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Abstract 

This study looked at the effects of platelet-activating factor (PAF) on rat isolated lung 

strips and tracheal spirals. Previous studies have shown that PAF induces 

hyperresponsiveness to the contractile effects of acetyicholine (ACh) and 5-

hydroxytryptamine (5-HT) in rat isolated tracheal spirals. In this study it was hoped that 

previous experiments on tracheal spirals could be repeated and then be extended to 

investigate similar responses in lung tissue. It would then be possible to make a direct 

comparison between the effects of PAP on the larger airways with the effects of PAF on 

the smaller airways. 

It has also been observed in previous studies that PAP induces a desensitization of its 

receptors to the bronchoconstrictor effects of PAF. This study looked at whether this PAF 

receptor desensitization occurred in rat isolated airway tissue. This was done by adding 

PAP to tissue preparations and observing its effects on the tissues, then adding a 

subsequent dose of PAP to see if responses were repeated. With the use of inhibitors of 

protein kinase C (sphingosine), phospholipase A2 (AACOCF3) and lipoxygenase 

(MK886) which have all been implicated as mediating the actions of PAF, it was possible 

to determine possible mechanisms responsible for the desensitization of PAP receptors. 

This was done by introducing these inhibitors into the experimental protocol before 

addition of PAF and then removing them before subsequent addition of PAP. One theory 

behind PAP receptor desensitization is receptor internalisation, and this was investigated 

with the use of an iminunofluorescence (IF) technique. This IF technique was then 
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developed to investigate the possibility of eosinophils entering lung tissue as a result of 

the method of killing the animal. 

In this study hyperresponsiveness of tracheal and lung tissue to the contractile effects of 

ACh and 5-HT in response to PAF receptor activation was not observed. Desensitization 

of tissues to the bronchoconstrictor effects of PAF was however observed. The use of IF 

technique indicated that in the case of rat isolated airway tissue, receptor intemalisation 

was not responsible for PAF receptor desensitization. The use of MK886 indicated that 

desensitization was also not the result of leukotriene production, whilst the use of 

sphingosine indicated that protein kinase C activation was not responsible for 

desensitization. The results suggested that desensitization of tissues to the effects of PAF 

after an initial PAF application was the result of arachidonic acid production or, more 

likely, either down-regulation of receptors or receptor/G-proteinleffector uncoupling after 

phospholipase A2 activation. 
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Chapter 1 

Introduction 

1.1 General 

This study investigated the effects of platelet activating factor (PAF) on the airways. PAP 

is secreted from the airways in asthmatics (Chung and Barnes, 1991) and it has been 

suggested in previous work, that it causes bronchoconstriction and may make the airways 

hyperresponsive to neurotransmitters such as acetylcholine (ACh) and to 5-

hydroxytryptamine (5-HI) (Warhurst & Court, 1996). As asthma is a disease 

characterised by airway inflammation, excessive airway secretions and 

bronchoconstriction, anything causing bronchoconstriction and making the airways more 

responsive to neurotransmitters, must be treated as a potential major contributor to the 

symptoms of the disease. It was for this reason that the contractile response of PAP per se 

was investigated along with the effects of PAP on the contractile response induced by 

ACh and 5-HT. 

1.2 History of PAF and Discovery of Structure 

In 1970, a soluble factor was released from leukocytes, which caused platelets to 

aggregate (Henson, 1970). This substance was found in another study (Benveniste a al., 

1972) and was shown to be a polar lipid. The substance was named platelet-activating 

factor (PAF). At around the same time, other research described an antihypertensive polar 

renal lipid (APRL) produced in the renal medulla (Muirhead et al., 1977). By 1979, 

enough evidence had been accumulated to conclude that PAP and APRL were 

structurally identical (see figure 1); 1-0-alkyl-2-acetyl-sn-glycerol-3-phosphocholine 
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(Demopoulos 	ci al., 	1979). 	Shortly 	afterwards 	another phospholipid, 

acetylglyceryletherphosphoryicholine (AGEPC) with the same chemical and biological 

properties as PAF was synthesized (Hanahan ci al., 1980). Subsequently, PAF, APRL 

and AGEPC were all found to be exactly the same (Polonsky et al., 1980). 

CHr-43—(CH2)--- CH3 

CH3—C—O—C—H 0 	 CH3 

	

•I1 	 II 	 I 

	

0 	CHr—O--P--O-- CHr— CHr—N— CH3 

	

0 	 CH3 
Figure. 1 Platelet-activating factor. 
Wherez= 11-17 

1.3 PAF Synthesis 

There are two metabolic pathways involved in the biosynthesis of PAF, the remodelling 

and the de novo pathways (see figure 2). In the remodelling pathway, PAF is synthesized 

from its substrate in two steps (Chilton ci al., 1984). The first step involves the action of 

phospholipase A2 (PLA2), with the formation of lyso-PAF and arachidonic acid (AA). In 

some cells (e.g. eosinophils) this reaction represents a major source of AA that is 

metabolized to thromboxanes, prostaglandins and leukotrienes. In the second step, lyso-

PAF is acetylated by acetyl coenzyme A, in a reaction catalysed by lyso-PAF 

acetyltransferase, to form PAR Both the phospholipase and acetyl transferase are 

dependent on Ca2  (Hanahan, 1986., and Snyder, 1989). The inactivation of PAF also 

occurs in two steps (Chilton ci al., 1983). Initially, the acetyl group of PAF is removed by 

PAF acetyihydrolase to form lyso-PAF which is present in both cells and plasma. This 
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lyso-PAF is then converted to a 1-0-alkyl-2-acyl-glycerophosphocholine by an 

acetyltransferase in a step inhibited by Ca 2t 

l-o-Alk)I-2-acetyl-sn-giyceml 
QP-dtirr 	

0 Oç-R 
0 

Qidinq&sp#annewse 	II 
o-c.oç 

10-H 

l-aAJk1-2-atyI-sg1yvatJ-3jt,ç&drine 
(jtidet-athvating fa&ta) 

( 1°Y \ CaASH 

ketyltmnsferace 	0-C - 	 AcetyIIdrthre 

p -dj. 

I-0-AIk}1-2-bso-sn-gIycad-3-jfrliodrAh1e (Lyso- PAF) 

0-Q{2-R 	 10-H 
Andñdañc 	 I 	I 	Ms17o-axygMoa 	 sn.Qycrio-3- 
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ThosphdirnseA2 	 Andñdciñc add 
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r 0-012-R 
0- 
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Figure 2. The& noa'o synthesis aixi renodelling metabolic patiways of PAF. ((iwo and Otsai, 1993) 

R and R' = fatty acids 	= Phosphate group 

1.4 Cells Producing PAF 

PAF is a phospholipid produced by alveolar macrophages, endothelial cells and 

granulocytes, especially blood basophils, after appropriate stimulation (Kingsnorth, 

a 

I 
8 
I 

I 
I 

a 

1996). PAP is an important proinflammatory mediator which causes microvascular 



leakage, vasodjlation, contraction of smooth muscle, activation of many cell types and 

plays an important role in allergic disorders, inflammation and endotoxic shock 

(Kingsnorth, 1996). PAF is released in acute asthma, and may be a mediator of antigen-

induced airway obstruction (Henson & Pinckard, 1977). 

1.5 PAF and Hyperresponsiveness of Smooth Muscle 

PAF has been shown to cause hyperresponsiveness of airway smooth muscle to 

methacholine in humans (Cuss et al., 1986), hyperresponsiveness has been observed in 

guinea pig airways (Yukawa et al, 1989) and an enhanced response to stimuli was 

observed in rabbit platelets pretreated with PAF (Henson, 1976). Kelly et al (1989) found 

PAP in bronchoalveolar lavage (BAL) fluid from some asthmatics. This and the finding 

that stools from patients suffering from Crohns disease contained increased quantities of 

PAP (Denizot et al., 1991) suggest that PAY has a role in human disease states. In each 

case it was suggested that the PAF was associated with the inflammation present. This 

study therefore used lung tissue for subsequent investigation. 

1.6 PAF Induced Bronchoconstriction via Protein Kinase C 

Previous work (Berridge, 1987., and Nishizuka, 1986) has suggested that one way in 

which PAY may affect bronchoconstriction is via a G-protein leading to the activation of 

protein kinase C (PKC). Following activation of the PAY receptor, a number of processes 

are thggered via a 0-protein linked cell surface receptor (Braquet et al, 1987). These 

include; the activation of phospholipase A2 (PLA2) leading to arachidonic acid (AA) 

release (Chao and Olson, 1993); and the production of diacylglycerol (DAG) and inositol 
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1,4,5-tris-phosphate (IF3). 1P3 leads to an increase in cytosolic Ca 2t and DAG in the 

presence of this calcium activates protein kinase C (PKC) which leads to cell activation 

(Henderson, 1991). 

1.7 PAF Induced Bronchoconstriction via Phospholipase A 2  

Following PLA2 activationm, AA is released and is then broken down by either 

cyclooxygenase to form prostaglandins and thromboxanes, or by lipoxygenase, to form 

leukotrienes. Eicosanoids (breakdown products of AA) may therefore function as 

extracellular mediators of the effects of PAF. Thromboxane A2 has been shown to be a 

potent vasoconstrictor, and has been shown to cause constriction in vascular smooth 

muscle (Bhagwat et al, 1985). Some prostaglandins (PGF's and PGD2) have also been 

shown to cause constriction in smooth muscle although other prostaglandins (PGE1 and 

PGE2) have been shown to relax airway smooth muscle (Spannhake et al, 1981). 

Leukotrienes C4 (LTC4), D4 (LTD4) and E4 (LTE4) are extremely potent 

bronchoconstrictors in many species including man (Piper, 1984). They act principally on 

smooth muscle in peripheral airways, and LTC4 and LTD4 are at least 1000 times more 

potent than histamine in vitro and in vivo (Dahlen et al., 1980). In this study, the effects 

of leukotrienes as brochoconstrictors were investigated as rat airways were used. 

