective PM tasks 

but this effect is relatively independent of smoking patterns. Heffernan and O’Neill (2011) 

concluded that tobacco smoking does impair PM performance but not in a dose-dependent 

fashion.  
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  Most recently, Heffernan et al. (2012) investigated smoking-related PM impairments 

in a sample of current smokers (n=27), previous smokers (n=18) and people who had never 

smoked (n=24) using The Real-World PM task. The use of The Real-World PM Task and the 

inclusion of a sample of previous smokers allowed the authors to determine whether 

objective PM deficits in tobacco smokers extend to the real world and if this deficit continues 

once a person stops smoking. Findings showed that existing smokers were significantly 

impaired in The Real-World PM Task compared to both previous smokers and non smokers. 

This finding might be indicative of possible PM improvement once a person has stopped 

smoking. However, before making definitive conclusions regarding these findings, the 

authors acknowledge the importance of using longitudinal designs which study PM in cohorts 

of people who move from a period of tobacco smoking to a period of abstinence.  

  

  Findings which have shown clear PM-related deficits in tobacco smokers (Heffernan 

et al., 2005, 2010b, 2011; 2012) are indicative of damage to mechanisms known to influence 

PM. For example, PM is highly dependent on the functioning of the prefrontal cortex 

(Burgess et al., 2003; Simons et al., 2006) and the hippocampus (Kliegel et al., 2008; Martin 

et al., 2007; Okuda et al., 1998) and thus, it is interesting to note that chronic smoking has 

been associated with cerebral degeneration (Nooyens, van Gelder & Verschuren. 2008; Sabia 

Marmot, Dufouil & Singh-Manoux, 2008). It is plausible to suggest that that persistent 

smoking may cause damage to the structure or functioning of PM-related brain regions which 

in turn hinder PM functioning (see Heffernan et al., 2012).   

   

  As with tobacco use, heavy alcohol consumption has been linked to PM impairment. 

In a study which investigated subjective ratings of PM deficits using the PMQ, chronic 

alcohol users (i.e., participants who had consumed above the recommended weekly number 

of units (twenty-eight units for males and 21 units for females) for a period of five years or 

more) reported significantly more difficulties in their PM abilities (long-term episodic PM, 

short-term habitual PM and internally cued PM) compared to low dose/alcohol free 

participants (i.e., participants who had consumed less than the recommended weekly number 

of units for a period of five years or more; Heffernan, Moss & Ling, 2002).  

   

  Further studies which have focused on samples of teenage cohorts indicate that 

excessive drinking among teenagers is associated with self-reported short- and long-term 

everyday lapses (Heffernan et al., 2006). Importantly, these studies controlled for the use of 
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other drugs known to affect PM performance (i.e., cannabis and ecstasy). In furthering the 

understanding of PM deficits in teenage drinkers, Heffernan et al. (2010a) found that teenage 

binge drinkers (i.e., participants who drank above eight units for males and six units for 

females on two or more occasions per week) and non-binge drinkers (average alcohol 

consumption=4.08 units per week) reported similar levels of PM lapses on the PRMQ. 

However, teenage binge drinkers performed significantly worse than non-binge drinkers on a 

laboratory based PM measure. After controlling for tobacco, cannabis and ecstasy use, 

teenage binge drinkers recalled significantly fewer location-action pairings compared to non-

binge drinkers on a video-based PM task (see Chapter 5.2). Thus, while binge drinkers did 

not perceive themselves to have PM deficits they did display clear impairments on an 

objective measure of PM. These findings indicate that PM impairment in teenage drinkers 

may relate to specific drinking patterns. 

  

  More recent research has further highlighted the problematic effect of alcohol on 

prospective remembering. Griffiths et al. (2012) used the “Virtual Week” task to investigate 

objective PM performance in alcohol dependent persons. Twenty-four abstinent individuals 

with alcohol dependence and 24 social drinkers were matched on age, gender and years of 

education and performance was compared on the “Virtual Week” task. Alcohol dependent 

participants demonstrated significantly poorer event-based PM performance compared to 

social drinkers. Impairments were linked to ineffective application of strategies to aid the 

detection of PM cues.  

  

  Time-based PM impairments have also been found in binge drinkers. Heffernan and 

O’Neill (2012) compared self-reported PM performance (PRMQ) and objective PM 

performance (CAMPROMPT) in young adult binge drinkers and non-binge drinkers. No 

differences were found in the self-reported PM performance between the groups. However, 

young adult binge drinkers performed significantly worse than non-binge drinkers on time-

based PM subtasks of the PMQ. 

 

While PM deficits have been found in young adult binge drinkers and in individuals 

with alcohol dependence, research has investigated whether the implementation of PM 

strategies may enhance prospective remembering in these cohorts. For example, the use of 

imagery during encoding has been shown to overcome PM deficits that are commonly found 

after acute alcohol administration (Paraskevaides et al., 2010). The authors suggest that 
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vividly imagining a future intention during encoding encourages explicit engagement in 

future event simulation. However, recent data from Griffiths et al. (2012) suggests the 

employment of imagery techniques during encoding does not improve PM performance in 

currently abstinent alcohol dependent participants. They explain that alcohol dependent 

participants do not differ from social drinkers in the range of imagery skills available to them 

but rather fail to use them strategically. For example, social drinkers may be better able to 

produce detailed future event simulations by adding additional information (i.e., a specific 

event or time) to an intention whilst they are engaged in imagining.  

 

Relatively little is understood about the mechanisms which might underpin PM impairments 

in heavy alcohol users. One proposal is that heavy alcohol use causes structural damage in 

the brain (Heffernan et al., 2010a). For example, excessive drinking at an early age may 

interfere with the structural development of the brain (Giedd, 2004; Gogtay et al., 2004). 

Medina et al. (2007) found aberrations in hippocampal asymmetry and left hippocampal 

volumes in adolescent heavy drinkers. This is pertinent in light of evidence that PM is 

dependent on hippocampal structures (Kliegel et al., 2008; Martin et al., 2007; Okuda et al., 

1998). In addition, excessive alcohol consumption damages cerebral white matter which is 

crucial in binding structures together in the brain, including in PM-related regions such as the 

frontal and limbic systems (Oscar-Berman & Marinkovic, 2007). An alternative hypothesis 

might be that excessive alcohol consumption leads to reduced or abnormal levels of 

neurotransmitters such as 5-HT which is known to be important for mnemonic processes 

(Hunter, 2000; Spoont, 1992).  

 

6.5 Chapter Summary 

This Chapter has reviewed a wide body of literature that has investigated drug-related deficits 

in PM. PM impairments have been found in both illicit (cannabis, ecstasy and cocaine users) 

and licit (cigarette smokers and alcohol users) substance users. The remaining Chapters of 

this thesis concentrate primarily on the effects of ecstasy use on PM performance. One key 

aspect of ecstasy-related deficits in PM which remains to be thoroughly explored is the extent 

to which the typical size of ecstasy dose per session might affect PM performance. The initial 

empirical work discussed in Chapter 7 investigates the extent to which long-term average 

dose per session (typical number of ecstasy tablets taken per session averaged over number of 

years where an individual used the drug) and average dose per session over the last 12 

months (typical number of ecstasy tablets taken per session averaged over the previous 12 
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months) affects PM performance. The empirical work discussed in Chapter 8 focuses on 

patterns of ecstasy use in the context of other drug consumption and explores the extent to 

which concurrent alcohol and ecstasy use may impair PM performance, respectively. Chapter 

10 investigates the extent to which executive functioning deficits might underpin PM 

impairments in ecstasy users. Chapter 11 uses correlational analyses to investigate the 

relationship between long- and short-term indices of drug use and PM performance in 

ecstasy/polydrug users (who are identified primarily by their ecstasy use). Partial correlations 

are then performed to examine significant relationships while controlling for short-term 

effects of drug use and factors of other drug use.  
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Chapter 7 The effects of both long- (Study 1) and short-term (Study 2) average dose 

of ecstasy per session on prospective memory performance 

 

Chapter 7 explores the effects of long- (Study 1; average typical dose of ecstasy per session 

averaged over the entire period of use) and short-term dose (Study 2; average typical dose of 

ecstasy per session over the previous 12 months) of ecstasy per session on Prospective 

Memory (PM) performance. Median splits were used to dichotomise long- and short-term 

dose of ecstasy use per session and in each case two ecstasy user groups (high dose and low 

dose) were created. A control group of non-ecstasy users were included in the analyses of 

Study 1 and Study 2. Groups were compared on a range of laboratory-based PM tasks 

including the F1 event-based PM task, the Karolinska fatigue PM task and the long-term 

delayed recall PM task. Specifically, Study 1 investigates the extent to which long-term 

average dose of ecstasy per session can predict PM performance. In contrast, Study 2 

explores the extent to which short-term average dose of ecstasy per session is associated with 

PM deficits. 

 

7.1 Introduction 

Previous studies have found clear evidence of prospective memory (PM) deficits in ecstasy 

users (Hadjiefthyvoulou et al., 2011a, 2011b; Heffernan et al., 2001a, 2001b; Montgomery & 

Fisk, 2007; Rendell et al., 2007; Rendell et al., 2009; Zakzanis et al., 2003; see Chapter 6, 

Section 6.2 for further detail in relation to these studies). However, much of this research has 

focused on traditional indices of ecstasy use such as total lifetime exposure, duration of use, 

or current frequency of use. The present studies (Study 1 and Study 2) investigate the effects 

of short- and long-term ecstasy dose per session on PM performance. Ecstasy dose is a 

particularly important topic of investigation in the context of memory and learning in general 

since the absence of any dose-related effects might indicate that observed deficits are not 

attributable to ecstasy use. Rather, studies that report ecstasy-group-related impairments in 

PM but show no evidence of dose-related effects may merely reflect some premorbid 

condition or lifestyle factors unrelated to drug use.  

 

  Previous studies that report ecstasy-group-related deficits in PM have a number of 

limitations. One key problem concerns the way in which dose-related effects are studied. A 
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number of self-report studies have used the Prospective Memory Questionnaire (PMQ: 

Hannon et al., 1995, see Chapter 5, Section 5.1) and found evidence of PM deficits in ecstasy 

users (Heffernan et al., 2001a; Heffernan, et al., 2001b; Parrott et al., 2006). Despite this, no 

clear dose-related effects of ecstasy use on PM were reported. For example, in Heffernan and 

colleagues’ (2001a) three-part study, ecstasy users reported significantly more short- and 

long-term PM errors on the PMQ. Although, this effect remained significant after controlling 

for other drug use, the authors did not directly explore the extent to which these effects were 

related to ecstasy use in a dose-related manner. Other research that has used the PMQ has 

assessed lifetime drug use categorically. That is, ecstasy users have been characterised 

according to their lifetime use based on the number of occasions that they have used ecstasy 

(0, 1-9, 10-99, 100+ occasions). Studies that have adopted this method have found that 

lifetime use was related to long-term self-reported PM problems on the PMQ (Rodgers et al., 

2001). It is important to note that estimations of total lifetime ecstasy use were based on the 

number of occasions of ecstasy use rather than the number of ecstasy tablets consumed. In 

addition, lifetime ecstasy use for each participant was set at a midpoint of the particular range 

that they selected. Calculating lifetime ecstasy use in this manner is problematic given that 

the data obtained will be imprecise. For example, participants who report to having used 

ecstasy 10 times will be allocated to the same categorical group as those participants who 

report having used ecstasy 99 times. Thus, there is a degree of inaccuracy in using this 

method due to the ordinal nature of the scale. Lack of precision is further highlighted in that 

using occasions of use as an indicator of ecstasy dose does not enable researchers to 

determine the number of ecstasy tablets that have been consumed. Clearly, there will be 

differences in the typical dose of ecstasy consumed per session between different ecstasy 

users. Studies which have estimated dose according to the typical number of ecstasy tablets 

previously consumed have found no association between typical number of ecstasy tablets 

used and outcomes on the PMQ (e.g., Bedi & Redman, 2008a; Montgomery & Fisk, 2007). 

 

 Drawing on laboratory-based measures of PM, Zakzanis et al. (2003) used the 

Rivermead Behavioural Memory Test (RBMT) and found that currently abstinent ecstasy 

users made significantly more errors than nonusers on event- and time-based subscales of this 

measure. Scores on the ‘appointment’ subscales were significantly associated with the 

number of occasions of ecstasy use as well as the frequency of ecstasy use. In another study 

which used the RBMT and a modified version of the 2-minute associative cue task used by 

Hannon, Adonis, Harrington, Fries-Dias & Gibson (1995; upon the completion of each page 
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in a self-report questionnaire, participants were instructed to draw a cross at the bottom of the 

page), Bedi and Redman (2008b) found that ecstasy/polydrug group differences were either 

absent or inconclusive. In addition, dose-related effects were not reported. Rendell et al. 

(2007) used the Virtual Week task (Rendell & Craik, 2000, see Chapter 5, Section 5.3) and 

found that frequent ecstasy users (who used ecstasy more than once a fortnight) performed 

worse than infrequent users (using less than one a month) who in turn performed worse than 

non-ecstasy users on all PM subscales of this measure. More recently, Hadjiefthyvoulou et al. 

(2011a) used an extensive battery of laboratory-based PM measures and found that lifetime 

ecstasy use (estimated number of tablets) was significantly associated with event- and time-

based PM scores on the CAMPROMPT. In another study from the same laboratory, lifetime 

ecstasy use was significantly associated with poor performance on the RBMT, the F1 event-

based PM task and the delayed recall PM task (Hadjiefthyvoulou et al., 2011b). However, 

these effects were no longer significant following controls for other drug use indicating that 

the PM impairments observed were not attributable to lifetime ecstasy use. 

 In cases where dose-related effects are reported, they are often based on distinctions 

between broadly defined groups. Some studies compare ‘heavy’ versus ‘moderate’ users or 

‘frequent’ versus ‘infrequent’ users (e.g., Rendell et al., 2007). However the group criteria 

across different studies is variable and different cut off points are often adopted. In relation 

the literature surrounding ecstasy use and cognitive outcomes in general, Reneman et al. 

(2006) used a lifetime consumption cut off of 55 tablets to categorise “heavy” and 

“moderate” ecstasy use. In comparison, participants in Gouzoulis-Mayfrank et al’s (2003) 

study were considered to be “heavy” users if they had consumed more than 80 tablets and as 

“light” users if they had consumed less than 80 tablets in their lifetime. Other studies have set 

the cut off points at much higher levels of consumption. For example, Fisk and Montgomery 

(2009) set the dividing point at 1000 tablets. The use of varying cut off points in the literature 

makes it very difficult for researchers to reach definite conclusions when comparing the 

findings across studies.  

 

Other studies have focused on the typical dose of ecstasy per session. Morefield, 

Keane, Felgate, White, and Irvine’s (2011) natural observation explored the pharmacology of 

ecstasy use and focused on the relationship between the dose of ecstasy and MDMA plasma 

concentrations. Blood samples were taken from 56 ‘experienced’ ecstasy users prior to the 

use of ecstasy. Further blood samples were taken one hour after use and for each hour 

thereafter during a five-hour test period. Blood samples were used to determine the amount of 
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ecstasy in plasma. Findings showed large differences in the drug use patterns (typical number 

of ecstasy tablets consumed per session) between ecstasy users. The typical number of tablets 

consumed per session ranged from 0.5 tablets to five or more tablets. Larger doses of ecstasy 

were associated with a non-linear accumulation of MDMA in plasma. In individuals who 

consumed only one ecstasy tablet or less, MDMA plasma concentrations were shown to peak 

after a few hours after use. In comparison, an escalating pattern of MDMA plasma 

concentration change was found in those individuals who consumed a larger number of 

tablets. This change did not reach a plateau during the five hours of the study period. A 

positive association was found between the number of tablets consumed in the session and 

the hour at which the highest MDMA plasma concentration was recorded. These findings 

clearly demonstrate the importance of ecstasy dose per session. For example, the 

consumption of one ecstasy tablet often or several ecstasy tablets per session infrequently 

may give rise to similar rates of lifetime consumption. However, variations in ecstasy dose 

per session can have very different consequences on MDMA plasma concentrations. 

Increased MDMA plasma concentrations which result from the use of multiple ecstasy tablets 

per session is likely to lead to increased exposure of MDMA within the brain compared to 

what would be found in from smaller doses. As a result, Morefield and co-workers argue that 

emphasis should be placed on the size of the typical dose rather than other measures such as 

frequency of use and total lifetime dose.  

 

Evidence from neuroimaging studies further highlights the importance of the average 

dose of ecstasy per session. Thomasius et al. (2003) examined psychopathology, memory 

impairment and serotonergic alterations in 30 current ecstasy users, 31 ex-ecstasy users, 29 

polydrug users and 30 drug naïve controls. The three drug user groups all showed increased 

psychopathology relative to the drug naïve control group. Reduced distribution volume ratios 

(DVRs) of serotonin transporter sites were found in subcortical regions (mesencephalon & 

caudate nucleus) of current ecstasy users. Typical dose of ecstasy per session was the best 

predictor of psychopathology and serotonergic alterations. Similar findings were reported by 

Kish et al. (2010) who found that SERT (serotonin transporter) binding was significantly 

reduced in a number of brain regions including the frontal, temporal, parietal, occipital, 

cingulate and insular cortices as well as in the hippocampus in ecstasy users. These 

abnormalities were significantly associated with the number of years of ecstasy use and the 

reported maximum single dose of ecstasy.    
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The research evaluated above highlights the importance of using a method of calculating 

ecstasy dose that captures subtle differences between drug users. The studies reported in this 

Chapter (Study 1 and Study 2) used a timeline technique similar to that adopted by Medina, 

Shear and Corcoran (2005) and Bedi and Redman (2008b) to further investigate ecstasy dose-

related effects on PM performance. For each year that an individual has used ecstasy, they are 

asked to provide an estimate of typical dose per session and the frequency of use (number of 

times per week, month, etc). In addition, individuals are asked to provide estimates of typical 

dose per session and frequency of use for each month during the 12 months prior to the test-

session. These data can then be used to calculate long and short-term average dose of ecstasy 

per session. The aforementioned measures of dose have received little attention previously 

especially in relation to PM. A control group of non-ecstasy users were included in the 

analyses. Groups were compared on a range of demographical and background variables 

including age, intelligence, years of education, daytime sleepiness (Epworth Sleepiness 

Scale), gender, cigarette and alcohol consumption, arousal, anxiety and depression. Groups 

were also compared on several long- and short-term indices of drug use. A range of 

laboratory-based PM tasks were administered throughout the test-session including the F1 

event-based PM task (Hadjiefthyvoulou et al., 2011a), the long-term delayed recall PM task 

(Hadjiefthyvoulou et al., 2011a) and the Karolinska fatigue PM task (Hadjiefthyvoulou et al., 

2011a; see Chapter 5, Section 5.3 for a detailed description of these PM tasks). Study 1 

investigates the extent to which long-term average dose of ecstasy per session (average 

typical dose of ecstasy per session averaged over the entire period of use) can predict PM 

performance. Study 2 explores the extent to which short-term average dose of ecstasy per 

session (average typical dose of ecstasy per session over the previous 12 months) is 

associated with PM deficits. 
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Study 1 

7.2 Method 

Participants 

Twenty-three long-term high dose (LTHD) ecstasy users (14 males), 19 long-term low dose 

(LTLD) ecstasy users (10 males) and 50 non-ecstasy users (22 males) took part in the 

investigation (for demographic variables, see Table 7.1). The gender composition did not 

differ significantly between the groups, χ2(2)=1.86, p=.40. Participants were recruited via 

direct approach to university students. All participants were university students attending 

Liverpool John Moores University (LJMU) or the University of Central Lancashire 

(UCLAN). Participants were requested to refrain from ecstasy use for at least 7 days and 

ideally 10 days prior to testing (the mean period of abstinence for LTHD ecstasy users was 

32.17 weeks, median=8.00 weeks; the mean period of abstinence for LTLD ecstasy users was 

39.87 weeks, median=9.00 weeks). Participants were also requested not to use any other 

illicit drugs for at least 24 hours and ideally for 7 days prior to testing. The present study was 

approved by the ethics committees of The University of Central Lancashire and Liverpool 

John Moores University in accordance with the guidelines of The British Psychological 

Society. 

 

Materials 

Patterns of ecstasy and other drug use were obtained via a background drug use questionnaire 

(Montgomery et al., 2005, see Appendix 1 for a copy of this questionnaire). The questions 

gauged the use of ecstasy and other drugs, as well as current age, years of education, general 

health and other relevant lifestyle variables (arousal, anxiety and depression). For each year 

since they commenced drug use, participants estimated the typical dose that they ingested in a 

representative session. Participants also estimated their typical frequency of use (number of 

sessions per week) during each specific year. This was done for all illicit drugs that were 

regularly consumed during each specific year. These data were then used to estimate total 

lifetime use for each drug, average long-term dose (typical dose of drug consumed in a single 

session, averaged over the entire period that an individual used the drug) and average 

frequency of use (typical frequency of use for each year (number of sessions per week) 

averaged over the entire period that an individual used the drug). The current use of cigarettes 

and alcohol were also assessed. 
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  The Raven’s Progressive Matrices test (Raven, Raven & Court, 1998) was used as a 

measure of fluid intelligence. This is a multiple-choice measure that contains a total of 60 

incomplete abstract patterns. Participants were required to complete each pattern by selecting 

the missing item from a number of multiple-choice options. There were 5 sets of abstract 

patterns in total (i.e., Sets A to E) each containing 12 items (e.g., A1 through to A12, B1 

through to B12). Each pattern in each set becomes increasingly difficult thus requiring higher 

cognitive capacity to encode and analyse information. Participants were given a score of one 

for every correct missing item selected whereby higher scores are indicative of increased 

fluid intelligence. 

  Daytime sleepiness was measured via the Epworth Sleepiness Scale (Johns, 1991, see 

Appendix 2 for a copy of this questionnaire). Participants were required to use a 4-point 

Likert scale (0=would never doze, 1=slight chance of dozing, 2=moderate chance of dozing, 

3=high chance of dozing) to estimate the probability of them falling asleep in eight, everyday 

situations (e.g., while watching TV, in a car, while stopped for a few minutes in traffic). 

Scores from the eight situations were added together to give a total score out of 24. Scores in 

the 0-9 range were considered to be normal while scores in the 10-24 range were indicative 

of possible sleeping problems such as sleep apnoea.    

Three laboratory measures of PM were administered including the F1 event-based PM task 

(Hadjiefthyvoulou et al., 2011a), the Long Term Recall PM task (Hadjiefthyvouolou et al., 

2011a) and the fatigue PM task (Hadjiefthyvoulou et al., 2011a). A computer using MS-DOS 

was used for the F1 event-based PM task. Full descriptions of all laboratory measures of PM 

can be found in Chapter 5.   

 

Procedure   

Participants were informed of the general purpose of the experiment and verbal informed 

consent was obtained. Background questionnaires assessing age, years of education, general 

health and other relevant lifestyle variables (arousal, anxiety and depression, Daytime 

sleepiness) were administered first and in a counterbalanced order. The Raven’s Progressive 

Matrices task, the F1 event-based PM task and the long-term delayed recall PM task were 

then administered in a counterbalanced order. The Karolinska fatigue PM task was 

administered throughout the test-session.  Finally, a background drug use questionnaire was 

administered.   
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All tests were administered under laboratory conditions. Participants were fully debriefed and 

given the opportunity to ask any questions about the study prior to leaving the laboratory. 

Participants were paid £20 in store vouchers for their participation.  

 

Design/Statistics 

A median split was used to dichotomise long-term average dose of ecstasy per session (for 

each year the typical dose of ecstasy consumed in a single session was recorded and the 

resulting figures were averaged over the entire period that an individual had used the drug 

producing an annual average) and thus create two user groups (LTHD ecstasy users and 

LTLD ecstasy users). The median for long-term average dose of ecstasy per session was 2.00 

tablets. Participants who, on average, consumed 2.00 or more ecstasy tablets per session 

throughout their period of use were classified as LTHD ecstasy users. Participants who, on 

average, consumed less than 2.00 ecstasy tablets per session were classified as LTLD ecstasy 

users.  

 All measures were analysed using a between-participant design with user group as the 

independent variable (LTHD ecstasy users, LTLD ecstasy users and non-ecstasy users). Age, 

intelligence, years of education, cigarette and alcohol consumption, Epworth Sleepiness Scale 

Score, arousal, anxiety and depression were included as background measures. Any group 

differences on these background variables were investigated using one-way ANOVA. Total 

ecstasy, cannabis and cocaine consumption, long-term average dose of ecstasy, cannabis and 

cocaine use, duration of ecstasy, cannabis and cocaine use, long-term (average weekly 

consumption averaged over lifetime for ecstasy, cannabis and cocaine) frequency of ecstasy, 

cannabis and cocaine use and the number of weeks since ecstasy, cannabis and cocaine were 

last used were included as background drug use variables.  

Data for total lifetime ecstasy, cannabis and cocaine use, long-term average dose of ecstasy, 

cannabis and cocaine per session, the duration of ecstasy, cannabis and cocaine use, the long-

term average frequency of ecstasy, cannabis and cocaine use and the current frequency of 

ecstasy, cannabis and cocaine use were not normally distributed. This was characterised by 

skew or kurtosis associated with z values exceeding 3.29, p<.001. As a result non-parametric 

analyses were used (Tabachnick & Fidell, 2001).   
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7.3 Results 

Demographical and Background Variables 

 The scores for the demographical variables and background variables of age, intelligence, 

years of education, cigarette and alcohol consumption, Epworth Sleepiness Scale score, 

arousal, anxiety and depression are set out in Table 7.1. LTHD ecstasy users, LTLD ecstasy 

users and non-ecstasy users were compared on a number of background drug use variables 

(total lifetime drug use, long-term average dose per session, total duration of drug use in 

weeks, long-term frequency of drug use and the number of weeks since drugs were last used) 

and these data are shown in Table 7.2. 
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Table 7.1 Demographical variables of long-term high dose ecstasy users, long-term low dose ecstasy users and non-ecstasy users.  

 

 

 

 

 

 
 
 
 
 
 

*p<.05, ***p<.001 

 LTHD ecstasy users LTLD ecstasy users Non-ecstasy users p 

 Mean (SD) n Mean (SD) n Mean (SD) n  

Age (years) 21.91 (2.11) 23 23.53 (7.20) 19 20.92 (2.22) 50 <.001*** 
Raven’s Progressive Matrices  
(max 60) 

47.00 (5.84) 23 47.76 (7.20) 17 48.25 (6.40) 48 .75 

Years of education 16.22 (1.78) 23 17.45 (1.99) 20 16.15 (2.00) 48 .04* 
Alcohol (units per week) 14.43 (8.73) 22 13.08 (10.15) 19 11.68 (8.68) 45 .50 

Cigarettes per day 6.68 (3.51) 14 5.40 (4.47) 11 4.80 (3.29) 5 .57 
Epworth Sleepiness  
Score 

6.68 (2.71) 22 7.45 (3.61) 20 5.95 (3.66) 49 .25 

Arousal  19.59 (4.54) 22 18.63 (3.88) 19 19.85 (4.51) 46 .60 
Anxiety  11.55 (2.40) 22 11.89 (3.10) 18 11.70 (4.10) 46 .96 
Depression 12.14 (3.31) 22 13.11 (3.41) 19 12.87 (3.56) 46 .61 
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One-way ANOVA revealed a significant difference between the groups in terms of age. 

Tukey’s post hoc test showed that non-ecstasy users were significantly younger than LTLD 

ecstasy users. There was no significant difference in age between non-ecstasy users and 

LTHD ecstasy users. The age difference between LTHD ecstasy users and LTLD ecstasy 

users did approach statistical significance, such that LTHD ecstasy users were younger than 

LTLD ecstasy users (see Appendix 3 for detailed statistical analyses in relation to 

background variables). 

LTHD ecstasy users, LTLD ecstasy users and non-ecstasy users differed significantly from 

each other in terms of number of years of education. Tukey’s post hoc test showed that non-

ecstasy users had studied for a significantly shorter period of time compared to LTLD ecstasy 

users. The difference in years of education between LTHD ecstasy users and LTLD ecstasy 

users approached statistical significance. The number of years of education completed by 

non-ecstasy users and LTHD ecstasy users did not differ significantly from each other. A 

series of one-way ANOVAs revealed that the groups did not differ significantly in terms of 

intelligence, cigarette and alcohol consumption, Epworth Sleepiness Scale score, arousal, 

anxiety and depression (see Appendix 3 for detailed statistical analyses related to background 

variables). 
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Table 7.2 Background drug use variables of long-term high dose ecstasy users, long-term low-dose ecstasy users and non-ecstasy users. 

*p<.05, **p<.01, ***p<.001 

 LTHD ecstasy users LTLD ecstasy users Non-ecstasy users p 

 Med. Min. Max. Int. Range n Med. Min. Max. Int. Range n Med. Min. Max.  Int. Range n  
                 
Total prior consumption                 

Ecstasy (tablets) 367.00 2.00 12921.00 957.00 23 20.00 1.00 492.50 42.11 19 - - - - - .01**  
Cannabis (joints) 313.00 .00 11376.00 993.50 19 631.13 .00 9158.00 2797.00 18 20.00 .00 1092.00 16.00 21 <.001*** 
Cocaine (lines) 290.50 .00 5684.00 1063.00 18 120.25 .00 4816.00 452.00 12 3.50 .00 81.00 .00 5 .39 
                 
Long-term average dose per 
session 

                

Ecstasy  2.67 2.00 12.25 2.00 23 1.00 .29 1.78 .51 20 - - - - - <.001*** 
Cannabis 2.36 .50 5.80 3.17 18 1.83 .75 8.75 2.00 18 1.00 .07 4.00 1.36 18 .04* 
Cocaine 6.00 1.00 46.40 7.30 19 2.25 .13 10.00 4.50 12 2.00 1.00 4.50 - 3 .04* 

Duration of use (number of 
weeks) 

                

Ecstasy 148.00 52.00 519.43 209.29 23 135.00 .00 772.00 357.75 19 - - - - - .03* 
Cannabis 259.00 .00 544.00 250.00 18 325.93 68.00 831.00 252.54 18 129.00 .00 540.00 251.25 22 .002** 
Cocaine 136.29 .00 430.00 210.22 18 216.00 .00 488.00 309.50 12 17.58 .00 48.00 44.79 4 .60 
 
Long-term frequency of use 
(number of occasions of use 
per week) 

                

Ecstasy  .49 .00 1.00 .90 23 .08 .01 1.50 .29 20 - - - - - <.001*** 
Cannabis  .92 .02 4.00 1.77 18 .37 .02 4.56 1.92 18 .20 .00 2.50 .34 18 .04* 
Cocaine .23 .02 1.32 1.44 19 .21 .02 .40 .68 12 .08 .05 .75 - 3 .98 
                 
Number of weeks since last use                 

Ecstasy  14.00 .57 260.00 81.00 23 12.00 .57 208.00 207.43 20 - - - - - .73 
Cannabis 16.00 .00 312.00 51.22 20 2.00 .14 156.00 23.86 19 14.00 .26 260.00 114.50 22 .11 
Cocaine 3.50 .43 208.00 25.97 20 10.00 2.00 260.00 25.00 12 20.00 .85 124.00 71.58 5 .14 
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With regard to total lifetime drug use, the medians show that LTHD ecstasy users consumed 

more ecstasy tablets over their lifetime compared to LTLD ecstasy users. Mann-Whitney U 

test showed that LTHD ecstasy users consumed significantly more ecstasy tablets over their 

lifetime compared to LTLD ecstasy users, U=128.00, p=.01. The medians indicate that LTLD 

ecstasy users consumed more cannabis over their lifetime relative to LTHD ecstasy users and 

non-ecstasy users. LTHD ecstasy users consumed more cannabis over their lifetime relative 

to non-ecstasy users. Kruskal-Wallis tests revealed that there was a significant difference 

between the groups in terms of total lifetime consumption of cannabis, χ2(2)=14.34, p<.001,  

Post hoc Mann-Whitney U tests with full Bonferroni correction (adjusted alpha level=.017)  

showed that LTLD ecstasy users had consumed significantly more cannabis over their 

lifetime compared to non-ecstasy users, U=64.50, p<.001.  

 Unsurprisingly, the median data shows that the long-term average dose of ecstasy per 

session was higher for LTHD ecstasy users compared to LTLD ecstasy users with LTHD 

ecstasy users typically consuming more ecstasy tablets per session than LTLD ecstasy users, 

U=.00, p<.001. Averaged across lifetime use, LTLD ecstasy users consumed higher doses of 

cannabis per session compared to LTHD ecstasy users and non-ecstasy users. The long-term 

average dose of cannabis use per session was higher for LTHD ecstasy users compared to 

non-ecstasy users. There was a significant difference between the groups in long-term 

average dose of cannabis per session, χ2(2)=6.29, p=.04. The median data indicates that the 

long-term average dose of cocaine per session was higher for LTHD ecstasy users compared 

to LTLD ecstasy users. LTHD ecstasy users consumed significantly more cocaine per session 

compared to LTLD ecstasy users, U=64.50, p=.04.  

  In terms of duration of drug use, the median data shows that LTLD ecstasy users had 

been using ecstasy for longer than LTHD ecstasy users with Mann-Whitney U test showing 

that this difference was statistically significant, U=151.00, p=.03. The median data indicates 

that the duration of cannabis use was higher for LTLD ecstasy users compared to LTHD 

ecstasy users and non-ecstasy users. LTHD ecstasy users had been using cannabis for longer 

than non-ecstasy users. There was a significant difference between the groups in terms the 

duration of cannabis use, χ2(2)=12.18, p=.002 such that LTLD ecstasy users had used 

cannabis for a significantly longer duration of time compared to non-ecstasy users, U=75.00, 

p=.001.  
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In terms of long-term frequency of drug use, LTHD ecstasy users used ecstasy more 

frequently during their lifetime compared to LTLD ecstasy users, U=10.50, p<.001. The 

median data shows that LTHD ecstasy users used cannabis more frequently over their 

lifetime than LTLD ecstasy users and non-ecstasy users. LTLD ecstasy users used cannabis 

more frequently over their lifetime compared to non-ecstasy users. There was a significant 

difference between LTHD ecstasy users, LTLD ecstasy users and non-ecstasy users in terms 

their long-term frequency of cannabis use, χ2(2)=6.28, p=.04.  

For all outcomes of cocaine use, comparisons were restricted to the two ecstasy user groups 

given that there was only a small number of non-ecstasy users who had consumed cocaine 

(between three and five participants). Non-significant inferential statistics for outcomes in 

Table 7.2 are reported in Appendix 3. 
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Laboratory-based measures 
Outcomes for the laboratory-based measures of PM for long-term high dose ecstasy users, 
LTLD ecstasy users and non-ecstasy users are summarised in Table 7.3 and 7.4. 
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Table 7.3 Means and Standard Deviations (SD) for long-term high dose ecstasy users, long-term low dose ecstasy users and non-ecstasy users 
on the F1 event-based PM task, the long-term delayed recall task and the Karolinska fatigue PM task. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 LTHD ecstasy users n=23  LTLD ecstasy users n=20 Non-ecstasy users n=50 

 Mean (SD) Mean (SD) Mean  (SD) 
F1 event-based PM task    

Trial 1 Errors .74 (1.25) .55 (1.10) .52 (1.01) 
Trial 2 Errors .13 (.63) .30 (.80) .12 (.48) 
Trial 3 Errors .22 (.67) .10 (.31) .06 (.42) 
Total Errors 1.09 (2.07) .95 (1.47) .70 (1.54) 
    Long-term delayed recall PM task    
Total number of recall tests returned (max of 3) 1.30 (1.43) .90 (1.25) 1.35 (1.36) 

    Karolinska fatigue PM task    
Percentage completed in first half of test-session 86.23 (23.52) 91.33 (12.37) 88.61 (21.05) 
Percentage completed in second half of test-session  54.56 (32.88) 54.17 (25.37) 70.63 (28.97) 
Percentage completed overall 70.03 (22.66) 71.82 (14.68) 79.38 (19.14) 
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Table 7.4 Median (Med.), Minimum (Min.), Maximum (Max.) and Interquartile Range (Int. Range) scores for long-term high dose ecstasy users 
and long-term low dose ecstasy users and non-ecstasy users on the F1 event-based PM task, the long-term delayed recall task and the Karolinska 
fatigue PM task. 

 

 

 

 

 

 

 

 

 

*p<.05, Note. n for non-ecstasy users was variable such that there were only 49 non-ecstasy users who completed the long-term delayed recall PM task and 48 non-ecstasy users who completed 

the Karolinska fatigue PM task.

 LTHD ecstasy users n=23 LTLD ecstasy Users n=20 Non-ecstasy users n=50 p 

 Median Min. Max. Int. 
Range 

Median Min. Max. Int. 
Range 

Median  Min. Max. Int. 
Range 

 

F1 event-based PM task              

Trial 1 Errors .00 .00 3.00 1.00 .00 .00 3.00 .75 .00 .00 3.00 1.00 .85 
Trial 2 Errors .00 .00 3.00 .00 .00 .00 3.00 .00 .00 .00 3.00 .00 .46 
Trial 3 Errors .00 .00 3.00 .00 .00 .00 3.00 .00 .00 .00 3.00 .00 .17 
Total Errors .00 .00 9.00 1.00 .00 .00 5.00 1.75 .00 .00 9.00 1.00 .57 
              

Long-term delayed recall PM task              

Total number of recall tests returned (max of 3) 1.00 .00 3.00 3.00 .00 .00 3.00 2.00 1.00 .00 3.00 3.00 .40 

              
Karolinska fatigue PM task              
Percentage completed in first half of test-session 100.00 25.00 100.00 33.33 100.00 66.67 100.00 23.75 100.00 10.00 100.00 25.00 .94 
Percentage completed in second half of test-session  50.00 .00 100.00 55.00 50.00 .00 100.00 50.00 70.84 .00 100.00 50.00 .04* 

Percentage completed overall 75.00 22.22 100.00 33.33 75.00 33.00 100.00 13.54 83.33 38.00 100.00 34.00 .11 
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The distributions of the data for Trial 1 errors (Skew, z=6.68 and Kurtosis, z=2.25), Trial 2 

errors (Skew, z=16.40 and Kurtosis, z=35.88), Trial 3 errors (Skew, z=20.08 and Kurtosis, z 

=54.96) and total errors (Skew, z=12.16 and Kurtosis, z=23.49) on the F1 event-based, for 

the Karolinska fatigue PM task  (proportion of Karolinska fatigue questionnaires completed 

in the first half of the test-session only, Skew, z=-7.36 and Kurtosis, z=6.20) and for the long-

term delayed recall PM task (Skew, z=1.40 and Kurtosis, z=-3.51)  deviated significantly 

from normality. This was characterised by the skew and/or kurtosis z scores exceeding 3.29, 

p<.001 (Tabachnick & Fidell, 2001). Group differences were investigated via Kruskal-Wallis 

test with follow-up post hoc Mann-Whitney U tests (with full Bonferroni correction, adjusted 

alpha level=.017).  

  Where the distributions were normal, one-way ANOVAs were used to investigate 

group differences on two aspects of the Karolinska fatigue PM task (proportion of Karolinska 

fatigue questionnaires completed during the second half of the test-session and overall). 

ANOVAs were followed up with Helmert contrasts and pairwise comparisons.  

  Examination of the data in Table 7.4 reveals that LTHD ecstasy users made more 

errors than LTLD ecstasy users and non-ecstasy users on Trial 1 and Trial 3 of the F1 event-

based PM task. LTLD ecstasy users and non-ecstasy users made a similar number of errors 

on these trials. In addition, LTLD ecstasy users made more errors than LTHD ecstasy users 

and non-ecstasy users on Trial 2 while LTHD ecstasy users and non-ecstasy users made a 

similar number of errors on this trial. LTHD ecstasy users and LTLD ecstasy users made 

more errors overall (combined error rate across all three trials) relative to non-ecstasy users. 

Data for Trial 1 errors, Trial 2 errors, Trial 3 errors and total errors on the F1 event-based PM 

task were all significantly non-normal. Kruskal-Wallis tests revealed that there was no 

significant difference between the groups in terms of errors made on Trial 1,χ2(2)=.34, p=.85, 

Trial 2, χ2(2)=1.57, p=.46, or Trial 3 , χ2(2)=3.56, p=.17 of the F1 event-based PM task. In 

addition, the groups did not differ in terms of total number of errors made across all trials on 

the F1 event-based PM task, χ2(2)=1.14, p=.57. 

 With regard to long-term time-based PM performance, inspection of the data in Table 

7.4 reveals that LTHD ecstasy users and non-ecstasy users remembered to return more 

delayed recall tests compared to LTLD ecstasy users. LTHD ecstasy users, LTLD ecstasy 

users and non-ecstasy users did not differ significantly on the long-term delayed recall PM 

task, χ2(2)=1.84, p=.40. 
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 In relation to short-term time-based PM performance, inspection of the data in Table 

7.4 reveals that relative to LTHD ecstasy users and non-ecstasy users, LTLD ecstasy users 

remembered to complete a greater proportion of Karolinska fatigue questionnaires during the 

first half of the test-session.. There was no significant difference between LTHD ecstasy 

users, LTLD ecstasy users and non-ecstasy users in terms of the proportion of Karolinska 

fatigue questionnaires completed in the first half of the test-session, χ2(2)=.12, p=.94. 

  Non-ecstasy users completed a greater proportion of Karolinska fatigue 

questionnaires during the second half of the test-session compared to LTHD ecstasy users 

and LTLD ecstasy users. LTHD ecstasy users and LTLD ecstasy users remembered to 

complete a similar proportion of Karolinska fatigue questionnaires during the second half of 

the test-session. One-way ANOVA revealed that there was a significant difference between 

the groups in the proportion of Karolinska fatigue questionnaires completed during the 

second half of the test-session, F(2,88)=3.49, p=.04, partial eta squared=.07). Helmert 

contrasts revealed that the combined user group of LTHD ecstasy users and LTLD ecstasy 

users completed a significantly lower proportion of Karolinska fatigue questionnaires during 

the second half of the test-session compared to non-ecstasy users, p=.01. However, further 

Helmert contrast revealed that LTHD ecstasy users and LTLD ecstasy did not differ 

significantly, p=.97. Pairwise comparisons adjusted by Bonferroni correction (three pairwise 

comparison and as such the significant alpha level was set at .017) revealed that the 

difference in the proportion of Karolinska fatigue questionnaires completed during the second 

half of the test-session between LTHD ecstasy users (M=54.56, SD=32.88) and non-ecstasy 

users (M=70.63, SD=28.97) (p=.03), LTLD ecstasy users (M=54.17, SD=25.37) and non-

ecstasy users, p=.04 was just short of significance. LTHD ecstasy users and LTLD ecstasy 

users did not differ significantly, p=.97.  

Inspection of the data in Table 7.4 reveals that over the entire test-session, non-ecstasy users 

completed a greater proportion of Karolinska fatigue questionnaires than LTHD ecstasy users 

and LTLD ecstasy users. One-way ANOVA revealed that there was no significant difference 

between the three groups in terms of the proportion of Karolinska fatigue questionnaires 

completed during the entire test-session, F(2,88)=2.27, p=.11, partial eta squared =.05. 

However, Helmert contrasts revealed that there was a significant difference in the proportion 

of Karolinska fatigue questionnaires completed during the entire test-session between the 

combined user group of LTHD ecstasy users and LTLD ecstasy users and non-ecstasy users, 

p=.04. Further Helmert contrasts showed that there was no significant difference in the 
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proportion of Karolinska fatigue questionnaires during the entire test-session between LTHD 

ecstasy users and LTLD ecstasy users, p=.76. Pairwise comparisons adjusted for Bonferroni 

correction (three pairwise comparisons and as such the significant alpha level was set at .017) 

revealed that there was no significant difference in the proportion of Karolinska fatigue 

questionnaires completed during the entire test-session between LTHD ecstasy users 

(M=70.03, SD=22.66) and non-ecstasy users (M=79.38, SD=19.14),p=.06, LTLD ecstasy 

users (M=71.82, SD=14.68) and non-ecstasy users. p=.14, or LTHD ecstasy users and LTLD 

ecstasy users, p=.76. 
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Study 2  

7.4 Method 

Participants 

The participants in the present study were the same as those who participated in Study 1.1 

They were divided into 21 short-term high dose (STHD) ecstasy users (11 males, 10 

females), 23 short-term low dose (STLD) ecstasy users (10 males, 13 females) and 50 non-

ecstasy users (22 males, 28 females). The gender composition did not differ significantly 

between the groups, χ2(2)=1.12, p=.57. The mean period of abstinence for STHD ecstasy 

users was 4.70 weeks, median=3 weeks; the mean period of abstinence for STLD ecstasy 

users was 78.83 weeks, median=52.00 weeks).  

 

Materials 

Materials are as per Study 1. Additionally, from the background drug use questionnaire, for 

the 12 month period prior to the test-session, participants estimated the typical dose that they 

ingested in a representative session for each month. Participants also estimated their typical 

frequency (times per week) in the 12 month period prior to the test-session. This was done for 

all illicit drugs during the 12 months prior to the test-session. Long-term data relating to drug 

use was collected as in Study 1. Estimates of total use for each respective drug and their 

average frequency of use (times per week) during the previous 12 months were calculated. 

 

Procedure   

Procedural details were reported in Study 1.  

 

Design/Statistics 

A median split was used to dichotomise short-term average dose of ecstasy per session (the 

typical dose of ecstasy consumed in a single session during each of the 12 months prior to the 

test-session; months during which the drug was not used are coded as zero) and thus create 

two user groups (STHD ecstasy users and STLD ecstasy users). The median split for short-

term average dose of ecstasy  per session was .17 tablets per session. Participants who, on 

average, consumed .17 or more ecstasy tablets per session during the 12 months prior to the 

test-session were classified as STHD ecstasy users. Participants who, on average, consumed 

                                                      
1 The total number of ecstasy users in Study 2 exceeded those in Study 1 as a result of missing data. 
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less than .17 ecstasy tablets per session during the 12 months prior to the test-session were 

classified as LTLD ecstasy users. The fact that the median was less than 1 indicates that a 

majority of users experienced a number of months when they were in fact abstinent. This 

applied to all members of the light user group and to a proportion of the heavy user group. 

The high and low dose groups together with a non-ecstasy user group constituted the three 

levels of the between participant IV. 

The background measures and indeed the underlying data were the same as were used in 

Study 1 as were the PM DVs.  However, the group classifications were based on short-term 

ecstasy use as indicated above. Alternative background drug use variables were used. These 

included total ecstasy, cannabis and cocaine consumption in the previous 12 months, average 

typical ecstasy, cannabis and cocaine dose per session in the previous 12 months, average 

frequency (times per week) of ecstasy, cannabis and cocaine use in the previous 12 months 

and total ecstasy, cannabis and cocaine consumption in the previous 30 days. In light of the 

distributional characteristics of the individual measures, and the tripartite nature of the IV, the 

same mix of parametric and non-parametric analyses were employed as in Study 1. 
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7.5 Results 

Demographical and Background Variables 

Demographic and background scores (age, intelligence, years of education, cigarette and 

alcohol consumption, Epworth Sleepiness Scale score, arousal, anxiety and depression) are 

set out in Table 7.5 Various indices of short-term background drug use including total 

ecstasy, cannabis and cocaine consumption, average typical ecstasy, cannabis and cocaine 

dose per session and average frequency of ecstasy, cannabis and cocaine use (times per week) 

in the previous 12 months were compared between STHD ecstasy uses, STLD ecstasy users 

and non-ecstasy users. Total ecstasy, cannabis and cocaine use in the 30 days prior to the test-

session were also compared between the groups. These data are shown in Table 7.6. 
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Table 7.5 Demographical variables of short-term high dose ecstasy users, short-term low dose ecstasy users and non-ecstasy users.  

 

 

 

 

 

 

 

 

**p<.01 

 

 STHD ecstasy users STLD ecstasy users Non-ecstasy users p 

 Mean (SD) n Mean (SD) n Mean (SD) n  
Age (years) 22.48 (2.94) 21 22.52 (2.27) 23 20.92 (2.22) 50 .01** 

Raven’s Progressive Matrices  
(max 60) 

45.90 (6.44) 20 47.95(6.42) 22 48.25 (6.40) 48 .38 

Years of education 16.68 (2.32) 22 16.74 (1.57) 23 16.15 (2.00) 45 .39 
Alcohol (units per week) 15.05 (9.25) 22 12.14 (9.00) 21 11.68 (8.68) 45 .34 
Cigarettes per day 6.33 (3.72) 15 6.17 (4.37) 11 4.80 (3.29) 50 .74 
Epworth Sleepiness  
Score 

6.28 (2.72) 21 8.00 (3.54) 23 5.96 (3.66) 49 .39 

Arousal  17.90 (4.44) 20 19.91 (3.82) 23 19.85 (4.51) 46 .21 
Anxiety  11.63 (2.48) 19 11.74 (2.86) 23 11.70 (4.10) 46 1.00 
Depression 12.85 (3.65) 20 12.57 (3.09) 23 12.87 (3.36) 46 .94 
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One-way ANOVA showed that there was a significant difference between the groups in 

terms of age. Tukey’s post hoc test showed that non-ecstasy users were significantly younger 

than STHD ecstasy users and STLD ecstasy users. There was no significant difference in age 

between STHD ecstasy users and STLD ecstasy users. A series of one-way ANOVAs 

revealed no significant differences between the groups in terms of intelligence (Raven’s 

Progressive Matrices), years of education, cigarette and alcohol consumption, Epworth 

Sleepiness Scale Score, arousal, anxiety, and depression (see Appendix 3 for detailed 

statistical analyses related to background variables for STHD ecstasy users, STLD ecstasy 

users and non-ecstasy users). 
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Table 7.6 Background drug use variables of short-term high dose ecstasy users, short-term low dose ecstasy users and non-ecstasy users. 

 

*p<.05, ***p<.001

 STHD ecstasy users STLD ecstasy users Non-ecstasy users p 

 Median Min. Max. Int. Range n Median Min. Max. Int. Range n Median Min. Max.  Int. Range n  
                 
Total use in the last 12 months                 
Ecstasy (tablets) 33.52 3.00 379.00 105.40 22 .00 .00 3.00 1.00 23 - - - - - <.001*** 
Cannabis (joints) 48.00 .00 2079.00 671.75 21 2.00 .00 1344.00 44.25 20 .08 .00 144.00 2.50 23 .01** 
Cocaine (lines) 17.25 .00 768.00 114.00 20 8.00 .00 424.00 26.00 15 3.50 .00 81.00 48.50 5 .50 
                 

Average typical dose of drug over the previous 12 months                 
Ecstasy  1.08 .25 4.17 1.73 22 .00 .00 .17 .08 23 - - - - - <.001*** 
Cannabis 1.50 .00 8.00 3.79 21 .24 .00 4.33 1.35 20 .08 .00 3.00 .21 23 .02* 
Cocaine 1.04 .00 14.67 5.56 20 .67 .00 8.83 1.38 15 .25 .00 2.25 1.23 5 .42 
                 
Average frequency of use in the last 12 months (times per 
week) 

                

Ecstasy  .41 .06 2.50 .67 22 .00 .00 .13 .02 23 - - - - - <.001*** 
Cannabis  .63 .00 7.00 3.74 21 .03 .00 7.00 .43 20 .00 .00 1.00 .10 23 .01* 
Cocaine .08 .00 3.43 .56 20 .02 .00 1.00 .29 15 .02 .00 .38 .35 5 .44 
                 

Total use in the last 30 days                 
Ecstasy (tablets) 1.24 .00 20.00 4.50 22 .00 .00 .00 .00 20 -  - - - - <.001*** 
Cannabis (joints) 3.00 .00 240.00 53.88 21 .00 .00 120.00 .75 18 .00 .00 12.00 4.29 21 <.001*** 
Cocaine (lines) .50 .00 96.00 9.00 18 .00 .00 64.00 4.00 14 .00 .00 1.00 .50 5 .32 
                 
Number of weeks since last use                 
Ecstasy  3.50 .57 12.00 7.04 22 52.00 8.00 260.00 128.00 23 - - - - - <.001*** 
Cannabis 1.00 .00 312.00 39.86 21 18.00 .14 156.00 32.25 20 14.00 .26 260.00 114.50 22 .03* 
Cocaine 20.00 .85 124.00 71.59 19 24.00 .43 260.00 153.00 15 4.00 .43 28.00 10.00 5 .04* 
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With regard to total drug use in the 12 months prior to the test-session, the relevant medians 

show that STHD ecstasy users consumed more ecstasy in the previous 12 months compared 

to STLD ecstasy users. Mann-Whitney U test revealed that this difference was statistically 

significant, U=.50, p<.001. The median data indicates that STHD ecstasy users consumed 

more cannabis in the previous 12 months compared to both STLD ecstasy users and non-

ecstasy users. STLD ecstasy users consumed more cannabis in the previous 12 months 

relative to non-ecstasy users. Kruskal-Wallis test showed that the groups differed 

significantly in terms of total cannabis consumption in the previous 12 months, χ2(2)=8.71, 

p=.01. Post hoc Mann-Whitney U tests with full Bonferroni correction (adjusted alpha 

level=.017)  revealed that STHD cannabis users consumed significantly more cannabis in the 

previous 12 months compared to non-ecstasy users, U=125.50, p=.005. The difference 

between short-term high dose ecstasy users and short-term low dose ecstasy users was not 

significant, U=139.50, p=.06.  

In accordance with the manner in which the groups were defined, in relation to short-

term average dose, the median data indicates that on average, STHD ecstasy users typically 

consumed more ecstasy tablets per session in the previous 12 months compared to STLD 

ecstasy users with Mann-Whitney U test revealing that the difference was statistically 

significant, U=.00, p<.001. The median data shows that the average typical dose of cannabis 

per session in the previous 12 months was higher for STHD ecstasy users compared to STLD 

ecstasy users and non-ecstasy users. The average dose of cannabis per session in the previous 

12 months was higher for STLD ecstasy users relative to non-ecstasy users. There was a 

significant difference between the groups in terms of the typical average dose of cannabis per 

session in the previous 12 months, χ2(2)=8.29, p=.02. STHD ecstasy users consumed higher 

typical average doses of cannabis per session in the previous 12 months compared to non-

ecstasy users, U=131.00, p=.008. 

In terms of the average short-term frequency (times per week) of drug use, the median 

data reveals that STHD ecstasy users consumed ecstasy more frequently during the previous 

12 months compared to STLD ecstasy users. Mann-Whitney U test revealed that the 

difference was statistically significant, U=8.00, p<.001. The median data shows that STHD 

ecstasy users consumed cannabis more frequently in the previous 12 months compared to 

STLD ecstasy users and non-ecstasy users. Kruskal-Wallis test showed that there was a 

significant difference between the groups in terms of average frequency of cannabis use in 

the previous 12 months, χ2(2)=9.28, p=.01.  
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With regard to recent drug use, the median data indicates that STHD ecstasy users had 

used more ecstasy in the 30 days prior to the test-session relative to STLD ecstasy users. 

STLD ecstasy users had not used any ecstasy in the 30 days prior to the test-session.  Mann-

Whitney U test revealed that this difference was statistically significant, U=90.00, p<.001.  

The median data shows that STHD ecstasy users had used more cannabis in the 30 days prior 

to test-session compared to STLD ecstasy users and non-ecstasy users. STLD ecstasy users 

had used more cannabis in the previous 30 days compared to non-ecstasy users. Kruskal-

Wallis test showed that there was a significant difference between the groups in terms of total 

cannabis consumption in the previous 30 days, χ2(2)=16.73, p<.001. Post hoc Mann-Whitney 

U tests with full Bonferroni correction (adjusted alpha level=.017) revealed that STHD 

ecstasy users consumed significantly more cannabis in the previous 30 days than STLD 

ecstasy users, U=89.50, p=.004, and non-ecstasy users U=84.50, p<.001.  

In relation to period of abstinence, the median data shows that STHD ecstasy users 

had used ecstasy more recently than STLD ecstasy users with Mann-Whitney U test revealing 

that the difference was statistically significant, U=6.00, p<.001. The median data indicates 

that STHD ecstasy users and STLD ecstasy users had used cannabis more recently than non-

ecstasy users. The period of abstinence from cannabis use was similar for STHD ecstasy 

users and STLD ecstasy users. Kruskal-Wallis test showed that there was a significant 

difference between the groups in terms of the number of weeks since they last used cannabis, 

χ2(2)=7.05, p=.03. Mann-Whitney U tests showed that STHD ecstasy users had a 

significantly shorter period of abstinence from cannabis use relative to non-ecstasy users, 

U=127.00, p=.01). The median data shows that STHD ecstasy users had used cocaine more 

recently than STLD ecstasy users with Mann-Whitney U test revealing that the difference 

was statistically significant, U=84.00, p=.04. 

For all outcomes of short-term cocaine use, comparisons were restricted to the two 

concurrent alcohol and ecstasy user groups given that only two non-ecstasy users had 

consumed cocaine. Inferential statistics for those outcomes in Table 7.6 that were not 

significant are reported in Appendix 3.  
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Laboratory-based measures 

Outcomes for the laboratory-based measures of PM for STHD ecstasy users, STLD ecstasy 

users and non-ecstasy users are summarised in Table 7.7 and Table 7.8. 
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Table 7.7 Mean and Standard Deviations (SD) for short-term high dose ecstasy users, short-term low dose ecstasy users and non-ecstasy users 
on the F1 event-based PM task, the Long-term Delayed Recall Task and the Karolinska fatigue PM task. 

 

 

 

 

 

 

 

 
 
 

Note: n for all groups was variable as a result of missing data.  There were only 21 STHD ecstasy users who completed the F1 event-based PM task and the long-term delayed recall PM task.  Only 22 short-term low-
dose ecstasy users completed the F1 event-based PM task. Forty-Nine non-ecstasy users completed the long-term delayed recall PM task and 48 non-ecstasy users completed the Karolinska fatigue PM task. 

 STHD ecstasy users n=22 STLD ecstasy users n=23 Non-ecstasy users n=50 

 Mean (SD) Mean (SD) Mean  (SD) 
F1 event-based PM task    

Trial 1 Errors .67 (1.20) .64 (1.18) .52 (1.01) 
Trial 2 Errors .14 (.14) .27 (.88) .12 (.48) 
Trial 3 Errors .19 (.19) .14 (.64) .06 (.42) 
Total Errors 1.00 (1.41) 1.05 (2.13) 

 
.70 (1.54) 

     Long-term delayed recall PM task     

Total number of recall tests returned (max of 3) 1.24 (1.37) 1.00 (1.35) 
 

1.35 (1.36) 

     Karolinska fatigue PM task     

Percentage completed in first half of test-session 87.35 (21.05) 89.71 (21.22) 
 

88.61 (21.05) 
Percentage completed in second half of test-session  39.85 (30.46) 66.81 (23.07) 

 
70.62 (28.97) 

Percentage completed overall 63.61 (19.23) 77.09 (17.76) 
 

79.38 (19.14) 
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Table 7.8 Median, Minimum (Min.), Maximum (Max.) and Interquartile Range (Int. Range) scores for short-term high dose ecstasy users, short-
term low dose ecstasy users and non-ecstasy users on the F1 event-based PM task, the long-term delayed recall task and the Karolinska fatigue 
PM task. 

**p<.01, ***p<.001 Note: n for all groups was variable as a result of missing data.  There were only 21 STHD ecstasy users who completed the F1 event-based PM task and the long-term delayed recall PM task.  Only 
22 short-term low-dose ecstasy users completed the F1 event-based PM task. Forty-Nine non-ecstasy users completed the long-term delayed recall PM task and 48 non-ecstasy users completed the Karolinska fatigue 
PM task. 

 STHD ecstasy users n=22 STLD ecstasy users n=23 Non-ecstasy users n=50 p 
 Median Min. Max. Int. Range Median  Min.  Max. Int. Range Median  Min.  Max. Int. Range  
F1 event-based PM task              
Trial 1 Errors .00 .00 3.00 1.00 .00 .00 3.00 1.00 .00 .00 3.00 1.00 .98 
Trial 2 Errors .00 .00 2.00 .00 .00 .00 3.00 .00 .00 .00 3.00 .00 .98 
Trial 3 Errors .00 .00 1.00 .00 .00 .00 3.00 .00 .00 .00 3.00 .00 .06 
Total Errors .00 .00 5.00 1.25 .00 .00 9.00 1.00 .00 .00 9.00 1.00 .48 
              

Long-term delayed recall PM 
task 

             

Total number of recall tests 
 returned (max of 3) 

1.00 .00 3.00 3.00 .00 .00 3.00 3.00 1.00 .00 3.00 3.00 .68 

              
Karolinska fatigue PM task              
Percentage completed in first  
half of test-session 

100.0 50.00 100.00 27.08 100.00 25.00 100.00 75.00 100.00 10.00 100.00 25.00 .61 

Percentage completed in second 
half of test-session  

40.00 .00 100.00 37.50 75.00 20.00 100.00 30.00 70.84 .00 100.00 50.00 p<.001*** 

Percentage completed overall 64.59 22.22 100.00 25.00 77.79 33.33 100.00 18.89 83.33 38.00 100.00 33.83 .01** 
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Inspection of the data in Table 7.8 reveals that non-ecstasy users made fewer errors than 

STHD ecstasy users and STLD ecstasy users on all Trials of The F1 event-based PM task. A 

series of Kruskal-Wallis tests showed that STHD ecstasy users, STLD ecstasy users and non-

ecstasy users did not differ significantly from each other in terms of errors made on Trial 1, 

χ2(2)=.05, p=.98,  and Trial 2, χ2(2)=.04, p=.98, of the F1 event-based PM task. 

 However, with regard to the errors made on Trial 3, the difference between the 

groups approached statistical significance, χ2(2)=5.54, p=.06. Post hoc Mann-Whitney U tests 

with full Bonferroni correction (adjusted alpha level=.017)  showed that STHD ecstasy users 

made significantly more errors than non-ecstasy users on Trial 3 of the F1 event-based PM 

task, U=463.00, p=.016 No significant differences were found between STLD ecstasy users 

and non-ecstasy users, U=231.00, p=.40 or STHD ecstasy users and STLD ecstasy users, 

U=537.00, p=.19 in terms of the errors made on Trial 3 of the event-based PM task. The three 

groups did not differ significantly from each other in terms of the total errors made across all 

three trials on The F1 event-based PM task, χ2(2)=1.48, p=.48.  

 In terms of long-term time-based PM performance, inspection of the data in Table 7.8 

shows that STLD ecstasy users returned a fewer number of delayed recall tests (the long-term 

delayed recall test) compared to STHD ecstasy users and non-ecstasy users. STHD ecstasy 

users and non-ecstasy users returned a similar number of delayed recall tests. Kruskal-Wallis 

test showed that there was no significant difference in the number of delayed recall task 

completed by STHD ecstasy users, STLD ecstasy users and non-ecstasy users, χ2(2)=.77, 

p=.68.  

With regard to short-term time-based PM, inspection of the data in Table 7.8 reveals 

that STHD ecstasy users, STLD ecstasy users and non-ecstasy users completed a similar 

number of Karolinska fatigue questionnaires during the first half of the test-session. Kruskal-

Wallis test showed that there was no significant difference between the three groups in terms 

of the proportion of Karolinska questionnaires completed in the first half of the test-session, 

χ2 (2)=99, p=.61. 

The data in Table 7.8 shows that non-ecstasy users successfully completed a higher 

proportion of Karolinska fatigue questionnaires during the second half of the test-session 

compared STHD ecstasy users and STLD ecstasy users. STLD ecstasy users also completed a 

higher proportion of Karolinska fatigue questionnaires during the second half of the test-

session compared to STHD ecstasy users. One-way ANOVA revealed a significant difference 
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between the groups in terms of the proportion of Karolinska fatigue questionnaires completed 

during the second half of the test-session, F(2, 90)= 9.48, p<.001, partial eta squared=.17. 

