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ABSTRACT 

 

Short Rotation Forestry (SRF) has been introduced to the UK as a method to 

increase biomass production. However, some SRF species have raised concerns 

about potential impacts on the environment. A largely unknown aspect of SRF is 

the quality and quantity of leaf litter, and its impact on soil fauna, of which the 

earthworm community is a major component. Earthworms have direct impacts on 

the soil biogeochemistry of SRF systems, and the tree species can impact on the 

associated earthworm community. The aim of this study was to investigate the 

effects of SRF species and litter quality on earthworm communities, their diversity 

and activity. In addition, the effects of earthworms on SRF litter decomposition, 

carbon-nutrient cycling and tree growth were assessed. Field surveys, laboratory 

experiments and field experiments were utilised. Survey results suggested that SRF 

species, tree age, land-used history and soil type exhibited an interactive effect on 

overall earthworm community development. Further, growth of eucalyptus, as SRF 

on marginal-arable or reclaimed sites, led to relatively rapid earthworm 

colonisation and community development. SRF litter quality showed a direct effect 

on earthworm food selection, growth and reproduction. The native Alnus glutinosa, 

Betula pendula and Fraxinus excelsior litter supported earthworms and their 

activities over non-native Acer pseudoplatanus, Castaneas sativa and Eucalyptus 

nitens. Native British earthworms indicated a significant preference (p < 0.05) for 

E. nitens litter over A. pseudoplatanus and C. sativa. Earthworms showed a 

significant contribution (p < 0.05) to SRF litter decomposition, carbon and nutrient 

release within SRF systems and the degree of contribution varied with SRF species, 

earthworm density and diversity. Field studies demonstrated that a mixed 

earthworm community utilised non-native species but favoured particular native 

trees. Earthworm influence on nutrient uptake, tree growth and biomass production 

varied with SRF species. A one year field experiment showed that rapidly growing 

E. nitens benefited more from earthworm activity than relatively slow growing B. 

pendula. Overall, the current work supports the production of SRF, as with only 

one exception (C. sativa), results tended to show that SRF-earthworm interactions 

were positive. It is perhaps most interesting that non-native E. nitens showed a 

positive interaction with native British earthworms.  
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CHAPTER 1: INTRODUCTION 

 

1.1 Background  

 

Short Rotation Forestry (SRF) was recently introduced to the UK as a possible and 

efficient method to increase biomass production in the country (FC, 2010). In this 

silvicultural system, these trees are grown for 8 to 20 years, generally, much shorter 

than traditional forestry practices, but longer than alternative Short Rotation Coppice 

(SRC) (LTS International, 2006). Potential SRF practice includes fast growing native 

and non-native tree species. Selected species offer high yields in a relatively short 

period of time and potentially produce higher quality material for both electricity and 

heat generation than alternative biomass crops (Forestry Commision, 2010). The scope 

and overall objectives of this research originated from the interest of exploring and 

adapting appropriate SRF species for maximum productivity and their 

benefits/disbenefits to wider ecosystem services including soil sustainability, 

greenhouse gas benefits and biodiversity. 

 

In the interest of combatting climate change, the UK government has committed to 

reduce greenhouse gas emissions by 80% of 1990 levels by 2050 (DECC, 2009).  This 

has led to a rapidly developing market for alternative renewable energy sources. The 

UK has signed up to European targets to produce 15% of all energy from renewable 

sources by 2020 and the recent Renewable Energy Strategy proposed that 30% of 

renewable energy would come from bioenergy (DECC, 2013). Wood fuel is a 

sustainable and low carbon source of bioenergy that can make a substantial contribution 

to achieving these targets (TRADA, 2011). Fast growing SRF species have a great 

potential to contribute towards these targets as these trees can deliver greater volumes of 
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biomass from the same land area than alternative biomass crops such as SRC (McKay, 

2011). 

 

However, pressure is rising to expand planting of these trees, since the experience of 

SRF in the UK is limited. The impacts of these fast growing trees on the environment, 

especially on soils, hydrology, and biodiversity are unidentified. Environmental 

benefits/disbenefits of SRF largely depend on previous land use. Lands mainly available 

for SRF planting in the UK were formerly used for agriculture, either arable farming or 

pasture management. Growing of SRF species and harvesting for biomass over time 

may cause soil nutrient depletion and acidification in these lands (Hagen-Thorn et al., 

2004; Vanguelova and Pitman, 2011). Further, SRF may pose a number of potential 

threats and benefits to water quality and quantity.  The water quality impact of SRF is 

expected to be beneficial compared to arable cropping due to less frequent land 

preparation and lower chemical usage. A potential risk for water quantity is expected 

from some deep-rooted water demanding SRF species such as eucalyptus, while the use 

of other native broad-leaved species could possibly benefit water resources (Nisbet et 

al., 2011). The land use transformation from agriculture to SRF has potential to improve 

below and above ground biodiversity by providing improved quality habitat. In 

addition, planting SRF on ex-agricultural lands increases soil carbon accumulation 

(Vanguelova and Pitman, 2011). However, in addition to previous land use, the net 

environmental impact of SRF may depend on many factors, mainly tree species, soil 

type, local hydrology and climate. 

 

Forestry Commission Scotland (FCS) and England (FCE) have active sites on which 

SRF is trialled (Harrison, 2009). These SRF trials, across Great Britain involve planting 

a range of different tree species under different silvicultural practices and assessing 
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wider environmental issues along with growth/yield parameters. Forest Research (FR) is 

broadly investigating the environmental impact of these trees on biodiversity, hydrology 

and soils. One of the important but hitherto neglected aspects in current investigations is 

the impact of SRF on the soil faunal community, diversity and activity. Understanding 

of this interaction is vital as soil fauna may govern the long-term soil sustainability of 

these systems mainly through litter decomposition and nutrient cycling (Edwards and 

Heath, 1963). An important part of this soil fauna is the earthworm community.  

 

Earthworms, which are considered as one of the best indicators of soil quality (Lavelle 

et al., 2006), account for the majority of soil faunal biomass in a wide range of 

temperate ecosystems (Mori et al., 2010). Their role within the soil system, including 

organic matter decomposition, nutrient cycling, and structural development, has been 

widely acknowledged (e.g. Lee, 1985; Edwards and Bohlen, 1996; Lavelle et al., 2006). 

Earthworms have a direct interaction with the above-ground plant community (Lee, 

1985; Bardgett et al., 2005; Eisenhauer et al., 2009a). Different tree species may 

differently affect the distribution and diversity of the earthworm community, since trees 

are different in quality and quantity of litter produced (Muys et al., 1992; Zou, 1993; 

Sarlo, 2006). Alternatively, presence of different earthworm species may have various 

impacts on soil structural development, litter decomposition, carbon and nutrient 

cycling and subsequently on plant growth and production (Marshall, 1971; Haimi et al., 

1992; Welke and Parkinson, 2003). Further, earthworms are an important component in 

the diet of many terrestrial vertebrates (e.g. badgers). Because of the direct link with 

above-ground biodiversity and ecosystem processes, earthworms can be used as an 

important bio-indicator in assessing overall ecosystem sustainability (Paoletti, 1999). 

Moreover, because of their direct and relatively rapid response to physical and chemical 
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changes in soil, earthworms can be used as indicators in assessing the effects of land use 

change on below-ground biodiversity, hence soil sustainability (Jouquet et al., 2006).  

 

However, the direct and indirect impacts of SRF species on the earthworm community 

and the feedback processes in these intensive forest systems are largely unidentified. 

The existing Forestry Commission SRF trials provided a platform for this investigation. 

Broad field surveys, well-designed laboratory experiments, and advanced field-based 

studies were carried out for this investigation to assess the effects of SRF species and 

their litter quality on population, diversity and activity of earthworms. In addition, the 

effects of earthworms on SRF litter decomposition, soil carbon and nutrient release and 

tree nutrient uptakes were assessed. The SRF-earthworm interaction-related information 

gained through the research for this thesis will be a valuable source for practitioners to 

assess overall SRF system sustainability in the process of its expansion within the UK. 

 

1.2 Research questions 

 

During the preliminary stage of this research, the following specific research questions 

were raised. 

  

1) What are the effects of different SRF species, litter quality and quantity on 

earthworm population and diversity? Do these effects interact with soil types and 

physical and chemical properties?  

2) Are there any changes in below-ground earthworm community due to land use 

conversion (e.g. from agriculture to SRF)?  

3) What is the contribution of earthworms to leaf litter decomposition, plus carbon 

nutrient cycling within SRF systems?  
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4) What is the direct influence of earthworms on SRF nutrient uptake and plant 

growth? 

5) Overall, how do earthworms integrate with other factors when modelling SRF 

ecosystems? 

 

These research questions formulated a rather large and comprehensive set of second 

level research questions and issues which were explored during the research project.  

 

1.3 Project  aims 

 

The research started with five major aims as follows: 

 

 To explore the effects of SRF on different land-use systems on earthworm 

community development. 

 To investigate the influence of SRF litter quality on earthworm food selection, 

growth and reproduction. 

 To assess the contribution of earthworms to SRF litter decomposition, carbon and 

nutrient cycling within these forest systems.  

 To study the direct effects of SRF trees (e.g. root chemistry, litter quality) on 

earthworm population establishment and the reciprocal effect of earthworms on 

SRF nutrient uptake and tree growth. 

 To provide information to develop a model to predict impacts of SRF on the wider 

ecosystem, including soils and biodiversity. 

 

The detailed scientific objectives related to these aims are presented in appropriate 

sections of the thesis in association with relevant experiments.  
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1.4 Thesis structure 

 

This thesis is structured in the following way. The introduction presented in Chapter 1 

provides an overview of the contextual background and the research issues that are dealt 

with in the research. Chapter 2 reviews literature that in essence, is selected pre-

knowledge in different areas that are related to this research work. The major sections in 

the literature review include SRF practice, earthworm ecology, plant-earthworm 

interactions and associated techniques/methodologies. Chapter 3 describes the 

methodological approach and a summary of experimental design, highlighting the 

specific features and parameters of the laboratory and field-based experiments. 

 

Chapters 4, 5, 6, and 7 present detailed experimental work undertaken with respect to 

the major aims stated in Chapter 1. These Chapters present specific objectives, 

methodologies and the important results of the each experiment. Experimental results, 

possible reasons and relevant literature are initially discussed under each experiment. 

Finally, Chapter 8 links and discusses all laboratory and field research results together 

and addresses the initial aims and specific objectives in experimental chapters.  
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CHAPTER 2: LITERATURE REVIEW 

 

2.1    Introduction  

 

Foremost sections in the literature review include SRF practice in the UK, general 

earthworm ecology; influence of environmental factors on earthworm diversity/activity 

and their roles in the overall ecosystem. A major section of the review then discusses 

the techniques associated with earthworm research in the field and laboratory. 

Afterwards, this chapter discusses existing knowledge on interactions between plants 

and earthworms. The final section explains the potential impacts of SRF on soils and 

earthworms.  

 

2.2 Short Rotation Forestry  

 

Short Rotation Forestry (SRF) practice can be described as the cultivation of fast-

growing tree species to reach an economically optimum size between 8 and 20 years 

(McKay, 2011). The trees are planted at optimum spacing that allows for rapid growth 

and easy harvesting. The resulting single stems are harvested for biomass at around 0.15 

m diameter. After the first harvest, SRF trees are usually replaced by new planting.  

 

2.2.1 Short Rotation Forestry and Short Rotation Coppice  

 

SRF practice is different from the more widely occurring Short Rotation Coppice (SRC) 

also used for biomass production, where tree species are grown on a repeated coppice 

cycle of 3 – 4 years. SRC species generally require higher quality arable land for 

optimum growth and high yield (Harrison, 2009). However, SRF species do not 
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compete directly with food crops for the most productive agricultural lands, as these 

trees tend to be grown on lower-grade agricultural land, previously forested land or 

reclaimed land (McKay, 2011).  SRC species of willow (Salix spp.) and poplar (Populus 

spp.) produce relatively poor quality biomass with a high moisture content, low wood 

density and high bark content (Kerr, 2011). Conversely, the wood-chips produced by 

SRF are high in quality and more homogeneous than wood-chips provided by SRC. 

Biomass from SRF can be used in power stations, alone or in combination with other 

fuels such as coal. Due to these reasons, SRF has become more attractive to both 

biomass producers and energy suppliers (Kerr, 2011).  

 

SRF has the potential to produce a higher biomass yield, using marginal agricultural 

land, while benefiting the productive ecosystem (e.g. soil system, below and above-

ground biodiversity). It has been suggested that SRF, particularly using eucalyptus, has 

the potential to deliver greater volumes of biomass from the same land area than 

alternative biomass crops (McKay, 2011). As such, SRF can be a more appropriate 

woody biomass source for growing in many parts of the UK. However, the field 

information available for SRF species, their growth, biomass production and 

environmental impacts are still insufficient in the UK. 

 

2.2.2 SRF species  

 

LTS International (2006) suggested a potential SRF species list (Table 2.2.1) to grow in 

the UK for biomass production.  This SRF list includes native and non-native tree 

species. Trees that have developed over thousands of years in a particular region or 

ecosystem are considered as native species, while trees introduced with human help 

(intentionally or accidentally) to a new place or new type of habitat where it was not 
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previously found are considered as non-native species (NRCS, 2011). Non-native trees 

that do not need human help to reproduce and maintain themselves over time in an area 

where they are not native are called naturalised trees (NRCS, 2011).  LTS International 

(2006) has further described yield data and rotation lengths (see Table 2.2.1) for 

selected SRF species. However, the authors have mentioned that this information was 

gathered through discussion with present practitioners and is based on very limited field 

data.  

 

Table 2.2.1 SRF species information (adapted from LTS International, 2006) 

 

SRF species Origin Biomass 

Productivity 

 (dt ha
-1 

yr
-1

) 

Rotation 

(years) 

Alder (Alnus spp.) Native 5 20 

Ash (Fraxinus excelsior) Native 7.4 20 

Birch (Betula pendula) Native 5 20 

Poplar (Populus spp.) Native 5.6 14 

Sycamore (Acer pseudoplatanus) Naturalised 7 20 

Cider gum (Eucalyptus gunnii) Non-native 9 12 

Shining gum (Eucalyptus nitens) Non-native 15 8 

Rauli (Nothofagus spp.) Non-native 11.8 12 

dt – dry tonne 

 

In a recent SRF review by Forest Research, Kerr (2011) discussed further potential SRF 

species (e.g. naturalised sweet chestnut and hybrid aspen) that were not included by 

LTS International (2006). Kerr has estimated the range of possible biomass productivity 

for considered SRF species (Table 2.2.2) using a combination of published information 

and new data. Kerr (2011) emphasised that often the quoted productivity for SRF 
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species in the UK, especially for introduced non-native species (e.g. eucalyptus) has not 

adequately accounted for the risks of frost and winter cold. 

 

Table 2.2.2 SRF species and biomass productivity (adapted from Kerr, 2011) 

 

SRF species Biomass 

(dt ha
-1 

yr
-1

)  

Red alder (Alnus rubra) 0.9 - 4.8 

Italian alder (Alnus cordata) * 

Hybrid aspen (Populus tremula x tremuloides) * 

Ash (Fraxinus excelsior) 0.5 – 4.7 

Birch (Betula pendula) 0.5 – 5.7 

Sycamore (Acer pseudoplatanus) 0.5 - 5.7 

Sweet Chestnut (Castaneas sativa) 1.2- 6 

Cider gum (Eucalyptus gunnii) 1.5 - 8.2 

Shining gum (E. nitens) * 

Tingiringi gum (E. glaucescens) 2.5 - 7.6 

Rauli (Nothofagus alpina syn. N. procera) 3 - 10.5 

* Insufficient information  

 

2.2.3    SRF trials in the UK 

 

Forestry Commission Scotland (FCS) and England (FCE) have established active sites 

(Table 2.2.3) across the UK on which SRF is trialled. This involves planting a range of 

potential tree species to assess tree performance, productivity and the wider 

environmental impacts on soil, biodiversity, water quality and quantity. Further, these 

trials aim to provide growth and yield information for potential SRF species and overall 

carbon and green-house gas (GHG) balance. The sites, cover a range of soil types, 

geographic areas and climatic zones, and consist of extensive (> 5.0 ha) and intensive (< 
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5.0 ha) areas. The intensive areas are used for research purposes, but some assessments 

and treatments are also conducted in the extensive areas, which are operational SRF 

sites. Unplanted representative areas are available at most sites as controls, to draw 

comparisons of  factors such as hydrology, biodiversity, soil nutrition and soil carbon 

with the SRF planted area.  

 

Table 2.2.3 Newly established SRF trial sites and some older forest sites, consisting 

of potential SRF species (based on unpublished information provided by Forest 

Research) 

 

Site name Site location Established  

year 

Species 

Mill Farm Lincolnshire 2009 Various  

Roan Farm Cumbria 2009 Various  

Carlshead farm Yorkshire 2009 Various  

Daneshill Nottinghamshire 2005 E. gunnii, E. nitens, Other 

Eucalyptus spp., 

Nothfagus, B. pendula 

Rogate Wood W. Sussex 2005 Various Eucalyptus spp., 

C. sativa 

Alcan Lynmouth, 

Northumberland 

2004 E. gunnii, E. nitens 

Cannock Chase 2 Staffordshire ~2004 B. pendula 

Champion Court  Newham, Kent 2001 E. nitens, E. gunnii. 