Previous studies have shown PAF to have its contractile effect in the airways .via 

leukotrienes in the rat (Voelkel et al., 1982). Furthermore, the cysteinyl leukotrienes have 

already been implicated in the pathogenesis of asthma (md, 1996). 



1.8 Formation of Leukotrienes 

PAF stimulates phospholipase A2 (PLA2) which causes the release of lyso-PAF which 

can be used in the generation of PAF. AA is commonly also generated as it is often the 

acyl grouping removed from the precursor during lyso-PAF generation. This AA can then 

be used to produce LT's. The enzyme 5-lipoxygenase uses AA and lyso-PAF to produce 

leukotrienes and bring about contraction as follows: 5-lipoxygenase in the presence of 

Ca2  is translocated from a site within the cell to the nuclear envelope where it is fully 

activated by 5-lipoxygenase-activating protein (FLAP) (Henderson, 1991). FLAP 

facilitates the transfer of AA from the membrane phospholipase to 5-lipoxygenase. The 

expression of 5-lipoxygenase and FLAP is required in cells to catalyze the oxygenation 

of arachidonic acid generating 5-hydroperoxyeicosatetraenoic acid (5-HPETE), the key 

intermediate in the formation of leukotrienes. After 5-11PETE proton abstraction and 

dehydration leukotriene A4 (LTA4) is formed in a reaction, also catalyzed by 5-

lipoxygenase (Samuelsson et al., 1987). LTA4, AA, and glutathione (glutathione only 

used for LTC4) are then converted by LTA4 hydroxylase or LTC4 synthase, to produce 

either leukotriene B4 (LTB4), or LTC4. LTC4 is then converted by the actions of enzymes 

cleaving glutamic acid and glycine to form leukotrienes D4 and Es (Henderson, 1991). In 

human isolated bronchus preparations, LTC4 and LTD4 have proven to be extremely 

potent at causing smooth muscle contraction (Dahlen, S-E et al., 1980). There are two 

classes of receptor for leukotrienes, leukotriene B (BLT) receptors and cyteinyl (CysLT) 

receptors. There are two groups of CysLT receptors, which are CysLT1 and CysLT2 

receptors. CysLT1 receptors can be blocked by known antagonists whilst CysLT2 



receptors cannot (md, 1996). In airway tissue, LTC4, LTD4 and LTE4 all activate CysLT1 

receptors, which in turn brings about bronchoconstriction. 

1.9 PAF and Eosinophlls 

Airway hyperresponsiveness in asthma has been linked to eosinophilic inflammation in 

the airways (Gleich et al. 1988), and the increased responsiveness seen after exposure to 

PAY may be a result of the ability of PAF to induce eosinophil infiltration and activation. 

Activation of eosinophils by PAY results in a rapid rise in intracellular calcium followed 

by the release of enzymes such as eosinophil peroxidase and cyclooxygenase (Kroegel et 

al., 1988 and 1989). PAY also induces the formation of hypodense eosinophils, which are 

found in asthma, by degranulating them (Yukawa et al., 1989). The mechanism by which 

PAF leads to degranulation appears to involve the entry of Ca 2  via receptor-operated 

channels and stimulation of phosphoinositide hydrolysis to release Ca 2  from intracellular 

stores (Yukawa et al., 1989). Activated eosinophils appear to cause shedding of ciliated 

epithelium, as is seen in asthma, via the release of eosinophil peroxidase and basic 

proteins (Yukawa et gil., 1990). Epithelial damage may lead to bronchial 

hyperresponsiveness in a number of ways. These include the loss of an epithelial-derived 

relaxant factor, the activation of exposed airway sensory nerves by mediators, the 

production of inflammatory mediators or the loss of enzymes such as neutral 

endopeptidase which degrades bronchoconstrictor peptides (Cuss and Barnes, 1987). 
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1.10 Structure of the Airways 

(0) 

Figure, 3. Organisation of the respiratory system. A) Indicates the positioning of the 
trachea and lungs in the body and gives some indication of the small size of the 
alveoli, and hence how many there are. B) Shows in detail the structure of the 
bronchioles and alveoli that make up the vast majority of the lungs. (Vander, et at, 
1994). 

The human respiratory system is made up of two lungs, each divided into several lobes 

and the airways that lead to them. The lungs consist mainly of millions of tiny air sacs 

called alveoli, through which gas exchange with the blood occurs. The airways are the 

tubes through which air flows between the alveoli and the external environment. Air 

entering the lungs passes first through the phaiynx (throat), then through the larynx, 

trachea, bronchi (one of which enters each lung), bronchioles, terminal bronchioles, 

respiratory bronchioles, alveolar ducts and finally the alveolar sacs (see figure 3). The 

walls of the trachea and main bronchi contain supportive cartilage, giving them shape. 

The bronchioles begin where this cartilage stops (Horsfield, 1974). 
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1.11 Innervation of the Airways 

The walls of the airways contain smooth muscle cells, which are innervated by autonomic 

neurons. These autonomic neurons are further broken down into the sympathetic and 

parasympathetic divisions. The sympathetic nervous system brings about relaxation in the 

lungs, whilst the parasympathetic brings about contraction. Both systems stimulate 

airway secretion. The parasympathetic nervous system has nerve endings in the 

epithelium which respond to a variety of mechanical and chemical stimulus. These 

receptors are responsible for the reflex actions to inhaled irritants and to some respiratory 

disease processes such as asthma (Widdecombe, 1982). Stimulation of these receptors 

may cause changes in breathing including defensive reflexes, airway mucus secretion or 

changes in airway calibre. 

1.12 Neurotransmitters in the Airways 

In both parasympathetic and sympathetic nervous systems, the major neurotransmitter 

between pre and post-ganglionic fibres is acetylcholine (ACh). The major neurotranmitter 

between the postganglionic fibres and effector cells in the parasympathetic nervous 

system is ACh, and in the sympathetic nervous system, noradrenaline (NA). The ACII 

receptors in all smooth muscle, such as that which makes up the respiratory system, are 

muscarinic receptors (van der Velden and Hulsmann, 1999). Smooth muscle is also 

sensitive to certain other neurotransmitters such as 5-hydroxytryptamine, (5-HT) (Bums 

and Doe, 1978). 



1.12.1 Acetylcholine 

Acetyicholine (ACh) is made up from choline and acetyl coenzyme A in the cytoplasm of 

synaptic terminals and is stored in synaptic vesicles. From here it is released to activate 

receptors on the postsynaptic membrane which in turn activates effector cells and brings 

about muscle contraction. The concentration of ACh at the postsynaptic membrane is 

reduced (stopping receptor activation) by the enzyme acetylcholinesterase, releasing 

choline to be transported back into axon terminals for the production of new ACh 

(Andersson and Grundstrom, 1987). ACh will be used in this study as it has been shown 

to markedly contract rat isolated airways (Akcasu, 1952). 

1.12.2 5-Hydroxytryptamine 

The biogenic amines are neurotransmitters synthesized from amino acids. The most 

common neurotransmitters of this type are dopamine, NA, histamine and 5-

hydroxytryptamine (541T). 5-HT is produced from tryptophan, and is metabolised by 

monoamine oxidase. Its effects generally have a slow onset, suggesting that it may act as 

a neuromodulator (Bums and Doe, 1978). In general 5-HT has an excitatory effect on the 

efferent nerve pathways involved in smooth muscle contraction (Hahn, 1986). 5-HT will 

be used in this study as it has previously been shown to produce contractions in rat 

isolated airway preparations (Bums and Doe, 1978) whilst other nurotransmitters such 

as histamine have been found to be ineffective in rat isolated airway preparations 

(Akcasu, 1952). 
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1.13 Asthma 

Asthma is a common condition affecting approximately 5% of the adult population and 

over 10% of children in the western world. Asthma is an example of a chronic airway 

disease. It is a disorder in which airway inflammation, excessive airway secretions and 

bronchoconstriction increase airway resistance, impairing ventilation. It is airway 

inflammation which causes smooth muscle to become hyperresponsive, making it 

contract strongly in cases of, for example, exercise, stress, extreme temperatures or 

exposure to respiratory irritants (Lemanske and Busse, 1997). This additional resistance 

in the airways is overcome by increasing inspiratory effort with the use of muscular 

contraction, forcing gasses out of the lung. The result of the increased resistance is 

however, a decreased respiratory reserve, hence the oxygen content of alveolar gas and of 

the blood decreases, whilst carbon dioxide levels increase. This makes physical exertion 

more difficult, including the muscular contraction needed to increase inspiratory effort 

(Leff, 1982). 

1.14 Mast Cells in Asthma 

Increased levels of mast cells in the lung in the late phase asthmatic response alongside 

increased levels of specific mast cell derived mediators in bronchoalveolar lavage fluid in 

patients with asthma (Bingham and Austen, 2000) implicate the mast cell in the 

pathogenesis of asthma. The mast cell may respond to activating stimuli through its 

receptors for immunoglobulins and various polypeptide ligands. In response to these 

activating stimuli, which may be derived from other cells in the environment, the mast 

cell exocytoses pre-formed mediators stored in secretory granules and synthesises 
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substantial quantities of newly formed lipid mediators including PAF, from membrane 

phospholipid-derived substrate (Bingham and Austen, 2000). This mast cell derived PAF 

along with other mediators, interacts with other cells such as eosinophils to increase 

vascular permeability, cause bronchoconstriction, increase airway mucus secretion and 

recruit other cells into the site to amplify the inflammatory response (Clifton et al., 2000). 