Helmert contrasts showed that compared to non-ecstasy users, the combined group of short-

tem high dose ecstasy users and STLD ecstasy users remembered to complete a significantly 

lower proportion of Karolinska fatigue questionnaires in the second half of the test-session, 

p=.004. Furthermore, relative to STHD ecstasy users, STLD ecstasy users completed a 

significantly higher proportion of Karolinska fatigue questionnaires in the second half of the 

test-session, p=.002. Pairwise comparisons adjusted by Bonferroni correction (three pairwise 

comparisons, significant alpha level set at .017) revealed that non-ecstasy users (M=70.62, 

SD=28.97) completed a significantly greater proportion of Karolinska fatigue questionnaires 

in the second half of the test-session compared to STHD ecstasy users (M=39.85, SD=30.46), 

p<.001. STLD ecstasy users (M=66.81, SD=23.07) also completed a significantly higher 

proportion of Karolinska fatigue questionnaires in the second half of the test-session 

compared to STHD ecstasy users, p=.002. There was no significant difference between non-

ecstasy users and STLD ecstasy users in terms of the proportion of Karolinska fatigue 

questionnaires completed in the second half of the test-session, p=.59. 

Inspection of the data in Table 7.8 reveals that over the entire test-session, non-ecstasy users 

and STLD ecstasy users completed a higher proportion of Karolinska fatigue questionnaires 

than STHD ecstasy users. Overall completion rates were comparable between non-ecstasy 

users and STLD ecstasy users. One-way ANOVA revealed that there was a significant 

difference between the groups in terms of the overall proportion of Karolinska fatigue 

questionnaires during the entire test-session, F(2,90)=5.46, p=.01, partial eta squared=.11. 

Helmert contrasts showed that non-ecstasy users completed a significantly larger proportion 

of Karolinska fatigue questionnaires during the entire test-session compared to the combined 

group of STHD ecstasy users and STLD ecstasy users, p=.02. Short-term lose dose ecstasy 

users also remembered to complete a significantly larger proportion of Karolinska fatigue 

questionnaires during the entire test-session compared to STHD ecstasy users, p=.02. 

Pairwise comparisons adjusted for Bonferroni correction (three pairwise comparisons, 

significant alpha level set at .017) revealed that non-ecstasy users (M=79.38, SD=19.14) 

completed a significantly larger proportion of Karolinska fatigue questionnaires during the 

entire test-session compared to STHD ecstasy users (M=63.61, SD=19.23), p=.002. The 

pairwise comparison between STHD ecstasy users and STLD ecstasy users (M=77.09, 

SD=17.76) approached statistical significance, p=.02 such that STHD ecstasy users 
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completed fewer Karolinska fatigue questionnaire during the entire test-session. There was 

no significant difference in the overall proportion of Karolinska fatigue questionnaires 

completed during the entire test-session between non-ecstasy users and STLD ecstasy users, 

p=.63 
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7.6 Discussion 

Ecstasy use has been associated with deficits on a range of laboratory-based PM 

tasks. However, the extent to which the typical dose of ecstasy per session affects PM 

performance has not been fully explored. The aims of Studies 1 and 2 were to 

determine whether the long and short-term typical dose of ecstasy per session can 

predict performance on laboratory PM tasks. The laboratory PM tasks used in this 

study (the F1 event-based PM task, the Karolinska fatigue PM task and the long-term 

delayed recall PM task) have been used previously to investigate PM deficits in drug 

users (Hadjiefthyvoulou et al., 2011a).  

 

 The overall findings are at least in part consistent with previous studies 

(Hadjiefthyvoulou et al., 2011a; Heffernan et al., 2001a; Montgomery & Fisk, 2007; 

Rendell et al., 2007) and support the view that ecstasy use is associated with deficits 

in short-term time- and event-based PM. In Study 1, ecstasy users (the combined 

group of LTHD ecstasy users and LTLD ecstasy users) completed a significantly 

lower proportion of Karolinska fatigue questionnaires than non-ecstasy users during 

the second half of the test-session. In Study 2, STHD ecstasy users made significantly 

more errors on Trial 3 of the F1 event-based PM task compared to non-ecstasy users. 

Similar ecstasy-related deficits have been documented in the literature 

(Hadjiefthyvoulou et al., 2011a). However, in contrast to previous research 

(Hadjiefthyvoulou et al., 2011a), no long-term time-based PM deficits were found in 

ecstasy users in Study 1 or Study 2. 

 

Long-term dose of ecstasy per session was not associated with any of the 

laboratory PM measures used. That is, LTHD ecstasy users, LTLD ecstasy users and 

non-ecstasy users performed comparably on laboratory measures of event- (F1 event-

based PM task) and time-based (the long-term delayed recall task) PM. It may be that 

access to a larger number of ecstasy users which would allow for the use of 

correlational analyses might be a more powerful technique with which to investigate 

dose-related effects compared to simply categorising users on the basis of a median 

split. Unfortunately, the number of ecstasy users in the present study was not 

sufficient to use a correlational approach and using a median split to dichotomise long 

and short-term average dose of ecstasy per session clearly results in a substantial loss 
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of precision. Furthermore, by implication, the use of median splits is problematic in 

that they are typically accompanied with a considerable loss of statistical power 

(Federov, Mannino & Zhang, 2009; Naggara et al., 2011).  Following the collection 

of additional data, correlational analyses will be used in later empirical work where 

we will attempt to more systematically evaluate dose related effects. 

 

 In terms of short-term dose-related effects, STHD ecstasy users, STLD ecstasy 

users and non-ecstasy users performed similarly on the F1 event-based PM task and 

the long-term delayed recall PM task.  However, an important aspect of the present 

findings was the presence of apparent short-term dose-related effects of ecstasy use 

on short-term time-based PM performance. Short-term average dose of ecstasy per 

session was directly related to adverse outcomes on the Karolinska fatigue PM task. 

Relative to STHD ecstasy users, STLD ecstasy users completed significantly more 

Karolinska fatigue questionnaires during the second half of the test-session. Overall 

completion rate on the Karolinska fatigue PM task was also worse for STHD ecstasy 

users compared to STLD ecstasy users. These findings indicate that short-term trends 

in ecstasy dose per session (larger doses of ecstasy consumed per session in the last 

12 months) may predict short-term time-based PM deficits in ecstasy users. More 

specifically, higher ecstasy doses per session in the 12 months prior to testing appear 

to be associated with short-term time-based PM deficits. It is possible that larger 

short-term doses of ecstasy per session give rise to increased MDMA plasma 

concentrations in the brain. Morefield and colleagues (2011) indicate the consumption 

of larger dose of ecstasy per session elevate MDMA plasma concentrations for a 

number of hours. As a result, MDMA exposure in the brain is likely to be increased 

thereby enhancing ecstasy’s neurotoxic potential and accounting for the short-term 

time-based PM deficits observed (Morefield et al., 2011).  

 Despite the apparent short-term dose-related effects of ecstasy use on short-

term time-based PM performance, a number of limitations need to be acknowledged. 

One possibility is that apparent short-term dose-related effects of ecstasy use on PM 

may merely represent a post intoxication effect. That is, some participants may have 

used ecstasy in the few days prior to the test-session and thus, this may have affected 

their short-term time-based PM performance. The median period of abstinence for 

STHD ecstasy users was 3.50 weeks and for STLD ecstasy users was 52.00 weeks. 
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However, a total of five out of the 22 STHD ecstasy users who completed the 

Karolinska fatigue PM task had in fact used ecstasy within the seven days prior to the 

test-session. It is therefore possible that the short-term dose-related effect which was 

observed in Study 2 was driven by a post-intoxication effect. Nonetheless, when these 

individuals were excluded from the analyses, the abovementioned group differences 

on the Karolinska time based PM task remained statistically significant. (see 

Appendix 3 for inferential statistics where individuals who had consumed ecstasy in 

the seven days prior to the test-session are excluded from the analyses.). 

 

  Further examination of the median average dose of ecstasy per session for the 

STLD ecstasy user group shows that individuals in this group consumed very low 

doses of ecstasy per session. In fact, ecstasy dose per session was sufficiently low 

enough to suggest that this group was predominantly composed of previous ecstasy 

users (i.e., abstinent for at least six months and many for a year or more). In 

comparison, the STHD ecstasy user group appeared to contain more individuals who 

had regularly used during the previous 12 months.  Thus, to an extent, the present 

study is in fact comparing current ecstasy users and previous ecstasy users. As a 

result, it may not be that the observed effects are attributable to short-term trends in 

the average dose of ecstasy per session. Rather, it could be argued that the current 

findings reflect an effect of recent ecstasy use whereby current ecstasy users perform 

worse than previous ecstasy users and non-ecstasy users on short-term time based PM 

tasks. 

 

One of the main methodological limitations of the present investigation is 

related to the widespread frequency of polydrug use among ecstasy users. In both 

studies (Study 1 & Study 2), a large proportion of ecstasy users also consumed 

cannabis and cocaine, thereby increasing the possibility that the apparent short-term 

ecstasy-related effects on time based PM that were observed might be attributable to 

any one of these three major illicit drugs. For example PM impairments have been 

found in both cannabis (Hadjiefthyvoulou et al., 2011a; Hadjiefthyvoulou et al., 

2011b; McHale & Hunt, 2008) and cocaine (Hadjiefthyvoulou et al., 2011a; 2011b) 

users. In addition, the observed deficits may reflect cocktail effects associated with 

the joint consumption of ecstasy, cannabis and cocaine.  This methodological issue is 

further complicated by the absence of a polydrug control group. The inclusion of 
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cannabis-only and cocaine-only control groups would have been desirable although a 

much larger cohort would have been needed to do this. The difficulty here is that a 

large proportion of cannabis users and cocaine users also use other illicit drugs. 

Moreover, in cases where cannabis users or cocaine users do not use other illicit 

substances, these groups commonly consume alcohol and tobacco.  This is 

problematic given that PM deficits have been found in excessive alcohol users 

(Heffernan & Bartholomew, 2006) and cigarette smokers (Heffernan et al., 2005). As 

such obtaining a true sample of cannabis-only and in particular cocaine-only users can 

be very difficult. Following the collection of additional data, further empirical work 

will attempt to control for the aforementioned factors using correlational analyses. 

 

Another methodological issue that should be acknowledged is that the groups 

in both studies differed significantly in terms of age. In Study 1, non-ecstasy users 

were significantly younger than LTLD ecstasy users and in Study 2, non-ecstasy users 

were significantly younger than STHD ecstasy users and STLD ecstasy users. Despite 

this, closer examination of the mean data for all groups reveals that the age 

differences were very small. In fact, all groups were in their early twenties. This is 

significant given that age differences in PM do not emerge until late adulthood. In 

fact, it has been suggested that PM ability does not decline significantly until a person 

is in their 50’s or 60’s (Uttl, 2008). It is therefore unlikely that the age-related group 

differences observed here give rise to PM differences in their own right.  

 

There was also a significant difference in years of education between LTHD 

ecstasy users, LTLD ecstasy users and non-ecstasy users. However, differences in the 

number of years of education between the groups tell us relatively little about their 

intelligence. With this in mind, it is important to consider the fluid intelligence data 

(Raven’s Progressive Matrices) which may be a more accurate predictor of PM 

performance. Crucially, there were no significant difference between these groups in 

terms of fluid intelligence (Raven’s Progressive Matrices) and thus there is no reason 

to suggest that differences in years of education would give rise to PM differences.  

Aside from differing on age and years of education, it is possible that the groups 

differed on some other pre-existing condition predating their drug use or in terms of 

some other lifestyle variable. Thus, there may be a number of potential confounds, 
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some of which might be currently unknown which may have had an impact on the 

results reported in Study 1 and Study 2. 

 

To conclude, long-term dose of ecstasy per session was not related to any PM 

outcomes. However, the relationship between the typical long-term dose of ecstasy 

per session and PM performance has received little attention previously. Our later 

empirical work (Chapter 11) will address this issue further. Short-term trends in the 

average dose of ecstasy consumed in a single session in the previous 12 months 

appear to be linked to short-term time-based PM deficits. However, this evidence is 

not conclusive in light of very low ecstasy consumption of the STLD user group in 

the previous 12 months. Nonetheless, the findings on the whole do show an overall 

ecstasy-related effect such that ecstasy users were significantly impaired on short-

term time- and event-based PM tasks. Thus, larger doses of ecstasy consumed in 

recent sessions appear to be may exacerbate the neurotic effects of ecstasy by 

increasing MDMA plasma concentrations in the brain. 
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Chapter 8: The effects of concurrent alcohol and ecstasy use on prospective 

memory performance  

Chapter 8 investigates the effects of concurrent alcohol and ecstasy use on 

Prospective Memory (PM) performance. Median splits were used to dichotomise 

long- (Study 1) and short-term (Study 2) concurrent alcohol and ecstasy use. Two 

concurrent alcohol user groups were created in Study 1 [long-term high alcohol 

(LTHA) ecstasy users and long-term low alcohol (LTLA) ecstasy users] and also in 

Study 2 [short-term high alcohol (STHA) ecstasy users and short-term low alcohol 

(STLA) ecstasy users]. Study 1 investigates the extent to which long-term concurrent 

alcohol and ecstasy use (typical dose of ecstasy per session averaged over the entire 

period of use) can predict PM performance. Study 2 explores the extent to which 

short-term concurrent alcohol and ecstasy use (average typical dose of ecstasy per 

session over the previous 12 months) is associated with PM deficits. 

 

 

 8.1 Introduction  

The empirical work in Chapter 7 showed clear effects of ecstasy use on prospective 

memory (PM) performance. The long-term typical dose of ecstasy per session was not 

associated with performance on event- or time-based measures of PM. However, 

higher average typical dose of ecstasy in the 12 months prior to the test-session was 

associated worse performance on the Karolinska fatigue PM task. One of the key 

limitations of these findings, and indeed the drug-related literature in general is that 

ecstasy users typically use ecstasy alongside other drugs. Therefore, it is very difficult 

to determine whether the effects observed are attributable to the use of ecstasy, other 

drugs or due to a cocktail effect of several drugs. Alcohol is a licit drug that is 

commonly used concurrently with ecstasy (Barrett, Darredeau & Pihl, 2006; Grov, 

Kelly & Parsons, 2009; Fisk, Montgomery & Murphy, 2009). Riley, James, Gregory, 

Dingle and Cadger (2001) propose that approximately 85% of those individuals who 

attend rave events and consume ecstasy also use alcohol concurrently. This therefore 

makes it difficult for researchers to conclude that effects found in concurrent 

alcohol/ecstasy users are entirely attributable to ecstasy use alone (Gouzoulis-

Mayfrank & Daumann, 2006). The aim of the current Chapter is to investigate the 
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effects of short- and long-term concurrent alcohol and ecstasy use on PM 

performance.  

 

   The use of alcohol has been linked to both acute and long-term deficits in PM. 

In one particular study, Leitz, Morgan, Bisby, Rendell & Curran (2009) used the 

Virtual Week task (Rendell & Craik, 2000; see section 5.2 for a full description of this 

task) and found that the acute effects of alcohol intoxication are detrimental to 

performance on regular and irregular event- and time-based PM tasks. Similar 

findings were reported by Paraskevaides et al. (2010) who found that acute alcohol 

consumption impaired PM performance for event-based PM tasks on the Virtual 

Week task. More recently, Montgomery, Ashmore and Jansari (2011) used The 

JAAM assessment (Jansari et al., 2004; see section 5.2 for a full description of this 

task) and found that a low dose of alcohol (0.4g/kg alc) impaired PM performance on 

event-and time-based PM tasks. Paraskevaides et al. (2010) argue that alcohol use 

makes it difficult for people to combine fragments of the past from episodic memory 

in order to form a new combination of episodic future thoughts (a form of thinking 

whereby an individual projects an image of themselves into the future to pre-

experience an event). 

 

 Aside from the acute effects of alcohol use on PM performance, deficits in this 

aspect of everyday memory have been observed in currently abstinent individuals. For 

example, a number of studies claim that high dose alcohol users report more errors in 

their short- and long-term PM abilities compared to low dose alcohol users 

(Heffernan & Bartholomew, 2006; Heffernan et al., 2002; Heffernan et al., 2006). 

Despite these findings, some studies have failed to show PM deficits in alcohol users. 

For example, Heffernan et al. (2010a) did not find evidence of self-reported PM 

lapses in teenage binge drinkers. One possible explanation for the discrepancy 

between the findings is that Heffernan and colleagues (2010a) screened out 

individuals who reported the use of illicit drugs known to adversely affect PM 

performance (i.e., cannabis and ecstasy). Previous studies where self-reported deficits 

in PM were found (Heffernan & Bartholomew, 2006; Heffernan et al., 2002; 

Heffernan et al., 2006) had not controlled for this factor. As a result these studies may 

merely reflect an effect of alcohol, cannabis and/or ecstasy use on PM. Moreover, 
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these findings may represent a cocktail effect of licit (alcohol) and illicit (cannabis, 

cocaine or ecstasy) substance use on PM performance. 

 

 Alcohol-related deficits in PM have also been observed on laboratory-based 

measures. Heffernan et al. (2010a) investigated PM performance in teenage binge 

drinkers using the Prospective Remembering Video Procedure (PRVP). The PRVP 

involves a 10-minute video clip of footage from a shopping centre. Participants are 

shown a range of shopping related material including shop fronts, passersby and retail 

stores. Prior to watching the video-clip, participants are provided with instructions 

relating the particular action/items associated with specific locations (e.g., when you 

reach the store Dixons, note how much a Playstation 2 costs). Participants are 

required to (prospectively) recall and note each location action/item association on a 

response sheet. There are 18 location action/item associations in total and one point is 

awarded for each association correctly recalled. Heffernan and colleagues  (2010a) 

found that excessive drinking in teenagers was linked to poor PM performance on the 

PRVP. In addition, the increased number of units of alcohol consumed each week 

correlated significantly with worse PM performance on the PRVP. This finding is 

particularly significant in that it might show a dose-related effect of alcohol use on 

PM performance. More recently, Griffiths et al. (2012) investigated PM in individuals 

with alcohol dependence. PM performance was compared in 24 individuals with 

alcohol dependence (who had completed a 7-10 day assisted withdrawal programme 

to eliminate possible effects of acute intoxication) and 24 social drinkers with no self-

reported history of alcohol dependence. The Virtual Week task (Rendell & Craik, 

2000) was used as an objective measure of PM and individuals with alcohol 

dependence performed significantly worse than social drinkers on event-based PM 

tasks. Moreover, event-based PM performance was significantly negatively correlated 

with level of alcohol dependence and the number of units of alcohol consumed each 

week. These findings are consistent with Heffernan et al. (2010a) and lend support to 

the proposition that higher doses of alcohol are related to poorer performance on PM 

tasks.  

 

 The exact mechanisms which underpin PM deficits in alcohol users are 

unclear. However, one possible reason is that alcohol inhibits prefrontal lobe 

functioning (Wendt & Risberg, 2001). This is significant given that the prefrontal 
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region is implicated in PM tasks (Momennejad & Haynes, 2012; Simons et al., 2006). 

Evidence from animal studies shows that chronic alcohol consumption reduces the 

number of cholinergic neurons in the basal forebrain. This change may in turn lead to 

reduced hippocampal function (Garcia Moreno et al., 2001).  Further data from 

animal studies shows that binge doses of alcohol leads to a disruption in the growth of 

new brain cells which ultimately induces a long-term deficit in hippocampal structure 

and functioning (Herrera et al., 2003; Nixon & Crews, 2002). This is important in the 

context of the present thesis in that hippocampal functioning is necessary for normal 

functioning on PM tasks (Adda et al., 2008; Martin et al., 2007). As such, this 

abnormality may account for some of the PM deficits that have been observed in 

alcohol users. Alcohol use is also suggested to be damaging to cerebral white matter 

which is involved in binding important regions together in the brain. These regions 

include the frontal and the limbic systems which have been shown to be fundamental 

in forming new memories (Oscar-Berman & Marinkovic, 2007). Once again, this 

might have important implications for PM performance. For example, if an individual 

is unable to form memories for a future intention (i.e., a PM task), their PM 

performance is likely to be impaired. Alternative explanations might argue that 

alcohol-related impairments in PM are mediated by neurotransmitters such as 5-HT 

which is known to be important for mnemonic processes (Hunter, 2000; Spoont, 

1992).  

 

 Overall, there is a wide body of research that suggests that excessive alcohol 

consumption is associated with self-reported and laboratory-based deficits in PM. 

There is also substantial evidence, which indicates that the use of ecstasy can impair 

PM performance (Hadjiefthyvoulou et al 2011a; 2011b). This literature is documented 

in Chapter 6 (section 6.2). However, one avenue of investigation which remains to be 

thoroughly explored is the effect of concurrent alcohol and ecstasy use on PM 

performance. This is an important topic of investigation given that the co-abuse of 

alcohol and ecstasy is suggested to enhance ecstasy-mediated long-term neurotoxicity 

(Izco et al., 2007).  

 

  In humans, the concurrent use of alcohol and ecstasy has been associated with 

increased alertness (Dumont et al., 2010), impaired psychomotor function (Dumont et 

al., 2010), poor general health, confusion, moodiness (Fisk, Murphy, Montgomery & 
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Hadjiefthyvoulou, 2011) and enhanced feelings of euphoria (relative to the use of 

ecstasy alone) (Hernandez-Lopez et al., 2002). With regard to acute intoxication, the 

co-administration of alcohol and ecstasy does not appear to increase deficits on 

executive, memory, psychomotor, visuomotor, visuospatial or attention functions 

beyond that of the use of ecstasy alone (Dumont et al., 2008). Nonetheless, a 

significant limitation of this study was that the doses of alcohol and ecstasy that were 

investigated were not representative of the typical doses which are consumed by 

concurrent alcohol and ecstasy users (Cassel, Hamida & Jones, 2008). Further 

harmful alcohol-ecstasy interactions have been found. Upreti, Eddington, Moon, Song 

& Lee (2009) found that the co-administration of ethanol and MDMA in rats 

increased hepatocellular damage to levels that were not found following the 

administration of ethanol or MDMA alone.  

 

  A number of animal-based studies have linked concurrent alcohol and ecstasy 

consumption to cognitive impairments including problems in memory and learning 

(Hernandez-Rabaza et al., 2010;  and Vidal Infer, Aguilar, Miñarro & Rodriguez-

Arias, 2012). Hernandez-Rabaza et al. (2010) investigated the effects of repeated 

exposure to ecstasy, which was either given alone or together with ethanol, on 

memory performance. Two weeks after a specific drug-treatment period (ecstasy 

alone, alcohol and ecstasy together or control), rats were trained in a radial arm maze. 

The radial arm maze is a laboratory task that involves different aspects of spatial and 

working memory, loading heavily on the hippocampus and prefrontal cortex, 

respectively. Crucially, only rats who had received alcohol and ecstasy concurrently 

displayed long-term deficits in spatial orientation and working memory performance.  

It is important to note that the concurrent ethanol and ecstasy effect was observed at 

doses of ethanol and ecstasy that did not impair cognitive ability when given 

separately. Thus, it appears that the risk of developing visuo-spatial and working 

memory impairments is heightened when ethanol and ecstasy are administered 

together. These deficits were related to neuronal loss and microgliosis in the dentate 

gyrus region of the hippocampus. The impairment that was observed in relation to 

working memory performance is of particular interest in light of research that has 

associated PM performance with problems with the central executive. These findings 

are also important given the involvement of the hippocampus (Adda et al., 2008; 

Martin et al., 2007) and the prefrontal cortex (Momennejad & Haynes, 2012; Simons, 
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et al., 2006) in PM tasks.  

 Vidal Infer et al. (2012) reported similar findings in mice. Adolescent mice 

were administered with either ethanol and MDMA, ethanol alone, MDMA alone or a 

saline control solution during a treatment period which simulated a binge pattern 

characteristic of that seen in human adolescents and young adults. At 64 days post-

treatment, the mice were initiated into the Hebb-Williams maze. The Hebb-Williams 

maze is a complex spatial learning test which is used to detect abnormalities in 

cognitive functioning. A number of different mazes are used, each of varying 

difficulty. The mice must navigate from a wet “start” box to a dry “goal” box as 

quickly as possible. Acquisition criterion scores (completion of the task in under 60 

seconds for two consecutive trials), total latency scores (the sum of the latencies in all 

trials for each individual maze), latency for reaching the goal on trial 8 and error 

scores (error scores were awarded when mice entered an error zone in each maze) 

were all recorded. The authors found that concurrent ethanol and MDMA 

administration in adolescent mice had long-lasting effects on learning and memory. 

Mice that received ethanol and MDMA both alone and together took longer to reach 

the end goal on the Hebb-Williams maze compared to saline treated counterparts. In 

addition, mice that were treated with ethanol alone or alongside MDMA recorded 

longer latency scores and also needed more trials to reach the acquisition criterion 

score compared to saline treated counterparts. Interestingly, MDMA was linked with 

a decrease in dopamine striatal volume and this effect was accentuated by the 

concurrent use of alcohol. Impairments of the dopamine system which result from the 

concurrent use of alcohol and ecstasy can have important implications for PM 

performance. Goto and Grace (2008) explain that dopamine is necessary for 

transporting hippocampal-based retrospective information to the prefrontal cortex and 

in the further processing of information to effect preparation of future intentions. 

These links between dopamine and PM-related brain regions increase the likelihood 

that the concurrent use of alcohol and ecstasy may impair PM performance to a 

greater degree that alcohol and/or ecstasy use alone.  

 

To date, no research has attempted to directly investigate the effects of concurrent 

alcohol and ecstasy use on cognitive performance. The present investigation used a 

timeline technique similar to that adopted in Chapter 7 (also see Bedi & Redman, 
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2008b; Medina et al., 2005) to investigate effects of concurrent alcohol and ecstasy 

use on PM performance. In addition providing an estimate of typical dose of ecstasy 

per session and the frequency of use (number of times per week, month, etc), 

participants were asked to provide an estimate of the typical number of units of 

alcohol consumed per session when using the drug. This was done for each year that 

an individual had used ecstasy (Study 1) and for each month during the 12 months 

prior to the test-session (Study 2). These data were then be used to calculate the 

average number of units of alcohol that were typically consumed while taking ecstasy 

in a representative session. These averages were computed long term, i.e., averaged 

annually over the entire period of use, and short term, i.e., averaged monthly over the 

previous 12 months.  Median splits were used to dichotomise these long- (Study 1) 

and short-term (Study 2) measures of concurrent alcohol use. Two concurrent alcohol 

user groups were created in Study 1 [long-term high alcohol (LTHA) ecstasy users 

and long-term low alcohol (LTLA) ecstasy users] and in Study 2 [short-term high 

alcohol (STHA) ecstasy users and short-term low alcohol (STLA) ecstasy users].  A 

control group of non-ecstasy users was included in the analyses (see Section 8.2 and 

8.4 for full description). Groups were compared on a range of demographical and 

background variables including age, intelligence, years of education, daytime 

sleepiness (Epworth Sleepiness Scale), gender, cigarette and alcohol consumption, 

arousal, anxiety and depression. Study 1 investigates the extent to which long-term 

concurrent alcohol and ecstasy use (typical dose of ecstasy per session averaged over 

the entire period of use) can predict PM performance. Study 2 explores the extent to 

which short-term concurrent alcohol and ecstasy use (average typical dose of ecstasy 

per session over the previous 12 months) is associated with PM deficits. 
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Study 1 

8.2 Method 

Participants 

Twenty long-term concurrent high-alcohol ecstasy users (LTHA; 13 males), 20 long-

term concurrent low-alcohol ecstasy users (LTLA; 13 males) and 44 non-ecstasy 

users (16 males) took part in the investigation (for demographic variables, see Table 

8.1). The gender composition did differ significantly between the groups,  

χ2(2)=6.87, p=.03. There were more females (n=28) than males (n=16) in the non-

ecstasy users group. There were more males (n=13) than females (n=7) in the LTHA 

ecstasy user group. There were also more males (n=13) than females (n=7) in the 

LTLA ecstasy users group. Participants were recruited via direct approach to 

university students. All participants were university students attending Liverpool John 

Moores University (LJMU) or the University of Central Lancashire (UCLAN). None 

had participated in the studies reported in the previous Chapter. Participants were 

requested to refrain from ecstasy use for at least 7 days and ideally 10 days prior to 

test-session (the mean period of abstinence for LTHA ecstasy users was 35.94 weeks, 

median=10.00 weeks; the mean period of abstinence for LTLA ecstasy users was 

23.08 weeks, median=4.00 weeks). Participants were also requested not to use any 

other illicit drugs for at least 24 hours and ideally for 7 days prior to testing. The 

present study was approved by the ethics committees of the University of Central 

Lancashire and Liverpool John Moores University in accordance with the guidelines 

of the British Psychological Society. 

 

Materials 

Patterns of ecstasy and other drug use were obtained via a background drug use 

questionnaire (Montgomery et al., 2005, see Appendix 1 for a copy of this 

questionnaire). For the major illicit drugs, the same measures of long-term drug use 

(annual average dose per session and frequency of use) were collected as indicated in 

the previous Chapter. In addition, estimates of the typical dose of alcohol consumed 

in a single session concurrently with ecstasy were recorded for each year since ecstasy 

use commenced. The mean of these annual estimates was taken to produce an overall 

long-term average representing the typical number of units of alcohol consumed in a 

single session along with ecstasy. The current use of cigarettes and alcohol were also 
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assessed. The Raven’s Progressive Matrices test (Raven et al., 1998) was used as a 

measure of fluid intelligence. Daytime sleepiness was measured via the Epworth 

Sleepiness Scale (Johns, 1991; see Empirical Chapter 1, section 7.2 for a detailed 

description of this measure. See Appendix 2 for a copy of this questionnaire).  

Four laboratory measures of PM were administered including the F1 event-based PM 

task (Hadjiefthyvoulou et al., 2011a), the Long Term recall PM task 

(Hadjiefthyvouolou et al., 2011a), the fatigue PM task (Hadjiefthyvoulou et al., 

2011a) and the Cambridge PM test (CAMPROMPT; Wilson et al., 2005). See 

Chapter 5, section 5.3 for a full description of this measure. A computer using MS-

DOS was used for the F1 event-based PM task. Full descriptions of all laboratory 

measures of PM can be found in Chapter 5.   

 

Procedure 

Participants were informed of the general purpose of the experiment and verbal 

informed consent was obtained. Background questionnaires assessing age, years of 

education, general health and other relevant lifestyle variables (arousal, anxiety and 

depression, Daytime sleepiness) were administered first and in a counterbalanced 

order. The Raven’s Progressive Matrices task, the F1 event-based PM task, the Long-

term recall PM task and the CAMPROMPT were then administered in a 

counterbalanced order. The Karolinska fatigue PM task was administered throughout 

the test-session.  Finally, the background drug use questionnaire was administered.   

 

All tests were administered under laboratory conditions. Participants were fully 

debriefed and given the opportunity to ask any questions about the study prior to 

leaving the laboratory. Participants were paid £20 in store vouchers for their 

participation.  

 

Design/Statistics 

A median split was used to dichotomise long-term concurrent alcohol and ecstasy use. 

For each year, the typical number of units of alcohol consumed in a single session 

whilst using ecstasy was recorded. The resulting figures were averaged over the entire 

period that an individual had used alcohol and ecstasy concurrently (intervening years 

during which the drug was not used are coded as zero) producing an annual average 
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and thus create two user groups (LTHA ecstasy users and LTLA ecstasy users). The 

median for long-term concurrent alcohol and ecstasy use was 11.03 units. Participants 

who, on average, consumed 11.03 or more units of alcohol per session of ecstasy use 

were classified as LTHA ecstasy users and those that consumed less than 11.03 units 

of alcohol per session of ecstasy use were classified as LTLA ecstasy users. The high 

and low alcohol groups together with a non-ecstasy user group constituted the three 

levels of the between participant IV. 

 All measures were analysed using a between-participant design with user 

group as the independent variable (LTHA ecstasy users, LTLA ecstasy users and non-

ecstasy users). Age, intelligence, years of education, cigarette and alcohol 

consumption, Epworth Sleepiness Scale Score, arousal, anxiety and depression were 

included as background measures. Any group differences on these background 

variables were investigated using one-way ANOVA. Total ecstasy, cannabis and 

cocaine consumption, long-term average dose of ecstasy, cannabis and cocaine per 

session, long-term concurrent alcohol and ecstasy use (the typical number of units of 

alcohol consumed per session of ecstasy use) long-term (average weekly consumption 

averaged over lifetime for ecstasy, cannabis and cocaine) frequency of ecstasy, 

cannabis and cocaine use, and the duration of ecstasy, cannabis and cocaine use were 

included as background drug use variables.  

Data for total lifetime ecstasy, cannabis and cocaine use, long-term average dose of 

ecstasy, cannabis and cocaine per session, long-term concurrent alcohol and ecstasy 

use, the duration of ecstasy, cannabis and cocaine use, the long-term average 

frequency of ecstasy, cannabis and cocaine use and the current frequency of ecstasy, 

cannabis and cocaine use were not normally distributed. This was characterised by 

skew or kurtosis associated with z values exceeding 3.29, p<.001. As a result non-

parametric analyses were used (Tabachnick & Fidell, 2001).   
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8.3 Results 

Demographical and Background Variables 

The scores for the demographical variables and background variables of age, 

intelligence, years of education, cigarette and alcohol consumption, Epworth 

Sleepiness Scale score, arousal, anxiety and depression are set out in Table 8.1. 

LTHA ecstasy users, LTLA ecstasy users and non-ecstasy users were compared on a 

number of background drug use variables and these data are shown in Table 8.2. 
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Table 8.1 Demographical variables of long-term high alcohol ecstasy users, long-term low alcohol ecstasy users and non-ecstasy users. 

**p<.01 

 

 LTHA ecstasy users LTLA ecstasy users Non-ecstasy users p 

 Mean (SD) n Mean (SD) n Mean (SD) n  

Age (years) 21.80 (1.70) 20 21.55 (2.39) 20 20.09 (2.12) 44 .004** 

Raven’s Progressive Matrices  
(max 60) 

44.75 (6.25) 20 46.38 (4.66) 16 44.45 (7.98) 42 .64 

Years of education 16.03 (1.74) 20 15.53 (1.93) 19 14.55 (1.81) 42 .009** 

Alcohol (units per week) 23.59 (22.04) 17 10.31(8.63) 18 9.96 (12.11) 42 .004** 

Cigarettes per day 5.91 (4.10) 17 6.00 (3.74) 8 6.95 (2.93) 8 .82 

Epworth Sleepiness  
Score 

6.25 (2.92) 20 8.73 (3.93) 17 6.73 (3.07) 40  .08 

Arousal  18.94 (5.62) 18 19.47 (3.93) 17 19.62 (3.80) 39 .86 

Anxiety  10.94 (2.90) 18 13.00 (3.84) 17 11.26 (2.83) 38 .10 

Depression 11.89 (2.70) 18 13.35 (3.10) 17 12.54 (2.49) 39 .28 
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One-way ANOVA revealed there was a significant age difference between LTHA 

ecstasy users, LTLA ecstasy users and non-ecstasy users. Tukey’s post hoc test 

showed that non-ecstasy users were significantly younger than both LTHA ecstasy 

users and LTLA ecstasy users. There was no significant difference between LTHA 

ecstasy users and LTLA ecstasy users in terms of age. 

 The group difference was significant difference between LTHA ecstasy users, 

LTLA ecstasy users and non-ecstasy users in terms of years of education. Tukey’s 

post hoc test showed that non-ecstasy users had studied for a significantly shorter 

period of time compared to LTHA ecstasy users. There was no significant difference 

between non-ecstasy users and LTLA ecstasy users or LTHA ecstasy users and LTLA 

ecstasy users in terms of number of years of education.  

There was also a significant difference in the typical number of units of alcohol 

consumed per week between LTHA ecstasy users, LTLA ecstasy users and non-

ecstasy users. Tukey’s post hoc test showed that LTHA ecstasy users consumed 

significantly more alcohol per week compared to LTLA ecstasy users and non-ecstasy 

users. There was no significant difference in the typical number of units of alcohol 

consumed per week by LTLA ecstasy users and non-ecstasy users.  A series of one-

way ANOVAs revealed that the groups did not differ significantly in terms of 

intelligence, cigarette consumption, Epworth Sleepiness Scale score, arousal, anxiety 

and depression (see Appendix 4 for detailed statistical analyses related to background 

variables). 
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Table 8.2 Background drug use variables of long-term high alcohol ecstasy users, long-term low alcohol ecstasy users and non-ecstasy users. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

*p<.05, ***p<.001 

 LTHA ecstasy users LTLA ecstasy users Non-ecstasy users p 

 Median Min. Max. Int. Range n Median Min. Max. Int. Range n Median Min. Max.  Int. Range n  
Total prior consumption                 

Ecstasy (tablets) 93.50 6.00 686.00 352.75 20 32.00 1.00 1078.00 117.25 20 - - - - - .04* 
Cannabis (joints) 767.00 2.00 21240.00 4863.00 19 1062.00 1.00 5128.00 1523.00 14 237.00 14.00 1888.00 1644.25 8 .48 
Cocaine (lines) 120.50 4.00 1288.00 329.25 18 80.00 6.00 994.00 415.17 16 23.50 1.00 46.00 - 2 .55 
                 
Long-term average dose per session                 
Ecstasy  3.00 .67 6.67 1.72 20 2.00 .86 4.50 1.93 20      .04* 
Cannabis 1.90 .60 10.00 5.04 18 1.67 .31 5.25 .79 15 1.63 .40 4.00 1.25 12 .41 
Cocaine 4.67 1.00 20.00 3.70 19 3.25 .08 7.67 2.14 15 - - - - 1 .02* 
                 
                 
Alcohol consumed concurrently with 
ecstasy (units) 

19.96 11.25 35.00 10.00 20 6.01 .00 10.08 5.55 20      <.001*** 

                 
Duration of use (number of weeks)                 
Ecstasy 168.00 28.00 412.00 142.25 20 188.00 .00 468.00 293.32 18 - - - - - 1.00 
Cannabis 272.50 128.00 568.00 194.54 18 267.88 56.00 467.88 147.00 15 121.50 14.00 472.00 223.92 12 .04* 
Cocaine 207.00 32.00 361.00 177.00 18 159.14 .00 488.00 228.00 13 78.00 4.00 152.00 - 2 .31 
 
Long-term frequency of use (number 
of occasions of use per week) 

                

Ecstasy  .17 .04 .72 .30 20 .07 .02 1.00 .22 20 - - - - - .20 
Cannabis  1.31 .02 7.00 4.23 18 .23 .00 7.00 2.66 15 .33 .01 3.33 2.09 12 .19 
Cocaine .10 .02 1.33 .14 19 .19 .01 10.00 .40 15 - - - - 1 .39 



 

 

148 

Inferential statistics for those outcomes in Table 8.2 that were not significant are 

reported in Appendix 4. Similarly all other pairwise differences that are not explicitly 

referred to below are non-significant and the inferential statistics are presented in 

Appendix 4. 

The data in Table 8.2 shows that LTHA ecstasy users had consumed more ecstasy 

tablets over their lifetime compared to LTLA ecstasy users with Mann-Whitney U test 

showing that this effect was statistically significant, U=123.50, p=.04. In relation to 

average typical dose per session, LTHA ecstasy users typically consumed more 

ecstasy tablets compared to LTLA ecstasy users. Once again, this group difference 

was statistically significant, U=125.50, p=.04.  Consistent with the manner in which 

the groups were constructed, in relation to long-term concurrent alcohol and ecstasy 

use, the median data in Table 8.2 shows that LTHA ecstasy users consumed 

significantly more alcohol per session of ecstasy use relative to LTLA ecstasy users, 

U=.00, p<.001. While LTHA ecstasy users had used ecstasy more recently than 

LTLA ecstasy users, this trend was not significant. Group differences on the duration 

of ecstasy use, long-term average frequency of ecstasy use were less evident and were 

also non-significant.   

  Table 8.2 shows that LTHA ecstasy users and LTLA ecstasy users had been 

using cannabis for a similar duration of time. Both concurrent alcohol and ecstasy 

groups had been using cannabis for longer than non-ecstasy users. Kruskal-Wallis test 

revealed that the overall group difference was significant, χ2(2)=6.24, p=.04. Post hoc 

Mann-Whitney U tests with full Bonferroni correction (adjusted alpha level=.017) 

showed that LTHA ecstasy users had used cannabis for a significantly longer duration 

of time compared to non-ecstasy users, U=50.00, p=.01. Although it is clear from 

Table 8.2 that lifetime cannabis use and the long-term average frequency of cannabis 

use varied substantially between the groups, these trends were not statistically 

significant. Group differences on long term average cannabis dose and period of 

abstinence were less evident and again non-significant 

For the cocaine use measures listed in Table 8.2, since there were only one or two 

non-ecstasy cocaine users, comparisons were restricted to the two concurrent alcohol 

and ecstasy user groups. On this basis, the median data shows that LTHA ecstasy 

users consumed more cocaine per session and had used cocaine more recently than 
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LTLA ecstasy users. Mann-Whitney U tests revealed that both group differences were 

significant, U=77.00, p=.02, U=62.50, p=.014, respectively. Although LTHA ecstasy 

users had higher levels of total lifetime cocaine consumption and had been using 

cocaine for longer that LTLA ecstasy users, these trends were not significant.  
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Laboratory-based measures 
Outcomes for the laboratory-based measures of PM for LTHA ecstasy users, LTLA 
ecstasy users and non-ecstasy users are summarised in Table 8.3. 
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Table 8.3 Means, Standard Deviations (SD), Median (Med.), Minimum (Min.), Maximum (Max.) and Interquartile Range (Int. Range) 
scores for long-term high alcohol ecstasy users, long-term low alcohol ecstasy users and non-ecstasy users on the F1 event-based PM 
task, the long-term delayed recall task, the Karolinska fatigue PM task and the Cambridge PM test. 

***p<.001 Note. n for all groups was variable due to missing data. Eighteen long-term low alcohol ecstasy users completed the F1 event-based PM task. Only 19 long-term high alcohol ecstasy users 
completed the long-term delayed recall PM task. Nineteen long-term low alcohol ecstasy users and 42 non-ecstasy users completed the Karolinska fatigue PM task. Eighteen long-term high alcohol ecstasy 
users, 16 long-term low alcohol ecstasy users and 40 non-ecstasy users completed the Cambridge PM test.   

 LTHA ecstasy users n=20 LTLA ecstasy users n=20 Non-ecstasy users n=44 p 

 Mean (SD) Median Min. Max. Int. 
Range 

Mean (SD) Median Min. Max. Int. 
Range 

Mean (SD) Median  Min. Max.     Int. 
Range 

 

F1 event-based PM task                 
Trial 1 Errors .45 (1.00) .00 .00 3.00 .00 .61 (1.09) .00 .00 3.00 1.25 .14 (.65) .00 .00 3.00 .00 .05 
Trial 2 Errors .15 (.67) .00 .00 3.00 .00 .33 (.94) .00 .00 3.00 .00 .00 (.00) .00 .00 .00 .00 .11 
Trial 3 Errors .10 (.31) .00 .00 3.00 .00 .28 (.83)  .00 .00 3.00 .00 .05 (.22) .00 .00 1.00 .00 .58 
Total Errors .70 (1.53) .00 .00 6.00 1.00 1.22 (2.32) .00 .00 8.00 2.00 .19 (.67) .00 .00 3.00 .00 .06 
                 
Long-term delayed recall 
PM task 

                

Total number of recall tests 
returned (max of 3) 

.95 (1.18) .00 .00 3.00 2.00 .70 (1.17) .00 .00 3.00 2.00 1.41 (1.42)  .00 .00 3.00 3.00 .11 

                 
Karolinska fatigue PM task                 
Percentage completed in first 
half of test-session 

85.04 (16.29) 84.42 50.00 100.00 23.75 84.91 (14.71) 80.00 60.00 100.00 20.00 91.31 (16.00) 100.00 20.00 100.00 20.00 .09 

Percentage completed in 
second half of test-session  

40.75 (34.61) 36.67 .00 100.00 58.34 44.74 (31.90) 40.00 .00 100.00 55.00 79.92 (27.91) 100.00 .00 100.00 27.09 <.001*** 

Percentage completed overall 
 
 

60.46 (23.36) 56.95 30.00 100.00 33.43 64.50 (20.48) 60.00 30.00 100.00 30.00 86.09 (17.53) 90.45 27.27 100.00 21.25 <.001*** 

Cambridge PM test                  
Event-based PM performance 15.00 (3.90) 16.00 2.00 18.00 4.50 12.63 (3.70) 13.00 4.00 18.00 5.50 16.95 (1.97) 18.00 8.00 18.00 2.00 <.001*** 
Time-based PM performance 13.56 (4.15) 15.00 4.00 18.00 4.50 13.06 (3.53) 14.00 4.00 18.00 4.75 17.15 (1.97) 18.00 8.00 18.00 1.50 <.001*** 
Overall PM performance 28.56 (6.65) 28.00 12.00 36.00 10.00 25.69 (6.65) 28.00 8.00 34.00 6.00 34.15 (3.28) 36.00 20.00 36.00 2.00 <.001*** 
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The distributions of the data for Trial 1 errors (Skew, z=8.94 and Kurtosis, z=7.73), 

Trial 2 errors (Skew, z=18.91 and Kurtosis, z=45.39), Trial 3 errors (Skew, z=18.20 

and Kurtosis, z=49.10) and total errors (Skew, z=12.09 and Kurtosis, z=21.31) on the 

F1 event-based PM task, for the Karolinska fatigue PM task (proportion of Karolinska 

fatigue questionnaires completed in the first half of the test-session only, Skew,    

z=-5.73 and Kurtosis, z=5.87) and for the CAMPROMPT (event-based PM total, 

Skew, z=-6.76 and Kurtosis, z=6.96, time-based PM total, Skew, z=-5.78, Kurtosis, 

z=3.91, overall PM, Skew, z=-5.86, Kurtosis, z=4.66)  deviated significantly from 

normality. This was characterised by the skew and/or kurtosis z scores exceeding 

3.29, p<.001 (Tabachnick & Fidell, 2001). Group differences were investigated via 

Kruskal-Wallis test with follow-up post hoc Mann-Whitney U tests (with full 

Bonferroni correction, adjusted alpha level=.017).  

  Where the distributions were normal, one-way ANOVAs were used to 

investigate group differences on two aspects of the Karolinska fatigue PM task 

(proportion of Karolinska fatigue questionnaires completed in the second half of the 

test-session and overall proportion of Karolinska fatigue questionnaires completed 

during the first and second half of the test-session) and the long-term delayed recall 

PM task. ANOVAs were followed up with Helmert contrasts and pairwise 

comparisons.  

Examination of the data in Table 8.3 reveals that LTHA ecstasy users and 

LTLA ecstasy users made more errors than non-ecstasy users on all trials of the F1 

event-based PM task. In addition, LTLA ecstasy users made more errors than LTHA 

users on all trials of the F1 event-based PM task. There was no significant difference 

in the number of errors that were made on trial 1 of the F1 event-based PM task by 

LTHA ecstasy users, LTLA ecstasy users and non-ecstasy users, χ2(2)=5.97, p=.051. 

However, this effect did approach statistical significance. LTLA ecstasy users made 

significantly more errors than non-ecstasy users on trial 1 of the F1 event-based PM 

task, U=294.00, p=.015   There was no significant difference in the number of errors 

that were made on trial 1 of the F1 event based PM task between LTHA ecstasy users 

and non-ecstasy users, U=358.00, p=.07 or LTHA ecstasy users and LTLA ecstasy 

users, U=166.50, p=.70.  
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There was no significant difference between LTHA ecstasy users, LTLA 

ecstasy users and non-ecstasy users in terms of the numbers of errors that were made 

on trial 2 χ2(2)=4.37, p=.11 and trial 3, χ2(2)=1.08, p=.58 of the F1 event-based PM 

task. In addition, no significant difference was found in total errors made on the F1 

event-based PM task by LTHA ecstasy users, LTLA ecstasy users and non-ecstasy 

users, χ2(2)=5.72, p=.06. Nonetheless, this effect did approach statistical significance. 

Post hoc tests showed that there was no significant difference between LTHA ecstasy 

users and non-ecstasy users, U=353.00, p=.10, LTLA ecstasy users and non-ecstasy 

users, U=284.00, p=.019 or LTHA ecstasy users and LTLA ecstasy users, U=162.00, 

p=.61 in terms of the overall errors made on F1 event-based PM task.  

With regard to long-term time-based PM performance, the data in Table 8.3 

reveals that non-ecstasy users returned more delayed recall test sheets (long-term 

delayed recall PM task) than both LTHA ecstasy users and LTLA ecstasy users. 

LTHA ecstasy users also returned more delayed recall test sheets compared to LTLA 

ecstasy users. One-way ANOVA revealed that there was no significant difference in 

the number of delayed recall test sheets returned by LTHA ecstasy users, LTLA 

ecstasy users and non-ecstasy users, F(2,80)=2.52, p=.11, partial eta squared=.05. 

In relation to more short-term time-based PM performance, inspection of the 

data in Table 8.3 shows that compared to LTHA ecstasy users and LTLA ecstasy 

users, non-ecstasy users successfully completed a greater number of Karolinska 

fatigue questionnaires during the first and second half of the test-session. Overall 

performance on the Karolinska fatigue questionnaire was better for non-ecstasy users 

compared to LTHA ecstasy users and LTLA ecstasy users. LTHA ecstasy users and 

LTLA ecstasy users completed a similar proportion of Karolinska fatigue 

questionnaires during the first and second half of the test-session. In addition, overall 

performance on the Karolinska fatigue PM task was comparable between LTHA 

ecstasy users and LTLA ecstasy users.  

 No significant difference was found between LTHA ecstasy users, LTLA 

ecstasy users and non-ecstasy users in terms of the proportion of Karolinska fatigue 

questionnaires that were completed during the first half of the test-session, χ2(2)=4.87, 

p=.09. However, this effect did approach statistical significance. There was no 

significant difference in the proportion of Karolinska fatigue questionnaires 
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completed during the first half of the test-session by LTHA ecstasy users and non-

ecstasy users, U=319.50, p=.08, LTLA ecstasy users and non-ecstasy users, 

U=290.50, p=.05 or LTHA ecstasy users and LTLA ecstasy users, U=184.50, p=.88. 

 One-way ANOVA revealed that there was a significant difference in the 

proportion of Karolinska fatigue questionnaires completed during the second half of 

the test-session by LTHA ecstasy users, LTLA ecstasy users and non-ecstasy users, 

F(2,78)=15.05, p<.001, partial eta squared=.28. Helmert contrast showed that 

compared to non-ecstasy users, the combined group of LTHA ecstasy users and 

LTLA ecstasy users completed a significantly lower proportion of Karolinska fatigue 

questionnaires during the second half of the test-session, p<.001. A further Helmert 

contrast revealed that there was no significant difference in the proportion of 

Karolinska fatigue questionnaires completed during the second half of the test-session 

by LTHA ecstasy users and LTLA ecstasy users, p=.68. Pairwise comparisons 

adjusted for full Bonferroni correction (significant alpha level=.017) revealed that 

non-ecstasy users (M=79.92, SD=27.91) competed a significantly higher proportion 

of Karolinska fatigue questionnaires during the second half of the test-session 

compared to LTHA ecstasy users (M=44.75, SD=34.61), p<.001 and LTLA ecstasy 

users (M=40.75, SD=31.90), p<.001. There was no significant difference in the 

proportion of Karolinska fatigue questionnaires completed during the second half of 

the test-session by LTHA ecstasy users and LTLA ecstasy users, p=.68. 

  One-way ANOVA showed that there was a significant difference between 

LTHA ecstasy users, LTLA ecstasy users and non-ecstasy users in terms of the 

overall completion rate of Karolinska fatigue questionnaire, F(2,78)=14.07, p<.001, 

partial eta squared=.27. Helmert contrast showed that non-ecstasy users completed a 

significantly greater proportion of Karolinska fatigue questionnaires overall compared 

to the combined group of LTHA ecstasy users and LTLA ecstasy users, p<.001. A 

further Helmert contrast showed that there was no significant difference between 

LTHA ecstasy users and LTLA ecstasy users in terms of the proportion of Karolinka 

fatigue questionnaires completed overall, p=.53. Pairwise comparisons adjusted for 

full Bonferroni correction (significant alpha level=.017) revealed that non-ecstasy 

users (M=86.09, SD=17.53) competed a significantly higher proportion of Karolinska 

fatigue questionnaires overall compared to LTHA ecstasy users (M=60.46, 

SD=23.36), p<001 and LTLA ecstasy users (M=64.50, SD=20.48), p<.001. There was 
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no significant difference in the proportion of Karolinska fatigue questionnaires 

completed overall by LTHA ecstasy users and LTLA ecstasy users, p=.53. 

 Examination of the data in Table 8.3 shows that non-ecstasy users 

successfully completed more event-based PM tasks on the CAMPROMPT compared 

to LTHA ecstasy users and LTLA ecstasy users. LTHA ecstasy users also completed 

more event-based PM tasks on the CAMPROMPT than LTLA ecstasy users. There 

was a significant difference between LTHA ecstasy users, LTLA ecstasy users and 

non-ecstasy users in terms of event-based PM performance on the CAMPROMPT, 

χ2(2)=23.99, p<.001. Non-ecstasy users were significantly better at completing event-

based PM tasks on the CAMPROMPT than LTHA ecstasy users, U=222.50, p=.010 

and LTLA ecstasy users, U=76.50, p<.001. No significant difference was found 

between LTHA ecstasy users and LTLA ecstasy users in terms of event-based PM 

performance on the CAMPROMPT, U=80.00, p=.03 

  Table 8.3 reveals that non-ecstasy users successfully completed more time-

based PM tasks on the CAMPROMPT compared to LTHA ecstasy users and LTLA 

ecstasy users. LTHA ecstasy users and LTLA ecstasy users completed a similar 

number of time-based PM tasks on the CAMPROMPT. A significant difference was 

found between the groups in terms of time-based PM performance on the 

CAMPROMPT, χ2(2)=31.70, p<.001. Non-ecstasy users completed a significantly 

higher number of time-based PM tasks on the CAMPROMPT than long -term high 

alcohol ecstasy users, U=126.00, p<.001, and LTLA ecstasy users, U=69.00, p<.001. 

No significant difference was found between LTHA ecstasy users and LTLA ecstasy 

users in terms of time based PM performance on the CAMPROMPT, U=122.50, 

p=.46 

In terms of overall PM performance on the CAMPROMPT, the data in table 8.3 

indicates that non-ecstasy users performed better than LTHA ecstasy users and LTLA 

ecstasy users. In addition, overall performance on the CAMPROMPT was slightly 

worse for LTLA ecstasy users compared to LTHA ecstasy users. There was a 

significant group difference in overall PM performance on the CAMPROMPT, 

 χ2(2)=33.01, p<.001. Overall PM performance on the CAMPROMPT was 

significantly higher for non-ecstasy users compared to LTHA ecstasy users, 

U=136.50 p<.001, and LTLA ecstasy users, U=41.00, p<.001. There was no 
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significant difference in overall PM performance on the CAMPROMPT between 

LTHA ecstasy users and LTLA ecstasy, U=102.50, p=.15. 
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Study 2  

8.4 Method 

Participants 

The participants in the present study were the same as those who participated in Study 

1.2 They were divided into 21 concurrent short-term high alcohol  (STHA) ecstasy 

users (14 males), 21 concurrent short-term low alcohol (STLA) ecstasy users (14 

males) and 44 non-ecstasy users (16 males) (for demographic variables, see Table 

7.3). The gender composition differed significantly between the groups,  

χ2(2, 86)=7.90, p=.02. There were more females (n=28) than males (n=16) in the non-

ecstasy users group. There were more males (n=14) than females (n=7) in the LTHA 

ecstasy user group. There were also more males (n=14) than females (n=7) in the 

LTLA ecstasy users group.  The mean period of abstinence for STHA ecstasy users 

was 7.47 weeks, median=3.00 weeks; the mean period of abstinence for STLA 

ecstasy users was 81.25 weeks, median=25.00 weeks).  

 

 

Materials 

Materials are as per Study 1. Additionally, from the background drug use 

questionnaire, for the 12-month period prior to the test-session, participants estimated 

the typical dose that they ingested in a representative session for each month. As per 

Study 1, participants also estimated the number of units of alcohol that they typically 

consumed per session of drug use (concurrent alcohol use). Data relating to typical 

frequency (times per week) of use in the 12-month period prior to the test-session was 

also collected. This was done for all illicit drugs during the 12 months prior to the 

test-session. Long-term data relating to drug use was collected as in Study 1. 

Estimates of total use for each respective drug and their average frequency of use 

(times per week) during the previous 12 months were calculated.  

 

Procedure   

Procedural details were reported in Study 1.  
                                                      
2 The total number of ecstasy users in Study 2 exceeded those in Study 1 as a result of 
missing data. 
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Design/Statistics 

A median split was used to dichotomise short-term concurrent alcohol use. For each 

month in the 12 months prior to the test-session, the typical number of units of alcohol 

consumed in a single session whilst using ecstasy was recorded. The resulting figures 

were averaged across the 12-month period (months during which the drug was not 

used are coded as zero) to produce an average and thus create two user groups (STHA 

ecstasy users and STLA ecstasy users). The median split for short-term concurrent 

alcohol use was 1.94 units of alcohol per session of ecstasy use. Participants who, on 

average, consumed 1.94 units of alcohol or more per session of ecstasy use in the 12 

months prior to the test-session were classified as STHA ecstasy users and those who 

consumed less than 1.94 units were classified as STLA ecstasy users.  The high and 

low alcohol groups together with a non-ecstasy user group constituted the three levels 

of the between participant IV. 

The background measures and indeed the underlying data were the same as were used 

in Study 1 as were the PM DVs.  However, the group classifications were based on 

short-term concurrent alcohol use as indicated above. Alternative background drug 

use variables were used. These included total ecstasy, cannabis and cocaine 

consumption in the previous 12 months, average typical ecstasy, cannabis and cocaine 

dose per session in the previous 12 months, short-term concurrent alcohol and ecstasy 

use (the typical number of units of alcohol consumed per session of ecstasy use, 

averaged over the 12 months prior to the test-session) average frequency (times per 

week) of ecstasy, cannabis and cocaine use in the previous 12 months and total 

ecstasy, cannabis and cocaine consumption in the previous 30 days. In light of the 

distributional characteristics of the individual measures, and the tripartite nature of the 

IV, the same mix of parametric and non-parametric analyses were employed as in 

Study 1. 
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8.5 Results 

Demographical and Background Variables 

Demographic and background scores (age, intelligence, years of education, cigarette 

and alcohol consumption, Epworth Sleepiness Scale score, arousal, anxiety and 

depression) are set out in Table 8.4. Various indices of short-term background drug 

use variables were compared between STHA ecstasy uses, STLA ecstasy users and 

non-ecstasy users. These data are shown in Table 8.5. 
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Table 8.4 Demographical variables of short-term high alcohol ecstasy users, short-term low alcohol ecstasy users and non-ecstasy users.  

 

 

 

 

 

 
*p<.05, **p<.01

 STHA ecstasy users STHA ecstasy users Non-ecstasy users  p 

 Mean (SD) n Mean (SD) n Mean (SD) n  
Age (years) 21.33 (1.62) 21 23.43 (7.17) 21 20.09 (2.12) 44       .008** 
Raven’s Progressive Matrices  
(max 60) 

44.60 (5.55) 20 45.71 (6.48) 17 44.45 (7.98) 42  .83 

Years of education 15.86 (1.49) 21 15.23 (2.84) 20 14.55 (1.81) 42  .06 
Alcohol (units per week) 21.16 (20.93) 19 12.41 (11.43) 18 9.96 (12.11) 42  .02* 

Cigarettes per day 6.60 (3.67) 10 5.95 (4.52) 10 6.94 (2.93) 8  .86 
Epworth Sleepiness  
Score 

7.30 (2.74) 20 7.16 (3.91) 19 6.73 (3.07) 40  .76 

Arousal  18.44 (5.61) 18 20.33 (3.45) 18 19.62 (3.380) 39  .40 
Anxiety  12.11 (3.83) 18 11.56 (3.24) 18 11.26 (2.83) 38  .65 
Depression 12.44 (2.81) 18 12.56 (3.20) 18 12.54 (2.49) 39  .99 
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One-way ANOVA showed that there was a significant difference between the STHA 

ecstasy users, STLA ecstasy users and non-ecstasy users in terms of age. Tukey’s post 

hoc test showed that non-ecstasy users were significantly younger than STLA ecstasy 

users. There was no significant difference in age between non-ecstasy users and 

STHA ecstasy users or STHA ecstasy users and STLA ecstasy users.  

 One-way ANOVA showed that there was a significant difference between 

STHA ecstasy users, STLA ecstasy users and non-ecstasy users in terms of the typical 

number of units of alcohol that they consumed each week. Tukey’s post-hoc test 

showed that, on average, STHA ecstasy users consumed more units of alcohol per 

week compared to non-ecstasy users. There was no difference in the typical number 

of units of alcohol consumed each week by non-ecstasy users and STLA ecstasy users 

or STHA users and STLA ecstasy users.  

One-way ANOVAs revealed comparable group performance for intelligence (Raven’s 

Progressive Matrices), years of education, cigarette consumption, Epworth Sleepiness 

Scale Score, arousal, anxiety, and depression (see Appendix 4 for detailed statistical 

analyses related to background variables). 
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Table 8.5 Background drug use variables of short-term high alcohol ecstasy users, short-term low alcohol ecstasy users and non-ecstasy users 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 STHA ecstasy users STLA ecstasy users Non-ecstasy users p 
 Median Min. Max. Int. Range n Median Min. Max. Int. Range n Median Min. Max.  Int. Range n  
Total use in the last 12 months                 
Ecstasy (tablets) 10.00 .40 96.00 39.00 21 .00 .00 6.50 3.00 21 - - - - - <.001*** 
Cannabis (joints) 5.00 .00 5760.00 288.00 12 6.00 .00 2520.00 71.25 17 53.05 .00 1008.00 120.00 19 .68 
Cocaine (lines) 27.00 .00 452.00 114.75 20 .00 .00 59.50 5.50 17 15.50 1.00 30.00 - 2 <.01** 
                 
Average typical dose of drug over 
the previous 12 months 

                

Ecstasy  .79 .08 3.17 1.46 21 .00 .00 .54 .23 21 - - - - - <.001*** 
Cannabis .42 .00 20.00 3.00 19 .17 .00 7.50 1.94 17 .79 .00 3.04 2.69 12 .73 
Cocaine 2.25 .00 10.21 5.32 20 .00 .00 2.75 .46 17 1.29 .08 2.50 - 2 .<.001*** 
                 
Alcohol consumed concurrently with 
ecstasy (units per session) averaged 
over the previous 12 months 

5.00 2.00 20.83 4.17 21 .57 .00 1.88 1.13 21      <.001*** 

                 
Average frequency of use in the last 
12 months (times per week) 

                

Ecstasy  .08 .00 .60 .17 21 .00 .00 .06 .04 21 - - - - - <.001*** 
Cannabis  .08 .00 7.00 3.00 19 .06 .00 7.00 .73 17 .43 .00 6.00 .93 12 .62 
Cocaine .06 .00 .94 .21 20 .00 .00 .40 .02 17 .14 .02 .25 - 2 .<.001*** 

Total use in the last 30 days                 
Ecstasy (tablets) .00 .00 12.00 1.75 21 .00 .00 .50 .00 18 - - - - - .03* 
Cannabis (joints) .50 .00 480.00 40.50 18 .75 .00 225.00 7.50 16 1.50 .00 180.00 38.75 8 .003** 
Cocaine (lines) .00 .00 22.50 10.00 19 .00 .00 22.50 .00 15 2.50 .00 5.00 - 2 ..009** 
                 
Number of weeks since last use                 
Ecstasy  3.00 .43 26.00 8.50 21 25.00 1.00 624.00 57.50 20 - - - - - <.001*** 
Cannabis 1.00 .12 208.00 20.82 18 1.00 .00 520.00 11.56 17 2.50 .00 104.00 11.68 12 1.00 
Cocaine 3.50 .00 108.00 12.18 18 20.00 3.00 780.00 99.00 16 3.00 2.00 4.00 - 2 .011* 
*p<.05, **p<.01, ***p<.001                 



 

 

163 

Inferential statistics for those outcomes in Table 8.5 that were not significant are 

reported in Appendix 4. Similarly all other pairwise differences that are not explicitly 

referred to below are non-significant and the inferential statistics are presented in 

Appendix 4. 