Usk College Monmouth, 

Wales 

~2000 F. excelsior and A. 

pseudoplatanus 

Benton Wood Pembroke, Wales 1998 Nothofagus  

Glen Orchy Argyll 1998 Nothofagus  

Redmarley Gloucester 1984 Various Eucalyptus spp. 

Great Haldon Exeter, Devon 1983 Various Eucalyptus spp. 

~ = approximately 
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2.3 Earthworms  

 

Soil faunal communities as a functional group play a vital role in sustaining many 

terrestrial ecosystems. An important part of this soil fauna is the earthworm community 

which has a pronounced effect on physical, chemical and microbiological soil properties 

(Lee, 1985; Bartlett et al., 2010). Earthworms are the most widespread soil invertebrates 

which account for the majority of soil faunal biomass in a wide range of productive 

ecosystems (Shakir and Dindal, 1997; Mori et al., 2010), and are considered one of the 

best indicators of soil quality (Lavelle et al., 2006). Earthworms play a significant role 

in decomposition of organic matter and nutrient cycling (Curry, 1987). Moreover, they 

assist soil structural development as a result of their feeding and burrowing activities 

which improve soil aeration, drainage and water holding capacity. Earthworms are 

commonly described as the most important ecosystem engineers; organisms that may 

modify their habitat/soil properties and thus influence the availability of resources to 

other species (Jones et al., 1994) in the soil matrix, due to their long-term effects on soil 

physical and bio-chemical properties (Emmerling et al., 2002). Positive effects of 

earthworms within the soil system are directly and indirectly interrelated with plant 

growth and yield (Lee, 1985; Haimi et al., 1992; Bardgett et al., 2005; Eisenhauer et al., 

2009a). 

 

 

 

 

 

 

 



13 

 

2.3.1  Earthworm communities  

 

2.3.1.1  Ecological groups 

 

Earthworm species show evidence of morphological and physiologically adaptations for 

existence within the soil system, effectively using available resources. According to 

their feeding behaviour, morphological characteristics and habitat use (vertical 

stratification in the soil system), earthworms have been grouped into three major 

categories; epigeic, endogeic, and anecic (Bouché, 1977; Lee, 1985; Curry, 1994; 

Paoletti, 1999). Epigeic earthworms live near the soil surface within/underneath the 

litter layer, are heavily pigmented, and generally feed on plant litter. Endogeic 

earthworms are active within the upper layer of the mineral soil where they feed on soil 

organic matter obtained by the ingestion of large amounts of soil (geophagy). Anecic 

earthworms tend to live in permanent vertical burrows, are dorsally pigmented, and feed 

on surface plant litter. The habitat preferences and feeding behaviour of different 

earthworms may result in a diverse but essential effect on ecosystem processes. Table 

2.3.1 summarises the major characteristics of the above earthworm groupings. 
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Table 2.3.1 Characteristics of the three major earthworm grouping (adapted from 

Bouché, 1977) 

 

 

Diagnostic 

Character 

Earthworm grouping 

Litter dwelling 

(epigeic) 

Shallow working 

(endogeic) 

Deep burrowing 

(anecic) 

Food eaten Decomposing 

surface litter 

Mineral soil Surface litter pulled 

into burrow 

Adult size Small to medium Medium Large 

Burrow None Extensive horizontal 

(to 15 cm) 

Large permanent 

vertical (to 2 m) 

Reproduction Rapid Intermediate Slow 

Longevity Short-lived Intermediate Long-lived 

British 

examples 

Lumbricus rubellus, 

Dendrodrilus rubidus  

 

Allolobophora chlorotica  

Aporrectodea caliginosa 

 

Aporrectodea longa 

Lumbricus terrestris 

 

 

 

2.3.1.2  Natural associations 

 

Earthworm species have different effects on soil ecological functions. Although 

individual earthworm species contribute greatly to ecosystem functions, this 

contribution is often a combined effort of species association. Species association in a 

temperate ecosystem may include up to 15 species, but more commonly 2 - 6 species 

are found (Lee, 1985). Natural earthworm associations vary with soil type, vegetation, 

food supply, and climate (Curry, 1998). At a smaller scale, earthworm association is 

influenced by season, litter quality, humus, soil structure (Coderre et al., 1995) and even 

by land use history. Generally, earthworm species that represent different ecological 

groupings have a positive relationship (Uvarov, 2009) and are often found together. As 

an example, L. rubellus and A. caliginosa with different feeding habits show a positive 
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association (Raty and Huhta, 2003). Further, epigeic earthworm species can be found 

associated within L. terrestris middens (collection of organic and inorganic materials at 

the burrow entrance) as they generally provide food and shelter for the surface dwelling, 

small earthworm species (Butt and Lowe, 2007). The endogeic species A. chlorotica 

and A. caliginosa often show a negative association with each other, but also a positive 

relationship with anecic species (Lowe and Butt, 2003; Uvarov, 2009). L. terrestris 

frequently shows a negative association with A. longa and L. rubellus due to possible 

competition for food/litter at the soil surface (Edward and Lofty, 1972; Lowe and Butt, 

1999; Uvarov, 2009).  

 

2.3.2 The roles of earthworms in ecosystems  

 

2.3.2.1  Organic matter decomposition and nutrient cycling  

 

Earthworms play a significant role in decomposition of organic matter and nutrient 

cycling within many terrestrial ecosystems (Edwards and Heath, 1963; Curry, 1987; 

Curry and Byrne, 1992; Eisenhauer et al., 2009a). They consume various types of 

organic matter such as plant litter, crop residues and animal droppings and incorporate 

these into the soil. The resulting casts, which contain plant-available nutrients, are 

deposited on the soil surface and even within various layers of the soil profile, 

depending on their ecological grouping. Anecic species such as L. terrestris largely 

contribute to breakdown of, and incorporation of surface litter into the soil in many 

productive ecosystems.  Scheu and Wolters (1991) suggested that L. terrestris has the 

greatest contribution for overall breakdown and incorporation of plant litter within 

mineral soils in many temperate woodlands, and is largely responsible for the formation 

of mull humus.  Satchell (1967) estimated that incorporation of leaf litter into the soil by 
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L. terrestris may amount to 3,000 kg ha
-1

 over three months in deciduous forests. Large 

presence of L. terrestris in lowland Oak forest on mineral gley soils in the South of 

England helps some of the 5,000 kg ha
-1

 annual litter incorporation into the soils and the 

formation of a mull humus layer (Benham et al., 2012). Epigeic earthworms also 

consume considerable amounts of litter but do not incorporate it into the mineral layer. 

Endogeic earthworms feed mainly on fine organic matter and incorporate it with 

mineral soil.  Anecic and endogeic earthworms have a synergistic effect on the 

distribution of organic matter throughout the soil profile (Lowe and Butt, 2003). 

Different earthworm species with various feeding behaviours (see Table 2.3.1) may lead 

to different but equally important effects on organic matter mineralisation and nutrient 

release (Laossi et al., 2009). The breakdown and mixing of organic matter by 

earthworms is vital for nutrient recycling within any productive ecosystem (Bernier and 

Ponge, 1994). Their contributions to nutrient cycling also includes enhancement of 

microbial activities (Postma-Blaauw et al., 2006).  

 

2.3.2.2  Soil structural development 

 

Earthworms, as key regulators of soil structure (Fonte et al., 2009) and as ecosystem 

engineers (Jones et al., 1994, see section 2.3), directly and indirectly affect soil physical 

properties. Darwin (1881) described earthworms as nature‟s plough, following his early 

observations of their habits. The effects of earthworms on soil structure result from their 

feeding, burrowing and casting activity. Earthworms directly improve soil 

aeration/porosity through their burrowing activity (Edwards et al., 1988; Knight et al., 

1992). The extent to which burrowing influences pore space is dependent on soil and 

environmental conditions. Kretszchmar (1998) estimated that burrows can represent 

approximately 20% of air-filled space in soils even when air-filled porosity is at its 
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lowest with high moisture. Edwards et al. (1988) estimated 1.6 × 10
6 

L. terrestris 

burrows ha
-1

 in long-term, no till watershed at Coshocton, U.S.A.
 
As a result of 

burrowing, earthworms increase water infiltration of the soil (Joschko et al., 1989; 

Knight et al., 1992) and hence they reduce surface runoff and soil erosion (Pitkȁnen and 

Nuutinen, 1998; Jouquet et al., 2006). Hoogerkamp et al. (1983) monitored a significant 

increase in water infiltration in Dutch Polders reclaimed from the sea, 8 - 10 years after 

earthworm introduction.  The study recorded that water infiltration rates over a 24 hour 

period were up to 136 times greater in earthworm inoculated pots than control plots 

with no earthworms. Earthworms contribute to soil profile development by 

incorporating organic matter into the mineral soil through surface removal of litter and 

deposition of casts on the surface and sub-surface of the soil profile. Through casting 

activity, earthworms directly promote soil aggregate formation and stabilise soil 

structure (Shipitalo and Protz, 1989; Tomlin et al., 1995). Changes in porosity, drainage 

and soil aggregates due to earthworm activity can increase soil water holding capacity 

(Van Rhee, 1969). However, quality and palatability of plant litter can influence soil 

aggregation by earthworms (Flegel et al., 1998) and they tend to produce a higher 

number of aggregates when they are fed with less palatable litter (Merciris et al., 2008). 

A decrease in food quality induces higher soil ingestion, followed by higher cast 

production and more construction of burrows (Marhan and Scheu, 2005). 
 

 

2.3.2.3  Soil food web relationship 

 

Earthworms are important primary contributors to the existence and balanced function 

of soil food webs. They have many complex relationships with other soil organisms 

including microorganisms. Earthworms promote microbial activity in the soil system 

through initial fragmentation and surface mixing of organic resources (Mulder, 2006). 
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They disperse microorganisms and accelerate microbial activity within the soil system 

through burrowing and casting activity (e.g. Lavelle and Spain, 2001).  Compared with 

surrounding soil, earthworm casts usually support greater populations of bacteria, fungi 

and actinomycetes (Tiwari and Mishra, 1993) as casts are generally rich in available 

nutrients and partially digested organic matter which provides an ideal substrate for 

growth of microorganisms. Further, some of the mucus secreted with casts stimulates 

microbial activity and growth (Scheu, 1991). Some researchers have shown that 

selected groups of actinomycetes and bacteria are stimulated during passage through the 

earthworm gut (Szabo et al., 1990). By contrast, microorganisms are an important 

source of food and provide nutrients for certain earthworms (Edwards and Fletcher, 

1988). Curry and Schmidt (2007) in their review of the feeding ecology of earthworms 

emphasised that one of the main factors likely to influence earthworm food digestibility 

is the degree of microbial involvement in the process. They suggest that epigeic species 

which consume great amounts of raw organic matter have a broad range of enzymatic 

capacities, possibly originating from ingested microflora and also L. terrestris  middens 

can stimulate microbial colonisation and degradation (the „external rumen‟), with 

mutually beneficial consequences for earthworms and microflora.  

 

2.3.2.4  Link to above-ground biodiversity  

 

Earthworm communities have a close link with above-ground biodiversity and 

ecosystem processes. Earthworms can directly influence plant diversity by dispersal of 

plant seeds. Earthworms generally promote plant growth and yield mainly through 

enhancement of soil organic matter mineralisation, the modification of soil structure, the 

production of plant growth promoting substances, the stimulation and dispersal of 

beneficial microorganisms and control of pests and parasites (Scheu, 2003; Laossi et al., 
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2010; Jana et al., 2010). Moreover, earthworms are an important component in the diet 

of many terrestrial vertebrates. They are a major source of food for many species of 

birds such as blackbird (Turdus merula), starling (Sturnus vulgaris), thrushes (Turdus 

spp.), crow (Corvus corone), robin (Erithacus rubecula), wood-cook (Philohela minor) 

and owl (Strix aluco) (MacDonald, 1983). Amongst the mammals, hedgehog (Erinaceus 

europeus), badger (Meles meles), mole (Talpa europea) and red fox (Vulpes vulpes) eat 

large number of earthworms (MacDonald, 1983). Hofer (1988) showed that earthworm 

contributed the bulk of the diet of the badgers in Wytham Woods, Oxfordshire and 

earthworm introduction into restored sites has on occasion been specifically designed 

for sustainable food provision for protected vertebrate species (Butt et al., 2003).  

 

2.3.3 The effect of environmental factors on earthworms  

 

2.3.3.1 Soil type (structure/texture) 

 

Soil texture has shown a strong correlation with earthworm populations; earthworm 

populations are usually positively correlated with soil clay content (Hendrix et al., 

1992; Baker et al., 1998). Guild (1951) suggested that medium loam soil supported a 

greater earthworm population than heavier clay, sandy or alluvial soils. Soil structure 

also has a large influence on earthworm populations and activity. Soils with increased 

water holding capacity, aeration and drainage provide better habitat for earthworms.  

Further, the soil bulk density can affect burrowing ability and cast production (Joschko 

et al., 1989; Kretzschmar, 1991). Soils with organic matter of the mull and moder types 

generally contain higher earthworm diversity and biomass compared with acidic soils 

and mor humus types (Paoletti, 1999). However, different species of earthworm prefer 

different type of soils. As an example, nutrient-rich soils are dominated by geophagous 
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earthworm species, while litter-feeding epigeic species are normally present in nutrient-

poor soils (Fragoso and Lavelle, 1992). Deep burrowing anecic species such as L. 

terrestris need considerable soil depth to construct their burrows and do not commonly 

appear in shallow soils (Muys et al., 1992). The influence of soil type on earthworms 

may be due to its direct and indirect impacts on soil physical and chemical properties.  

 

2.3.3.2   Soil moisture 

 

Soil moisture is a major factor which effects earthworm populations, but they have a 

considerable ability to survive under adverse conditions using different techniques. 

Nevertheless, prolonged drought can dramatically decrease earthworm population 

numbers. Adequate availability of moisture determines earthworm activity within the 

soil system and it can even affect earthworm reproductive success.  The moisture 

requirement for general activities of earthworms varies with different species, but even 

within the same species it can be different according to their origin. Buckerfield (1992) 

indicated that certain species of earthworms are adapted to wide range of soil moisture 

contents and A. rosea can be active in soils with very low moisture levels (10%), in a 

semi-arid cereal field in Southern Australia. Different earthworm species use different 

strategies to survive under drought conditions. Edwards et al. (1995) reported that 

cocoons may act as the main survival stage during drought for some earthworm species 

such as L. rubellus. L. terrestris and A. longa. These species generally migrate to deeper 

soil when the surface soil is dry. Lack of moisture can cause some earthworm (e.g. A. 

longa) to enter a resting phase (diapause). Earthworms in diapause are tied up in a knot 

in a soil void space that is lined with mucus to avoid moisture loss. Other species (e.g. 

A. chlorotica, A. caliginosa and A. rosea) may enter into a less permanent quiescent 

state (Evans and Guild, 1947). Satchell (1967) reported that L. terrestris decrease 
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surface activity and cocoon production during drought periods.  As reviewed by Curry 

(1998), most earthworms are active at a moisture tension approaching  field capacity 

(~10 kPa), and activity declines rapidly as moisture tension exceeds 100 kPa and ceases 

for most species at a moisture tension below the permanent wilting point (1500 kPa). 

 

Laboratory studies suggest that most temperate earthworm species are active and 

reproduce well under a moisture content of 25 - 30% (Butt et al., 1994; Berry and 

Jordan, 2001). Daugbjerg (1988) used a soil column with a continuous moisture 

gradient from 6% at the top to 30% at its base and studied the soil moisture preference 

of A. caliginosa, A. longa and L. terrestris. Adult A. caliginosa preferred a narrow range 

of soil moisture from 18 – 20% while L. terrestris spread out across the whole range, 

showing preference for a soil moisture content of 20%. The author suggests that L. 

terrestris is normally subject to dryer soil conditions as it feeds on the soil surface and 

therefore these are able to tolerate lower soil moisture conditions than endogeic A. 

caliginosa.  Curry (1998) suggests that juveniles are less tolerant to drought, as they are 

unable to burrow deep down within the soil and enter into a dormant state.   