1.15 PAF in Asthma 

Early reports on the causes of asthma found a significant drop in the platelet count after 

an allergen provocation in sensitive patients (food, inhalents or drugs), which was 

transient (Pohle and Cohen, 1947). It was shown that this could in part be due to the 

release of platelet-activating factor (PAF) in the lung followed by a transient platelet 

pooling in the pulmonary circulation and the desensitization of platelets to PAF (Beer et 

al., 1995). The early asthmatic response results in PAF release, and raised levels of 

leukotrienes are detected in tissues and fluids from asthmatic patients compared with 

normal individuals (Sampson et al, 1992). 

PAF is released in acute asthma and may be a mediator of antigen-induced airway 

obstruction (Henson and Pinckard, 1977). PAF is not stored in cells but is synthesised by 

inflammatory cells such as macrophages, eosinophils and platelets in response to 

stimulation (Pinckard et al., 1982). Observations suggesting a role for PAF in asthma 

include; i) PAF is a potent activator of inflammatory cells including eosinophils (Kroegel 

et al., 1989) and platelets (Kloprogge and Akkerman, 1984); ii) infusion of PAF to 

laboratory animals induces bronchoconstriction, which resembles the pathological 
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features of asthma (Maridonneau-Parini et al., 1985); iii) inhalation of PAF by normal 

subjects as well as patients with mild asthma induces an immediate bronchoconstrictive 

response and may stimulate the airways to non-specific stimuli such as methacholine 

(Cuss a al., 1986); and iv) a deficiency in PAF acetylhydrolase, which rapidly inactivates 

PAF in plasma, closely correlates with the severity of asthma in children (Miwa a al., 

1988). 

1.16 Tissues Used 

Using lung and tracheal tissue in this investigation will allow the results to be used as a 

closer comparison to the effects of PAF in asthmatic lung tissue, which may have some 

bearing on asthma. No attempt was made however to mimic an asthmatic state. Rat tissue 

was used in this investigation, the reason for which is that in for example the guinea pig, 

IgO is the primary antibody responsible for mediating anaphylactic bronchoconstriction. 

In the rat however, as in man, allergic bronchoconstriction is mediated primarily through 

antigen combining with IgE (Lulich and Paterson, 1980). As stated earlier, human lungs 

are each divided into several lobes, in rats the lungs are divided into four lobes, with the 

left lung being undivided. 

Rat isolated lung and tracheal tissue was used because; 

a) it has been shown to express the PAF-receptor gene (Bito etal., 1994); 

b) rat lungs have been shown to release lipid mediators which more closely resemble 

the release pattern observed from human lung than other animal models appear to 

release (Voelkel et al., 1985); 
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c) previous work undertalcen in this Department using rat isolated lung tissue 

enables a comparison of the initial data and provides expertise in a number of the 

techniques which will be required to be used. 

1.17 PAF and Desensitization of Smooth Muscle to PAF 

Previous work has also suggested that PAF causes various tissues to become desensitized 

to the effects of PAF after an initial application; guinea pig ileaJ smooth muscle (Findlay 

ci al., 1981), rat stomach fundus (Levy, 1987) and rat vascular smooth muscle cells 

(Schwertschlag & Whorton, 1988). Consequently this study was used to confirm the 

desensitizing action of PAF on airway smooth muscle and to investigate the mechanism 

through which PAF induced this selective desensitization. 

Beer et al., 1995, showed that PAY receptors become desensitized to the effects of PAY 

after an initial application as demonstrated by the desensitization of platelets in asthmatic 

patients (Beer ci al., 1995 and Chesney ci al., 1985). Desensitization has also been 

demonstrated in rabbit platelets (Henson, 1976), rat mesenteric arterial bed (Kamata ci 

al., 1996) and guinea pig lung (Honda et aL, 1991). A number of mechanisms have been 

suggested as being responsible for this desensitization (Kamata ci al., 1993). 

This study will therefore look at whether desensitization to PAY after an initial exposure 

occurs in the airways, and if so what mechanisms may be involved. Ligand-induced 

desensitization can be divided into two categories: agonist-specific (homologous) 

desensitization or agonist non-specific (heterologous) desensitization. Homologous 
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desensitization is where only the subsequent response to the desensitising drug is 

affected, whilst the effects of other drugs are not affected. Heterologous desensitization is 

where the effects of the desensitising drug and other drugs are affected (Sibley et til., 

1987). PAF induced desensitization has previously been found to be of the homologous 

type (Kamata et al., 1996), a finding which was confirmed in this study. 

1.18 Desensitization as a Result of Protein Kinase C Activation 

As mentioned earlier, there are a number of theories for the mechanisms of PAF 

desensitization although which is correct is not currently understood. In a study into the 

effects of PAF on the contractile response in rat stomach fundus (Kamata et aL, 1993) it 

was suggested that activation of protein kinase C leads to receptor phosphorylation and 

desensitization. This is supported by other work which looked at the role of PKC and 

receptor function in rabbit iris smooth muscle (Abdel-Latif a al., 1986). If this were the 

case, mechanisms resulting in desensitization could involve direct phosophorylation of 

receptors (Sibley a al., 1987), inactivation of the receptor-phospholipase link (Smith a 

al., 1987) or direct interference with Ca 2  channels (Galizzi a al., 1987). Studies with 

rabbit platelets however, showed that protein kinase C is not involved in PAF 

desensitization (Shimizu a al., 1992). They showed that responses produced by 1P3 

remained unchanged before and after PAF application. It was also shown by Nakamura a 

al., 1991, that protein kinase C was not involved in the desensitization of the platelet-

activating.factor receptor in rabbit platelets. 
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1.19 Desensitization as a Result of Receptor/G-ProteinIEffector 
Uncoupling 

It was therefore suggested that desensitization could be the result of down-regulation of 

the receptor, or to the impairment of receptor/G-proteinleffector coupling, but not of 

depletion of the Ca2  store (Nakamura a al., 1991). The theory of 0-protein uncoupling 

being responsible for the desensitization of PAF receptors is supported by the work of 

Kamata et al, (1996). G-proteins become dissociated from the PAF receptor when PAF 

binds to the receptor causing GTP to bind to an a-subunit of the G-protein, activating the 

0-protein. The 0-protein then dissociates from the receptor, causing the affinity of the 

receptor for the agonist to be reduced, and the a-subunit to be released (Kurose a al., 

1983). These a-subunits can activate or inhibit a number of processes (Dolphin, 1987), in 

this case inhibiting the effects of PAF. This theory is supported by another study in which 

desensitization of human platelets by platelet-activating factor was demonstrated, 

concluding that decreased affinity of the high affinity site was responsible for 

desensitization (Chesney et al., 1985). 

1.20 Desensitization as a Result of Receptor Internalisation 

Another study however (Kloprogge and Akkerman, 1984) involving rabbit platelets 

showed that when cells came into contact with PAF, PAF was immediately internalised. 

PAF receptor intemalisation in washed rabbit platelets was also observed by Hornma et 

al., (1987). A study into bronchoconstriction caused by PAF in the airways of asthmatic 

patients also concluded that desensitization of the airways to the effects of PAF was the 

result of a decrease in accessible PAF receptors (Burgers a al., 1993), which could be an 
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indication of PAY receptor internalisation. This study investigated the possibility of 

receptor internalisation by using immunofluorescence to label the receptors and 

determine whether an initial application of PAF resulted in reduced PAF binding on a 

subsequent addition. 

1.21 Scope of Study & Aims 

As described at the beginning of this chapter, this study looked at the effects of PAF in 

the airways. The effects studied were hyperresponsiveness to ACh and 5-HT, the 

contractile effects of PAF itself on the airways and desensitization of the airways to the 

effects of PAF after an initial contact. The study used rat isolated lung strip and tracheal 

spiral preparations, and inhibitors of protein kinase C, lipoxygenase and phospholipase 

A2 to investigate the the possible mechanisms by which PAF has its effects. 

Immunofluorescence was used to localise PAF receptors within the tissues after initial 

and repeated PAF applications in order to try and determine any movement of the 

receptors (internalisation) and hence determine possible mechanisms behind 

desensitization (see chapter 3). 

This study utilised rat isolated tracheal spirals and lung strips to compare the responses in 

the two situations. This enabled a comparison of effects in the larger and smaller airways. 

Thus in each case the following were investigated: 

• The effects of PAY to cause contraction and the selective desensitization induced 

by PAF to PAR 

• The effect of PAF on the contractile response to ACh and 5-HT. 
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Receptor internalisation. 

• Whether inhibitors prevent desensitization. 
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Chapter 2 

Effect of PAF per se on the responsiveness of rat isolated lung strip and 
tracheal spiral to 5-HT and ACh. 

2.1 Introduction 

In this study, lung strip preparations were used (as described by Lulich et al., 1976) for 

they allow the direct investigation of drugs on the small airways of the respiratory 

system. The larger airways of the respiratory system are investigated using tracheal 

spirals (as described by Orehek et al., 1975) as this method allows larger sections of 

tissue to remain intact than other methods such as tracheal rings. Using both tracheal 

spirals and lung strips, an exploration was possible for any differences in the 

responsiveness of the smaller and larger airways. 

Previous work has shown that PAF will induce bronchoconsti -icijon in rabbits (Pinckard 

et al., 1982), guinea-pigs (Vargaftig etal., 1980), baboons (Denjean et al., 1981), humans 

(Cuss et al., 1986) and rats (Voelkel et al., 1982). This study will utilise rat trachea and 

lung strip preparations to investigate the PAF induced bronchoconstriction and whether 

PAF does selectively desensitize to PAF in these tissues. 

In addition to the bronchoconstrictor properties, PAF has also been reported to increase 

the responsiveness of the lungs to the actions of other bronchoconstrictor agents. This 

increased responsiveness has been described for guinea-pig lungs (Mazzoni et al., 1985; 

Chung et al., 1986), sheep lungs (Christman et al., 1987) and rat trachea (Warhurst & 
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Court, 1996). This study was designed to allow a comparison with the earlier studies 

using rat trachea and to extend the investigation with the lung strip preparations. 