  The data in Table 8.5 shows that compared to STLA ecstasy users, STHA 

ecstasy users consumed more ecstasy in the 12 months prior to the test-session and 

also consumed more ecstasy tablets per session during this period. Mann-Whitney U 

tests revealed that these differences were statistically significant, U=41.50, p<.001. 

U=33.50, p<.001, respectively. With regard to concurrent alcohol and ecstasy use and 

the manner in which the short-term concurrent alcohol ecstasy users were divided, the 

median data in Table 8.5 shows that relative to STLA ecstasy users, STHA ecstasy 

users typically consumed more units of alcohol per session of ecstasy use in the 12 

months prior to the test-session. As expected, the group difference was significant 

U=.00, p<.001. STHA ecstasy users used ecstasy more frequently than STLA ecstasy 

users during the 12 months prior to the test-session with Mann-Whitney U test 

revealing that this trend was statistically significant, U=32.50, p<.001. In relation to 

period of abstinence, STHA ecstasy users had used ecstasy more recently than STLA 

ecstasy users. Mann-Whitney U test showed that the group difference was significant, 

U=75.50, p<.001.  Table 8.5 shows that STHA ecstasy users consumed more ecstasy 

in the 30 days prior to the test-session than STLA ecstasy users. The group difference 

was significant, U=133.00, p=.03. 

In relation to the group differences on short-term cannabis use measures, 

Table 8.5 (see Chapter 8) shows that non-ecstasy users had used more cannabis than 

both STHA ecstasy users and STLA ecstasy users in the 30 days prior to the test-

session. By comparison, STHA ecstasy users and STLA ecstasy users had used a 

similar number of cannabis joint in the 30 days prior to the test-session. Kruskal-

Wallis test showed that the group difference was significant, χ2(2)=11.76, p=.003. 

Post hoc Mann-Whitney U tests with full Bonferroni correction (adjusted alpha 

level=.017) revealed that non-ecstasy users consumed significantly less cannabis in 

the previous 30 days compared to STHA ecstasy users, U=264.50, p=.002 and STLA 

ecstasy users, U=272.00, p=.003.  There was no significant difference in the number 

of cannabis joints consumed in the last 30 days between STHA ecstasy users and 

STLA ecstasy uses, U=188.50, p=.73. 
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Given that there were only two non-ecstasy cocaine users, comparisons on the short-

term cocaine use measures were restricted to the two short-term concurrent alcohol 

and ecstasy user groups. In the 12 months prior to the test-session, STHA ecstasy 

users consumed more cocaine, consumed higher doses of cocaine per session and 

used cocaine more frequently than STLA ecstasy users.  The respective Mann-

Whitney U tests revealed that all these differences reached significance (U=61.50, 

p<.001, U=61.50, p<.001,U=59.00, p<.001). STHA ecstasy users had also used more 

cocaine than STLA ecstasy users in the 30 days prior to the test-session, U=137.50, 

p=.0.  In terms of period of abstinence, STHA ecstasy users had used cocaine more 

recently than STLA ecstasy users, U=64.50, p=.005.  
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Laboratory-based measures 

Outcomes for the laboratory-based measures of PM for STHA ecstasy users, STLA 

ecstasy users and non-ecstasy users are summarised in Table 8.6. 
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Table 8.6 Mean, Standard Deviations (SD), Median, Minimum (Min.), Maximum (Max.) and Interquartile Range scores for short-term high 
alcohol ecstasy users, short-term low alcohol ecstasy users and non-ecstasy users on the F1 event-based PM task, the long-term delayed recall 
task, the Karolinska fatigue PM task and the Cambridge PM test. 

*p<.05, *p<.01***p<.001 Note. n for all groups was variable due to missing data. Twenty short-term high alcohol ecstasy users and 42 non-ecstasy users completed the F1 event-based PM task. Forty-two non-ecstasy 
users completed the Karolinska fatigue PM task. Twenty short-term high alcohol ecstasy users, 16 short-term low-alcohol ecstasy users and 40 non-ecstasy users completed the Cambridge PM test.  

 

 STHA ecstasy users n=21 STLA ecstasy users n=20 Non-ecstasy users n=44 p 

 Mean (SD) Median Min. Max. Int. 
Range 

Mean (SD) Median Min. Max. Int. 
Range 

Mean  (SD) Median  Min. Max. Int. 
Range 

 

F1 event-based PM task                 
Trial 1 errors .55 (1.05) .00 .00 3.00 .75 .60 (1.14) .00 .00 3.00 .75 .14 (.65) .00 .00 3.00 .00 .05* 
Trial 2 errors .15 (.67) .00 .00 3.00 .00 .30 (.92) .00 .00 3.00 .00 .00 (.00) .00 .00 .00 .00 .14 
Trial 3 errors .00 (.00) .00 .00 .00 .00 .35 (.22) .00 .00 3.00 .00 .05 (.22) .00 .00 1.00 .00 .03* 
Total errors .70 (1.53) .00 .00 6.00 .75 1.25 (2.24) .00 .00 8.00 2.00 .19 (.67) .00 .00 3.00 .00 .04* 
                 
Long-term delayed recall PM task                 
Total number of recall tests returned (max of 3) .67(1.15) .00 .00 3.00 1.50 .90 (1.17) .00 .00 3.00 2.00 1.41 (1.42) 1.00 .00 3.00 3.00 .08 

                 
Karolinska fatigue PM task                 
Percentage completed in first half of test-session 85.67 (15.67) 85.71 60.00 100.00 26.66 84.92 (14.94) 81.67 50.00 100.00 20.00 91.31 (16.00) 100.00 20.00 100.00 80.00 .10 
Percentage completed in second half of test-session  36.06 (31.31) 33.33 .00 100.00 50.00 48.34 (32.81) 40.00 .00 100.00 50.78 79.92 (27.91) 100.00 .00 100.00 27.09 <.001*** 
Percentage completed overall 60.08 (20.56) 60.00 30.00 100.00 28.87 64.49 (22.48) 59.17 30.00 100.00 32.89 86.09 (17.53) 90.45 27.27 100.00 21.25 <.001*** 
                 
Cambridge PM test                 
Event-based PM performance 14.30 (4.01) 15.00 2.00 18.00 6.00 13.25 (3.78) 15.00 4.00 18.00 5.50 16.95 (1.97) 18.00 8.00 18.00 2.00 <.001*** 
Time-based PM performance 13.85 (4.01) 16.00 4.00 18.00 4.75 12.88 (3.42)  14.00 4.00 18.00 3.50 17.15 (1.97)  18.00 8.00 18.00 1.50 <.001*** 
Overall PM performance 28.15 (6.79) 29.00 12.00 36.00 8.75 26.13 (6.59) 28.00 8.00 36.00 6.00 34.15 (3.28) 36.00 20.00 36.00 2.00 <.001*** 
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Examination of the data in Table 8.6 reveals that STHA ecstasy users and STLA 

ecstasy users made more errors than non-ecstasy users on trial 1 of the F1 event-based 

PM task while the two concurrent alcohol and ecstasy user groups performed 

similarly. There was a significant group difference in the number of errors that were 

made on trial 1 of the F1 event-based PM task, χ2(2)=6.21, p=.045. However, no 

significant differences were found between STHA ecstasy users and non-ecstasy 

users, U=338.00, p=.03, STLA ecstasy users and non-ecstasy users, U=337.00, p=.02 

or STHA ecstasy users and STLA ecstasy users, U=198.00, p=.97. Nonetheless, in the 

first two cases the pairwise comparisons approached significance with nonusers 

making fewer errors.   

The data in Table 8.6 reveals that STHA ecstasy users and STLA ecstasy users 

made more errors than non-ecstasy users on trial 2 of the F1 event-based PM task. 

STLA ecstasy users made more errors than STHA ecstasy users on trial 2 of the F1 

event-based PM task. There was no significant difference between the groups in terms 

of errors that were made on trial 2 of the F1 event-based PM task, χ2(2)=3.93, p=.14  

Table 8.6 reveals that STLA ecstasy users made more errors than both STHA 

ecstasy users and non-ecstasy users on trial 3 of the F1 event-based PM task. STHA 

ecstasy users and non-ecstasy users made a similar number of errors on trial 3 of the 

F1 event-based PM task. Contrary to expectation,  STHA ecstasy users appear to have 

made no errors at all on trial 3 of the F1 event-based PM task. There was a significant 

group difference in the number of errors that were made on trial 3 of the F1 event-

based PM task, χ2(2)=6.86, p=.03. However, none of the pairwise comparisons were 

significant: for STHA ecstasy users versus non-ecstasy users, U=400.00, p=.33,STLA 

ecstasy users versus non-ecstasy users, U=354.00, p=.05, and for STHA ecstasy users 

versus STLA ecstasy users, U=160.00, p=.29.  

In terms of overall performance on the F1 event-based PM task, the data in 

Table 8.6 indicates that STHA ecstasy users and STLA ecstasy users made more 

errors than non-ecstasy users. STLA ecstasy users made more errors overall than 

STHA ecstasy users. The group difference in the number of errors made across all 

trails of the F1 event-based PM task was significant, χ2(2)=6.65, p=.04. STLA ecstasy 

users committed significantly more errors overall relative to non-ecstasy users, 

U=30.00, p=.011. There was no significant difference in the total errors committed on 
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the F1 event based PM task by STHA ecstasy users and non-ecstasy users, U=353.00, 

p=.10 or STHA ecstasy users and STLA ecstasy users, U=176.50, p=.53.  

  In terms of long-term time-based PM performance, inspection of the data in 

Table 8.6 shows that STHA ecstasy users returned a fewer number of delayed recall 

tests (The long-term delayed recall test) compared to STLA ecstasy users and non-

ecstasy users. STLA ecstasy users remembered to return slightly fewer delayed recall 

tests than non-ecstasy users. One-way ANOVA revealed that the group difference in 

the number of delayed recall test sheets returned approached statistical significance, 

F(2,82)=2.64, p=.08, partial eta squared=.06. Helmert contrast revealed that the 

combined group of STHA ecstasy users and STLA ecstasy users returned 

significantly fewer delayed recall tests that non-ecstasy users, p=.03. A further 

Helmert contrast showed that there was no significant difference between STHA 

ecstasy users and STLA ecstasy users in terms of the number of delayed recall test 

that were returned, p=.57. Pairwise comparisons adjusted by Bonferroni correction 

(three pairwise comparisons, significant alpha level set at .017) revealed that there 

was no significant difference between STHA ecstasy users (M=.67, SD=1.15) and 

non-ecstasy users (M=1.41, SD=1.42), p=.04 STLA ecstasy users (M=.90, SD=1.17) 

and non-ecstasy users, p=.15, or STHA ecstasy users and STLA ecstasy users, p=.41 

in terms of the number of delayed recall tests that were returned on the long-term 

delayed recall task.  

The data in Table 8.6 shows that compared to STHA ecstasy users and STLA 

ecstasy users, non-ecstasy users successfully completed a greater number of 

Karolinska fatigue questionnaires during the first and second halves of the test-

session. Overall performance on the Karolinska fatigue questionnaire was better for 

non-ecstasy users compared to STHA ecstasy users and non-ecstasy users. STHA 

ecstasy users and STLA ecstasy users completed a similar proportion of Karolinska 

fatigue questionnaires during the first half of the test-session. However, compared to 

STHA ecstasy users, STLA ecstasy users remembered to complete more Karolinska 

fatigue questionnaires during the second half of the test-session. Overall performance 

on the Karolinska fatigue PM task was comparable between STHA ecstasy users and 

STLA ecstasy users. 
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 There was no significant difference between the groups in terms of the 

proportion of Karolinska fatigue questionnaires completed during the first half of the 

test-session, χ2(2)=4.62, p=.099. However, the difference did approach statistical 

significance. Post-hoc tests showed that that there was no significant difference in the 

proportion of Karolinska fatigue questionnaires completed during the first half of the 

test-session by STHA ecstasy users and non-ecstasy users, U=342.00, p=.09, STLA 

ecstasy users and non-ecstasy users, U=380.00, p=.06 or STHA ecstasy users and 

STLA ecstasy users, U=203.00, p=.85.  

One-way ANOVA showed that there was a significant difference between the 

groups in terms of the proportion of Karolinska fatigue questionnaires that were 

completed during the second half of the test-session, F(2,80)=17.41, p<.001, partial 

eta squared=.30. Helmert contrast showed that relative to non-ecstasy users, the 

combined group of STHA ecstasy users and STLA ecstasy users remembered to 

completed a significantly higher proportion of Karolinska fatigue questionnaires 

during the second half of the test-session, p<.001. However, a further Helmert 

contrast showed that there was no significant difference between STHA ecstasy users 

and STLA ecstasy users in terms of the proportion of Karolinska fatigue 

questionnaires that were completed during the second half of the test-session, p=.19. 

Pairwise comparisons adjusted by Bonferroni correction (three pairwise comparisons, 

significant alpha level set at .017) revealed that non-ecstasy users (M=79.92, 

SD=27.91) remembered to complete a significantly higher proportion of Karolinska 

fatigue questionnaires during the second half of the test-session compared to both 

STHA ecstasy users (M=36.03, SD=31.31), p<.001 and STLA ecstasy users 

(M=48.34, SD=32.81), p<.001. There was no significant difference in the proportion 

of Karolinska fatigue questionnaires that were completed during the second half of 

the test-session by STHA ecstasy users and STLA ecstasy users, p=.19. 

One-way ANOVA revealed that there was a significant difference between 

STHA ecstasy users, STLA ecstasy users and non-ecstasy users in terms of overall 

performance on the Karolinska fatigue PM task, F(2,80)=15.67, p<.001, partial eta 

squared=.28.  Helmert contrast showed that relative to non-ecstasy users, the 

combined group of STHA ecstasy users and STLA ecstasy users remembered to 

complete a significantly lower proportion of Karolinska fatigue questionnaires during 

the entire test-session, p<.001. However, a further Helmert contrast showed that there 
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was no significant difference between STHA ecstasy users and STLA ecstasy users in 

terms of the proportion of Karolinska fatigue questionnaires that were completed over 

during the entire test-session, p=.47. Pairwise comparisons adjusted by Bonferroni 

correction (three pairwise comparisons, significant alpha level set at .017) revealed 

that non-ecstasy users (M=86.09, SD=17.53) remembered to complete a significantly 

higher proportion of Karolinska fatigue questionnaires during the entire test-session 

compared to both STHA ecstasy users (M=60.08, SD=20.56), p<.001 and STLA 

ecstasy users (M=64.49, SD=22.48), p<.001. There was no significant difference in 

the proportion of Karolinska fatigue questionnaires that were completed during the 

entire test-session by STHA ecstasy users and STLA ecstasy users, p=.47. 

Examination of the data in Table 8.6 shows that non-ecstasy users successfully 

completed more event-based PM tasks on the CAMPROMPT compared to STHA 

ecstasy users and STLA ecstasy users. STHA ecstasy completed a similar number of 

event-based PM tasks on the CAMPROMPT compared to STLA ecstasy users. 

Kruskal-Wallis test showed that there was a significant group difference in terms of 

event-based PM performance on the CAMPROMPT, χ2(2)=21.94, p<.001. Non-

ecstasy users were significantly better at completing event-based PM tasks on the 

CAMPROMPT than STHA ecstasy users, U=212.50, p<.001 and STLA ecstasy users, 

U=96.00, p<.001. No significant difference was found between STHA ecstasy users 

and STLA ecstasy users in terms of event based PM performance on the 

CAMPROMPT, U=127.50, p=.31. 

  Inspection of the data in Table 8.6 reveals that non-ecstasy users successfully 

completed more time-based PM tasks on the CAMPROMPT compared to STHA 

ecstasy users and STLA ecstasy users. STHA ecstasy users and STLA ecstasy users 

completed a similar number of time-based PM tasks on the CAMPROMPT. Kruskal-

Wallis test showed that there was a significant difference between the groups in terms 

of time-based PM performance on the CAMPROMPT, χ2 (2)=31.61, p<.001. Non-

ecstasy users completed a significantly higher number of time-based PM tasks on the 

CAMPROMPT than STHA ecstasy users, U=157.00, p<.001, and STLA ecstasy 

users, U=64.50, p<.001. No significant difference was found between STHA ecstasy 

users and STLA ecstasy users in terms of time based PM performance on the 

CAMPROMPT, U=121.50, p=.22. 
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In terms of overall PM performance on the CAMPROMPT, the data in Table 8.6 

indicates that non-ecstasy users performed better than STHA ecstasy users and STLA 

ecstasy users. In addition, overall performance on the CAMPROMPT was 

comparable between STLA ecstasy users compared to STHA ecstasy users. Kruskal-

Wallis test showed that there was a significant difference between the groups in terms 

of overall PM performance on the CAMPROMPT, χ2(2)=32.57, p<.001. Overall PM 

performance on the CAMPROMPT was significantly higher for non-ecstasy users 

compared to STHA ecstasy users, U=131.00, p<.001, and STLA ecstasy users, 

U=60.50, p<.001. There was no significant difference in overall PM performance on 

the CAMPROMPT between STHA ecstasy users and STLA ecstasy, U=121.50, 

p=.22. 
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8.6 Discussion 

A large proportion of drug users consume alcohol concurrently with ecstasy (Barrett 

et al., 2006; Grov et al., 2009; Fisk et al., 2009). This is problematic in light of 

evidence that suggests that the use either alcohol (Heffernan & Bartholomew, 2006; 

Heffernan et al., 2002; Heffernan et al., 2006) or ecstasy (Hadjiefthyvoulou et al., 

2011a; 2011b) alone can be detrimental to PM performance. Moreover, the concurrent 

use of alcohol and ecstasy has been associated with cognitive impairments in memory 

and learning in animals (Hernandez-Rabaza et al., 2010; Vidal Infer et al., 2012). 

Further findings show that compared to the use of ecstasy alone, the concurrent 

consumption of alcohol and ecstasy can exacerbate abnormalities in PM-related 

neurotransmitters including dopamine (Vidal Infer et al., 2012). Thus, where apparent 

ecstasy-related deficits in PM have been observed, it is difficult to determine whether 

these effects are attributable to the use of ecstasy, alcohol or due to a combined effect 

of both drugs. The present research aimed to investigate the extent to which long- (use 

of the entire period of use, Study 1) and short-term (use over the last 12 months, 

Study 2) concurrent alcohol and ecstasy use can predict PM performance.   

  Clear ecstasy-related deficits in PM performance were observed in both 

studies.  In Study 1, LTHA ecstasy users and LTLA ecstasy users remembered to 

complete significantly fewer Karolinska fatigue questionnaires during the second half 

of the test-session compared to non-ecstasy users. These differences remained 

statistically significant when completion rates were averaged over the first and second 

halves of the test-session. Non-ecstasy users also performed significantly better than 

LTHA ecstasy users and LTLA ecstasy users on the event- and time-based PM tasks 

of the CAMPROMPT.  Similar findings were observed in Study 2 with both STHA 

ecstasy users and STLA ecstasy users remembering to complete significantly fewer 

Karolinska fatigue questionnaires during the second half of the test-session compared 

to non-ecstasy users. As per Study 1, non-ecstasy users also performed significantly 

better than STHA ecstasy users and STLA ecstasy users on the event- and time-based 

PM tasks of the CAMPROMPT. These findings coincide with a body of previous 

research that has found clear evidence of PM deficits in ecstasy users 

(Hadjiefthyvoulou et al., 2011a; 2011b, Rendell et al., 2007; Weinborn et al., 2011).  
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  Although clear PM performance deficits were observed in each of the 

concurrent alcohol and ecstasy groups relative to non-ecstasy users, no significant PM 

performance differences were found between high dose concurrent alcohol and 

ecstasy users and low dose concurrent alcohol and ecstasy users. The overall findings 

from Study 1 showed that long-term concurrent alcohol and ecstasy use had no effect 

on any of the event- or time-based PM outcomes. This was demonstrated by LTHA 

ecstasy users and LTLA ecstasy users performing similarly on all laboratory-based 

measures of PM. Similarly, the findings from Study 2 showed that short-term 

concurrent alcohol and ecstasy use did not predict performance on any of the PM 

measures. Once again, STHA ecstasy users and STLA ecstasy users performed 

comparably on all laboratory-based measures of PM performance. These findings 

indicate that increased consumption of alcohol during a session of ecstasy use is not 

detrimental to PM performance. This result is inconsistent with animal research that 

has shown spatial and working memory deficits in rats following the concurrent 

administration of alcohol and ecstasy (Hernandez-Rabaza et al., 2010). Given the 

potential role of the central executive in PM tasks (Kopp & Thöne-Otto, 2000), 

concurrent alcohol and ecstasy-related effects were expected. However, this was not 

the case. One possible reason for the discrepancy in the findings might be linked to 

differences in the doses of alcohol and MDMA administered in Hernandez-Rabaza at 

al’s (2010) study and the typical doses consumed by the concurrent alcohol and 

ecstasy users. Hernandez-Rabaza and co-workers (2010) note the possibility that the 

levels of alcohol and ecstasy which were administered to the rats in their study may 

not be representative of the typical doses consumed by humans. For instance, it might 

be that Hernandez-Rabaza and co-workers (2010) administered very high doses of 

alcohol and MDMA which are much larger than the doses typically consumed by 

humans thereby accounting for the cognitive impairments that were observed.  

 While concurrent alcohol and ecstasy use was not found to be related to PM 

performance, research surrounding this topic is still in its infancy and therefore 

warrants further investigation. To our knowledge, the empirical work presented in the 

current Chapter is the first of its kind to investigate the effects of concurrent alcohol 

and ecstasy use on PM performance. Thus, it is difficult to make explicit conclusions 

based only on the current findings. One possible explanation why no significant 

differences were found between the high dose concurrent alcohol and ecstasy user 



 

 

174 

groups and the low dose concurrent alcohol and ecstasy groups may be related to the 

way in participants were allocated to the groups. As stated previously, a median split 

was used to dichotomise ecstasy users with the number of units of alcohol consumed 

per session of ecstasy use being the primary factor for the split. In other words, 

ecstasy users were split into high and low alcohol concurrent alcohol and ecstasy 

users based solely on the number of units of alcohol consumed in a representative 

session of ecstasy use. Thus, it would be reasonable to assume that any differences 

observed between the resultant high and low concurrent alcohol and ecstasy user 

groups would be indicative of a performance deficit driven by increased alcohol 

consumption. An alternative approach would have been to divide the cohort of ecstasy 

use according to a product of their alcohol and ecstasy use together. However, had 

group differences been found, it would be unclear whether any effects were mediated 

by alcohol or ecstasy use. This is because high dose ecstasy users who consume 

relatively little alcohol in a representative session of ecstasy use would be classed in 

the same group as low dose ecstasy users who consume higher amounts of alcohol.  

Nonetheless, when this approach was adopted, findings were very similar to those 

found in the present study (see Appendix 5). Clear ecstasy-related impairments in PM 

were apparent while no detrimental effects of concurrent alcohol and ecstasy use were 

observed. 

There are a number of limitations that must be considered in relation to the 

studies outlined in the current Chapter. One issue concerns the significant age 

difference that was found between the groups in both studies. In Study 1, non-ecstasy 

users were significantly younger than both LTHA ecstasy users and LTLA ecstasy 

users. In Study 2, non-ecstasy users were significantly younger than STLA ecstasy 

users. Having a significant age difference between the groups is problematic given 

that PM performance declines with age (Kvavilashvili et al., 2013). Since the 

concurrent alcohol and ecstasy user groups were significantly older than the non-

ecstasy users in Study 1, it might be argued that PM differences are mediated by 

individual differences in age rather than ecstasy use. Nonetheless, further examination 

of the mean data in Tables 8.1 and 8.2 show that there were only small age 

differences between all groups. Concurrent alcohol and ecstasy user groups and non-

ecstasy users in both studies were all in their early twenties. This is crucial given that 

PM performance does not appear to decline significantly until a person is in their 50’s 
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or 60’s (Uttl, 2008). Thus, it is somewhat unlikely that the age-related group 

differences observed here give rise to PM differences in their own right.  

The findings from Study 1 are further limited in that there was a significant 

difference between the groups in terms of the number of years of education. More 

specifically, non-ecstasy users had studied for a significantly shorter length of time 

compared to LTLA ecstasy users. Subsequently, non-ecstasy users may have been 

expected to demonstrate inferior PM performance compared to LTLA ecstasy users. 

However, the number of years of education may not be an accurate predictor of 

intelligence. Other more accurate indicators of intelligence were included as 

background variables including the Raven’s Progressive Matrices task.  Group 

comparisons on this measure of intelligence revealed that there was no significant 

difference between LTHA ecstasy users, LTLA ecstasy users and non-ecstasy users. 

With this in mind, one would not expect differences in the number of years of 

education between non-ecstasy users and LTLA ecstasy users to mediate PM 

differences.   

Although ecstasy-related deficits in PM were observed, it is not possible to 

explicitly conclude that these impairments are attributable to ecstasy use alone. This is 

because a large number of the high and low concurrent alcohol and ecstasy users had 

in fact used other drugs including cannabis and cocaine. While it would have been 

desirable to include cannabis-only and cocaine-only control groups this was neither 

practical or realistic. First, the inclusion of a detailed and extensive test-battery meant 

that testing procedures totalled over two hours. Second, it is very difficult to obtain a 

sample of cannabis-only and cocaine-only users who do not use any other licit or 

illicit drugs. As stated earlier, the later empirical work in this thesis will use 

correlation analyses to control for cannabis and cocaine use with respect to PM 

deficits in ecstasy users.    

To conclude, the present research failed to show a relationship between the concurrent 

use of alcohol and ecstasy and PM performance.  However, this topic of investigation 

is yet to be thoroughly explored, especially in humans. However, clear ecstasy-related 

deficits in PM were observed and these findings support those from previous research. 

Later empirical work will use correlational analyses to further examine the extent of 

ecstasy-related PM deficits while controlling for the use of other illicit drugs.   
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Chapter 9: The role of executive functioning processes in prospective memory 

Chapter Outline 

This Chapter provides an introduction to the cognitive ability of executive 

functioning. Particular attention is placed on Miyake et al’s (2000) theoretical model 

which proposes that executive functions or more specifically, the central executive 

can be fractionated into three separable processes: shifting, updating and inhibition. 

Common laboratory-based measures of executive functions are outlined and 

described. The extent to which updating, shifting and inhibition processes are 

impaired in ecstasy users is discussed. In line with this, the possibility that 

impairments in executive processes may impair prospective memory (PM) 

performance is examined.  

 

9.1 What is Executive Functioning? 

Executive functions are a set of general-purpose control mechanisms that control and 

regulate an individual’s thoughts and behaviours. Executive functions are diverse in 

nature such that they include control functions related to inhibition of prepotent 

responses, shifting between mental sets, monitoring and regulating performance, 

updating task demands, maintaining goals, planning, working memory, and cognitive 

flexibility (Miyake & Friedman, 2012). 

  Executive functioning (EF) has been closely linked to working memory: the 

system responsible for active maintenance and manipulation of information over short 

time periods (Miyake & Shah, 1999). McCabe Roediger, McDaniel, Balota & 

Hambrick (2010) used a factor analytic approach to explore the extent to which these 

two cognitive constructs share a common underlying ability. McCabe and colleagues 

(2010) investigated the amount of variance which was common to each construct (EF 

and working memory) and the extent to which they were distinct from the general 

ability construct, processing speed (i.e., the speed at which people process 

information). Given that controlling for processing speed can account for a large 

amount of age-related variance in episodic memory (the information which relates to 

“what”, “when” and “where” something happened; Kwok, Shallice & Macaluso, 

2012), McCabe and colleagues (2010) also investigated whether EF and working 

memory account for unique age-related variance in episodic memory beyond that 
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accounted for by processing speed. EF, working memory, processing speed, episodic 

memory and general knowledge were assessed in a sample of younger adult (18-36 

years), middle-age (36-55 years), younger-old (56-70 years) and older-old adults (71-

90 years). The results showed a large correlation between EF and working memory 

(r=.97) whilst correlations between these constructs and processing speed were 

weaker (EF and processing speed, r=.78; working memory and processing speed, 

r=.78). The authors concluded that EF and working memory tasks measure a common 

attentional construct. They termed this construct, executive attention. This is because 

the EF and working memory tasks used to assess the respective constructs all required 

attentional ability (Banich, 2009; Braver, Gray & Burgess, 2007). Further, the term, 

executive attention, describes the functional nature of the construct. For example, 

executive attention is an attentional ability that is closely related to executive control 

functions. Further findings showed that, controlling for EF and working memory 

eliminated age effects on episodic memory. In addition, EF and working memory 

accounted for variance in episodic memory beyond that accounted for by processing 

speed. The overall findings confirm that EF and working memory share an underlying 

attentional ability and that this is strongly related to higher level cognition. This 

finding is particularly interesting given the assumed role of EF in PM ability (Kopp & 

Thöne-Otto, 2003; Heffernan & Bellis, 2012; Martin et al., 2003). 

 EF is multidimensional and as such there exists a number of different models and 

frameworks which provide different viewpoints as to its principal component 

processes (Banich, 2009).  Some of the more influential models and in particular 

those models which will be applied later in this thesis are explored in the following 

paragraphs. 

 

9.2 Theoretical models of executive functioning 

An important construct in cognitive psychology which has been associated with the 

study of executive functions is Baddeley’s (1986) multi-component model of working 

memory.  Working memory refers to the system which is responsible for keeping 

things in mind while performing complex tasks such as reasoning, comprehension and 

learning (Baddeley, 2010). The concept of the multi-component model of working 

memory (Baddeley, 1986) is an extension of an earlier concept of short-term memory 
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(STM) that was proposed to comprise a unitary memory store (Atkinson & Shiffrin, 

1968).  

  Atkinson and Shiffrin’s (1968) multi-store model assumes that environmental 

stimuli receive attention from a sensory system (sensory memory) before being 

passed onto a limited capacity short-term memory (STM) store. The model proposes 

that information can only enter long-term memory (LTM) if it is maintained in STM 

for sufficient period of time. It is then recoded so that it can be stored in LTM. 

According to this model, the STM store acts as working memory in that it controls the 

flow of information into and out of LTM. Further to this, Atkinson and Shiffrin 

(1986) suggest that the STM/working memory system has a crucial role in learning 

and in wider cognitive tasks. However, the multi-store model is limited in that it 

cannot account for cases where patients with brain impairment show dysfunctions in 

STM but are able to form accurate long-term memories (Shallice & Warrington, 

1970). According to Atkinson and Shiffrin’s (1968) multi-store model, an impaired 

STM/working memory should lead to the rapid loss of information and as such the 

information should not be transferred to LTM. In addition, if the STM system does in 

fact act as a working memory system, then patients with impaired STM should 

demonstrate severe cognitive impairments. However, this is not the case and patients 

with dysfunctional STM are able to form accurate long-term memories and still live 

relatively normal lives (Baddeley, 2010; see Shallice & Warrington, 1970). In 

summary, Atkinson and Shiffrin’s (1968) multi-store model fails in that it cannot 

explain the dissociation between STM and LTM. 

     The multi-component model of working memory (Baddeley, 1986; Baddeley, 

1996) differs from the multi-store model (Atkinson & Shiffrin, 1968) in that it 

identifies a number of memory subsystems as opposed to a unitary module.  In 

addition, the multi-component model emphasises the system’s functional role in other 

cognitive tasks including learning, reasoning and comprehension.  

  The multi-component model proposes that a dedicated system is responsible 

for maintaining and storing information in the short-term and that this system 

mediates human thought processes (Baddeley, 2003). The model is based upon two 

“slave” systems which concern the processing of visuo-spatial sequences (the 

visuospatial sketchpad) and verbal sequences (the phonological loop). Each of the 
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“slave” systems are short-term storage systems which are allocated to their respective 

content domains (visuospatial or verbal sequences). The visuospatial sketchpad is 

limited in capacity (two or three objects) and is responsible for maintaining and 

manipulating visual images. Like its visual counterpart, the phonological loop is also 

limited in capacity (memory traces are held for two or three seconds before they fade) 

and is responsible for maintaining and manipulating acoustic information. A further 

component of Baddeley’s (1986) working memory model is the central executive 

which acts as a supervisory system (similar to the Supervisory Attentional System 

proposed by Norman & Shallice 1986) and is responsible for the control and 

regulation of cognitive processes (i.e., executive processes). Baddeley (2000) later 

added a further component to the multi-component model of working memory: the 

episodic buffer. The episodic buffer is another “slave” system which integrates units 

of visual, spatial and verbal information (language) and information from long-term 

memory into a unitary episodic representation (see Figure 1).  
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Figure 1. The latest revision of Baddeley’s (1986; 2000) multi-component model of 

working memory.  

 

While Baddeley’s (1986; 2000) multi-component model of working memory suggests 

that there a number of subcomponents of memory which each control different 

aspects of human thought and behaviour, it does not identify any distinct subfunctions 

or subcomponents of the central executive. Rather, the multi-component model of 

working memory assumes that the central executive is unitary. However, there is 

substantial evidence for the nonunitary nature of executive functions. Evidence from 

clinical observation studies (Godefroy Cabaret, Petit-Chenal, Pruvo & Rousseaux, 

1999; McKinlay, Grace, Dalrymple-Alford & Roger, 2010) and individual difference 

studies (Friedman et al., 2006; Friedman, Miyake, Robinson, & Hewitt, 2011; Miyake 

et al., 2000, Rose, Feldman, & Jankowski, 2011) have shown dissociations in 

performance on executive function tasks. For example, some patients may display 

impairment on some EF tasks but not on others suggesting that executive functions 

are distinctive and separable from each other (nonunitary). 

 A crucial individual difference study in the EF literature was conducted by 

Miyake et al. (2000). Miyake and colleagues (2000) argue that executive functions 
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and more specifically the central executive can be fractionated into three separable 

processes: updating, shifting and inhibition. Updating is closely linked to working 

memory (Lehto, 1996) and refers to the process whereby individuals monitor and 

code incoming information and revise stimuli already in working memory by 

replacing older, irrelevant information with newer, more relevant information (Morris 

& Jones, 1990). Aside from the simple maintenance of task-relevant information in 

working memory, updating involves the dynamic manipulation of the contents of 

working memory (Lehto, 1996; Morris & Jones, 1990). In other words, updating 

requires individuals to actively manipulate relevant information in working memory, 

instead of passively storing information. Shifting relates to an individual’s ability to 

move back and forth between multiple tasks, operations or mental sets (Monsell, 

2003). Shifting between mental sets is typically associated with a temporal cost 

(Rogers & Monsell, 1995). This might be because shifting requires an individual to 

disengage their attention from an irrelevant task whilst directing their attention 

towards a more relevant task. Alternatively, when an individual is required to perform 

a new operation on a set of stimuli, they might be faced with interference or negative 

priming after previously performing a different action on the same set of stimuli 

(Allport & Wylie, 2000). Inhibition refers to an individual's ability to inhibit 

dominant, automatic and prepotent responses (Stroop, 1935).  

  Miyake et al. (2000) used confirmatory factor analysis to examine the extent 

to which the three target executive functions are unitary. The authors chose a number 

of well-studied cognitive tasks which were hypothesised to investigate shifting (plus-

minus task, adapted from Miyake et al., 2000; number-letter task, Rogers & Monsell, 

1995; local global task), updating (keep track task, Yntema, 1963; the letter memory 

task, Morris & Jones, 1990; tone monitoring task) and inhibition (Stroop task, Stroop, 

1935; antisaccade, Hallet, 1978; stop-signal task, Logan, 1994). In doing so, Miyake 

and colleagues (2000) were able to use latent variable analysis to determine the extent 

to which the three executive functions were unitary. A sample of 137 undergraduate 

students completed the nine EF tasks as well as five further tasks commonly used as 

measures of executive functioning. 

   Confirmatory factor analysis showed diversity amongst the three executive 

functions. Despite this, the shifting, updating and inhibition were not entirely 

independent from one another. A moderate correlation was found between the three 
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executive functions (shifting and updating, r=.56; shifting and inhibition, r=.42; 

updating and inhibition, r=.63) suggesting that the three executive functions tap some 

common underlying ability (unity). Taken together, the findings show both unity and 

diversity between shifting, updating and inhibition. This pattern of results has been 

replicated in other samples of twins (Friedman et al., 2011), pre adolescent children 

(Rose et al., 2011) and older adults (Vaughan & Giovanello, 2010). 

 Miyake and Friedman’s (2012) unity/diversity framework attempts to identify 

the shared commonalities between the executive functions of shifting, updating and 

inhibition (unity) whilst distinguishing what is specific to each executive function 

(diversity).  The “common executive function” identifies the unity aspect of the three 

executive functions and includes an individual’s ability to actively maintain task goals 

and goal-related information. The “common executive function” also concerns how 

this information is used to effectively bias lower-level processing.  According to 

Miyake and Friedman (2012), these abilities play a crucial role in all three executive 

functions.  

 In terms of diversity, shifting can be separated from the other executive functions 

(updating and inhibition) in that it requires flexibility. That is, shifting is dependent on 

an individual’s ability to transition to new task-set representations. Less is understood 

about the unique features of updating compared to shifting and inhibition. However, it 

is suggested that updating requires effective channeling of information and controlled 

retrieval from LTM. The unity/diversity framework does not include an inhibition-

specific component. This is because, the inhibition factor happens to correlate 

virtually perfectly with the “common executive function”, leaving no inhibition-

specific variance. 
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9.3 Assessment of Executive Functioning 

9.3.1 Laboratory-based measures of Executive Functioning 

 

Letter span task (Smith-Spark & Fisk, 2007) 

The letter span test is a measure of working memory performance. Consonants are 

presented sequentially on a computer screen for 1.25 seconds. Participants are then 

required to recall the letters in the order in which they appeared. At first, participants 

are presented with three sets of two letters. The number of letters that participants 

have to recall is gradually increased to three, four and five letters until the individual 

fails on at least two of the three trials.  Letter Span is scored according to the 

maximum number of consonants recalled in serial order.  

 

The spatial span task (Smith-Spark & Fisk, 2007)   

The spatial span task is a measure of visuospatial working memory performance. 

Participants are presented with a pattern consisting of a series of blank squares. The 

squares are then filled one at a time with X’s. Participants are required to remember 

the position of each of the cells and to write down the positions of all the cells in the 

order in which they were filled. There are 12 positions in total which set out on the 

computer screen in a Corsi-type fashion. The number of positions which are filled 

with Xs is increased gradually over the course of the experiment. There were three 

trials at each level of the task. Participants only proceed to the next level if they 

successfully complete at least two of the three trials at the current level. Spatial span 

is defined as the maximum number of cells recalled in serial order as long as that 

level is achieved in at least two of the three trials for that particular level. 

 

The random letter generation task (The RLG task; Baddeley, 1996) 

The random letter generation task is a measure of inhibition performance. Participants 

are asked to recite letters in a random sequence whilst avoiding alphabetical and well-

known letter sequences (e.g. ABC, BBC or TLC). Participants are also instructed to 

produce each letter with the same overall frequency. The task is commonly repeated 

three times whereby participants are asked to generate a total of 100 letters at a rate of 

one letter every 4 seconds, every 2 seconds or one per second. Results from the 
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random-letter generation task relate to a number of performance measures: 1) 

redundancy measures the extent to which each letter is produced with equal 

frequency; 2) alphabetical sequences measures the number of alphabetically ordered 

pairs which are repeated (e.g., AB, CD, WX, YX); 3) repeat sequences measures the 

number of pairs of letters which are repeated (e.g., AA, BB, XX, YY). In each case, a 

high score is indicative of poorer performance. The fourth performance measure 

refers to the total number of letters generated. In this case, a high score is indicative of 

good performance. Alphabetical and repeat sequences are suggested to load on the 

inhibition component of EF (Fisk & Sharp, 2004; Miyake et al., 2000). There is a 

degree of inconsistency in the literature as to whether or not the redundancy measure 

loads on any of the components of executive functioning. Some researchers propose 

that the redundancy measure is reflective of the updating component (Miyake et al., 

2000) while others  (Fisk & Sharp, 2004) do not.  

 

The consonant updating task (see Montgomery, Fisk, Newcombe & Murphy, 2005b) 

The consonant updating task is a measure of updating performance. The consonant 

updating task is a computer-based task where participants are presented with a 

sequence of random consonants based on their letter span score. A total of 24 lists are 

presented and, in each case, the participant is unaware of the number of consonants to 

be presented. The task is to recall the most recent n consonants in the order in which 

they appeared where n is equal to the participant’s letter span score. Six trials are 

presented at four different list lengths and in a randomized order: n, n + 2, n +4 and n 

+ 6 items. A composite score of updating performance is calculated based on the 

average number correct for each serial position over the six trials at each of the four 

list lengths. These figures are then averaged over list length and serial position. 

 

The computation span task (see Fisk & Warr, 1996) 

The computation span task is a measure of updating performance. Participants are 

required to solve simple arithmetic problems (e.g., 7+3=?)  by circling one of three 

multiple-choice answers as each problem is presented. Participants are also required 

to recall the second digit of each presented problem (e.g., 3). Once all problems have 

been solved, participants are asked to write down the last digit from each computation 

in serial order. The computation span task begins with three trials with one arithmetic 

problem and increases by one problem to two, three etc. In order to proceed, 
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participants are required to successfully complete each aspect of the task in at least 

two of the three trials at the current level. Span is scored according to the maximum 

number of end digits recalled in serial order. Participants are also required to have 

solved the corresponding arithmetic problems correctly.  The computation span task is 

suggested to load on the updating component executive processes (Fisk & Sharp, 

2004). 

 

 

The Chicago word fluency task (The CWFT; Thurstone & Thurstone, 1943)  

The CWFT is a measure of an individual’s ability to access long-term memory (Fisk 

& Sharp, 2004). Participants are given five-minutes to write down as many words as 

they can, beginning with the letter S. Once completed, participants are given a further  

four-minutes to write down as many four-letter words beginning with the letter C.  

Participants are instructed not to write any place names, people’s name or plurals.  

Because plurals were not allowed, words such as “ cats” and repetitions of words 

were excluded. Scores for each fluency task are the number of appropriate words 

generated in each case.  

 

The digit span task (Subset of the Wechsler Adult Intelligence Scale 4th Version; 

Wechsler, 2008) 

The digit span task is a measure of updating performance. In the digit span task 

(Forward version), participants are presented with a series of numbers on a computer 

screen and are asked to say each number out loud after it is presented. Participants are 

then required to write down each digit in the order that they appeared on the computer 

screen. The Digit Span Task (Forward version) commences with three trials with one 

number and increases by one number to two, three, four etc. Digit span is defined as 

the maximum number of digits that a participant can remember on two out of three 

trials.  

 

The plus/minus task (Miyake et al., 2000) 

The plus/minus task is a measure of shifting performance. The plus/minus task is 

adapted from Miyake et al. (2000) and consists of three lists of 30, two-digit numbers. 

For the first list, participants are asked to add 3 to each number and to write the 
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answer in a box situated to the right. For the second list, participants are required to 

subtract three from the two digit number. Finally, for a third list, participants are 

required to alternatively add and subtract three from each two digit number in the list. 

A stopwatch is used to record the total time it takes for participants to complete each 

list. A shifting cost of alternating between adding and subtracting is calculated as the 

difference between the time taken to complete list three and the average of the times 

taken to complete list one and list two. 

 

 

The number/letter task (Adapted from Rogers & Monsell, 1995; Miyake et al., 2000).  

The number/letter task is a measure of shifting performance. In the number/letter task, 

participants are presented with a number/letter pair (e.g. D4) in one of four quadrants 

on a computer screen. If the target is in the top half of the screen, the task is to 

indicate if the letter is a vowel (A, E, I, O or U) or a consonant. If the target is in the 

bottom half of the screen, the task is to indicate if the number is odd or even. The 

practice version of the task comprises three sets. The target is presented in the top half 

of the screen for 12 trials, then the bottom half for 12 trials, and then in a clockwise 

rotation around all four quadrants for a further 12 trials. The main task follows the 

same structure, except there are 64 targets in each block. Therefore, the trials in the 

first two blocks require no switching, whereas the third set does. The shift cost is 

calculated based on the difference between the average reaction times of the third 

block and the averages of the first two blocks. 

 

 

Trial Making Test-B (TMT-B; Reitan, 1992) 

The TMT-B is a measue of shifting performance. The TMT-B requires participants to 

correct a sequence of numbers alternated with letters as quickly as possible (e.g., 1, A, 

2, B, 3, C, 4, D, etc). The time taken to complete the task is the primary performance 

measure.  

 

 

The Wisconsin Card Sorting Task (The WCST; Heaton, 1981) 

The WCST is a measure of shifting performance. A deck of cards containing different 

numbers, different forms and in different colours are shown. The task is to sort the 
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cards according to one of three rules (i.e., numbers, forms or colours). Participants are 

unaware of the rules and must identify the sorting rules for themselves. After each 

sort, participants receive feedback in order to determine whether their sort was correct 

or not. Following successful completion of one full card sort (10 correct sorts in a 

row), the rule is changed and participants must shift their attention and sort the cards 

according to the new rule. Perseverative errors are calculated and reflect the extent to 

which the participants keep sorting cards according to a previously correct rule or to a 

rule that he or she was informed was incorrect in the preceding sort.  

 

 

9.4 Neuropsychology of executive functioning 

EF has primarily been linked to a number of frontal regions including the right 

orbitofrontal cortex, the dorsolateral prefrontal cortex, the cingulate gyrus and the 

basal ganglia amongst others (Rubia et al., 2009). However, executive function 

control is not limited to prefrontal areas with a growing body of research suggesting 

that posterior (mainly parietal) regions are also implicated in EF tasks. To name a 

few, the precuneus, the left inferior parietal cortex and the superior parietal cortex 

have all been linked to EF performance (Baker et al., 1996; Dagher, Owen, Boecker 

& Brooks, 1999; Hedden & Gabrieli, 2010). Overall, this evidence shows that EF is 

mediated by a diverse neural network that extends beyond anterior cerebral regions. 

The current subchapter focuses specifically on the neurological basis of executive 

functions in the context of Miyake et al’s (2000) three component model of executive 

functioning.  

  Research which has employed neuroimaging techniques to explore cerebral 

activation during shifting tasks has found significant involvement of prefrontal, 

parietal and subcortical areas (Gurd et al., 2002; Hedden & Gabrieli, 2010). This 

general activation was confirmed in Wager, Jonides and Reading’s (2004) 

metanalysis which concluded that seven separate brain regions are activated during 

shifting tasks. Importantly, the specific locations of activation appear to be divided 

between the anterior and posterior regions. For example, the dorsolateral prefrontal 

cortex (frontal) has been linked to the active maintenance of information in working 

memory (Cohen et al., 1997) while the inferior parietal lobule (posterior) is 

implicated when participants are required to shift their attention form one stimulus 
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response mapping to another (Badre & Wagner, 2006, Yeung, Nystrom, Aronson & 

Cohen, 2006).  Other posterior regions which demonstrate activation during shifting 

tasks include the posterior parietal cortex and the superior parietal cortex (Sohn et al., 

2001). Sohn and colleagues (2001) explain that these regions are important during 

goal-directed preparation for a subtask. Interestingly, coordinated activation is evident 

between the basal ganglia and prefrontal and parietal regions at rest and during 

shifting tasks (Cools, Ivry & D'Esposito, 2006). The basal ganglia has a functional 

role in shifting tasks and is reflected by poorer shifting performance following 

dopaminergic depletion, striatal lesions, and in Parkinson's disease patients (Cools, 

Rogers, Barker & Robbins, 2010, Monchi, Petrides, Mejia-Constain, & Strafella, 

2007; Nagano-Saito et al., 2008). 

  A body of research has also explored the updating component of executive 

functions. The n-back task is one measure of updating whereby items (e.g., letters, 

spatial positions or non-verbal material) are sequentially presented and participants 

are required to decide whether the item is similar to the one presented n items 

previously. Performance on the n-back task has been linked to neural activation in the 

prefrontal dorsolateral cortex (BA 9/46), the inferior frontal cortex (BA 44), and the 

anterior cingulate, but also in cerebral posterior areas, such as the superior and 

posterior parietal cortex (BA 40/7) (Braver et al., 1997; Cohen et al., 1997; Jonides et 

al., 1997). Similarly, research that has used the random number generation task to 

investigate updating (Miyake et al., 2000) has also found significant activation of the 

dorsolateral prefrontal cortex and the inferior frontal cortex during task completion 

(Jahanshahi, Dirnberger, Fuller & Frith, 2000). More recent literature has linked the 

updating component of executive functions to the caudate (improved accuracy) and 

the ventrolateral prefrontal cortex (faster reaction times; Podell et al., 2012). Overall, 

the literature is consistent in demonstrating the importance of the prefrontal cortex in 

updating tasks (Montojo & Courtney, 2008; Roth, Serences & Courtney, 2006; Astle, 

Jackson & Swainson, 2008; Lenartowicz, Escobedo-Quiroz & Cohen, 2010). 

According to D’Ardenne et al. (2012), the brain updates context via a gating 

mechanism which is mediated by the prefrontal cortex. When the gating signal is 

present, inputs to the PFC are enhanced. This facilitates the activation (encoding) of 

new representation and replaces the ones previously maintained. The updated context 

information is then maintained until the next gating signal is present. Crucially, 
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D’Ardenne et al. (2012) propose that the gating signal occurs only when conditions 

have changed and when a new goal should be realised.  

 With regard to inhibition tasks, evidence from neuroimaging studies points 

towards the involvement of prefrontal, parietal and temporal areas (Chee et al., 2000; 

Collette et al., 2001; Collette et al., 2005; Garavan, Ross & Stein, 1999; Larrue, 

Celsis, Bès & Marc-Vergnes, 1994; Nelson et al., 2003). Specifically, the right 

inferior frontal gyrus has a functional role in resolving interference among potentially 

conflicting characteristics of a target stimulus (Nelson et al., 2003) while the left 

inferior frontal gyrus is activated when participants have to resolve interference in 

verbal working memory tasks (D’Esposito et al., 1999; Jonides, Smith, Marshuetz, 

Koeppe & Reuter-Lorenz, 1998). Other areas such as the anterior cingulate cortex are 

activated when participants are presented with conflicting stimulus-response 

associations (i.e., when an individual is required to inhibit a dominant, automatic and 

prepotent response; Nelson et al., 2003).   

  A large proportion of studies that have explored the cerebral mechanisms 

associated with inhibitory control have focused on patients with attention-deficit 

hyperactivity disorder (ADHD) and obsessive-compulsive disorder (OCD). This is 

because patients with both disorders display behavioural abnormalities relating to 

inhibitory control. ADHD is characterised by inattention, impulsiveness and 

hyperactivity, as well as neuropsychologcal (Rubia et al., 2007; Wilcutt et al., 2005) 

and fronto-striatal neurofunctional (Rubia et al., 2008, 2009; Smith et al., 2006) 

deficits in inhibitory functions (e.g., motor response inhibition, cognitive switching). 

By comparison, OCD patients exhibit poor inhibitory control towards unwanted 

obsessive, thoughts, behaviours and compulsions (Rubia et al., 2009). Neurological 

evidence indicates that ADHD patients consistently demonstrate underactivation of 

the bilateral inferior prefrontal cortex (Pliszka et al., 2006; Rubia et al., 2005, 2008; 

Smith et al., 2006], the ventrolateral and the dorsolateral inferior prefrontal cortex 

during inhibition tasks (Rubia et al., 2008, 2009). Similarly, OCD patients display 

structural (Huyser et al., 2009; Menzies et al., 2008) and functional abnormalities 

(Menzies et al., 2008; Woolley et al., 2008) within inhibitory control-related 

prefrontal regions. Thus, researchers have begun to postulate that inhibitory control 

deficits displayed in patients with ADHD and OCD might be related to deficits within 
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the fronto-striatal network (Huyser et al., 2009; Menzies et al., 2008). According to 

Rubia et al. (2009) the right orbitofrontal cortex, the left dorsolateral prefrontal 

cortex, the cingulate gyrus and the basal ganglia all play a part in inhibitory control. A 

number of these regions have also been associated with PM functioning (Okuda et al., 

1998; 2007) and as such PM deficits might be underpinned by some impairment in 

inhibitory control.  

  As demonstrated above, the brain regions implicated in EF tasks are diverse 

and fractionated between the frontal and posterior regions. However, there is some 

degree of overlap between the brain regions implicated in shifting, updating and 

inhibition tasks. These findings further demonstrate the unity of executive functions.  

This assertion is supported by an influential study by Collette et al. (2005). The 

authors employed PET to investigate the neural networks associated with Miyake et 

al’s (2000) three-component model of executive functioning. A global conjunction 

analysis revealed activation in the right intraparietal sulcus, the left superior parietal 

gyrus, and to a lesser extent, the left lateral prefrontal cortex common to shifting, 

updating and inhibition tasks. These areas appear to be general to all three EF tasks. 

Collette et al. (2005) concluded that the right intraparietal region is involved in 

selective attention to task relevant stimuli and also in the suppression of task 

irrelevant information. In comparison, the left superior region is linked to modal 

switching and integration processes while the activation of the lateral prefrontal 

cortex was evident in ongoing task functions related to the monitoring and temporal 

organisation of information.  Activation of the right intraparietal sulcus, the left 

superior parietal gyrus and the lateral prefrontal cortex which are common to shifting, 

updating and inhibition tasks confirms previous proposals of the unity of executive 

functions (Miyake et al., 2000; Miyake & Friedman, 2012).   

  Other findings from Collette and co-workers (2005) provide significant 

evidence for the diversity of executive functions.  Interaction analyses showed that the 

right supramarginal gyrus, left precuneus, left superior parietal cortex, right 

intraparietal sulcus and left middle and inferior frontal gyri were activated during 

shifting task completion. Activation of the frontopolar (BA10), superior (BA 6), 

middle (BA 9/46), inferior (BA 44/45) and orbitofrontal (BA 11) cortices were 

observed in updating tasks. Increased activation of the BA 10 confirms previous 
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findings (Van der Linden et al., 1999) and is particularly noteworthy given the role of 

the frontopolar cortex in PM tasks (Burgess et al., 2001; Okuda et al., 2007; Burgess, 

Scott & Frith, 2003; Simons et al., 2006).  Thus, it is feasible that deficits in PM may 

occur as a result of a secondary impairment in updating ability. Although Collette et 

al. (2005) found widespread prefrontal activation during updating tasks, the specific 

locations were different to the regions which were activated during shifting tasks. In 

terms of inhibition, significant activation was found in the right inferior frontal gyrus 

(BA 48), right orbitofrontal gyrus (BA 11) and the right middle/superior frontal gyrus 

(BA 10). It is important to note the area of the BA10 that was activated during 

inhibition tasks was different to the location that was activated during updating tasks. 

Furthermore, the authors are clear in demonstrating the more important function of 

the BA 10 for updating relative to inhibition (Collette et al., 2005).  

In summary, shifting, updating and inhibition appear to be mediated by frontal 

networks whereby each executive function has been shown to map onto the left 

middle and inferior frontal gyri (Collette et al., 2005). However, each executive 

function as outlined by Miyake et al. (2000) (shifting, updating and inhibition) also 

appear to activate distinct and separate neural networks divided between the anterior 

and posterior regions. In the context of the current thesis, it is interesting to note that a 

number of the brain regions which have been linked to EF tasks are also implicated 

during PM tasks.  For instance, activation of the left superior region (Collette et al., 

2005) and the lateral prefrontal cortex (Collette et al., 2005; Rubia et al., 2009) which 

are suggested to be implicated in EF tasks have also been associated with PM 

performance (Burgess et al., 2001; Okuda et al., 1998; Okuda et al., 2007). Thus, it is 

plausible that ecstasy-related deficits in EF may give rise to substantially worse 

performance on PM tasks. 

 

 

9.5 Executive functioning deficits in ecstasy users 

The use of ecstasy has been linked to an array of cognitive deficits including in 

executive functions. The paragraphs that follow will focus primarily on the research 

that has explored the effects of ecstasy use on executive processes in the context of 

Miyake et al. (2000) conceptual framework of EF. The extent to which ecstasy has 

been shown to affects updating, shifting and inhibition will be examined.  
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Updating 

According to Morris and Jones (1999), updating is a process that requires individuals 

to monitor and code information whist simultaneously revising stimuli already in 

WM. In other words, updating involves the replacement of older irrelevant 

information with newer and more relevant information. To do this, individuals must 

dynamically manipulate information stored in WM. 

  Updating executive processes have been examined in ecstasy users using a 

number of laboratory-based measures including the computation span task, the 

consonant updating task, the letter span task and the spatial span task. In one study, 

Montgomery et al. (2005b) used the computation span task and the consonant 

updating task to assess updating performance in 27 ecstasy users and 34 non-ecstasy 

users.  Clear ecstasy-related deficits were observed on both measures indicating that 

the use of ecstasy may be detrimental to updating executive performance. These 

findings were replicated in another study by Montgomery and Fisk (2008). Seventy-

three ecstasy/polydrug users and 73 non-ecstasy users completed the letter span task, 

spatial span task and the consonant updating task. Both spatial and consonant 

updating performance were significantly poorer in ecstasy/poldrug users relative to 

non-ecstasy users. In explaining their findings, the authors suggest that ecstasy users 

have problems with the active maintenance of information in WM. For example, 

while ecstasy/polydrug users might be able to form memory “chunks” of stimuli 

(numbers or letters), they may not be able to retain this information as effectively as 

non-ecstasy users. In a further study, the same authors (Fisk & Montgomery, 2009) 

sought to explore whether ecstasy-related deficits in updating executive processes are 

domain specific. That is, does ecstasy use adversely affect both verbal and visuo-

spatial processing. Fourteen heavy ecstasy users, 39 light ecstasy users and 28 non-

ecstasy users were assessed on the letter span task, the spatial span task and the 

computation span task. Ecstasy-related impairments were found on both the spatial 

span task and the computation span task such that non-ecstasy users performed 

significantly better than the combined group of heavy and light ecstasy users. These 

findings remained statistically significant after controlling for the effects of other 

illicit drugs. In summary, these findings suggest that updating executive deficits in 
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ecstasy users are in fact domain general with impairments being observed in both 

spatial and verbal domains. 

In conclusion, the research discussed above suggests that updating performance is 

significantly impaired by the use of ecstasy. This is a view that was put forward in 

Murphy, Wareing, Fisk and Montgomery’s (2009) review. Based on a review of 33 

studies investigating the effects of ecstasy use on EF, Murphy and co-workers (2009) 

concluded that ecstasy-related deficits were particularly apparent in cognitive tasks 

that involved the updating of verbal material and for visuo-spatial tasks requiring 

additional processing beyond storage and retention. A more recent meta-analysis by 

Murphy et al. (2012) showed that ecstasy users were particularly impaired on visuo-

spatial updating tasks that involve detailed processing including the recall of spatial 

stimulus elements, the recognition of figures and/or the production or reproduction of 

figures.  

 

Shifting 

Being able to move back and forth between multiple tasks, operations or mental sets 

is necessary for everyday functioning. This process is known as shifting and is often 

associated with a temporal cost (Monsell, 2003; Rogers & Monsell, 1995) resulting 

from interference and/or negative priming (Allport & Wylie, 2000). Some of the most 

common laboratory-based tasks that are used to assess shifting include the TMT-B, 

the WCST, the plus/minus task and the number/letter task.  

  Studies that have used the TMT-B have failed to highlight ecstasy-related 

impairments in shifting (Semple et al., 1999; Morgan, McFie, Fleetwood & Robinson, 

2002; Thomasius et al., 2003). Morgan et al. (2002) found that there was no 

significant difference between current ecstasy users, former ecstasy users, polydrug 

controls and non-ecstasy users on the TMT-B. This finding was replicated by 

Thomasius et al. (2003) who found that current heavy ecstasy users, former ecstasy 

users, polydrug controls and non-ecstasy users took a similar length of time to 

complete the TMT-B. 

No clear ecstasy-related deficits in shifting have been observed in studies that 

have used the WCST. For example, Turner, Godolphin and Parrott (1999) found that 
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ecstasy users were unimpaired compared to non-ecstasy users on the WCST. 

Similarly, Fox, Parrott and Turner (2001) found that there was no difference in 

perseverative errors on the WCST between 20 ecstasy users (with self-reported 

ecstasy-related problems), 20 non-problematic ecstasy users and non-ecstasy users. 

Thomasius et al. (2003) showed that current ecstasy users committed significantly 

more perseverative errors than polydrug users on the WCST, although their 

performance was not significantly different from that of non-ecstasy users. More 

recent research by McCann, Peterson and Ricaurte (2007) also failed to show shifting 

deficits in ecstasy users on the WCST.  

  The plus/minus task and the number/letter task have only been used in one 

study to date to investigate shifting performance in ecstasy users. Montgomery et al. 

(2005) found no significant differences in shift cost on the plus/minus task or the 

number/letter task between ecstasy/polydrug users and non-ecstasy users. The 

findings from this study as well as those documented above (Morgan et al., 2002; 

Thomasius et al., 2003) would appear to indicate that shifting performance is 

unaffected by the use of ecstasy. However, ecstasy-related impairments in shifting 

have been noted elsewhere (Dafters, 2006).  

  Dafters (2006) compared inhibition and shifting performance in ecstasy and 

cannabis users, cannabis-only users and non-ecstasy users using a standard version of 

the Stroop task (Stroop, 1935) and a modified alternative. The standard version of the 

Stroop task is suggested to load on the inhibition executive component and requires 

participants report the colour of the ink in which a word is printed while ignoring an 

incompatible word name. For example, the word blue written in yellow ink would 

require a response of yellow. Response times are typically slower for incompatible 

trials (when the colour of the ink and the word are different) compared to compatible 

trials (when the colour of the ink and the word are the same). The modified version of 

the Stroop task included in Dafters’ (2006) study introduced a simple shifting EF 

element to the task. When a word was marked with a stimulus, for example, if a word 

was underlined, participants were required to identify the name of the word rather 

than the colour of the ink. No significant group differences were observed on the 

normal version of the Stroop task (inhibition). However, the ecstasy and cannabis user 

group were significantly impaired on the modified version of the Stroop task 

(shifting) relative to cannabis-only users and non-ecstasy users. Overall, these 
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findings appear to show an impairment in shifting executive processes associated with 

ecstasy use. However, as discussed earlier, there is a substantial amount of literature 

that suggests that the use of ecstasy is not detrimental to shifting. This is a point that 

is highlighted in Murphy et al’s (2009) critical review of 33 published studies 

investigating EF in the context of Miyake et al’s (2000) conceptual framework (i.e., 

studies investigating the effects of ecstasy use on updating, shifting and/or inhibition). 

The authors concluded that the shifting component of EF is relatively unaffected by 

ecstasy use.  

 

 

Inhibition 

The ability to inhibit dominant, automatic and prepotent responses is known as 

inhibition (Stroop, 1935). The Stroop task (Stroop, 1935) is a common measure of 

inhibition that is widely used in the literature. Studies that have used the Stroop task 

have shown no clear effects of ecstasy use on inhibition (Croft, Mackay, Mills and 

Gruzelier, 2001; Dafters, 2006; Morgan et al., 2002). Dafters (2006) found no 

significant difference in response times on the Stroop task between ecstasy and 

cannabis users, cannabis only users and non-drug users. Yip and Lee (2005) did claim 

to find evidence of ecstasy-related impairments on the Stroop task although their 

ecstasy user group (i.e., ecstasy users who did not use alcohol or tobacco) was 

unrepresentative of typical ecstasy users. It is common for drug users to typically 

consume ecstasy together with other drugs including alcohol and tobacco (either 

concurrently or at different times). For example, Riley and co-workers (2001) found 

that 85% of those individuals who consume ecstasy at rave events also use alcohol 

concurrently.  