 

2.3.3.3  Soil temperature 

 

The growth, maturity, reproduction and other activities of earthworms are influenced by 

soil temperature. Temperature and moisture are inversely related and high temperature 

and dry soil are much more limiting to earthworm populations than low temperature and 

water logged conditions (Nordstrom and Rundgren, 1974). Temperature can affect the 

number of cocoons produced and percentage viability (Butt, 1991) as well as embryonic 

development of some earthworms (Holmstrup et al., 1991). Lee (1985) suggested that 

the optimum temperature for growth of natural populations of Lumbricidae in Europe 
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ranges from 10
 
°C - 15

 
°C. Butt (1991) cultured L. terrestris at various temperatures and 

showed that cocoon production was greatest at 15
 
°C and the length of cocoon 

incubation was shortest at 20
 
°C, with an ideal temperature for maximum production 

falling within 15 - 20
 
°C. Temperature also affects the food consumption of some 

species. As an example, Daniel (1991) reported that food consumption of L. terrestris 

increased linearly with temperature up to 20
 
°C, but declined above 22

 
°C. Earthworms 

have certain temperature limits for survival. The upper and lower limit of temperatures 

for earthworms depends on the species and the region. The upper lethal temperature was 

recorded as 28 °C for L. terrestris (Wolf, 1938; Grant, 1955), 26 °C for A. caliginosa 

(Grant, 1955) and 29.7 °C for A. rosea (Reinecke, 1975). The lower lethal temperature 

for earthworms in temperate regions is almost below freezing point (Holmstrup 1994; 

Nuutinen and Butt, 2009).  Holmstrup (1994) investigated the cold tolerance of 

earthworms and recorded that D. octaedra was the most cold tolerant and it can survive 

at - 8 °C for three months and at - 13.5 °C for two weeks. He suggests that cocoons of 

earthworms that inhabit extremely cold environments have been shown to survive under 

freezing temperatures.  However, extreme temperature conditions outside their survival 

limits greatly influence earthworm populations. Hopp (1947) suggested that earthworm 

populations in arable soil in the United States can be destroyed by frost in the absence 

of ground cover, as soil would freeze deeply enough to affect most of the species, but 

this is unlikely in pasture or woodlands. 

 

2.3.3.4  Soil pH  

 

It has been shown that pH is a determining factor for earthworm diversity and 

population distribution (Karmegam and Daniel, 2007; Li et al., 2010). Most species of 

earthworms prefer soils with neutral pH (Lowe and Butt, 2005; Karmegam and Daniel, 
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2007). Satchell (1955a) suggested that some species e.g. A. longa, A. caliginosa and A. 

rosea are intolerant to acidic condition (pH < 4.5), while others e.g. D. octaedra, D. 

rubida survive under acidic conditions. He suggests that L. terrestris is not very 

sensitive to soil pH.  However, Satchell (1967) recorded that L. terrestris rarely occurs 

in the field at pH less than 4.3. Edwards and Lofty (1975) reported that not all species of 

earthworm responded to changes in soil pH in the same way and most could not tolerate 

a pH below 4. These authors further reported that the optimum range of pH for A. 

caliginosa, A. rosea, and O. cyaneum was 5 - 6. Most species of European earthworm 

have a good tolerance for a wide range of pH, but this has a great influence on 

earthworm distribution and abundance (Staaf, 1987).  

 

2.3.3.5  Seasonality 

 

In the field, earthworm activity is greatly influenced by seasonality mainly due to 

variation in soil moisture and temperature. In temperate regions, earthworm activity 

reaches a maximum in spring and autumn and may become inactive in hot summers and 

cold winters (Satchell, 1967; Postma-Blaauw, 2006; Cesarz et al., 2007). In the 

Mediterranean region, soil fauna show a seasonal vertical migration; during the wet 

season they move up to the litter layer and move down again in the dry season (Sharon 

et al., 2001).  In adverse conditions, earthworms have developed a range of survival 

strategies (see section 2.3.3.2).  

 

2.3.3.6  Soil organic matter/vegetation  

 

Soil organic matter quality, quantity and distribution are important factors which 

determine earthworm abundance and diversity in any ecosystem (Muys et al., 1992; 
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Tian et al., 1993). Past researchers have shown strong positive relationships between 

earthworm population size, biomass and organic matter content of the soil (Ghabbour 

and Shakir, 1982; Hendrix et al., 1992). However, this may not hold for organic matter 

rich peat soils with low pH where very low or no earthworms were recorded. 

Earthworms can feed on various types of organic matter such as animal dung, litter, and 

dead plant material. However, in less managed terrestrial ecosystems, leaf litter from 

plants is the main source of organic matter available to earthworms. Further, dead roots 

and rhizodeposition are also important (Curry, 1998). Since plants are the main source 

of organic matter to earthworms, vegetation can have a large influence on abundance 

and diversity. Plant species shows a diverse influence on development of earthworm 

communities as they differ in the quality and quantity of litter produced (Zou, 1993; 

Neirynck et al., 2000; Sarlo, 2006). 

 

2.3.3.7  Soil management practices 

 

Undisturbed habitats such as permanent grasslands and many natural forests usually 

show an abundance and diversity of earthworms compared with cultivated lands 

(Paoletti, 1999; Curry et al., 2002). Soil management practices associated with 

cultivation can have a significant impact on earthworms as these practices primarily 

change soil properties. Agricultural practices such as ploughing, application of 

pesticides, soil fertilisers and residue-burning directly or indirectly pose a threat to some 

species of earthworm (Edwards, 1983; Paoletti, 1999). In contrast, some agricultural 

practices, such as no-tillage management, crop rotation, mulching, liming and organic 

matter amendments may positively affect earthworm abundance and diversity (Paoletti, 

1999; Ivask et al., 2007). Lapied et al. (2009) have shown that agricultural fertilisation 

based on organic residue addition is highly beneficial for earthworms and soil quality. 
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Further, Simonsen et al. (2010) found that manure use was the most important 

management factor affecting endogeic earthworm numbers, while no-tillage was most 

important for juvenile and adult anecic groups and also had a significantly positive 

influence on endogeic earthworm number in a Midwestern cropping system.  

 

2.3.3.8  Land use history 

 

Land use history may markedly affect the composition of earthworm communities in 

some ecosystems. Raty and Huhta (2004) compared the earthworm communities in 

birch (B. pendula) stands of different origins in Finland. They concluded that 

earthworm communities in a birch stand established on spruce forest soil and on arable 

soil differ clearly from each other even 30 years after reforestation. The study recorded 

significantly increased earthworm density and diversity under birch established on 

former arable soils compared with former spruce soils. The literature suggests that tree 

establishment on former arable soils has a great potential to increase earthworm density 

and diversity (Makeschin, 1994). In contrast, tree establishment on grassland soils 

generally decreases earthworm populations in longer-term (Yates, 1988; Muys et al., 

1992).  
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2.4 Techniques associated with earthworm research in the field and laboratory 

 

2.4.1 Field Earthworm sampling  

 

It is vital to identify and quantify relative abundance and biomass of earthworms in a 

particular habitat for most ecosystem studies. An appropriate technique or combination 

of techniques is required to bring earthworms to the soil surface, as it is impossible to 

have direct counts of these soil-inhabiting creatures in situ. Currently, a number of 

techniques are available for earthworm sampling, some of which are used more often 

than others, but no standard has been established for all situations. 

 

2.4.1.1  Digging and hand sorting of soil 

 

Digging and hand-sorting of soil is the simplest and perhaps most widely used method 

for earthworm sampling.  Using a spade and quadrat, an area of 0.1 – 1.0 m
2
 of soil (to a 

depth of 0.15 - 0.25 m) is removed to a plastic sheet in the field and then hand-sorted 

for earthworms (Butt, 2000). However, this is a very labour intensive, time consuming 

procedure and may recover only epigeic and endogeic earthworm species. Deep 

burrowing (anecic) species may fail to be noticed as they may retreat deep into burrows 

during digging (Butt, 2000; Butt and Grigoropoulou, 2010). In some situations, removal 

of a large soil monolith can overcome this problem (e. g. Lavelle, 1988). However, 

these methods may not be appropriate for every habitat as they may severely damage 

the upper soil layer of the sampling area. 
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2.4.1.2  Use of a vermifuge 

 

Application of a vermifuge to the soil surface is a popular method to extract earthworms 

as it is simple and effective. Once poured into soil, vermifuge chemicals bring 

earthworms to the soil surface as they act as a skin irritant when in contact with the 

animal (Butt and Grigoropoulou, 2010). Various chemicals have been used as a 

vermifuge. A dilute solution (0.04%) of formaldehyde (formalin) has been a widely 

used vermifuge for long period (Raw, 1959) and has been a standard for earthworm 

extraction (ISO, 2006). However, formaldehyde has been reported as carcinogenic. 

Also, when applied to the soil, it has a potential to cause negative effects to other soil 

fauna, soil respiration, and vegetation cover (Eichinger et al., 2007). Because of the 

negative effects of formaldehyde, attention has been given to other safer alternatives. 

Gunn, (1992) suggested that a suspension of table mustard in water can be used as a 

vermifuge. Butt (2000) has shown that a suspension of mustard powder (e.g. 50 g in 10 

litres of water) is relatively inexpensive and more effective for earthworm sampling. 

Further, a chemical extract derived from mustard seed called Allyl isothiocyanate 

(AITC) has also been used effectively for earthworm collection (Zaborski, 2003).  

 

However, from experience, many earthworm researchers have now concluded that the 

most effective earthworm sampling technique is a combination of digging and hand-

sorting of soil followed by application of a vermifuge to the created pit (Butt, 2000; 

Pelosi et al., 2009). This combined technique allows extraction of most earthworms, 

including anecic species, from a representative area. 
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2.4.1.3  Electrical extraction 

 

This is not a new technique and has been used for over 50 years for earthworm 

collection (Satchell, 1955b). Later, it was modified and developed as the Octet 

apparatus, as a standard electrical extraction method by Thielemann (1986). Eight steel 

electrodes in this instrument are pushed into the soil in a regular circular pattern. It 

stimulates and brings earthworms to the surface. This method is attractive as it is non-

destructive to the sampling area and only fallen leaves and overgrown vegetation need 

to be removed before sampling for easy detection of earthworms (Butt, 2000). However, 

this method has not been widely used mostly due to the equipment cost.  

 

2.4.2 Field behavioural studies  

 

2.4.2.1  Soil surface activities: Casts deposition and Middens  

 

Some species of earthworms deposit their casts (faeces) on the soil surface. In temperate 

soils, the earthworm A. longa produces clear visible casts. The presence of this species 

at high densities can cover almost all grass surfaces with their casts (Butt and 

Grigoropoulou, 2010). The amount of casting could give an indication of the species 

present in addition to their relative abundance in an area (Evans and Guild, 1947). After 

introduction of A. longa to an unpopulated site, casting activity can be used to follow 

dispersal through the soil over many years as shown by Butt et al. (1997) on a landfill 

site in Buckinghamshire. Further, deep burrowing L. terrestris provides another unique 

engineered sign at the soil surface called middens. These structures are normally 

constructed above the opening of their vertical burrow by the resident earthworm, 

gathering organic (mostly leaf litter/debris) and inorganic materials together and 
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cemented with casts (Butt and Grigoropoulou, 2010). Regulation of burrow 

temperature/ moisture content, protection from predators and provision of a food store 

may be some positive reasons for such a construction (Butt and Nuutinen, 2005), but the 

absolute function is still uncertain. Butt and Lowe (2007) have revealed that many other 

earthworm species are associated with L. terrestris middens compared with adjacent 

soil (see section 2.3.1.2).  

 

2.4.2.2  Below ground burrowing activities: Polyurethane resin and Dye 

 

Earthworm investigations are sometimes necessary within the soil profile as most of the 

larger species are active below the soil surface. Researchers have used numerous 

techniques to explore below ground earthworm burrowing systems which are very 

useful for assessing water holding capacity and soil aeration. A polyurethane resin has 

been effectively used to study burrow morphology and volume. Liquid resin is poured 

down the burrow and allowed to set hard (Shipitalo and Butt, 1999), the solid 

representation of the burrow is dug out by excavation of a pit alongside the burrow 

location. Alternatively, to study the extent of burrow systems, dyes such as methylene 

blue in water can be poured into burrows or cracks in the soil and then exposed by 

digging (Shipitalo et al., 2004). 

 

2.4.2.3  Leaf litter decomposition: Litterbag technique  

 

The litterbag approach has been commonly used to study leaf litter decomposition in 

various habitats. A known amount of freshly fallen, air dried, leaf litter is enclosed in 

nylon mesh bags and secured at the soil surface or buried at chosen soil depths. These 

permit access to certain groups of detritivorous soil organisms, and the bags are 
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collected at periodic intervals for measurement of the leaf mass remaining (Bocock and 

Gilbert, 1957; Edwards and Heath, 1963). The mesh size of the litterbags is generally 

selected to optimize the access of all organisms to the litter while minimising excessive 

particle loss (Karberg et al., 2008). However, mesh size can be manipulated to exclude 

certain groups of soil decomposer fauna depending on study objectives (Table 2.4.1).  

 

Table 2.4.1 The appropriate mesh sizes for invertebrate exclusion using litterbags 

(adapted from Edwards and Heath, 1963) 

 

Size of mesh openings Soil organisms which can enter the litterbag 

7 mm All microorganisms and invertebrates 

1 mm All microorganisms and invertebrates, except earthworms 

0.5 mm Only microorganisms, mites, springtails, enchytraeids and 

small invertebrates 

0.003 mm Only microorganisms 

 

 

The size of the bag is also an important component of litterbag studies and overall bag 

size should be appropriate to the considered litter species and ecosystem. Generally 0.2 

m x 0.2 m size bags have been widely used, but diverse plant communities or larger leaf 

sizes may require larger litterbags (Karberg et al., 2008). 

 

Litterbags can be used to measure direct actions of earthworms on organic matter 

incorporation into soils within a particular ecosystem. This requires some knowledge of 

the ecological groups present and the species of earthworm at the study site (Butt and 

Grigoropoulou, 2010). Litterbag studies allow quantification of litter decomposition 

pattern with time. This technique may allow the comparison of decomposition of 

different species of litter across different habitats.  
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2.4.3 Laboratory techniques  

 

2.4.3.1  Maintaining a breeding population of earthworms 

  

Rearing earthworms under laboratory conditions is essential for many earthworm-

related studies. However, their activities such as feeding, growth, reproduction, and 

even survival rates under controlled condition are determined by a number of abiotic 

and biotic factors. Soil substrate, food, moisture, temperature, pH, earthworm density 

and species composition are some of the critical factors affecting earthworm culture 

(Lowe and Butt, 2005). Under laboratory conditions, manipulation of these factors to an 

optimum level is possible and important to achieve increased rates of earthworm 

production and survival. After a review of the literature, Lowe and Butt (2005) provided 

guidelines for sustainable culture of four temperate earthworm species (Table 2.4.2). 
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Table 2.4.2 Culture guideline for four temperate earthworm species (adapted from 

Lowe and Butt, 2005) 

 

 

2.4.3.2  Cocoon collection, incubation and hatchling storage  

 

Earthworm reproduction can be determined by the collection of cocoons from 

experimental soils in which adult earthworms are present. Cocoons can be separated 

from the soil by washing the substrate with a jet of water through a series of sieves 

(wet-sieving) to retain any cocoons (Butt, 2002). This procedure allows for separation 

and identification of cocoons. Sieves are stacked in descending mesh size and the soil 

placed into the uppermost. Cocoons of most species can be identified from their size, 

Culture Parameters Anecic Endogeic 

A. longa  L. terrestris  A. chlorotica  A. caliginosa 

Soil Type Loam (pre-treated to remove macro and meso-invertebrate) 

Soil Depth (cm) >10 >10 >3 >3 

pH 6-7 6-7 6-7 6-7 

Soil Moisture (%) 25 25 25 25 

Food Dried and re-wetted animal dung (cattle or horse) 

Food amount (adult
-

1
month

-1
) 

>20 g >20g >10 g >10 g 

Food location Surface-applied Mixed into soil 

Food particle size 

(mm) 

<10 <10 <1 <1 

Temperature (
 
°C) 15 15 15 15 

Light 24 h dark 24 h dark 24 h dark 24 h dark 

Vessel type Sealed, opaque, plastic with ventilation holes in lid 

Stocking density 

(adult L
-1

) 

4 3 10 6 
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colour and shape (Sims and Gerard, 1999). Collected cocoons are incubated on moist 

filter papers in Petri dishes and filter papers are re-hydrated as required (Lowe and Butt, 

2005). Butt (1991) provided excess moisture to prevent chances of dehydration and 

suggested that submerged conditions did not negatively affect cocoon development, or 

survival of emerging hatchlings. For temperate species of earthworm, most researchers 

have used a sub-optimal temperature of 15
 
°C for incubating cocoons (Baker et al., 

2002: Lowe and Butt, 2002). Emerging hatchlings can be stored at low temperature (5
 

°C) to inhibit growth until required (Butt, 1991).  