Thus this part of the study was to investigate the effects of PAP on the responsiveness of 

rat isolated lung strips and tracheal spirals to ACh and 5-HT. 

In order to determine any changes in the tissues responses to exogenous agonists, 

following initial controls with ACh and 5-HT the responses to these agents were then 

determined in the presence of PAF. Once washed the tissue was exposed to a second 

addition of PAP and the protocol repeated. This would reveal whether the tissue was; 

firstly selectively desensitized to PAP; and secondly whether there was any difference in 

the responsiveness to 5-HT and ACh in this PAF pre-treated tissue. 
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2.2 Methods 

2.2.1 Tissue Preparation 

Male and female Sprague Dawley rats weighing between 250-300g were used throughout 

this study. Each animal was killed by stunning and bleeding, and lungs and trachea 

immediately removed and placed into Greenberg-Bohr buffer of the following 

composition (mM); NaCl, 118.9; KCI, 4.6; KH2PO4, 1.17; MgSO4.6H20, 1.1; NaHCO3, 

16.9; Glucose, 6.0; Sucrose, 49.9; CaCl2, 2.1, and 0.25% (w/v) bovine serum albumin 

(GBB-BSA). The buffer was maintained at 37°C and gassed with 95% oxygen, 5% 

carbon dioxide. 

2.2.2 Pharmacological Preparation 

Tracheal sections cut from between the larynx and main bronchi, and prepared as tracheal 

spirals (Tian et al., 1997) and lung strips (Lopez et al., 1998) of approximately 15mm 

long, were prepared in duplicate and suspended under 0.25g tension in GBB-BSA in 

lOmI organ baths. Isotonic responses were recorded using an isotonic displacement 

transducer (Harvard Isotonic Transducer) and a Harvard Student Oscillograph with a pre-

amplifier (Harvard Freestanding Transducer Amplifier). Preparations were equilibrated 

for 60 min prior to addition of test agents. 

Following completion of the series of experiments, the wet weights of all tissues were 

taken so that calculation of mm contraction per mg wet weight of tissue could be made. 
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2.2.3 Study 1 Effects of ACh and 5-HT on rat isolated tracheal spirals 
and lung strips 

Cumulative dffects of ACh were determined for each tracheal spiral and lung strip 

preparation, (mM - 1mM) and (10j.M - 3mM) respectively. Each increase in ACh 

concentration was Log 0.5. The effect of each addition was confirmed as maximal prior 

to the application of the subsequent ACh concentration. Following the removal of ACh 

by washing, tissues were allowed to relax to their original baseline tensions and 

equilibrated for 30 min prior to the addition of further agents (four ACh concentration 

effect curves in total were performed on each individual tissue preparation). 

Before each of the following three ACh concentration effect curves were performed, the 

effects of single doses of 5-HT (30 jiM) were determined on one of each type of tissue 

preparation, with a contact time of 18 mm. A concentration of 30 jiM was chosen as this 

had been found• to produce optimal tissue responses in previous work within this 

laboratory (Warhurst & Court, 1996). For other preparations of each tissue type, ascorbic 

acid (2.8 jiM) was used to act as a solvent matched control against the 5-FiT. 

After each ACh concentration effect curve had been performed, tissues were washed, and 

once returned to baseline, equilibrated for 30 Sn prior to the addition of further agents. 
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2.2.4 Study 2 Effects of PAF per se on responses to ACh and 5-HT 

Four ACh concentration effect curves in total were performed on each individual tissue 

preparation. The initial two ACh concentration effect curves were performed as in 2.2.3, 

initially with ACh alone, and then following after ajplication of either 5-HT or ascorbic 

acid. 

Before the third and fourth curves were performed, tissues were allowed 30 mm 

equilibration after returning to baseline. The effects of single doses of PAF (1sM) were 

then determined for each preparation using a contact time of 3 mm. The effects of 5-HI 

(30.tM) were then determined with contact times of 15 min before the addition of AOL 

After ACh concentration effect curves had been performed, tissue preparations were 

washed and, once returned to baseline, equilibrated for 30 mm. To control tissues 

ascorbic acid (2.8 jiM) was added in place of the 5-HT. 

2.2.5 Statistical Analysis of Results 

Results from the pharmacological study were compared to their controls using a one way 

ANOVA (analysis of variance). A Tukey family error rate of 0.05 was used and p values 

of less than 0.05 were taken as indicating a significant difference. The Tukey test is a 

post-hoc multiple comparison repeated measures test. It allows statistical comparisons to 

be made between the means of each population, taking into account the individual values 

that are used to calculate the means. The statistical package 'MINIIAB' was used for the 

statistical analysis. 
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2.3 Results 

2.3.1 Study 1 Effects of ACh and S-HT on rat isolated tracheal spirals 
and lung strips 

ACh produced a concentration-dependent contraction of both the trachea and Jung strip 

preparations. The repeated concentration effect curves given by tracheal spirals following 

cumulative addition of ACh in the presence of either 5-HT or ascorbic acid are shown in 

figures 4 and 5 respectively. There were no significant differences between the 

concentration-effect curves to ACh obtained in the presence of 5-HT and those obtained 

in the presence of ascorbic acid. This indicated that 5-HT was not causing increased 

responsiveness to ACh. 

The repeated concentration effect curves given by lung strips after cumulative addition of 

ACh in the presence of either 5-HT or ascorbic acid are shown in figures 6 and 7 

respectively. Again, no significant differences occurred between the responses obtained 

after addition of 5-HT and those given in the presence of ascorbic acid. 

5-HT contracted both the trachea and lung strip of the rat. The effects of the repeated 

additions of 5-HT on the trachea and on the lung strip are shown in figures 8 and 9. A 

decline in the responses of both tissues to 5-HT was evident with subsequent 5-HT 

additions. In the trachea, this decline reached statistical significance between the first and 

third responses (p = 0.02 ANOVA). However, lung strip responses failed to reach 

statistical significance. 
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Fig. 4 Repeated ACh concentration effect curves on rat isolated tracheal spirals. 
Curve 1, ACh alone; Curve 2, with I 'st addition of 5-HT; Curve 3, 2'nd 5-HT additioi 

Curve 4, 3rd 5-lIT. Values expressed as mean ± S. E. M., n=4 
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Fig. 5 Repeated ACh concentration effect curves on rat isolated tracheal spirals. 
Curve 1, ACh alone; Curve 2, with 1st addition of ascorbic acid (aa); Curve 3,2nd at  

addition; Curve 4, 3rd aa. Values expressed as mean ± S. F. M., n=4 
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Fig. 6 Repeated ACII concentration effect curves on rat isolated lung strips. 
Curve 1, ACh alone; Curve 2, with I 'st addition of 5-HT; Curve 3, 2'nd 5-liT additio, 
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Fig. 7 Repeated ACII concentration effect curves on rat isolated lung strips. 
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Fig. 9 Repeated 5-HT induced contractions in rat isolated lung strips. 
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(Values expressed as mean ± S. F.M., n=4). 
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2.3.2 Study 2 Effects of PAF per se on responses to ACII and 5-HT 

The repeated concentration effect curves given by tracheal spirals on the cumulative 

addition of ACh in the presence of either PAF and 5-HT, or PAF and ascorbic acid are 

shown in figures 10 and 11 respectively. Significant differences (p ~ 0.05) occurred 

between the ACh curves performed after one PAF application with 5-HT (see fig. 10), 

and its control. The responses to ACh were significantly higher in the tissues that had 

received 5-HT, this appeared to be due mainly to the 5-HT partially contracting the tissue 

thus giving an artificially high baseline which gave an apparent increase in ACh 

responsiveness (as measured from the baseline prior to 5-HT addition). 

Figures 12 and 13 show repeated ACh concentration effect curves given by lung strips on 

the cumulative addition of ACh in the presence of either 5-HT (figure 12), or ascorbic 

acid (figure 13). There were no statistically significant differences between the results 

obtained in the presence of either 5-HT or ascorbic acid. Lung strips are not ideal tissues 

to use due to the massive variability in the contractility and the small responses given by 

the tissue. 

No hyperresponsiveness to ACh was observed with the tracheal spiral preparations in the 

presence of PAF. Though, in the lung strips, where 5-HT was present, a first addition of 

PAF did effect some hyperresponsiveness to ACh (figure 12), although this did not reach 

statistical significance. - Hyperresponsiveness was not observed in the presence of the 

second PAF addition. 



Tracheal contractions following repeated additions of 5-HT in the presence of PAF 

compared to repeated additions of 5-HT alone are seen in figure 14. PAF had no effect 

upon the actions of 5-HT, and no statistical differences were found between the results 

obtained in the presence of PAF and relevant controls. Similar results for the lung strip 

were recorded (figure 16), and no significant differences were found between 

contractions. 