  The Tower of London (TOL) task is another laboratory-based measure that is 

commonly used in the literature to assess inhibition. In this task, participants use an 

abacus to move three coloured balls (blue, red and green) from a starting position to a 

‘goal’ position in a specified minimal number of moves. A total of 12 trials are 

completed involving two 2-move trials, two 3-move trials, four 4-move trials and four 

5-move trials. Trials are tape-recorded and ‘planning times’ and ‘solution times’ are 

then calculated. Planning time reflects the interval from the last verbal instruction 

from the experimenter to the first ‘click’ of the apparatus from the participant. 
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Solution time reflects the total period of time that it takes the participant to complete a 

problem. Planning and solution times are averaged across the total 12 trials. Mean 

total number of errors made and total number of trials completed are also scored. 

Studies that have used the TOL task to investigate inhibition executive processes in 

ecstasy users have yielded inconsistent findings. Morgan (1998) found no difference 

between ecstasy users, polydrug controls and non-drug users on any of the 

performance measures of the TOL. Similar findings have been reported elsewhere 

with the majority of research failing to find ecstasy-related deficits in inhibition 

processes using the TOL task (Fox et al., 2001; Fox et al., 2002). Although the 

ecstasy user groups (problem ecstasy users and non-problem ecstasy users) in Fox et 

al’s (2001) study did display significantly longer planning times than non-ecstasy 

users, no performance deficits were observed. 

  Previous literature has also failed to identify ecstasy-related problems in 

inhibition on the RLG task (Fisk & Montgomery, 2009; Fisk et al., 2004). For 

example, Fisk et al. (2004) found that current ecstasy users and non-ecstasy users 

generated a similar number of alphabetical sequences and repeat sequences on the 

one-second, two-second and four-second trials of the RLG task. These findings were 

replicated in a subsequent study by Fisk and Montgomery (2009). Overall, the general 

consensus in the literature appears to be that the inhibition component of EFs are 

unaffected by ecstasy use. This position is maintained in Murphy et al’s (2009) 

critical review (also see Parrott, 2013).  

In summary, updating executive processes are clearly impaired in ecstasy users with 

significant deficits having been observed in studies using the computation span task 

and the consonant updating tasks. This does not appear to be the case for shifting or 

inhibition executive processes where conclusive ecstasy-related deficits have not been 

found.  

 

9.6 Are drug-related deficits in prospective memory underpinned by executive 

functioning processes? 

Kopp and Thöne-Otto (2003) suggest that central executive functions play an 

important role in PM performance. One proposal is that PM performance is dependent 
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on the frontal regions and the functions that this region serves in mediating executive 

processes (Burgess, Veitch, de Lacy Costello & Shallice, 2000; McDaniel, Glisky, 

Rubin, Guynn & Routhieaux, 1999). For instance, frontally mediated executive 

functions include planning, interruption and inhibition processes, the monitoring of 

environmental events and the flexible initiation of responses towards those events 

(Shimamura, Janowsky & Squire, 1991). As discussed previously, PM is a detailed 

process which involves four main phases including intention formation, intention 

retention, the retrieval of an intention and the execution of an intention (Ellis, 1996; 

Kvavilashvili & Ellis, 1996). Frontal regions are specifically suggested to be 

implicated during the intention formation and intention execution phases of PM tasks. 

It is therefore assumed that executive resources will be significantly challenged in PM 

tasks where there is increased emphasis on intention formation and intention 

execution (Martin et al., 2003).  

 

  By way of investigating this proposal, Martin et al. (2003) assessed PM 

performance in a sample of 80 adults using four different laboratory-based PM tasks. 

Each task placed different demands on each of the four phases of PM and as such 

were assumed to differentially challenge frontal/executive functions. The multitask 

PM paradigm (Kliegel et al., 2000) was selected which placed significant emphasis on 

the intention planning and execution phases of PM tasks.  This paradigm is based on 

the six-element task developed by Shallice and Burgess (1991) and consists of three 

phases; an introduction phase, a delay phase and a performance phase. In the 

introduction phase, participants are required to develop a plan for executing a six-

element PM task. Participants are instructed that they will have a total of six-minutes 

to complete all PM subtasks.  The delay phase is the period of time prior to the six-

minutes allocated for the PM tasks where individual difference variables can be 

assessed. The performance phase refers to the period of time in which the multitask 

PM paradigm had to be executed. 

 

  The second laboratory-based measure was an event-based PM task that 

involved the presentation of a specific PM target during an ongoing task. Participants 

were asked to make a predefined response whenever the PM target was presented. 

This task was based on a paradigm that was first introduced by Einstein et al. (1997) 
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and placed strong emphasis on the execution phase of the PM task. The third 

laboratory-based PM measure was a time-based PM task where participants were 

required to make a predefined response after a specific time period had elapsed. Once 

again, this task emphasized the execution phase of the PM performance. Participants 

were given the opportunity to monitor time by pressing the “yellow” key on a 

computer keyboard. After pressing this key, a counter clock would appear on the 

computer screen for a period of two seconds. Executive functions were analysed using 

the WCST (Heaton, 1981), the Stroop task (Stroop, 1935) and the TOL task (see 

Shallice, 1982).  

 

 Age related-declines in PM performance were observed on all of the 

laboratory-based PM tasks except on the Belonging subset of the RBMT. Executive 

functions predicted PM performance for complex PM paradigms and especially those 

with increased emphasis on the intention formation and intention execution. 

Furthermore, it is worthy of note that age-related differences in PM performance were 

dependent on age-related individual differences in frontal/executive functions. This is 

significant in terms of the current project since illicit drug users display similar EF 

impairments to older adults. For example, older adults (Herman, Mirelman, Giladi & 

Schweiger, 2010; Prakash et al., 2009) and illicit-drug users (Gouzoulis-Mayfrank et 

al., 2000; Gouzoulis-Mayfrank & Daumann, 2009; Zakzanis, Campbell & 

Jovanovski, 2007) display impairment on executive functions associated with frontal 

lobe functioning. With this in mind, it might be that PM deficits in ecstasy users are 

underpinned by problems in executive functions.  

 

 Wang, Cao, Cui, Shum and Chan (2013) used event-related potentials to 

investigate the neural correlates of PM and to explore whether working memory is 

implicated in prospective remembering. Participants completed a simple PM task and 

a number/letter span task and electrophysiological data were recorded. Participants 

with long working memory spans had shorter reaction times (during an ongoing task 

and towards PM cues) and also demonstrated smaller amplitudes in prospective 

positivity compared to participants with short working memory spans. PM retrieval is 

dependent on cognitive resources such that participants with a short working memory 

span need to make a greater effort to retrieve a PM intention from memory (as 

demonstrated by a greater amplitude of prospective positivity relative to participants 
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with a longer working memory span). These results suggest that working memory 

resources are implicated in the intention retrieval process of prospective 

remembering. 

 Studies that have explicitly investigated the role of executive functions in PM 

deficits among drug users have yielded inconsistent findings. Heffernan and Bellis 

(2012) investigated the role of the central executive (an important component of 

Baddeley’s (1986) working memory model and refers to a set of processes that 

control the organisation and flow of information in memory) on laboratory-based PM 

performance in a sample of ecstasy users and non-ecstasy users. PM performance was 

measured by the CAMPROMPT and EF was measured using the reverse digit span 

task.  The results confirmed previous findings (Hadjiefthyvoulou et al., 2011b) and 

showed significant ecstasy-related impairment on the CAMPROMPT. However, in 

contrast to Hadjiefthyvoulou et al. (2011b), Heffernan and Bellis (2012) found that 

the significant main effect of ecstasy use on PM dropped to below statistical 

significance after controlling for EF scores (i.e., central executive scores). This 

finding suggests that problems with central EF might be at the core of PM 

impairments in ecstasy users. Further findings from Weinborn et al. (2011) further 

demonstrate the link between executive functions and PM performance in ecstasy 

users. They found that ecstasy users were significantly impaired on PM tasks with 

longer delay intervals. Moreover, this deficit was associated with risky decision-

making, deficits in target monitoring and failure to maintain cue interaction pairings. 

In summary of the abovementioned findings, it appears that executive functions are 

implicated in PM tasks thereby raising the possibility that ecstasy-related impairments 

in PM are mediated by underlying problems in EF.   

  

 That said, a number of studies have shown that PM deficits in ecstasy users 

are not underpinned by executive functions (Hadjiefthyvoulou et al., 2011a; 2011b; 

2011c). In Hadjiefthyvoulou and colleagues’ (2011c) study, 73 ecstasy/polydrug users 

and 67 polydrug/non-ecstasy users were assessed on executive functions and PM 

measures. The BRIEF-A is a self-report measure of executive functions and was used 

to identify possible behavioral manifestations of executive function in 

ecstasy/polydrug users in comparison to a non-ecstasy user control group. Three 

further laboratory measures of PM were administered including the long-term delayed 

recall PM task (Hadjiefthyvoulou et al., 2011a), the Karolinska fatigue PM task 
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(Hadjiefthyvoulou et al., 2011a) and the F1 event-based PM task (Hadjiefthyvoulou et 

al., 2011a). Ecstasy/polydrug users performed worse than the control group on seven 

out of the nine scales of the BRIEF-A (inhibit, self-monitor, initiate, working 

memory, plan and organization, task monitor and organization of materials). 

Ecstasy/polydrug users also displayed significant deficits on all three laboratory 

measures of PM compared to the control group. However, additional analyses 

revealed that the ecstasy-related deficits in PM were not mediated by the deficits 

observed on the executive function measure. While the authors acknowledge the 

importance of executive functions for PM functioning, they argued that observed 

deficits in these cognitive processes do not share a common basis. 

 

 

9.7 Chapter summary 

Executive functions regulate a person’s thoughts and behaviours and include control 

functions that inhibit prepotent responses, update task demands, shift between mental 

sets, monitor performance and/or cues and maintain goals (Miyake & Friedman, 

2012). In relation to Miyake et al’s (2000) conceptualization of executive functions, 

ecstasy users appear to be impaired on measures of updating but relatively unimpaired 

on shifting and inhibition tasks. It is important to note that PM tasks load heavily on 

prefrontal regions that have an important role in executive function processing. There 

is at least some evidence for the role of executive functioning processes in PM tasks 

with some studies (Heffernan & Bellis, 2012) suggesting that PM deficits in ecstasy 

users might be mediated by underlying problems in executive functions. Nonetheless, 

this relationship has received little attention in the literature and additions studies are 

needed to further establish the relationship.  
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Chapter 10: The role of executive functioning deficits in accounting for 

prospective memory impairments in ecstasy users.  

Chapter 10 investigates Prospective Memory (PM) and Executive Functioning (EF) 

performance (Updating, shifting, inhibition, verbal word fluency) in ecstasy users and 

non-users. Ecstasy users and non-users were compared on a range of PM (The F1 

event-based PM task, the Karolinska fatigue PM task, the long-term delayed recall 

PM task and the Cambridge PM task) and EF measures (The computation span task, 

the plus/minus task, the number/letter task, the random letter generation task and the 

Chicago word fluency task).  Stepwise multiple regression was then performed to 

investigate the extent to which PM deficits in ecstasy users were attributable to 

individual differences in updating (The computation span task), shifting (The 

plus/minus task, the number/letter task), inhibition (The random letter generation 

task) and verbal word fluency (The Chicago word fluency task). 

 

10.1 Introduction   

Prospective memory (PM) refers to an individual’s ability to carry out intended 

actions and/or behaviours at some point in the future. As discussed in Chapter 2, PM 

is a detailed process that involves the formation of an intention, its retention in 

memory, its subsequent retrieval from memory and the execution of an action directed 

towards the fulfilment of that intention (Ellis, 1996). With regard to retrieval, 

intentions may need to be carried out a short- or a long-term after they have been 

initially formed (Ellis & Kvavilashvili, 2000). This is often where PM lapses occur as 

a person may need to interrupt ongoing everyday activities in order to successfully 

fulfil a delayed intention. Therefore, in PM tasks there is no specific reminder for an 

individual to search memory for a previously formed intention. As such, PM retrieval 

is entirely dependent of on an individual’s ability to inhibit currently ongoing 

operations and to divert attention towards the retrieval of the intention from memory. 

PM deficits in ecstasy users have been observed by a number of studies 

(Hadjiefthyvoulou et al 2011a; 2011b; Rendell et al., 2007; Rendell et al., 2009; 

Weinborn et al., 2011) as well as in the earlier empirical work of this thesis.  
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 The purpose of the present study was to determine whether PM performance 

in ecstasy users is mediated by performance on EF tasks. The context for the present 

investigation is Baddeley’s (1986) multi-component model of WM. The multi-

component model of WM suggests that there is a distinct system that is responsible 

for the maintenance and storage of information in the short-term and that this system 

mediates an individual’s thoughts and behaviours. As discussed in Chapter 9, the 

multi-component model of WM consists of a phonological loop system, a visuo-

spatial system and a modality free central executive. The phonological loop and 

visuo-spatial system are responsible for the maintenance of acoustic and visual 

information, respectively. By comparison, the central executive is a supervisory 

system that controls and regulates cognitive operations. Research now indicates that 

the central executive can be separated into individual and partially independent 

components which load onto at least three different executive processes (Friedman et 

al., 2010; McKinlay et al., 2010; Miyake et al., 2010). Miyake and co-workers (2000) 

propose that the central executive can be sub-divided into three separate processes: 

shifting, updating and inhibition.  

 Shifting relates to an individual’s ability to move back and forth between 

different tasks, operations and mental sets and is commonly associated with a 

temporal cost (Monsell, 2003; Rogers & Monsell, 1995). Updating involves 

monitoring and coding of incoming information such that individuals are required to 

revise stimuli already in WM and replace older, no longer relevant information with 

newer, more relevant information (Allport & Wylie, 1999). Inhibition refers to an 

individual’s ability to inhibit dominant, automatic and pre-potent responses at times 

when they are not needed or are inappropriate. Although Miyake and colleagues 

(2000) found that the three processes shared common characteristics, their findings 

were also indicative that the processes were separate with some EF tasks loading on 

just one or two specific executive processes. For example the Wisconsin card sorting 

task (WCST) was strongly related to shifting while the Tower of Hanoi task (TOH) 

was closely linked to inhibition. The random letter generation (RLG) task tapped into 

inhibition and updating but not shifting (see Miyake et al., 2000). Other laboratory-

based tasks of EF including the computation span task are associated most strongly 

with updating (Fisk & Sharp, 2004) while the plus/minus task and the number-letter 

task both load heavily on shifting operations (Montgomery et al., 2005b). 
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  There is a growing body of evidence which links PM performance to 

executive functioning (EF) processes. This research is based on the assumption that 

PM requires self-initiated and attention demanding resources which load heavily on 

EF operations and frontal brain regions (Burgess et al., 2000; Marsh & Hicks, 1998). 

This theory is supported by findings that have shown that EF processes are predictive 

of performance on complex PM paradigms (Martin et al., 2003). Kliegel, McDaniel 

and Einstein (2000) used the six-element task (Shallice & Burgess, 1991) and found 

further evidence for the role of EF processes in PM performance. As discussed 

previously, the six-element task requires individuals to self-initiate six different 

subtasks during a limited time period. Each subtask needs to be scheduled and 

prioritized in the order in which the participant feels will allow them to complete as 

many of the PM tasks as possible during the time period. To measure active planning 

processes, participants are asked to generate a plan prior to the execution of the PM 

tasks. Kliegel et al. (2000) found that individuals with greater WM capacity were 

more likely to execute previously formed intentions on the six-element task. 

Successful performance on PM tasks required participants to reinstate intentions into 

WM. Inhibition was significantly related to the number of individual PM tasks that 

were completed on the six element task. Further work by Kliegel et al. (2002) 

highlights the importance of other EF processes in PM tasks. They found that more 

than 50% of overall variance on PM tasks could be predicted by individual 

differences in planning and cognitive flexibility. In specific relation to drug use, 

Heffernan and Bellis (2012) found that ecstasy-related deficits on the Cambridge PM 

test (CAMPROMPT) fell to below statistical significance when controlling for central 

executive scores. In summary of the research outlined above, it appears that PM 

performance may be related to EF and that the PM deficits observed in ecstasy users 

may be underpinned by underlying problems in executive functions. 

  One possible reason for the role of EF processes in PM is that some PM tasks 

require detailed monitoring processes, especially when individuals are required to 

search the environment for PM cues and to shift attention from an ongoing task or 

activity to the retrieval of a delayed intention (Einstein & McDaniel, 2010). These 

operations have been found to rely on executive processes including monitoring and 

WM functioning (Smith & Jonides, 1999; Martin et al., 2003). Furthermore, in cases 

where PM cues are presented in an unfamiliar context, there is an increased need for 
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individuals to monitor the environment in order to realize a delayed intention. This 

ultimately increases the engagement of frontal executive processes including 

planning, attention switching and/or inhibitions (Martin et al., 2003). Another reason 

why EF ability may mediate performance on PM tasks is that both PM and EF tasks 

recruit frontal brain operations (Okuda et al., 2007; Collette et al., 2005). For instance, 

frontal regions have been associated with intention formation, intention retention, 

intention retrieval and intention execution (Ellis, 1996) in PM tasks. Similarly, several 

EF operations including shifting, inhibition and monitoring process have been linked 

to frontal brain regions (Rubia et al., 2009; Shimamura et al., 1991; Wager et al., 

2004).  

The aim of this Chapter is to investigate the role of EF processes in accounting for 

PM deficits in ecstasy users. Multiple laboratory-based measures of PM and EF were 

administered.  In relation to PM performance, ecstasy users and non-ecstasy users 

were compared on the F1 event-based PM task, the delayed-recall PM task, the 

Karolinska fatigue PM task and the CAMPROMPT. With regard to EF performance, 

ecstasy users and non-ecstasy users were compared on a number of different 

laboratory-based measures of shifting, updating and inhibition. The plus/minus task 

and the number/letter task were both used to measure shifting. The computation span 

task and the random letter generation (RLG) task were administered to assess 

updating with the latter also loading on inhibition functions (alphabetical and repeat 

sequences). The Chicago word fluency task (CWFT) was used as an additional 

measure of verbal word fluency. Stepwise multiple regression was then performed to 

investigate the extent to which PM deficits in ecstasy users were attributable to 

individual differences in shifting, updating, inhibition or verbal word fluency. 
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10.2 Method 

Participants 

Forty-two ecstasy users (28 males) and 46 non-ecstasy users (16 males) took part in 

the investigation (for demographic data, see Table 10.1). There was a significant 

gender difference between the two groups, χ2(1)=7.90, p=.005 such that there were 

more males than females in the ecstasy-user group and more females than males in 

the non-ecstasy user group. Participants were recruited via direct approach to 

university students. All participants were university students attending Liverpool John 

Moores University (LJMU) or the University of Central Lancashire (UCLAN). The 

participants who took part in this investigation were the same as those in Chapter 8. 

Participants were requested to refrain from ecstasy use for at least 7 days and ideally 

10 days prior to testing (the mean period of abstinence for ecstasy users was 43.46 

weeks, median=8.00 weeks). Participants were also requested not to use any other 

illicit drugs for at least 24 hours and ideally for 7 days prior to testing. The present 

study was approved by the ethics committees of the University of Central Lancashire 

and Liverpool John Moores University in accordance with the guidelines of the 

British Psychological Society. 

 

Materials 

Patterns of ecstasy and other drug use were obtained via a background drug use 

questionnaire (Montgomery et al., 2005, see Appendix 1 for a copy of this 

questionnaire). For the major illicit drugs, the same measures of long-term drug use 

(annual average dose per session and frequency of use) were collected as indicated in 

earlier empirical work (see Chapter 7 & Chapter 8). The current use of cigarettes and 

alcohol were also assessed. The Raven’s Progressive Matrices test (Raven et al., 

1998) was used as a measure of fluid intelligence. Daytime sleepiness was measured 

via the Epworth Sleepiness Scale (Johns, 1991; see Chapter 7: Empirical Chapter 1, 

section 7.2 for detailed descriptions of these measures; See Appendix 2 for a copy of 

the Epworth Sleepiness Scale Score questionnaire).  

Four laboratory-based measures of PM were administered. The F1 event-based PM 

task, the long-term delayed recall PM task, and the fatigue PM task were taken from 

Hadjiefthyvoulou et al. (2011a) and the Cambridge PM test (CAMPROMPT) from 
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Wilson et al. (2005). A full description of these laboratory-based measures of PM can 

be found in Chapter 5, section 5.3.  

 

Four further laboratory-based measures were administered to assess different aspects 

of executive functions including verbal word fluency performance, access to long-

term memory, updating, shifting and inhibition. 

 

Verbal word fluency / Access to long-term memory 

The Chicago word fluency task (CWFT) was administered which requires participants 

to write down as many four-letter words as they can, beginning with the letter C 

during a four-minute period. Once completed, participants are given a further five-

minutes to write down as many words as they can, beginning with the letter S.  

Participants are instructed not to write any place names, people’s name or plurals. 

Two scores are generated and relate to the number of four letter words beginning with 

the letter C and the number of words beginning with the letter S that were produced. 

Scores reflect verbal word fluency and the efficiency of access to semantic memory  

whereby higher scores are indicative of better performance.  

 

Updating 

The computation span task requires participants to solve simple arithmetic problems 

(e.g., 7+3=?). Participants record their responses by circling one of three multiple-

choice answers as each problem is presented. Participants are also required to recall 

the second digit of each presented problem (e.g., 3). Once all problems have been 

solved, participants are asked to write down the last digit from each computation in 

serial order. The task begins with three trials with one arithmetic problem and 

increases by one problem to two, three etc. In order to progress to the next 

computation level, participants are required to successfully complete each aspect of 

the task in at least two of the three trials at the current level. Computation span is 

scored according to the maximum number of end digits recalled in serial order. 

Participants are also required to have solved the corresponding arithmetic problems 

correctly. Computation span score reflects the number of serial positions correctly 

recalled out of a maximum of 63. This task is suggested to load on the updating 

component of EF.  
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Shifting 

The plus/minus task consists of three lists of 30, two-digit numbers. For the first list, 

participants are asked to add 3 to each number and to write the answer in a box 

situated to the right. For the second list, participants are required to subtract three 

from the two-digit number. Finally, for a third list, participants are required to 

alternatively add and subtract three from each two-digit number in the list. A 

stopwatch is used to record the total time it takes for participants to complete each 

list.  Scores are expressed as a ratio with scores above one reflecting an increasing 

shift cost.  

 

In the number/letter task, participants are presented with a number/letter pair (e.g. D4) 

in one of four quadrants on a computer screen. If the target is in the top half of the 

screen, participants are required indicate whether the letter is a vowel (A, E, I, O or 

U) or a consonant. If the target is in the bottom half of the screen, the task is to 

indicate if the number is odd or even. In the main task, the target is presented in the 

top half of the screen for 64 trials, then the bottom half for 64 trials, and then in a 

clockwise rotation around all four quadrants for a further 64 trials.  The trials in the 

first two blocks require no switching, whereas the third set does. Once again, scores 

are expressed as a ratio with scores above one reflecting a increasing shift cost. 

  

Inhibition  

The random letter generation (RLG) task requires participants to recite letters in a 

random sequence whilst avoiding alphabetical and well-known letter sequences (e.g. 

ABC, BBC or TLC) and with the aim of producing each letter with the same overall 

frequency. Traditionally, this task is repeated three times whereby participants are 

asked to generate a total of 100 letters at a rate of one letter every four seconds, one 

letter every two seconds or one per second. However, only the two second trial was 

used in the present study. Outcomes on the RLG task are divided into four 

performance measures. Redundancy reflects the extent to which the participant’s 

responses are random in terms of the expected frequency of the occurrence of each 

letter of the alphabet. A score of zero would indicate that the participant’s responses 

are totally random while a score of one would indicate that the participant has 

generated the same letter all of the time. Repeat sequences refers to the number of 
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times that a participant has repeated a letter pair (i.e., how may times has the letter 

pair, “LV” been repeated). Alphabetical sequences relates to the number of times that 

consecutive letters of the alphabet are repeated (i.e., AB, FG, LM). In each case, a 

higher score is indicative of poorer performance. The total number of letters generated 

is also recorded whereby higher scores are indicative of better performance. The 

redundancy score on the random letter generation (RLG) is suggested to load on the 

updating component of EF while the other three remaining RLG measures (repeat 

sequences, alphabetical sequences, total number of letters generated) reflect the 

inhibition component of EF (Fisk & Sharp, 2004).  

 

A computer using MS-DOS was used for the F1 event-based PM task, the 

computation span task, the number/letter task and the RLG task. 

 

Procedure   

Participants were informed of the general purpose of the experiment and verbal 

informed consent was obtained. Background questionnaires assessing age, years of 

education, general health and other relevant lifestyle variables (arousal, anxiety and 

depression, daytime sleepiness) were administered first and in a counterbalanced 

order. The laboratory-based measures of PM and executive functioning listed above 

were administered in a counterbalanced order. The Karolinska fatigue PM task was 

administered throughout the test-session.   

All tests were administered under laboratory conditions. Participants were fully 

debriefed and given the opportunity to ask any questions about the study prior to 

leaving the laboratory. Participants were paid £20 in store vouchers for their 

participation.  

 

Design/Statistics 

All of the demographic and background variables were analysed using a between 

participant design with user group as the independent variable (ecstasy users and non-

ecstasy users). Age, intelligence, years of education, cigarette and alcohol 

consumption, Epworth Sleepiness Scale Score, arousal, anxiety and depression were 

included as background measures. Any group differences on these background 

measures were investigated using independent t-test. Total lifetime consumption, total 
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use in the last 30 days, current frequency of use, duration of drug use and number of 

weeks since last use were included as background drug use variables for ecstasy, 

cannabis and cocaine.  

  For ecstasy, cannabis and cocaine, data for total lifetime consumption, total 

use in the last 30 days, total use in the last 10 days, current frequency of drug use, 

duration of drug use and number of weeks since last use were not normally 

distributed. This was characterised by skew or kurtosis associated with z values 

exceeding 3.29, p<.001. As a result non-parametric analyses were used (Tabachnick 

& Fidell, 2001).   

 The F1 event-based PM task, the Karolinska fatigue PM task, the long-term 

delayed recall PM task and the CAMPROMPT were included as PM dependent 

variables. The CWFT, the computation span task, the plus/minus task, the 

number/letter task and the RLG task were included as EF dependent variables.  In 

light of the distributional characteristics of the PM and EF dependent variables, a mix 

of parametric (independent t-test) and non-parametric tests (Mann-Whitney U test) 

were employed with drug user group (ecstasy users or non-ecstasy user) as the 

independent variable.  

In the main analyses, stepwise regression was used to determine the extent to which 

drug-related and other differences on the EF measures may account for drug-related 

differences on PM measures. Thus, separate regressions were run for each of the PM 

measures with ecstasy use defined dichotomously (user versus nonuser) and the EF 

measures as potential independent variables. 
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10.3 Results 

Demographical and Background Variables  

The scores for the demographical variables and background variables (including age, 

intelligence, years of education, cigarette and alcohol consumption, Epworth 

Sleepiness Scale score, arousal, anxiety and depression) are set out in Table 10.1. The 

scores for the background drug use variables i.e., total lifetime consumption, total use 

in the last 30 days, current frequency of use, duration of drug use and number of 

weeks since last use for ecstasy, cannabis and cocaine are shown in Table 10.2. 
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Table 10.1 Demographical variables of ecstasy users and non-ecstasy users. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Ecstasy users Non-ecstasy users p 

 Mean (SD) n Mean (SD) n  

Age (years) 22.38 (5.24) 42 20.09 (2.12) 44 .009** 

Ravens Progressive Matrices 

(max 60) 

45.11 (5.93) 37 44.45 (7.98) 52 .68 

Years of education 15.55 (2.25) 41 14.55 (1.81) 42 .03* 

Alcohol (units per week) 16.91 (17.33) 37 9.96 (12.11) 42 .04* 

Cigarettes per day 6.28 (4.02) 20 6.94 (2.93) 8 .68 

Epworth Sleepiness Score 7.23 (3.31) 39 7.72 (3.07) 42 .48 

Arousal  19.39 (4.69) 36 19.62 (3.80) 39 .82 

Anxiety  11.83 (3.51) 36 11.26 (2.83) 38 .44 

Depression 12.50 (2.97) 39 12.54 (2.49) 39 .95 

**p<.01      
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Independent t-tests showed that non-ecstasy users were significantly younger, had 

studied for a significantly shorter period of time and consumed significant less alcohol 

each week compared to ecstasy users. A series of independent t-tests revealed that the 

groups did not differ significantly in terms of intelligence, cigarette consumption, 

Epworth Sleepiness Scale score, arousal, anxiety and depression (see Appendix 6 for 

detailed statistical analyses related to background variables). 
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Table 10.2 Background drug use variables of ecstasy users and non-ecstasy users

 Ecstasy users Non-ecstasy users p 

 Median Min. Max. Int. Range n   Median Min. Max. Int. Range n  

Total prior consumption            

Ecstasy (tablets) 56.00 1.00 1078.00 184.00 41  - - - - - - 

Cannabis (joints) 2877.50 1.00 21240.00 3004.75 34  237.00 14.00 1888.00 1644.25 8 .46 

Cocaine (lines) 109.50 4.00 1288.00 346.98 34  23.50 1.00 46.00 - 2  

            
Total use in the last 30 days            

Ecstasy (tablets) .00 .00 12.00 .00 39  - - - - - - 

Cannabis (joints) .75 .00 480.00 27.00 34  1.50 .00 180.00 38.75 8 .96 

Cocaine (lines) .00 .00 22.50 2.13 34  2.50 .00 5.00 - 2 . 

            
Current frequency of use (number of times per week)            

Ecstasy  .08 .00 1.00 .23 40  - - - - - - 

Cannabis  .23 .00 7.00 2.48 34  .46 .00 6.00 .93 12 .87 

Cocaine  .09 .00 4.00 .33 34  .24 .02 .46 - 1  

            
Duration of use (in weeks)            
Ecstasy  170.00 .00 572.00 194.00 40  - - - - - - 

Cannabis 267.88 4.00 935.71 158.00 35  121.50 14.00 472.00 223.92 12 .02* 

Cocaine 176.00 .00 488.00 195.22 33  78.00 4.00 152.00 - 2  

            
Number of weeks since last use            

Ecstasy  8.00 .43 624.00 23.00 41 - - - - --  

Cannabis 1.00 .00 520.00 11.71 35 2.50 .00 104.00 11.68 12 .96 

Cocaine 8.00 .00 780.00 43.00 24 3.00 2.00 4.00 - 2  

*p<.05 
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Since there were only one or two non-ecstasy cocaine users, group comparisons were only 

performed on the background drug use variables relating to cannabis use.  Table 10.2 shows 

that ecstasy users had been using cannabis for a longer period of time than non-ecstasy users, 

U=114.00, p=.04. Although non-significant, median lifetime cannabis use was considerably 

higher for the ecstasy user group relative to the non-ecstasy user group. All other group 

comparisons relating to the background cannabis use variables were non-significant and are 

presented in Appendix 6.  

 

Laboratory-based measures 

Outcomes for the laboratory-based measures of PM for ecstasy users and non-ecstasy users 

are summarised in Table 10.3. 
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Table 10.3 Means, Standard Deviations (SD), Median (Med.), Minimum (Min.), Maximum (Max.) and Interquartile Range (Int. Range) 
scores for ecstasy users and non-ecstasy users on the F1 event-based PM task, the long-term delayed recall task, the Karolinska fatigue 
PM task and the Cambridge PM test. 

*p<.05, ***p<.001  

  Ecstasy users Non-ecstasy users                
p 

    Mean (SD)  Med. Min. Max. Int. Range n    Mean (SD) Med.  Min. Max.      Int. Range n  
F1 event-based PM task              
Trial 1 Errors    .58 (1.08)  .00 .00 3.00 .75 40    .14 (.65) .00 .00 3.00 .00 42 .013* 
Trial 2 Errors    .23 (.80)  .00 .00 3.00 .00 40    .18 (.59) .00 .00 3.00 .00 42 .07 
Trial 3 Errors    .18 (.59)  .00 .00 .00 .00 40    .05 (.22) .00 .00 1.00 .00 42 .34 
Total Errors    .98 (1.91)  .00 .00 8.00 1.75 40    .19 (.67) .00 3.00 3.00 .00 42 .02* 
              
Long-term delayed recall PM task              
Total number of recall tests returned                                                             .78 (1.15)  .00 .00 3.00 2.00 41    1.41 (1.42) 1.00 .00 3.00 3.00 44 .03* 

                  
Karolinska fatigue PM task              
Percentage completed in first half of test-session    85.30 (15.13)  83.33 50.00 100.00 20.00 41    91.31 (16.00) 100.00 20.00 100.00 20.00 42 .03* 
Percentage completed in second half of test-session     42.04 (21.36)  33.33 .00 100.00 43.34 41    79.92 (27.91) 100.00 .00 100.00 27.09 42 <.001*** 
Percentage completed overall 
 
 

   62.23 (21.36)  60.00 30.00 100.00 29.42 41    86.09 (17.53) 90.45 27.26 100.00 21.25 42 <.001*** 

              Cambridge PM test              
Event-based PM performance      13.83 (3.90)  15.00 2.00 18.00 4.00 36    16.95 (1.97) 18.00 8.00 18.00 2.00 40 <.001*** 
Time-based PM performance      13.42 (3.80)  14.00 4.00 18.00 4.00 36    27.25 (6.68) 28.00 8.00 36.00 8.00 40 <.001*** 
Overall PM performance     27.25 (6.69)  28.00 8.00 36.00 8.00 36    34.15 (3.28) 36.00 20.00 36.00 2.00 40 <.001*** 
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The distributions of the data for Trial 1 errors (Skew, z=8.94 and Kurtosis, z=7.73), 

Trial 2 errors (Skew, z=18.91 and Kurtosis, z=45.39), Trial 3 errors (Skew, z=18.20 

and Kurtosis, z=49.10) and total errors (Skew, z=12.09 and Kurtosis, z=21.31) on the 

F1 event-based PM task, for the Karolinska fatigue PM task (proportion of Karolinska 

fatigue questionnaires completed in the first half of the test-session only, Skew, z=-

5.73 and Kurtosis, z=5.87) and for all subscales of the CAMPROMPT (event-based 

PM total, Skew, z=-6.76 and Kurtosis, z=6.96, time-based PM total, Skew, z=-5.78, 

Kurtosis, z=3.91, overall PM, Skew, z=-5.86, Kurtosis, z=4.66)  deviated significantly 

from normality. This was characterised by the skew and/or kurtosis z scores 

exceeding 3.29, p<.001 (Tabachnick & Fidell, 2001). Group differences were 

investigated via Mann-Whitney U tests.  

  Where the distributions were normal, independent t-tests were used to 

investigate group differences on two aspects of the Karolinska fatigue PM task 

(proportion of Karolinska fatigue questionnaires completed in the second half of the 

test-session and overall proportion of Karolinska fatigue questionnaires completed 

during the first and second half of the test-session) and the long-term delayed recall 

PM task.  

Table 10.3 reveals that ecstasy users made more errors than non-ecstasy users 

on all trials of the F1 event-based PM task. Group differences were especially 

pronounced on trial 1 and overall error rate. Group differences were less evident on 

trail 2 and trail 3 of the F1 event-based PM task. There was a significant difference in 

the number of errors made on trail 1, U=675.00, p=.013 and overall error rate, 

U=661.00, p=.02 between ecstasy users and non-ecstasy users. The group difference 

in the errors made on trial 2 of the F1 event-based PM task approached statistical 

significance, U=777.00, p=.07 and would have been significant on a one-tailed basis. 

There was no significant difference between ecstasy users and non-ecstasy users in 

terms of the number of errors made on trail 3 of the F1 event-based PM task, 

U=794.00, p=.34.   

The data in Table 10.3 reveals that non-ecstasy users returned more delayed 

recall test sheets (long-term delayed recall PM task) than ecstasy users with 

independent t-test showing that the difference was statistically significant, 

t(81,49)=2.25, p=.03.  
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In relation to more short-term time-based PM performance, Table 10.3 shows 

that non-ecstasy users successfully completed a greater number of Karolinska fatigue 

questionnaires during the first and second halves of the test-session compared to 

ecstasy users. The group difference was sufficiently larger in terms of the number of 

delayed recall tests sheets completed in the second half of the test-session. Mann-

Whitney U test (proportion of Karolinska fatigue questionnaires completed during the 

first half of the test-session) and independent t-test (proportion of Karolinska fatigue 

questionnaires completed during the second half of the test-session) confirmed that 

both group differences were statistically significant, U=650.00, p=.03 and t(81)=5.73, 

p<.001, respectively. As expected, overall performance on the Karolinska fatigue 

questionnaire was also better for non-ecstasy users relative to ecstasy users with 

independent t-test confirming that the difference was statistically significant, 

t(81)=5.57, p<.001.  

Further inspection of the data in Table 10.3 shows that non-ecstasy users successfully 

completed more event- and time-based PM tasks on the CAMPROMPT compared to 

ecstasy users with Mann-Whitney U tests indicating that the group differences were 

statistically significant, U=308.50, p<.001, U=221.50, p<.001, respectively. Overall 

PM performance on the CAMPROMPT was also significantly better for non-ecstasy 

users relative to ecstasy users, U=191.50, p<.001.  
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Table 10.4 Means, Standard Deviations (SD), Median, Minimum (Min.), Maximum (Max.) and Interquartile Range (Int. Range) scores for 
ecstasy users and non-ecstasy users the Chicago word fluency task, the computation span task, the plus/minus task, the number/letter task and the 
random letter generation task 

 Ecstasy users Non-ecstasy users           p 

   Mean (SD)  Median Min. Max. Int. Range n Mean (SD) Median  Min. Max.    Int. Range n  
The CWFT              

Letter C   13.83 (6.95) 14.50 .00 30.00 8.75 40 11.91 (5.48) 10.50 3.00 26.00 7.75 44 .18 
Letter S   46.82 (13.73) 44.50 21.00 84.00 16.00 40 40.57 (13.11) 38.50 21.00 81.00 14.50 44 .04* 
              
The computation span task              
Computation span total   50.13 (11.93) 55.50 14.00 63.00 13.75 40 50.30 (11.02) 54.00 24.00 63.00 14.75 40 .84 
              
The plus/minus task              
Shift cost    1.46 (.30) 1.41 .89 2.47 .37 36 1.57 (1.61) 1.61 .90 2.16 .37 40 .08 
              
The number/letter task              
Shift cost    1.48 (.24) 1.44 1.08 2.38 .23 38 1.48 (.30) 1.44 1.13 2.78 .23 42 .69 
              
The RLG task (2 second trial)              

Redundancy   .06 (.04) .05 .02 .22 .03 34 .06 (.02) .06 .02 .11 .03 37 .07 
Repeat Sequences   11.82 (7.26) 3.00 42.00 7.00 7.00 34 10.70 (4.44) 11.00 2.00 20.00 5.00 37 .90 

Alphabetical sequences   10.53 (7.22) 8.00 3.00 37.00 6.00 34 9.43 (4.19) 9.00 .00 17.00 6.50 37 .77 

Total number of letters generated   97.26 (4.34) 98.50 81.00 101.00 4.00 34 95.92 (8.27) 99.00 66.00 110.00 6.00 37 .96 

*p<.05              
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The distributions of the data for the letter “C” word fluency task (Skew, z=1.62 and 

Kurtosis, z=-3.81), computation span total score (Skew, z=-4.70 and Kurtosis, 

z=1.39), shifting cost on the number letter task (Skew, z=8.13 and Kurtosis, z=13.45) 

and for all measures of the RLG task (redundancy, Skew, z=8.10 and Kurtosis, 

z=15.48; repeat sequences, Skew, z=8.15 and Kurtosis, z=18.41; alphabetical 

sequences, Skew, z=7.50 and Kurtosis, z=12.98; total number of letters generated, 

Skew, z=-8.39 and Kurtosis, z=13.53) deviated significantly from normality. This was 

characterised by the skew and/or kurtosis z scores exceeding 3.29, p<.001 

(Tabachnick & Fidell, 2001). In each case, group differences were investigated via 

Mann-Whitney U tests. As with the laboratory-based PM measures and where the 

distributions were normal, independent t-tests were used to investigate group 

differences on letter “S” word fluency performance and shifting cost on the 

plus/minus task. 

 

 

Verbal Fluency/ Access to long-term memory 

Contrary to expectation, the data in Table 10.4 reveals that ecstasy users successfully 

produced more four letter words beginning with the letter “C” than non-ecstasy users. 

However, Mann-Whitney U test showed that the group difference was not significant, 

U=730, p=.18. Also contrary to expectation, ecstasy users produced more words 

beginning with the letter “S” than non-ecstasy users with independent t-test showing 

that the group difference was statistically significant, t(82)=2.14, p=.04.  

 

Updating  

In relation to updating executive performance, the data in Table 10.4 shows that 

ecstasy users and non-ecstasy users correctly recalled a similar number of serial 

positions on the computation span task with Mann-Whitney U test confirming that 

there was no significant difference between the groups, U=779.00, p=.84. This 

finding was not expected. 

With respect to the redundancy scores on the RLG task which may reflect updating 

executive performance (Miyake et al., 2000), the group means and medians were 

similar for ecstasy users and non-ecstasy users. Nonetheless, further examination of 
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the maximum values in Table 10.4 show that ecstasy users had higher redundancy 

scores on the RLG task compared to non-ecstasy users. The group difference was 

statistically borderline, U=468.50, p=.07.  

 

Shifting 

In relation to the plus/minus task, ecstasy users demonstrated a lower shifting cost 

than non-ecstasy users. The group difference was statistically borderline, 

t(72.51)=1.76, p=.08. Similar shifting costs were found between ecstasy users and 

non-ecstasy users on the number/letter task with Mann-Whitney U test showing that 

there was no significant difference between the groups, U=738.00, p=.69.  

 

Inhibition  

As stated previously, repeat sequences, alphabetical sequences and total number of 

letters generated are suggested to load on the inhibition component of executive 

functions. The data in Table 10.4 reveals that ecstasy users produced slightly more 

repeat sequences and alphabetical sequences on the RLG task. However, the group 

differences were not significant, U=618.00, p=.90 and U=603.50, p=.77, respectively. 

Table 10.4 also shows that ecstasy users and non-ecstasy users generated a similar 

number of letters on the two second trial of the RLG task. Mann-Whitney U test 

confirmed that there was no significant difference between the groups, U=625.00, 

p=.96).  

Stepwise multiple regression was performed to determine the extent to which each of 

the PM outcomes (i.e., performance on the F1 event-based PM task, the long-term 

delayed recall PM task, the Karolinska fatigue PM task and the Cambridge PM test) 

are predicted by ecstasy use and each of the EF outcomes (e.g., the CWFT, the 

computation span task, the plus/minus task, the number/letter task and the RLG task) 

and more importantly the extent to which ecstasy-related variance in the PM measures 

overlaps with the EF outcomes. 

For each PM outcome, in the first step, ecstasy use (coded dichotomously as user 

versus nonuser) was included in the regression analysis. In the second step, the EF 

measures were then entered in a stepwise manner. In a second series of regressions, 
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the EF measures were first entered in a stepwise manner prior to the inclusion of the 

ecstasy use variable in the second step. Significant predictors of each of the PM 

outcomes are shown in Table 10.5, Table 10.6, Table 10.7, Table 10.8, and Table 

10.9.  
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Table 10.5 Stepwise regression for outcomes on F1 event-based PM task when ecstasy use is submitted prior to the executive functioning 
measures and vice versa. 

 

 

 

 

 

 

 

 

 

 

 

 

*p<.05, **p<.01 

 The F1 event-based PM task 

 Errors made on Trial 1 Errors made on Trial 2 Errors made on Trial 3 

 Beta  t p Partial 
Correlation
 

Beta  t p Partial 
Correlations 

Beta  t p Partial 
Correlations 

Model 1 (ecstasy use first)             

Ecstasy use  -.239 -1.973 .053 .057 -.200 -1.630 .108 .040 -.144 -1.165 .248 .021 

R2 /F .057; (1,64)=3.89, p=.053 .040; (1,64)=2.67, p=.11 .021; (1,64)=1.36, p=.25 
       

Model 1 (EF measures first)             
RLG (repeat sequences) .291 2.433 .018* .085         

RLG (alphabetical sequences)     .400 3.495 .001** .160     

Ecstasy use         -.144 -1.165 .248 .021 

R2 /F .085; (1,64)=5.92, p=.02* .160; (1,64)=12.21, p=.001** .021; (1,64)=1.36, p=.25 

    

Model 2 (ecstasy use or EF measures 
first) 

      

RLG (repeat sequences) .270 2.290 .025* .072         
RLG (alphabetical sequences)     .385 3.372 .001** .147     
Ecstasy use -.213 -1.808 .075 .045 -.163 -1.430 .158 .027     
R2 /F .130; (2,63)=4.70, p=.013* .187; (2, 63)=7.23, p=.001**     
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Table 10.6 Stepwise regression for outcomes on the F1 event-based PM task when ecstasy use is submitted prior to the executive functioning 
measures and vice versa (continued). 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 The F1 event-based PM task 
 Overall error rate 
 Beta t p Partial Correlations 
Model 1 (ecstasy use first)     
Ecstasy use  .269 -.236 .029* .072 
R2 /F .072; (1,64)=5.00, p=.03* 
  

Model 1 (EF measures first)     
RLG (alphabetical sequences) .324 2.742 .008** .105 

R2 /F .105; (1,64)=7.52=.01** 

  
  
Model 2 (ecstasy use or EF measures 
submitted first) 

 

RLG (alphabetical sequences) .301 2.602 .102 .090 
Ecstasy use -.241 2.742 .008** .105 
R2 /F .162; (2,63)=6.11, p=.004** 
*p<.05, **p<.01  
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Table 10.7 Stepwise regression for outcomes on the Karolinska fatigue PM task when ecstasy use is submitted prior to the executive functioning 
measures and vice versa. 

 Karolinska fatigue PM task 
 % completed in the 1st half of the session % completed in the 2nd half of the session % completed overall 
 Beta  t p Partial 

Correlations 
Beta  t p Partial 

Correlations 
Beta  t p Partial 

Correlations 
Model 1 (ecstasy use first)             
Ecstasy use  .192 1.562 .123 .037 .537 5.09 <.001*** .288 .526 4.949 <.001*** .277 
R2 /F .037 ;    (1,64)=2.44, p=.123 .288;    (1,64)=25.91, p<.001*** .277;    (1,64)=24.50, p<.001*** 
Model 1 (EF measures first)             
RLG (redundancy) .283 2.356 .022* .080         
Shift Cost (number/letter task)     -.248 -2.052 .044* .062 -.256 -2.123 .038* .066 
R2 /F .080;    (1,64)=5.55, p=.02* .062;    (1,64)=4.21, p=.04* .066;    (1,64)=4.51, p=.03* 
Model 2 (ecstasy use first)             
Ecstasy use .174 1.462 .149 .030 .537 5.29 <.001*** .288 .526 5.156 <.001*** .277 
RLG (redundancy) .271 2.278 .026* .073         
Shift cost (number/letter task)     -.249 -2.45 .017* .062 .257 -2.519 .014* .066 
R2 /F .110;    (2,63)=3.90, p=.03* .350;    (2,63)=16.98, p<.001*** .343;    (2,63)=16.44, p<.001*** 
Model 2 (EF measures first)             
RLG (redundancy) .285 2.437 .018* .081         
Shift Cost (number/letter task) -.243 -2.080 .042* .059 -.249 -2.454 .017* .062 -.257 -2.519 .014* .066 
Ecstasy use     .537 5.290 <.001*** .288 .526 5.156 <.001*** .277 
R2 /F .139;    (2,63)=5.08, p=.01* .350;    (2,63)=16.98, p<.001*** .343;    (2,63)=16.44, p<.001*** 
Model 3 (ecstasy use first)             
Ecstasy use  .236 1.998 .050 .052 .557 5.61 <.001*** .308 .546 5.445 <.001*** .294 
RLG (redundancy) .317 2.717 .009** .097 .209 2.092 .041 * .042     
Shift cost (number/letter task)     -.236 -2.26 .027* .051 -.235 -2.341 .022* .055 
CWFT (S letter) .281 2.351 .022* .073         
RLG (repeat sequences)         .202 1.999 .050 .040 
R2 /F .183;    (3,62)=4.63, p=.01** .393;    (3,62)=13.39, p<.001*** .383;    (3,62)=12.82), p<.001*** 
    Model 3 (EF measures first)            
RLG (redundancy) .274 2.360 .021* .075        
Shift Cost (number/letter task) -.243 -2.103 .040* .059        
Ecstasy use .175 1.503 .138 .030        
R2 /F .129;    (3,62)=4.21, p=.01*   
*p<.05, **p<.01, ***p<.001 
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Table 10.8 Stepwise regression for outcomes on the long-term delayed recall PM task when ecstasy use is submitted prior to the executive 
functioning measures and vice versa. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Number of delayed recall test sheets returned on the long-term delayed recall PM task 
 Beta  t p Partial Correlations 

  

 

 

  

  

 

 

  

Model 1 (ecstasy use or EF measures first first)     
Ecstasy use  .238 1.960 .054 .057 

R2/ F .057; (1,64)=3.84, p=.054 
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Table 10.9 Stepwise regression for outcomes on the Cambridge PM test when ecstasy use is submitted prior to the executive functioning 
measures and vice versa. 

     *p<.05, **p<.01, ***p<.001 

 

 

 

 The Cambridge PM test 

 Event-based PM performance Time-based PM performance Overall PM performance 

 Beta  t p Partial 
Correlations 

Beta  t p Partial 
Correlations 

Beta  t p Partial 
Correlations 

Model 1 (ecstasy use first)             

Ecstasy use  .461 25.279 <.001*** .212 .536 4.956 <.001*** .287 .559 5.267 <.001*** .313 

R2/ F .212; (1,61)=16.44, p<.001*** .287;  (1,61)=24.56, p<.001*** .313; (1,61)=27.74, p<.001*** 
    

Model 1 (EF measures first)             
Computation span total .363 3.039 .003** .131 .250 2.014 .048* .062 .352 2.934 .005** .124 
R2/ F .131; (1,61)=9.23, p<.01** .062; (1,61)=4.06, p=.048* .124; (1,61)=8.61, p<.01** 

    

Model 2 (ecstasy use or EF measures 
first) 

      

Computation span total .359 3.426 <.01** .131 .246 2.354 .022* .061 .347 3.574 <.01** .120 
Ecstasy use .458 4.371 <.001*** .210 .534 5.119 <.001*

 
.285 .556 5.725 <.001*** .309 

R2/ F .341; (2,60)=15.54, p<.001***   .347; (2,60)=15.97, p<.001*** .433; (2,62)=22.93, p<.001*** 
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10.4 Discussion 

With regard to both event- and time-based PM, ecstasy users displayed significantly 

worse performance than non-ecstasy users. Clear event-based PM deficits were 

observed in ecstasy users on the F1 event-based PM task (trial 1 and overall). Ecstasy 

users also completed significantly fewer event-based PM tasks on the CAMPROMPT 

relative to non-ecstasy users. Both short- and long-term time-based PM deficits were 

found in ecstasy users. In terms of short-term time-based PM performance, ecstasy 

users remembered to complete significantly fewer Karolinska fatigue questionnaires 

and also remembered to complete significantly fewer time-based PM tasks on the 

CAMPROMPT relative to non-ecstasy users. Long-term time-based PM deficits were 

also observed with non-ecstasy users remembering to return significantly more 

delayed recall test sheets than ecstasy users in the weeks that followed the test-

session. These findings are largely consistent with previous literature 

(Hadjiefthyvoulou et al., 2011a; 2011b). The ecstasy-related deficits found in PM 

here are unsurprising since the participants included in this study are the same as 

those who were used in Empirical Chapter 2 (Chapter 8) where impairments were also 

observed. 

  In terms of EF performance, no ecstasy-related deficits were observed in 

verbal word fluency or long-term memory (The CWFT). In fact, ecstasy users 

demonstrated superior performance to non-ecstasy users on the CWFT (S-letter 

fluency). It might be that ecstasy use facilitates verbal fluency in some way. One 

possibility is that ecstasy increases openness (Gouzoulis-Mayfrank & Daumann, 

2006), a personality trait that has been associated with enhanced verbal fluency (Sutin 

et al., 2011). This finding was unexpected and is not consistent with previous 

research. Montgomery et al. (2005b) found that ecstasy users performed significantly 

worse than non-ecstasy users on the CWFT (C and S letter fluency) and, in doing so 

displayed clear impairments in verbal word fluency and long-term memory. Despite 

these findings, there is a body of research that suggests that ecstasy use does not 

significantly impair verbal word fluency (Klugman et al., 1999; Morgan et al., 2002; 

Wareing et al., 2000). The current findings support the proposal that verbal word 

fluency is generally unaffected by the use of ecstasy.  

  On the basis of Miyake et al’s (2000) conceptual framework of executive 
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functions, the current study investigated the extent to which ecstasy use might impair 

updating, shifting and inhibition executive processes. Ecstasy users performed 

comparably to non-ecstasy users on the computation span task with each group 

correctly recalling a similar number of serial positions. While this finding is indicative 

of normal updating performance in ecstasy users, other studies report very different 

results. Wareing et al. (2004) found that current and previous ecstasy users were 

significantly impaired on the computation span task with both groups remembering to 

recall fewer serial positions than non-ecstasy users. These findings have been 

replicated in a number of other studies (Fisk, Montgomery, Murphy & Wareing, 

2004; Fisk & Montgomery, 2009; Montgomery et al., 2005b) leading to a general 

consensus that ecstasy use is detrimental to updating EF. Another measure of 

updating that was used in the current study was the RLG task. Although ecstasy users 

showed higher redundancy scores relative to non-ecstasy users, this difference failed 

to reach statistical significance. This finding is consistent with other research that has 

failed to find ecstasy-related deficits in updating using the RLG task. Montgomery et 

al. (2005b) did not show ecstasy-group related differences in redundancy scores on 

the RLG task. A similar pattern of results emerged from Fisk and Montgomery’s 

(2009) research.  They found that heavy ecstasy users, light ecstasy users and non-

ecstasy users recorded similar redundancy scores of all trials of the RLG task (four 

second, two second and one second trials). With regard to the current study, the 

absence of ecstasy-related impairments on the redundancy measure of the RLG task 

may simply be because this task does not assess updating performance at all. This 

view is consistent with Miyake et al. (2000) who suggest that random number 

generation but not random letter generation loads on to the updating component. Fisk 

and Sharp (2004) also argue that RLG task is demonstrative of the inhibition function 

and not of the shifting or updating components.  

  Data from the plus/minus task and the number/letter task failed to show 

evidence of shifting EF deficits in ecstasy users. Other studies that have used these 

measures have also shown no effect of ecstasy use on shifting EF performance 

(Montgomery et al., 2005b). Although some studies that have used alternative 

measures of shifting (modified versions of the Stroop task; Dafters, 2006) and have 

demonstrated ecstasy-related impairments (Dafters, 2006), the overall view within the 

literature is that shifting executive performance is relatively unaffected by ecstasy use 
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(Murphy et al., 2009). The absence of an association between ecstasy use and 

performance on the plus/minus task and the number/letter task in the current study 

support this proposal.  

  The current study did not show any differences between ecstasy users and 

non-ecstasy users on the inhibition components of the RLG task (alphabetical 

sequences, repeat sequences and total number of letters generated). This finding is 

generally consistent with previous literature that has failed to identify inhibition 

impairments in ecstasy users using the RLG task (Fisk & Montgomery, 2009; Fisk et 

al., 2004). In Fisk et al’s study, current ecstasy users and non-ecstasy users generated 

a similar number of alphabetical sequences and repeat sequences on the one-second, 

two-second and four-second trials of the RLG task. Fisk and Montgomery (2009) 

replicated these findings in a more recent study and the general consensus in the 

literature appears to be that the inhibition component of executive functions are 

generally unaffected by ecstasy use (Murphy et al., 2009; Parrott, 2013).  

  Stepwise regression was used to determine the extent to which ecstasy-related 

differences on the EF measures (The CWFT, the computation span task, the 

plus/minus task, the number/letter task and the RLG task) might account for ecstasy-

related differences on PM measures. In relation to this and for the majority of the PM 

outcomes (all except trial 2 of the F1 event-based PM task where 1.3% of the ecstasy-

related variance (4 %) was accounted for by EF measures) the variance accounted for 

by ecstasy use was largely independent of that associated with the executive function 

measures. Thus, the effects of ecstasy use on PM performance appear to be 

independent of any effects associated with the executive measures. These findings are 

consistent with other research that has shown no link between self-reported EF and 

PM performance in ecstasy users (Hadjiefthyvoulou et al., 2011c).  

  The overall findings from Chapter 10 show that EF is not impaired in ecstasy 

users and that Miyake et al’s (2000) sub-processes of updating, shifting and inhibition 

are not implicated in ecstasy-related PM deficits. Nonetheless, PM impairments in 

ecstasy users might be underpinned by some other aspect of EF which was not 

identified by Miyake et al. (2000). For example, the possible role of divided attention 

in PM task performance should be acknowledged. The completion of event- and time-

based PM tasks require individuals to divide attention between the completion of an 
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ongoing task and remembering to retrieve a PM intention upon the presentation of a 

target cue or after a period of time has elapsed, respectively. As such, it could be 

argued that PM deficits in ecstasy users are mediated by involvement of divided 

attention in PM tasks.  

A number of limitations must be acknowledged in relation to the current 

study. As noted earlier, the ecstasy users who took part in this study also participated 

in the studies documented in Empirical Chapter 2 (Chapter 8). Thus, the same 

significant group differences in age and number of years of education that were found 

in Chapter 8 were also found here. That is, ecstasy users were significantly older than 

non-ecstasy users and had also studied for a significantly longer period of time 

relative to non-ecstasy users. As discussed in Chapter 8, it is very unlikely that the 

ecstasy-related impairments observed in PM are related to differences in age and/or 

years of education (see Chapter 8 for details).  

A further limitation of the current findings is that the weekly average dose of 

alcohol use was significantly higher for ecstasy users relative to non-ecstasy users. 

Alcohol has been shown to be detrimental to PM performance (Griffiths et al., 2012; 

Heffernan et al. 2002) and as such, the possibility that the observed deficits might 

partly be attributable to alcohol use cannot be excluded. On a similar note, the 

absence of control groups (cannabis-only users, cocaine-only users, etc.) makes it is 

difficult to conclude that PM deficits in ecstasy users are attributable to ecstasy use 

alone. The empirical work in Chapter 11 will use correlation analyses to control for 

cannabis and cocaine use with respect to PM deficits in ecstasy users.  

  Although the current study adopted a Stepwise regression approach to 

investigate the extent to which PM deficits in ecstasy users are mediated by 

underlying impairments in EF, it is important to acknowledge the problems associated 

with this method of analysis. Harrel (2001) notes the issue of collinearity between 

independent variables and subsequent collinearity in the regression model. In the 

current study, each of the EF measures were included as potential independent 

variables. However, it is likely that each of the EF measures used in this Chapter  

(especially those which map onto the same EF’s of updating, shifting and inhibition) 

are strongly correlated with each other. In specific relation to the Stepwise procedure 

that was adopted in this Chapter, Harrel (2001) suggests that collinearity makes the 
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independent variables (EF measures) compete for inclusion in the regression model 

leading to the arbitrary inclusion of “important” variables. This is further problematic 

in that it can reduce the stability of parameter estimates, inflate standard errors and 

reduce the power of corresponding statistical tests (Harrel, 2001). In consideration of 

this, a heirarchical approach to the regression may have been more appropriate. 

Unlike Stepwise regression where independent variables compete for inclusion in the 

regression model, hierarchical regression is a sequential process where variables are 

entered into the regression model based on underlying theory. By including specific 

independent variables at the first stage of the regression and then adding others at 

subsequent stages, researchers can examine the specific contribution of individual 

independent variables. Nonetheless, it is worthy of note that the current study did in 

fact adopt a hierarchical approach overall since ecstasy use was included in either the 

first or last stage and the EF variables in the other stage. Furthermore, due to the 

overlapping variance between the EF measures included in this study, their inclusion 

altogether may have resulted in none individually being significant. Nonetheless, as 

with all Stepwise procedures some degree of caution should be taken in interpreting 

the results especially given the degree of collinearity between the EF measures. 

To conclude, the current study found clear ecstasy-related deficits in event- and time-

based PM but failed to identify impairments in updating, shifting or inhibition 

executive processes. Stepwise regression showed that ecstasy-related differences on 

EF measures were unrelated to ecstasy-related impairments on PM outcomes.  
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Chapter 11: The relationship between long- and short-term indicators of ecstasy, 

cannabis and cocaine use and prospective memory. 

Chapter 11 used Pearson’s correlations to investigate the relationship between long- 

(total lifetime consumption, long-term average dose per session, long-term average 

frequency of use, duration of use for ecstasy, cannabis and cocaine) and short-term 

(total use in the last 12 months, mean average dose per session in the last 12 months, 

mean average frequency of use in the last 12 months, current frequency of use and 

number of weeks since last use for ecstasy, cannabis and cocaine) indicators of drug 

use on laboratory-based measures of Prospective Memory (PM; The F1 event-based 

PM task, the Karolinska fatigue PM task and the Karolinska fatigue PM task) in a 

sample of polydrug users who were primarily identified by their ecstasy use. Partial 

correlations were then performed to investigate whether long-term drug-related 

impairments in PM remain statistically significant after controlling for the long-term 

indicators of other drug use and aspects of recent use.  

 

11.1 Introduction 

The empirical work outlined in Chapter 7, Chapter 8 and Chapter 10 provide evidence 

for ecstasy-related deficits in prospective memory (PM). However, one of the main 

limitations of this work is that other drug has not been controlled for. Thus, it remains 

unclear as to whether the PM impairments found in ecstasy users are attributable to 

ecstasy use or due to the use of other illicit drugs such as cannabis and cocaine. 

 Cannabis use has been associated with PM deficits on a range of self-report 

(Cuttler et al., 2012; Fisk and Montgomery, 2008; Rodgers et al., 2001) and 

laboratory-based tasks (McHale & Hunt, 2008; Hadjiefthyvoulou et al., 2011a; 

Hadjiefthyvoulou et al., 2011b). Cuttler and co-workers (2012) used the Prospective 

Memory Questionnaire  (PMQ; Hannon et al., 1995) to investigate self-reported PM 

performance in chronic cannabis users, moderate cannabis users and non-drug users. 

The PMQ provides measures of three classes of PM including short-term habitual 

PM, long-term episodic PM and internally cued PM. Relative to moderate cannabis 

users and non-drug users, chronic cannabis users reported deficits in internally cued 

PM. Further self-reported deficits were observed in Fisk and Montgomery’s (2008) 

study. They also used the PMQ and found evidence of self-reported short-term 
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habitual, long-term episodic and internally cued PM impairments in cannabis users. In 

relation to more objective PM performance, McHale and Hunt (2008) used the 

Rivermead Behavioural Memory task (RBMT; Wilson et al., 1985) to investigate 

event-based PM performance (The Belonging subset) in a sample of cannabis users, 

tobacco smokers and non-drug users. Other measures of short- and long-term time 

based performance were used whereby participants were required to press a timer,  

10-minutes after being instructed to do so and to post a letter back to the experimenter 

2-days after the test-session, respectively. McHale and Hunt (2008) found that chronic 

cannabis users were significantly impaired in short- and long-term time-based PM 

relative to moderate cannabis users and non-drug users.  Although, no evidence of 

event-based PM deficits were observed, other studies have found cannabis-related 

impairments on the Message subset of the RBMT. Hadjiefthyvoulou et al. (2011a) 

who also used the RBMT and found that frequency of cannabis use was associated 

with unique variance on the event-based, Message subset of the RBMT. Specifically, 

increased frequency of cannabis use was associated with poorer performance on both 

PM measures. Hadjiefthyvoulou et al. (2001b) also found that increased cannabis 

consumption in the previous 30 days and increased frequency of cannabis use was 

associated with poor performance on event-based PM tasks of the Cambridge PM test 

(Wilson et al., 2005). 