 

2.4.3.3  Earthworm experiments 

 

Earthworm experiments under laboratory condition are primarily conducted to 

investigate or compare behaviours, responses, performances and other activities. This 

can be within a species, between species or in combination, and it may be with or 

without other environmental changes. However, in any kind of earthworm related-

experiment, earthworms should be characterised with respect to the following 

parameters; taxonomic identity (species name), ecological group, development stage 

(cocoon, hatchling, juvenile, sub-adult and adult), biomass (initial and end), 

physiological status and origin (Fründ et al., 2010). In general, experimental 

earthworms should be healthy and free from injuries. Any chemical expellants used for 

field collection should be washed off immediately with water. Earthworms should be 

acclimated to the experimental conditions for at least one week before the start of the 

experiment (Fründ et al., 2010).  
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2.4.3.4  Burrowing behaviour: Evans’ boxes and X-ray tomography 

 

A re-created visible structure of a soil profile, constructed with two sheets of glass 

separated by a very small distance (5 - 8 mm) has been used for some earthworm 

studies (Butt and Grigoropoulou, 2010). Evans (1947) used such a structure to observe 

the burrow formation of earthworms. Grigoropoulou et al. (2008) successfully used 

Evans‟ boxes (also referred to as 2D microcosms) to study the effects of adult L. 

terrestris on cocoons and hatchlings. These simple structures allow observation of 

earthworm burrow-related behaviours. Further, three-dimensional demonstrations have 

been achieved with soil-filled PVC cylinders inoculated with earthworms and 

subsequently analysed with computerised X-ray tomography (Fründ et al., 2010; 

Capowiez et al., 2011).   

 

2.4.3.5  Feeding behaviour  

 

For more than a century, scientists have used various methods to study earthworm 

feeding behaviour. Darwin (1881) and Satchell and Lowe (1967) determined earthworm 

food preference by offering leaf litter particles at the soil surface and made observations 

of which particles were disturbed/removed after a certain period of time. Further, Doube 

et al. (1997a) used simple choice chamber techniques to study earthworm food 

preference under laboratory conditions. This technique allowed different types of 

known food materials to be offered to earthworms and allowed quantification of the 

intake with time. Butt et al. (2005) used direct observation experiments to determine 

food choices of some earthworms, such as L. terrestris which feeds directly from the 

soil surface. These researchers offered food (paper pulp and manure) at the soil surface 
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(around the burrow as a circle) and observed which material had been disturbed after the 

event or more directly through video recording of the actual behaviours in progress.  

 

Relatively inexpensive, sophisticated “webcam” techniques have been successfully used 

for various earthworm surface behavioural studies. Nuutinen and Butt (1997) and Butt 

et al. (2005) have used infrared video recording to observe mating and feeding 

behaviour of L. terrestris at the soil surface. Valckx et al. (2010) have also used infrared 

sensitive webcams to monitor the locomotive behaviour of L. terrestris.   

 

2.4.4 Microcosm/Mesocosm techniques  

 

Enclosed or partially enclosed model ecosystems, often called “microcosms”, have been 

widely used for studying soil biota, their interaction with plants and their effects on 

various ecosystem processes (Teuben and Verhoef, 1992; Verhoef, 1996).  This 

experimental approach has become a major research tool in soil ecology because of its 

practicality, simplicity and replication ability (Beyers and Odum, 1993: Kampichler et 

al., 2001). Laboratory-based, relatively small, enclosed “microcosms” with certain 

manipulative treatments have been widely used to develop hypotheses about behaviour 

and function of real ecosystems (Kampichler et al., 2001). However, mid-sized, 

partially enclosed outdoor experimental units often called “mesocosms” have been 

employed to bridge the gap between laboratory “microcosms” and the large, complex, 

real-world “macrocosm” (Odum 1984; Verhoef, 1996; Kampichler et al., 2001). In 

earthworm ecology, various sizes and types of laboratory-based “microcosms” as well 

as greenhouse/field-based “mesocosms” have been used as experimental units to study 

numerous activities and ecological processes including burrowing (Bastardie et al., 

2003), feeding (Doube et al., 1997a), mucus excretion and casting (Scheu, 1991)  
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mating (Butt and Nuutinen, 1998), cocoon deposition (Butt, 2002), earthworm 

interactions (Capowiez and Belzunces, 2001) and even nutrient cycling (Hale et al., 

2008).  

 

2.4.5 Field earthworm inoculation  

 

Reviews of earthworm research have shown that the appropriate reintroduction of 

earthworms to sites where they were absent can bring obvious positive changes in soil 

properties (Curry, 1988; Baker et al., 2006: Nuutinen et al., 2006). Several methods are 

available to introduce earthworms to locations where they are absent and at low density. 

The simplest method can be described as “collection and broadcast” using an available 

collection technique. Turf transfer is another simple technique that involves digging and 

translocating soil with grass attached (Butt and Grigoropoulou, 2010). The Earthworm 

Inoculation Unit (EIU) (Butt et al., 1997) known as “worms in bags” allows culturing of 

a starter culture of adults under optimal conditions over a period of a few months. After 

this time, a population develops within the plastic unit which includes all life stages of 

earthworms (adults, cocoons, and hatchlings). The EIUs are then ready for introduction. 

Inoculation requires the contents of the EIUs to be inserted into appropriately sized 

holes in the intended inoculation site. The plastic bags are split at the bottom and 

carefully removed. The contents provide a protective microenvironment for introduced 

earthworms to survive and recolonise the introduced habitat. 
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2.5 Plant-earthworm interactions 

 

Earthworms, the dominant soil macrofauna group in many terrestrial ecosystems, have 

major interactions with plant communities (Lee, 1985; Bardgett et al., 2005; Eisenhauer 

et al., 2009a). Different earthworm species have diverse impacts on soil dynamics and 

subsequently on potential plant growth (Haimi et al., 1992; Welke and Parkinson, 

2003). Equally, different plant species have various impacts on below-ground 

earthworm communities (Muys et al., 1992; Zou, 1993; Sarlo, 2006). Although this 

earthworm-plant relationship has been widely investigated, the relative impacts and 

feedback processes are extremely complex due to the number of mechanisms involved 

and the number of other factors such as soil properties, plant species and earthworm 

species which likely influence these mechanisms (Haimi et al., 1992; Jana et al., 2010). 

 

2.5.1 Impacts  of earthworms on plant growth and yield 

 

Earthworms are generally regarded as beneficial to plant growth (Lee, 1985; Bardgett et 

al., 2005; Eisenhauer et al., 2009a). Many researchers have illustrated a direct and 

positive relationship between earthworm activity and plant growth. Haimi et al. (1992) 

studied the effect of the earthworm L. rubellus on net production of birch (Betula  

pendula) seedlings in laboratory microcosms and revealed that they grew significantly 

faster in the presence of earthworms, and had longer stems, and larger, greener leaves. 

The mean height of the seedlings after 51 weeks was 0.36 m in the treatment with 

earthworms, and 0.21 m in the control without earthworms.  After two growing periods 

(51 weeks), the combined production of leaf biomass was 33% greater in the earthworm 

treatment compared with the control. A similar trend was observed for stem biomass, 

although the root biomass showed the opposite trend. At week 51, total nitrogen in 
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seedlings grown with earthworms was 11.4 mg more than seedlings grown without 

them. They concluded that birch seedlings benefit from earthworm activity in raw 

humus forest soil. Further, Welke and Parkinson (2003) investigated the effect of the 

endogeic earthworm Aporrectodea trapezoides on growth of Douglas-fir (Pseudotsuga 

menziesii) seedlings grown in three different soils (soils from a pure Douglas-fir stand, 

pure birch stand and mixed stand). The study demonstrated that mean root biomass 

increased much more dramatically from 5 months to 10 months in worm-worked soils 

(197%) compared to control (72%). However, no significant difference was observed in 

the change in shoot biomass, although it slightly increased in worm-worked soil (123%) 

compared with control (97%). Needle calcium level was higher in an earthworm 

treatment compared with control. However, a clear trend was not observed in needle 

nitrogen content. Bisht et al. (2006) evaluated the effect of the earthworm Octolasian 

tyrtaeum casting on crop growth and showed that compared to control, total dry weight 

in earthworm treatments increased by 65% in maize, 58.1% in wheat and 61.7% in 

barley. Eisenhauer et al. (2009a) observed the effect of earthworms on regrowth of 

grassland plant communities and concluded that earthworms significantly enhanced 

each of the plant re-growth parameters such as plant coverage and height of vegetation. 

The effects of earthworms on plant growth and performance involve a number of direct 

and indirect mechanisms, so it is difficult to establish the direct link under field 

conditions, but this can be studied under controlled conditions.  

 

2.5.1.1  Organic matter mineralisation: plant nutrient supply 

 

One of the predominant mechanisms of earthworms which increase plant growth is 

organic matter mineralisation. This process induces the spatio-temporal nutrient 

availability through plant litter fragmentation and incorporation into the soil (Barois et 
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al., 1999; Brown et al., 2000), in addition to the stimulation of microbial mineralisation 

of soil organic matter (Postma-Blaauw et al., 2006). Further experiments have shown 

that the release of mineral nitrogen is essentially a major mechanism of earthworms 

responsible for an increase in plant biomass production (Brown et al., 1999). Different 

ecological groups of earthworms may have different, but important, effects on organic 

matter mineralisation, nutrient release and plant growth (see 2.3.1.1). Further 

investigations have revealed significant interactions between earthworms and soil type 

(Jana et al., 2010) and have suggested that the increase of plant growth through 

earthworm-mediated mineralisation should be superior in nutrient-limited, poor quality 

soil. In nutrient-rich soil, plants are less limited by the availability of mineral nutrients 

and earthworm-induced mineralisation may have less or no influence on plant growth 

(Brown et al., 2004). Jana et al. (2010) conducted an experiment to investigate the 

complex mechanism of interactions of an earthworm species on plant growth using a 

model plant Arabidopsis thaliana and a common temperate earthworm A. caliginosa. 

They used two types of soils for this experimental system and concluded that in poor 

soil with a low content of mineral nutrients and organic matter, earthworms 

significantly increased soil nitrate content and enhanced plant above-ground biomass 

production. By contrast, in the richer soil, earthworms had no significant effect on 

production of above-ground biomass. These results indicate that earthworm-induced 

mineralisation is a determining factor for plant growth particularly in nutrient-limited 

poor soil.  
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2.5.1.2  Soil structural modification: seed-bed, plant-bed provision 

 

Earthworms indirectly affect plant growth through soil structural modifications. The 

activities of earthworm that have the greatest influence on soil structure are burrowing, 

feeding and casting. During these processes, earthworms thoroughly mix the soil, form 

organo-mineral aggregates, increase soil porosity, aerate the soil and improve its water 

holding capacity. Those activities which affect plant root growth and water balance tend 

to enhance plant growth in most situations (Brown et al., 2004). Springett, (1985) 

suggested that earthworm burrows facilitate plant root growth by providing channels in 

soil where roots are able to grow with minimal resistance. These channels often have a 

lining rich in organic matter and available nutrients which provide ideal conditions for 

root growth (Edwards and Shipitalo, 1998).  Furthermore, Laossi et al. (2010) have 

suggested that soil texture can modulate earthworm effects on soil structural 

development. In clayey soils, earthworms might lead to very stable aggregates while in 

sandy soils structures created by earthworms may be more fragile. This could influence 

on soil nutrient status, hence plant growth.  

 

2.5.1.3 Production of plant growth promoting substances 

 

Nelson (1965) proposed that plant growth-promoting substances are present in tissues of 

A. caliginosa, L. rubellus and E. fetida. Dell-Agnola and Nardi (1987) further 

investigated this and confirmed that earthworm activity produces hormonal effects on 

plant growth. Muscolo et al. (1999) identified an auxin-like compound in earthworm 

casts. Recent research has suggested that some earthworms produce plant growth 

regulators via the stimulation of microbial activity (Laossi et al., 2010). Jana et al. 

(2010) suggested that earthworms release phytohormone-like compounds through the 
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stimulation of bacteria. All of these findings suggest that earthworms can enhance plant 

growth possibly through direct production of plant growth promoting substances or via 

stimulation of microbial activity which produce such compounds or in combination of 

both. Further, Jana et al. (2010) confirmed that release of phytohormone-like 

compounds and organic matter mineralisation which influence plant growth are 

complementary mechanisms stimulated by earthworms. 

 

2.5.1.4   Plant pests and parasite control  

 

Earthworms are known to affect plant growth through alleviation of the negative effect 

of pests and parasites (Laossi et al., 2010).  Earthworms may greatly reduce plant 

parasite density by ingestion and death or producing unfavourable conditions in cast 

material or burrow linings (Stephens and Davoren, 1997). Jana et al. (2010) suggested 

that earthworms allow plants to resist parasitic nematode attack via several mechanisms; 

by decreasing nematode populations, by enhancing the strength of plants or by 

stimulating microbes that are antagonistic to root pathogens. Earthworms can disperse 

beneficial disease-biocontrol agents and positively affect plant growth, while they can 

negatively affect plant growth by transmitting many plant pathogens (Edwards and 

Bohlen, 1996). As an example, earthworms can spread soil fungi, including pathogens 

throughout the soil by dispersing spores and hyphal fragments.  

 

2.5.1.5   The effects on plant seeds 

 

Anecic earthworms are increasingly recognised as important dispersers and predators of 

plant seeds (Eisenhauer et al., 2009b). Grant (1983) reported decreased and delayed 

germination of seeds of some grassland plant species after gut passage through L. 



42 

 

terrestris and A. longa. In contrast, Eisenhauer et al. (2009b) proposed that certain plant 

species might benefit from gut passage since slight damage of the seed coat may break 

seed dormancy. They experimented with endogeic earthworms and concluded that gut-

passage and cast products modified plant seed germination due to mechanical force such 

as scratching the seed coat and chemical stimuli such as increased nutrient 

concentrations. Moreover, they suggested that phytohomone-like substances and 

enzymes produced by microorganisms associated with the earthworm gut and the 

earthworms themselves may contribute to break seed dormancy.   

 

2.5.2 Effect of trees on earthworms  

 

2.5.2.1  Tree species, litter quantity, and quality  

 

Tree species affect the earthworm community since trees differ in quality and quantity 

of litter produced (Muys et al., 1992; Zou, 1993). The quantity of litter produced can 

vary with tree species, age and planting density. Vanguelova and Pitman (2011) 

recorded the total litterfall (leaves, branches, cones and frass) from the UK Intensive 

Level II sites; oak (2.7 and 7.1), beech (3.0 - 5.3), scot pine (2.9 - 6.3) and sitka spruce 

(2.7 - 5.8) t ha
-1

 y
-1

. They suggest that difference in climate and deposition could 

influence the amount of litterfall, e.g. total annual litterfall of pine (3.8) and of beech 

(2.9) in low N deposition areas compared to (8) and (3.9) t ha
-1

 y
-1

, respectively in a 

high nitrogen deposition area. Davis and Trettin (2006) in South Carolina investigated 

the litterfall of sycamore (Platanus occidentalis) and sweetgum (Liquidambar 

styraciflua) established on former agricultural land and recorded that a sycamore 

plantation starts with 0.4 in the first year and can reach 7.77 t ha
-1

 by the fifth year while 

sweetgum litterfall can increase from 0.06 to 1.85 t ha
-1

 over a period of five years.  
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Earthworm abundance, activity, litter-specific decomposition and nutrient release rates 

are largely influenced by the chemical composition of plant litter (see Table 2.5.1). 

especially, nitrogen concentration, carbon to nitrogen ratio, lignin content, phenolic 

compounds and calcium content. Hendriksen (1990) reported that carbon to nitrogen 

ratio and final polyphenol concentration of the litter are the most important factors 

which influence detritivore aggregation. He recorded detritivore number under 

Fraxinus, Tilia, Alnus, Quercus and Fagus litter as 102, 82. 63, 50 and 29 m
-2

 

respectively, where litter carbon to nitrogen ratios were 19.0, 23.7, 19.2, 32.9 and 47.0 

correspondingly. 
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Table 2.5.1 Estimated litter quality parameters of some common European tree species (NR – Not Recorded) 

 

 

Species Litter N 

(%) 

Litter C % Litter Ca 

(%) 

Lignin (%) Polyphenol 

(%) 

References 

Fraxinus spp 1.24 – 2.42 31.1 – 46.1 NR 20.9 0.14 Hendriksen, 1990; Cornelissen, 1996 

Alnus spp 2.35 45.2  21.1 2.15 Hendriksen, 1990 

Acer pseudoplatanus 0.94 46.2 1.9 – 2.2 16.4 -16.7 NR Cornelissen, 1996; Reich et al., 2005; 

Hobbie et al., 2006 

Tilia cordata 1.2 – 1.8 43.2 1.8 - 2.2 30.0 – 41.7 0.31 Hendriksen, 1990; Reich et al., 2005; 

Hobbie et al., 2006 

Carpinus betulus 1.10 – 1.52 42.3 - 46.9 0.9 14.4 2.62 Hendriksen, 1990; Reich et al., 2005; 

Hobbie et al., 2006 

Betula pendula 1.0 – 1.4 47.8 – 52.8 1.2 38.4 – 40.8 NR Cornelissen,1996; Reich et al. 2005; 

Hobbie et al., 2006 

Corylus 1.34 - 1.52 42.3 NR 28.5 2.62 Hendriksen, 1990; Vanguelova and 

Pitman, 2011 

Quercus robur 1.0 – 1.44 36.6 – 51.1 1.1 19.8 – 23.0 1.15 Hendriksen 1990; Hobbie et al., 2006; 

Reich et al., 2005; Vanguelova and 

Pitman, 2011 
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In Belgium, Muys et al. (1992) investigated the effects of grassland afforestation with 

different tree species and showed that after 20 years of forest development on a sandy 

loam soil, the earthworm communities and litter decomposition rates were significantly 

different under specific tree species.  The study recorded that total earthworm biomasses 

under Alnus, Fraxinus, Tilia and Prunus varied between (673 – 1334 kg ha
-1

) after 20 

years. However, it was low under Quercus (342 kg ha
-1

) compared with original 

meadow (1014 kg ha
-1

).  These effects were directly linked with quality and quantity of 

the litter fraction produced by the different trees. The study suggests that poor quality 

Quercus litter (C: N >32) start to accumulate and form moder humus.  Pigott (1989) 

compared the soil development under lime (Tilia cordata) and beech (Fagus sylvatica) 

trees established in arable land in Hampshire, England and recorded that after a period 

of 56 years, soil under lime was full of large earthworms ( L. terrestris and 

Allolobophora spp.) while under beech there were only a few small pigmented 

earthworms. This suggested that palatability of lime litter encouraged the earthworm 

community development while dry, papery beech litter with high polyphenols did not. 