Figures 15 and 17 represent responses given by tracheal spirals and lung strips 

respectively, following the addition of two separate doses of PAP. In the preparations of 

both tissue types that were to receive 5-HT, when PAP was added for the first time, tissue 

contraction was observed. However, on second addition of PAP no further contractions 

occurred. These observations are supported statistically (p = 0.039 and p = 0.007 for the 

trachea and lung strip respectively). Throughout the study ascorbic acid had no effect on 

any of the tissue. 
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Fig. 10 Repeated ACh concentration effect curves on rat isolated 

tracheal spirals. 
Curve 1, ACh alone; Curve 2, with 5-FIT; Curve 3, with PAP and 5-HT; 
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Fig. 11 Repeated ACh concentration effect curves on rat isolated tracheal spirals. 
Curve 1, ACh alone; Curve 2, with ascorbic acid (aa); Curve 3, with PAP and aa; 

Curve 4, with PAF and an again. Values expressed as mean ± S. B. M., n=4 
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Fig. 12 Repeated ACII concentration effect curves on rat isolated lung strips. 
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Fig. 13 Repeated ACh concentration effect curves on rat isolated lung strips. 
Curve 1, ACh alone; Curve 2, with ascorbic and (an); Curve 3, with PAP and an; 

Curve 4, with PAP and an again. Values expressed as mean ± S. B. M., n=4 
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2.4 Discussion 

2.4.1 Study 1 Effects of ACh and 5-HT on rat isolated tracheal spirals 
and lung strips 

In this part of the investigation, comparison of results with ascorbic acid controls showed 

that the presence of 5-HT was having no effect on the contractions given by tissues in 

response to ACh application. Although the differences did not reach significance, the 

results showed that the size of contractions in both lung strips and tracheal spirals became 

smaller with repetition of ACh concentration effect curves (see figures 4-7). This 

decrease in response was also seen in the contractions given by both tracheal spirals and 

lung strips with repeated 5-HT addition (see figures 8 and 9). Difficulties in proving the 

results statistically significant appeared to be due to large standard enors of the means. 

These decreases in sizes of contractions are most likely due simply to muscle fatigue, and 

in the case of the 5-HT responses, the results act as controls against which to compare the 

effects of drugs throughout the study. 

2.4.2 Study 2 Effects of PAFon responses to ACh and S-HT 

Hyperresponsiveness, to ACh in the presence of PAF, as was observed in previous work 

(Warhurst and Court, 1996) on tracheal spirals was not observed in this study (see figures 

10 and 11). Hyperresponsiveness was also not observed in lung strip preparations (see 

figures 12 and 13). In tracheal spiral preparations, the second ACh concentration effect 

curve performed, in the presence of 5-HT was significantly higher than its control with 

ascorbic acid. This was due however to tissues not properly returning to baseline tension 
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after addition of 5-HT and before addition of ACh. PAF had no effect upon the tissue 

contractions given in response to 5-HT in either tracheal or lung strip preparations (see 

figures 14 and 16 respectively). 

The lack of observed PAF induced tissue hyperresponsiveness observed, could be the 

result of either; a) it not occurring, thus conflicting with the findings of previous studies, 

b) other factors such as blood present in lung tissue causing variability in results or c) rats 

coming from a different source to those used in other studies and responding differently 

to the experimental procedures. 

2.4.3 Effects of PAF per se 

The addition of PAF itself brought about contractions in both tracheal and lung strip 

preparations (see figures 15 and 17 respectively). These contractions, seen in tissues 

which had received 5-HT previously, and those which had received ascorbic acid, were 

not seen after subsequent PAF additions indicating desensitization Of the tissues to the 

effects of PAR In control tracheal preparations which had received ascorbic acid 

previously, a small contraction was recorded after the second PAF addition, but this was 

the result of one preparation from the four which make up the results not quite returning 

to baseline tension after the previous ACh concentration effect curve. This desensitization 

of tissue to the effects of PAP is supported by previous work on guinea pig lung tissue 

(Honda et al., 1991). The desensitization induced by PAF in this study is homologous 

desensitization, as the responses to ACh and 5-HT were not effected, despite PAP no 

longer producing a response. 
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It is worth noting that the trends observed for both of tracheal and lung tissue in response 

to PAP, and to other drugs were very similar, although the actual size of the contractions 

produced by tracheal tissue (mm/mg tissue) were much larger than those produced by 

lung tissue. This could be due to a higher proportion of lung tissues mass being made up 

of cells other than muscle cells such as blood cells. 

Once again high standard error of mean values (up to 0.057 in lung strip) were observed, 

the reason for which had to be determined as it may have been affecting the tissues 

responses to PAP and other drugs used. It was observed when dissecting tissues from rats 

that there were varying amounts of blood within the chest cavity as a result of the method 

of killing the animals, which often made its way into the lung tissue. This introduces the 

possibility of the results being affected by eosinophils or other blood cells which became 

lodged within the lungs. These cells could be activated by the addition of exogenous PAF 

so releasing mediators which may influence the size of the contractile response in lung 

tissue. Indeed Gleich et al (1988) found that eosinophils became activated by PAP and 

caused an increase in the responsiveness of lung tissue. Also, Vargaftig et al (1980) 

found that PAF induced a platelet-dependent bronchoconstriction unrelated to the 

formation of eicosanoids. 

This does not however explain the variability in the lungs responsiveness to ACh and 5-

HT, though an attempt was made to reduce variability by expressing the results as mg wet 

weight tissue. 
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Chapter 3 

Investigation into PAF receptor internalisation and possible presence 
and effect of eosinophils. 

3.1 Introduction 

Previous studies have suggested that PAF receptor internalisation may be responsible for 

the desensitization of airway tissue to the effects of PAF (Kioprogge and Akkerman, 

1984). This part of the study attempted to localize PAF receptors within the tissues using 

immunofluorescence (IF) techniques. Subsequently, studies investigated PAP receptor IF 

to determine the localization of PAF receptors in tissues subjected to repeated exposure to 

PAF. 

The large variation in results obtained in the pharmacological investigation (chapter 2), 

indicated that other variables may have influenced the data obtained. It was also noted, 

when dissecting tissue from the rats, that blood was often present in lung tissue, and had 

sometimes passed down the trachea. One property of PAF is its potent activity as a 

chemotactic agent and as an activator of eosinophils, which are prominent cells in 

asthmatic airways (Chung and Barnes, 1991). It was therefore decided that as airway 

hyperresponsiveness has been linked to eosinophilic inflammation in the airways (Gleich 

et al., 1998), and that specific binding sites for PAP are found on eosinophils (Ukena et 

al., 1989), the possibility of eosinophils affecting the results should be investigated. This 

was also done with the use of an IF method. 
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Immunocytochemistry (ICC) was the principle method used in this part of the study. ICC 

allows cell by cell resolution, the identification of individual cells, and determination of 

the exact localization, distribution and density of the antigen (in this case PAF-receptor). 

ICC studies use antibodies which are employed for the localization of proteins or peptides 

in their normal cellular environment (Griffiths, 1993). 

To achieve this, a number of procedures were carried out. The tissue had to be fixed to 

maintain the protein or peptide of interest in its normal position and prevent it from being 

degraded. The next stage was the selection of an antiserum specific for the antigen in 

question. The antiserum had to be 'pure' otherwise background staining would have 

occurred. The timing of incubation, temperature and dilution of the primary antibodies 

were crucial factors which had to be determined in order to carry out the ICC. The 

variable region of the antibody binds on the antigen of interest leaving its constant region 

exposed. The secondary antibody, which is conjugated with fluorescent molecules, in this 

study either FITC (green) or CY3 (red) fluorescent molecules, binds to the constant 

region. It is important to note that in this study, an IF technique was used, and not an 

enzyme-substrate based ICC technique. 

The purpose of chemical fixation is to retain the antigenicity of the component to be 

labeled, in order that the primary antibody attaches to the antigen leading to positive 

staining. 'Overfixation' on the other hand, will prevent the antigen from being bound by 

the antibody. The nature of the fixative chosen depends upon the chemistry of the 
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antigen. For example a fixative containing alcohol cannot be used to fix a peptide 

antigen, since many peptides can be extracted from tissues using alcohols. The tissues 

used in this study were fixed with cold acetone. 

The aims of this part of the study were therefore; to determine the effect of PAF exposure 

on the localization of PAF receptors in lung and tracheal tissue; to confirm the presence 

of any eosinophils, and to identify any PAP receptors on these eosinophils. 
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3.2 Materials and Methods 

Study 3 Immunofluorescent (if) investigation into the localization of 
PAF receptors in the trachea and lung strip and the effect of PAF upon 
their localization. 

For all IF investigation, four tissues/slides were jroduced. 

3.2.1 Preparation of Tissue 

Lung strips and sections of trachea (not tracheal spirals) were prepared and incubated in 

buffer before being treated with PAF, as previously (chapter 2). 5mm sections of each 

tissue type were removed at various stages in the treatment (before PAP treatment, after 

one PAF treatment and after two PAP treatments), and immediately frozen in isopentane 

cooled with dry ice, before being wrapped in parafilm and stored at -80°C. 

Tissue was collected at the following stages in the experiment; a) Immediately after 

removal from the rat, b) After the first 30 minute incubation with PAF and c) After the 

second 30 minute incubation with PAP. 

Subsequently, 16j.tm cryostat sections were cut, mounted on 0.5% chrome-alum-gelatine 

coated slides, and heat fixed for approximately 5 min before being subjected to IF. 

3.2.2 Immunofluoreseent (if) Procedure 

The procedures followed for the IF method adopted were as follows: 

Sections were fixed in cold acetone for 10 min before being washed 3 times in phosphate 

buffered saline (5 min each time). 
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Sections were incubated for 20 min with 10% normal rabbit serum. 

Following washing (as before), sections were incubated overnight at 4°C with either 

primary antibody (see table 3) or control serum in PBS with 1.5% normal rabbit serum. 

After washing, the slides were then incubated for 4 hours at 4°C in the dark with a 

conjugated secondary antibody (see table 1) in PBS with 1.5% normal rabbit serum. 

Finally, the tissues were washed, cover slipped and viewed under a fluorescent light 

microscope using an appropriate filter. 