 Recent research has also found evidence of PM deficits in cocaine users. 

Hadjiefthvoulou et al. (2011a) found that overall lifetime cocaine consumption 

correlated significantly with performance on a range of laboratory-based PM tasks 

including the Appointment (time-based PM) and Belonging subscales (event-based 

PM) of the RBMT, the Karolinska fatigue PM task and the long-term delayed recall 

PM task in a group of ecstasy/polydrug users. Frequency of cocaine use was also 

related to performance on the Appointment and Belonging subscales of the RBMT 

task, the Karolinska fatigue PM task, the F1 event-based PM task and the long-term 

delayed recall PM task. Increased frequency of cocaine use was associated with worse 

performance in all cases. While the polydrug user group was primarily identified by 

ecstasy use, cocaine use was found to be an important factor in the event-and time-

based PM deficits that were found. In another study by Hadjiefthyvoulou et a.l 

(2011b), a clear relationship was found between cocaine use and event-based PM 

performance on the CAMPROMPT (Hadjiefthyvoulou et al., 2011b).  Specifically, 
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increased lifetime dose, greater consumption in the last 30 days and increased 

frequency of use were all associated with poorer event-based PM performance on the 

CAMPROMPT. 

  Considering the evidence presented in the paragraphs above, it is plausible 

that the ecstasy-related deficits found in PM might be mediated by the use of cannabis 

and/or cocaine. The current study used Pearson’s correlations to investigate the 

relationship between long- (total lifetime consumption, long-term average dose per 

session, long-term average frequency of use, duration of use for ecstasy, cannabis and 

cocaine) and short-term (total use in the last 12 months, mean average dose per 

session in the last 12 months, mean average frequency of use in the last 12 months, 

current frequency of use and number of weeks since last use for ecstasy, cannabis and 

cocaine) indicators of drug use on laboratory-based measures of PM (The F1 event-

based PM task, the long-term delayed recall PM task and the Karolinska fatigue PM 

task) in a sample of polydrug users who were primarily identified by their ecstasy use. 

Importantly, non-users of specific drugs were excluded from the exploratory 

correlations between long- and short-term indicators of drug use and PM outcomes. 

Thus, any significant correlations are likely to be attributable to trends within the drug 

using participants rather than due to the absence of use in drug naïve participants. A 

number of partial correlations were then performed to determine whether long-term 

drug-related impairments in PM remain statistically significant when controlling for 

the long-term indices of other drug use and aspects of recent use. It was predicted that 

increasing levels of illicit drug use would be associated with worse performance on 

PM measures. Period of abstinence was expected to be positively associated with PM 

performance.  
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11.2 Method 

Design 

Correlational analysis was used with long- and short-term indicators of drug use being 

correlated with laboratory-based measures of PM. Partial correlations were then 

performed controlling for long-term indices of other drug use and the effects of recent 

drug use. Partial correlations were based solely on the zero order correlations that 

were significant (both in terms of the association being tested and the controls 

introduced). Since predictions were directional in nature, one-tailed probability values 

are reported.  

 

Participants 

This study uses data collected and reported in previous chapters (Chapter 7, Chapter 8 

and Chapter 10). A total of 181 participants consisting of polydrug users and non-

drug users took part in the current investigation. Participant details are reported in 

previous chapters.  

The participants whose data is used in this study were recruited via direct approach. 

All participants were university students attending Liverpool John Moores University 

(LJMU) or The University of Central Lancashire (UCLan). Participants were 

requested to refrain from ecstasy use for at least 10 days prior to the test-session (the 

mean period of abstinence for ecstasy/polydrug users was 45.01 weeks, median=8.00 

weeks). Ecstasy/polydrug users were also asked to refrain for the use of other illicit 

drugs for at least 24 hours and ideally seven days prior to testing. The present study 

was approved by the ethics committees of the University of Central Lancashire and 

Liverpool John Moores University in accordance with the guidelines of the British 

Psychological Society. 

 

Materials 

Patterns of ecstasy, cannabis and cocaine were obtained via a background drug use 

questionnaire (Montgomery et al., 2005, see Appendix 1 for a copy of this 

questionnaire). For each drug, the same measures of long- (annual average dose per 

session and frequency of use) and short-term (average dose per session for each 

month in the 12 months prior to the test-session and frequency of use) drug use were 
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collected. With regard to long-term indices of drug use, estimates of total lifetime use 

for ecstasy, cannabis and cocaine and their average frequency of use (times per week) 

were calculated together with the mean average dose per session and the duration of 

use.  In relation to short-term indices of ecstasy, cannabis and cocaine use, estimates 

of total use in the 12 months prior to the test-session and the average frequency of use 

during the previous 12 months were calculated. For each drug, data relating to the 

mean average dose per session in the previous 12 months was calculated together with 

current frequency of use and period of abstinence. 

 

Procedure  

Participants were informed of the general purpose of the experiment and verbal 

informed consent was obtained. Three laboratory measures of PM were administered 

including the F1 event-based PM task (Hadjiefthyvoulou et al., 2011a), the long-term 

delayed recall PM task (Hadjiefthyvouolou et al., 2011a) and the Karolinska fatigue 

PM task (Hadjiefthyvoulou et al., 2011a). A computer using MS-DOS was used for 

the F1 event-based PM task. Full descriptions of all laboratory measures of PM can be 

found in Chapter 5.  These measures were administered in a counterbalanced order. 

Finally, the background drug use questionnaire was administered.   

 

All tests were administered under laboratory conditions. Participants were fully 

debriefed and given the opportunity to ask any questions about the study prior to 

leaving the laboratory. Participants were paid £20 in store vouchers for their 

participation.  
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11.3 Results 

Inter-correlations between the F1 event-based PM task, the long-term delayed recall 

PM task and the Karolinska fatigue PM task.  

The F1 event-based PM task, the long-term delayed recall PM task and the Karolinska 

fatigue PM task were included in the current study to investigate short-term event-

based PM, long-term time-based PM, and short-term time-based PM performance, 

respectively, in a sample of polydrug users. Inter-correlations were performed to 

examine the relationship between these laboratory-based measures of PM. Inspection 

of the data in Table 11.1 shows that the F1 event-based PM task, the long-term 

delayed recall PM task and the Karolinksa fatigue PM task were not inter-correlated 

with each other.   
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Table 11.1 Inter-correlations between the F1 event-based PM task, the long-term delayed recall PM task and the Karolinska fatigue PM task.   

 
*p<.05, **p<.01, ***p<.001, two-tailed , Note: The inter-correlations between the F1 event –based PM task the long-term delayed recall task, between the F1 event-based PM task and the Karolinska fatigue PM task 

and between the long-term delayed recall task and the Karolinska fatigue PM task were based on data from 175, 173 and 174 participants respectively. 

  F1 event-based PM task The long-term 
delayed recall task  

The Karolinksa fatigue PM task  

 Trial 1 
errors 

Trial 2 
errors 

Trial 3 
errors 

Total 
errors 

Total number of 
recall tests returned 

Percentage completed in 
first half of test-session 

Percentage completed in 
second half of test-session 

Percentage 
completed overall 

 F1 event-based PM task         

Trial 1 errors  .37*** .19* .84*** .04 .03 -.09 -.05 

Trial 2 errors .37***  .54*** .77*** -.03 -.06 .04 .03 

Trial 3 errors .19* .54***  .62*** .03 -.08 -.02 -.05 

Total errors .84*** .73*** .62***  .02 -.03 -.05 -.04 

         

The long-term delayed recall task         

Total number of delayed recall tests                   
returned 

.04 -.03 .03 .02  .09 .09 .13 

         
The Karolinska fatigue PM task         

Percentage completed in first half of the 
test-session 

.03 -.06 -.08 -.03 .09  .36** .37*** 

Percentage completed in second half of 
test-session 

-.09 .04 -.02 -.05 -.09 .26**  .89 

Percentage completed overall -.05 .03 -.05 -.04 .13 .57*** .89***  
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The extent to which long-term indices of ecstasy, cannabis and cocaine use were 

associated with performance on the F1 event-based PM task, the long-term delayed 

recall PM task and the Karolinska fatigue questionnaire in a sample of polydrug users 

were examined. The means and standard deviations for each PM outcome for 

polydrug users consuming ecstasy, cannabis and cocaine users are shown in Table 

11.2. Means and standard deviations for long-term indices of ecstasy, cannabis and 

cocaine use are shown in Table 11.3. 
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Table 11.2. Means and standard deviations for polydrug users consuming ecstasy, cannabis and cocaine on the laboratory-based PM measures. 

 

Note: n for ecstasy users and cannabis users is variable such that only 92 ecstasy and 110 cannabis users completed the F1 event-based PM task 

and only 90 ecstasy users and 107 cannabis users completed the Karolinska fatigue PM task

                                       Polydrug users consuming: 
  Ecstasy, n=93 Cannabis, n=111 Cocaine users, n=78 

 Mean SD Mean SD Mean SD 
F1 event-based PM task       
Trial 1 errors .60 1.11 .61 1.12 .50 1.04 
Trial 2 errors .21 .74 .17 .66 .21 .71 
Trial 3 errors .18 .56 .14 .50 .19 .58 
Total errors .99 1.82 .92 1.69 .90 1.83 

       Long-term delayed recall PM task       
Total number of recall tests returned (max of 3) .99 1.27 1.06 1.29 .94 1.26 

Karolinska fatigue PM task       
Percentage completed in first half of test-session 87.00 17.17 87.17 17.80 86.10 17.89 
Percentage completed in second half of test-session  48.10 31.41 52.63 32.17 47.69 30.07 
Percentage completed overall 
 

66.56 20.71 69.16 20.12 65.86 20.19 
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      Table 11.3 Means and standard deviations for long-term indices of illicit drug use. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Polydrug Users 

 Mean SD n 

    
Total Prior Consumption    
    Ecstasy (tablets) 391.87 1445.22 83 
    Cannabis (joints) 1467.35 2873.13 101 
    Cocaine (lines) 486.42 967.07 70 

    Long-Term Average Dose Per Session    
     Ecstasy (tablets) 2.56 1.86 83 

Cannabis (joints) 1.29 1.64 101 
Cocaine (lines) 5.29 6.21 70 

    Long-Term Average Frequency (times 
per week) 

   

Ecstasy  .33 .43 83 
Cannabis  1.29 1.64 101 
Cocaine  .38 .78 74 

    Duration of use (weeks)    
Ecstasy  191.47 156.64 83 
Cannabis  258.97 178.80 109 
Cocaine  168.07 137.63 71 
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Table 11.4 Associations between long-term indices of ecstasy, cannabis and cocaine use and PM outcomes.   

  Zero order correlations with:  

  F1 event-based PM task The long-term delayed recall 
task  

The Karolinksa fatigue PM task  

 Trial 1 
errors 

Trial 2 
errors 

Trial 3 
errors 

Total 
errors 

Total number of recall tests 
returned 

Percentage completed 
in first half of test-

session 

Percentage completed in 
second half of test-session 

Percentage 
completed overall 

 
Drug use (User coded 0; Nonuser coded 
1) 

        

    Ecstasy -.13* -.13* -.13* -.17* .15* .08 .41*** .38*** 
    Cannabis -.18** -.08 -.07 -.17* .12 .09 .35*** .33*** 

    Cocaine -.03 -.11 -.15 -.10 .16* .12 .39*** .37*** 
         Long-term indices of drug use         

Total Prior Consumption         

    Ecstasy (tablets) .26** -.08 -.04 .11 -.06 .02 -.13 -.08 

    Cannabis (joints) -.13 -.003 .00 -.08 -.05 -.13 -.06 -.13 

    Cocaine (lines) -.03 -.11 -.15* -.10 .17* -.21* -.15 -.19 
         
Long-Term Average Dose Per Session         

     Ecstasy (tablets) .15 -.10 .004 .05 -.08 -.22* -.22* -.24* 

     Cannabis (joints) -.10 -.01 -.04 -.08 -.08 -.07 -.07 -09 

     Cocaine (lines) .24* -.14 -.17 .02 .14 -.26* -.24* -.30* 

         Long-Term Average Frequency (times 
per week) 

        

Ecstasy  .05 -.20* -.05 -.07 .16 .02 -.08 -.02 

Cannabis  -.05 .03 .10 .01 .01 -.02 -.17* -.17* 
Cocaine  -.02 -.01 -.003 -.02 .04 -.21* -.10 -.16 

         Duration of use (weeks)         
Ecstasy  .13 -.04 .07 .09 -.12 -.08 -.10 -.11 
Cannabis  .08 .08 .16 .13 .13 .01 -.07 -.08 
Cocaine  -.03 -.11 -.15* -.10 .12 -.06 -.03 -.04 

*p<.05, **p<.01, ***p<.001, one-tailed. 
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Correlations between long-term indices of drug use and PM outcomes 

Ecstasy  

Inspection of Table 11.4 reveals that ecstasy use (defined dichotomously as user 

versus nonuser) was significantly associated with all but one of the PM measures. 

Given the manner in which the drug use variable was coded this means that ecstasy 

use is associated with worse PM performance in all cases.  Limiting the analysis to the 

ecstasy users within the sample, with regard to the more refined measures of ecstasy 

use, there was a significant and positive correlation between total lifetime ecstasy 

consumption and the number of errors that were made on trial 1 of the F1 event-based 

PM tasks. As expected, there was a tendency for the number of event-based PM errors 

on the F1 event-based PM task to increase with higher total ecstasy consumption. The 

long-term average dose of ecstasy per session was significantly and negatively 

associated with all three PM measures of the Karolinska fatigue PM task. This finding 

is in line with initial predictions and indicates that as the typical dose of ecstasy per 

session increased, the proportion of Karolinska fatigue questionnaires completed 

during the first half, the second half and over the entire test-session decreased. There 

was a significant and negative correlation between the long-term average frequency of 

ecstasy use per session and the number of errors that were made on trial 2 of the F1 

event-based PM task. This finding was not expected and suggests that individuals 

who use ecstasy less frequently make more event-based PM errors on the F1 event-

based PM task.  

 

 

Cannabis  

There was a significant and negative correlation between cannabis use (again defined 

dichotomously) and the number of errors that were made on trial 1 and overall on the 

F1 event-based PM task. On this basis, cannabis use was also significantly and 

positively associated with the proportion of Karolinska fatigue questionnaires 

completed during the second half of the test-session and overall. Given the manner in 

which the drug use variable was coded this means that cannabis use is associated with 

worse PM performance in all of the above cases. Limiting the analysis to the cannabis 

users within the sample, examination of the more refined measures of cannabis use set 

out in Table 11.4 reveals that there was a significant negative correlation between the 
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long-term average frequency of cannabis use and the proportion of Karolinska fatigue 

questionnaires completed during the second half of the test-session and over the entire 

test-session. Thus, there is a trend for the number of short-term time-based PM errors 

to be increased when cannabis is used more frequently. 

 

Cocaine  

Inspection of Table 11.4 reveals that cocaine use (again defined dichotomously) was 

significantly and positively associated with the number of delayed recall test-sheets 

returned on the long-term delayed recall PM task. In the same way, cocaine use was 

significantly and positively associated with the proportion of Karolinska fatigue 

questionnaires completed during the second half of the test-session and overall. 

Cocaine use was associated with worse PM performance in all cases. Focusing on 

only the cocaine users within the sample, average long term, cocaine dose was 

significantly and negatively associated with the number of errors made on trial 1 of 

the F1 event-based PM task. However, contrary to expectation, increasing total 

cocaine consumption and longer durations of cocaine use were significantly 

associated with fewer errors on trial 3 of the F1 event-based PM task. Also contrary to 

expectation, total cocaine consumption was significantly and positively associated 

with the number of delayed recall test sheets that were returned on the long-term 

delayed recall PM task. Both of these findings are inconsistent with predictions and 

paradoxically are indicative of better performance on short-term event-based and 

long-term time-based PM tasks when overall cocaine consumption is increased. 

Nonetheless, this time in line with prediction, total cocaine consumption was 

significantly and negatively associated with the proportion of Karolinska fatigue 

questionnaires completed during the first half of the test-session. Thus, higher lifetime 

cocaine consumption was related increased levels of forgetting on the Karolinska 

fatigue questionnaire.  

As expected, the long-term average dose of cocaine per session was significantly and 

positively associated with the number of errors made on trial 1 of the F1 event-based 

PM task and negatively associated with the proportion of Karolinska fatigue 

questionnaires completed during the first and second halves of the test-session and 

overall. The long-term average frequency of cocaine use was significantly and 
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negatively associated with the proportion of Karolinska fatigue questionnaires 

completed during the first half of the test-session. Unexpectedly, the duration of 

cocaine use was significantly and negatively related to the number of errors made on 

trial 3 of the F1 event-based PM task.  

The extent to which short-term indices of ecstasy, cannabis and cocaine use were 

associated with performance on the F1 event-based PM task, the long-term delayed 

recall PM task and the Karolinska fatigue questionnaire in a sample of 

ecstasy/polydrug users were examined. The means and standard deviations for short-

term indices of ecstasy, cannabis and cocaine use are shown in Table 11.5 and the 

corresponding correlations between these and the PM outcomes are presented in 

Table 11.6.  
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   Table 11.5 Means and standard deviations for short-term indices of illicit drug use 

 

 

 

 

 

 

 

  Polydrug Users 

 Mean SD n 

    
Total Consumption in Last 12 Months    
    Ecstasy (tablets) 26.27 63.62 87 
    Cannabis (joints) 267.06 767.85 112 
    Cocaine (lines) 60.67 133.94 79 

    Average Dose Per Session in Last 12 Months    
    Ecstasy (tablets) .67 1.00 87 
    Cannabis (joints) 1.42 2.02 112 
    Cocaine (lines) 2.03 3.15 79 

    Average Frequency of Use in Last 12 months 
(times per week) 

   

    Ecstasy  .21 .44 87 
    Cannabis  1.04 2.02 112 
    Cocaine  .22 .50 79 

    Current Frequency of Use (times per week)    
    Ecstasy .19 .32 84 
    Cannabis 1.82 6.37 106 
    Cocaine .38 .78 74 

    Weeks since last use    
Ecstasy 45.01 92.09 86 
Cannabis 39.52 79.45 110 
Cocaine 41.99 137.63 71 
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  Table 11.6 Associations between short-term indices of ecstasy, cannabis and cocaine use and PM outcomes.      

  Zero order correlations with:  

  F1 event-based PM task The long-term delayed recall 
task  

The Karolinksa fatigue PM task  

 Trial 1 
errors 

Trial 2 
errors 

Trial 3 
errors 

Total 
errors 

Total number of recall tests 
returned 

Percentage completed in 
first half of test-session 

Percentage completed in 
second half of test-session 

Percentage 
completed overall 

 
 

Total Consumption in Last 12 Months         
    Ecstasy (tablets) .10 -.03 .05 .07 -.01 .03 -.09 -.02 

    Cannabis (joints) -.13 .004 .02 -.08 -.12 -.09 -.12 -.13 

    Cocaine (lines) .02 -.12 -.12 -.07 .12 -.26** -.05 -.13 

Average Dose Per Session in Last 12 
Months 

        

    Ecstasy (tablets) .05 -.07 -.02 -.01 -.03 -.12 -.30** -.25** 

    Cannabis (joints) -.10 .001 .02 -.06 -.12 -.07 -.10 -.12 

    Cocaine (lines) .06 -.15 -.18 -.08 -.08 -.27* -.23* -.28** 
Average Frequency of Use in Last 12 
months (times per week) 

        

    Ecstasy  .04 -.04 .00 .01 -.04 .01 .09 -.07 

    Cannabis  -.15 .05 .16* -.03 -.18* -.10 -.14 -.15 
    Cocaine  -.08 -.12 .08 -.06 .24* -.11 .16 .09 

Current Frequency of Use (times per 
k) 

        
    Ecstasy .16 .08 .10 .13 -.03 .05 -.23* -.13 
    Cannabis -.10 -.01 -.21* -.01 .08 .04 .09 .09 

    Cocaine .15 -.08 -.13 .01 -.004 -.08 .06 -.09 

Weeks since last use         
    Ecstasy .13 -.06 -.12 .02 -.03 -,08 -.10 -.11 

    Cannabis -.03 -.08 -.12 -.09 -.03 -.01 .03 .05 

    Cocaine .19 -.05 -.07 .06 -.11 -.02 -.05 -.09 
*p<.05, **p<.01, ***p<.001, one-tailed. 
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Correlations between short-term indices of drug use and PM outcomes 

Ecstasy 

The average dose of ecstasy per session in the last 12 months and the current frequency of 

ecstasy use were both significantly and negatively associated with the proportion of 

Karolinska fatigue questionnaires completed during the second half of the test-session. The 

average dose of ecstasy per session in the last 12 months showed a significant negative 

correlation with the proportion of Karolinska fatigue questionnaires completed over the entire 

test-session. Thus, higher average doses of ecstasy consumed in a typical session during the 

last 12 months and also increased current frequency of ecstasy use were linked to more short-

term time-based PM problems.  

 

Cannabis  

The average frequency of cannabis use in the last 12 months showed a significant positive 

correlation with the number of errors that were made on trial 3 of the F1 event-based PM task 

and negatively associated with the number of delayed recall test sheets successfully returned 

on the long-term delayed recall PM task. Thus, increased frequency of cannabis use in the 12 

months prior to the test-session was linked to worse performance on short-term event- and 

long-term time-based PM tasks.  

Unexpectedly, the current frequency of cannabis use was also significantly and negatively 

associated with the number of errors made on trial 3 of the F1 event-based PM task. Thus, 

increased current frequency of cannabis use was related to better short-term event-based PM 

performance.  

 

Cocaine 

Total cocaine consumption in the last 12 months was significantly, negatively associated with 

the proportion of Karolinska fatigue questionnaires completed during the first half of the test-

session. This finding is in line with predictions and shows that increased cocaine 

consumption in the 12 months prior to the test-session was related to increased short-term 

time-based PM forgetting.  
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The average dose of cocaine per session in the last 12 months was significantly negatively 

associated with the proportion of Karolinska fatigue questionnaires completed during the first 

and second half of the test-session and also over the entire test-session. In each case, 

increased doses of cocaine consumed in a typical session in the 12 months prior to the test-

session was related to worse short-term time-based PM performance. Increased frequency of 

cocaine use in the last 12 months was significantly and negatively associated with the total 

number of delayed recall test-sheets returned on the long-term delayed recall PM task. 

Increased use of cocaine was related to worse long-term time-based PM performance. 

 

Partial correlations 

Partial correlations to estimate the relationship between long-term indicators of ecstasy, 

cannabis and cocaine use when controlling for long-term indicators of other drug use. 

In relation to ecstasy use, the association between total lifetime ecstasy consumption and the 

number of errors made on trial 1 of the F1 event-based PM task remained statistically 

significant when controlling for long-term average dose of cocaine per session, r=.25, df=62, 

p=.03, one-tailed. However, the relationship between the long-term average dose of ecstasy 

per session and the proportion of Karolinska fatigue questionnaires completed during the first 

half of the test-session was no longer statistically significant when controlling for total 

cocaine consumption, long-term average dose of cocaine per session and the long-term 

average frequency of cocaine use, r=-.17, df=60, p=.10, one-tailed. Similarly, the 

relationships between the long-term average dose of ecstasy per session and proportion of 

Karolinska fatigue questionnaires completed during the second half of the test-session and 

over the entire session were not statistically significant when controlling for the long-term 

average dose of cocaine use per session and the long-term average frequency of cannabis use, 

r=-.19, df=54, p=.08, one-tailed and r=-.21, df=54, p=.06, one-tailed, respectively.  

 With regard to cannabis use, the partial correlations between the long-term average 

frequency of cannabis use and the proportion of Karolinska fatigue questionnaires completed 

during the second half of the test-session and between the long-term average frequency of 

cannabis use and the proportion of Karolinska fatigue questionnaires completed over the 

entire session were r=-.15 and r=-.14, respectively. Both partial correlations showed that 
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these associations were no longer statistically significant following the controls for long-term 

average dose of ecstasy and cocaine per session, p=.14 and p=.15, one-tailed, respectively.  

In relation to cocaine use, the relationship between the long-term average dose of cocaine per 

session and the number of errors made on trial 1 of the F1 event-based PM task remained 

statistically significant following the control for total lifetime ecstasy consumption, r=.22, 

df=62, p=.04, one-tailed. The associations between the proportion of Karolinska fatigue 

questionnaires completed during the first half of the test-session and long-term average dose 

of cocaine per session and the long-term average frequency of cocaine use remained 

statistically significant following the control for the long-term average dose of ecstasy per 

session, r=.23, df=62, p=.03, one-tailed and r=-.21, df=62, p=.047, one-tailed, respectively. 

However, the relationship between total cocaine consumption and the proportion of 

Karolinska fatigue questionnaires completed during the first half of the test-session was no 

longer statistically significant after controlling for the long-term average dose of ecstasy per 

session, r=-.15, df=62, p=.25, one-tailed. The association between the long-term average dose 

of cocaine per session and the proportion of Karolinska fatigue questionnaires completed 

during the second half of the test-session fell to below statistical significance when 

controlling for the same long-term indices of ecstasy and cannabis use, r=-.18, df=54, p=.09. 

Nonetheless, following the control for the long-term average dose of ecstasy per session and 

the long-term average frequency of cannabis use, the association between the long-term 

average dose of cocaine per session and the proportion of Karolinska fatigue questionnaires 

completed during the entire test-session remained statistically significant, r=-.25, df=54, 

p=.03, one-tailed.  

 

Partial correlations to estimate the significant associations between short-term indicators of 

ecstasy, cannabis and cocaine use and PM outcomes when controlling for short-term 

indicators of other drug use.  

When controlling for the average dose of cocaine per session in the last 12 months, the 

associations between the average dose of ecstasy per session in the last 12 months and the 

proportion of Karolinska fatigue questionnaires completed during the second half of the test-

session and the average frequency of ecstasy use in the last 12 months and the proportion of 

Karolinska fatigue questionnaires completed during the second half of the test-session 

remained statistically significant, r=-.25, df=69, p=.02, one-tailed and r=-.24, df=66, p=.03, 
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one-tailed,  respectively. However, the relationship between the average dose of ecstasy per 

session in the last 12 months and the proportion of Karolinska fatigue questionnaires 

completed over the entire test-session fell just short of statistical significance when 

controlling for the average dose of cocaine per session in the last 12 months, r=-.20, df=69, 

p=.05, one-tailed.  

For cocaine use, the associations between a) the average dose of cocaine per session in the 

last 12 months and the proportion of Karolinska fatigue questionnaires completed during the 

second half of the test-session, r=-.24, df=66, p=.03, one-tailed, b) the average dose of 

cocaine per session in the last 12 months and the proportion of Karolinska fatigue 

questionnaires completed over the entire test-session, r=-.23, df=66, p=.03, one-tailed and c) 

the average frequency of cocaine use in the last 12 months and the number of delayed recall 

test sheets successfully returned, r=-.24, df=65, p=.03, one-tailed, all remained statistically 

significant when controlling for the current frequency of ecstasy use, the average dose of 

ecstasy per session in the last 12 months and the average frequency of cannabis use in the last 

12 months, respectively.    

 

Partial correlations to estimate the significant associations between short-term indicators of 

ecstasy, cannabis and cocaine use and PM outcomes when controlling for the effects of other 

short-term measures of the same drug. 

For ecstasy use, the relationship between the average dose of ecstasy per session in the last 12 

months and the proportion of Karolinska fatigue questionnaires completed during the second 

half of the test-session remained statistically significant when controlling for the current 

frequency of ecstasy use, r=-.22, df=80, p=.03, one-tailed. Likewise, the association between 

the current frequency of ecstasy use and the proportion of Karolinska fatigue questionnaires 

completed during the second half of the test-session remained statistically significant after 

controlling for the average dose of ecstasy per session in the last 12 months, r=-.24, df=66, 

p=.03, one-tailed.  

   For cannabis use, the association between average frequency of cannabis use in the 

last 12 months and the number of errors made on trial 3 of the F1 event-based PM task was 

not significant after controlling for the current frequency of cannabis use r=.11, df=101, 

p=.14.  However, the relationship between current frequency of cannabis use and the number 
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of errors made on trial 3 of the F1 event-based PM task remained statistically significant after 

controlling for the average frequency of cannabis use in the last 12 months, r=.17, df=101, 

p=.048, one-tailed. 

 In relation to cocaine use, the relationship between total cocaine consumption in the last 12 

months and the proportion of Karolinska fatigue questionnaires completed during the first 

half of the test-session was not significant after controlling for the average dose of cocaine 

per session in the last 12 months (r=-.08, df=75, p=.25, one-tailed). In addition, the 

association between the average dose of cocaine per session in the last 12 months and the 

proportion of Karolinksa fatigue questionnaires completed during the first half of the test-

session was not significant following the control for total cocaine consumption in the last 12 

months (r=-.10, df=75, p=.19, one-tailed). 

 

Partial correlations to estimate the significant associations between long-term indicators of 

ecstasy and cocaine use and PM outcomes when controlling for short-term effects of drug 

use. 

For ecstasy use, the associations between the long-term average dose of ecstasy per session 

and both the proportion of Karolinska fatigue questionnaires completed during the second 

half of the test-session and the proportion of Karolinska fatigue questionnaires completed 

during the entire test-session were estimated when controlling the average dose of ecstasy per 

session in the last 12 months. In both cases, the association fell to a level below statistical 

significance, r=-.14, df=79, p=.11, one-tailed, and r=-.18, df=79, p=.06, one-tailed. 

The relationships between the long-term average frequency of cocaine use and the proportion 

of Karolinska fatigue questionnaires completed during the first half of the test-session and 

between the long-term average dose of cocaine per session and the proportion of Karolinska 

fatigue questionnaires completed over the entire test-session remained statistically significant 

when controlling for the average dose of cocaine in the last 12 months, r=-.21, df=67, p=.04, 

one-tailed and r=-.23, df=67, p=.02, one-tailed respectively. In addition, the relationship 

between total cocaine consumption and performance on the long-term delayed recall PM task 

remained statistically significant when controlling for the average frequency of cocaine use in 

the last 12 months, r=-.25, df=66, p=.02. However, the relationship between total lifetime 

cocaine consumption and the proportion of Karolinska fatigue questionnaires completed 
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during the first half of the test-session was not significant when controlling the average dose 

of cocaine in the last 12 months, r=-.11, df=67, p=.20.  
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11.4 Discussion 

PM impairments in ecstasy/polydrug users have been well documented in the literature and 

this is a finding that has been replicated in the empirical work of this thesis. The primary aim 

of the current study was to examine the relationships between long- and short-term measures 

of ecstasy use while controlling for the effects of cannabis and cocaine use. In addition to 

this, the current study examined the association between PM outcomes and long-term 

indicators of ecstasy use whilst controlling for factors of recent ecstasy use.  

 Ecstasy use was linked to worse performance on all but one of the PM measures. This 

is a finding that is consistent with previous research (Hadjiefthyvoulou et al., 2011a; 2011b) 

and other empirical work in this thesis. However, the current study has furthered our 

understanding of ecstasy-related effects on PM and has identified clear associations between 

PM outcomes and a number of long-term indicators of ecstasy use. For example, total 

lifetime ecstasy consumption and the long-term average dose of ecstasy per session were 

associated with PM outcomes. Following the control for long-term indicators of other drug 

use and effects of recent ecstasy use, higher lifetime ecstasy consumption was linked to more 

event-based PM errors (F1 event-based PM task). It is possible that the regular consumption 

of small doses of ecstasy might cumulatively produce a neurotoxic effect which increases 

with lifetime use. For example, increased lifetime ecstasy consumption has been linked to 

structural abnormalities within the serotonergic system including degeneration of 5-HT 

axonal projections, abnormal regulation of 5-HT pathways and increased 5-HT2A receptor 

levels as a neuroadaptive response to reduced serotonin activity (Di lorio et al., 2012; Fischer 

Hatzidimitriou, Wlos, Katz & Ricaurte 1995).  Despite this evidence, increased long and 

short-term average doses of ecstasy per session were associated with short-term time-based 

PM deficits. Therefore, it might be that the consumption of larger doses of ecstasy in a typical 

session increases the amount of MDMA in plasma thereby enhancing neurotoxicity in the 

brain (Morefield et al., 2011). Larger doses of ecstasy per session have also been linked to 

reduced serotonergic binding in the prefrontal cortex and the hippocampus (Kish et al., 2010). 

In summary, the current findings point to the fact that total lifetime ecstasy consumption and 

the long and short-term average dose of ecstasy per session are important predictors of event- 

and time-based PM performance. These measures of ecstasy use may give rise to very 

different patterns of use and potentially point to different mechanisms of neurotoxicity.. 
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  Cannabis use was associated with poor performance on short-term event and long-

term time-based PM tasks. More refined measures of cannabis use including the long-term 

average frequency of cannabis use were also associated with short-term time-based PM 

performance although this relationship was no longer significant following controls for long-

term indicators of illicit drug use. Nonetheless, increased current frequency of cannabis use 

was associated with more short-term event-based PM errors with partial correlations showing 

that this effect was independent of other factors of recent use (the average frequency of 

cannabis use in the last 12 months). 

   Clearer associations were observed between factors of cocaine use and PM 

performance. After controlling for long-term measures of ecstasy and cannabis use and recent 

cocaine use, higher long-term average dose of cocaine per session was linked to worse 

performance on short-term event and time-based PM tasks. These findings suggest that 

performance on short-term event- and time-based PM tasks is sacrificed when larger doses of 

cocaine are consumed in a typical session.  In addition, higher total cocaine consumption was 

linked to poorer long-term time-based PM performance. Importantly, this relationship was 

independent of ecstasy and cannabis use and recent cocaine use. Factors of recent cocaine use 

were also associated with PM performance. The average dose of cocaine per session in the 

last 12 months and the average frequency of cocaine use in the last 12 months were related to 

adverse outcomes on short- and long-term time-based PM measures, respectively. These 

associations remained statistically significant following controls for short-term indicators of 

ecstasy and cannabis use. 

  Previous research has also associated increased lifetime cocaine consumption with 

deficits in PM performance. Consistent with the findings from the current study, 

Hadjiefthyvoulou et al. (2011a) found that increased lifetime cocaine consumption was 

associated with poorer performance on the Karolinska fatigue PM task (Hadjiefthyvoulou et 

al., 2011a). However, the current study is the first to demonstrate a relationship between the 

average typical dose of cocaine per session and PM performance. PM deficits in cocaine 

users may in part reflect impairment of cortical and subcortical regions modulated by 

dopamine (Hadjiefthyvoulou et al., 2011a). In one important study, Tomasi and colleagues 

(2007) used functional magnetic resonance imaging to investigate brain activation during a 

verbal working memory task in cocaine abusers and healthy controls. Compared to controls, 

cocaine abusers demonstrated hypoactivation in the mesencephalon, a brain region where 

dopamine neurons are located. Cocaine abusers also showed larger deactivation in dopamine 
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projection regions (including in the putamen, anterior cingulate, parahippocampal gyrus, and 

amygdala) and hyperactivation in the prefrontal and parietal cortices relative to nonusers. 

These findings are significant given the role of the mesocortical dopaminergic system in PM 

processes (Goto & Grace, 2008). Importantly, Tomasi et al. (2007) found that working 

memory load activation was lower in the prefrontal and parietal cortices in cocaine abusers 

when compared with controls. This is significant since PM and EF tasks load heavily on 

frontal brain operations (Okuda et al., 2007; Collette et al., 2005).  

  Alternatively, PM deficits in cocaine users may be driven by cocaine-induced cortisol 

mediated hippocampal dysfunction (Fox et al., 2009; Tomasi et al., 2007; Zeigler et al., 

1991). Fox et al. (2009) found elevated morning cortisol levels in cocaine-dependent 

participants relative to healthy controls. Enhanced cortisol levels were linked to worse 

learning and working memory performance on the Rey Auditory Verbal Learning Task. 

Increased exposure to cortisol leads to the degeneration of the hippocampus and hippocampal 

disinhibition (Sapolsky, Uno, Rebert & Finch, 1990; Het, Ramlow & Wolf, 2005). It might 

be that smaller doses of cocaine used over a prolonged period of time give rise to higher 

lifetime cocaine consumption resulting in elevated cortisol levels and significant degeneration 

of the hippocampus. On the other hand, the consumption of larger doses of cocaine per 

session may increase cortisol levels causing hippocampal degeneration.  Hippocampal 

degeneration can have negative implications for PM performance given the importance of the 

hippocampus in checking for target stimuli (Okuda et al., 1998), retrieving the intended 

action associated with the target stimulus (Martins et al., 2007) and in time-based PM tasks 

where there is a delay between the formation of an intention and its subsequent retrieval 

(Adda et al., 2008). However, in relation to this proposal, it is important to note that the 

majority of cocaine users who were sampled also used ecstasy (and cannabis). As such the 

apparent cocaine-related impairments in PM might be a result of cocktail effects. For 

example, ecstasy use is also known to indirectly affect dopaminergic regulation through its 

effects on cortisol (Goto & Grace, 2008; Parrott, Lock, Conner, Kissling & Thome, 2008; 

Wolff et al., 2012) and so the additional effects that cocaine has on the dopaminergic systems 

may produce a joint effect that would not be apparent in cocaine only users.  

   While the current study has found a relationship between factors of ecstasy and 

cocaine use and laboratory-based PM performance, a number of potential limitations should 

be acknowledged. With respect to the inter-correlations between the PM measures, it is 
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noteworthy that the long-term delayed recall PM task and the Karolinska fatigue PM task 

were not significantly related to each other. This is somewhat surprising given that similar 

retrieval processes govern each task. For example, in each case, individuals must remember 

to perform an intended action after a specific period of time has elapsed. Despite this, the 

delay interval in the long-term delayed recall PM task is sufficiently longer than that in the 

Karolinska fatigue PM task. In consideration of this, research points towards differing 

processing demands of time-based PM tasks with short- and long-term delay intervals. For 

instance,  a number of rostral prefrontal regions (right superior frontal gyrus, anterior medial 

frontal lobe and anterior cingulate gyrus; Okuda et al., 2002; 2007) appear to be implicated in 

short-term time-based PM and thus may also be involved in performance of the Karolinska 

fatigue PM task. By comparison, time-based PM tasks with longer delay intervals such as the 

long-term delayed recall PM task are suggested to load more on the left hippocampal region 

(Adda et al., 2008). The differing processing demands of short- and long-term PM tasks may 

explain why the Karolinksa fatigue PM task and the long-term delayed recall PM task were 

not inter-correlated. 

 

  With regard to the statistical analysis, it must be conceded that the correlations 

reported in Table 11.4 and Table 11.6 are unadjusted for multiple comparisons. It is 

important to acknowledge that with full Bonferroni correction, none of the correlations 

reported in Table 11.4 and Table 11.6 are significant at the adjusted alpha level. That said, 

each factor of illicit drug use was significantly associated with a number of PM outcomes. 

The situation is further complicated given that long- and short-term indices of drug use were 

inter-correlated with each other. In this case, it could be argued that full Bonferroni correction 

is too conservative and inappropriate (Sankoh et al., 1997) and there is no universally 

accepted method for calculating the adjusted alpha level. Despite this, some degree of 

correction is needed, and in these situations, an adjusted alpha level of 0.01 is sometimes 

adopted (e.g. Montgomery & Fisk, 2007). At this level, only 5 of the correlations between 

factors of drug use and the PM outcomes are statistically significant. A further method for 

evaluating the importance of the outcomes reported in Table 11.4 and Table 11.6 would be to 

use Cohen’s (1988) effect size construct. This measure suggests that correlations of less than 

0.1 are unlikely to represent a noteworthy effect, correlations of between 0.1 and up to 0.3 

represent a small effect size, from 0.3 up to 0.5 moderate and correlations 0.5 and above a 

large effect size. Using this standard, only one of the correlations in Table 11.3 and Table. 

11.5 which is significant at p<0.01, one tailed, exceed 0.3 and so would meet Cohen’s criteria 
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for a moderate effect. However, if these criteria were adopted, the unexpected negative 

correlation between the long-term average frequency of ecstasy use per session and the 

number of errors that were made on trial 2 of the F1 event-based PM task would not be 

significant.  

The current findings further the current understanding of how ecstasy use may affect PM 

performance. More refined aspects of ecstasy use including total lifetime dose, typical dose 

of ecstasy consumed in a single session, and the long-term frequency of ecstasy use were 

shown to be associated with PM. For example, larger doses of ecstasy consumed in a typical 

session as well as increased long-term frequency of use were associated with worse 

performance on short-term event- and time-based PM tasks, respectively. Factors of cocaine 

use were also shown to be related to PM performance. Higher total lifetime cocaine 

consumption and increased long-term average dose of cocaine per session were related to 

worse performance on a number of PM outcomes.  
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Chapter 12: General Discussion  

 

12.1 Prospective memory deficits in ecstasy/polydrug users 

Previous research has shown evidence of ecstasy-related impairments on both self-report 

(Heffernan et al., 2001a; 2001b, Montgomery & Fisk, 2007) and laboratory-based measures 

(Rendell et al., 2007; Rendell et al., 2009; Zakzanis et al., 2003; Hadjiefthyvoulou et al., 

2011a; 2011b) of prospective memory (PM). Self-reported PM deficits in ecstasy users have 

been found in short-term habitual PM, long-term episodic PM and internally cued PM 

(Heffernan et al., 2001a; 2001b). However, due to problems with the validity of self-report 

measures of PM (Mäntylä, 2003; Uttl & Kibreab, 2011), recent research has tended to use 

laboratory-based alternatives. In the substance abuse field, some of the most frequently used 

laboratory-based measures of PM include the F1 event-based PM task, the long-term delayed 

recall PM task, the Karolinska fatigue PM task and the Cambridge PM test (CAMPROMPT). 

These measures have been used in previous research to show PM deficits in ecstasy/polydrug 

users (Hadjiefthyvoulou et al 2011a; 2011b) and were used throughout the empirical work in 

this thesis. 

 

Limitations of the existing literature on prospective memory performance 

One of the primary limitations of the existing literature surrounding ecstasy use and PM 

performance is that the majority of studies have focused on traditional indices of drug use 

(i.e., total lifetime exposure, number of occasions of use, duration of use and the current  

frequency of use). These measures are often imprecise and tell researchers relatively little 

about the typical consumption patterns of ecstasy users. For example, some studies that claim 

to have found self-reported PM deficits in ecstasy users have assessed lifetime drug use 

categorically whereby ecstasy users are classified according to the number of occasions of 

use (0, 1-9, 10-99, 100+ occasions). Assessing ecstasy use in this manner is problematic for a 

number of reasons. First, no information about the number of ecstasy tablets consumed is 

obtained. Second, those individuals that report to having used ecstasy once will be allocated 

to the same categorical group as those individuals who have used several times. Furthermore, 

based on the ordinal nature of the scale, there is a degree of inaccuracy associated with this 

method.  Other studies have focused on the total number of tablets consumed with regard to 

its effect on PM performance (Bedi & Redman, 2008a; Hadjiefthyvoulou et al., 2011a; 

2011b; Montgomery & Fisk, 2007). Hadjiefthyvoulou et al. (2011a; 2011b) found a clear 
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relationship between the total number of ecstasy tablets consumed and laboratory-based PM 

performance. Despite this, data relating to the lifetime consumption of ecstasy use is limited 

in that it tells researchers relatively little about the size of the typical dose of ecstasy per 

session and frequency of use. In addition, with using this method there is no way to examine 

individual differences in consumption patterns between different ecstasy users.  For example, 

individuals who frequently consume a single ecstasy tablet per session will generate a similar 

rate of lifetime consumption compared to individuals who infrequently consume several 

tablets per session. Differences in the consumption patterns between ecstasy users are very 

important given that the size of typical dose of ecstasy per session has been linked to 

increased accumulation of MDMA in plasma and increased MDMA exposure in the brain 

(Morefield et al., 2011). The size of typical dose of ecstasy per session has also been 

associated with reduced serotonergic binding in PM-related brain regions including the 

prefrontal cortex and the hippocampus (Kish et al., 2010). In light of this evidence, it is 

somewhat surprising that this measure of dose has received little attention previously, 

especially in relation to the effects of ecstasy use on cognitive performance.   

 

12.2 The effects of typical average dose of ecstasy per session on prospective memory 

performance.  

The first two studies in Chapter 7 aimed to explore the effects of long- (Study 1) and short-

term (Study 2) ecstasy dose per session on PM performance. It was expected that PM 

performance would decline when higher doses of ecstasy were consumed in a typical session. 

Both studies adopted a timeline technique where ecstasy users were asked to provide an 

indication of the size of typical dose of ecstasy per session (number of tablets consumed per 

session) and frequency of use (times per week). This was done for each year that ecstasy 

users had used ecstasy and also for each month in the 12 months prior to the test-session. 

These data were used to calculate long- (Study 1) and short-term (Study 2) dose of ecstasy 

per session. Median splits were then used to dichotomise long- and short-term ecstasy dose 

per session and thus create two ecstasy user groups in each case: long-term high dose ecstasy 

users and long-term low dose ecstasy users, short-term high dose ecstasy users and short-term 

low dose ecstasy users. A control group of non-ecstasy users were also included. An 

extensive battery of laboratory-based PM measures were administered and the extent to 

which long- and short-term dose of ecstasy per session can predict PM performance was 

examined.  
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  Contrary to initial predictions, the findings from Chapter 7 showed that the long-term 

dose of ecstasy per session was not associated with event- or time-based PM outcomes. That 

is, long-term high dose (LTHD) ecstasy users, long-term low dose (LTLD) ecstasy users and 

non-ecstasy users performed comparably on the F1 event-based PM task and the long-term 

delayed recall task. Nonetheless, there was at least some evidence for short-term dose-related 

effects of ecstasy use. Higher short-term average dose of ecstasy per session (in the last 12 

months) was directly related to adverse outcomes on the Karolinska fatigue PM task. Relative 

to short-term high dose (STHD) ecstasy users, short-term low dose (STLD) ecstasy users 

completed significantly more Karolinska fatigue questionnaires during the second half of the 

test-session. Performance on the Karolinska fatigue PM task was also worse for STHD 

ecstasy users relative to STLD ecstasy users. Thus, short-term time-based PM impairments 

were associated with higher doses of ecstasy consumed in a single session in the last 12 

months.  

 

 Despite these findings, data relating to the median period of abstinence for the groups 

indicates that the observed short-term dose related effect might be a factor of recent ecstasy 

use. For example, a total of five out of the 22 STHD ecstasy users who completed the 

Karolinska fatigue PM task had in fact used ecstasy within the seven days prior to the test-

session. This therefore raises the possibility that the observed short-term dose related effects 

might represent a post intoxication effect. Further analyses were computed whereby the data 

for these five individuals was excluded. Importantly, the same group differences on the 

Karolinska fatigue PM task were observed and these remained statistically significant.  

 

What is perhaps more worrying is that individuals in the STLD ecstasy user group consumed 

very low doses of ecstasy per session. Some STLD ecstasy users reported that they had not 

consumed ecstasy in the previous 6 months with a larger group claiming to have not used 

ecstasy for a year or more. Without the use of objective measures of drug use (e.g., hair 

analyses) it is difficult to determine exactly how many STLD ecstasy users had used ecstasy 

recently. Nonetheless, in relation to self-reported use in the STLD ecstasy user group, ecstasy 

dose per session was sufficiently low enough to suggest that this group was predominantly 

composed of previous ecstasy users. If this data is considered alongside that for STHD 

ecstasy users who had generally used ecstasy more regularly in the previous 12 months, it 

could be suggested that the current comparison related to previous users versus current users. 
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With this in mind, the findings should be interpreted with caution and the acknowledgement 

that they may in fact relate to a short-term effect of ecstasy use on PM performance.  

 

 

12.3 The effects of concurrent alcohol and ecstasy use on prospective memory performance. 

One of the main limitations of the research surrounding ecstasy use and PM performance is 

that many ecstasy users use the drug alongside other licit and illicit substances. For example, 

alcohol is commonly used concurrently with ecstasy (Barrett et al., 2006; Grov, Kelly & 

Parsons, 2009; Fisk, Montgomery & Murphy, 2009) with research suggesting that the use of 

alcohol alone might give rise to PM problems (Griffiths et al., 2012; Heffernan et al., 2010). 

Moreover, the use of alcohol and ecstasy together has been associated with cognitive 

impairments (Hernandez-Rabaza et al., 2010; Vidal Infer et al., 2012) and changes in the 

functioning of PM-related neurotransmitters (Vidal Infer et al., 2012). This makes it difficult 

for researchers to determine whether apparent ecstasy-related PM deficits are attributable to 

the use of ecstasy, the use of alcohol, or a combination of these drugs. The purpose of 

Chapter 8 was to investigate the effects of long- (Study 1) and short-term (Study 2) 

concurrent alcohol and ecstasy use on PM performance.  

  

 Consistent with findings from Chapter 7, evidence of PM deficits were observed in 

Chapter 8. In Study 1, long-term high alcohol (LTHA) ecstasy users and long-term low 

alcohol (LTLA) ecstasy users performed worse than non-ecstasy users on a number of 

laboratory-based measures of event- and time-based PM. Similar findings were demonstrated 

in Study 2 where short-term high alcohol (STHA) and short-term low alcohol (STLA) ecstasy 

users performed significantly worse than non-ecstasy users on event- and time-based PM 

measures. These findings are largely in line with previous literature (Hadjiefthyvoulou et al., 

2011a; 2011b) and provide further evidence for the detrimental effects of ecstasy use on PM 

performance.  

  Despite the apparent ecstasy-related PM deficits that were observed no effect of long- 

or short-term concurrent alcohol and ecstasy use was found in Chapter 8. Performance on the 

F1 event-based PM task, the long-term delayed recall PM task, the Karolinska fatigue PM 

task and the Cambridge PM test (CAMPROMPT) were similar between LTHA ecstasy users 

and LTLA ecstasy users and between STHA ecstasy users and STLA ecstasy users. To date, 

no research has examined the relationship between concurrent alcohol and ecstasy use on 
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cognitive performance in humans and as such it is difficult to scrutinize the current findings 

alongside other research. Of the evidence that is available, spatial and working memory 

deficits have been found in rats following the concurrent administration of alcohol and 

ecstasy (Hernandez-Rabaza et al., 2010). This finding is particularly important since PM 

performance has been linked to problems with the central executive. With this in mind, one 

may have expected to find concurrent alcohol and ecstasy-related effects on PM. However, 

this was not the case with high and low dose concurrent alcohol and ecstasy users performing 

similarly on all PM measures. One possible reason for the discrepancy in the findings might 

be linked to differences in the doses of ethanol and MDMA administered in Hernandez-

Rabaza at al’s study and the typical doses consumed by the concurrent alcohol and ecstasy 

users in Chapter 8.  While, Hernandez-Rabaza and co-workers (2010) adopted a body surface 

area normalization method to extrapolate doses from animals to human (Reagan-Shaw et al., 

2008), the authors acknowledge the difficulties associated with the translation of drug dosage 

from one species to another. For instance, there is a possibility that the doses of ethanol and 

MDMA that were administered in Hernandex-Rabaza et al’s study were much larger than 

those typically consumed in humans thereby accounting for the cognitive impairments that 

were observed. 

   One important methodological issue that should be acknowledged relates to the way 

in which the high and low concurrent alcohol and ecstasy user groups were categorised. For 

instance, the concurrent alcohol and ecstasy user groups were dichotomised based on their 

alcohol use alone (i.e., For Study 1, ecstasy users who, on average, consumed more than 

11.03 units of alcohol per session of ecstasy use were assigned to the LTHA ecstasy user 

group while ecstasy users who, on average, consumed less than 11.03 units of alcohol per 

session of ecstasy use were assigned to the LTLA ecstasy user group). Although no 

differences in PM were found between the high and low dose alcohol and ecstasy user 

groups, clear group differences were found between the concurrent alcohol and ecstasy user 

groups and non-ecstasy users. With this in mind, it is likely that the observed PM deficits are 

mediated by the effects of ecstasy use and not alcohol use. This finding therefore strengthens 

the association between ecstasy use and PM performance and suggests that the concurrent use 

of alcohol does not exacerbate PM impairments.  

To summarise the findings, Chapter 8 showed no association between the concurrent use of 

alcohol and ecstasy and PM performance. However, as in Chapter 7, ecstasy-related 
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impairments in PM were observed.  Further research is needed to fully explore the 

relationship between concurrent alcohol and ecstasy use on PM performance (see section 

12.6) 

 

 
12.4 The role of executive functioning processes in accounting for prospective memory 

deficits in ecstasy/polydrug users 

The construct of PM is highly complex with some PM tasks requiring self-initiated, attention 

demanding resources that place increased load on executive functioning (EF) processes and 

frontal brain regions (Burgess et al., 2000; Marsh & Hicks, 1998). Furthermore, failure to 

plan, maintain attention, monitor the environment for cues, self-initiate a required action or to 

interrupt an ongoing activity implicate the prefrontal cortices and executive resources (Marsh 

& Hicks, 1998; McDaniel et al., 1999). As a result, it is possible that apparent PM problems 

might be mediated by impairments in EF.  

 

  The primary aim of Chapter 10 was to further investigate the nature of ecstasy-related 

deficits in PM by examining the extent to which underlying problems in executive 

functioning (EF) processes might underpin impairments in PM. Ecstasy users and non-

ecstasy users were compared on laboratory-based measures of PM (the same measures that 

were administered in Chapter 8) and EF. The EF measures that were administered were 

chosen specifically to load on the three executive functions defined by Miyake et al. (2000). 

Thus, measures of updating (the computation span task), shifting (the plus/minus task and the 

number/letter task) and inhibition (the RLG task; repeat sequences, alphabetical sequences 

and the number of letters generated) were administered. The Chicago word fluency task 

(CWFT) was also included to measure verbal word fluency.  

 

 As in Chapter 7 and Chapter 8, clear PM impairments were observed in ecstasy users. 

Relative to non-ecstasy users, ecstasy users were impaired on the F1 event-based PM task, 

the long-term delayed recall PM task, the Karolinska fatigue PM task and the event- and 

time-based tasks of the CAMPROMPT (note: the CAMPROMPT was not administered in 

Chapter 7). 

 

 Based on the evidence from the CWFT, verbal word fluency was not impaired in 
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ecstasy users. Although this finding is not in line with findings from Montgomery et al. 

(2005b) who found that ecstasy users performed significantly worse than non-ecstasy users 

on the CWFT (C and S letter fluency), other research has found no evidence of verbal word 

fluency deficits in ecstasy users (Klugman et al., 1999; Morgan et al., 2002; Wareing et al., 

2000). For example, Morgan et al. (2002) used the Controlled Oral Word Association test 

(Benton & Hamsher, 1976) and a category fluency task and found no evidence of ecstasy-

related deficits in verbal word fluency. 

  In relation to Miyake et al’s (2000) conceptual framework of executive functions, 

Chapter 10 explored updating, shifting and inhibition executive processes in ecstasy users 

and non-ecstasy users. Unexpectedly, both groups correctly recalled a similar number of 

serial positions on the computation span task. This finding is indicative of normal updating 

performance in ecstasy users and is inconsistent with previous research (Montgomery et al., 

2005b). Montgomery and co-workers found that ecstasy users correctly recalled significantly 

fewer serial positions on the computation span task relative to non-ecstasy users. Similar 

findings were reported in a later study by Montgomery and Fisk (2008). One possible reason 

for the discrepancy between the findings may be related to specific characteristics of the 

ecstasy users in Chapter 10. Individual differences between ecstasy users across studies might 

help to explain these findings. Although no evidence of updating impairments were evident in 

ecstasy users in Chapter 10, deficits in the updating capacity are pronounced for visuo-spatial 

updating tasks that involve detailed processing including the recall of spatial stimuli, the 

recognition of figures and/or the production or reproduction of figures (Murphy et al., 2012). 

If this is indeed the case, it might explain why ecstasy users in Chapter 10 were unimpaired 

on the computation span task. For example, the computation span task loads heavily on 

verbal processing and involves no visuo-spatial component or recall of spatial stimulus 

elements. As such, it could be argued that the computation span task may not challenge the 

updating function sufficiently enough to identify ecstasy-related impairments. That said, this 

proposal should be treated with some caution given that other studies have used the 

computation span task and identified updating deficits in ecstasy users (Fisk & Montgomery, 

2008; Montgomery et al., 2005b). 

 Chapter 10 found no ecstasy-related deficits in shifting processes. Although the 

shifting cost was lower for ecstasy users compared to non-ecstasy users on the plus/minus 

task, the difference between the groups was not statistically significant. Similar shifting costs 
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were found between ecstasy users and non-ecstasy users in the number/letter task. These 

findings were somewhat expected given that previous research had failed to identify ecstasy-

related impairments on the plus/minus task and the number/letter task (Montgomery et al., 

2005b). These findings are also in line with the conclusions from Murphy et al’s critical 

review (Murphy et al., 2009) which suggests that the shifting component of executive 

functions is not adversely affected by the use of ecstasy. 

 Further evidence from Chapter 10 indicates that the inhibition component of 

executive functions is not susceptible to the effects of ecstasy use. Ecstasy users and non-

ecstasy users recorded similar scores on all inhibition measures of the RLG task (repeat 

sequences, alphabetical sequences and the total number of letters generated). Other studies 

that have used the RLG task have also failed to identify impairments in inhibition in ecstasy 

users (Fisk & Montgomery, 2009; Fisk et al., 2004). Once again, these findings are consistent 

with Murphy et al’s (2009) critical review which suggests that the inhibition component of 

EF is left unaffected by ecstasy use.  

Despite finding no apparent ecstasy-related deficits on any of the EF measures, the 

main aim of Chapter 10 was to investigate whether PM impairments in ecstasy users were 

related to underlying problems in executive processes. Stepwise multiple regressions were 

performed for each of the PM measures (the F1 event-based PM task, the long-term delayed 

recall PM task and the Karolinksa fatigue PM task and the CAMPROMPT) with ecstasy use 

defined dichotomously (user versus nonuser) and the EF measures as potential independent 

variables. For all but one of the PM outcomes (i.e., errors made on trial 2 of the F1 event-

based PM task), the variance accounted for by ecstasy use was largely independent of that 

associated with the executive function measures. Similar findings were reported by 

Hadjiefthyvoulou et al. (2011c). As in Chapter 10, ecstasy-related deficits were found on the 

F1 event-based PM task, the Karolinska fatigue PM task and the long-term delayed recall PM 

task. However in contrast to the findings in Chapter 10, ecstasy users in Hadjiefthyvoulou 

and colleagues’ study reported clear impairments in EF processes. Nonetheless, ecstasy-

related problems in inhibition, self-monitoring, initiation, working memory, planning, 

organization and task monitoring were observed although these impairments were unrelated 

to PM performance deficits.  

The overall findings from Chapter 10 show that the ecstasy users who were tested were 

unimpaired on the EF measures and that for these participants Miyake et al’s (2000) sub-
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processes of updating, shifting and inhibition were not implicated in PM deficits. One 

possible explanation is that event- and time-based PM load on qualitatively different 

executive resources than those examined in Chapter 10. For example, the role of divided 

attention in PM tasks is potentially very important. To demonstrate, during the completion of 

event- and time-based PM tasks, individuals are required to divide their attention between 

ongoing task performance and remembering to retrieve a PM intention upon the presentation 

of a target cue, or after a period of time has elapsed, respectively.  Furthermore, aspects of 

divided attention including controlling attention and the flow of information map onto the 

prefrontal cortex (Loose, Kaufmann, Auer & Lange, 2003), an area which is also implicated 

in PM. With this in mind, it is plausible that PM deficits in ecstasy users might be 

underpinned by an underlying impairment in processes facilitating divided attention. Future 

studies may include laboratory-based dual-task paradigms to investigate divided attention 

performance in ecstasy users and how this relates to performance on event- and time-based 

PM tasks. 

 

12.5 The effects of long- and short-term indicators of ecstasy, cannabis and cocaine use on 

PM performance 

Although long-term dose-related effects of ecstasy use were not established in Chapter 7, 

additional sampling of ecstasy/polydrug users allowed for the use of correlational analyses to 

systematically evaluate dose-related effects of ecstasy use on PM performance (Chapter 11). 

Further associations between long- (total lifetime consumption, the long-term average dose 

per session, the long-term average frequency of use and duration of use) and short-term (total 

consumption in the last 12 months, the average dose per session in the last 12 months, the 

average frequency of use in the last 12 months, current frequency of use and the number of 

weeks since last use) indicators of drug use (ecstasy, cannabis and cocaine) and PM outcomes 

were also examined in Chapter 11. Partial correlations were used to estimate significant 

associations between long-term indicators of drug use while controlling for long-term aspects 

of other drug use and recent use. These factors (controlling for other illicit drug use and 

recent use) were not considered in Chapter 7, Chapter 8 or Chapter 10 and as such were an 

important aspect of Chapter 11.  

 

  Consistent with the findings from Chapter 7, Chapter 8 and Chapter 10, ecstasy use 

was related to adverse outcomes on the F1 event-based PM task, the long-term delayed recall 
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PM task and the Karolinksa fatigue PM task. However in furthering the findings from these 

Chapters, Chapter 11 identified a number of interesting associations between PM outcomes 

and long-term indicators of ecstasy use. Higher lifetime ecstasy consumption was related to 

more event-based PM errors on the F1 event-based PM task. One crucial association which 

should be acknowledged is the link between higher long-term average dose of ecstasy per 

session and short-term time-based PM performance. Contrary to the findings of Chapter 7, 

larger doses of ecstasy consumed in a typical session (averaged over lifetime use) were 

associated with worse performance on the Karolinska fatigue PM task. Although this 

relationship fell just short of statistical significance following controls for the effects of other 

drug use and recent ecstasy use, there is at least some evidence for a dose-related effect of 

ecstasy use in Chapter 11. Consistent with the findings from Chapter 7, the average dose of 

ecstasy per session in the last 12 months was significantly associated with short-term time-

based PM. More specifically, larger doses of ecstasy consumed in a typical session in the 12 

months prior to the test-session were related to worse performance on the Karolinska fatigue 

PM task. To our knowledge, no other research has identified a relationship between the 

average dose of ecstasy consumed in a typical session and PM performance.  

 

  Chapter 11 found evidence of short-term event-based and long-term time-based 

impairments in cannabis users. These findings are consistent with previous literature which 

has reported cannabis-related deficits in event- and time-based PM (Hadjiefthyvoulou et al 

2011a; McHale & Hunt, 2008). With regard to the long-term correlations, increased long-

term average frequency of cannabis use was associated with poor performance on the 

Karolinska fatigue PM task although this association was not significant following controls 

for ecstasy and cocaine use. Increased current frequency of cannabis use was related to 

adverse outcomes on the Karolinska fatigue PM task indicating that cannabis-related PM 

deficits might be attributable to factors of recent use.  

 

 One of the key findings from Chapter 11 was the association between cocaine use and 

PM. Until recently, clear PM deficits had not been established in cocaine users. The first 

empirical study to identify PM impairments in cocaine users was carried out by 

Hajiefthyvoulou et al. (2011a). The authors found that larger lifetime cocaine consumption 

and increased frequency of cocaine use were detrimental to performance on the Rivermead 

Behavioural Memory test (RBMT), the Karolinska fatigue PM task and the long-term 

delayed recall PM task. Similar associations were found in Chapter 11. For example, 
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increased lifetime cocaine consumption was associated with poor short-term time-based PM 

performance as measured by the Karolinska fatigue PM task. Nonetheless, this relationship 

was no longer significant following controls for the effects of ecstasy and cannabis use. In 

extending the current knowledge of cocaine-related impairments in PM, Chapter 11 has 

identified other factors of long-term cocaine use that appear to be related to PM performance.  