In Poland, Reich et al. (2005) examined variation in soils and earthworms under 

different tree species, 30 years after tree establishment and recorded rapid and 

widespread changes in soil beneath specific tree species. This suggested that tree 

species affect soil both directly through the litter chemistry and indirectly through the 

effect of litter on earthworms. Earthworm biomasses were recorded as under Tilia 

(4.81), Acer spp. (3.41 - 7.38), Betula (0.46), Quercus spp. (0.08 – 2.34) and Pinus spp. 

(0.05 – 0.12) g m
-2

 correspondingly while the litter calcium was recorded; Tilia (22. 4), 

Acer spp. (19.0 - 20.5), Betula (12.6), Quercus spp. (10.8-11.5) and Pinus spp. (3.7 - 

5.8) mg g
-1

 respectively. This study concluded that tree species which produce calcium-

rich litter were associated with increased native earthworm abundance and diversity, as 

well as increased soil pH, exchangeable calcium, base saturation and forest floor 
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turnover rate.  Neirynck et al. (2000) examined the impact of hardwood tree species on 

earthworm biomass and physico-chemical properties of topsoil of a loamy acid brown 

forest 60 years after establishment in Brussels. They recorded earthworm biomasses 

under different tree species; Tilia (10.6), Acer (36.8), Quercus (0.4 - 4.2) and Fagus 

(0.2) g m
-2

 respectively.  The study concluded that the presence of mull-forming tree 

species (e.g. Tilia and Acer) generally led to a higher earthworm biomass and more 

favourable physico-chemical top soil properties compared to moder-forming hardwoods 

(e.g. Quercus and Fagus). In addition to broad field studies, some laboratory 

experiments have suggested that litter quality is a determining factor for earthworm 

community development as it has strong influence on feeding activity (Satchell and 

Lowe, 1967) as well as growth and reproduction success of earthworms (Butt, 2011).  

 

2.5.2.2   Other forestry activities  

 

In addition to tree species as food source for earthworms, management activities such as 

land preparation, planting, soil fertilisation, weeding, liming and harvesting can have 

positive or negative impacts on earthworms as these management practices primarily 

change soil properties. As an example, Robinson et al. (1992) studied the earthworm 

communities in limed coniferous soils in the UK, France, and Northern Ireland and 

showed that liming of coniferous forest soils had significantly increased total earthworm 

number and biomass that the soil can support. In France, under acid brown earth soil of 

Picea abies earthworm density increased to 5 – 11 m
-2

 compared with 6 m
-2

 in nearby 

deciduous woodland and 0 m
-2

 in unlimed P. abies plots. Similarly in Northern Ireland, 

liming increased earthworm density in peat soil under Picea sitchensis (79 m
-2

 

compared with 5 m
-2

 in unlimed soils). Nachtergale et al. (2002) reported that single 

tree uprooting in a forest (Belgium) can invoke small scale environmental changes and 
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strongly reduce earthworm abundance for period of six years especially at a micro-site 

level. 

 

2.5.2.3  Forest tree species diversity: pure vs. mixed    

 

Diverse food quality positively affects decomposer fauna and therefore, it is generally 

accepted that mixed forests ought to support a more diverse decomposer community 

compared with pure stands. Cesarz et al. (2007) studied the influence of tree species 

diversity on the earthworm community in a deciduous mixed forest in Germany and 

suggested that increasing proportions of high quality litter were positively correlated 

with high densities of both epigeic and endogeic earthworm species. Aubert et al. 

(2002) in France investigated the effect of canopy composition on earthworms and other 

macro-invertebrates in two deciduous temperate forests; a pure beech (Fagus sylvatica) 

and mixed beech-hornbeam (Carpinus betulus). The results revealed that spatial 

variability of soil macrofauna communities was greater for the pure system than the 

mixed. These results do not support the general agreement that resource diversity and 

patchiness increases soil fauna biodiversity and heterogeneity. However, here the 

investigators had only 30% of hornbeam in the beech-hornbeam mixed forest which 

may not have been enough as a key determinant for soil macrofauna community. 

Further, Laossi et al. (2008) examined the effects of plant diversity on plant production 

and soil macrofauna density and diversity in Brazil. They used four plant species; an 

herbaceous legume, a perennial grass, a legume shrub and a non-legume shrub in a field 

as individuals and mixed assemblages and reported that plant diversity did not 

significantly affect density and diversity of soil macrofauna. Raty and Huhta (2004) 

showed that quality of litter as food played an important role for litter-feeding 

earthworm species such as L. terrestris and L. rubellus. They further suggested that 
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earthworm populations are often food-limited, but litter quality rather than its quantity 

most often limit earthworm populations. Laganiere et al. (2009) linked the abundance of 

aspen (Populus tremuloides) with soil faunal communities along black spruce (Picea 

mariana) - aspen gradients in three forests in eastern Canada. Their results suggest that 

aspen favours the expansion of a macrofaunal community, because of leaf quality.  Tree 

diversity may not always effect earthworm communities positively, but the quality of 

the litter of individual tree species either as a pure or mixed stand is the key 

determinant.   

 

2.5.3 Potential impacts of SRF on soils and earthworms 

 

Woody biomass crops could affect the soil system below them directly through leaf 

litter inputs, tree rooting, plant nutrient uptake and even through water uptake. Further, 

those crops which are grown for biomass harvest can indirectly affect the soil system 

through associated silvicultural practices. These direct and indirect effects can cause 

changes in soil organic matter, nutrients fluxes, soil pH, soil moisture, soil biodiversity 

and even in soil erosion and compaction (Vanguelova and Pitman, 2011). However, 

SRF impacts and relative changes in soil systems largely depend on previous land use. 

The agricultural lands which are mainly used for SRF planting in the UK are generally 

rich in base cations, nitrogen and phosphorus. Planting of fast-growing tree species and 

harvesting for biomass may lead to significant soil nutrient depletion and soil 

acidification over time (Mitchell et al., 1999; Hagen-Thorn et al., 2004). Conversely, 

compared with arable farming, SRF with relatively lengthy rotation has a greater 

potential to improve soil physical, chemical and biological properties due to less 

frequent soil disturbance, leaf litter accumulation and less application of chemicals 

(Makeschin, 1994; Perttu, 1998). The network of fine roots in the upper soil layers 
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along with surface litter cover may reduce the soil erosion in SRF systems compared 

with arable farming. However, the net impacts of SRF on the soil are dependent not 

only on previous land-use, but also on many other factors, mainly SRF species, soil 

type/texture, silvicultural practices and local climate (LTS International, 2006).   

 

The above mentioned SRF impacts on soils and relative changes may largely effect 

earthworm populations and the diversity of these systems. The leaf litter inputs, soil 

organic matter, soil pH and soil moisture changes associated with tree species can 

inevitably effect soil faunal community development under these plantations.  

 

2.5.3.1   Leaf litter inputs and soil organic matter changes 

 

Conversion from arable to SRF has significant potential to increase soil organic matter 

through leaf litter inputs, woody debris inputs and tree rooting (Vanguelova and Pitman, 

2011). The increased level of organic matter can provide more abundant resources to 

soil organisms in SRF systems than agricultural crops, and this could improve the 

abundance and diversity of soil faunal communities (Makeschin, 1994; Bardgett, 2002). 

Soil systems with high organic matter content and increased levels of soil faunal 

activities generally have positive impacts on soil structure, water-holding capacity, and 

the storage and availability of nutrients (Bernier and Ponge, 1994; Mann and Tolbert, 

2000).  However, the effects of SRF on soil organic matter, faunal activity and 

diversity, nutrient dynamics may vary with tree species, since trees are different in 

quantity and quality of litter produced (see section 2.5.2.1 and Table 2.5.1).  

 

Broad-leaved tree species generally provide rapidly decomposable litter which can be 

incorporated into the upper soil horizon, relatively quickly through soil faunal activity 
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(Drift, 1961). Compared with native broadleaves, deciduous non-native broadleaves, 

such as Nothofagus spp., show a similar effect on soils (Peterken, 2001). The leaf litter 

from non-deciduous broadleaves such as eucalyptus takes relatively longer to 

decompose in the soil system compared with native broadleaves (Cornelissen, 1996; 

Louzada et al., 1997). However, eucalyptus litter decomposes relatively quickly 

compared with native conifers (Wedderburn and Carter, 1999). The canopy density and 

leaf litter decomposition rates for selected SRF species are summarised in Table 2.5.2. 

The canopy density determines the quantity of annual litter fall and water interception 

rate and may indirectly affect the soil moisture content. 

 

Table 2.5.2 Canopy density and leaf litter decomposition rates for SRF  

 

 

Species Canopy 

density 

Rate of litter 

decomposition 

References 

F. excelsior Light Rapid Cornelissen, 1996 

Alnus spp. Moderately 

light 

Rapid Cornelissen, 1996 

A. pseudoplatanus Dense Rapid Cornelissen, 1996; 

Hobbie et al., 2006 

B. pendula Light Intermediate Cornelissen, 1996; 

Hobbie et al., 2006 

Populus spp. Moderately 

light 

Intermediate Cornelissen, 1996 

Castaneas spp.  Intermediate Vanguelova and Pitman, 

2011 

E. nitens Dense  Slow Wedderburn and Carter, 

1999; Lopez et al., 2001 

E. gunnii Light Slow LTS International, 2006; 

Vanguelova and Pitman, 

2011 
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2.5.3.2   Soil pH changes 

 

Conversion from arable to woodland is likely to reduce the soil pH with time (Hagen-

Thorn et al., 2004). Poplar and willow establishment on former arable soils in Germany 

recorded a decrease in top soil pH up to 0.5 units after 10 years (Jug et al., 1999). Soil 

pH reduction with time under SRF plantations established on previously arable land was 

also noted in Sweden (Alriksson and Olson, 1995). Pigott (1989) compared the soil 

development under lime (Tilia cordata) and beech (Fagus sylvatica) trees established in 

arable land in Hampshire, England and recorded that after a period of 56 years, soil pH 

under tree species were significantly different; lime (5.1) and    beech (3.8). Vanguelova 

and Pitman (2011) also suggest that the effects of tree species on soil pH are highly 

species-specific, and as an example they emphasised that under Salix and Populus, 

significant acidification was noticed, while under Fraxinus, Tilia, Alnus, Betula and 

Nothofagus soils became less acidic with time. These pH changes differ when SRF trees 

are established on ex-grassland sites, depending on the tree species. In Belgium, Muys 

et al. (1992) recorded a decrease (0.13 units) in soil pH under oak (Q. palustris) but an 

increase (0.14 – 0.90 units) under Alnus, Fraxinus and Tilia after 20 years of their 

establishment in old pasture land. Moffat and Boswell (1990) recorded decreases in soil 

pH under Alnus planted in grassland compared with a grassland control. These tree-

associated soil pH changes can effect long-term soil faunal community development. 

However, Vanguelova and Pitman, (2011) suggest that most of the SRF species used in 

the UK have a large tolerance to soil pH as long as sufficient nitrate is available. 
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2.5.3.3 Soil moisture changes 

 

In terms of water usage, trees and forests are likely to use more water than that of 

shorter types of vegetation, mostly due to interception of rain water by their rough 

canopies and also high transpiration rates by deeper rooting (Nisbet et al., 2011). 

Interception of a high proportion of rainfall water by tree canopies would also reduce 

water reaching the soils under trees compared to arable or grassland use. The fast 

growing and most productive non-native SRF species, such as Eucalyptus nitens, are 

identified as high potential water users, partly due to high transpiration rates associated 

with deep rooting (Lima, 1984: Calder et al., 1997).  Almeida et al. (2007) in Brazil 

studied Eucalyptus grandis hybrid and recorded average annual crop water use of 1092 

mm compared to 1147 mm precipitation, leaving only 3% as runoff. Calder (1992) 

report that roots of young eucalyptus established on deep soils penetrated to a greater 

depth, so that annual evapotranspiration exceeded rainfall by a significant margin. 

However, the water use of many SRF broadleaved crops in UK is unlikely to differ 

greatly from conventional broadleaved woodland (Nisbet et al., 2011). Literature shows 

that water use of broadleaves in the UK is greatly influenced by tree species, soils and 

geology (Wullschleger, 1998; Roberts and Rosier 2005). The impact of tree species on 

soil moisture can greatly influence soil faunal diversity, activity and other soil 

processes.  

 

2.5.3.4 Soil temperature changes 

 

Soil temperature is one of the principle factors which determine the activity of soil biota 

and the rate of decomposition (Swift et al., 1979).  It is well known that the shading and 

insulation afforded by the forest canopy buffer temperature extremes at the ground 
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surface (Prescott, 2002b). Therefore, the soil temperate under forest is less responsive to 

air temperature changes compared to the soil temperature in open habitat. Unlike 

woodlands, soils in cultivated lands (in the absence of ground cover), could freeze at 

deapth during the winter and may greatly influence soil faunal population (Hopp, 1947). 

Vesterdal et al. (2012) studied the soil respiration and carbon turnover among six 

common European tree species; Fagus, Quercus, Tilia, Acer, Fraxinus and Picea and 

found no significant differences in soil temperature between tree species. However, this 

study recorded a little higher temperature under Fraxinus (10.3
 
°C ) compared with 

Picea (9.3
 
°C) due to differences in light transmittance associate with leaf area index.  

 

2.5.3.5   Silvicultural practices 

 

In addition to the above mentioned tree impacts, SRF-associated activities such as site 

preparation, planting, soil fertilisation, weeding, harvesting and rootstock removal can 

effect soil faunal community development (Makeschin, 1994; Perttu, 1998) (see section 

2.5.2.2).  However, compared to arable farming, the frequency of soil disturbance is 

very low for SRF (see section 2.3.3.7).  

  

Although the potential effect of biomass crops on soils has been recently reviewed by 

several authors (LTS International, 2006; Vanguelova and Pitman, 2011), data 

concerning the potential effects of SRF species on soil fauna and the reciprocal effects 

are very limited. 
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CHAPTER 3: RESEARCH METHODOLOGY 

 

3.1 Introduction 

 

This chapter initially describes the methodological approach used for the duration of 

this research. Thereafter, it details the practical aspects considered in development of 

advanced experimental plans. Finally, it summarises the overall experimental design 

which is used in subsequent experimental chapters. 

 

 3.2 Methodological approach 

 

This research approach was considerably broad at the outset, since it intended to 

explore the interactions between a wide range of SRF species, soils and earthworm 

communities. Therefore, a systematic approach was followed to obtain achievable 

outcomes within a given period of time.  

 

 During the initial stage of the research, a comprehensive literature survey was 

conducted on earthworms, trees, soil processes and their interactions as this was 

vital before planning any experimental aspects of the research.  

 Standard field earthworm sampling, preservation, and identification were 

reviewed. In addition, live earthworm collection techniques, laboratory culturing 

as well as inoculation techniques were practiced.  

 Earthworm-related laboratory microcosm and field mesocosm experiments were 

intensely studied. 

 

 



55 

 

 Forestry science methodologies/techniques such as tree identification, soil/ plant/ 

leaf litter sample collection, preparation and chemical analysis were practiced. 

Further, litter decomposition and nutrient cycling investigations such as litterbag 

experiments on forest floor were studied.  

 Baseline earthworm/soil surveys were conducted at selected SRF trial sites 

across England.   

 Breeding populations of experimental earthworm species were cultured under 

laboratory conditions, initially from field-collected animals.  

 Adequate amounts of required species of SRF leaf litter were collected in 

autumn (2009), air-dried and stored for future experiments. 

 Preliminary laboratory experiments were conducted to inform further advanced 

studies. 

 Based on the initial earthworm/soil surveys and laboratory trials, an advanced 

experimental design was developed to investigate the possible interactions between 

SRF species and earthworms. 

 

3.3 Development of an experimental design: Practical considerations  

 

Although this research project began with a broad view on all possible SRF-earthworm 

interactions, it was essential to narrow down the experimental species and locations in 

order to balance the time and resource availability, without affecting the quality of the 

final results. The experimental SRF species, locations, earthworm species and soil types 

were carefully selected to be representative of existing communities.  
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3.3.1 SRF species selection 

 

An extensive list of potential SRF species (see Table 2.2.1 and 2.2.2) was initially 

proposed by Forest Research. After investigating the literature and visiting a number of 

available sites, seven SRF species which have been trialled extensively in England were 

selected for the baseline earthworm/soil surveys (Table 3.3.1).  