3.2.3 Imaging technique 

Receptor staining was observed with a Leitz Diaplan Photomicroscope equipped with 

FITC (green) and CY3 (red) optics. The process of imaging immunofluorescence staining 

was achieved with the aid of a computerized package called SIRIUS (optivision). This 

refined the images that were taken with the help of a SONY colour video camera I CCD-

IRIS attached to the fluorescent microscope 

Table 1. Primary and secondary antibodies with concentrations 

What stained for Primary 
antibody 

Control 
Serum 

Concentration 
______ 

Secondary 
antibody  

Concentration 

PAP-receptors anti-PAP Normal 1:50 Anti-goat IgO 1:500 
goat serum with FITC 

conjugate  
Eosinophils, anti-human- Normal 1:25 anti-mouse 1:500 

basophils, and mast CD40 ligand goat serum CY3 
cells. 
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3.2.4 Study 4 Double Immunofluorescence (IF) of eosinophils and PAF 
receptors. 

In order to co-localise PAF receptors and eosinophils, a protocol was developed so as to 

allow double IF staining. The protocol adopted was as follows: 

Protocol was followed similarly as in study 3. Sections treated with anti-PAF were 

incubated overnight at 4°C in the dark with 1:25 anti-human CD40 with 1.5% normal 

rabbit serum in PBS. For controls, anti-human CD40 was replaced by normal goat serum. 

Washed sections were subsequently incubated for a further 4 hours at 4°C in the dark 

with 1:500 anti-mouse CY3 

Sections were then viewed as before. 
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3.3 Results 

3.3.1 Study 3 Immunofluorescent (IF) investigation into the localization 
of PAF receptors in the trachea and lung strip and the effect of PAF 
upon their localization. 

Figure 18 shows a typical slide of PAP receptor immunofluorescence in the lung strip 

before the addition of PAP. PAP receptors appear as bright green IF. Slight fluorescence 

is present predominantly around the bronchioles. Figure 19 shows the control for figure 

18, where the primary antibody, anti-PAF, was replaced with normal goat serum. Figure 

19, which shows considerably less if, provides further evidence any that staining in 

figure 18 is specific for PAP receptors. For each IF study performed, simultaneous 

controls were used. These controls consistently produced very little fluorescence. 

Figures 20 and 21 showsections from lung strip (from same animal as in figures 18 and 

19), after being treated with PAP and after being exposed to PAP twice, respectively. No 

significant differences in the localization or density of PAP receptor IF were evident. 

Figures 22 and 23 show sections of trachea from the same animal. Figure 22 shows PAP 

receptors after one addition of PAP, whilst figure 23 shows PAP receptors after two PAP 

exposures. As in the lung tissue, repeated exposure to PAP had no effect on the density or 

localization of PAP receptor IF. 
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Figure 18. Pi 
(Magnification 

In all images, 

Figure 19. Control for figure 18. Lung strip before addition of PAF, but without 
primary antibody. (Magnification x 40) 
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Figure 22. PAF receptors in the trachea after one addition of PAF. 
(Magnification x 40) 

Figure 23. PAF receptors in the trachea after two PAF exposures. (Magnification 
1 40) 
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3.3.2 Study 4 Double Immunofluorescence (IF) of eosinophlls and PAF 
receptors 

In figure 24, red CY3 fluorescence indicates the presence of eosinophils in the lung strip. 

Figures 25 and 26 show sections of the same lung strip after one and two treatments with 

PAF respectively. As the tissue is treated with PAF, the presence of eosinophils 

decreases, probably as a consequence of the washing procedure. 

Although double IF for PAF-receptors and eosinophils was successful, it was observed 

that the different colours stained were best viewed individually. Figures 27 and 28 show 

the same sections of tissue as in figures 25 and 26 respectively, but with PAF receptor 

staining. In figure 27, PAF receptors occur around the bronchioles as before (see figures 

20 and 21). In figure 27 PAF receptor staining is also seen elsewhere within the tissue, in 

contrast with figure 28 where PAF receptors are present mainly around the bronchioles. 

This is consistent with the hypothesis that eosinophils and their PAF receptors are 

gradually washed away. Similarly this is alsrn shown in figures 20 and 21 respectively, 

where although PAF receptors around the bronchioles remain throughout, other staining 

within the tissue becomes less apparent. 
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Figure 26. Eosinophils in the lung strip after 2 PAF treatments. (Magnification x 
40) 

Figure 27. PAF receptors within the lung strip after 1 exposure to PAF and 
double staining for eosinophils (see figure 25 for corresponding eosinophil IF). 
(Magnification x 40) 
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Figure 28. PAF receptor staining on the lung strip after two exposures to PAF 
and double staining for eosinophils (see figure 26 for corresponding eosinophil 
IF). (Magnification x 40) 
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3.4 Discussion 

3.4.1 Study 3 Immunofluorescent (IF) investigation into the localization 
of PM' receptors in the trachea and lung strip and the effect of PAF 
upon their localization. 

Immunofluorescence observed in this part of the study is that of an in1munofluorescent 

tag. PAF binds to its receptor and the primary antibody, anti-PAP, then binds to this PAR 

A secondary antibody with an FITC (or other such as CY3) conjugate then binds to the 

anti-PAF. It is the FITC (or other) conjugate which produces the immunofluorescence 

seen on images. If the PAF receptor were to internalise on activation by PAF, the PAP 

would also be internalised, leaving nowhere for anti-PAF to bind onto. This would in turn 

leave nowhere for the secondary antibody to bind .onto, and no fluorescence would be 

seen. 

Throughout the investigation involving immunofluorescence, simultaneous controls were 

produced for each slide, which in all cases produced very little immunofluorescence, 

indicating that any fluorescence on the test slides was specific. Immunofluorescence was 

used in both lung and tracheal tissue to show the presence of PAP on PAP receptors 

before and after PAP addition and after a subsequent PAP addition. Before the actual 

addition of PAP to tissue preparations, very low levels of PAP receptor staining were 

seen (see figure 18) which could have been the result of PAP produced by the animal 

itself. IF was seen after one addition of PAP and this IF was also seen after subsequent 

PAP additions in both lung strip and tracheal preparations. The localization of this IF was 

predominantly around the bronchioles of the lung tissue and along the outer edge of the 

trachea and did not change. The localization of PAP receptors around the bronchioles and 
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surrounding the trachea supports the theory of PAF being a mediator of airway 

hypenesponsiveness and bronchoconstriction (chapter 1). The lack of movement of PAF 

receptors indicates that PAF receptor internalisation, which has previously been 

suggested as being behind the desensitization of PAF receptors to the effects of PAF 

(Kloprogge and Akkerman, 1984), does not occur within airway smooth muscle. Some 

other mechanism must therefore be behind PAF receptor desensitization 

3.4.2 Study 4 Double Immunofluorescence (IF) of eosinophils and PAF 
receptors. 

The next part of the investigation, which involved using IF to look at the possible 

presence of eosinophils, which could have been responsible for the large standard errors 

observed showed that eosinophils were present within the lung tissue (see figures 24-26). 

PAF receptors did appear to be present on these eosinophils, which were gradually 

washed away as the pharmacological procedure was followed. This part of the study once 

again showed that PAF receptors present within lung tissue did not move after PAF 

application, backing up the results found earlier in the study. 
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Chapter 4 

Effects of Inhibitors on PAF, 5-HT and ACh responses 

4.1 Introduction 

4.1.1 Study 5 Effects of d-erythro-Sphingosine (protein kinase C 
inhibitor) on the action of PAF per se 

The previous chapter indicated that PAF receptors were not being internalised as the 

mechanism through which desensitization occurred. Thus the biochemical events 

following the binding of PAF to its receptor must be altered so producing desensitization. 

As has been previously described, PAF can produce its action through activation of 

protein kinase C or PLA2. This investigation utilised enzyme inhibitors to block various 

points in the biochemical pathways and to detennine whether PAF induced 

desensitization can be prevented. 

Previous work (Berridge, 1987 and Nishizuka, 1986) has suggested that PAF may effect 

bronchoconstriction via the activation of protein kinase C (PKC) resulting from inositol 

1,4,5-triphosphate (IF3) and diacylglycerol (DAG) production. DAG activates protein 

kinase C in the presence of calcium mobilized by lP3 leading to cell activation 

(Henderson, 1991). It has also been suggested that PAF-induced desensitization may be a 

result of the activation of protein kinase C (Kamata et al., 1993). It was therefore decided 

to investigate the effect of the PKC inhibitor sphingosine on the effects of PAF, 5-HT and 

ACh. Sphingosine has been shown to inhibit potently and reversibly the actions of PKC 
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in previous work on human platelets (Hannun and Bell, 1987). Sphingosineis a selective 

inhibitor of protein kinase C (Arnold and Newton, 1991). 

4.1.2 Study 6 Effects of MK886 (lipoxygenase inhibitor) on the action of 
PAF per se 

Voelkel et al (1982) reported that in rat lungs, the bronchoconstriction observed 

following PAF addition was due to PAF inducing the release of LT's. It was the LT's 

which then produced the contractile response. 5-lipoxygenase is the initial enzyme in the 

sequence used to produce the LT's. Consequently by inhibiting this enzyme, LT's would 

not be produced. One of the key enzymes in the production of leukotrienes is 5-

lipoxygenase activating protein (Henderson, 1991). 

MK886 was reported to specifically block the actions of 5-lipoxygenase in rat lungs 

(Davidson and Drafton, 1992) and in human bronchi (Bjorck and Dalilen, 1993). MK886 

is a 5-lipoxygenase-activating protein (FLAP) inhibitor. FLAP facilitates the transfer of 

AA from the membrane phospholipase to 5-lipoxygenase. Thus by using MK886 it 

should be possible to determine whether it is the released leukotrienes which are then 

inducing the desensitization of the tissue to a subsequent addition of PAF. 