Increased total lifetime consumption of cocaine was linked to worse long-term time-based 

PM performance. Larger long-term average doses of cocaine were associated with short-term 

event- and time-based deficits. Higher long-term average frequency of cocaine use was also 

linked to short-term time-based PM deficits. Recent effects of cocaine were also related to 

PM outcomes in Chapter 11. For instance, larger dose of cocaine per session in the last 12 

months and higher average frequency of cocaine use in the last 12 months were linked to 

worse performance on short- and long-term time-based PM tasks, respectively. Importantly, 

all of the abovementioned associations were independent of the effects of ecstasy and 

cannabis use and recent cocaine use.  

The findings from Chapter 11 are important in demonstrating how ecstasy and cocaine use 

might affect PM performance. In summary of the findings, total lifetime ecstasy consumption 

and the average dose of ecstasy consumed per session were associated with PM outcomes. 

Increased total lifetime ecstasy consumption was associated with poor event-based PM 

performance. Larger doses of ecstasy consumed in a typical session and increased long-term 

frequency of ecstasy use were associated with poor short-term time-based PM performance. 

Factors of cocaine use were also shown to be related to PM performance. Higher total 

lifetime cocaine consumption and increased long-term average dose of cocaine per session 

were related to worse performance on a number of PM outcomes. Importantly, all but one of 

the abovementioned associations (long-term average dose of ecstasy and short-term time-

based PM performance) were independent of factors of other illicit drug use suggesting that 

ecstasy- and cocaine-related impairments in PM are independent from one another. 

 

12.6 Implications and directions for future research 

In light of the apparent ecstasy-related effects that have been found in this thesis, it is 

important to consider the neurotoxic potential of ecstasy and how this might relate to the 

event- and time-based PM deficits that have been observed. Considering the evidence that has 

been put forward in Chapter 3 concerning the neural basis of PM, two brain regions that are 
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clearly implicated in PM tasks include the frontopolar cortex and the hippocampus. The 

frontopolar cortex plays a crucial role in both event-and time-based PM tasks (e.g., Gilbert, 

2011; Momennejad & Haynes, 2012; Okuda et al., 2007). For example, prefrontal areas are 

associated with the maintenance of an intention (Gilbert et al., 2009) and monitoring for PM 

targets (McDaniel & Einstein, 2011) in event-based PM tasks. In time-based PM tasks, the 

prefrontal cortex is implicated during the encoding of information relating to “what” an 

intention is “when” it should be carried out (Momennejad & Haynes, 2012). With this in 

mind, it is interesting to note that lower serotonin transporter densities and cortical thinning 

have been found in prefrontal cortex of ecstasy users (Kish et al., 2010). Thus, ecstasy-related 

PM impairments found in this thesis might be linked to dysfunction within this region. There 

is also reason to believe that PM deficits in ecstasy users are associated with abnormalities 

within the hippocampus. The hippocampus is important in event-based PM tasks where there 

is a requirement for spontaneous retrieval processes (Moscovitch, 1994), checking for a target 

stimulus (Okuda et al., 1998) and in retrieving the intended action associated with the target 

stimulus (Martins et al., 2007). The hippocampus is also crucial in time-based PM tasks 

where there is a delay between the formation of an intention and its subsequent retrieval 

(Adda et al., 2008). Significant reductions (31%) have been observed in serotonin transporter 

densities within the hippocampus of ecstasy users (Kish et al., 2010). It could therefore be 

argued that abnormalities within the hippocampus of ecstasy users mediate the event- and 

time-based PM deficits that have been observed. The possible role of the parietal cortex 

cannot be dismissed in light of research that has indicated its involvement in event- and time- 

based PM tasks (Benoit et al., 2012; Simons et al., 2006) and findings that have shown 

reduced SERT densities and cortical thinning in this region in ecstasy users (Kish et al., 

2010).  

 

  Another possibility that must be considered is the potential mediating role of cortisol. 

By stimulating the hypothalamus-pituitary-adrenal (HPA) axis, MDMA is suggested to 

increase plasma concentrations of cortisol (Parrott, 2009). Parrott et al. (2008) examined 

salivary cortisol levels in ecstasy users and found increases of up to 800% in participants who 

used ecstasy when clubbing compared with baseline and dancing when drug free. More 

recent evidence from Wolff et al. (2012) provides further support for the importance of 

cortisol in relation to ecstasy-related neurotoxicity. The authors evaluated cortisol levels in 

ecstasy users and non-ecstasy users before and after clubbing. Compared to clubbers who had 

not consumed ecstasy, ecstasy-using clubbers demonstrated a 110% increase in post-clubbing 
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cortisol levels. Although this finding is similar to the 130% increase in post-clubbing cortisol 

(24 hours) levels observed in Parrott et al’s (2007) study, the acute cortisol release after 

ecstasy use could be much larger (Parrott et al., 2013). Wolff and co-workers also noted the 

importance of genetically-based differences in drug metabolism in moderating the post-

clubbing rise in cortisol levels. For example, post-clubbing increases in cortisol were 

particularly apparent in ecstasy users with the two CYP2D6 phenotypes characterised by poor 

or intermediate metabolism.  Further genetic influences were observed whereby individuals 

with the COMT genotype (Met/Met) were linked to larger increases in post-clubbing cortisol. 

In summary, it appears that chronic exposure to MDMA could lead to dysfunction of the 

HPA axis especially in individuals who are genetically characterised by poor drug 

metabolism. Parrott, Lock, Adnum and Thome (2000) note the possible implications of 

elevated cortisol levels on a range of psychobiological functions including memory 

(Backhaus et al., 2006; Wolff et al., 2005), higher cognitive processing  (McMorris et al., 

2006). Indeed, it is possible that MDMA induced cortisol mediated HPA axis dysregulation 

might account for the PM deficits observed in ecstasy users in this thesis. For example, 

cortisol is implicated during the regulation of dopamine (Goto & Grace, 2008) which 

supports prefrontal executive processes. Chronic increases in cortisol levels have been 

associated with atrophy in the frontal cortex and the hippocampus, two brain regions that are 

implicated in PM tasks (Erickson et al., 2003). 

  In furthering the current understanding of PM deficits in ecstasy users, Chapter 7 and 

Chapter 11 highlight the importance of the typical dose of ecstasy consumed in a 

representative session. In Chapter 7 and Chapter 11, larger doses of ecstasy consumed per 

session in the 12 months prior to the test-session were associated with short-term time-based 

deficits in PM. In Chapter 11, a similar association was found between the long-term average 

dose of ecstasy consumed in a typical session (averaged over lifetime ecstasy use) and 

performance on the Karolinska fatigue PM task. The implications of dose per session have 

received little attention previously, especially in relation to cognitive performance. Rather, 

there has been a tendency for studies to focus on more traditional indices of drug use 

including total lifetime exposure, duration of use and current frequency of use. The problems 

associated with these measures of drug use are discussed in Chapter 7. Nonetheless, the 

findings from the current thesis suggest that the size of the typical dose of ecstasy per session 

is important and more specifically that larger doses of ecstasy consumed in a representative 

session give rise problems in PM performance. One possible reason for this is that that the 
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consumption of larger doses of ecstasy gives rise to elevated MDMA plasma concentrations 

that last several hours. Thus, MDMA exposure in the brain is increased and the neurotoxic 

effects (mentioned in the paragraphs above) are potentially exacerbated (Morefield et al., 

2011). If this is the case, it is no surprise that the ecstasy users who on average consumed 

larger doses of ecstasy per session were impaired in PM.    

  The findings of dose-related impairments in ecstasy users are likely to be linked to the 

development of tolerance. For instance, the subjective effects of ecstasy are compromised 

rapidly after a period of use. As a result, many ecstasy users seek to increase their typical 

dose of ecstasy in order to maintain the intensity of the on-drug experience. Tolerance has 

been linked to serotonergic neurotoxicity (Parrott, 2005) with evidence from neuroimaging 

studies in ecstasy users showing reduced serotonin densities in the frontal cortex (McCann et 

al., 1998; Kish et al., 2010) as well as serotonin axonal damage and grey matter loss (Cowan 

et al., 2003; Kish et al., 2010). The concept of tolerance is based on the assumption that 

ecstasy use leads to the progressive degeneration of the serotonergic system. As a result, there 

a fewer sites for ecstasy to operate on meaning that ecstasy users need to consume higher 

doses of the drug to achieve the same pharmacological effect (Parrott, 2005). Some ecstasy 

users might even resort to periods of binging to achieve the same subjective experience. The 

empirical studies in Chapter 7 and Chapter 11 are the first in the field to establish a clear-

relationship between average typical dose of ecstasy per session and PM performance. This 

finding should be used to educate ecstasy users as to the potential implications of consuming 

multiple ecstasy tablets in a typical session of use.  

 

 The findings from Chapter 8 showed no relationship between concurrent alcohol and 

ecstasy consumption and PM performance. However, relatively little research has studied this 

relationship in humans. In fact, the research presented in Chapter 8 was the first in the field to 

study the effect of concurrent alcohol and ecstasy use on any aspect of cognitive 

performance. Clearly, further research is needed to fully explore the effect of concurrent 

alcohol and ecstasy consumption on cognitive functions other than PM. However, the 

relationship between concurrent alcohol and ecstasy consumption and PM performance also 

warrants further investigation. Access to a larger sample of concurrent alcohol and ecstasy 

users would allow for the use of correlational analyses to explore the relationships between 

the size of typical dose of alcohol per session of ecstasy use and PM performance measures. 

This might be a more powerful technique compared to simply categorising concurrent alcohol 
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and ecstasy users on the basis of a median split. As mentioned previously, median splits often 

lack precision and are associated with loss of statistical power (Federov et al., 2009). Thus, 

future research should focus on obtaining larger samples through which to the effects of 

concurrent alcohol and ecstasy use on PM performance can be more effectively studied using 

correlational analysis.  

 

 Should a relationship be established between concurrent alcohol and ecstasy use and 

PM performance, it would be useful to examine the potential mechanisms that might 

underpin this association. Animal research has linked concurrent alcohol use to neuronal 

depletion and reactive microgliosis in the dentate gyrus region of the hippocampus 

(Hernandez-Rabaza et al., 2010). While this might also be the case in humans, it might also 

be interesting to investigate the potential mediating role of other factors such as cortisol. For 

instance, the consumption of alcohol and ecstasy together might further stimulate the HPA 

axis thereby increasing plasma concentrations of cortisol to levels above those associated 

with ecstasy use alone. On the basis of Parrott et al’s (2008) study, researchers could examine 

salivary cortisol levels pre-clubbing, during-clubbing and post-clubbing in individuals who 

consume either, alcohol and ecstasy together, ecstasy alone, alcohol alone or in those who do 

not consume any drugs. Acute (on-drug) or post-clubbing (24 h, 48 h) increases in cortisol 

levels in the concurrent alcohol and ecstasy user group relative to the ecstasy user group 

might be indicative of an alcohol and MDMA induced, cortisol mediated HPA axis 

dysregulation. As mentioned previously, cortisol has important implications for PM 

performance. For example, it is involved in the regulation of dopamine (Goto & Grace, 

2008), which is important for prefrontal executive processes including PM.  

  The scope for further research into the effects of ecstasy use on PM performance has 

been touched upon in the above paragraphs. However, further studies are needed to identify 

the specific mechanisms that drive PM-related impairments in ecstasy users. More 

specifically, it is important to determine what makes ecstasy users who consume high doses 

of ecstasy per session more susceptible to PM deficits. The use of neuroimaging techniques 

such as functional magnetic resonance imaging (fMRI) would allow for researchers to 

examine regional brain activation is ecstasy users during the completion of PM tasks. The 

nature of any PM performance deficits could be explored alongside the neuroimaging data in 

order to identify whether there are any clear differences in brain activation. The inclusion 

event-related potentials (ERP) and Magnetoencephalography (MEG) alongside fMRI would 

http://en.wikipedia.org/wiki/Magnetoencephalography
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be useful given that these techniques are especially accurate in relation to the time-course of 

cognitive processing. Used together, these techniques would also provide detailed 

information relating to the exact sequence of processes within spatially defined neural 

networks (Dale et al., 2000). 

 
 The overall evidence presented in Chapter 7, Chapter 8, Chapter 10 and Chapter 11 is 

indicative of clear ecstasy-related impairments in PM. The implications of PM deficits give 

reason for serious concern and should not be ignored. Each day, people are confronted with a 

range of important versus unimportant PM tasks and in some cases, failure to carry out an 

intended action can severely impact everyday functioning. For example, failing to remember 

to attend a medical appointment or a business meeting could potentially have severe 

consequences. The PM deficits noted in this thesis and in particular the relationship between 

average dose of ecstasy per session and PM outcomes should be used to educate users as to 

the potential dangers of ecstasy use. 

 

12.7 Limitations 

A number of general limitations must be considered in relation to the empirical work reported 

in this thesis (in addition to those noted in the empirical chapters). One issue concerns the 

purity of the ecstasy tablets consumed by the ecstasy user groups. More specifically, 

relatively little is known about the pharmacological constituents of the ecstasy tablets and in 

particular their MDMA content. An important review by Parrott (2004) investigated the 

extent to which tablets that were assumed to be “ecstasy” actually contained MDMA. Data 

from surveys into the pharmacological constituents of ecstasy tablets, reported doses and 

empirical reports of perceived purity were reviewed. In the mid 1990’s and up until the late 

1990’s, “ecstasy” tablets contained high quantities of substances other than MDMA including 

3,4methylenedioxyethylamphetamine (MDEA) and 3,4, methylenedioxyamphetamine 

(MDA). However, at the present time, it appears that “ecstasy” tablets typically consumed by 

ecstasy users do contain high proportions of MDMA (Ramsey, 2003). Further evidence for 

this proposal is derived from Morefield et al. (2011) who found that the majority of “ecstasy” 

tablets consumed by ecstasy users contained pure MDMA while others contained high 

proportions of MDMA with lower proportions of MDEA, MDA and other substances. 

Although the “ecstasy” tablets consumed by the ecstasy users who participated in the present 
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empirical work were not analysed for their substance content, it is reasonable to assume that 

the “ecstasy” tablets consumed did in fact contain high quantities of MDMA.  

 

  As is the case with much of the existing literature, the empirical work in this thesis is 

based on self-report data in relation to drug use. Alternative, objective measures of drug use 

including hair and urine samples were taken from participants in all studies of this thesis. 

However, due to a lack of technical staff and analysis equipment, analyses have not yet been 

performed. Nonetheless, there is a high degree of concordance between self-report and 

objective measures of recent drug use with the majority of substance users accurately 

reporting their drug use. For example, urine sampling techniques have been used to confirm 

self-reported recent drug use (McGregor & Makkai, 2003) while hair sampling techniques 

have been used to confirm the accuracy of longer term drug use estimates (Vignali, Stramesi, 

Vecchio & Groppi, 2012) thus demonstrating high levels of concordance between short-and 

long-term objective measures of drug use and self-reported drug use. Importantly, 

concordance between self-reports and objective measures of drug use has been demonstrated 

for the major illicit recreational drugs [e.g., ecstasy (Scholey et al., 2011; Yacoubian & Wish, 

2006), cannabis and cocaine (Vignali et al., 2012; Zaldívar et al., 2009)].  

 

In relation to the empirical work presented in Chapter 7, Chapter 8 and Chapter 10, the 

ecstasy user groups were characterised primarily by their ecstasy use and also the use of other 

licit and illicit substances. Thus, it is feasible that the observed PM deficits in these chapters 

are attributable to other drugs known to affect PM performance such as alcohol, tobacco, 

cannabis or cocaine. In addition, it is possible that the concurrent use of ecstasy and any one 

or combination of other drugs may explain some of the PM deficits that were observed in 

ecstasy users. The possibility that concurrent alcohol and ecstasy use may intensify PM 

deficits in ecstasy users was not supported in the empirical work outlined in Chapter 8. In 

Chapter 11, correlation analyses were adopted to examine the relationships between long- 

and short-term indicators of ecstasy use and PM performance. For significant relationships, 

partial correlations were then used to control for the effects of cannabis and cocaine and 

aspects of recent use. Significant evidence was found for an association between ecstasy use 

and PM performance with partial correlations showing that this relationship was independent 

of factors of cannabis and cocaine use and aspects of recent ecstasy use.   
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12.8 Overall summary 

The evidence presented in Chapter 7, Chapter 8, Chapter 10 and Chapter 11 provides strong 

evidence for PM impairments in ecstasy users. To an extent, these ecstasy-related deficits 

appear to be independent of the effects of other illicit drugs including cannabis and cocaine 

(Chapter 11). In Chapter 7, an association was found between the average dose of ecstasy 

consumed in a typical session in the last 12 months and short-term time-based PM 

performance. Larger doses of ecstasy consumed in the 12 months prior to the test-session 

were related to increased time-based PM impairments on the Karolinska fatigue PM task. 

This finding was replicated in Chapter 11. Findings from Chapter 8 failed to demonstrate an 

affect of concurrent alcohol and ecstasy use on PM performance. No EF deficits were found 

in ecstasy users in Chapter 10. Ecstasy-related deficits in PM were found to be unrelated to 

problems in verbal word fluency, updating, shifting and inhibition. Chapter 11 identified 

refined and specific indicators of ecstasy and cocaine use that predict PM performance. Total 

lifetime ecstasy and cocaine consumption and the long-term average dose of ecstasy and 

cocaine per session were related to worse performance on PM tasks. The findings presented 

in this thesis emphasize the need for researchers to focus more directly on the average dose of 

ecstasy and cocaine per session alongside the more traditional measures such as total lifetime 

dose and frequency of use when investigating cognitive performance in drug users.  
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Appendix 1 

Background drug use questionnaire (Montgomery et al., 2005) 
 

Participant Number     Height  

 

       Weight  

 

       Gender  

 

       Age      

 

 

 

1. Have you ever used the drug ecstasy?  Yes/No* 

(If  you answered “No”, please move on to Question 16) 

 

2. How long have you been taking ecstasy?        Months            Years 

 

3.       How aware are you that using the drug ecstasy may have harmful long- 
term effects on your health? 

 

(Please tick relevant answer) 

 

Very aware      ____ 

 

Quite aware        ____ 

 

Unsure                ____ 
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Quite unaware    ____ 

 

Very unaware           ____ 

 

Can you explain below what these harmful effects may be? 

 

 

 

 

4.        Are you concerned about the possible dangers of using ecstasy? 
 

(Please tick relevant answer) 

Extremely Concerned    ____ 
 

Very Concerned  ____ 

 

Concerned               ____ 

 

Slightly Concerned               ____ 

 

Not Concerned                ____ 
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5. How do you find out information about ecstasy? 

(Please tick all relevant answers) 
 

TV-News  Radio  

TV-Specialist 
Programmes 
\Debate 

 Drug Agencies  

Daily Newspaper  Drug Leaflets  

Music Magazines  Friends  

Magazine  Clubs  

Other   

 

 

 

 

 

6.        Where do you usually take ecstasy? 
(Please tick relevant boxes) 

 

Pubs/Bars  

Night-clubs  

Rave Events  

Private House/Flat  

Parties  

Own Home  

Friends Home  

Other 
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7.       What activities do you participate in when under the influence of ecstasy? 
(Please tick relevant boxes) 

 

Dancing  

Listen to Music  

Talking  

Driving  

Sexual Behaviour  

Drinking  

Smoking  

Other 

 

 

 

 

8. Do you take any sort of precautions when using ecstasy?  Yes\No 

 (E.G. Vitamins) 

  

If yes please give details 

 

 

9.          Are you aware that medical advice suggests that            Yes___    No ____ 

you should take precautions when using ecstasy? 

 

If yes can you explain below what precautions should be taken and why 
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10.       When under the influence of ecstasy: 
 

(a) Do you take regular rest-breaks when dancing Yes---   No--- 

 

(b) Do you monitor your fluid intake   Yes---   No--- 

 

(c) Is there anything else you do   Yes---   No--- 

  

             If yes please give details 

 

 

 

11.       Is there a maximum number of ecstasy tablets  
you will take in one session?   Yes---   No--- 

 

If Yes, what is the maximum number  __________ 

 

 

12.    What factors decide when you have taken enough ecstasy tablets in one session? 
  (Please give details below) 

 

 

.............................................................................................................................................................

................................................................................................................................... 

................................................................................................................................................ 

.............................................................................................................................................................

................................................................................................................................... 

.............................................................................................................................................................

................................................................................................................................... 

.............................................................................................................................................................

................................................................................................................................... 

.............................................................................................................................................................

................................................................................................................................... 
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13. Do you believe that since using ecstasy you have changed in any way? 

 

 

Please look at the following list very carefully 

 

 

(For example, if you believe that since using ecstasy you have become more caring then tick caring 
under the heading MORE.  If however you feel that you have become less caring then tick caring 
under the heading LESS.  If you feel that you have not become any more or less caring the tick caring 
under the heading NO CHANGE) 

 

 

 

 MUCH  
MORE 

MORE NO 
CHANGE    

LESS 

MUCH 
LESS 

CARING      

PARANOID      

ALERT      

DEPRESSED      

SOCIABLE      

AGGRESSIVE      

HAPPY      

HEALTHY      

MOODY      

PATIENT      

IRRITABLE      

CONFIDENT      

SAD      

LOVING      
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CONFUSED      

 

 

 

Any other changes _______________________________________________ 

 

 

 

 

 

 

 

 

 

 

 

 

 

14.     What has stopped you taking ecstasy in the past? 

(Please tick relevant boxes) 
 

 

Bad Experience          (You) 

 

 

Bad Experience          (Other)  

 

 

Work/College 
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Parents 

 

Short Term Health      (Physical) 

 

 

Long Term Health       (Physical) 

 

 

Death 

 

 

Responsibilities 

 

 

Prison 

 

Psychological Problems 

(Short Term - in the last 1 month) 

 

 

                      Anxiety 

 

 

                      Depression 

 

 

                      Flashbacks 

 

 

                      Panic Attacks 

 

 

                      Paranoia 

 

Psychological Problems 

(Long Term - continuing after 1 month) 

 

 

                      Anxiety 
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                      Depression 

 

                      Flashbacks 

 

 

                      Panic Attacks 

 

 

                      Paranoia 

 

Other (please specify) 

 

 

 

 

15. From the following list, please indicate what type of other drugs you use at the same time as 
ecstasy and the frequency of use. 

 

(Please tick all relevant boxes) 

 

       Drug         Always             Frequently           Occasionally         Never 

 

Alcohol 

    

 

Amphetamine 

    

 

Cannabis 

    

 

Cocaine 

    

 

Crack 

    

 

DMT 
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GHB 

    

 

Herbal E 

    

 

Heroin 

    

 

Ketamine 

    

 

LSD 
(Acid\Blotters) 

    

 

LCB 

    

 

Mushrooms 

    

 

Poppers 

    

 

Prozac 

    

 

Salvia 
Divindrum 

    

 

Tranquillisers 

    

Tobacco     

Viagra     

Steroids     

Mephedrone 
(Meow) 

    

Naphyrone     
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Other     

 

16. From the following list, please indicate what type of other drugs you have used in the 
last three months use and the frequency of use. 

 

(Please tick all relevant boxes) 

 

       Drug         Always             Frequently           Occasionally         Never 

 

Alcohol 

    

 

Amphetamine 

    

 

Cannabis 

    

 

Cocaine 

    

 

Crack 

    

 

DMT 

    

 

GHB 

    

 

Herbal E 

    

 

Heroin 

    

 

Ketamine 

    

 

LSD 
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(Acid\Blotters) 

 

LCB 

    

 

Mushrooms 

    

 

Poppers 

    

 

Prozac 

    

 

Salvia Divindrum 

    

 

Tranquillisers 

    

Tobacco     

Viagra     

Steroids     

Mephedrone 
(Meow) 

    

Naphyrone     

Other     

 

17. From the following list, please indicate which types of drugs you have used in the 
past. Please indicate when you first began using and when you last used the drug. 

 

If less than a day, indicate hours previous 

       

 

 

Drug 

 

When did 

you first 

use? 

 

When did you last use? 

(Please circle one only) 
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 mm/yr. Hours 
Previous 

Days 
Previous 

Weeks 
Previous 

Months  

Previous 

Years 
Previous 

 

Ecstasy 
(MDMA) 

   

 0 1 2 3 4 5 6   

 

1    2    3   

1  2  3  4  5  
6 7  8  9  10  
11  

1 2 3 4 5 6 7 8 
9 10 

 

Alcohol 

   

 0 1 2 3 4 5 6   

 

1    2    3   

1  2  3  4  5  
6 7  8  9  10  
11  

1 2 3 4 5 6 7 8 
9 10 

 

Amphetamine 

   

0 1 2 3 4 5 6   

 

1    2    3   

1  2  3  4  5 6  

7  8  9  10  
11  

1 2 3 4 5 6 7 8 
9 10 

 

Cannabis 

   

0 1 2 3 4 5 6   

 

1    2    3   

1  2  3  4  5  
6 7  8  9  10  
11  

1 2 3 4 5 6 7 8 
9 10 

 

Cocaine 

   

0 1 2 3 4 5 6   

 

1    2    3   

1  2  3  4  5  
6 7  8  9  10  
11  

1 2 3 4 5 6 7 8 
9 10 

 

Crack 

   

0 1 2 3 4 5 6  

 

1    2    3   

1  2  3  4  5  
6 7  8  9  10  
11  

1 2 3 4 5 6 7 8 
9 10 

 

DMT 

   

0 1 2 3 4 5 6   

 

1    2    3   

1  2  3  4  5  
6 7  8  9  10  
11  

1 2 3 4 5 6 7 8 
9 10 

 

GHB 

   

0 1 2 3 4 5 6  

 

1    2    3   

1  2  3  4  5  
6  

7  8  9  10  
11  

1 2 3 4 5 6 7 8 
9 10 

 

Herbal E 

   

0 1 2 3 4 5 6   

 

1    2    3   

1  2  3  4  5  
6  

7  8  9  10  
11  

1 2 3 4 5 6 7 8 
9 10 

 

Heroin 

   

0 1 2 3 4 5 6   

 

1    2    3   

1  2  3  4  5  
6  

7  8  9  10  
11  

1 2 3 4 5 6 7 8 
9 10 

 

Ketamine 

   

0 1 2 3 4 5 6   

 

1    2    3   

1  2  3  4  5  
6  

7  8  9  10  

1 2 3 4 5 6 7 8 
9 10 
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11  

 

LSD 

(Acid\Blotters) 

   

0 1 2 3 4 5 6   

 

1    2    3   

1  2  3  4  5  
6  

7  8  9  10  
11  

1 2 3 4 5 6 7 8 
9 10 

 

LCB 

   

0 1 2 3 4 5 6   

 

1    2    3   

1  2  3  4  5  
6  

7  8  9  10  
11  

1 2 3 4 5 6 7 8 
9 10 

 

Mushrooms 

   

0 1 2 3 4 5 6   

 

1    2    3   

1  2  3  4  5  
6  

7  8  9  10  
11  

1 2 3 4 5 6 7 8 
9 10 

 

Poppers 

   

0 1 2 3 4 5 6   

 

1    2    3   

1  2  3  4  5  
6  

7  8  9  10  
11  

1 2 3 4 5 6 7 8 
9 10 

 

Prozac 

   

0 1 2 3 4 5 6  

 

1    2    3   

1  2  3  4  5  
6  

7  8  9  10  
11  

1 2 3 4 5 6 7 8 
9 10 

 

Salvia 
Divindrum 

   

0 1 2 3 4 5 6   

 

1    2    3   

1  2  3  4  5  
6  

7  8  9  10  
11  

1 2 3 4 5 6 7 8 
9 10 

 

Tranquillisers 

   

0 1 2 3 4 5 6   

 

1    2    3   

1  2  3  4  5  
6  

7  8  9  10  
11  

1 2 3 4 5 6 7 8 
9 10 

 

Tobacco 

   

0 1 2 3 4 5 6 

 

1    2    3   

1  2  3  4  5  
6  

7  8  9  10  
11  

1 2 3 4 5 6 7 8 
9 10 

 

Viagra 

   

0 1 2 3 4 5 6 

 

1    2    3   

1  2  3  4  5  
6 7  8  9  10  
11  

1 2 3 4 5 6 7 8 
9 10 

Steroids   0 1 2 3 4 5 6 1    2    3 1  2  3  4  5  
6 7  8  9  10  

1 2 3 4 5 6 7 8 
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11 9 10 

Mephedrone 
(Meow) 

  0 1 2 3 4 5 6 1    2    3 1  2  3  4  5  
67  8  9  10  
11 

1 2 3 4 5 6 7 8 
9 10 

Naphyrone   0 1 2 3 4 5 6 1    2    3 1  2  3  4  5  
6 7  8  9  10  
11 

1 2 3 4 5 6 7 8 
9 10 

 

Other 

   

0 1 2 3 4 5 6 

 

1    2    3   

1  2  3  4  5  
6 7  8  9  10  
11  

1 2 3 4 5 6 7 8 
9 10 
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18. Please list any controlled substances, prescription medications, and alcohol you have  
consumed in the last 10 days? Please list ALL occasions during the last 10 days. 

 

 

 

Substance 

 

Form, 
e.g., 
skunk, 
rocky, 
tablets, 
powder 

Days/ 

hours 

previous 

 

                              Amount taken 

Grams            Cost                  Units                           
Dose 
                                       e.g. bags/wraps          e.g.  joints, line 
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19a) How would you describe you current pattern of ECSTASY use? 

 

times per week OR  

 

times per month  OR  

 

times per year OR  

 

previous user (more than 6 months since last used)  

 

Please estimate your pattern of use from the first year of taking the drug to present use 

• Fill in the year you began taking ecstasy 
• Select an average month of use within that year 
• Estimate the total number of ecstasy tablets you would normally have                     
      taken during one session 

•  Indicate frequency of use, e.g., number of times per week/month/year 
 

Continue to fill in each consecutive year regardless of whether you used ecstasy or 
not.   

If you have not used for a particular year, continue to enter the year and specify a 
month, and then enter zero in the space provided for the total number of tablets taken. 

 

 

YEAR (Fill in 
for each year 
from the first 
year that you  
started using 

the drug. 

 

MONTH 

 

Total number 
of tablets 

taken in one 
session 

 

Frequency of 
Use 

 

Route of 
Administration 

 

Typical alcohol  
consumption per 

session of ecstasy use 
(units) 

 

 

e.g. 1993 
e.g., June                

 

e.g., 1                                 
e.g., Once a  
Week/ Twice 
a year  

 
e.g., 
Tablet/Swallow 

 

e.g., 10 units per 
occasion 
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This year Last 30 
days 

 How many 
times? 

  

      

 

19b).Did you consistently use at this rate for each month in that year?  

 

Yes/ No   
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19c). For the last 12 months, please estimate your pattern of ecstasy use for each month. 

 

Estimate the total number of ecstasy tablets and the frequency of use for each month 

 

 

 

    
    
    

Month 
Total amount taken in one session 

(tablets/grams/mg) 
Frequency of 
use 

Route of 
Administration  

Current 
Month-1  1 tablet 

 Once during this 
month Swallow 

  Current 
Month-2       

  Current 
Month-3       

  Current 
Month-4       

  Current 
Month-5       

  Current 
Month-6       

  Current 
Month-7       

  Current 
Month-8       

  Current 
Month-9       

  Current 
Month-10       

  Current 
Month-11       
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20a). How would you describe you current pattern of KETAMINE use? 

 

times per week OR  

 

times per month  OR  

 

times per year OR  

 

previous user (more than 6 months since last used)  

 

In what form do you take Ketamine? 

Powder             __________ 
Tablets (please indicate type)   __________ 

Other      __________ 

 

Please estimate your pattern of use from the first year of taking the drug to present use 

• Fill in the year you began taking ketamine 
• Select an average month of use within that year 
•  Estimate the total amount you would normally       

 have taken during one session (please specify the form of the dose, i.e tablet, 
powder, etc) 

• Indicate frequency of use, e.g., number of times per week/month/year 
 

YEAR (Fill 
in for each 
year from 
the first 
year that 

you  started 
using the 

drug. 

 

MONTH 

 

Total grams in 
one session 

(1 gram is 
typically 10 lines) 

 

Frequency of 
Use 

 

Route of 
Administration 

 

Total alcohol 
consumption when 

using ketamine (units) 

 

 

e.g. 1993 
e.g., June                

 

e.g., 1 gram =10 
lines / 0.1 gram= 

e.g., Once a  
Week/ Twice a 
year  

 
e.g., Powder 

 

e.g., 10 units per 
occasion 
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1 line                               

      

      

      

      

      

      

      

      

      

      

This year Last 30 
days 

 How many 
times? 

  

 

 

 

 

20b).   Did you consistently use at this rate for each month in that year?  

 

Yes/ No    (If you answered No, please answer Question 20c). 
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20c). For the last 12 months, please estimate your pattern of ketamine use for each month. 

 

 

 

 

 

 

 

Month 
Total amount taken in one session 

(tablets/grams/mg) 
Frequency of 
use 

Route of 
Administration  

Current 
Month-1  1 tablet 

 Once during this 
month Swallow 

  Current 
Month-2       

  Current 
Month-3       

  Current 
Month-4       

  Current 
Month-5       

  Current 
Month-6       

  Current 
Month-7       

  Current 
Month-8       

  Current 
Month-9       

  Current 
Month-10       

  Current 
Month-11       
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21a) How would you describe you current pattern of CANNABIS use? 

 

times per week OR  

 

times per month  OR  

 

times per year OR  

 

Previous user (more than 6 months since last used)  

 

In what form do you take Cannabis? 

Joints      __________ 

Other      __________ 
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Please estimate your pattern of use from the first year of taking the drug to present use 

• Fill in the year you began taking Cannabis 
• Select an average month of use within that year 
•  Estimate the total number of joints you would normally       

                                  have taken during one session 

• Indicate frequency of use, e.g., number of times per week/month/year 

 

 

 

21b)  Did you consistently use at this rate for each month in that year?  

 

YEAR 
(Fill in for 
each year 
from the 
first year 
that you  
started 

using the 
drug. 

 

MONTH 

 

Total number of 
joints taken in 

one session 

 

Frequency of 
Use 

 

Route of 
Administration 

 

Total alcohol 
consumption when 

using cannabis (units) 

 

 

e.g. 1993 
e.g., June                

 

e.g., 1 joint                                 
e.g., Once a  
Week/ Twice a 
year  

 
e.g., smoke 

 

e.g., 10 units per 
occasion 

      

      

      

      

      

      

      

      

This year Last 30 
days 

 How many 
times? 
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Yes/ No   (If you answered No, please answer Question 21c). 

21c). For the last 12 months, please estimate your pattern of cannabis use for each month. 

 

 

 

 

 

Month 
Total amount taken in one session 

(tablets/grams/mg) 
Frequency of 
use 

Route of 
Administration  

Current 
Month-1  1 tablet 

 Once during this 
month Swallow 

  Current 
Month-2       

  Current 
Month-3       

  Current 
Month-4       

  Current 
Month-5       

  Current 
Month-6       

  Current 
Month-7       

  Current 
Month-8       

  Current 
Month-9       

  Current 
Month-10       

  Current 
Month-11       
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22a) Please estimate your pattern of COCAINE use from the first year of  

taking the drug to present use. 

 

times per week OR  

 

times per month  OR  

 

times per year OR  

 

previous user (more than 6 months since last used)  

 

 

In what form do you take cocaine? ___________________________________ 

 

Please estimate your pattern of use from the first year of taking the drug to present use 

• Fill in the year you began taking the drug 
• Select an average month of use within that year 
• Estimate the total amount you would normally       

                                 have taken during one session 

• Indicate frequency of use, e.g., number of times per week/month/year 
                           

 

YEAR (Fill in for 
each year from the 
first year that you  
started using the 

drug. 

 

MONTH 

 

Total number of 
lines taken in one 

session 

 

Frequency of 
Use 

 

Route of Administration 

 

Total alcohol use 
when using cocaine 

(units) 

 

 

e.g. 1993 
e.g., June                

 

e.g., 1                                 
e.g., One a  
Week/ Twice a 
year  

 
e.g., Powder, Snort 

 

e.g., 10 units per 
occasion 
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This year Last 30 
days 

 How many 
times? 

  

 

 

 

22b)  Did you consistently use at this rate for each month in that year?  

 

Yes/No   (If you answered No, please answer Question 22c). 
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22c) For the last 12 months, please estimate your pattern of use for this drug for each month. 

 

 

 

 

 

 

Month 
Total amount taken in one session 

(tablets/grams/mg) 
Frequency of 
use 

Route of 
Administration  

Current 
Month-1  1 tablet 

 Once during this 
month Swallow 

  Current 
Month-2       

  Current 
Month-3       

  Current 
Month-4       

  Current 
Month-5       

  Current 
Month-6       

  Current 
Month-7       

  Current 
Month-8       

  Current 
Month-9       

  Current 
Month-10       

  Current 
Month-11       
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23a). Other drug regularly used: Please estimate your pattern of use from the first year of taking 
the drug to present use. These may also include drugs that have been previously termed “legal 
highs” i.e meow (mephedrone), naphyrone, etc 

 

times per week OR  

 

times per month  OR  

 

times per year OR  

 

previous user (more than 6 months since last used)  

 

Which Drug? ___________________________________ 

In what form? ___________________________________ 

 

Please estimate your pattern of use from the first year of taking the drug to present use 

• Fill in the year you began taking the drug 
• Select an average month of use within that year 
• Estimate the total amount you would normally       

                                 have taken during one session 

• Indicate frequency of use, e.g., number of times per week/month/year 
 

YEAR (Fill 
in for each 
year from 
the first 
year that 

you  started 
using the 

drug. 

 

MONTH 

 

Total dose per 
occasion 

 

Frequency 
of Use 

 

Route of 
Administration 

 

Typical alcohol use 
when using the drug 

(units) 

 

 

e.g. 1993 
e.g., June                

 

e.g., 1 gram                                
e.g., One a  
Week/ 
Twice a 
year  

 
e.g., powder/snort 

 

e.g., 10 units per 
occasion 
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This year Last 30 
days 

 How many 
times? 

  

      

 

23b)  Did you consistently use at this rate for each month in that year?  

 

Yes/ No  (If you answered No, please answer Question 23c). 
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23c) For the last 12 months, please estimate your pattern of use for this drug for each month. 

 

 

 

 

 

 

Month 
Total amount taken in one session 

(tablets/grams/mg) 
Frequency of 
use 

Route of 
Administration  

Current 
Month-1  1 tablet 

 Once during this 
month Swallow 

  Current 
Month-2       

  Current 
Month-3       

  Current 
Month-4       

  Current 
Month-5       

  Current 
Month-6       

  Current 
Month-7       

  Current 
Month-8       

  Current 
Month-9       

  Current 
Month-10       

  Current 
Month-11       
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24a). Other drug regularly used: Please estimate your pattern of use from the first year of taking 
the drug to present use. These may also include drugs that have been previously termed “legal 
highs” i.e meow (mephedrone), naphyrone, etc 

 

times per week OR  

 

times per month  OR  

 

times per year OR  

 

previous user (more than 6 months since last used)  

 

Which Drug? ___________________________________ 

In what form? ___________________________________ 

 

Please estimate your pattern of use from the first year of taking the drug to present use 

• Fill in the year you began taking the drug 
• Select an average month of use within that year 
• Estimate the total amount you would normally       

                                 have taken during one session 

• Indicate frequency of use, e.g., number of times per week/month/year 
e.g. Year 
1 

1993 

 

 June                

 

e.g. 1                                 

 

One a  Week 

 

e.g. Smoke, Swallow, 
Inject, Snort 
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This year Last 30 
days 

 How many 
times? 

  

      

 

 

24b)  Did you consistently use at this rate for each month in that year?  

 

Yes/ No  (If you answered No, please answer Question 24c).24c) For the last 12 months, please 
estimate your pattern of use for this drug for each month. 

 

Month 
Total amount taken in one session 

(tablets/grams/mg) Frequency of use Route of Administration  
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25. How many years of full time education have you completed from primary school to date?  

   

                                                         ____________Years 

 

26. From the following list, please indicate if you have obtained any of the  

following educational qualifications? 

   Qualification   Y\N  Details 

 

CSE 

  

 

GCE 

  

 

GCSE 

  

 

A LEVEL 

  

 

NVQ 

  

 

GOV. EMPLOYMENT 
TRAINING SCHEME 

  

 

CRAFT\TRADE (EG CITY & 
GUILD) 

  

 

HND 

  

 

DEGREE 
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OTHER 

  

 

NONE 

  

 

27. Do you have any convictions for drugs   Yes---   No--- 

 If yes, would you please give details below? 

             E.g. year of conviction, type of drug, type of offence   

 

28. Do you have any other convictions   Yes---   No--- 

 If yes, would you please give detail below? 

  E.g. year of conviction, type of offence  
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29.      What are your current living circumstances? 

(Please tick relevant box) 
 

 

Live Alone 

 

 

Parental Home 

 

 

Live with partner 

 

 

Marriage Partner 

 

 

Single Parent Family 

 

 

Live with Friends 

 

 

 

 

No Fixed Abode 

 

 

Other 
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30.      On Average approximately how much alcohol do you normally consume? 

(E.g. 1 unit = 1 glass of wine; 1 measure of spirit pint of beer) 

 

 

Daily 

 

 

Weekly 

 

 

Fortnightly 

 

 

Monthly 

 

 

Other 

 

 

 

 

  



 

 

366 

31. Have you ever experienced or been hospitalised for any of the following conditions? 

• Neurological    *Yes/No 
 

• Heart     *Yes/No 
 

• Respiratory     *Yes/No 
 

*If yes, can you please explain what they were. 

 

32. Have you ever been diagnosed as suffering from any of the following conditions? 

 

• Diabetes     *Yes/No 
 

• Anxiety     *Yes/No 
 

• Depression     *Yes/No 
 

• Flashbacks     *Yes/No 
 

• Panic Attacks    *Yes/No 
 

• Paranoia     *Yes/No 
 

• Phobias     *Yes/No 
 

• Schizophrenia    *Yes/No 
 

 

*If yes, did you receive treatment? - Please give detail 

 

33. Are you currently taking any prescription drugs *Yes/No 

 

 *If yes, please give the name of the drug ___________________________________ 
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34.  Do you consider yourself to be in good health? 

         (Please tick relevant box) 

 

 

Very Good 

 

 

Good 

 

 

Average 

 

 

Poor 

 

 

Very Poor 

 

 

 

35. What is your current employment status? 

(Please tick relevant box) 

 

Employed          full-time  

Employed          part-time  

Unemployed  

Self-employed  

Student  

Other. e.g. Sick, Disabled, 
Homemaker 
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Appendix 2 
Epworth Sleepiness Scale (Johns, 1991) 

 

 

PARTICIPANT NUMBER       

 

 

DATE       TIME 

 

 

 

 

 

How likely are you to doze off or fall asleep in the following situations, in contrast to just feeling 
tired? 

 

This refers to your usual way of life in recent times.  Even if you have not done some of these things 
recently, try to work out how they would have affected you. 

 

Use the following scale to choose the most appropriate number for each situation. 

 

 

0 = Would never doze off 

1 = Slight chance of dozing 

2 = Moderate chance of dozing 

3 = High chance of dozing 
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SITAUTION             CHANCE OF DOZING 

 

Sitting and reading 

 

Watching TV 

 

Sitting, inactive, in a public place (e.g., a theatre or a meeting) 

 

As a passenger in a car for 1 hour without a break 

 

Lying down to rest in the afternoon when circumstances permit 

 

Sitting and talking to someone 

 

Sitting quietly after lunch without alcohol 

 

In a car, while stopped for a few minutes in the traffic 
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Appendix 3 
Appendix relating to inferential statistics not reported in Chapter 7 

 

Study 1 

Demographical data for long-term high dose (LTHD) ecstasy users, long-term low dose 

ecstasy users (LTLD) and non-ecstasy users (Study 1). 

One-way ANOVA revealed that there was a significant age difference between the LTHD 

ecstasy users, LTLD ecstasy users and non-ecstasy users, F(2, 89)=8.75, p<.001. Tukey’s 

post hoc test showed that non-ecstasy users (M=20.92, SD=2.22) were significantly younger 

than LTLD ecstasy users (M=23.52, SD=7.20), p<.001. There was no significant difference 

in age between non-ecstasy users and LTHD ecstasy users (M=21.91, SD=2.11), p=.21. The 

age difference between LTHD ecstasy users and LTLD ecstasy users did approach statistical 

significance, p=.07, such that LTHD ecstasy users were younger than LTLD ecstasy users.  

 One-way ANOVA revealed a significant difference between the groups in terms of 

years of education, F(2, 88)=3.40, p=.04. Tukey’s post hoc test showed that non-ecstasy users 

(M=16.15, SD=2.00) had studied for a significantly shorter period of time compared to 

LTLD ecstasy users (M=17.45, SD=1.99), p=.04. The difference in years of education 

between LTHD ecstasy users (M=16.22, SD=1.78) and LTLD ecstasy users approached 

statistical significance, p=.10. The number of years of education completed by non-ecstasy 

users and LTHD ecstasy users did not differ significantly, p=.99. 

A series of one-way ANOVAs revealed that the groups did not differ significantly in terms of 

intelligence (Raven’s Progressive Matrices) F(2, 85)=.30, p=.75, cigarette consumption, F(2, 

27)=.58, p=.57, alcohol consumption, F(2, 83)=.71, p=.50, Epworth Sleepiness Scale score, 

F(2, 98)=1.39, p=.25, arousal, F(2, 84)=.52, p=.60, anxiety, F(2, 83)=.05, p=.96 and 

depression, F(2, 84)=.50, p=.61. 
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Background drug use data for LTHD ecstasy users, LTLD ecstasy users and non-ecstasy 

users (Study 1). 

The medians shown in Table. 7.2 indicate that LTLD ecstasy users consumed more cannabis 

over their lifetime relative to LTHD ecstasy users and non-ecstasy users. LTHD ecstasy users 

consumed more cannabis over their lifetime relative to non-ecstasy users. Kruskal-Wallis 

tests revealed that there was a significant difference between LTHD ecstasy users, LTLD 

ecstasy users and non-ecstasy users in terms of total lifetime consumption of cannabis, 

χ2(2)=14.34, p<.001,  Post hoc Mann-Whitney U tests with full Bonferroni correction 

(adjusted alpha level=.017)  showed that LTLD ecstasy users had consumed significantly 

more cannabis over their lifetime compared to non-ecstasy users, U=64.50, p<.001. No 

significant differences were found between LTHD ecstasy users and non-ecstasy users, 

U=94.50, p=.06, or LTHD ecstasy users and LTLD ecstasy users, U=146.00, p=.45 in terms 

of total lifetime consumption of cannabis. The median data shows that LTHD ecstasy users 

consumed more cocaine over their lifetime compared to LTLD ecstasy users with Mann-

Whitney U test showing that the difference was not statistically significant, U=87.00, p=.39. 

 Averaged across lifetime use, LTLD ecstasy users used higher doses of cannabis per 

session compared to LTHD ecstasy users and non-ecstasy users. The long-term average dose 

of cannabis use per session was higher for LTHD ecstasy users compared to non-ecstasy 

users. Kruskal-Wallis tests revealed that there was a significant difference between the 

groups in long-term average dose of cannabis use, χ2(2)=6.29, p=.04. However, there was no 

significant difference in the long term average dose of cannabis use between non-ecstasy 

users and LTHD ecstasy users, U=93.00, p=.03, non-ecstasy users and LTLD ecstasy users, 

U=95.00, p=.03 or LTHD ecstasy users and LTLD ecstasy users, U=157.00, p=.89.  

  The median data indicates that the duration of cannabis use as higher for LTLD 

ecstasy users compared to LTHD ecstasy users and non-ecstasy users. LTHD ecstasy users 

had been using cannabis for longer than non-ecstasy users. Kruskal-Wallis tests revealed that 

there was a significant difference between the groups in terms of their duration of cannabis 

use, χ2(2)=12.18, p=.002,  Post hoc Mann-Whitney U tests with full Bonferroni correction 

(adjusted alpha level=.017) showed that LTLD ecstasy users had used cannabis for a 

significantly longer duration of time compared to non-ecstasy users, U=75.00, p=.001. There 

was no significant difference in the total duration of cannabis use between LTHD ecstasy 

users and non-ecstasy users, U=138.50, p=.04, or LTHD ecstasy users and LTLD ecstasy 
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users, U=124.00, p=.10. The median data shows that LTLD ecstasy users had been using 

cocaine for longer than LTHD ecstasy users. The group comparison was not significant, 

U=95.50, p=.60.  

  The median data shows that LTHD ecstasy users used cannabis more frequently over 

their lifetime than LTLD ecstasy users and non-ecstasy users. LTLD ecstasy users used 

cannabis more frequently over their lifetime compared to non-ecstasy users. Kruskal-Wallis 

tests revealed that there was a significant difference between the groups in terms of their 

long-term frequency of cannabis use, χ2(2)=6.28, p=.04. Post hoc Mann-Whitney U tests with 

full Bonferroni correction (adjusted alpha level=.017) showed that there was no significant 

difference in the long-term frequency of cannabis use between LTHD ecstasy users and non-

ecstasy users, U=85.00, p=.02, or LTLD ecstasy users and nonusers, U=105.50, p=.07. 

Nonetheless, it is noteworthy that the differences between these groups did approach 

statistical significance.  LTHD ecstasy users and LTLD ecstasy users did not differ 

significantly in terms of their long-term frequency of cannabis use, U=147.50, p=.65. The 

median data shows that that the long-term average frequency of cocaine use was higher for 

LTLD ecstasy users compared to LTHD ecstasy users with Mann-Whitney U test revealing 

that the group difference was not statistically significant, U=113.50, p=.98. 

With regard to period of abstinence, the median data shows that LTHD ecstasy users had 

used ecstasy more recently than LTLD ecstasy users. Mann-Whitney U test revealed that 

there was no significant difference between LTHD ecstasy users, LTLD ecstasy users and 

non-ecstasy users in terms of the number of weeks since ecstasy was last used, U=216.00, 

p=.73. The median data indicates that LTLD ecstasy users had used cannabis more recently 

than LTHD ecstasy users and non-ecstasy users. LTHD ecstasy users had used cannabis more 

recently than non-ecstasy users. Despite, this there Kruskal-Wallis test revealed that there 

was no significant difference between the groups, χ2(2)=4.37, p=.11. The median data shows 

LTHD ecstasy users had used cocaine more recently than LTLD ecstasy users with Mann-

Whitney U test showing that the difference was not statistically significant, U=82.50, p=.15. 

For descriptive data relating long-term background drug use variables, see Chapter 7, Table 

7.2. 
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Study 2 

Demographical data for short-term high dose (STHD) ecstasy users, short-term low dose 

(STLD) ecstasy users and non-ecstasy users (Study 2).  

One-way ANOVA showed that there was a significant age difference between STHD ecstasy 

users, STLD ecstasy users and non-ecstasy users, F(2, 89)=5.03, p=.008. Tukey’s post hoc 

test showed that non-ecstasy users (M=20.92, SD=2.22) were significantly younger than 

STHD ecstasy users (M=22.48, SD=2.94), p=.04, and STLD ecstasy users (M=22.52, 

SD=2.27), p=.03. There was no significant difference in age between short-term high-dose 

ecstasy users and short-term low-dose ecstasy users, p=.99. A series of one-way ANOVAs 

revealed no significant differences between the groups in terms of intelligence (Raven’s 

Progressive Matrices), F(2, 87)=.398, p=.38 , years of education, F(2, 90)=.95, p=.39, 

cigarette consumption, F(2, 28)=.30, p=.74, alcohol consumption F(2, 85)=1.10, p=.34, 

Epworth Sleepiness Scale Score F(2, 90)=.95, p=.39, arousal, F(2, 86)=1.61, p=.21, anxiety, 

F(2, 85)=.01, p=1.00 and depression, F(2, 86)=.07, p=.94.  

 

Background drug use data for STHD ecstasy users, STLD ecstasy users (STLD) and non-

ecstasy users (Study 2). 

The median data in Table 7.6 indicates that STHD ecstasy users consumed more cannabis in 

the previous 12 months compared to both STLD ecstasy users and non-ecstasy users. STLD 

ecstasy users consumed more cannabis in the previous 12 months relative to non-ecstasy 

users. Kruskal-Wallis test showed that the overall group difference was significant, 

χ2(2)=8.71, p=.01. Post hoc Mann-Whitney U tests with full Bonferroni correction (adjusted 

alpha level=.017)  revealed that STHD cannabis users consumed significantly more cannabis 

in the previous 12 months compared to non-ecstasy users, U=125.50, p=.005. The difference 

between STHD ecstasy users and STLD ecstasy users was not significant, U=139.50, p=.06. 

No significant difference was found between STLD ecstasy users and non-ecstasy users, 

U=180.00, p=.21. The median data indicates that STHD ecstasy users consumed more 

cocaine in the previous 12 months compared to STLD ecstasy users with Mann-Whitney U 

test revealing that the difference was statistically significant, U=129.00, p=.50. 
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The median data shows that the average typical dose of cannabis per session in the 

previous 12 months was higher for STHD ecstasy users compared to STLD ecstasy users and 

non-ecstasy users. The average dose of cannabis per session in the previous 12 months was 

higher for STLD ecstasy users relative to non-ecstasy users. Kruskal-Wallis showed that 

there was a significant difference between the groups in terms of the typical average dose of 

cannabis use per session in the previous 12 months, χ2(2)=8.29, p=.02. Post hoc Mann-

Whitney U tests with full Bonferroni correction (adjusted alpha level=.017) showed that 

STHD ecstasy users consumed higher typical average doses of cannabis use per session in the 

previous 12 months compared to non-ecstasy users, U=131.00, p=.008. The differences 

between STHD ecstasy users and STLD ecstasy users, U=144.50, p=.08, as well as STLD 

ecstasy users and non-ecstasy users, U=170.50, p=.13, were both non-significant.  The 

median data reveals that the average typical dose of cocaine in the previous 12 months was 

higher for STHD ecstasy users relative to STLD ecstasy users and non-ecstasy users. Mann-

Whitney U test showed that the overall group difference was not significant, U=125.50, 

p=.42.  

In terms of the average short-term frequency (times per week) of drug use, the median 

data shows that STHD ecstasy users consumed cannabis more frequently in the previous 12 

months compared to STLD ecstasy users and non-ecstasy users. Kruskal-Wallis test showed 

that there was a significant difference between the groups in terms of average frequency of 

cannabis use in the previous 12 months, χ2(2)=9.28, p=.01. Post hoc Mann-Whitney U tests 

with full Bonferroni correction (adjusted alpha level=.017) revealed that there was no 

difference between STHD ecstasy users and STLD ecstasy users in terms of the average 

frequency of cannabis use in the previous 12 months, U=120.00, p=.048. Similarly, there was 

no difference in the average frequency of cannabis use in the previous 12 months between 

STHD ecstasy users and STLD ecstasy, U=136.50, p=.05, and also STLD ecstasy users and 

non-ecstasy users, U=184.50, p=.25. The median data shows that STHD ecstasy users 

consumed cocaine more frequently in the previous 12 months compared to STLD ecstasy 

users. The overall group difference was not significant. Mann-Whitney U test revealed that 

the groups difference was not statistically significant, U=126.50, p=.44. 

With regard to recent drug use, the median data shows that STHD ecstasy users had 

used more cannabis in the 30 days prior to test-session compared to STLD ecstasy users and 

non-ecstasy users. STLD ecstasy users had used more cannabis in the previous 30 days 

compared to non-ecstasy users Kruskal-Wallis test showed that there was a significant 
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difference between the groups in terms of total cannabis consumption in the previous 30 

days, χ2(2)=16.73, p<.001. Post hoc Mann-Whitney U tests with full Bonferroni correction 

(adjusted alpha level=.017) revealed that STHD ecstasy users consumed significantly more 

cannabis in the previous 30 days than STLD ecstasy users, U=89.50, p=.004, and non-ecstasy 

users U=84.50, p<.001.  There was no significant difference in the total cannabis consumed 

in the previous 30 days between STLD ecstasy users and non-ecstasy users, U=184.00, 

p=.90.  The median data shows that STHD ecstasy users and STLD ecstasy users had used 

comparable amounts of cocaine in the 30 days prior to the test-session. The overall group 

difference was not significant with Mann-Whitney U test showing that the difference was not 

statistically significant, U=99.00, p=.32. 

   In relation to period of abstinence, the median data indicates that STHD ecstasy users 

and STLD ecstasy users had used cannabis more recently than non-ecstasy users. The period 

of abstinence from cannabis use was similar for STHD ecstasy users and STLD ecstasy users. 

Kruskal-Wallis test showed that there was a significant difference between the groups in 

terms of the number of weeks since they last used cannabis, χ2(2)=7.05, p=.03. Mann-

Whitney U tests showed that STHD ecstasy users had a significantly shorter period of 

abstinence from cannabis use relative to non-ecstasy users, U=127.00, p=.01. The difference 

between STHD ecstasy users and STLD ecstasy users approached statistical significance, 

U=135.50, p=.051, such that short-term  high dose ecstasy users had consumed cannabis 

more recently than STLD ecstasy users. There was no significant difference between non-

ecstasy users and STLD ecstasy users in terms of the number of weeks since they had last 

used cannabis, U=201.00, p=.63.  

For descriptive data relating to short-term background drug use variables, see Chapter 7, 

Table 7.6. 
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Statistical analyses relating to the short-term dose-related effects of ecstasy use on short-term 

time-based PM performance whilst controlling for ecstasy use within the previous seven 

days.  

Outcomes for the Karolinska fatigue questionnaire (the percentage of Karolinska fatigue 

questionnaires completed during the second half of the test-session and the percentage of 

Karolinska fatigue questionnaires completed overall only) for short-term high-dose ecstasy 

users, short-term low-dose ecstasy users and non-ecstasy users are summarised in Table 7.9. 

Those individuals who had used ecstasy in the seven days prior to the test-session were 

excluded from these analyses.  
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Table 7.9 Means and Standard Deviations (SD) for short-term high dose ecstasy users, short-term low dose ecstasy users and non-ecstasy users 
on the Karolinska fatigue PM task (the percentage of Karolinska fatigue questionnaires completed during the second half of the test-session and 
the percentage of Karolinska fatigue questionnaires completed overall only). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

*p<.05, **p<.01 

 

  

 

 STHD ecstasy users n=17 STLD ecstasy users n=23 Non-ecstasy users  
(n=48) 

p 

 Mean (SD) Mean (SD) 
 

Mean (SD)  
     
Karolinska fatigue PM task     
Percentage completed in second 
half of test-session  

39.61 (34.23) 66.81 (23.07) 
 

70.63 (28.97) .001** 

Percentage completed Overall 62.61 (19.13) 77.09 (17.76) 
 

79.38 (19.71) .01* 
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The data in Table 7.9 shows that that non-ecstasy users successfully completed a 

higher proportion of Karolinska fatigue questionnaires during the second half of the 

test-session compared STHD ecstasy users and STLD ecstasy users. STLD ecstasy 

users also completed a higher proportion of Karolinska fatigue questionnaires during 

the second half of the test-session compared to STHD ecstasy users. One-way 

ANOVA revealed a significant difference between the groups in terms of the 

proportion of Karolinska fatigue questionnaires completed during the second half of 

the test-session, F(2, 85)= 7.53, p=.001, partial eta squared=.15. Helmert contrasts 

showed that compared to non-ecstasy users, the combined group of short-tem high 

dose ecstasy users and STLD ecstasy users remembered to complete a significantly 

lower proportion of Karolinska fatigue questionnaires in the second half of the test-

session, p=.01. Furthermore, relative to STHD ecstasy users, STLD ecstasy users 

completed a significantly higher proportion of Karolinska fatigue questionnaires in 

the second half of the test-session, p=.004. Pairwise comparisons adjusted by 

Bonferroni correction (three pairwise comparisons, significant alpha level set at .017) 

revealed that non-ecstasy users (M=70.68, SD=28.97) completed a significantly 

greater proportion of Karolinska fatigue questionnaires in the second half of the test-

session compared to STHD ecstasy users (M=39.61, SD=34.23), p<.001. STLD 

ecstasy users (M=66.81, SD=23.07) also completed a significantly higher proportion 

of Karolinska fatigue questionnaires in the second half of the test-session compared to 

STHD ecstasy users, p=.004. There was no significant difference between non-ecstasy 

users and STLD ecstasy users in terms of the proportion of Karolinska fatigue 

questionnaires completed in the second half of the test-session, p=.64. 

 

Inspection of the data in Table 7.9 reveals that over the entire test-session, non-

ecstasy users and STLD ecstasy users completed a higher proportion of Karolinska 

fatigue questionnaires than STHD ecstasy users. Overall completion rates were 

comparable between non-ecstasy users and STLD ecstasy users. One-way ANOVA 

revealed that there was a significant difference between the groups in terms of the 

overall proportion of Karolinska fatigue questionnaires during the entire test-session, 

F(2,85)=4.89, p=.01, partial eta squared=.10. Helmert contrasts showed that non-

ecstasy users completed a significantly larger proportion of Karolinska fatigue 

questionnaires during the entire test-session compared to the combined group of 
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STHD ecstasy users and STLD ecstasy users, p=.02. Short-term lose dose ecstasy 

users also remembered to complete a significantly larger proportion of Karolinska 

fatigue questionnaires during the entire test-session compared to STHD ecstasy users, 

p=.02. Pairwise comparisons adjusted for Bonferroni correction (three pairwise 

comparisons, significant alpha level set at .017) revealed that non-ecstasy users 

(M=79.38, SD=19.71) completed a significantly larger proportion of Karolinska 

fatigue questionnaires during the entire test-session compared to STHD ecstasy users 

(M=62.61, SD=19.13), p=.003. The pairwise comparison between STHD ecstasy 

users and STLD ecstasy users (M=77.09, SD=17.76) approached statistical 

significance, p=.02 such that STHD ecstasy users completed fewer Karolinska fatigue 

questionnaire during the entire test-session. There was no significant difference in the 

overall proportion of Karolinska fatigue questionnaires completed during the entire 

test-session between non-ecstasy users and STLD ecstasy users, p=.64. 
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Appendix 4 
Appendix relating to inferential statistics not reported in Chapter 8 

 

Study 1 

Demographical data for long-term high alcohol (LTHA) ecstasy users, long-term low 
alcohol (LTLA) ecstasy users and non-ecstasy users (Study 1). 

One-way ANOVA revealed there was a significant age difference between LTHA 

ecstasy users, LTLA ecstasy users and non-ecstasy users, F(2,81)=6.02, p=.004. 

Tukey’s post hoc test showed that non-ecstasy users (M=20.09, SD=2.12) were 

significantly younger than both LTHA ecstasy users (M=21.80, SD=1.70), p=.01 and 

LTLA ecstasy users (M=21.55, SD=2.39), p=.03. There was no significant difference 

between LTHA ecstasy users and LTLA ecstasy users in terms of age, p=.93. 

 One-way ANOVA revealed that there was a significant difference between 

long-term high alcohol ecstasy users, long-term low alcohol ecstasy users and non-

ecstasy users in terms of years of education, F(2,78)=16.62, p=.009. Tukey’s post hoc 

test showed that non-ecstasy users (M=14.55, SD=1.81) had studied for a 

significantly shorter period of time than long-term high alcohol ecstasy users 

(M=16.03, SD=1.74), p=.01. There was no significant difference between non-ecstasy 

users and long-term low alcohol ecstasy users (M=15.52, SD=1.93) or long-term high 

alcohol ecstasy users and long-term low alcohol ecstasy users in terms of number of 

years of education, p=.13, and p=.67, respectively. 