 

Table 3.3.1 Experimental SRF species and their origin  

 

SRF species Abbreviation used Origin 

Birch (Betula pendula) Br Native 

Ash (Fraxinus excelsior) Ah Native 

Common alder (Alnus glutinosa) Ad Native 

Shining gum (Eucalyptus nitens) En Non-native 

Cider gum (Eucalyptus gunnii) Eg Non-native 

Sycamore (Acer pseudoplatanus) Sy Naturalised 

Sweet chestnut (Castaneas sativa) Sw Naturalised  

 

 

Six SRF species, all except E. gunnii (from Table 3.3.1) were used in most of the 

laboratory experiments. Although, several potential eucalyptus species were suggested, 

highly attractive (produce high biomass yield within short period of time) Eucalyptus 

nitens was chosen for comparative laboratory studies. However, in the latter stage of 

this research, which involved the commissioning of more advanced and resource-

demanding experiments, two or three major SRF species were chosen. Appropriate 

combinations of SRF species for each experiment were selected to achieve specific 

objectives. Tree origin (native, non-native and naturalised see section 2.2.2 for details) 

was considered as a major criterion when selecting experimental tree species. 
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3.3.2 SRF site selection 

 

 As SRF is a relatively new concept to the UK, at the beginning of the study, the newly 

established network of SRF sites was very young (2 - 6 years old) and the availability of 

appropriate sites to conduct a complete comparative survey between selected species 

was limited.  The comparative trial sites which were at an appropriate age, consisted 

mostly of two or three of the SRF species listed in Table 3.3.1. However, using existing 

sites and resources, the field studies were conducted to achieve maximum potential 

outcomes. Five Forestry Commission sites (see Table 3.3.2) were selected for field 

surveys/experiments based primarily on the SRF species present, land-use history and 

soil type. When selecting sites for more intensive field experiments, practical 

considerations (e.g. frequent accessibility and potential disturbance) were also taken 

into account.  

 

Table 3.3.2 Experimental sites, locations and SRF species present    

 

Site name Location 

(English County) 

National Grid 

Reference 

SRF species present 

Alcan Northumberland NZ 291890 E. gunnii, E. nitens 

Daneshill Nottinghamshire SK 680856 E. gunnii, E. nitens 

Rogate  West Sussex SU791257 C.  sativa, B. pendula 

Gisburn Lancashire SD 731566 B. pendula,   A. pseudoplatanus, 

F. excelsior 

Carlshed Yorkshire SE 380488 SRF potential; ex-agriculture 

(no SRF species present) 
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3.3.3  SRF species litter collection and preparation 

 

Collection and preparation of tree litter was a major aspect of this project as most of the 

laboratory and field experiments were designed around SRF litter.  Litter quality had to 

be homogeneous in order to make comparisons across experiments. Therefore, ample 

amounts of SRF species litter had to be collected at an initial stage, so that these would 

be sufficient for the entire research project.  

 

Freshly fallen SRF species litter was collected from known forest sites in autumn 2009. 

Collected litter was taken to the laboratory and air-dried. Then, twigs, soil particles, 

grasses, leaves of other tree species and other extraneous materials were removed. 

Clean, air-dried SRF species litter was stored in separate plastic bags at room 

temperature and clearly labelled for future use. Sub-samples from each species were 

ground (after drying at 70 °C) and analysed for litter chemistry following the standard 

procedure used by Forest Research laboratory.  Total C and N were determined using a 

CN Elemental Analyser. Major cations (e.g. P, K, Ca, Mg, Al, Fe, Mn, B, Na, Cd, Cr, 

Cu, Ni, and Zn) were measured through acid digestion and followed by Inductively 

Coupled Plasma-Optical Emission Spectrophotometer (ICP-OES) analyses.  Mean litter 

chemistry results are presented in Table 3.3.3. 
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Table 3.3.3 Mean litter chemistry results for experimental SRF species (all units 

are mg kg
-1

, unless otherwise stated; n = 3) 

 

Elements SRF species 

Ad Ah Br En Sw Sy 

N (%) 2.76 1.51 1.59 1.33 0.94 1.45 

C (%) 50.5 47.3 51.5 52.5 48.7 47.9 

K (%) 0.41 0.24 0.22 0.42 0.42 0.22 

Ca (%) 1.91 2.66 1.17 1.36 0.93 2.55 

Mg (%) 0.17 0.24 0.21 0.20 0.27 0.20 

P (%) 0.12 0.15 0.10 0.09 0.09 0.08 

Al  226 276 378 1302 928 776 

Fe  261 250 318 357 388 561 

Mn  202 125 1575 386 2504 89 

B  21.7 11.9 12.5 20.8 23.0 13.4 

Na   487 162 218 548 698 255 

Cd  0.07 0.13 1.08 0.09 0.11 0.15 

Cr  2.26 1.85 1.90 2.84 5.04 4.74 

Cu  13.2 10.6 7.53 3.54 6.05 9.63 

Ni  1.63 1.04 2.35 6.51 3.70 0.96 

Zn  73.5 36.3 236 17.6 47.4 31.9 

C/N (no units) 18.3 31.3 32.5 39.5 52.0 33.0 

A glutinosa (Ad), F. excelsior (Ah), B. pendula (Br), E. nitens (En), C. sativa (Sw) and 

A. pseudoplatanus (Sy). 

 

 3.3.4 Earthworm species selection 

 

Based on results of baseline earthworm surveys at selected forest sites, the four most 

abundant earthworm species (see Table 3.3.4) were selected for laboratory and field 

experiments. The selected earthworm species are widespread in Britain and represent 

different ecological groupings (section 2.3.1.1). These earthworm species were used for 

http://www.just-green.com/2533/Just-Green-Silver-Birch-Trees--Betula-Pendula-.html?referrer=froogle&utm_source=google&utm_medium=froogle&utm_campaign=pid2533
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laboratory and field experiments in monoculture or in combinations, depending on the 

objectives of given experiments. 
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 Table 3.3.4 Details relating to selected earthworm species (adapted from Sims and Gerard, 1999) 

 

Earthworm 

species 

Abbreviation 

used 

Common name Ecological group General description 

Lumbricus 

terrestris 

 

Lt Lob worm/ 

Dew worm 

Anecic  Deep burrowing species, feeds on surface plant litter, common 

in undisturbed terrestrial habitats such as grasslands and 

orchards, forms surface middens. (Preferred pH range 6.2 - 

10).  

Aporrectodea 

longa 

Al Black-headed worm 

/Long worm 

Anecic 

 

Deep burrowing species, feeds on surface plant litter, common 

in garden, cultivated soil, pasture and woodlands, produces 

surface casts. (Preferred pH range 6.7- 9.4). 

Aporrectodea 

caliginosa 

Acal Grey worm/ 

Turgid worm 

Endogeic 

  

Shallow working species (common in top 70 mm of soil), 

feeds on soil organic matter obtained by the ingestion of large 

amount of mineral soil, common in gardens and cultivated 

lands. (Preferred pH range 5.9 - 11.1). This has several 

different physiological types. 

Allolobophora 

chlorotica 

(green morph) 

Ach Green worm/ Stubby 

worm 

Endogeic 

 

Often found in the rhizosphere, co-dominant with A. 

caliginosa in gardens, grassland and woodland usually within 

60 mm of the surface, feeds on mineral soil. (Preferred pH  

range 4.5 - 8.2)  
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3.3.5. Experimental earthworm collection and culturing 

 

The majority of adult species of earthworms were collected from mixed deciduous 

woodland located in Bretherton, West Lancashire (National Grid Ref. SD 462202, for 

site details see Grigoropoulou and Butt, 2010). One species, A. chlorotica, was collected 

from a grassland site located in Poulton-Le-Fylde, North Lancashire (National Grid Ref. 

SD 368416). The shallow-working species were collected by digging and hand sorting 

of soils while deep-burrowing species (e.g. L. terrestris) were collected using a 

vermifuge extraction technique (see section 2.4.1.2). Here, a suspension of mustard 

powder was directly applied into L. terrestris burrows using a 100 ml syringe. Emerging 

earthworms were immediately washed with clean cold water to remove any expellant 

and transported to laboratory. Healthy adults (fully developed clitellum) were selected 

and reared in 10
 
°C constant temperature incubators. A sterilised loamy soil (25% 

moisture) was used as a standard substrate (see section 3.3.6) and a mixture of SRF 

species litter was supplied as a food source for breeding earthworm populations. Field- 

collected adult earthworms were acclimated to laboratory conditions for at least four 

weeks before the start of any experiment, as suggested by Fründ et al. (2010). The 

experimental hatchlings were laboratory cultured as it is difficult to identify earthworms 

at this age to species level in the field. It also proved advantageous to have a cohort of 

animals, with similar biomass/growth stage and life history for comparative laboratory 

experiments. 
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3.3.6 Experimental soil type 

 

Soil type and texture are known to be major factors, which influence earthworm 

abundance, in addition to activity (Hendrix et al., 1992; Baker et al., 1998). In general, 

medium loamy soils with neutral pH, support larger earthworm populations (Guild, 

1951; Bouché, 1977). Pre-sterilised, Kettering loam was selected as an experimental 

medium for all of the laboratory experiments (Butt et al., 1994). Sub-samples from 

Kettering loam were analysed for initial soil chemistry data following the standard 

procedure used by Forest Research Laboratory Service. Air-dried soil samples were 

sieved through a 2 mm sieve and soil pH was measured in water solution. Organic 

matter was measured through loss on ignition. Total C and N were determined using a 

CN Elemental Analyser. Exchangeable cations were measured through BaCl2 

extraction. Cation Exchange Capacity (CEC) was determined as the sum of the 

extractable amounts of (K
+
, Ca

+
, Mg

2+
, Na

+
, Al

3+
,
 

Fe
3+

, Mn
2+

, H
+
) from BaCl2 

extraction. Percentage Base Saturation (BS) was calculated using base cations of (K
+
, 

Ca
+
, Mg

2+
, Na

+
) (Hagen-Thorn, et al., 2004). Mean chemical nutrient analysis results 

for Kettering loam are presented in Table 3.3.5. 
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Table 3.3.5 Mean Chemical nutrients analysis results for Kettering loam (n = 3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A consistent soil source, free from soil macro and micro invertebrates, is very important 

for this kind of comparative study. Kettering loam has been used by earthworm 

researchers successfully for laboratory experiments for more than 15 years (Butt et al., 

1994). Equally, a loamy soil was appropriate for this research, as SRF trees are planned 

for expansion primarily on nutrient-rich, ex-agricultural lands which consist of similar 

soil types. 

 

3.4 Experimental design  

 

The experimental design was developed to achieve comprehensive and valid results 

within a given period of time using available resources to address the initial research 

questions (see Chapter 1). The design included laboratory and field experiments in order 

Soil parameters 

Organic Matter - OM (%) 5.0 

pH (H2O) 7.3 

Total N (%) 0.2 

Total C (%) 2.5 

Cation Exchange Capacity - CEC (cmol+ kg
-1

) 24.4 

Base Saturation - BS (%) 99 

Exchangeable cations (mg kg
-1

) 

K  153 

Ca  4465 

Mg  155 

Na  52 

Al  0.0 

Fe  0.0 

Mn  0.5 
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to provide information in a systematic manner by balancing scientific findings. Almost 

all of the laboratory experiments were conducted in the Soil Research Laboratory, 

School of Built and Natural Environment, University of Central Lancashire. The field 

experiments were conducted at selected Forestry Commission sites (Table 3.3.2). Most 

of the chemical analyses relating to laboratory and field experiments were conducted at 

the Forest Research laboratory, Alice Holt, Farnham. Table 3.4.1 summarises overall 

experimental design including SRF/earthworm species selected, location, timing and 

aims. Each individual experiment was planned with a broad understanding of relevant 

literature and with expert advice. When using novel/modified techniques, preliminary 

trials were used to assist development of the most appropriate methodology/technique. 
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Table 3.4.1 Summary of the overall experimental design  

 

Experiment SRF species Earthworm 

species 

Type of experiment & 

location 

Exp. duration 

& timing 

Research Aims 

1. Earthworm   

Survey  

Ad, Ah, Br, 

Eg, En, Sw, Sy 

+ Control 

 

All available 

earthworm 

species 

Field  

Alcan,  Northumberland;  

Daneshill, Nottinghamshire; 

Gisburn, Lancashire; 

Rogate, West Sussex. 

2 years 

Spring 2010 

Spring 2011 

 To investigate the effects of growing 

SRF in different land-use systems on 

earthworm community development.   

2. Earthworm 

growth and 

reproduction  

(I, II) 

Ad, Ah, Br, 

En, Sw, Sy 

L. terrestris 

hatchlings & 

adults 

Laboratory 

SBNE, UCLan 

7 months 

Jan. 2011 to July 

2011 

 To assess and compare the impact of 

SRF litter on growth/ reproduction 

of a major litter feeding earthworm. 

3. Earthworm food 

preference: Leaf 

litter choice 

chambers 

 ( I, II, III) 

 

Ad, Ah, Br, 

En, Sw, Sy,  

 

 L. terrestris,   

A. longa 

A. caliginosa, 

A. chlorotica 

 

Laboratory 

SBNE, UCLan 

6 months 

Dec. 2010 to 

June 2011 

 To assess and compare the SRF litter 

preference by selected earthworm 

species.  
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4. Earthworm food   

preference: Web 

cam recording 

 (I, II, III)  

Ad, Ah, Br, 

En, Sw, Sy, 

 

L. terrestris Laboratory 

SBNE, UCLan 

3 months 

Nov. 2011 to 

Feb. 2012 

 To record SRF litter selection 

behaviour by L. terrestris.  

5. Earthworm 

casting/nutrient 

cycling 

Br, En, Sy L. terrestris  Laboratory 

SBNE, UCLan 

2 months 

Sep. 2011 to 

Nov 2011 

 To measure and compare the 

influence of SRF litter on N cycling 

in earthworm cast. 

6. Field Litterbag 

studies (I, II) 

Ah, Br, En, 

Sw, Sy,  

 All available 

earthworm 

species  

Field 

Alcan,  Northumberland;  

Gisburn, Lancashire; 

Rogate, West Sussex; 

Carlshead, Yorkshire. 

1 year 

Jan. 2011 to Jan. 

2012 

 To investigate the effect of 

earthworms on SRF litter 

decomposition under field 

conditions. 

7. Field-based  

tree-earthworm 

experiment 

Br, En 

 

L. terrestris,    

A. chlorotica 

 

Field 

Headley nursery, Headley 

Down, Hampshire. 

 

1 year 

May 2011 to 

May 2012 

 To record the direct interaction 

between SRF trees (En and Br) and 

earthworms under field condition.  

SRF species: A glutinosa (Ad), F. excelsior (Ah), B. pendula (Br), E. gunnii (Eg), E. nitens (En), C. sativa (Sw) and A. pseudoplatanus (Sy).

http://www.just-green.com/2533/Just-Green-Silver-Birch-Trees--Betula-Pendula-.html?referrer=froogle&utm_source=google&utm_medium=froogle&utm_campaign=pid2533
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CHAPTER 4:  EFFECTS OF SRF SPECIES AND LITTER QUALITY ON 

EARTHWORM COMMUNITY DEVELOPMENT 

 

4.1 Introduction 

 

Tree species have a pronounced influence on soils and earthworm community 

development beneath, depending on the quality and quantity of litter produced (Muys et 

al., 1992; Zou, 1993).  Studies (e.g. Pigott, 1989; Muys et al., 1992; Neirynck et al., 

2000; Reich et al., 2005) suggested that growth of some forest tree species, such as 

Alnus, Fraxinus and Tilia, generally led to a higher earthworm density/diversity and 

more favourable physico-chemical top soil properties compared with Quercus, Fagus 

and Pinus (see section 2.5.2.1 for more details). These studies emphasised that this 

difference was mostly associated with tree litter quality rather than quantity.  

 

Field surveys (soil plus earthworm sampling) have been widely used for temporal and 

spatial comparisons of influence of land-use change and tree development on soils and 

earthworms (e.g. Yates, 1988; Makeschin, 1994; Muys et al., 1992; Mboukou-Kimbatsa 

et al., 1998; Neirynck et al., 2000; Reich et al., 2005). In addition, some researchers 

have used different approaches, such as litterbags (Hendriksen, 1990) and laboratory 

microcosms (Butt, 2011), to investigate the influence of tree litter quality on 

earthworms and their activities.  

 

A vital, but largely unidentified aspect of SRF species is the quality and quantity of 

litter they produce, and their impact on soils and soil fauna, of which the earthworm 

community is an important component. The aim of the present study was to investigate 

the direct and indirect influence of SRF species and litter quality on soil and earthworm 
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community development. Baseline field surveys at various Forestry Commission sites 

were used to investigate impacts of SRF growth on soil and earthworm development. It 

also allowed comparisons of various SRF plantations with appropriate control areas. In 

addition, two laboratory experiments were conducted to examine the direct influence of 

SRF litter quality on earthworm growth and reproduction.  