4.1.3 Study 7 Effects of AACOCF3 (phospholipase A2  inhibitor) on the 
action of PAF per se 

Whilst lipoxygenase is the enzyme responsible for the production of LT's, the initial 

enzyme involved in LT production is the activation of PLA2 leading to AA release (Chao 

& Olson, 1993). Thus PLA2 is therefore another important site where modulation of this 

enzyme could lead to desensitization of the PAF response. 
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In order to determine the effects of PLA2 activation, investigation into the effects of the 

PLA2 inhibitor AACOCF3 was proposed. Whilst there are a number of PLA2 inhibitors 

available, AACOCF3 was chosen as an inhibitor because in previous studies it has been 

shown to inhibit the actions of PLA2 in rat isolated airway tissue (Michoud etal., 1999). 

4.1.4 Introduction of Inhibitors to Protocol 

Determining the actions of these inhibitors was to be achieved by incubating the tissue 

with the appropriate inhibitor prior to the addition of PAR If having removed the 

inhibitor, the tissue is then able to respond to a second addition of PAF, it would indicate 

that desensitization had not taken place. Thus it would be an event associated with that 

enzyme or the products released by it normally, which induced desensitization (see 

chapter 1). Alternatively, if on the removal of the inhibitor the tissue could no longer 

respond to PAF, it would indicate that the enzyme or agents released by the enzyme were 

not responsible for the desensitization process, as the desensitization had still occurred 

despite the presence of the inhibitor. 

In order to ensure this study was comparable with the original experiments using PAF 

(chapter 2) a similar protocol was used as previously. Following the initial ACh curves in 

the absence and presence of 5-HT the inhibitor was equilibrated prior to the addition of 

PAF. Once the tissue had been extensively washed to remove the inhibitor, the effect of 

PAF, 5-HT and ACh were again examined. 
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Whilst it was known that constrictor actions on the lung are due to LT release (Voelkel et 

al., 1982). It was however, possible that other actions of PAF on lung tissue did not act 

through LT release, or were even being masked by the LT mediated effects. Hence the 

use of 5-HT and ACh in the presence of the inhibitors may reveal altered responsiveness 

of the tissue. 
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4.2 Methods 

4.2.1 Study S Effects of Sphingosine (protein kinase C inhibitor) on the 
action of PAF per se 

Four ACh concentration effect curves were performed on each individual tissue 

preparation of trachea or lung strip. Initially two ACh concentration effect curves were 

performed (as in chapter 2.2), one curve with ACh alone and the second after application 

of either 5-HT or ascorbic acid. Two further curves were performed after the following 

treatments: 

Once the tissue had returned to its original baseline sphingosine was added to each tissue 

preparation, at a final concentration of 20j.tM and with a contact time of 30 mm. Ethanol 

was used as a solvent matched control against the sphingosmne. 

The effects of single doses of lj.tM PAF were determined for each preparation using 

contact times of 3 mm. The effects of 30j.tM 5-HT were determined as before with 

ascorbic acid used as a control, and a contact time of 15 mm. Subsequently, ACh 

concentration effect curves were performed. 

In order to ensure that the inhibitor was properly washed from the tissue, each organ bath 

was irrigated by overflow with 1L of BSA free Greenberg-Bohr buffer, before the baths 

were re-filled with GBB-BSA. Tissues were allowed to return to baseline and left to 

equilibrate for 30 mm. 
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PAF and either 5-HT or ascorbic acid were added to the preparations as before, in similar 

concentrations and contact times. ACh concentration effect curves were repeated, and 

tissue wet weights recorded. 

4.2.2 Study 6 Effects of MK886 (lipoxygenase inhibitor) on the action of 
PAF per se 

Study 5 was repeated, replacing sphingosine (20jzM) with MK886 (2OsM). 

4.2.3 Study 7 Effects of AACOCF3 (protein kinase C inhibitor) on the 
action of PAF per se 

Study 5 was repeated, replacing sphingosine (20jsM) with AACOCF3 (10pM). 



4.3 Results 

4.3.1 Study 5 Effects of Sphingosine (protein kinase C inhibitor) on the 
action of ACh, S-HT and PAF per se 

There was no significant difference between the responses to ACh in either tracheal 

spirals or lung strips in the presence of sphingosne compared to their controls (figures 

29-32). 

Tracheal contractions following addition of 5-HT alone, 5-HT in the presence of 

sphingosine and PAF, and then 5-HT in the presence of a second PAF addition were not 

significantly different from their controls (figure, 33). Similar results were obtained for 

the lung strip (figure, 35). 

Following addition of PAF in the presence of sphingosine, both tracheal spirals and lung 

strips contracted (figures 34 and 36 respectively). Following a second addition of PAF, 

very little or no contraction was observed from either tissue. In the case of the trachea, 

contractions produced after a second addition of PAF were significantly lower than those 

observed after the first addition (p = 0.022, ANOVA). Similar observations were 

observed in the lung strip, although the differences between responses did not reach 

significance. No tissue responses to PAF in the presence of sphingosine were 

significantly different from their controls. Worth noting however, in the control lung strip 

preparation which had received no inhibitor, the initial response to PAF was significantly 

higher than the response to subsequent PAF addition (p = 0.001). 
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Fig. 29 Repeated ACh concentration effect curves on rat isolated tracheal spirals. 
Curve 1, ACt alone; Curve 2, with 5-HT; Curve 3, with Sphingosine, PAP and 5-HT; 

Curve 4, with PAP and 5-HT. Values expressed as mean ± S. B. M., 11=4 
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Fig. 30 Repeated ACh concentration effect curves on rat isolated tracheal spirals 
Curve I, ACh alone; Curve 2, with ascorbic acid (aa); Curve 3, Ethanol, PAP and aa; 

Curve 4, PAF and aa. Values expressed as mean ± S. E. M., n=8. 
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Fig. 31 Repeated ACh concentration effect curves on rat isolated lung strips. 
Curve 1, ACh alone; Curve 2, with 5-I-IT; Curve 3, with Sphingosine, PAP and 5-HT; 

Curve 4, with PAP and 5-HT. Values expressed as mean ± S. B. M., n=4 

0.080 

0.070 

0.060 

0.050 

f 0.040 

0.030 

0.020 

0.010 

0.000 

1 	 1.5 	 2 	 2.5 	 3 	 3.5 
Log [ACh] pM 

Fig. 32 Repeated ACh concentration effect curves on rat isolated lung strips 
Curve 1, ACh alone; Curve 2, with ascorbic acid (aa); Curve 3, Ethanol, PAF and aa; 

Curve 4, PAP and an. Values expressed as mean ± S. B. M., n=8. 
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Fig. 33 Responses given by tracheal spirals on addition of 5-HT in 
the presence and absence of PAF and the PKC inhibitor, 

sphingosine. 
Values expressed as mean ± S. B. M., n=4. 
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Fig. 34 Responses given by tracheal spirals on repeated additions of 
PAF in the presence and absence of the PKC inhibitor, sphingosine. 

Values expressed as mean ± S. E. M., n=4, and n=8 for controls. 
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Fig. 35 Responses given by lung strips on addition of 5-HT in the 
presence and absence of PAF and the PKC inhibitor, sphingosine. 

Values expressed as mean ± S. E. M., n=4. 
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Fig. 36 Responses given by lung strips on repeated additions of PAF 
in the presence and absence of the PKC inhibitor, sphingosine. 
Values expressed as mean ± S. E. M., n=4, and n=8 for controls. 
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4.3.2 Study 6 Effects of MK886 (lipoxygenase inhibitor) on the action of 
ACh, S-HT and PAFperse 

As with sphingosine, no statistically significant differences were found between ACh 

concentration effect curves and their controls in either the tracheal (see figure 37; 30 for 

control) or lung strip preparations (see figure 38; figure 32 for control). 

In the cases of both the trachea and the lung strip, the contractions given on addition of 5-

HT were reduced with repetition, and were not significantly different from their controls 

(see fig. 39 and 41 respectively) where no MK886 had been added. 

Tracheal preparations, in the presence of MK886, gave no response on addition of PAR 

Although the tissue was washed to remove MK886, a second addition of PAF failed to 

induce a contraction (see fig. 40). Similar results were obtained in the lung strip, although 

extremely small responses to PAF occurred on both additions (see fig. 42), which did not 

reach statistical significance. It is probable that these were the result of tissues not 

properly returning to baseline before PAF addition. 
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Fig. 41 Responses given by lung strips on addition of 5-HT in the 
presence and absence of PAF and the lipoxygenase inhibitor MK886. 

Values expressed as mean ± S. E. M., n=4. 
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4.3.3 Study 7 Effects of AACOCF3 (phospholipase A 2  inhibitor) on the 
action of ACh, 5-HT and PAF per se 

No statisticajly significant differences were observed between the ACh concentration 

effect curves in the presence of AACOCF3 and their controls in either the tracheal. (see 

figure 43; 30 for control) or lung strip preparations (see figure 44; 32 for control). 

In both tissue types, contractions given on addition of a second dose of 5-HT in the 

presence of AACOCF3 were smaller than those obtained after the initial 5-HT additions 

(see figures 45 - trachea, and 47 - lung strip). The first and second 5-HT responses 

showed no significant differences between their controls. On a third addition of 5-HT 

however, once AACOCF3 had been washed away, both lung strip and tracheal 

preparations gave contractions greater in size than the contractions produced after the 

second 5-HT addition. In both tissue types these contractions were greater than those 

given by their controls although this only reached statistical significance in the tracheal 

preparations (p = 0.018). 

Addition of PAF in the presence of AACOCF3 affected no responses in either tracheal or 

lung strip preparations (see figures 46 and 48 respectively). Tissue contractions were 

observed in the trachea and lung strip after removal of AACOCF3 and a second PAF 

application. In both the trachea and lung strip preparations the second PAF responses 

were significantly higher than their controls (p = 0 and p = 0.003 respectively). For 

tracheal preparations, differences between the first and second PAF responses also 

reached significance (p = 0.01). 
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4.4 Discussion 

4.4.1 Study S Effects of Sphingosine (protein kinase C inhibitor) on the 
action of PAF per se 

Inhibiting the enzyme protein kinase C had no effect upon the actions of ACh or 5-HT in 

either the presence or absence of PAF. Contractions given by lung strips and tracheal 

spirals in response to repeated PAF application were also not affected by the inhibition of 

protein kinase C, and desensitization was observed as before. 