  One-way ANOVA showed that there was a significant difference in the typical 

number of units of alcohol consumed per week between long-term high alcohol 

ecstasy users, long-term low alcohol ecstasy users and non-ecstasy users, 

F(2,74)=5.96, p=.004. Tukey’s post hoc test showed that long-term high alcohol 

ecstasy users (M=23.59, SD=22.04) consumed significantly more alcohol per week 

compared to long-term low alcohol ecstasy users (M=10.31, SD=8.63), p=.02 and 

non-ecstasy users (M=9.96, SD=12.11), p=.004. There was no significant difference 

in the typical number of units of alcohol consumed per week by long-term low 

alcohol ecstasy users and non-ecstasy users, p=1.00.   
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A series of one-way ANOVAs revealed that the groups did not differ significantly in 

terms of intelligence, F(2,75)=.45, p=.64, cigarette consumption, F(2,24)=.20, p=.82, 

Epworth Sleepiness Scale score, F(2,74)=2.64, p=.08, arousal, F(2,71)=.16, p=.86, 

anxiety, F(2,70)=2.35, p=.10 and depression, F(2,71)=1.30, p=.28. 

 

Background drug use data for LTHA ecstasy users, LTLA ecstasy users and non-

ecstasy users (Study 1). 

LTHA ecstasy users and LTLA ecstasy users did not differ significantly from each 

other in terms of duration of ecstasy use, U=180.00, p=1.00 or the long-term 

frequency of ecstasy use, U=152.00, p=.19. 

 There was a significant difference in the duration of cannabis use between 

LTHA ecstasy users, LTLA ecstasy users and non-ecstasy users, χ2(2)=6.24, p=.04. 

LTHA ecstasy users had used cannabis for a significantly longer duration of time 

compared to non-ecstasy users, U=50.00, p=.01. However, there was no significant 

difference in the duration of cannabis use between LTLA ecstasy users and non-

ecstasy users, U=52.00, p=.06 and LTHA ecstasy users and LTLA ecstasy users, 

U=125.00, p=.06.  Total cannabis consumption, the long-term average dose of 

cannabis per session and the long-term frequency of cannabis use did not differ 

significantly between LTHA ecstasy users, LTLA ecstasy users and non-ecstasy 

users, χ2(2)=1.49, p=.48,  χ2(2)=1.78, p=.41,  , χ2(2)=3.31, p=.19,  respectively. 

LTHA ecstasy users, LTLA ecstasy users and non-ecstasy users did not differ 

significantly from each other with regard to total cocaine consumption, U=126.50, 

p=.55, duration of cocaine use, U=91.50, p=.31 or long-term frequency of cocaine 

use, U=117.00, p=.39. 
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Study 2 

Demographical data for short-term high alcohol (STHA) ecstasy users, short-term 
low alcohol (STLA) ecstasy users and non-ecstasy users (Study 2). 

One-way ANOVA showed that there was a significant age difference between the 

STHA ecstasy users, STLA ecstasy users and non-ecstasy, F(2,83)=5.17, p=.008. 

Tukey’s post hoc test showed that non-ecstasy users (M=20.09, SD=2.12) were 

significantly younger than STLA ecstasy users (M=23.43, SD=7.17), p=.005. There 

was no significant difference in age between non-ecstasy users and STHA ecstasy 

users (M=21.33, SD=1.62), p=.46 or STHA ecstasy users and STLA ecstasy users, 

p=.20.  

 One-way ANOVA showed that there was a significant difference between 

STHA ecstasy users, STLA ecstasy users and non-ecstasy users in terms of the typical 

number of units of alcohol that they consumed each week, F(2,78)=3.90, p=.02. 

Tukey’s post-hoc test showed that, on average, STHA ecstasy users (M=21.16, 

SD=20.93) consumed more units of alcohol per week compared to non-ecstasy users 

(M=9.96, SD=12.11), p=.02. There was no difference in the typical number of units 

of alcohol consumed each week by non-ecstasy users and STLA ecstasy users 

(M=12.44, SD=11.44), p=.82 or STHA users and STLA ecstasy users, p=.17.  

A series of one-way ANOVAs revealed that there were no significant differences 

between the groups in terms of intelligence (Raven’s Progressive Matrices),  

F(2,76)=.19, p=.83, years of education, F(2,80)=3.00, p=.06, cigarette consumption, 

F(2,25)=.16, p=.86, Epworth Sleepiness Scale Score, F(2,76)=.25, p=.78, arousal, 

F(2,72)=.93, p=.40, anxiety, F(2,71)=.43, p=.65, and depression, F(2,72)=.01, p=.99. 

 

Background drug use data for STHA ecstasy users, STLA ecstasy users and non-

ecstasy users (Study 1). 

A series of Kruskal-Wallis tests showed that STHA ecstasy users, STLA ecstasy users 

and non-ecstasy users did not differ significant from each other in terms of total 

cannabis use in the last 12 months, χ2(2)=.79, p=.68, the average typical dose of 

cannabis per session in the last 12 months, χ2(2)=.63, p=.73,  or the number of weeks 

since cannabis was last used χ2(2)=.95, p=.62.  
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Appendix 5 
Appendix relating to inferential statistics for PM outcomes when concurrent alcohol 

and ecstasy use is dichotomised according to the product of alcohol and ecstasy use  

The paragraphs below correspond to Chapter 8. Inferential statistics are reported for 

the F1 event-based PM task, the long-term delayed recall PM task, the Karolinska 

fatigue PM task and the CAMPROMPT when long- and short-term concurrent 

alcohol and ecstasy use are dichotomised based on the product of alcohol and ecstasy 

use (rather than based solely on the number of units of alcohol consumed). The 

product was simply derived by multiplying the mean average dose of ecstasy per 

session by the number of units of alcohol typically consumed in a session. 

 

Long-term concurrent alcohol and ecstasy use 

Method  

Participants 

Twenty long-term concurrent high-alcohol ecstasy users (LTHA; 14 males), 19 long-

term concurrent low-alcohol ecstasy users (LTLA; 12 males) and 44 non-ecstasy 

users (16 males) took part in the investigation. The gender composition did differ 

significantly between the groups, χ2(2)=7.27, p=.03. There were more females (n=28) 

than males (n=16) in the non-ecstasy user group. There were more males (n=12) than 

females (n=7) in the LTHA ecstasy user group. There were also more males (n=14) 

than females (n=7) in the LTLA ecstasy user group. Participants were recruited via 

direct approach to university students.  

 

Materials 

As per Chapter 8 (see section 8.2) 

 

Procedure   

As per Chapter 8 (see section 8.2) 
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Design/Statistics 

A median split was used to dichotomise long-term concurrent alcohol and ecstasy use. 

For each year, the typical number of units of alcohol and number of ecstasy tablets 

consumed in a representative session were recorded. The resulting figures were 

averaged over the entire period that an individual had used alcohol and ecstasy 

concurrently (intervening years during which the drug was not used are coded as zero)  

producing an annual average. The two values (the average number of units of alcohol 

consumed in a typical session of ecstasy use & the average number of ecstasy tablets 

consumed in a typical session) were then multiplied together to produce the product 

of alcohol and ecstasy use and thus create two user groups (LTHA ecstasy users and 

LTLA ecstasy users). The median value for long-term concurrent alcohol and ecstasy 

use was 29. Participants who, on average, generated a value greater than 29 per 

session for the alcohol-ecstasy product (units x tablets) were classified as LTHA 

ecstasy users and those that consumed less than or equal to 29 product units per 

session were classified as LTLA ecstasy users. The high and low concurrent alcohol 

and ecstasy user groups together with a non-ecstasy user group constituted the three 

levels of the between participant IV. 

All PM measures (the F1 event-based Pm task, the long-term delayed recall PM task, 

the Karolinska fatigue PM task and the CAMPROMPT) were analysed using a 

between-participant design with user group as the independent variable (LTHA 

ecstasy users, LTLA ecstasy users and non-ecstasy users).  
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Results 

Outcomes for the F1 event-based PM task, the long-term delayed recall PM task, the 

Karolinksa fatigue PM task and the CAMPROMPT for LTHA ecstasy users, LTLA 

ecstasy users and non-ecstasy users are summarised in Table 8.7. 
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Table 8.7 Mean, Standard Deviations (SD), Median, Minimum (Min.), Maximum (Max.) and Interquartile Range scores for long-term high 
alcohol ecstasy users, long-term low alcohol ecstasy users and non-ecstasy users on the F1 event-based PM task, the long-term delayed recall 
Task, the Karolinska fatigue PM task and the CAMPROMPT. 

 
*p<.05, ***p<.001 Note. n for all groups was variable due to missing data. Eighteen long-term low alcohol ecstasy users and 44 non-ecstasy users completed the F1 event-based PM task. Forty-two non-ecstasy users 
completed the 42 non-ecstasy users completed the Karolinska fatigue PM task. Sixteen long-term high alcohol ecstasy users, 18 long-term low alcohol ecstasy users and 40 non-ecstasy users completed the Cambridge 
PM test. 

 LTHA ecstasy users n=20 LTLA ecstasy users n=19 Non-ecstasy users n=44 p 

 Mean (SD) Median Min. Max. Int.  
Range 

Mean (SD) Median Min. Max. Int.  
Range 

Mean (SD) Median  Min. Max.     Int. 
Range 

 

F1 event-based PM task                 
Trial 1 Errors .45 (1.00) .00 .00 3.00 .00 .61 (1.09) .00 .00 3.00 1.25 .14 (.65) .00 .00 3.00 .00 .051 
Trial 2 Errors .15 (.67) .00 .00 3.00 .00 .33 (.97) .00 .00 3.00 .00 .00 (.00) .00 .00 .00 .00 .11 
Trial 3 Errors .10 (.31) .00 1.00 .00 .00 .28 (.83) .00 .00 3.00 .00 .05 (.22) .00 .00 1.00 .00 .58 
Total Errors .70 (1.53) .00 .00 6.00 .75 1.22  (2.32) .00 .00 8.00 2.00 .19  (.67) .00 .00 3.00 .00 .06 
                 
Long-term delayed recall PM 
task 

                

Total number of recall tests 
returned (max of 3) 

.80 (1.20) .00 .00 3.00 2.00 .84 (1.17) .00 .00 3.00 2.00 1.41 (1.42) 1.00 .00 3.00 3.00 .13 

                 
Karolinska fatigue PM task                 
Percentage completed in first 
half of test-session 

87.79 (14.16) 92.86 60.00 100.00 20.00 82.02 (16.34) 80.00 50.00 100.00 33.33 91.31 (16.00) 100.00 20.00 100.00 20.00 .04* 

Percentage completed in second 
half of test-session  

43.50 (38.85) 45.00 .00 100.00 66.25 41.85 (31.74) 33.33 .00 100.00 46.67 79.92 (27.91) 100.00 .00 100.00 27.09 <.001*** 

Percentage completed overall 
 
 

64.09 (22.61) 65.15 30.00 100.00 34.10 60.68 (21.40) 58.33 30.00 100.00 33.85 86.09 (17.53) 90.45 27.27 100.00 21.25 <.001*** 

Cambridge PM test                  
Event-based PM performance 15.13 (4.06) 16.00 2.00 18.00 4.00 12.78 (3.57) 13.00 4.00 18.00 4.50 16.95 (1.97) 18.00 8.00 18.00 2.00 <.001*** 
Time-based PM performance 13.31 (4.39) 15.00 4.00 18.00 5.75 13.33 (3.36) 14.00 4.00 18.00 4.00 17.15 (1.97) 18.00 8.00 18.00 1.50 <.001*** 
Overall PM performance 28.44 (7.01) 30.00 12.00 36.00 9.75 26.11 (6.45) 28.00 8.00 34.00 6.00 34.15 (3.28) 36.00 20.00 36.00 2.00 <.001*** 
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The distributions of the data for Trial 1 errors (Skew, z=8.94 and Kurtosis, z=7.73), 

Trial 2 errors (Skew, z=18.91 and Kurtosis, z=45.39), Trial 3 errors (Skew, z=18.20 

and Kurtosis, z=49.10) and total errors (Skew, z=12.09 and Kurtosis, z=21.31) on the 

F1 event-based PM task, for the Karolinska fatigue PM task (proportion of Karolinska 

fatigue questionnaires completed in the first half of the test-session only, Skew, z=-

5.73 and Kurtosis, z=5.87) and for the CAMPROMPT PM test (event-based PM total, 

Skew, z=-6.76 and Kurtosis, z=6.96, time-based PM total, Skew, z=-5.78, Kurtosis, 

z=3.91, overall PM, Skew, z=-5.86, Kurtosis, z=4.66)  deviated significantly from 

normality. This was characterised by the skew and/or kurtosis z scores exceeding 

3.29, p<.001 (Tabachnick & Fidell, 2001). Group differences were investigated via 

Kruskal-Wallis test with follow-up post hoc Mann-Whitney U tests (with full 

Bonferroni correction, adjusted alpha level=.017).  

  Where the distributions were normal, one-way ANOVAs were used to 

investigate group differences on two aspects of the Karolinska fatigue PM task 

(proportion of Karolinska fatigue questionnaires completed in the second half of the 

test-session and overall proportion of Karolinska fatigue questionnaires completed 

during the first and second half of the test-session) and the long-term delayed recall 

PM task. ANOVAs were followed up with Helmert contrasts and pairwise 

comparisons.  

Examination of the data in Table 8.7 reveals that LTHA ecstasy users and 

LTLA ecstasy users made more errors than non-ecstasy users on all trials of the F1 

event-based PM task. LTLA ecstasy users made more errors than LTHA users on all 

trials of the F1 event-based PM task. There was no significant difference in the 

number of errors that were made on trial 1 of the F1 event-based PM task by LTHA 

ecstasy users, LTLA ecstasy users and non-ecstasy users, χ2(2)=5.97, p=.051, 

although this effect did approach statistical significance. LTLA ecstasy users made 

significantly more errors on the trial 1 of the F1 event-based PM task compared to 

non-ecstasy users, U=294.00, p=.015. There was no significant difference in the 

number of errors that were made on trial 1 of the F1 event based PM task between 

LTHA ecstasy users and non-ecstasy users, U=358.00, p=.07 or LTHA ecstasy users 

and LTLA ecstasy users, U=166.50, p=.60.  
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There was no significant difference between LTHA ecstasy users, LTLA 

ecstasy users and non-ecstasy users in terms of the numbers of errors that were made 

on trial 2 χ2(2)=4.37, p=.11 and trial 3, χ2(2)=1.08, p=.58 of the F1 event-based PM 

task. In addition, no significant difference was found in total errors made on the F1 

event-based PM task by LTHA ecstasy users, LTLA ecstasy users and non-ecstasy 

users, χ2(2)=5.72, p=.06. Nonetheless, this effect did approach statistical significance. 

Post hoc tests showed that there was no significant difference between LTHA ecstasy 

users and non-ecstasy users, U=353.00, p=.10 or LTHA ecstasy users and LTLA 

ecstasy users, U=162.00, p=.61 in terms of the overall errors made on F1 event-based 

PM task. The difference between LTLA ecstasy users and non-ecstasy users, 

approached statistical significance such that LTLA made more errors than non-ecstasy 

users, U=284.00, p=.019.  

With regard to long-term time-based PM performance, the data in Table 8.7 

reveals that non-ecstasy users returned more delayed recall test sheets (long-term 

delayed recall PM task) than both LTHA ecstasy users and LTLA ecstasy users. 

LTHA ecstasy users also returned more delayed recall test sheets compared to LTLA 

ecstasy users. One-way ANOVA revealed that there was no significant difference in 

the number of delayed recall test sheets returned by LTHA ecstasy users, LTLA 

ecstasy users and non-ecstasy users, F(2,80)=2.08, p=.13, partial eta squared=.05. 

Table 8.7 shows that compared to LTHA ecstasy users and LTLA ecstasy 

users, non-ecstasy users successfully completed a greater number of Karolinska 

fatigue questionnaires during the first and second half of the test-session. Overall 

performance on the Karolinska fatigue questionnaire was better for non-ecstasy users 

compared to LTHA ecstasy users and LTLA ecstasy users. LTHA ecstasy users and 

LTLA ecstasy users completed a similar proportion of Karolinska fatigue 

questionnaires during the first and second half of the test-session. In addition, overall 

performance on the Karolinska fatigue PM task was comparable between LTHA 

ecstasy users and LTLA ecstasy users.  

There was a significant difference between LTHA ecstasy users, LTLA 

ecstasy users and non-ecstasy users in terms of the proportion of Karolinska fatigue 

questionnaires that were completed during the first half of the test-session, χ2(2)=6.27, 

p=.04. Non-ecstasy users completed a significantly larger proportion of Karolinska 
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fatigue questionnaires than LTLA ecstasy users during the first half of the test-

session, U=259.50, p=.014. There was no significant difference in the proportion of 

Karolinksa fatigue questionnaires completed during the first half of the test-session 

between LTHA ecstasy users and non-ecstasy users, U=350.50, p=.23 or LTHA 

ecstasy users and LTLA ecstasy users, U=148.50, p=.22. 

 One-way ANOVA revealed that there was a significant difference in the 

proportion of Karolinska fatigue questionnaires completed during the second half of 

the test-session by LTHA ecstasy users, LTLA ecstasy users and non-ecstasy users, 

F(2,78)=14.96, p<.001, partial eta squared=.28. Helmert contrast showed that 

compared to non-ecstasy users, the combined group of LTHA ecstasy users and 

LTLA ecstasy users completed a significantly lower proportion of Karolinska fatigue 

questionnaires during the second half of the test-session, p<.001. A further Helmert 

contrast revealed that there was no significant difference in the proportion of 

Karolinska fatigue questionnaires completed during the second half of the test-session 

by LTHA ecstasy users and LTLA ecstasy users, p=.87. Pairwise comparisons 

adjusted for full Bonferroni correction (significant alpha level=.017) revealed that 

non-ecstasy users competed a significantly greater proportion of Karolinska fatigue 

questionnaires during the second half of the test-session compared to LTHA ecstasy 

users, p<.001 and LTLA ecstasy users, p<.001. There was no significant difference in 

the proportion of Karolinska fatigue questionnaires completed during the second half 

of the test-session by LTHA ecstasy users and LTLA ecstasy users, p=.87. 

  One-way ANOVA showed that there was a significant difference between 

LTHA ecstasy users, LTLA ecstasy users and non-ecstasy users in terms of the 

overall completion rate of Karolinska fatigue questionnaire, F(2,78)=14.59, p<.001, 

partial eta squared=.28. Helmert contrast showed that non-ecstasy users completed a 

significantly greater proportion of Karolinska fatigue questionnaires overall compared 

to the combined group of LTHA ecstasy users and LTLA ecstasy users, p<.001. A 

further Helmert contrast showed that there was no significant difference between 

LTHA ecstasy users and LTLA ecstasy users in terms of the proportion of Karolinka 

fatigue questionnaires completed overall, p=.59. Pairwise comparisons adjusted for 

full Bonferroni correction (significant alpha level=.017) revealed that non-ecstasy 

users competed a significantly higher proportion of Karolinska fatigue questionnaires 

overall compared to LTHA ecstasy users, p<001 and LTLA ecstasy users, p<.001. 
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There was no significant difference in the proportion of Karolinska fatigue 

questionnaires completed overall by LTHA ecstasy users and LTLA ecstasy users, 

p=.59. 

 Table 8.7 shows that non-ecstasy users successfully completed more event-

based PM tasks on the CAMPROMPT compared to LTHA ecstasy users and LTLA 

ecstasy users. LTHA ecstasy users also completed more time-based PM tasks on the 

CAMPROMPT than LTLA ecstasy users. The overall group difference was 

significant, χ2(2)=24.84, p<.001. Non-ecstasy users were significantly better at 

completing event-based PM tasks on the CAMPROMPT than LTLA ecstasy users, 

U=86.50, p<.001. No significant difference was found between non-ecstasy users and 

LTHA ecstasy users, U=212.50, p=.03 or LTHA ecstasy users and LTLA ecstasy 

users, U=80.00, p=.017. Both group differences approached statistical significance. 

  The data in Table 8.7 indicate that non-ecstasy users successfully completed 

more time-based PM tasks on the CAMPROMPT compared to LTHA ecstasy users 

and LTLA ecstasy users. LTHA ecstasy users and LTLA ecstasy users completed a 

similar number of time-based PM tasks on the CAMPROMPT. A significant 

difference was found between the groups in terms of time-based PM performance on 

the CAMPROMPT, χ2(2)=31.52, p<.001. Non-ecstasy users completed significantly 

more time-based PM tasks on the CAMPROMPT than LTHA ecstasy users, 

U=116.50, p<.001, and LTLA users, U=78.50, p<.001. No significant difference was 

found between LTHA ecstasy users and LTLA ecstasy users in terms of time based 

PM performance on the CAMPROMPT, U=132.00, p=.67 

In terms of overall PM performance on the CAMPROMPT, the data in Table 8.7 

indicate that non-ecstasy users performed better than LTHA ecstasy users and LTLA 

ecstasy users. In addition, overall performance on the CAMPROMPT was slightly 

worse for LTLA ecstasy users compared to LTHA ecstasy users. There was a 

significant group difference in overall PM performance on the CAMPROMPT, 

 χ2 (2)=32.99, p<.001. Overall PM performance on the CAMPROMPT was 

significantly higher for non-ecstasy users compared to LTHA ecstasy users, U=129.50 

p<.001, and LTLA ecstasy users, U=48.00, p<.001. There was no significant 

difference in overall PM performance on the CAMPROMPT between LTHA ecstasy 

users and LTLA ecstasy, U=106.50, p=.19. 
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Short-term concurrent alcohol and ecstasy use 

Method 

Participants 

Twenty-one short-term concurrent high alcohol ecstasy users (STHA; 14 males), 21 

short-term concurrent low alcohol ecstasy users (STLA; 14 males) and 44 non-ecstasy 

users (16 males) took part in the investigation. The gender composition did differ 

significantly between the groups, χ2(2)=7.90, p=.02. There were more females (n=28) 

than males (n=16) in the non-ecstasy user group. There were more males (n=14) than 

females (n=7) in the STHA ecstasy user group. There were also more males (n=14) 

than females (n=7) in the STLA ecstasy user group. Participants were recruited via 

direct approach to university students.  

 

Materials 

As per Chapter 8 (see section 8.4) 

 

Procedure   

As per Chapter 8 (see section 8.4) 

 

Design/Statistics 

A median split was used to dichotomise short-term concurrent alcohol and ecstasy 

use. For each month in the 12-months prior to the test-session, the typical number of 

units of alcohol and number of ecstasy tablets consumed in a representative session 

were recorded. The resulting figures were averaged over the 12-month period 

(intervening months during which the drug was not used are coded as zero) producing 

an annual average. The two values (the average number of units of alcohol consumed 

in a typical session of ecstasy use & the average number of ecstasy tablets consumed 

in a typical session) were then multiplied together to produce a product of alcohol and 

ecstasy use and thus create two user groups (STHA ecstasy users and STLA ecstasy 

users). The median value for short-term concurrent alcohol and ecstasy use was .53 

(the product unit value is very low reflecting the fact that many users were effectively 

abstinent during the 12 months prior to the test-session.) Participants who, on average, 
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consumed a combined value of .53 units of alcohol and ecstasy tablets per session 

(units x tablets) were classified as STHA ecstasy users and those that consumed less 

than .53 product units were classified as STLA ecstasy users. The high and low 

concurrent alcohol and ecstasy user groups together with a non-ecstasy user group 

constituted the three levels of the between participant IV. 

All PM measures (the F1 event-based Pm task, the long-term delayed recall PM task, 

the Karolinska fatigue PM task and the CAMPROMPT) were analysed using a 

between-participant design with user group as the independent variable (STHA 

ecstasy users, STLA ecstasy users and non-ecstasy users).  
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Results 

Outcomes for the laboratory-based measures of PM (the F1 event-based PM task, the 

long-term delayed recall PM task, the Karolinksa fatigue PM task and the 

CAMPROMPT) for STHA ecstasy users, STLA ecstasy users and non-ecstasy users 

are summarised in Table 8.8. 
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Table 8.8 Mean, Standard Deviations (SD), Median, Minimum (Min.), Maximum (Max.) and Interquartile Range scores for short-term high 
alcohol ecstasy users, short-term low alcohol ecstasy users and non-ecstasy users on the F1 event-based PM task, the long-term delayed recall 
Task, the Karolinska fatigue PM task and the CAMPROMPT. 

*p<.05, ***p<.001 Note. n for all groups was variable due to missing data. Twenty short-term high alcohol ecstasy users completed the F1 event-based PM task. Twenty short-term high alcohol ecstasy users, 16 short-
term low alcohol ecstasy users and 40 non-ecstasy users completed the Cambridge PM test. 

 

 STHA ecstasy users n=21 STLA ecstasy users n=20 Non-ecstasy users n=44 p 

 Mean (SD) Median Min. Max. Int.  
Range 

Mean (SD) Median Min. Max. Int.  
Range 

Mean (SD) Median  Min. Max.     Int. 
Range 

 

F1 event-based PM task                 
Trial 1 Errors .55 (1.05) .00 .00 3.00 .75 .60 (1.14) .00 .00 3.00 .75 .14 (.65) .00 .00 3.00 .00 .045* 
Trial 2 Errors .15 (.67) .00 .00 3.00 .00 .30 (.92) .00 .00 3.00 .00 .00 (.00) .00 .00 .00 .00 .14 
Trial 3 Errors .00 (.00) .00 .00 .00 .00 .35 (.81) .00 .00 3.00 .00 .05 (.22) .00 .00 1.00 .00 .03* 
Total Errors .70 (1.53) .00 .00 6.00 .75 1.25 (2.24) .00 .00 8.00 2.00 .19 (.67) .00 3.00 .00 .00 .04* 
                 
Long-term delayed recall PM 
task 

                

Total number of recall tests 
returned (max of 3) 

.71 (1.15) .00 .00 3.00 1.50 .85 (1.18) .00 .00 3.00 2.00 1.41 (1.42) 1.00 .00 3.00 3.00 .09 

                 
Karolinska fatigue PM task                 
Percentage completed in first 
half of test-session 

84.24 (17.48) 85.71 50.00 100.00 33.34 86.42 (12.57) 81.67 60.00 100.00 20.00 91.31 (16.00) 100.00 20.00 100.00 20.00 .10 

Percentage completed in second 
half of test-session  

38.82 (31.89) 33.33 .00 100.00 58.34 47.51 (32.53) 40.00 .00 100.00 49.11 79.92 (27.91) 100.00 .00 100.00 27.09 <.001*** 

Percentage completed overall 
 
 

59.83 (20.54) 58.33 30.00 100.00 28.87 64.75 (22.43) 60.00 30.00 100.00 32.89 86.09 (17.53) 90.54 27.27 100.00 21.25 <.001*** 

Cambridge PM test                  
Event-based PM performance 14.20 (3.94) 15.00 2.00 18.00 5.50 13.38 (3.91) 15.00 4.00 18.00 5.50 16.95 (1.97) 18.00 8.00 18.00 2.00 <.001*** 
Time-based PM performance 14.35 (3.69) 16.00 4.00 18.00 3.50 12.25 (3.71) 13.00 4.00 18.00 3.50 17.15  (1.97) 18.00 8.00 18.00 1.50 <.001*** 
Overall PM performance 28.55 (6.77) 30.00 12.00 36.00 7.50 25.62 (6.42) 26.00 8.00 36.00 6.00 34.10 (3.28) 36.00 20.00 36.00 2.00 <.001*** 
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Table 8.8 shows that STHA ecstasy users and STLA ecstasy users made more errors 

than non-ecstasy users on trial 1 of the F1 event-based PM task while the two 

concurrent alcohol and ecstasy user groups performed similarly. The overall group 

difference was significant, χ2(2)=6.21, p=.045. However, no significant differences 

were found between STHA ecstasy users and non-ecstasy users, U=338.00, p=.03, 

STLA ecstasy users and non-ecstasy users, U=337.00, p=.02 or STHA ecstasy users 

and STLA ecstasy users, U=198.00, p=.97. Nonetheless, in the first two cases the 

pairwise comparisons approached significance with non-ecstasy users making fewer 

errors.   

The data in Table 8.8 indicate that STHA ecstasy users and STLA ecstasy 

users made more errors than non-ecstasy users on trial 2 of the F1 event-based PM 

task. STLA ecstasy users also made more errors than STHA ecstasy users on trial 2 of 

the F1 event-based PM task. The overall group difference was not significant, 

χ2(2)=3.93, p=.14  

Inspection of Table 8.8reveals that STLA ecstasy users made more errors than 

both STHA ecstasy users and non-ecstasy users on trial 3 of the F1 event-based PM 

task while STHA ecstasy users and non-ecstasy users performed comparably. 

Contrary to expectation, STHA ecstasy users appear to have made no errors at all on 

trial 3 of the F1 event-based PM task. The overall group difference was significant, 

χ2(2)=6.86, p=.03. However, none of the pairwise comparisons were significant: for 

STHA ecstasy users versus non-ecstasy users, U=400.00, p=.33, STLA ecstasy users 

versus non-ecstasy users, U=354.00, p=.05, and for STHA ecstasy users versus STLA 

ecstasy users, U=160.00, p=.29.  

In terms of overall performance on the F1 event-based PM task, the data in 

Table 8.8 show that STHA ecstasy users and STLA ecstasy users made more errors 

than non-ecstasy users. STLA ecstasy users made more errors overall than STHA 

ecstasy users. The group difference in the number of errors made across all trails of 

the F1 event-based PM task was significant, χ2(2)=6.65, p=.04. STLA ecstasy users 

committed significantly more errors overall relative to non-ecstasy users, U=30.00, 

p=.011. There was no significant difference between STHA ecstasy users and non-

ecstasy users in the total errors committed on the F1 event based PM task, U=353.00, 

p=.10 nor between STHA ecstasy users and STLA ecstasy users, U=176.50, p=.53.  
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  In relation to long-term time-based PM performance, Table 8.8 shows that 

STHA ecstasy users returned a smaller number of delayed recall tests (the long-term 

delayed recall test) compared to STLA ecstasy users and non-ecstasy users. STLA 

ecstasy users remembered to return slightly fewer delayed recall tests than non-

ecstasy users. One-way ANOVA showed that the group difference in the number of 

delayed recall test sheets returned approached statistical significance, F(2, 82)=2.52, 

p=.09, partial eta squared=.06. Helmert contrast revealed that the combined group of 

STHA ecstasy users and STLA ecstasy users returned significantly fewer delayed 

recall tests that non-ecstasy users, p=.03. A further Helmert contrast showed that there 

was no significant difference between STHA ecstasy users and STLA ecstasy users in 

terms of the number of delayed recall test that were returned, p=.74. Pairwise 

comparisons with Bonferroni correction (three pairwise comparisons, significant 

alpha level set at .017) revealed that there was no significant difference between 

STHA ecstasy users and non-ecstasy users, p=.05,  STLA ecstasy users and non-

ecstasy users, p=.12, or STHA ecstasy users and STLA ecstasy users, p=.41 in terms 

of the number of delayed recall tests that were returned on the long-term delayed 

recall task.  

Table 8.8 shows that compared to STHA ecstasy users and STLA ecstasy 

users, non-ecstasy users successfully completed a greater number of Karolinska 

fatigue questionnaires during the first and second halves of the test-session. Overall 

performance on the Karolinska fatigue questionnaire was better for non-ecstasy users 

compared to STHA ecstasy users and non-ecstasy users. STHA ecstasy users and 

LTLA ecstasy users completed a similar proportion of Karolinska fatigue 

questionnaires during the first half of the test-session. However, compared to STHA 

ecstasy users, STLA ecstasy users remembered to complete more Karolinska fatigue 

questionnaires during the second half of the test-session. Overall performance on the 

Karolinska fatigue PM task was comparable between STHA ecstasy users and STLA 

ecstasy users. 

 There was no significant difference between the groups in terms of the 

proportion of Karolinska fatigue questionnaires completed during the first half of the 

test-session, χ2(2)=4.62, p=.10. Post-hoc tests showed that that there was no 

significant difference in the proportion of Karolinska fatigue questionnaires 

completed during the first half of the test-session by STHA ecstasy users and non-
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ecstasy users, U=334.00, p=.07, STLA ecstasy users and non-ecstasy users, 

U=316.00, p=.08 or STHA ecstasy users and STLA ecstasy users, U=203.00, p=.85.  

One-way ANOVA showed that there was a significant difference between the 

groups in terms of the proportion of Karolinska fatigue questionnaires that were 

completed during the second half of the test-session, F(2,80)=17.10, p<.001, partial 

eta squared=.30. Helmert contrast showed that relative to non-ecstasy users, the 

combined group of STHA ecstasy users and STLA ecstasy users remembered to 

completed a significantly higher proportion of Karolinska fatigue questionnaires 

during the second half of the test-session, p<.001. However, a further Helmert 

contrast showed that there was no significant difference between STHA ecstasy users 

and STLA ecstasy users in terms of the proportion of Karolinska fatigue 

questionnaires that were completed during the second half of the test-session, p=.26. 

Pairwise comparisons with Bonferroni correction (three pairwise comparisons, 

significant alpha level set at .017) revealed that non-ecstasy users remembered to 

complete a significantly higher proportion of Karolinska fatigue questionnaires during 

the second half of the test-session compared to both STHA ecstasy users, p<.001 and 

STLA ecstasy users, p<.001. There was no significant difference in the proportion of 

Karolinska fatigue questionnaires that were completed during the second half of the 

test-session between STHA ecstasy users and STLA ecstasy users, p=.26. 

One-way ANOVA revealed that there was a significant difference between 

STHA ecstasy users, STLA ecstasy users and non-ecstasy users in terms of overall 

performance on the Karolinska fatigue PM task, F(2,80)=15.76, p<.001, partial eta 

squared=.28. Helmert contrast showed that relative to non-ecstasy users, the 

combined group of STHA ecstasy users and STLA ecstasy users remembered to 

complete a significantly smaller proportion of Karolinska fatigue questionnaires 

during the entire test-session, p<.001. However, a further Helmert contrast showed 

that there was no significant difference between STHA ecstasy users and STLA 

ecstasy users in terms of the proportion of Karolinska fatigue questionnaires that were 

completed over during the entire test-session, p=.42. Pairwise comparisons with 

Bonferroni correction (three pairwise comparisons, significant alpha level set at .017) 

revealed that non-ecstasy users remembered to complete a significantly higher 

proportion of Karolinska fatigue questionnaires during the entire test-session 

compared to both STHA ecstasy users, p<.001 and STLA ecstasy users, p<.001. 
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There was no significant difference in the proportion of Karolinska fatigue 

questionnaires that were completed during the entire test-session by STHA ecstasy 

users and STLA ecstasy users, p=.42. 

Examination of the data in Table 8.8 show that non-ecstasy users successfully 

completed more event-based PM tasks on the CAMPROMPT compared to STHA 

ecstasy users and STLA ecstasy users. STHA ecstasy completed a similar number of 

event-based PM tasks on the CAMPROMPT compared to STLA ecstasy users. 

Kruskal-Wallis test showed that there was a significant group difference in terms of 

event-based PM performance on the CAMPROMPT, χ2(2)=21.09, p<.001. Non-

ecstasy users were significantly better at completing event-based PM tasks on the 

CAMPROMPT than STHA ecstasy users, U=194.00, p<.001 and STLA ecstasy 

users, U=114.50.00, p<.001. No significant difference was found between STHA 

ecstasy users and STLA ecstasy users in terms of event based PM performance on the 

CAMPROMPT, U=136.50, p=.44. 

  Inspection of the data in Table 8.8 reveal that non-ecstasy users successfully 

completed more time-based PM tasks on the CAMPROMPT compared to  STHA 

ecstasy users and STLA ecstasy users. STHA ecstasy users and STLA ecstasy users 

completed a similar number of time-based PM tasks on the CAMPROMPT. Kruskal-

Wallis test showed that there was a significant difference between the groups in terms 

of time-based PM performance on the CAMPROMPT, χ2(2)=32.97, p<.001. Non-

ecstasy users completed a significantly higher number of time-based PM tasks on the 

CAMPROMPT than STHA ecstasy users, U=163.50, p<.001, and STLA ecstasy 

users, U=58.00, p<.001. No significant difference was found between STHA ecstasy 

users and STLA ecstasy users in terms of time based PM performance on the 

CAMPROMPT, U=98.00, p=.04. 

In terms of overall PM performance on the CAMPROMPT, Table 8.8 indicates that 

non-ecstasy users performed better than STHA ecstasy users and STLA ecstasy users. 

In addition, overall performance on the CAMPROMPT was comparable between 

STLA ecstasy users compared to STHA ecstasy users. Kruskal-Wallis test showed 

that there was a significant difference between the groups in terms of overall PM 

performance on the CAMPROMPT, χ2(2)=33.36, p<.001. Overall PM performance 

on the CAMPROMPT was significantly higher for non-ecstasy users compared to 
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STHA ecstasy users, U=135.00, p<.001, and STLA ecstasy users, U=56.50, p<.001. 

There was no significant difference in overall PM performance on the CAMPROMPT 

between STHA ectasy users and STLA ecstasy, U=103.50, p=.07.
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Appendix 6 
Appendix relating to demographic and background drug use data not reported in 

Chapter 10  

Demographical data for ecstasy users and non-ecstasy users.  

Independent t-tests revealed that ecstasy users were significantly older, t(84)=2.68, 

p=.009, had studied for a significantly longer period of time, t(81)=2.24, p=.03 and 

typically consumed significantly more units of alcohol per week, t(77)=2.08, p=.04, 

compared to non-ecstasy users. A number of other independent t-tests were performed 

which showed that there was no significant difference between ecstasy users and non-

ecstasy users in terms of intelligence, t(77)=.41, p=.68, cigarette consumption, t(26)=-

.42, p=.68, Epworth Sleepiness Scale score, t(77)=.70, p=.48, arousal, t(73)=-.23, 

p=.82, anxiety, t(72)=.77, p=.44 and depression, t(73)=-.06, p=.95. 

 

Background drug use data relating to cannabis use for ecstasy users and non-ecstasy 

users. 

A series of Mann-Whitney U tests showed that there was no significant difference 

between ecstasy users and non-ecstasy users in terms of total lifetime cannabis 

consumption, U=113.00, p=.48, number of cannabis joints smoked in the previous 30 

days, U=134.50, p=.96, current frequency of cannabis use, U=197.50, p=.87 and the 

number of weeks since cannabis was last used, U=208.00, p=.96.
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Appendix 7 
Appendix relating to published research papers resulting from the data collected during the 

current Ph.D project. 
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Title 

Prospective memory deficits in illicit polydrug users are associated with the average 

long term typical dose of ecstasy typically consumed in a single session. 

Abstract 

Rationale Neuroimaging evidence suggests that ecstasy-related reductions in SERT densities 

relate more closely to the number of tablets typically consumed per session rather than 

estimated total lifetime use. In order to better understand the basis of drug related deficits in 

prospective memory (PM) we explored the association between PM and average long-term 

typical dose and long-term frequency of use. Method Study 1: Sixty five ecstasy/polydrug 

users and 85 non-ecstasy users completed an event based, a short-term and a long-term time 

based PM task. Study 2: Study 1 data were merged with outcomes on the same PM measures 

from a previous study creating a combined sample of 103 ecstasy/polydrug users, 38 

cannabis-only users and 65 nonusers of illicit drugs. Results Study 1: Ecstasy/polydrug users 

had significant impairments on all PM outcomes compared to non-ecstasy users. Study 2: 

Ecstasy/polydrug users were impaired in event based PM compared to both other groups and 

in long-term time based PM compared to non illicit drug users. Both drug using groups did 

worse on the short-term time based PM task compared to nonusers. Higher long-term average 

typical dose of ecstasy was associated with poorer performance on the event and short-term 

time based PM tasks and accounted for unique variance in the two PM measures over and 

above the variance associated with cannabis and cocaine use. Conclusions The typical 

ecstasy dose consumed in a single session is an important predictor of PM impairments with 

higher doses reflecting increasing tolerance giving rise to greater PM impairment. 

 

Key words: ecstasy, cannabis, cocaine, prospective memory, dose, tolerance. 
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INTRODUCTION  

The aim of the present paper is to identify which aspects of long term ecstasy/polydrug use 

are associated with drug-related impairments of prospective memory (PM). PM is an aspect 

of real-world memory that involves remembering to carry out intended actions in the future 

(Einstein et al. 2005). PM tasks include both short-term and long-term activities that are 

triggered by external events (event-based) or the passage of time (time-based). In short-term 

PM tasks, such as locking the car after leaving, there is a relatively short period of time 

between the external episode/prompt (leaving the car) and the appropriate behaviour (locking 

the doors). Long-term PM tasks, such as remembering to post a birthday card, have a longer 

time interval between the external episode/prompt (realization of a friend’s birthday) and the 

desired behaviour (posting a card). As to the cerebral mechanisms involved in PM 

processing, there is a general consensus that medial temporal hippocampal structures feature 

prominently (Adda, Castro, Além-Mar e Silva, de Manreza, & Kashiara, 2008; Martins et al., 

2007) as well as areas of the prefrontal cortex (PFC; Brooks, Rose, Potter, Jayawardena, & 

Morling, 2004; Burgess, Scott, & Frith, 2003; Katai, Maruyuma, Hashimoto, & Ikeda, 2003).  

Considering that ecstasy users (Kish et al. 2010) and cannabis users (Jager et al. 2007) exhibit 

abnormalities in these brain regions, it is plausible to suggest that people using these drugs 

may demonstrate PM impairment. This proposal has received support with several studies 

using both self report and laboratory based measures demonstrating PM deficits in 

temporarily abstinent illicit substance users (e.g., Hadjiefthyvoulou, Fisk, Montgomery, & 

Bridges, 2011a; Heffernan, Jarvis, Rodgers, Scholey, & Ling, 2001a; Montgomery & Fisk, 

2007; Rendell, Gray, Henry, & Tolan, 2007). Furthermore, former users of ecstasy have also 

exhibited event and time-based impairments in PM on the “Virtual Week” task (Rendell, 

Mazur, & Henry, 2009) highlighting the possible long-term neurotoxic potential of MDMA 

use.   

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T0D-4JCCMB8-1&_user=777686&_coverDate=12%2F31%2F2006&_rdoc=1&_fmt=high&_orig=gateway&_origin=gateway&_sort=d&_docanchor=&view=c&_acct=C000043031&_version=1&_urlVersion=0&_userid=777686&md5=7f5ef64b973d7722c816ab2c7865cbd7&searchtype=a#bib29
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One key aspect that remains to be thoroughly explored is the presence of dose-related 

effects in relation to PM performance. It is important to demonstrate that these exist since in 

the absence of clear dose-related effects, any group differences that have been observed 

might more readily be attributed to some premorbid condition or lifestyle differences 

unrelated to drug use. However, in relation to ecstasy use and PM outcomes, there have been 

some problems with the way in which dose-related effects have been investigated. For 

example, in between group comparisons, using the self-report Prospective Memory 

Questionnaire (PMQ), while ecstasy/polydug related PM deficits have emerged in a number 

of studies, dose related effects have not been directly reported (Heffernan et al. 2001a; 

Heffernan, Ling, & Scholey, 2001b; Parrott et al. 2006). In other studies, lifetime use has 

been defined in a categorical manner in terms of the number of times that the drug has been 

previously used (e.g., 0, 1-9, 10-99, 100+ times). On this basis, lifetime use accounted for 

unique variance in long term PM problems on the PMQ, but not short term and internally 

cued PM problems (Rodgers et al. 2001). Montgomery and Fisk (2007) estimated lifetime use 

in terms of the number of tablets previously consumed but found no association between this 

variable and outcomes on the PMQ. Bedi and Redman (2008a) obtained estimates of lifetime 

ecstasy use (total number of tablets) from their participants as well as age of first use, and 

period of abstinence but none of these significantly predicted PMQ outcomes. 

Using objective measures of PM, Zakzanis, Young and Campbell (2003) found that 

ecstasy users differed from nonusers on the ‘appointment’ and ‘message’ PM subscales of the 

Rivermead Behavioural Memory Test (RBMT). Furthermore, the scores on the appointment 

subscale were significantly related to the number of occasions of ecstasy use and to the 

frequency of use (although the significant outcome was based on a sample size of fewer than 

20).  Bedi and Redman (2008b) included short term time and event based PM tasks in their 

test battery but ecstasy/polydrug group differences were either absent or inconclusive and 
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dose related effects were not reported. Although Rendell et al. (2007) did not report effects in 

relation to lifetime dose, they found that frequent ecstasy users (using more than once a 

fortnight) performed worse than infrequent users (using less than one a month) who in turn 

performed worse than nonusers on all PM measures on the virtual week task. 

Hadjiefthyvoulou and co-workers found that lifetime ecstasy use (estimated number of 

tablets) was significantly associated with time and event based PM scores on the Cambridge 

Prospective Memory Test (CAMPROMPT) (Hadjiefthyvoulou et al. 2011a) and with 

performance on the RBMT and other short term time and event based PM tasks 

(Hadjiefthyvoulou et al. 2011b). However, these effects were no longer significant following 

controls for other drug use. It is also worthy of note that in these studies (Hadjiefthyvoulou  et 

al. 2011a; 2011b; Montgomery & Fisk, 2007) non users were included in the samples (with 

use coded as zero). Indeed this practice is common in much of the ecstasy-related behavioural 

research (e.g., Medina, Shear & Corcoran, 2005; Montgomery, Fisk, Newcombe, & Murphy,  

2005; Piechatzek et al. 2009; Reneman et al. 2001).  

 What this summary of the relevant literature demonstrates is that the issue of dose 

related effects in relation to laboratory measures of PM remains to be systematically 

investigated. For example, those studies quantifying use in a categorical manner may lose a 

degree of precision due to the ordinal nature of the scale and responses at the top end of the 

scale, e.g., 100+, do not reflect the actual differences among heavy users. Furthermore, when 

lifetime use is defined in terms of occasions of use, differences between individuals who 

might consume one tablet per occasion, versus others who might consume several tablets are 

masked. When dose-related effects are reported on the basis of distinctions between broadly 

defined groups, for example ‘heavy’ versus ‘moderate users’ or ‘frequent’ versus ‘infrequent 

users’ (e.g., Rendell et al. 2007), the group criteria are variable and even where the same 

criteria are used widely different cut off points may be adopted. Clearly, comparisons 
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between user groups defined in this manner might be useful but they are less informative than 

correlational indicators and make informed comparisons between studies difficult, if not 

impossible. Including non users of specific drugs in the sample (with their use coded as zero) 

when dose-related effects are evaluated is also potentially problematic since a significant 

correlation or regression coefficient may be due to the absence of use within the drug naïve 

participants (i.e., the group effect) rather than a trend within the drug using participants. 

Indeed when the correlation is limited to the drug users within the sample it may no longer be 

significant.  

Lastly, it is also possible that that estimates of lifetime use which do not suffer from 

the limitations identified above may still fail to capture subtle differences in the patterns of 

use between ecstasy users. Consistent with this possibility, Morefield, Keane, Felgate, White, 

and Irvine (2011) found that there were pronounced differences in the consumption patterns 

of their sample in terms of the number of tablets consumed in a single session. Furthermore 

they found that a non linear relationship existed between the number of tablets consumed in a 

single session and MDMA plasma concentrations with the latter increasing exponentially 

with the number of tablets consumed. Thus for those consuming no more than a single tablet, 

MDMA plasma concentrations peaked and remained stable after an hour or so, while those 

consuming more than a single tablet experienced a dose related disproportionate rise in 

plasma levels which continued to increase through out the five hour period during which 

levels were monitored. Therefore, taking a single tablet often or multiple tablets infrequently 

may give rise to similar lifetime doses but have very different consequences in terms of the 

typical level and peak duration of blood plasma MDMA levels. 

 A potential implication of this is that more emphasis should be placed on the size of 

the typical dose rather than other measures such as frequency of use and lifetime dose. The 

importance of alternative measures has also emerged from neuroimaging studies. For 
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example, Thomasius et al. (2003) found that distribution volume ratios (DVRs) of SERT 

ligands in some sub-cortical structures  were best predicted by the usual dose of ecstasy 

consumed at a typical party event, while in other instances  DVRs were best predicted by the 

amount of ecstasy consumed in the 12 months prior to testing. Estimates of lifetime use and 

maximum dose of ecstasy were either non significant or accounted for significantly less 

unique variance. 

The present study aimed to further investigate dose related effects on PM performance 

by using a timeline technique similar to that adopted by Medina et al. (2005) and Bedi and 

Redman (2008b) in order to examine long term dose related effects . For each illicit drug, we 

will obtain an estimate of the typical dose and frequency of use for each year since use 

commenced. These two variables have received relatively little attention previously. 

Furthermore they can be used to produce an estimate of lifetime use. In the analysis of dose 

related relationships presented here only users of specific drugs will be included. Non users 

will be excluded from these particular analyses and we will seek to maximise the size of the 

available sample by combining samples from different phases of data collection. In Study 1, a 

replication and extension of previous findings are presented. In Study 2, data from Study 1 

will be augmented with equivalent data which, although collected in a previous study, has yet 

to be analysed. The resulting combined data set will allow us to more effectively investigate 

polydrug dose related effects. Specifically Study 2 will focus on the effects of the long term 

average number of tablets consumed in a single session and the long term average frequency 

of use. 
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STUDY 1 

METHOD 

Participants. 

Participants included 65 ecstasy/polydrug users (27 females, 37 males, 1 not 

reported), and 85 non-ecstasy users (54 females) (for demographic details see Table 1). 

Females predominated among the non-ecstasy user group and males among the 

ecstasy/polydrug users, producing a significant gender effect, χ2 (1) =6.70, p<.01. 

Participants, who were university students studying in the United Kingdom, were recruited 

via direct approach. Fifty-seven of the participants included here took part in a previous study 

from our laboratory. However, their results on the laboratory PM tasks have not been 

previously reported and are presented here for the first time. None of the present sample 

reported use of ecstasy within the week prior to testing and none reported using any other 

illicit drug within the 24 hours prior to testing. All participants gave verbal consent and were 

tested in accordance with the national and local ethics guidelines and the Declaration of 

Helsinki. 

Materials 

The use of ecstasy and other drugs was assessed by means of a self-report 

questionnaire previously used in several studies from our laboratory. For all illicit drugs that 

were regularly consumed and for each year since they commenced drug use, participants 

estimated the typical dose that they ingested in a representative session and their typical 

frequency of use (number of sessions per week) during that year. These annual estimates 

were used to produce an estimate of total lifetime use. Participants also indicated their current 

frequency of use and the period of abstinence for each major illicit drug. Demographic 

variables including age, gender, and years of full time education were recorded and fluid 
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intelligence was measured through Raven’s progressive matrices (Raven, Raven & Court, 

1998).  The current use of cigarettes and alcohol were also recorded.  

Laboratory Measures of Prospective Memory. 

Pattern Recognition PM Task: This test utilises a processing speed task which was 

amended to include a parallel PM element. The task involved classifying pairs of patterns 

which increased in complexity as either the same or different while remembering to press the 

F1 key each time that the complexity level increased (purportedly to save the participant’s 

scores). The task was repeated three times. The number of times the participant forgot to 

press F1 for each trial was calculated producing a laboratory event-based PM measure. 

Fatigue Short-Term Time-Based PM Test: Following the briefing, participants were 

told that they should provide an indication of their level of fatigue (using the Karolinska 

Sleepiness Scale: Gillberg, Kecklund, & Akerstedt, 1994) every 20 minutes throughout the 

experiment or if this occurred during the completion of a task, to do so immediately after. 

The percentage of occasions on which this was done was calculated separately for the first 

and second half of the test session thereby producing two measures of short-term time-based 

PM. On each occasion, participants who forgot were reminded to fill in the questionnaire. 

Mail Long-Term Time Based PM Test: During the test session participants learned a 

list of 15 words over five trails. A long-term PM element was added in which participants 

had to remember to return an answer sheet, in a prepaid envelope, to the experimenter with 

the words that they were able to recall after a delay of one, two, and three weeks from the 

time of testing. Participants scored 1 if the envelope was returned and 0 otherwise yielding a 

maximum possible score of three. 

Full descriptions of the tasks may be found in Hadjiefthyvoulou et al. (2011b).  
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Procedure 

The tests were administered under laboratory conditions. The Ravens intelligence test 

was administered first followed by the age/education questionnaire. Next the F1 event based 

task was administered and instructions for the long-term time based task were provided.  The 

fatigue short-term PM task was administered throughout the session and the drug use 

questionnaire was administered at the end. Participants were fully debriefed, given a 20 GBP 

supermarket (grocery store) gift card and given drug education leaflets. Participants also 

performed a range of other tasks that are beyond the scope of the present investigation. 

 

Design and Statistics. 

A between-participant design was used with drug user group (ecstasy/polydrug versus 

non-ecstasy user) as the independent variable. Dependent variables included all of the PM 

measures, i.e., the proportion of fatigue questionnaires completed during the first and second 

half of the test session, the number of times that participants forgot to press the F1 key for 

each of the three trials and the number of delayed recall tests participants remembered to mail 

back to the experimenter. Group differences were analysed via t test. 

 

RESULTS AND DISCUSSION 

Regarding background variables, inspection of Table 1 reveals that the two groups 

differed significantly in terms of age and the number of cigarettes consumed each day. 

Ecstasy/polydrug users were older and consumed more cigarettes. Furthermore, the 

ecstasy/polydrug group had a significantly higher level of lifetime cannabis use and a 

significantly shorter period of abstinence from the drug. Although ecstasy/polydrug users 

reported a higher current frequency of cannabis use, the difference was short of statistical 

significance. Ecstasy/polydrug users were significantly impaired on all but two of the PM 
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measures and on these remaining two, the difference approached statistical significance (see 

Table 1). 

The present results replicate the findings from our previous study. Ecstasy/polydrug 

users made significantly more errors (forgetting to press F1) on each of the three trials of the 

event based task; they completed significantly fewer Karolinska fatigue questionnaires during 

both halves of the test session, with the deficit larger in magnitude during the second phase of 

testing; they also returned fewer delayed recall tests during the three weeks following the test 

session. 

 

STUDY 2 

Of the non-ecstasy users included in Study 1, over one third had used cannabis and 

10% cocaine and the majority of these individuals appeared to be current users. Similar 

proportions were using these drugs among non-ecstasy users in our previous study. Since 

there is evidence to suggest that cannabis use is associated with self report (Fisk & 

Montgomery, 2008; Rogers et al. 2001) and laboratory based (McHale & Hunt, 2008; 

Montgomery, Seddon, Fisk, Murphy, & Jansari, 2012) PM deficits, the group difference 

evident in Study 1 and in our previous paper may actually underestimate the true difference 

between ecstasy/polydrug users and drug naïve individuals. Inclusion of a cannabis only user 

group and a group of nonusers of illicit drugs would clarify the nature of the ecstasy/polydrug 

related deficit and also allow us to directly test for group differences between cannabis-only 

users and nonusers of illicit drugs.  

Most importantly, as outlined above, it has often not been possible to demonstrate 

clear long-term dose related effects of ecstasy and other illicit drugs on aspects of prospective 

memory. Rather than relying on single estimates of lifetime use, it may be useful to focus on 

other long-term aspects of use including the long-term dose (e.g., tablets, lines or joints 
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typically consumed per session) or the long-term frequency of use.  Merging the sample from 

Study 1 with that of our previous study will create a sufficiently large sample in order to 

explore the associations between these long-term measures of illicit drug use and the PM 

outcomes. A larger sample size will help establish whether measures such as long-term 

average dose per session and frequency of use can explain variance in PM performance 

where more traditionally used measures of drug use such as total lifetime use, current 

frequency of use, period of abstinence, duration of use and average weekly long-term 

consumption may fail to reveal such a relationship. 

 

METHOD 

Participants. 

One hundred and three ecstasy/polydrug users (51 females, 51 males, 1 not reported), 

38 cannabis-only users (21 females), and 65 nonusers of illicit drugs (48 females) took part in 

this investigation (for demographic details see Table 2). The gender composition differed 

significantly between the groups with females predominating among the non illicit user group 

and a broadly even split among the cannabis only and ecstasy/polydrug users, χ2 (2) = 9.51, 

p<.01. Participants, who were university students studying in the United Kingdom, were 

recruited via direct approach.  

In addition to the individuals included in Study 1, 69 of the participants included in 

the present study also took part in our earlier study where we have previously reported some 

of the laboratory PM results for these individuals. Merging the samples together allowed us 

to include a cannabis only user group and a group of non-users of illicit drugs (in Study 1 the 

non-ecstasy user group contained a substantial minority of cannabis users and a small number 

of cocaine users). It also enabled us to create sufficient numbers of illicit drug users so that 

long and short-term dose-related effects could be properly investigated. None of the present 
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merged sample reported use of ecstasy within the week prior to testing and none reported 

using any other illicit drug within the 24 hours prior to testing. All participants gave verbal 

consent and were tested in accordance with the national and local ethics guidelines and 

according to the Declaration of Helsinki. 

 

Materials 

The drug use and demographics questionnaires (and measures) were the same as those 

that featured in Study 1. In addition, in the present study, the historical annual estimates of 

typical dose per session and frequency of use for each year were considered separately and 

estimates of long-term dose (averaged over the number of years of use) and similarly the 

long-term average frequency of use were computed. This was done for each illicit drug that 

was regularly consumed.   

 

Laboratory Measures of Prospective Memory 

The same PM tasks were administered as in Study 1, that is, the F1 Short-Term Event 

Based Task, the Fatigue Short-Term Time Based Test, and the Mail Long-Term Time Based 

Test. Full descriptions of these may be found above. 

 

Procedure 

The procedure was the same as that outlined in Study 1. 

 

Design/Statistics 

A mixed design was used to analyse outcomes from the fatigue short-term time based 

PM task. The proportion of fatigue questionnaires completed in the first half and second 

halves of the test session were compared across the three participant groups 
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(ecstasy/polydrug, cannabis only, and non-illicit drug user). To explore any differences on the 

F1 event based PM task (omitting to press F1) a mixed design was again used.  The number 

of errors was compared across three separate trials and between the three participant groups 

(ecstasy/polydrug, cannabis only, and non-illicit drug user).   Responses from the mail long-

term time based PM task were compared between the three user groups (ecstasy/polydrug, 

cannabis only, and non-illicit drug user) using a one way design. In all three analyses, gender 

and measures of current alcohol and cigarette use were included as covariates. With respect 

to the between participant comparisons, it was predicted, a priori, that non users would score 

significantly better than both cannabis only and ecstasy/polydrug users. For these two 

pairwise comparisons, an alpha value of .025, one-tailed, was selected. No prediction was 

made regarding the difference between the two drug using groups.  

For those individuals using illicit drugs, associations between indicators of long and 

short-term drug use and the outcomes on the PM measures were investigated using 

correlation. It was predicted that increasing levels of illicit drug use would be associated with 

poorer PM performance and that PM performance would be positively associated with the 

period of abstinence.  

While some means of controlling the Type 1 error rate is required it is now well 

established that full Bonferroni correction greatly inflates the likelihood of Type 2 error 

(Rothman, 1990). Where test results are conditionally dependent, (as is the case with the 

present study, where there are multiple interrelated outcome variables and multiple inter-

correlated drug use measures) full Bonferroni correction is known to be inappropriate (Bland 

& Altman, 1995; Narum, 2006; Pike, 2010). Thus an alternative to full Bonferroni correction 

has been adopted here, which focusses on controlling the False Discovery Rate (FDR), a 

technique which is well suited to situations where the reported outcomes are not independent 

(Benjamini & Yekutieli, 2001). This involves controlling the proportion of occasions where 
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true null hypotheses are falsely rejected giving rise to ‘false discoveries’. Computational 

methods are available for calculating the critical value for alpha (also known as the q value) 

which controls the FDR at a given level (e.g., Pike, 2010). The FDR rate in the present study 

was set to .10 which implies that the proportion of significant outcomes which are actually 

false discoveries is limited no more than 10%. In fact, in the present case, significant 

outcomes that were not in the predicted direction are also rejected which effectively reduces 

the FDR to .05. There is a related procedure for calculating the critical alpha value which 

limits the Family Wise Error rate (FWE) to .05 without greatly inflating the risk of a Type 2 

error, as is the case with full Bonferroni correction (Benjamini & Yekutieli, 2001; Narum, 

2006). It is this critical level and the related FDR which has been used to identify those 

outcomes in Tables 4 and 5 which can be regarded as statistically significant with the FWE 

<.05 and FDR<.10, two tailed. 

  

 

RESULTS 

Group differences on the background variables are set out in Table 2.  

Ecstasy/polydrug users were significantly older than nonusers. Both illicit drug using groups 

consumed significantly more units of alcohol per week than nonusers. Ecstasy/polydrug users 

smoked significantly more cigarettes each day compared with cannabis only and nonusers. In 

terms of illicit drug use, aside from ecstasy, most ecstasy/polydrug users regularly consumed 

cannabis and two-thirds of the group were regular cocaine users (see Table 3). On virtually 

all of the cannabis use measures set out in Table 3 ecstasy/polydrug users registered 

significantly greater cannabis use compared to cannabis only users. 
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The F1 event based PM task.  

Examination of Table 2 reveals that relative to the other two groups, ecstasy/polydrug users 

committed more errors on this task by failing to press F1 at the end of each 30 second period 

on each of the three trials. Cannabis only users and non-illicit drug users performed similarly 

on this task. ANCOVA was administered with gender, daily cigarette and weekly alcohol 

consumption as covariates. Mauchly’s test of sphericity was statistically significant, p<.001, 

therefore Greenhouse-Geisser adjusted degrees of freedom have been used. The interaction 

between drug user group and trial was non significant, F<1. There was a significant effect of 

trial, F(1.45,268.40)=7.97, p=.002, ηp
2 = .041, and the groups differed significantly, F(2,185) 

= 7.28, p=.001, ηp
2 = .073. Pairwise comparisons revealed that ecstasy/polydrug users 

committed significantly more errors than drug naïve persons, and cannabis only users, p<.001 

and p=.008 respectively. Drug naïve persons and cannabis only users did not differ 

significantly, p>.05. None of the covariates were statistically significant, p>.19, and 

homogeneity of regression was obtained in all three cases. 

 

The fatigue short-term time based PM task. Inspection of Table 2 reveals that non illicit 

drug users did best, remembering to complete more fatigue questionnaires than the other two 

groups. Cannabis-only users performed worse than non illicit drug users but better than 

ecstasy users. ANCOVA with the same covariates included as in the previous analysis 

revealed a significant interaction between drug user group and test session, F(2,184)=7.42, 

p=.001, ηp
2 = .075. As is clear in Table 2, while both user groups performed worse than 

nonusers during the first half of the session, nonusers broadly maintained their performance 

in the second half while the performance of the drug using groups deteriorated further. For 

the sample as a whole, performance deteriorated between the first and second halves of the 

session, F(1,184)=35.25, p<.001, ηp
2 = .161. The overall group difference was significant, 
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F(2,184)=25.43, p<.001, ηp
2 = .217. Pairwise comparisons revealed that, overall, both user 

groups performed significantly worse than nonusers, p<.001 in both cases. Furthermore, the 

ecstasy/polydrug group performed significantly worse than cannabis only users, p=.020, one 

tailed. None of the covariates were statistically significant, p>.20, for alcohol and nicotine 

consumption, although gender approached significance as a covariate, F(1,184)=3.84, 

p=.052, ηp
2 = .020. Homogeneity of regression was obtained in all three cases. 

 

The mail long-term time based PM task. As is clear from inspection of Table 2, non-illicit 

drug users remembered to return more delayed recall tests compared to the other two groups. 