 

This chapter initially presents the findings from soil and earthworm surveys undertaken 

at various Forestry Commission trial sites across England and then demonstrates the 

results of laboratory growth and reproduction experiments. 

  

4.2 Impacts of SRF species on soil, earthworm density and diversity: A field survey 

 

4.2.1 Introduction 

 

SRF trees tend to be grown on lower-grade agricultural land, previously forested land or 

reclaimed land (McKay, 2011). Earthworms, which inhabit soils and organic matter 

layers in most ecosystems, are very sensitive to such land use transformations, since tree 

species and associated activities directly and indirectly change physical and chemical 

properties of the soil system. Because of their direct and relatively rapid response, 

earthworms are considered to be useful indicators in assessing the effects of land-use 

change on soil biodiversity and hence overall soil sustainability (Jouquet et al., 2006). 

Since they have a direct link with above-ground plants and animals, earthworms can be 

used as an important bio-indicator in assessing overall ecosystem sustainability 

(Paoletti, 1999) in forest ecosystems. Baseline soil and earthworm surveys at various 

SRF sites were conducted to achieve the following objectives: 
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a) To investigate the effects of growing SRF in different land-use systems on 

earthworm community development. 

b) To assess and compare the impacts of selected SRF species on earthworm density 

and diversity.  

 

4.2.2  Materials and Methods 

 

4.2.2.1  Survey sites 

 

Earthworm surveys were conducted at four forestry sites across England. Selected sites 

consisted of monoculture plantations of two to three SRF species. Most of the selected 

tree species covered an area of 0.3 – 0.5 ha with an average planting density of 3,000 

trees ha
-1

. An appropriate adjacent control for each site was sampled for the purpose of 

direct comparison. Figures 4.2.1 – 4.2.4 show the original forest view at the sampling 

time. Table 4.2.1 summarises information relating to each of the sites.  
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Table 4.2.1 Details of Forestry Commission SRF survey sites 

 

Site National 

Grid Ref. 

SRF 

species 

Mean annual 

ppt (mm) 

Mean annual 

Temperature ( °C) 

Min/Max 

Temperature ( °C) 

Prior use 

 

Year established  

Alcan 

(Lynemouth, 

Northumberland) 

NZ 291890 En, Eg 672 9.8 6.0/13.7 Agriculture 

(arable) 

2004 

Daneshill (Retford, 

Nottinghamshire) 

SK 680856 En, Eg 591 10.5 6.5/14.6 Reclaimed 

(mining site) 

2005 

Rogate (West 

Sussex) 

SU 791257 Sw, Br 639 11.2 7.1/15.3 Pasture 

 

 Approx.  1990 

Gisburn 

(Lancashire) 

SD 731566 Br, Sy, Ah 1321 9.7 6.2/13.2 Mixed 

coniferous 

Br, Sy (1995) 

Ah (approx.1980) 

SRF species: A glutinosa (Ad), F. excelsior (Ah), B. pendula (Br), E. gunnii (Eg) E. nitens (En), C. sativa (Sw) and A. pseudoplatanus (Sy).  

(Details of rainfall and temperature adapted from Met Office, 2012).

http://www.just-green.com/2533/Just-Green-Silver-Birch-Trees--Betula-Pendula-.html?referrer=froogle&utm_source=google&utm_medium=froogle&utm_campaign=pid2533
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(a) (b) 

Figure 4.2.1 Six years growth of E. nitens, Alcan, Northumberland (May 2010),   

(a) view from outside; (b) from within, showing a deep litter layer. 

 

 

(a) (b) 

Figure 4.2.2 Five years growth of E. nitens, Daneshill, Nottinghamshire (June 2010),  

(a) view from outside; (b) from within. 
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(a) (b) 

Figure 4.2.3 Rogate site, West Sussex (April 2011), (a) B. pendula; (b) C. sativa  

(C. sativa had been coppiced once in 1995). 

 

 

(a) (b) 

Figure 4.2.4 B. pendula at Gisburn forest, Lancashire (April 2011), (a) tree stand; 

(b) forest floor view. 
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4.2.2.2 Earthworm sampling and identification 

 

A combined method of collection that involved digging and hand-sorting of soil 

followed by application of a vermifuge was used throughout the survey (see Figure 

4.2.5). Twenty, 0.1 m
2
 quadrats were randomly located within 0.3 - 0.5 ha of each 

sampling site.  The litter layer within the area, defined by the quadrat, was hand-sorted 

for litter-dwelling earthworms and then the soil below was dug to a depth of 0.2 m. The 

removed soil was hand-sorted for earthworms on a plastic sheet in the field. A mustard 

vermifuge (50 g mustard powder suspended in 10 L water) was applied to the soil pit 

created (Butt, 2000).  

 

      

(a) (b)    (c) 

Figure 4.2.5 Earthworm sampling procedure: (a) 0.1 m
2 

quadrat placed on the 

ground, litter removed and sorted; (b) Soil dug to 0.2 m and hand-sorted, note 

large earthworm burrows (bw); (c) Mustard vermifuge (50 g in 10 L water) 

applied. 

 

Collected earthworms from each sampling point were preserved in 4% formaldehyde 

within 150 ml plastic bottles and taken to the laboratory. Specimens were indentified to 

species level, using the nomenclature of Sims and Gerard (1999). Individual 

earthworms were allocated as juvenile or adult (fully clitellate) and numbers/masses 

bw 
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were recorded. Earthworm density and biomass were calculated for each habitat 

sampled. All earthworm surveys were conducted in spring; Alcan (May 2010), 

Daneshill (June 2010), Rogate and Gisburn (April 2011). 

 

4.2.2.3 Soil sampling and analysis 

 

Soil samples were taken from each site simultaneously with earthworm sampling. The 

surface organic matter layer was removed and soil samples were dug from a depth of 0 - 

0.2 m using a trowel. Samples were placed in polythene bags, sealed and transported to 

the laboratory. Soil moisture was immediately measured from fresh soils by drying at 

105 
o
C. Further samples were air-dried to a constant weight and passed through a 2 mm 

sieve for chemical analysis. Standard procedures used in the Forest Research laboratory 

were followed for soil chemical analysis (see section 3.3.5 for details). 

 

4.2.2.4 Statistical analysis 

 

Statistical analyses on experimental data were performed using the statistical software 

package Minitab 16. One way analysis of variance (ANOVA) was used to test the effect 

of tree species on soil properties, earthworm densities and biomass at the same site. If 

an assumption of ANOVA was violated with a valid reason, the regular analysis and 

statistical significances were confirmed with a Kruskal–Wallis test which was robust for 

the situation. Where appropriate, a Tukey-Kramer multiple comparison test was applied 

for all of the pair-wise comparisons. 
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4.2.3 Results   

 

4.2.3.1 Alcan  

 

Table 4.2.2 shows the soil and earthworm survey results of three different habitats at the 

Alcan site. Soil moisture (%) was significantly higher (p < 0.05) under E. nitens. Soil 

organic matter, total C as well as CEC showed a slight increase under tree plantations 

compared with the arable control, although the difference was not significant (p > 0.05). 

Soil pH showed a slight decrease (0.4 units) under both tree plantations compared with 

control.  Mean earthworm density was significantly higher (p < 0.05) under E. nitens 

(152 m
-2

) compared with E. gunnii or control (47 and 51 m
-2

 respectively). Mean 

earthworm biomass was significantly higher (p < 0.05) under E. nitens compared with 

control, but not when compared with E. gunnii.  
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Table 4.2.2 Soil properties of selected habitats at the Alcan site (mean ± se, n = 4), 

plus earthworm community measurements (mean ± se, n = 20) 

 

 E. nitens E. gunnii Arable Control 

Soil properties 

Soil Moisture (%) 18.1 ± 0.2
a 

14.9 ± 0.1
b 
 14.4 ± 0.5

b 
 

Soil pH (H2O) 6.6 ± 0.1
 a 

 6.6 ± 0.3
 a 

 7.0 ± 0.1
 a
 

Organic Matter (%) 8.0 ± 0.6
 a  

 8.0 ± 0.2
 a 

  7.0 ± 0.2
 a
  

Total N (%) 0.2 ± 0.0
 a
 0.2 ± 0.0

 a 
 0.2 ± 0.0

 a 
 

Total C (%) 3.7 ± 0.2
 a
 3.5 ± 0.1

 a 
 3.2 ± 0.1

 a 
 

CEC (cmol+/kg) 15.1 ± 0.9
 a  

 13.8 ± 1.7
 a
 12.3 ± 0.7

 a 
 

BS (%) 98 ± 1.5
 a
 98 ± 0.9

 a
 
 
 99 ± 0.7

 a
 

Earthworm measurements 

Density (No. m
-2

) 152 ± 17.1
a
 47 ± 6.5

b
 51 ± 12

b
 

Biomass (g m
-2

) 89.7 ± 13.8
 a
  65.7 ± 10.9

 ab
  49.3 ± 9.4

b
  

Different letters in a row indicate significant difference between habitats (ANOVA, 

Tukey-Kramer test, p < 0.05). 

 

In total, eight earthworm species were recorded at the Alcan site; two anecic, four 

endogeic, and two epigeic species. Each of the different plantations contained at least 

seven species of earthworms, although their compositions were slightly variable (Table 

4.2.3). As shown in Figure 4.2.6, endogeic and epigeic earthworm numbers were 

significantly higher (p < 0.05) under E. nitens compared to both adjacent habitats.  

However, anecic earthworm numbers were not significantly different (p > 0.05) 

between habitats. L. terrestris, A. rosea, A. caliginosa, A. chlorotica, and L. castaneus 

were the dominant species present below E. nitens. E gunnii recorded a lower number of 

epigeic and endogeic earthworms (Figure 4.2.6). L. terrestris was the most dominant 

species found under E. gunnii.  A. chlorotica and L. terrestris were the main species 

present in the arable control. However, the number of L. terrestris under both tree 
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plantations was twice that compared with the arable control plot (Table 4.2.3). The 

epigeic earthworm L. festivus was recorded only within the arable control area.  
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Table 4.2.3 Details of Earthworm species within selected habitats at the Alcan site 

 

Earthworm species 

 

Ecological 

grouping 

Below E. nitens Below E. gunnii Arable Control 

No m
-2

 g m
-2

 No m
-2

 g m
-2

 No m
-2

 g m
-2

 

Allolobophora chlorotica Endogeic 36 4.2 1.5 0.2 23 4.4 

Aporrectodea caliginosa Endogeic 17.5 3.9 3.5 0.7 0.0 0.0 

Aporrectodea longa Anecic 1.0 2.0 1.0 0.1 3.0 5.3 

Aporrectodea rosea Endogeic 36 4.6 7.0 0.8 0.5 0.1 

Lumbricus castaneus Epigeic 8.5 1.3 2.0 0.3 1.0 0.1 

Lumbricus festivus Epigeic 0.0 0.0 0.0 0.0 1.0 1.2 

Lumbricus terrestris Anecic 22 63.5 22.5 60.5 10 31.6 

Octolasion cyaneum Endogeic 4.0 4.4 1.5 1.5 2.5 4.0 

Juvenile Lumbricus species N/A 27.5 5.8 8 1.8 10 2.5 

Total species count  7 7 7 

http://www.google.co.uk/search?hl=en&biw=1366&bih=599&sa=X&ei=JXlHT5jcNKHU0QXmvaiIDg&sqi=2&ved=0CBwQvwUoAA&q=octolasion+cyaneum&spell=1
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Figure 4.2.6 Mean earthworm community composition within selected habitats at 

the Alcan site. Bars representing different ecological groups (same colour) that 

share the same letter are not significantly different (p > 0.05, Tukey-Kramer test).  

Error bars represent standard error of the mean. 

 

4.2.3.2 Daneshill  

 

Table 4.2.4 shows the soil and earthworm survey results of selected habitats at the 

Daneshill site. Both tree plantations established on man-made sandy soil recorded 

significantly lower (p < 0.05) soil moisture (%), total N (%), total C (%) and CEC 

compared with adjacent pasture control. Soil pH was lowest under E. nitens. The total 

and earthworm densities and biomasses were not significantly different (p > 0.05) 

between habitat types in this study area.  
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Table 4.2.4 Soil properties of selected habitats at Daneshill (mean ± se, n = 4), plus 

earthworm community measurements (mean ± se, n = 20) 

 

 E. nitens E. gunnii Pasture Control 

Soil properties 

Soil Moisture (%) 12.1 ± 0.6
 a
  12.0 ± 0.7

 a
  17.9 ± 0.1

 b
  

Soil pH (H2O) 5.4 ± 0.3
 b

   6.2 ± 0.1
 ab

  6.9 ± 0.2
 a
  

Organic Matter (%) 5.4 ± 0.7 
a
 4.9 ± 0.2

 a
 6.3 ± 0.3 

a
 

Total N (%) 0.16 ± 0.0 
b
  0.17 ± 0.0

 b
  0.21 ± 0.0

 a
  

Total C (%) 2.0 ± 0.2
 b

  2.1 ± 0.1
 b

  2.7 ± 0.1
 a
  

CEC (cmol+/kg) 5.9 ± 1.0
 b

  8.2 ± 0.6
 b 

 11.8 ± 1.0
 a 

 

BS (%) 88 ± 0.6
 a
 98 ± 0.2

 a
 98 ± 0.1

 a
 

Earthworm measurements 

Density (No. m
-2

) 40 ± 7.5
a
  47 ± 8.2

 a
  55 ± 9.8

 a
  

Biomass (g m
-2

) 25.1 ± 4.3
 a
  22.2 ± 4.8

 a
  24.7 ± 5.3

 a
  

Different letters in a row indicate significant difference between habitats (ANOVA, 

Tukey-Kramer test, p < 0.05). 

 

In total, six earthworm species were recorded within the Daneshill site; two anecic, 

three endogeic and one epigeic species. Each of the different plantations contained at 

least five species of earthworm, although their composition differed (Table 4.2.4 and 

Figure 4.2.7). The dominant earthworm species under E. nitens was A. caliginosa (25.5 

m
-2

), whilst A. rosea was abundant (34.5 m
-2

) in the control. Both of these endogeic 

earthworm species (A. rosea and A. caliginosa) were present in similar numbers under 

E. gunnii at densities of 19.0 and
 
15.5 m

-2
 respectively.  
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Table 4.2.5 Details of earthworm species within selected habitats at Daneshill  

 

Earthworm  

species 

E. nitens E. gunnii Pasture Control 

No m
-2

 g  m
-2

 No m
-2

 g m
-2

 No m
-2

 g m
-2

 

A. caliginosa 25.5 8.5 15.5 5.3 5.0 1.1 

A. longa 2.5 2.8 4.5 2.1 6.0 4.2 

A. rosea 2.5 0.3 19.0 3.5 34.5 5.1 

L. castaneus 1.0 0.2 0.0 0.0 1.0 0.1 

L. terrestris 4.5 12.2 4.5 10.1 7.0 13.9 

O. cyaneum 0.5 0.7 1.5 0.7 0.0 0.0 

Juvenile Lumbricus spp 3.5 0.4 3.0 0.5 1.5 0.2 

Total species count 6 5 5 

 

 

Figure 4.2.7 Mean earthworm community composition within selected habitats at 

the Daneshill site. Bars representing different ecological groups (same colour) that 

share the same letter are not significantly different (p > 0.05, Tukey-Kramer test).  

Error bars represent standard error of the mean. 
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4.2.3.3 Rogate  

 

Table 4.2.6 shows the soil and earthworm results of selected habitats at the Rogate site. 