This could indicate that the actions of PAF are not the result of a protein kinase C 

mediated pathway. This is supported by work with rabbit platelets (Shimizu et al., 1992) 

also indicating that a protein kinase C mediated pathway is not involved in the 

desensitization of receptors to the actions of PAF. Alternatively the concentration of 

sphingosine chosen for use (20j.tM) was not sufficient to inhibit protein kinase C 

activation. Work by Hannun and Bell (1987) however showed that concentrations of 

between 5tM and 20j.tM were sufficient to inhibit the actions of protein kinase C. 

4.4.2 Study 6 Effects of MK886 (lipoxygenase inhibitor) on the action of 
PAF 

Inhibition of lipoxygenase had no effects upon tissue contractions in response to either 

ACh or 5-HT. 

The initial response to PAF was however not observed in either tissue type when 

lipoxygenase was inhibited. Subsequent PAF application also produced no PAF response, 

so desensitization of PAF receptors to PAF had still occurred. This showed that PAF does 
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act via leukotrienes, confirming the findings of Voelkel et al (1982) and of Warhurst and 

Court (1996). This also indicated that the production of leukotrienes could not be 

responsible for the desensitization of PAF receptors to the effects of PAF, therefore 

suggesting that desensitization occurred as the result of earlier events in the biochemical 

pathway. Alternatively it could suggest that MK886 had not been properly washed from 

tissuesprior to subsequent PAF addition. The work of Davidson and Drafton (1992) also 

using rat lungs however suggested that MK886 could be removed from the tissue and that 

the inhibitor was not irreversible. 

4.4.3 Study 7 Effects of AACOCF3 (protein kinase C inhibitor) on the 
action of PAF 

Inhibition of phospholipase A2 had no effect upon the contractile responses of tissues in 

response to either ACh or 5-HT. This indicated that neither ACh or 5-HT were acting 

through a PLA2 mediated pathway. 

The contractile effects of an initial PAF addition were however not observed. The 

contractile responses to PAF were regained after washing out of the inhibitor. This 

indicated that as leukotrienes had been shown to be not responsible for PAF receptor 

desensitization, desensitization was the result of something occurring after PLA2 

activation, but before lipoxygenase activation. Desensitization could therefore be the 

result of either; a) AA release, or b) as a direct effect of the activation of PLA2, leading to 

its activation being less effective. 
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Work by Carmo et al (1985) on human platelets showed that the direct addition of AA 

did not prevent the release of eicosanoids and hence tissue response, which suggests that 

the release of AA does not induce desensitization. 

Consequently it appears that desensitization does involve PLA2 activation, as the 

inclusion of a PLA2 inhibitor prevented desensitization. This would support the work of 

Kamata et al (1996) suggesting either down-regulation of the receptor or receptor/G-

protein/effector uncoupling after PLA2 activation as being responsible for tissues 

desensitization to the effects of PAF (see chapter 1.19). 

74 



Chapter 5 

5.1 Discussion 

The aims of this study were to investigate the actions of PAF per se and on PAF's effects 

on airway responsiveness to ACh and 5-HT. It was hoped that results from previous 

studies showing hyperresponsiveness to these agents in rat isolated trachea (Warhurst & 

Court, 1996) could be repeated. A comparison could then have been made between the 

effects of PAF on the same responses in rat isolated lung tissue. This would allow a 

comparison of the possible effects of PAF in the larger airways with the possible effects 

of PAF in the smaller airways. Unfortunately hyperresponsiveness was not demonstrated 

in either tracheal or lung tissue. 

Reasons for this conflict with previous findings were then considered. The same 

experimental protocols were followed as those by Warhurst and Court (1996), so a slight 

difference in protocol could not have been responsible. It was noted however that the 

method of killing the animals sometimes resulted in blood entering into the chest cavity 

and then into the lungs. As previous studies had shown that PAF can act via blood cells 

such as eosinophils to cause bronchoconstriction (Clifton et al., 2000) the varying 

amounts of blood entering the lungs each time a protocol was followed had to be 

considered as perhaps causing variability in the results. For this reason, an IF technique 

was developed, from a technique already being used in the study to investigate PAF 

receptor localization, to show if eosinophils and so probably other blood cells were 

present within the lung tissue. This IF technique was successful in showing the presence 

of eosinophils and further modification of the IF technique enabled the identification of 
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PAF receptors on these eosinophils. This gave at least some explanation into the 

variability of lung tissue responses, although the variability of tracheal spiral preparations 

remains unexplained. Another reason for the variability of lung strip responses could be 

the actions of other smooth muscle fibres which make up the lungs such as vascular 

smooth muscle, being effected differently by PAF. The only difference between this and 

previous investigations could have been the source of purchase of the animals, meaning 

that the animals represented a different gene pool. 

Investigation into the bronchoconstrictor properties of PAF showed that PAF induced a 

homologous desensitization of its receptors to PAR The use of inhibitors showed that 

bronchoconstriction induced by PAF is indeed mediated via leukotrienes supporting 

previous work on rat isolated lung tissue (Voelkel et al., 1985). Investigation into PAF 

receptor desensitization using inhibitors showed that leukotrienes are not however 

involved in PAF receptor desensitization. Inhibitors indicated that desensitization was not 

mediated by PKC activation as suggested by Kamata ci al (1993), but by something 

occurring after activation of phospholipase A2 but before the production of leukotrienes. 

IF investigation disproved theories of PAF receptor internalisation being responsible for 

desensitization to PAF (Kloprogge & Akkerman, 1984). This left the possibilities of 

either AA or eicosanoids other than leukotrienes being responsible for receptor 

desensitization or something occurring at the receptor after PLA2 activation. Previous 

studies have shown that direct addition of AA does not induce desensitization (Carmo et 

al., 1985): This indicates that AA release is not responsible for desensitization. 
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Nakamura et al (1991) suggested either down regulation of the receptor or receptor/G-

protein/effector uncoupling after PLA2 activation as being responsible for desensitization. 

The findings of this study indicate this as being a possible explanation for the 

homologous desensitization of PAF receptors to PAF after stimulation. 

5.2 Future studies 

Future improvements to this study could involve experimenting with higher 

concentrations of sphingosine to ensure that protein kinase C was properly inhibited. It 

may also be useful to use another agent which causes a contraction of lung tissue via 

leukotrienes such as endothelin 3 (Richter and Sirois, 2000). If the endothelin response 

could be re-obtained following the washing procedure, it would indicate that the inhibitor 

was being removed. This would confirm that the effects of lipoxygenase do not influence 

desensitization. Another way to determine whether leukotrienes were inducing 

desensitization could be to introduce leukotrienes to tissue preparations before the 

addition of PAF and see if a response to PAF is observed. 

As well as slight changes in the treatment of the tissues, future studies could also try to 

eliminate other problems which were encountered in this study. For example the rat lungs 

could be perfused which would eliminate the possibility of blood cells affecting the 

results. As well as these improvements, experiments could be carried out using human 

lung tissue in order to provide results which could be used as a closer comparison to the 

effects of PAF in asthma. 
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Materials 

NaCl 
KCI 
Kh2PO4 
MgSO4.6H20 	 All from Merck eurolab laboratory supplies; 
NaHCO3 	 Merck Ltd, 
Glucose 	 Hunter Boulevard, 
Sucrose 	 Magna Park, 
CaCl2 	 Leics. LE17 4XN. 

Albumin Bovine Fatty acid free 

Acetyicholine Chloride 

5 -Hydroxytryptamine 

L-Ascorbic Acid 

Sigma-Aldrich Company Ltd, 
Fancy Road, 
Poole, 
Dorset. BH12 4QH. 

Sigma-Aldrich Company Ltd. 

Sigma-Aldrich Company Ltd. 

Merck eurolab laboratory supplies. 

1 -O-Alkyl-2-acetyl-sn-glycero-3-phosphocholine 
(platelet activating factor) 
Delivered in a chloroform solution which is blown off before PAF is dissolved in GBB-
BSA. 

Sigma-Aldrich Company Ltd. 

D-erythro-Sphingosine, Free Base, Bovine Brain 

Calbiochem Biochemicals. 
CN Biosciences UK, 
Boulevard Industrial Park, 
Padge Road, 
Beeston, 
Nottingham. NG9 2JR. 

3-fl (P-Chlorobenzyl)-5-(isopropyl)-3-t-butylthioindol-2-yl]-2,2-dimethylpropanoic 
acid, Na} 

or MK886 	Calbiochem Biochemicals. 

Arachidonyltrifluoromethyl ketone or AACOCF3 
Calbiochem Biochemicals. 

Sphingosine AACOCF3 and MK886 are diluted in ethanol before appropriate 
concentrations are made up for use. 
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Acetone 	 Merck eurolab laboratory supplies. 

Normal Rabbit Serum 

PAF-R (M-16): sc-8744 
Anti-PAF 

CD 154 Anti-human-CD40 ligand 

Normal Goat Serum 

Sigma-Aldrich Company Ltd. 

Santa-Cruz Biotechnology. 
Autogen Bioclear UK Ltd. 
Holly Ditch Farm, 
Mile Elm, 
Caine, Wiltshire. 
SN!! OPY 

DAKO Ltd. 
Denmark House, 
Angel Drove, 
Ely, Cambridge. 
CB74ET 

Sigma-Aldrich Company Ltd. 

Anti-goat IgG with FITC conjugate Sigma-Aldrich Company Ltd. 

Anti-mouse IgG with CY3 conjugate Sigma-Aldrich Company Ltd. 
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