Ecstasy/polydrug users again performed worse on this measure, with cannabis only users 

scoring in between. ANCOVA with the same three covariates failed to yield a statistically 

significant group difference, F(2,185)= 2.06, p=.131, ηp
2 = .022.  However pairwise 

comparisons revealed that non illicit drug users scored significantly higher than 

ecstasy/polydrug users, p=.023 one-tailed. None of the other pairwise comparisons were 

statistically significant, p>.05. None of the covariates were statistically significant, p>.45, for 

gender and nicotine consumption, although alcohol consumption approached significance as 

a covariate, F(1,185)=3.39, p=.067, ηp
2 = .018. Homogeneity of regression was obtained in 

all three cases. 

 

Associations between long-term drug use and PM. A key objective of the present paper 

was to examine the association between the various laboratory PM measures and the long-

term average dose per session and long-term average frequency of use for ecstasy, cocaine 

and cannabis. The corresponding correlations are presented in Table 4. Inspection of Table 4 

reveals that, without adjustment for multiple comparisons, the long-term average dose of 

ecstasy is significantly associated with all but one of the PM measures. Using Benjamini and 
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Yekutieli’s (2001) procedure for controlling the FWE, four of the eight correlations are 

statistically significant at FWE < .05, and using a two tailed FDR<.10 with m=48, five of the 

correlations are significant. It is also apparent that prior to adjustment for multiple 

comparisons, the long-term average frequency of cannabis use was significantly associated 

with the two time based PM measures, however, only the association with the Fatigue short 

term measure remains significant after controlling the FWE and FDR at the levels indicated 

above.  

Examination of the more traditional measures of illicit drug use set out in Table 5 

shows that, prior to adjustment for multiple comparisons, a number of these were 

significantly associated with individual PM outcomes. The fatigue short term measure 

(during the first half of the test session) was significantly associated with five of the drug use 

variables, four relating to aspects of ecstasy use and one to cocaine.  Similarly, F1 event 

based PM task performance in Trial 1 was significantly associated with five of the drug use 

variables, two relating to aspects of ecstasy use and three to cocaine. These account for most 

of the unadjusted significant outcomes in Table 5.  However, it is important to note that 

following control of the FWE rate at less than .05 only two of these associations remained 

statistically significant. Furthermore controlling the FDR at 0.10, two tailed, left none of the 

associations statistically significant. Clearly both these methods for controlling Type 1 error 

are sensitive to the number of comparisons made (i.e., m=120 in Table 5). It might be argued 

that the number of comparisons should be treated separately for each aspect of drug use. 

FWE and FDR analyses were repeated on each separate block of 24 comparisons (i.e., m=24) 

and as with the full analysis in each case none of the outcomes achieved significance at a 

level which guaranteed FDR<.10. Similarly, for each separate block of 24 comparisons, only 

the same two correlations were such that FWE <.05, i.e., the association between total 

cocaine use and F1 event based PM performance in Trial 1 and between the average weekly 



 

 

419 

consumption of ecstasy and performance during the first half of the Fatigue short term time 

based PM task.  

For the seven statistically significant associations listed in Table 4 with the two tailed 

FDR<.10, partial correlations were conducted controlling for the long term average dose and 

frequency of use of the other main illicit drugs. Thus, the association between the relevant 

PM measures and the long term average dose of ecstasy was estimated while controlling for 

long term average frequency of ecstasy, cannabis and cocaine use and long term average dose 

of cannabis and cocaine. Similarly the association between the relevant PM measures and the 

long term average frequency of cannabis use was estimated while controlling for the long 

term average frequency of ecstasy and cocaine use and long term average dose of ecstasy, 

cannabis and cocaine. The resulting partial correlations (df=53) between the long term 

average dose of ecstasy and respectively the fatigue time based total, and first half 

performances were -.267 and -.279, and between the long term average dose of ecstasy and 

respectively the F1 event based total, and Trial 3 outcomes were .269 and .290. These four 

remained significant with FDR<.10 (m=7, two tailed). However the remaining partial 

correlations between the long term average dose of ecstasy and  F1 event based Trial 1 

performance, i.e., .164, and between the long term average frequency of cannabis use and the 

fatigue time based total, and first half performance, respectively -.163, and -.169, were not 

significant at a level which controlled the FDR at less than .10.  Furthermore, while these 

outcomes are informative none of the associations met the threshold for controlling the FWE 

at less than .05 two tailed (although on a one tailed basis one of the significant FDR outcomes 

met the FWE criterion, p=.016, and all of the remainder approached significance, .02 ≤ p ≤ 

.025, one tailed, compared with the critical value of .019).   
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General Discussion 

The present findings are consistent with previous studies (Hadiefthyvoulou et al. 2011a; 

Heffernan et al. 2001a; Montgomery & Fisk, 2007; Rendell et al. 2007) and support the view 

that ecstasy/polydrug use is associated with deficits in short term time and event based PM 

and in long term time based PM. However, we demonstrate here that outcomes on both the 

event and time-based short term PM measures are significantly associated with long term 

differences in the average dose of ecstasy consumed in a single session. Furthermore, the 

inclusion of a cannabis-only group showed that while ecstasy/polydrug users performed 

significantly worse than non illicit drug users on the FI event based task, cannabis-only users 

did not, which therefore suggests that the deficit here is due to some characteristic of 

polydrug use unrelated to cannabis consumption.  

Interestingly cannabis-only uses were impaired in short term time based PM relative 

to drug naïve persons suggesting a direct effect of cannabis on this aspect of PM functioning. 

Indeed, both user groups exhibited significant deficits relative to drug naïve persons on the 

Fatigue PM measure during the second half of the test session. Furthermore ecstasy/polydrug 

users were significantly impaired relative to cannabis-only users on this measure.  It is also of 

interest to note that the long term average frequency of cannabis use (among illicit drug 

users as a whole) was significantly associated with performance on the Fatigue PM measure 

(although interestingly this was during the first half of the test session).  

Almost 90% of ecstasy/polydrug users in the present study also used cannabis and 

approaching 80% used cocaine, thereby raising the possibility that the effects on PM 

performance that we observed may be due to any one of these three major drugs, or to 

cocktail effects associated with their joint consumption. The evidence set out in Tables 4 and 

5 appears to suggest that it is the long term average dose of ecstasy which is linked to most of 

the PM deficits that have been observed in the present paper. This appears to share 
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statistically significant variance with most of the PM measures. Furthermore, when we 

controlled for the effects of cocaine and cannabis, the negative associations between the long 

term typical average dose of ecstasy (per session) and performance on two of the three PM 

measures remained statistically significant, at least at a two tailed FDR <.10.  

A key aspect of the present results is the importance of the long term typical dose of 

ecstasy in a single session. This appears to be directly related to adverse outcomes on the PM 

measures. This finding may be a corollary of the development of tolerance. Indeed, it has 

been demonstrated that the subjective effects of taking ecstasy diminish quite rapidly, leading 

many users to progressively increase their dose so as to maintain the intensity of the 

experience. In an extensive review of the literature Parrott (2005) attributes tolerance to 

serotonergic neurotoxicity. Consistent with this proposition, animal studies in rodents and 

primates have demonstrated long term reductions in serotonin, its metabolite 5-HIAA and in 

serotonin axon densities (e.g., Commins et al. 1987; Hatzidimitriou, McCann & Ricuarte, 

1999) and neuroimaging studies in regular ecstasy users have demonstrated reduced SERT 

densities across the neocortex, and clear evidence of serotonin axonal damage and grey 

matter loss (Cowan et al. 2003; Kish et al. 2010). The progressive degeneration of the 

serotonergic system means that there are fewer sites for the drug to operate on thereby 

requiring increasing amounts to achieve the same pharmacological reaction (Parrott, 2005). 

The development of tolerance would lead to progressively larger doses and many users may 

resort to periodic binging (i.e., ‘stacking’ or ‘boosting’) to maintain the intensity of the 

subjective experience. 

If drug use continues unabated, long term, then the increasing individual doses 

associated with growing tolerance will necessarily give rise to increased lifetime exposure 

and thus long term average dose and lifetime use will be co-related. However, the 

relationship is not necessarily isomorphic. For example, in Verheyden, Henry and Curran’s 
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(2003) sample, a significant number had cut back their use of the drug for various reasons 

(e.g., financial, adverse physical effects, adverse effects on work or education or because of 

the reduced subjective effects). Furthermore, in Scholey et al’s (2004) sample while 24% of 

heavy users (more than 100 occasions of use) reported normal doses of between 3-4 tablets 

and 14% doses of 4+ tablets, the majority were normally consuming between 1-2 tablets per 

session, the same as the majority of moderate and novice users. Thus long term trends in the 

typical dose per session may not always show a straight forward relationship with total 

lifetime use. 

The exact mechanisms through which MDMA causes neurotoxicity remain unclear. 

Recent investigations have suggested a role for cortisol in the process. Parrott (2009) notes 

that, in laboratory studies, administration of MDMA stimulates the hypothalamo-pituitary-

adrenal (HPA) axis resulting in increased plasma concentrations of cortisol. In a study 

examining salivary cortisol levels in ecstasy users, increases of up to 800% were observed in 

participants who were clubbing and on drug compared with baseline and compared with 

dancing while drug free (Parrott, Lock, Conner, Kissling & Thome, 2008). In another recent 

study, Wolff et al. (2012) evaluated cortisol levels pre and post clubbing. Interestingly, at 

baseline, cortisol levels were elevated in their sample compared with normal population and 

diurnal norms. Post clubbing, increases in cortisol levels were again more pronounced in 

clubbers who had consumed ecstasy relative to those who had not. Furthermore, genetically 

based differences in the efficiency of drug metabolism moderated this effect. Specifically, 

post clubbing increases in cortisol among the ecstasy users were largely limited to those with 

the two CYP2D6 phenotypes characterised by poor or intermediate metabolism. A second 

genetic influence was apparent, linked to the COMT genotype (Met/Met) that is associated 

with low activity drug metabolism. Those associated with this particular phenotype registered 

larger increases in cortisol post clubbing irrespective of whether they had taken MDMA. 
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Wolff et al (2012) observe that regular use of MDMA may lead to chronic HPA axis 

dysregulation particularly in those with a genetic makeup characterised by poor xenobiotic 

metabolism. 

In turn, it is possible that MDMA induced, cortisol mediated, HPA axis dysregulation 

may be responsible for some of the cognitive deficits associated with ecstasy use. Cortisol is 

known to directly affect learning and memory as well as attentional processes in an inverted 

U shaped manner with too much or too little resulting in cognitive impairment. It is directly 

involved in regulating the activity of a number of neurotransmitters that are crucial in 

supporting prefrontal executive processes including dopamine. Furthermore, chronically 

elevated levels have been associated with atrophy in the striatum, hippocampus and 

prefrontal cortex (Erickson, Drevets & Schulkin,  2003). 

Whether ecstasy’s neurotoxic effects are directly associated with MDMA, its 

metabolites, or produced indirectly via the effects on cortisol, it is of interest to consider 

which of the neural areas associated with PM performance may be susceptible to the drug. 

Over the previous several years much has been learned as to the neural basis of PM 

performance. In early neuroimaging research it was demonstrated that increased activity in 

the lateral frontopolar region, Brodmann area (BA) 10, was associated with retaining the PM 

intention, while, when the cue was detected, activity in medial BA 10 appeared to decline as 

attention was diverted away from the external ongoing task and the focus was switched to the 

internal representation of the PM intention (Burgess, Quayle & Frith, 2001; Burgess et al. 

2003). Later research has demonstrated the involvement of other cortical and subcortical 

areas. During the storage phase, in addition to lateral BA10, activity is also higher in the 

bilateral medial frontal gyrus (BA 8/32), the left precuneus and left parietal cortex (BA7) 

(Benoit, Gilbert, Frith, & Burgess, 2012), as well as a region in BA46 extending to the insular 

cortex and the anterior cingulate (Gilbert, 2011). Responding to the cue and retrieving the 
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intention also results in increased activity in the VLPFC and lateral parietal cortex, the 

anterior cingulate, more superior regions of the DLPFC, as well as the orbitofrontal cortex 

(OFC) (Simons, Schölvinck, Gilbert, Frith & Burgess,  2006). Findings reported by Gilbert 

(2011) suggest that the specific content of the PM intention and the characteristics of the PM 

cue are not actually stored in BA10 but rather are reflected in differential activation 

elsewhere in both cortical (e.g., the medial rostral prefrontal and right superior parietal 

cortices, the medial occipital cortex) and subcortical structures (e.g., thalamus, putamen). 

It is known that ecstasy damages axonal tissue though out much of the neocortex and 

it may be that one or more of the above mentioned neural areas may be particularly sensitive 

to ecstasy-related effects. The acute effects of ecstasy on PM were investigated in Ramaekers 

Kuypers, Wingen, Heinecke and Formisano’s (2009) study in which participants, who were 

regular ecstasy users, performed an event based PM task. While performing the ongoing task 

and retaining the PM intention, fMRI revealed that relative to placebo, the BOLD response 

was reduced following the administration of MDMA in the left thalamus, left putamen, left 

precuneus (BA7), the left inferior /superior parietal lobule (BA40/7) and right inferior 

parietal lobule (BA40). When retrieving the PM intention administration of MDMA reduced 

the BOLD response in the inferior parietal lobe (bilateral BA40). Clearly many of the regions 

demonstrating acute MDMA sensitivity are the same as those supporting event based PM 

processing, e.g., the parietal cortex, the thalamus and putamen, and it may be that the same 

regions are implicated with respect to PM deficits in currently abstinent ecstasy/polydrug 

users. 

Since the ecstasy/polydrug users in the present study were also impaired in time based 

PM, it is of interest to consider which neural areas might be implicated in this regard. Okuda 

et al. (2007) demonstrated that the lateral frontopolar cortex is also active in storing the 

intention in time based PM, although there were slight differences, with the left superior 
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frontal gyrus (BA9/10) more active in time based PM. Relative to event based PM, using a 

clock, instead of subjective time estimation, was associated with greater activation in the 

right superior frontal gyrus (BA10), the medial frontal lobe (BA10) and the adjoining anterior 

cingulate gyrus (BA32/10). In a later study, Momennejad and Haynes (2012) focussed on the 

specific content of the PM intention showing that, during retention, this was encoded in a 

range of medial PFC regions including BA 9/ 10, as well as left lateral BA 6, and the 

occipital lobe (BA17, right inferior BA19) . Differences in the specific timing of the PM 

intention appeared to be encoded in the lateral PFC including bilateral BA10, right BA46, 

and BA6, as well as right medial BA10, right posterior parietal lobe, right superior parietal 

cortex, and the anterior cingulate. At the point of retrieval different delays were associated 

with differential activation in additional regions including the right precuneus, the inferior 

right PFC (BA45) and orbitofrontal cortex (BA47). 

The neuroimaging results have been augmented by clinical and lesion studies. For 

example, in a study of patients with focal brain lesions, following appropriate controls, right 

polar prefrontal (BA10) lesions were associated with a deficit in time-based PM while event-

based PM performance was unrelated to lesion status. Interestingly, patients with frontopolar 

lesions were also significantly impaired in time estimation ability compared to other patients 

(Volle, Gonen-Yaacovi, de Lacy Costello, Gilbert, & Burgess, 2011). In another study, the 

relationship between PM performance and grey matter volumes in the medial temporal, 

prefrontal and parietal regions was examined in a sample of normal and mildly demented 

older adults. A significant positive association was apparent between medial temporal and 

more specifically hippocampal grey matter and performance on a focal PM task (Gordon, 

Shelton, Bugg, McDaniel, & Head, 2011).  Lastly, Kondo et al. (2010) administered diffusion 

tensor imaging (DTI) on subjects with diffuse axonal injury, revealing a significant 

association emerged between PM performance and the degree of fractional anisotropy (an 
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indication of axonal damage) , in the left parahippocampal gyrus, left inferior parietal lobe, 

and left anterior cingulate. 

Given the range of neural areas which appear to support time based PM processes, it 

is of interest to consider which of these may feature in the ecstasy-related deficits that have 

been observed here. Cowan et al. (2003) assessed regional brain grey and white matter 

concentration in ecstasy users and controls. The former had decreased grey matter in several 

brain regions, which were localised to the neocortex in bilateral occipital cortex (BA 18), left 

middle temporal gyrus (BA 21) and left inferior frontal gyrus (BA 45). Kish et al. (2010) 

investigated differences between ecstasy users and controls in serotonin transporter densities, 

the regional volume of grey and white matter and cortical thickness in particular ROIs. 

Consistent with the outcomes of previous studies (e.g., Buchert et al. 2004; Thomasius et al. 

2006) the results revealed that SERT densities were significantly reduced in all cortical areas 

with the occipital and temporal cortices most affected. No significant differences in SERT 

binding emerged in the basal ganglia structures or the thalamus. Cortical thinning was evident 

especially in left hemisphere locations including the superior (BA6) middle  (BA10 and BA9) 

and inferior (BA47) frontal gyri, inferior parietal (BA40), middle temporal gyrus (BA22), 

occipital cortex (BA17) and right inferior parietal. Furthermore the neural deficits evident in 

ecstasy/polydrug users were associated with aspects of prior ecstasy consumption (Kish et al. 

2010). 

Combining, the evidence set out above concerning the neural basis of PM 

performance and what is known regarding neural damage in ecstasy users, one clear area that 

is implicated is the frontopolar cortex (lateral BA10) which plays a crucial role in both time 

and event based PM (e.g., Gilbert, 2011; Okuda et al. 2007) and which has been to shown to 

exhibit reduced SERT densities and cortical thinning in ecstasy/polydrug users (e.g., Kish et 

al, 2010). Indeed as noted above patients with right polar prefrontal BA10 lesions were 
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shown to be impaired in time based PM (Volle et al. 2011). It is also possible that the DLPFC 

more generally (including BA6 BA9) may similarly be implicated. Also the parietal cortex 

cannot be excluded since it has been identified as playing a role in time and event based PM 

and also exhibited reduced SERT densities and cortical thinning in Kish et al’s (2010) study. 

Furthermore, reduced activity in areas of the parietal cortex, following acute MDMA 

administration, was shown to be directly associated with impaired PM performance 

(Ramaekers et al. 2009). 

A number of limitations need to be acknowledged in relation to the present study. In 

common with much of the existing literature, this study has relied on self-report data in 

relation to drug use. However, while objective measures would have been desirable, research 

suggests a high degree of concordance between self-report and objective measures of recent 

drug use from saliva (Yacoubian & Wish, 2006) and of longer term use from hair (Scholey et 

al. 2011; Vignali, Stramesi, Vecchio, Groppi, 2012). Furthermore, concordance between self-

reports and objective measures of drug use has been demonstrated for multiple illicit drugs 

(Vignali et al. 2012), cannabis and cocaine (Vignali et al. 2012; Zaldívar et al. 2009) and 

ecstasy (Scholey et al. 2011; Yacoubian & Wish, 2006). Obviously it neither ethical nor 

feasible to administer MDMA to humans for prolonged periods so we have used an 

opportunity sample. Clearly we cannot exclude the possibility that our groups differed on 

some other pre-existing condition predating their drug use or in terms of some other lifestyle 

variable. While we have attempted to control for a number of potential confounds, there may 

be others perhaps as yet unknown which may have had an impact on the results reported here. 

In conclusion, the present study has identified clear long-term dose-related effects of ecstasy 

use on PM performance and in doing so has furthered the current understanding of the basis 

of PM deficits among ecstasy users. Outside the laboratory, the results obtained may also 
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have utility in informing the development of harm reduction interventions by highlighting the 

potential risks associated with taking large number of tablets in a single session.  
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Table 1: Demographic Variables, Prospective Memory Outcomes and Drug Use Indicators: Study 1  

 Ecstasy/Polydrug Users Non-ecstasy Users p  
 Mean SD n Mean SD n  
Age 21.91 2.40 64 20.89 2.38 85 .012 
Ravens progressive matrices 
(maximum 60) 

43.95 7.80 62 45.26 8.13 82 ns 

Years of education 16.15 1.67 56 15.82 1.90 78 ns 
Alcohol (units per week) 13.85 10.47 62 12.49 11.85 75 ns 
Cigarettes per day 3.61 4.58 65 1.15 3.44 85 <.001 
        
Fatigue: Short-term 
time based PM (%) 

       

Total 54.33 28.39 65 71.40 25.30 82 <.001 
First Half 70.26 30.96 65 79.82 29.07 82 (.056) 
Second Half 38.87 34.27 65 62.99 35.21 82 <.001 

        
Mail:  Long-term time based 
PM   

0.89 1.23 65 1.39 1.35 84 .021 

        
F1: Event based PM         

Total 1.77 2.83 64 0.71 1.48 85 .004 
Trial 1  0.78 1.19 64 0.46 0.96 85 (.069) 
Trial 2 0.53 1.11 64 0.12 0.45 85 .002 
Trial 3 0.45 0.97 64 0.13 0.57 85 .012 
        

Total Prior Consumption        
Cannabis (joints) 1658.02 3162.11 52 485.65 1423.81 30 .024 
Cocaine (lines) 616.90 994.41 43 54.28 81.97 4  
Ecstasy (tablets) 316.51 654.56 60 - - -  

        
Current Frequency of Use 
(times per week) 

       

Cannabis 2.46 8.60 55 0.43 1.25 35 ns 
Cocaine 0.43 0.80 47 0.16 0.28 7  
Ecstasy 0.16 0.25 64 - - -  

        
Weeks since last usea        

Cannabis 31.05 56.87 57 78.47 106.37 37 .016 
Cocaine 31.61 58.93 49 31.14 40.40 9  
Ecstasy 52.43 72.72 65 - - -  
        

 

a. The median period of abstinence from cannabis was 8 and 16 weeks for 
ecstasy/polydrug users and non-ecstasy users respectively. The equivalent figures for 
cocaine were 8 and 20 weeks. The median period of abstinence for ecstasy was 12 
weeks. 
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Table 2: Demographic Variables, Current Consumption of Alcohol and Cigarettes and Prospective Memory Outcomes: Study 2 

 Ecstasy/Polydrug Users Cannabis only users Nonusers p value (two-tailed) for oneway 
ANOVA and Tukey’s HSD 

    Overall E/P vs 
Non 

Cannvs 
Non 

E/P 
vsCann 

 Mean SD n Mean SD n Mean SD n     
Age 21.85 2.98 102 21.47 3.00 38 20.64 2.23 65  .024 .018   
Ravens progressive matrices 
(maximum 60) 

44.00 8.99 99 45.71 7.04 38 44.78 8.31 63  ns    

Years of education 15.25 3.20 93 15.55 2.32 33 15.30 2.22 63  ns    
Alcohol (units per week) 14.44 10.32 99 13.66 11.48 35 8.19 10.20 59  .001 .001 .041  
Cigarettes per day 4.17 6.16 103 1.53 3.17 38 0.98 3.63 65 <.001 <.001  .016 
              
Fatigue: Short-term 
time based PM (%) 

             

Total 47.37 28.47 103 61.07 23.44 36 77.15 22.05 64 <.001 <.001 .009 .018 
First Half 63.41 34.15 103 72.13 30.88 36 84.63 22.88 64 <.001 <.001   
Second Half 28.40 32.08 103 44.31 37.80 36 69.80 32.40 64 <.001 <.001 .001 .038 

              
Mail:  Long-term time based 
PM   

0.86 1.21 103 1.18 1.23 38 1.58 1.32 64 .002 .001   

              
F1: Event based PM               

Total 1.75 2.74 102 0.74 1.11 38 0.60 1.48 65 .001 .003  .037 
Trial 1  0.82 1.20 102 0.61 1.00 38 0.38 0.91 65 .038 .030   
Trial 2 0.50 1.09 102 0.05 0.23 38 0.08 0.41 65 .001 .003  .011 
Trial 3 0.43 0.96 102 0.08 0.27 38 0.14 0.63 65 .015 .048  .046 
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Table 3: Measures of Illicit Drug Use for Ecstasy/Polydrug and Cannabis-Only Users: Study 2 

 

  

  Ecstasy/Polydrug User Cannabis Only User p 
 Median Mean SD n Median Mean SD n  
Long-Term Average Dose 
Per Session 

         

Cannabis (joints) 2.20 2.71 1.89 85 1.00 1.36 0.88 31 <.001 
Cocaine (lines) 4.83 6.49 6.53 64 - - - -  
Ecstasy (tablets) 2.00 2.95 3.80 97 - - - -  

Long-Term Average 
Frequency (times per 
week) 

         

Cannabis 1.00 1.74 2.07 85 0.23 1.02 1.69 31 .084 
Cocaine 0.23 0.52 0.66 64 - - - -  
Ecstasy 0.23 0.54 0.91 97 - - - -  

          
          
Total Prior Consumption          

Cannabis (joints) 442.00 2110.56 3646.62 85 23.92 473.10 1404.83 31 .001 
Cocaine (lines) 247.52 695.78 1113.89 64 - - - -  
Ecstasy (tablets) 63.44 420.28 887.38 97 - - - -  

Average weekly 
consumption 

         

Cannabis (joints) 2.04 7.98 11.69 87 0.68 2.47 4.71 30 <.001 
Cocaine (lines) 2.17 28.99 164.11 63 - - - -  
Ecstasy (tablets) 1.16 2.55 3.67 95 - - - -  

Duration of use (weeks)          
Cannabis 264.00 297.06 192.80 91 108.00 180.35 199.27 37 .003 
Cocaine 127.57 159.96 124.93 75 - - - -  
Ecstasy 133.50 160.48 139.92 102 - - - -  

          
Current Frequency of Use 
(times per week) 

         

Cannabis 0.24 1.86 6.81 90 0.01 0.53 1.45 36 .249 
Cocaine 0.14 0.43 0.72 70 - - - -  
Ecstasy  0.04 0.17 0.26 102 - - - -  

Weeks since last use          
Cannabis 4.00 32.07 63.72 92 24.00 77.35 92.57 37 .009 
Cocaine 8.00 29.86 59.21 77 - - - -  
Ecstasy 12.00 45.93 70.59 103 - - - -  
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Table 4: Association between Long Term Average Dose and Frequency of Use of Major Illicit Drugs 
and Prospective Memory Outcomes 

 

*p<.10; **p<.05; *** p< .01121 and FWE <.05 ; †FDR<.10 with m=48; all two tailed 

  

 n Zero-Order Correlation with:   
Fatigue: Short-term  

Time-based PM 
Mail:  Long- 
term time- 
based PM  

F1: Event-based PM 

  Total First Half Second 
Half 

 Total Trial 1 Trial 2 Trial 3 

Long-Term Average Dose 
Per Session 

         

Cannabis (joints) 123 -.141 -.131 -.121 -.066 .120 .074 .139 .086 
Cocaine (lines) 70 -.260** -.195 -.229* .092 .006 .225* -.115 -.112 
Ecstasy (tablets) 96 -.300***† -.320***† -.183* -.158 .295***† .249**† .232** .268***† 

Long-Term Average 
Frequency (times per 
week) 

         

Cannabis 123 -.246***† -.256***† -.141 -.151* .109 .071 .115 .085 
Cocaine 70 -.089 -.141 -.074 .029 .163 .149 .148 .119 
Ecstasy 96 -.117 -.140 -.034 -.008 .096 .139 .054 .039 
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Table 5: Association between More Commonly Used Measures of Illicit Drug Use and Prospective 
Memory Outcomes 

 

*p<.10; **p<.05; *** p< .00879 and FWE<.05; †FDR<.10 with m=120; all two tailed;  

(*) indicates that although p<.10, the effect was not in the predicted direction 

 

 

 

 

 

 

 

 

 

 n Zero-Order Correlation with:   
Fatigue: Short-term  

Time-based PM 
Mail:  Long- 
term time- 
based PM  

F1: Event-based PM 

  Total First Half Second 
Half 

 Total Trial 1 Trial 2 Trial 3 

 
Total Prior Consumption 

         

Cannabis (joints) 123 -.128 -.104 -.126 -.079 .038 .008 .041 .051 
Cocaine (lines) 70 -.072 -.045 -.129 .120 .083 .330*** -.073 -.066 
Ecstasy (tablets) 96 -.182 -.213** -.075 -.090 .206 .189* .166 .166 

Average weekly 
consumption 

         

Cannabis (joints) 125 -.191 -.171* -.123 -.160* .032 .000 .069 .012 
Cocaine (lines) 69 -.063 -.092 .005 -.076 -.087 -.082 -.069 -.071 
Ecstasy (tablets) 94 -.234 -.278*** -.101 -.065 .195 .176* .151 .172* 

Duration of use (weeks)          
Cannabis 136 -.097 -.036 -.145* -.029 .069 .040 .087 .043 
Cocaine 85 -.062 -.073 -.105 -.059 .161 .232** .152 .014 
Ecstasy 101 -.014 -.015 -.018 -.006 .019 .026 .050 -.036 

          
Current Frequency of Use 
(times per week) 

         

Cannabis 133 .125 .064 .154(*) .105 .046 -.033 .047 .128 
Cocaine 78 .081 -.012 .144 -.067 .033 .196* -.061 -.071 
Ecstasy 101 -.192 -.170* -.152 -.049 .149 .065 .182* .139 

Weeks since last use          
Cannabis 137 .155 .128 .084 -.058 -.184 -.137 -.170** -.142* 
Cocaine 88 .150 .225** .073 .024 -.131 -.092 -.116 -.132 
Ecstasy 102 .120 .130 .076 -.178(*) .093 .151 .030 .042 
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Abstract 

Objectives: The present paper seeks to investigate whether source memory 

judgements are adversely affected by recreational illicit drug use. 

Method: Sixty-two ecstasy/polydrug users and 75 non ecstasy users completed a 

source memory task, in which they tried to determine whether or not a word had been 

previously presented and if so, attempted to recall the format, location and temporal position 

in which the word had occurred. 

Results: While not differing in terms of the number of hits and false positive 

responses, ecstasy/polydrug users adopted a more liberal decision criterion when judging if a 

word had been presented previously. With regard to source memory, users were less able to 

determine the format in which words had been presented (upper versus lower case). Female 

users did worse than female nonusers in determining which list (first or second) a word was 

from. Unexpectedly, the current frequency of cocaine use was negative associated with list 

and case source memory performance.  

Conclusions: Given the role that source memory plays in everyday cognition, those 

who use cocaine more frequently might have more difficulty in everyday tasks such as 

recalling the sources of crucial information or making use of contextual information as an aid 

to learning. 

 

Key words: source memory, context memory, MDMA, cocaine, SDT sensitivity  
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INTRODUCTION 

The purpose of the present paper is to investigate the integrity of source memory processes in 

recreational ecstasy/polydrug users. Source memory is concerned with the ability to recall the 

contextual and other episodic details in which a specific behaviour, idea or event occurs or a 

stimulus is encountered, for example, where a specific piece of information was originally 

encountered, in which particular shop a desired product had previously been seen or what 

time a specific medication was last taken. Source memory judgement may also involve 

distinguishing between external sources, i.e., determining which particular person was the 

source of a specific piece of information. Also distinguishing between internal sources, e.g., 

whether a particular course of action was actually carried out or just considered. Source 

memory also involves the ability to retrieve relevant contextual information (perceptual, 

spatial, temporal, semantic and affective) that was associated with a particular item or 

behaviour at encoding (Johnson et al. 1993). This may involve recalling which particular 

person was responsible for providing a particular piece of information and perhaps the time 

and context in which it was provided.  In that sense source memory is a multidimensional 

phenomenon in that multiple and qualitatively different aspects of the context are encoded 

and potentially retained along with the actual information itself.  

Depending on the conditions at encoding (motivational factors, the time available, the 

level distraction and the integrity of attentional processes) in some instances this process may 

result in rich source information in which multiple contextual attributes can be retrieved 

while in other cases relatively little source detail may be available (Johnson et al. 1993). It is 

also the case that some source information can be retrieved automatically and effortlessly 

along with the content of the memory at the point of recollection while in other situations the 
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contextual and perceptual characteristics of the item recalled are not immediately available 

and have to be actively reconstructed often through a process of deduction (Johnson & Raye, 

1981).  

Despite its multidimensional nature, experimental paradigms typically focus on single 

contextual dimensions such as whether a word was presented by a male or female voice 

(Lindsay et al, 1991), or at the right or left hand side of a computer display (Johnson et al, 

1982) or the colour in which the word was presented (Chalfonte & Johnson, 1996). Recalling 

whether or not a particular word was previously presented is referred to as item memory. 

Recalling the context in which that word was presented (e.g., as part of the first or second list, 

in red or green, at the top or bottom of the screen, or auditory features such as male or female 

voice) is characterised as source memory.  

Source memory is known to play a vital role in everyday life. For example, the ability 

to accurately recall the source of some piece of crucial information and more importantly its 

veracity, is potentially of critical importance in everyday decision making (Johnson et al. 

1993). The physical or temporal context in which objects or ideas are experienced frequently 

act as an aid to recall when these elements need to be retrieved. Indeed, in terms of the 

general acquisition of knowledge and factual information, research has shown that a positive 

relationship exists between the level of comprehension achieved and the ability to recall the 

source of the information that has been learned (Strømsø et al. 2012). Furthermore, 

misattributing the source of information, for example the mistaken belief that a person that 

you have encountered in one context was the actual protagonist in another, may have serious 

consequences and has been a factor in compromising the value of eye-witness testimony 

(Davis and Loftus, 2007; Zaragoza and Lane, 1994). There is clear evidence from studies of 

clinical populations, e.g., persons with brain injury, those with dementia or psychoses, of the 
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severe consequences which emerge when source memory is impaired (Mitchell and Johnson, 

2009).  

There is now a considerable body of evidence for the separable nature of item and 

source memory. For example the latter has been shown to deteriorate faster as a consequence 

of cognitive ageing (Kausler & Puckett 1980; 1981; Burke & Light, 1981; Ferguson et al. 

1992) or with the progression of dementia (Multhaup & Balota, 1997) and the recollection of 

the source of information has been found to be differentially impaired in patients with frontal 

lobe lesions (Shimamura, 2002). The neural basis of source and item memory has also been 

extensively studied. For example, neuroimaging evidence suggests that, relative to item 

memory judgements, source memory results in greater activation in left hemisphere pre-

frontal cortical structures (Kahn et al. 2004; Mitchell et al. 2008). Source memory can also 

have a temporal dimension and in common with other types of source memory judgements, 

paradigms involving temporal judgements, for example, identifying which of two temporally 

separated lists targets were from, also recruit left hemisphere PFC structures but also other 

cortical regions including the right hemisphere PFC and the orbito-frontal cortex (OFC) 

(Duarte et al. 2010). Thus item and source memory and indeed different types of source 

memory judgements appear recruit qualitatively different prefrontal resources again 

consistent with the separability of the two constructs. Lastly, experimental manipulations 

which have been found to enhance source memory performance have been found to have no 

effect on item memory, while manipulations which improve recognition have been found to 

actually hamper source memory (Lindsay & Johnson, 1991). 

Meta analytic studies have suggested that ecstasy/polydrug users perform 

significantly worse on a number of executive sub processes that are known to rely on 

prefrontal cortical resources. This has been demonstrated both in relation to verbal (Murphy 

et al. 2009; Nulsen et al. 2010) and visuo-spatial processing (Murphy et al. 2012). Regarding 
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item memory, a number of researchers have found that ecstasy/polydrug users perform worse 

on the Rey Auditory Verbal Learning Test (RAVLT) (e.g., Bedi & Redman, 2008; Schilt et 

al. 2008). While there has been a considerable degree of controversy concerning the causes of 

the performance decrements that have been observed, it has been argued that they are at least 

in part attributable to ecstasy use (e.g., Parrott, 2013). In view of the importance of effective 

source memory processes for everyday functioning, and given that ecstasy/polydrug users 

have been observed to perform worse on various tasks which appear to recruit the same 

prefrontal and medial-temporal cortical resources that support source memory, it would be of 

value to establish whether or not individuals with a history of illicit drug use were less 

competent in terms of their source memory performance.  

It is predicted that ecstasy/polydrug users will produce fewer correct source memory 

judgements relative to non ecstasy users. In view of the prevalence of polydrug use among 

ecstasy users, source memory performance will be correlated with various measures of illicit 

drug use. It is predicted that source memory performance will be negatively associated with 

the amount of ecstasy consumed and the frequency of use. 

 

METHOD 

Participants 

Sixty-two ecstasy/polydrug users (including 37 males, 25 females) and 75 non ecstasy 

using controls (including 27 males, 48 females) from universities in the North West of 

England participated in the study. The control group included drug naïve, cannabis only and 

some cocaine users. Potential participants responded to advertisements placed around campus 

and via an on-line participant panel. They were initially informed that the study was 

concerned with the effects of illicit drugs on aspects of cognitive functioning and that both 

users and nonusers of illicit drugs could participate. Those with current or previous 
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psychiatric diagnosis or treatment (including flashbacks, panic attacks, paranoia, 

schizophrenia, phobia) were excluded from the study (see Bedi & Redman, 2008). Although 

details of ethnic origin were not recorded, the sample consisted predominantly of ‘White 

British’. Participants were asked to abstain from cannabis use for at least 24 hours prior to 

testing and from other illicit drugs for at least 7 days prior to testing.  

 

Materials 

The use of ecstasy and other drugs was assessed by means of a self-report 

questionnaire.  For all illicit drugs that were regularly consumed, participants estimated their 

typical dose and frequency of use for each year since they began using. This allowed the long 

term average dose per session and total lifetime use for each drug to be estimated. 

Participants also indicated their current frequency of use and period of abstinence Current use 

of alcohol and cigarettes and demographic variables including age and gender were also 

recorded and fluid intelligence was measured through Raven’s Progressive Matrices (Raven 

et al. 1998).   

Source Memory Task: The task was based on paradigm developed by Meiser and 

Broder (2002). Participants were asked to make judgements as to the spatial location, 

temporal order and format (upper versus lower case) of previously presented words. These 

types of judgement are commonplace in source memory research (see Meiser & Broder, 2002 

for a summary of the relevant research). More specifically, 64 words (one or two syllable 

nouns) were presented each for 4 seconds on a computer monitor. Thirty two words were 

presented in List One and 32 in List Two. For each list, half the words were presented in the 

top section and half in bottom section of the computer monitor. For each of the resulting four 

sets, each word was presented in either upper or lower case. Words were randomly assigned 

to each list. Case and position were also determined in a quasi-random manner subject to the 
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requirement that each list had 16 words in upper case of which eight were presented in the 

top and eight at the bottom of the screen and 16 words in lower case again with eight 

presented at the top and 8 at the bottom of the screen. In the recognition phase all 64 words 

were presented with 64 new words. 

Participants were asked to indicate (by pressing one of two computer keys) whether each 

presented word had been seen previously and if so to whether it was in the top or bottom half 

of the screen, in upper or lower case, and in list one or list two. In terms of item memory, the 

data recorded included the number of hits (previously seen words correctly identified), the 

number of false positive responses (new words mistakenly identified as previously seen), an 

estimate of sensitivity as defined in Signal Detection Theory (SDT), i.e., z(H) – z(F) (where 

H is defined as the proportion of correct responses and F the proportion of false positive 

responses) and SDT decision criterion, i.e., –[z(H) +z(F)] /2 (Green & Swets, 1974). In 

relation to source memory, for those previously presented words that were correctly 

identified (hits), the percentage of correct source memory judgements was calculated with 

respect to list (first or second), position (top or bottom) and case (upper or lower). 

 

Procedure 

The research was approved by the Ethics Committees of the University of Central 

Lancashire and Liverpool John Moores University and was conducted in accordance with the 

requirements of the Declaration of Helsinki except that participants provided verbal consent 

in order to protect the anonymity of the illicit drug users in the sample. The tests were 

administered in the following order: background drug use questionnaire, Ravens Progressive 

Matrices and the source memory task. A number of other measures was also administered the 

results of which are outside the scope of the present study. These included tests of 

prospective memory and associative learning. In total the test battery took between two and 
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three hours to administer. At the end of the session, participants were debriefed, paid 20 UK 

pounds in the form of a supermarket (grocery store) gift card, and provided with drug 

education leaflets. 

 

Design and Statistics 

 A between groups design was used with ecstasy use (ecstasy/polydrug users versus 

non ecstasy users) and gender between participants. Gender was included in order to establish 

whether any group related effects were consistent between males and females. Dependent 

variables were the proportions of correct position, list, and case source memory judgements. 

Regarding item memory, dependent variables were the SDT sensitivity and decision criterion 

values and the number of hits and false positive responses. Correlations between various 

indicators of illicit drug use and the source and item memory outcome measures were also 

explored. 

 

RESULTS 

Inspection of Table 1 reveals that the two groups did not differ significantly on most 

of the background measures. Ecstasy/polydrug users were slightly but significantly older and 

had significantly more years of education. Although cannabis use was generally more 

prevalent among the ecstasy/polydrug users, the two groups did not differ significantly on the 

majority of measures. By way of exception, in relation to period of abstinence, non-ecstasy 

users were abstinent from cannabis for significantly longer. There was also a significant 

interaction between gender and group with male ecstasy/polydrug users having a larger long 

term average dose of cannabis per session compared to the other three groups (see Table 2). 

<Insert Tables 1 and 2 about here> 
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In relation to the item and source memory results, inspection of Table 3 reveals that 

ecstasy users performed worse than controls on the majority of measures. Specifically male 

ecstasy users achieved the smallest proportion of correct position and case source memory 

judgements; female ecstasy users achieved the smallest proportion of correct list source 

memory judgements. Male ecstasy users recorded the greatest number of false positives, they 

exhibited the lowest level of sensitivity and the most liberal decision criterion. 

<Insert Table 3 about here> 

A series of ANOVAs were conducted with group (ecstasy/polydrug versus non-

ecstasy user) and gender between participants. Regarding the item memory outcomes, neither 

of the group effects or the interactions were statistically for hits and false positive responses, 

F<1, in all cases (except for the effect of gender on hits, F=2.18, p=.143, ηp
2 =.016, and false 

positive responses, F=2.62, p=.108, ηp
2 =.019, and the effect of user group on false positive 

responses, F=2.74, p=.100, ηp
2 =.020) all on 1,133 DF. The ecstasy/polydrug-related effect 

for the SDT sensitivity measure was statistically significant, F=4.01, p=.047, ηp
2 =.031, users 

exhibited lower levels of sensitivity. The gender effect and the interaction were not 

significant, F<1 in both cases; all on 1,124 DF. There was a significant effect of gender for 

the SDT decision criterion measure, F=5.55, p=.020, ηp
2 =.043, females adopted a more 

stringent decision criterion. The drug related group effect and the interaction were not 

significant, F=1.05, p=.307, ηp
2 =.008, and F<1 respectively; all on 1,124 DF. 

Considering the source memory outcomes, on the list measure, the gender effect was 

non-significant, F<1, as was the overall group effect, F=1.73, p=.191, ηp
2 =.013. However, 

there was a significant interaction between group and gender, F=3.99, p=.048, ηp
2 =.029. The 

trends in the cell means are displayed in Figure 1. There was little difference in list memory 

performance between male users and nonusers. Female users registered the worst 

performance while female non ecstasy users achieved the best score. Post hoc tests revealed 
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that female users were significantly worse than female nonusers, p=.048, two tailed, but did 

not differ from either male users, or male nonusers, p>.05 in both cases. Regarding the other 

two source memory measures, the effect of group was statistically significant for case source 

memory F=5.40, p=.022, ηp
2 =.039. Users performed significantly worse when making case 

source memory judgements. The gender effect was also significant F=4.81, p=.030, ηp
2 =.035, 

with females performing better than males overall. The interaction was non-significant, F<1. 

For the position source memory judgement, neither the ecstasy/polydrug related effect, nor 

the interaction were statistically significant, F<1 in both cases. The gender effect approached 

significance, F=3.25, p=.074, ηp
2 =.024, with females performing better than males overall. 

All the above mentioned source memory effects were on 1,133 DF.  

The association between aspects of illicit drug use and the source memory outcomes 

are set out in Table 4. Where test results and the probabilities associated with them are 

conditionally dependent, (as is the case with the present study, where there are multiple 

interrelated outcome variables and multiple inter-correlated drug use measures) full 

Bonferroni correction greatly inflates the likelihood of Type 2 error (e.g., Narum, 2006), so 

an alternative procedure (Benjamini and Yekutieli, 2001) which more effectively controls the 

Family Wise Error (FWE) rate was used. With 90 correlations reported in Table 4, an alpha 

value of .00942 controls the FWE <.05 two tailed (From Appendix A, Narum, 2006).  

<Insert Table 4 about here> 

On this criterion, the current frequency of cocaine use was significantly and 

negatively correlated with list source memory performance, p<.001, and the correlation 

approached significance for case source memory, p=013. Thus those with a higher current 

frequency of use had poorer source memory for whether the word was presented in list 1 or 

list 2 and for the case in which the word was presented. Period of abstinence from cocaine 

was significantly correlated with the position source memory component, p=.008, and the 
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correlation approached significance for case source memory (p=.0103). Thus as the period of 

abstinence from cocaine increased so source memory performance with respect to case and 

position improved. Contrary to expectation, only one of the indicators of ecstasy use was 

significantly associated with the memory outcomes at the adjusted alpha level: as the long 

term average dose of ecstasy per session increased, so list source memory deteriorated, 

p=.009.  

Of those associations that were in the predicted direction, a further two were 

associated with p<.05, and three with p<.10, two tailed. For these, increased drug use and 

shorter periods of abstinence were associated with worse memory performance. In four 

instances the associations relate to source memory outcomes while the remaining case relates 

to the SDT D-Prime measure. Three are related to aspects of cocaine use, one to ecstasy and 

one to cannabis use. With one exception, none of the indicators of cannabis use were 

significantly associated with the source or item memory outcomes even at the unadjusted 

alpha level p=.10. The association between the total consumption of ecstasy and case source 

memory was not in the predicted direction with higher lifetime consumption associated with 

better case source memory and although not significant at the adjusted alpha level, p value 

was <.10 two tailed.   

In view of the prevalence of cocaine use among the ecstasy users in the sample and 

vice versa, those zero order correlations that were statistically significant at p<.05 were 

repeated this time controlling for ecstasy or cocaine use as appropriate. The resulting partially 

correlations revealed that the current frequency of cocaine use remained significantly 

correlated with list and case source memory and the SDT sensitivity measure following 

controls for the frequency of ecstasy use, rp( df=41) =  -.535, p<.001; -.347, p<.05; and -.309, 

p<.05; respectively. Likewise the period of abstinence from cocaine remained significantly 

correlated with case source memory, rp (df=43) = .414, p<.01, and the correlation with 
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position source memory approached significance, rp (df=43) = .280, p=.063, following control 

for the period of abstinence from ecstasy. Finally the partial correlation between the long 

term average dose of ecstasy per session and list source memory remained statistically 

significant after controlling for the long term average dose of cocaine per session rp (df=36) = 

.339, p<.05. 

Inspection of Table 4 reveals that the use of cocaine within the previous 10 days was 

negatively correlated with list memory performance, p<.05. Similarly the period of 

abstinence from cocaine was positively associated with list memory performance, p<.10 and 

with case memory, p<.05. Although these associations were not significant at the adjusted 

alpha level, it is possible that some of the variance shared between the current frequency of 

use and, respectively, list and case memory, overlaps with the common variance shared with 

recent use within the previous 10 days and period of abstinence. In other words at least part 

of the significant relationship between current frequency of cocaine use and list and case 

memory might be attributable to very recent patterns in cocaine use. To evaluate this 

possibility a partial correlation was run between the current frequency of use and list 

memory, controlling for recent use within the last 10 days and period of abstinence. The 

relationship between current frequency and list memory remained statistically significant, 

rp=-.490, d.f.= 45, p<.001. The equivalent partial correlation between case source memory 

and the current frequency of cocaine use also remained statistically significant (on an 

unadjusted basis) following the same controls, rp=-.363, d.f.= 45, p<.05. 

 

DISCUSSION  

It is worthy of note that the performance of ecstasy/polydrug users did not differ 

significantly from nonusers in terms of three of the item memory measures, specifically they 

the groups did not differ significantly in terms of the number hits, false positive responses 



Fisk; source memory deficits and illicit drug use     455 
 

 

and the SDT sensitivity measure. Users did appear to adopt a significantly more liberal 

decision criterion when judging whether or not a word had occurred previously, that is to say, 

they required less evidence or confirmatory information before making an affirmative 

response. 

In relation to source memory, ecstasy/polydrug users did significantly worse relative 

to non-ecstasy users on case judgements. In the present context they were less able to recall 

whether a previously seen word was originally presented in upper or lower case letters. 

Assuming that the results can be applied to visual processing more generally, this supports 

the proposition that they are less able to recall the physical or visual form in which 

information is presented. In the present context list source memory reflected the ability to 

recall the temporal order in which words were presented. Female ecstasy/polydrug users 

registered the worst performance in this area while female non-ecstasy users achieved the 

best performance. The performance of males appeared to be unrelated to the ecstasy/polydrug 

user-nonuser distinction and was intermediate in magnitude. Lastly, the two groups did not 

differ in terms of the proportion of correct position source memory judgements which 

suggests that, at the group level, source memory for spatial location is unaffected by 

ecstasy/polydrug use.  

With regard to the correlational analyses, only one aspect of ecstasy use, long term 

average dose per session, appeared to be significantly related to source memory performance. 

The typical dose per session (number of tablets typically consumed on each occasion of use) 

averaged over the entire period of use was found to be inversely related to source memory for 

temporal information.  Lifetime use was not significantly associated with list memory. Thus 

it is the typical dose rather than total lifetime exposure which appears to be important. 

Evidence has emerged from structural and functional MRI studies of currently abstinent 

ecstasy/polydrug users, linking reduced SERT distribution volume ratios (DVRs) with 
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maximum and typical ecstasy dose per session (Kish et al., 2010; McCann et al., 2005, 2008; 

Thomasius et al., 2006). Thus, it could be that higher ecstasy doses give rise to source 

memory deficits as a consequence of their detrimental effect on SERT DVRs. Nonetheless 

such a possibility needs to be treated with a degree of caution since there is no obvious reason 

why this particular aspect of source memory should be particularly susceptible to the effects 

of ecstasy and it is worthy of note that the association between total lifetime use and case 

source memory was actually positive, (although at p<.10 two tailed, given the directional 

nature of the prediction this aberrant result is below significance even at an unadjusted alpha 

level). 

Among the illicit drug users tested here it appears that cocaine use was associated 

with adverse outcomes on a number of the source and item memory measures. The current 

frequency of cocaine use was found to be significantly correlated with temporal source 

memory (the list measure) and, on an unadjusted basis, with source memory for presentation 

format (the case measure). In both cases higher frequency of use was associated with worse 

performance. Furthermore, it appears that the magnitude of the source memory deficit 

declines as the period of abstinence from cocaine increases. This was true for source memory 

for spatial position (the position measure) and, on an unadjusted basis, for presentation 

format source memory (the case measure). While the deficit was apparently related to the 

frequency with which cocaine was used, the effects observed do not appear to relate to recent 

use since the source and item memory outcomes either appear unrelated to recent cocaine use 

or the current frequency effect observed remains significant following statistical control for 

aspects of recent use. Three of the other measures of cocaine use were associated with 

various source and item memory outcomes at p<.05 or p<.10 two tailed although these failed 

to reach significance at the adjusted alpha level. As far as the authors are aware the present 

study is the first to link recreational use of cocaine with source memory deficits.  
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Regarding the apparent cocaine-related effect reported here and given the reliance of 

source memory performance on executive processes, it is worthy of note that, in previous 

research, performance deficits on a number of executive function tasks have been observed 

among currently abstinent cocaine users (Berry et al. 1993; Rosselli et al. 2001; Beatty et al. 

1995). Furthermore, Tomasi et al’s (2007) fMRI results demonstrated that compared to 

controls, cocaine users exhibited reduced levels of activation in the prefrontal regions relative 

to nonusers during the performance of a task loading on executive resources. Thus the 

cocaine-related deficit in source memory functioning may reflect a more general cocaine-

related limitation in executive functioning. However, a degree of caution is warranted here 

since the present student sample will no doubt differ in many respects from the chronic 

cocaine users which featured in the above mentioned studies. It is also worthy of note that 

virtually all of the cocaine users in the present study also used ecstasy so the possibility that 

the two drugs interact in some way to produce the adverse effects observed here cannot be 

ruled out. 

Both item and source memory involve the differential activation of information (e.g., 

in semantic memory) at encoding with source memory associated with greater levels of 

differentiation Anything that compromises attentional resources at the time of encoding (e.g., 

divided attention, brain damage) compromises source memory (Johnson et al. 1993). The 

integrity of attentional resources has been investigated in ecstasy/polydrug users. For 

example, Indlekofer et al. (2009) administered the Test for Attentional Performance (TAP) 

which examines several aspects of attentional processes. Following controls for age, sex, IQ, 

and the use of other illicit drugs and alcohol, aspects of ecstasy use significantly predicted 

omissions/errors on several of the TAP measures including alertness, managing stimulus 

incompatibility and vigilance (Indlekofer et al., 2009). It is possible therefore that the source 

memory deficits observed here may be a corollary of more general attentional problems. 
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However, only one of the ecstasy use measures was significantly associated with source 

memory while aspects of current cocaine use were more important in this regard. Thus the 

proposition that attentional resources may be responsible with the results obtained here is 

only partially supported. 

A number of limitations need to be acknowledged in relation to the present study. In 

common with much of the existing literature, this study has relied on self-report data in 

relation to drug use. However, while objective measures would have been desirable, research 

suggests a high degree of concordance between self-report and objective measures of recent 

drug use from saliva (Yacoubian and Wish, 2006) and of longer term use from hair (Scholey 

et al. 2011; Vignali et al. 2012). Furthermore, concordance between self-reports and objective 

measures of drug use has been demonstrated for multiple illicit drugs (Vignali et al. 2012), 

cannabis and cocaine (Vignali et al. 2012; Zaldívar et al. 2009) and ecstasy (Scholey et al. 

2011; Yacoubian and Wish, 2006).  

A procedural limitation must also be acknowledged. As noted above, at the initial 

presentation words were either presented in upper or lower case. However, in the subsequent 

recognition test the words were all presented in upper case. In general terms, there is little 

doubt that reinstatement of contextual cues present during learning, facilitates memory 

performance at the time of recall/recognition. This has been demonstrated in a meta-analysis 

(Smith and Vela, 2001). Thus by implication, in the present study where the stimulus 

characteristics at initial learning and subsequent recognition were congruent (i.e., when the 

word was in upper case on both occasions) some facilitation might be expected. It is also 

possible that learning might be impaired when the characteristics were incongruent. Thus the 

group-related deficit we observed may stem from the fact that ecstasy/polydrug users were 

less able to benefit from the facilitatory effects of presentational congruence or more 

susceptible to the negative effects of incongruence. There is evidence to suggest that illicit 
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drug users may be adversely affected in the incongruent condition of the Stroop test (e.g., 

Halpern et al. 2004). However, there is reason to believe that such context dependent effects 

may be moderated by working memory (WM) capacity. Paradoxically although high WM 

persons benefited more than low WM when encoding and retrieval conditions matched, when 

they did not there was no effect of WM suggesting that high WM persons may be more 

disrupted by incongruity than low WM (Unsworth et al. 2011). In view of the fact that 

ecstasy/polydrug use has been associated with WM deficits (Murphy et al.2009) it may be 

that ecstasy/polydrug users in the present study may have been less affected by incongruence 

than the control group. 

With regard to our findings, while we have noted the apparent role that cocaine has 

played in accounting for our results, we cannot exclude the possibility that other drugs may 

have played a part. Virtually all of the cocaine users in the present study also used ecstasy 

and cannabis. Therefore while the results obtained appear to relate to cocaine use we cannot 

exclude the possibility that cocaine might interact with other illicit drugs to produce its 

apparent effects in the present sample. It must also be acknowledged that despite the apparent 

dose related link between cocaine use and some aspects of source memory, the presence of 

cocaine use may be an indicator of other important lifestyle or premorbid characteristics 

which may be associated with worse cognitive outcomes in their own right as well as 

resulting in illicit drug use. 

Lastly, it is noteworthy that there is a degree of missing data which is readily apparent 

comparing the sample sizes associated with the various measures in Table 2. Generally, 

participants were better able to report on the extent of their recent use and make categorical 

distinctions, e.g., whether or not they had ever used a particular drug, as opposed to 

confidently reporting longer term trends. In a few instances, responses were missing from the 

questionnaire possibly due to questions being overlooked. A degree of missing data is not 
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uncommon in studies of this kind (e.g., Bedi & Redman, 2008; Indlekofer et al. 2009). 

However, while we wished to avail ourselves of the largest possible sample for each of the 

comparisons in question, it should be borne in mind that some of the significant associations 

(or lack of them) reported in Table 2 relate to sub-sets of the data.    

In conclusion, subject to the limitations noted above, to the authors’ knowledge, the 

present study is the first to demonstrate source memory deficits among ecstasy/polydrug 

users. Furthermore these deficits appear to be associated with aspects of cocaine use. While 

they may diminish with increasing abstinence, in view of the role that source memory plays 

in everyday cognition, the presence of deficits among regular cocaine users is a cause for 

concern. 
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Table 1 Demographic indicators by gender for ecstasy users and non-ecstasy users 

 Ecstasy Users 
 

Non ecstasy users p (two tailed) 

 Male Female Male Female Drug Gender Drug* 
Gender 

 Mean SD n Mean SD n Mean SD n Mean SD n    
Age 22.59 2.52 37 21.60 2.10 25 21.19 1.82 27 20.48 2.27 48 .002 .033 .715 
Ravens progressive matrices 
(maximum 60) 

45.83 6.63 35 41.32 9.18 25 45.48 8.21 27 43.98 8.51 46 .427 .040 .302 

Years of education 16.18 1.71 30 16.70 1.84 23 15.83 1.52 24 15.55 1.77 44 .022 .730 .220 
Alcohol (units per week) 14.36 10.13 35 11.44 8.90 24 13.69 10.43 26 12.21 12.02 39 .979 .260 .713 
Alcohol (length of use: weeks) 392.59 189.50 35 387.21 138.00 24 372.53 195.51 23 292.72 131.43 41 .062 .164 .224 
Cigarettes per day 6.47 4.21 16 6.11 4.45 13 8.67 2.31 3 7.75 5.24 8 na na na 
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Table 2  Measures of drug use by sex for ecstasy users and non-ecstasy users 

 

 Ecstasy Users 
 

Non ecstasy users p (two tailed) 

 Male Female Male Female Drug Gender Drug* 
Gender 

 Mean SD N Mean SD N Mean SD N Mean SD N    
Total Prior Consumption                

Cannabis (joints) 1772.34 3140.60 31 425.28 937.20 20 1812.77 3051.17 10 292.83 439.02 16 .937 .016 .882 
Cocaine (lines) 424.11 759.80 24 1003.45 1558.94 16 4.16 - 1 104.39 100.56 2 na na na 
Ecstasy (tablets) 629.81 1897.22 35 834.19 2705.61 22 - - - - - -- - .739 - 

Long-Term Average Dose per 
Session 

               

Cannabis (joints) 3.00 1.92 31 1.51 0.81 20 1.82 1.31 10 1.79 0.81 16 .211 .034 .041 
Cocaine (lines) 5.64 4.78 24 8.09 11.01 16 1.00 - 1 6.25 2.47 2 na na na 
Ecstasy (tablets) 2.66 2.03 35 3.04 2.85 22 - - - - - - - .559 - 

Current Frequency of Use (times per week) 
Cannabis 3.87 11.08 32 1.00 1.91 21 1.37 2.57 13 0.46 1.02 18 .352 .248 .547 
Cocaine 0.21 0.34 25 0.74 1.16 18 0.02 0.03 2 0.27 0.34 4 na na na 
Ecstasy 0.21 0.41 37 0.23 0.44 25 - - - - - - - .807 - 

Amount Consumed in Previous 10 days 
Cannabis (joints) 4.94 15.25 34 2.25 8.48 22 1.60 3.07 15 0.89 2.00 18 .316 .468 .672 
Cocaine (lines) 1.42 4.95 26 3.60 7.10 20 0.50 0.71 2 1.60 3.58 5 na na na 
Ecstasy (tablets) 0.49 2.08 37 0.37 1.08 25 - - - - - - - .793 - 

Weeks Since Last Use                
Cannabis 26.05 46.99 33 43.03 76.66 22 80.85 92.24 15 55.87 98.07 17 .048 .813 .216 
Cocaine 33.05 59.71 25 25.49 57.07 20 10.43 13.54 2 16.69 21.87 5 na na na 
Ecstasy 50.87 69.70 37 54.74 82.68 25 - - - - - - - .843 - 
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Table 3. Outcomes for source and item memory measures by sex for ecstasy users and non-ecstasy users 

 

 Ecstasy Users 
 

Non ecstasy users p (two tailed) 

 Male Female Male Female Drug Gender Drug* 
Gender 

 Mean SD N Mean SD N Mean SD N Mean SD N    
Source Memory Component (% of Hits) 

Position 58.78 16.28 37 65.46 18.07 25 60.91 17.02 27 65.03 16.84 48 .776 .074 .670 
List 61.23 10.16 37 56.26 17.89 25 59.53 9.63 27 64.50 16.34 48 .191 1.000 .048 
Case 58.37 14.04 37 62.28 19.25 25 62.61 14.63 27 69.87 11.36 48 .022 .030 .512 

Item Memory Outcomes                
Hits (number) 34.70 10.23 37 33.44 11.21 25 37.70 11.29 27 33.42 10.29 48 .430 .143 .423 
False Positives (number) 13.32 12.09 37 9.96 10.25 25 9.89 9.74 27 7.21 9.88 48 .100 .108 .855 
SDT Sensitivity (d prime) 1.08 0.70 35 1.18 0.87 23 1.40 0.82 26 1.43 0.78 44 .047 .635 .811 
SDT Decision Criterion 0.41 0.49 35 0.58 0.48 23 0.48 0.40 26 0.69 0.43 44 .307 .020 .788 



 

 

470 

 

 

 

 

Table 4 The relationship between aspects of illicit drug use and source and item memory performance. 

 

*** p<.001; ** p<.01; * p<.05 † p<.10 two tailed  

 

 

  

 Mean SD n Zero-Order Correlation with: 
Source Memory Component SDT Measures 

    Position List Case D Prime Criterion 
         
Alcohol         

Units per week 13.11 10.61 125 .005 -.090 -.026 .062 .016 
Recent use (units, 
previous 10 days) 

18.27 16.10 108 -.032 -.041 .095 .000 .000 

Length of Use (weeks) 353.74 167.24 124 -.057 -.144 -.059 -.056 -.100 
Illicit Drugs         

Total Prior Consumption           
Cannabis (joints) 1119.18 2384.65 78 -.093 -.099 -.007 -.053 .079 
Cocaine (lines) 601.52 1123.45 44 -.008 -.110 .158 .022 -.095 
Ecstasy (tablets) 696.75 2205.02 58 .018 -.176 .238(†) .030 .183 

Long-Term Average Dose 
per Session 

          

Cannabis (joints) 2.23 1.55 78 -.171 -.093 -.154 -.049 -.063 
Cocaine (lines) 6.37 7.56 44 .000 -.050 .051 .010 .003 
Ecstasy (tablets) 2.76 2.37 58 -.080 -.340** .133 .071 .081 

Current Frequency of 
Use (times per week) 

        

Cannabis 2.09 7.05 85 -.202† .176 -.101 -.004 .066 
Cocaine 0.40 0.77 50 .171 -..529*** -.347* -.300* .119 
Ecstasy 0.22 0.42 63 -.125 -.105 .012 -.172 .076 

Amount Consumed in 
Previous 10 days 

        

Cannabis (joints) 2.94 10.41 90 -.011 .007 .049 .017 -.006 
Cocaine (lines) 2.19 5.64 54 .044 -.300* .142 .133 .132 
Ecstasy (tablets) 0.43 1.72 63 -.019 -.033 .075 -.004 .143 

Weeks Since Last Use         
Cannabis 45.10 75.99 88 -.050 -.034 .114 .050 .060 
Cocaine 27.25 54.09 53 .359** .253† .350* .223 .216 
Ecstasy 51.65 74.23 63 .242† .155 .116 .151 -.032 
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