Soil moisture and organic matter (%) were significantly higher (p < 0.05) under C. 

sativa compared with both B. pendula and pasture control. Total C (%) and CEC were 

slightly increased under C. sativa, although these were not statistically significant (p > 

0.05). Soil pH was significantly lower (p < 0.05) under C. sativa and it was almost one 

unit lower than control and 0.9 units lower than under B. pendula. The highest 

earthworm density was recorded under C. sativa (23 m
-2

) while highest earthworm 

biomass was recorded under B. pendula (6.0 g m
-2

). Lowest density of earthworms was 

recorded in control soil which was an adjacent pasture plot. However, the mean 

earthworm densities and biomass were not significantly different (p > 0.05) between 

habitat types considered in the study area.  
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Table 4.2.6 Soil properties of selected habitat at the Rogate site (mean ± se, n = 3), 

plus earthworm community measurements (mean ± se, n = 10) 

 

 C. sativa B. pendula Pasture Control 

Soil properties 

Soil Moisture (%) 18.0 ± 2.2 
a
 9.4 ± 1.3

ab
 5.4 ± 0.7

 b
 

Soil pH (H2O) 4.1 ± 0.1
 a
 5.0 ± 0.1

 b
 5.1 ± 0.1

 b
 

Organic Matter (%) 9.4 ± 4.0
 a
 4.1 ± 0.8

 b
 3.2 ± 0.1

 b
 

Total N (%) 0.1 ± 0.0
 a
 0.1 ± 0.0

 a
 0.1 ± 0.0

 a
 

Total C (%) 2.8 ± 1.1
 a
 1.7 ± 0.3

 a
 1.5 ± 0.1

 a
 

CEC (cmol+/kg) 3.1 ± 1.4
 a
 1.9 ± 0.3

 a
 1.8 ± 0.1

 a
 

BS (%) 47 ± 5.8
 a
  56 ± 6.0

 a
 68 ± 3.8

 a
 

Earthworm measurements 

Density (No. m
-2

) 23 ± 3.6 
a
 15 ± 5.0

 a
 12 ± 6.6

 a
 

Biomass (g m
-2

) 3.7 ± 1.4
 a
 6.0 ± 2.4

 a
 3.4 ± 1.8

 a
 

Different letters in a row indicate significant difference between habitats (ANOVA, 

Tukey-Kramer test, p < 0.05) 

 

This sandy soil site recorded a relatively low density, in addition to a low diversity of 

earthworms. Only three epigeic earthworm species; L. rubellus, L. castaneus and 

Dendrobaena octaedra were recorded within the site. Each of the different plantation 

soils contained at least two species of earthworms (Table 4.2.7). Anecic or endogeic 

earthworms were not recorded in any habitat at Rogate. D. octaedra had a distribution 

restricted to C. sativa.  
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Table.4.2.7 Details of earthworm species under different habitat at the Rogate site  

 

Earthworm  

species 

Ecological 

grouping 

C. sativa B. pendula Pasture Control 

No m
-2

 g m
-2

 No m
-2

 g m
-2

 No m
-2

 g m
-2

 

D. octaedra Epigeic 16 1.0 0.0 00. 0.0 0.0 

L. rubellus Epigeic 1.0 1.0 2.0 1.7 1.0 0.9 

L. castaneus Epigeic 3.0 0.3 2.0 0.2 1.0 0.1 

Juvenile L. spp N/A 3.0 1.3 11.0 4.1 10.0 2.4 

 Total species count  3 2 2 

 

 

4.2.3.4 Gisburn Forest 

 

Table 4.2.8 shows the soil and earthworm results between different tree stands at 

Gisburn Forest. The lowest soil pH (3.9) and base saturation (16.4%) was recorded 

under B. pendula. Similarly derived A. pseudoplatanus recorded slightly increased soil 

pH (4.8) than B. pendula. Most of the soil properties, especially pH, CEC and BS were 

higher under F. excelsior. Earthworm density was significantly higher (p < 0.05) below 

F. excelsior compared with both B. pendula and A. pseudoplatanus. Both earthworm 

density and biomass were significantly lower (p < 0.05) under B. pendula.  
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Table 4.2.8 Soil properties of selected habitats at the Gisburn Forest (mean ± se, n 

= 3), plus earthworm community measurements (mean ± se, n = 5) 

 

 F. excelsior B. pendula A. pseudoplatanus 

Soil properties 

Soil Moisture (%) 32.6 ± 0.5
 a
  34.9 ± 1.0

 a
  35.2 ± 0.1

 a
  

Soil pH (H2O) 5.8 ± 0.1
a 
 3.9 ± 0.1

 c
 4.8 ± 0.1

 b
  

Organic Matter (%) 10.0 ± 0.5
 b

  10.2 ± 0.2
 b
 12.0 ± 0.2

 a
  

Total N (%) 0.3 ± 0.0
 a
  0.3 ± 0.0

 a
  0.3 ± 0.0

 a
  

Total C (%) 4.0 ± 0.1
 a
  4.2 ± 0.3

 a
  4.5 ± 0.4

 a
  

CEC (cmol+/kg) 14.1 ± 1
 a
 7.4 ± 0.5 

a
 7.8 ± 0.2

 a 
  

BS (%) 99 ± 2.1
 a 

 16 ± 2.2 
c 
 67 ± 3.8

 b
 

Earthworm measurements 

Density (No. m
-2

) 66 ± 11.2 
a
 6 ± 2.4 

b
 26 ± 5.1 

b
 

Biomass (g m
-2

) 13.9 ± 3.6 
a
 0.9 ± 0.3 

b
 8.7 ± 2.4 

ab
 

Different letters in a row indicate significant difference between habitats (ANOVA, 

Tukey-Kramer test, p < 0.05) 

 

As shown in Table 4.2.9, a total of six earthworm species were found at the Gisburn 

Forest site and consisted of four endogeic and two epigeic species.  Anecic earthworms 

were not recorded under any of the tree stands (Figure 4.2.8). A greater number of 

earthworm species (5) were found below F. excelsior while only (one) earthworm 

species (L. castaneus) was found below B. pendula.  The major earthworm species 

recorded under F. excelsior were A. rosea, A. caliginosa and L. castaneus while A. 

chlorotica was recorded at high densities under A. pseudoplatanus.  
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Table 4.2.9 Details of earthworm species in selected habitats at Gisburn forest 

 

Earthworm sppecies 

F. excelsior B. pendula A. pseudoplatanus 

No m
-2

 g m
-2

 No m
-2

 g m
-2

 No m
-2

 g m
-2

 

A. caliginosa 8.0 2.7 0.0 0.0 0.0 0.0 

A. chlorotica 2.0 0.3 0.0 0.0 14.0 3.1 

A. rosea 38.0 6.3 0.0 0.0 6.0 1.0 

L. castaneus 12.0 2.3 6.0 0.9 2.0 0.7 

L. rubellus 0.0 0.0 0.0 0.0 2.0 2.5 

O. cyaneum 2.0 1.9 0.0 0.0 0.0 0.0 

Juvenile L. spp 4.0 0.4 0.0 0.0 2.0 1.5 

Total species count 5 1 4 

 

 

 

Figure 4.2.8 Mean earthworm community composition within different habitats at 

the Gisburn Forest site. Bars representing different ecological groups (same 

colour) that share the same letter are not significantly different (p > 0.05, Tukey-

Kramer test).  Error bars represent standard error of the mean. 
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4.2.4 Discussion 

 

4.2.4.1 Alcan  

 

Earthworm survey results at the Alcan site suggest that conversion from arable to SRF 

can increase the earthworm density depending on tree species planted. At the study site, 

six years of E. nitens development on former arable loamy soil had increased earthworm 

density three fold compared to the unplanted control. However, parallel E. gunnii 

development had not significantly changed total earthworm density. In the same soil, 

under similar climatic condition, two eucalyptus species had different influences on 

earthworm community development. Soil survey results suggested that under E. nitens, 

soil moisture was enhanced, possibly due to a deeper litter layer accumulated below this 

species (Figure 4.2.9).  

 

The differences in earthworm occurrence and soil analyses may be associated with the 

level of soil disturbance (Makeschin, 1994), quality and quantity of litter produced 

(Muys et al., 1992; Reich et al., 2005) and canopy density. The dense canopy and thick 

litter layer of E. nitens (Figure 4.2.9) provided a more suitable habitat for epigeic, 

endogeic and anecic earthworms (see Table 2.3.1), directly through food provision and 

indirectly through its positive effect on soil moisture. E. gunnii consisted of a relatively 

light canopy, which resulted in less amounts of litter deposited on the soil surface 

(Figure 4.2.9). This may be the reason for low soil moisture content recorded 

underneath this plantation. The inter-connected factors of light canopy density, less 

litter quantity, and low soil moisture below E. gunnii negatively affected litter-dwelling 

epigeic and shallow-working endogeic earthworm populations. However, results 

suggest that this impact was minimal for deep burrowing earthworms. Compared with 
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the arable control, fewer disturbances and increased food provision had positively 

affected the anecic L. terrestris population development under both tree species.  

 

(a) (b)  (c) 

Figure 4.2.9 Litter cover on the soil surface within selected habitat at Alcan (May 

2010); Beloe (a) E. nitens, (b) E. gunnii, (c) Arable control. 

 

In Germany, Makeschin, (1994) studied the effects of energy forestry (SRC + SRF) on 

former arable soils and suggested that soil faunal density and diversity increased under 

tree plantations compared with arable land due to less frequent soil disturbances, leaf 

litter accumulation and reduced chemical application. Current work suggests that the 

effects of tree plantation on earthworm density and diversity can vary with tree species 

which concurs with Muys et al. (1992).  Similar to the present soil survey findings, 

several studies have suggested an increase of soil organic matter and carbon content 

under tree plantations on former arable soil (e.g. Tolbert and Wright, 1998; Vanguelova 

and Pitman, 2011). Decreases in pH under SRF (planted on previously arable soils) 

have been recorded by Jug et al. (1999) in Germany and by Alriksson and Olsen (1995) 

in Sweden.  

 

The effects of eucalyptus species on the soil have focused on allelopathy caused by its 

litter, which affects soil microorganisms and germination/growth of other plants (Cao et 

al., 2010; Zhang et al., 2010).  Mboukou-Kimbatsa et al. (1998) studied the changes in 
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soil fauna when fast growing trees were planted on savanna soils in southern Congo and 

suggested that eucalyptus (a natural hybrid between E. alba and another undetermined 

parent) had no negative effects on earthworm development in a clay loam soil. The 

present work also suggests that E. nitens and E. gunnii had no negative effects on 

earthworm community development in a loamy soil (after 6 years). 

 

4.2.4.2 Daneshill 

 

Earthworm survey results at the Daneshill site suggest that short-term E. nitens and E. 

gunnii growth on a poor, reclaimed (mineral extraction, backfilling and reforestation) 

site can support earthworm community development.  After five years, earthworm 

densities and biomass under both tree plantations were not significantly different from 

adjacent pasture land.  Increased provision of organic matter through growing trees 

(with litter fall and rooting) may be one of the factors to attract earthworms to this 

reclaimed site. 

 

However, soil analyses suggest that most of the general soil properties such as soil 

moisture, soil pH, total C, total N, and CEC were slightly lower under tree plantations 

compared with pasture. In general, pasture lands are chemically and biologically rich 

systems and earthworms are a major component in these systems (Bouché, 1977). Butt 

(2000) recorded an earthworm density of (291 m
-2

) and biomass of (86 g m
-2

) in alkaline 

pasture in the Yorkshire Dales, and Butt et al. (2008) recorded an earthworm density of 

(310 m
-2

) and biomass of (149.6 g m
-2

) from equally alkaline loamy pasture in Kent. 

However, compared with these UK pasture sites, the Daneshill pasture site, which 

consisted of relatively poor sandy soil, supported a relatively low earthworm density 
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and biomass (55 m
-2

 and 24. 7 g m
-2

 respectively). This suggests that soil type can 

directly influence earthworm occurrence, in addition to the vegetation type.  

 

Hendrychová, (2008) suggested that reforestation of reclamation sites may have a great 

potential to enable early colonisation of organisms from the surrounding landscapes and 

to support an increase in biodiversity. According to Hendrychová (2008), faster 

development of the tree layer and closure of the tree canopy is a basic aspect of forest 

reclamation and therefore, fast growing tree species have received much attention for 

use in land reclamation. Frouz (2006) compared development of humus and 

fermentation layers in plots reclaimed by planting alder (Alnus glutinosa), lime (Tilia 

cordata), oak (Quercus robur), larch (Larix decidua), pine (a mixture of Pinus silvestris 

and P. nigra) and spruce (a mixture of Picea omorica and P. pungens). The most rapid 

development of fermentation and humus layers of soil was found under alder and lime 

plantations.  Larch also supported rapid soil development, whereas slower soil 

development was found under spruce and pine plantations. In alder plantations, 

macrofauna was more abundant, dominated by Diptera larvae, Diplopoda and 

earthworms. This study suggested that presence of earthworms resulted in more 

intensive soil mixing, which appears in rapid formation of a humus layer. It further 

emphasised that selection of appropriate forest species is important in land reclamation 

for rapid colonisation of soil fauna and hence overall soil development.  

 

 Mboukou-Kimbatsa et al. (1998) studied the change in soil macrofauna, including 

earthworms, when fast growing trees were planted in savanna soils in southern Congo 

and recorded that biomass of soil macrofauna was very low in both sandy and clay 

savanna soils, total biomass being 3.3 and 5.8 g m
-2

 respectively. However, soil 

macrofauna biomass reached 29 g m
-2

 in the 20 year Eucalyptus plots on sandy soils and 
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74 g m
-2

 in 26 years old eucalyptus plantation on clay soils. The study suggested that 

there was a correlation between plant age and soil macrofauna biomass and that soil 

type had a clear influence on macrofauna development. The study recorded that under 

eucalyptus, changes in C content and the development of soil macrofauna occurred 7-10 

years after planting. The current study suggests that earthworm community 

development under both E. nitens and E. gunnii and density/diversity was at the level of 

adjacent pasture land after 5 years.  This shows that after this period of time a negative 

influence has not been recorded. However, future studies are required at this site to 

investigate the influence of plant ageing on earthworm populations, to see if an 

enhancement of macrofaunal community results. 

 

4.2.4.3 Rogate 

 

The results suggest that over 20 years of C. sativa or B. pendula growth on less fertile 

sandy soil has not significantly changed total earthworm density or biomass, compared 

with an adjacent pasture control. However, earthworm species composition had slightly 

changed between habitats although it was totally restricted to the epigeic category. 

Earthworm density had slightly increased under C. sativa, mostly due to D. octaedra 

while earthworm biomass was slightly increased under B. pendula, mostly due to L. 

rubellus. The soil survey suggested that soil pH was considerably decreased under C. 

sativa (4.1) while soil moisture, organic matter, total C, total N and even CEC were 

slightly increased. Acid tolerant, D. octaedra, which was restricted to the C. sativa 

plantation, are generally associated with soils having high organic content such as peat, 

wet moorland, forested and acid hill pastures (Sims and Gerard, 1999). It is noteworthy 

that all the epigeic earthworms (L. rubellus, L. castaneus and D. octaedra) found at the 

Rogate site are acid-tolerant species (Sims and Gerard, 1999).  
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Yates (1988) reported a significant reduction in earthworm biomass and soil pH after 13 

years under pine (Pinus radiata) plantations which were established on New Zealand 

grassland. Muys et al. (1992) recorded significant differences in earthworm biomass, 

community structure and even soil pH after 20 years of forest development (Q. 

palustris, T. platyphyllos, P. avian, A. glutinosa, F. excelsior) on a former grassland 

sandy soil in Belgium. These authors recorded a diminished earthworm biomass under 

oak (Q. palustris) (see section 2.5.2.1 for details). As previously mentioned, pasture 

lands are chemically and biologically rich systems (Bouché, 1977) and growing of trees 

generally leads to soil acidification and a reduction in earthworms. But similar to Muys 

et al. (1992), the current study at the Rogate site suggested that this could be controlled 

by selection of appropriate tree species.   

 

4.2.4.4 Gisburn Forest 

 

The B. pendula plantation showed the lowest number of earthworms, although its litter 

is reported to generally support earthworm feeding (Satchell and Lowe, 1967), growth 

and reproduction (Butt, 2011). Considerably low soil pH (3.9) and low base saturation 

(16.4%) under B. pendula may have negatively affected earthworm development. A. 

pseudoplatanus, with relatively improved soil pH and base saturation, recorded 

moderate earthworm density and diversity. The highest earthworm density and diversity 

was recorded under F. excelsior where soil pH, CEC and base saturation were high. The 

soil status, especially low pH, which was likely to have been associated with previous 

conifer establishment, had greatly influenced earthworm community development under 

these plantations. Similar to the findings of this study, Muys et al. (1992) suggested that 

F. excelsior is one of the forest species which supports earthworm development. 

Satchell (1980) studied earthworm development under B. pendula, planted on the soil of 
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a podzolized heather moor in North Yorkshire and concluded that after 20 years, B. 

pendula had not materially improved the site as an earthworm habitat. Rati and Huhta 

(2004) studied the earthworm communities in 30 year old B. pendula stands in Finland, 

established on former coniferous plantation and on arable soil. They recorded that 

earthworm diversity and density were lower under B. pendula established on an ex-

coniferous stand than on arable soil.  

  

Major findings of the earthworm survey: 

 

 The baseline survey at the Alcan site showed that conversion from arable to 

eucalyptus can increase earthworm density and diversity, but this may be a 

function of reduced tillage, in addition to tree planting. 

 The survey at Daneshill demonstrated that short-term (five years) eucalyptus 

growth on a poor reclaimed site can support earthworm community development 

similar to adjacent pasture land.  

 The survey at selected forest sites suggested that species of SRF trees exhibit 

species-specific effects on earthworm community development.  

 Overall survey results suggested that the effect of SRF trees on earthworms is a 

complex process which depends not only on tree species, but also on tree age, soil 

type and land-use history.  

 

Further studies are recommended to confirm interactive effects of SRF species, tree age, 

soil types, land-use history and local climate on earthworm community development.  
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4.3 Effects of SRF species litter on growth and reproduction of L. terrestris under 

controlled environmental condition  

 

4.3.1  Introduction 

 

Tree litter quality is one of the key components which influence earthworm community 

development in many terrestrial ecosystems, since it has a direct impact on feeding 

(Satchell and Lowe, 1967), growth and reproductive success of earthworms (Butt, 

2011). To examine this with respect to SRF species, two experiments were conducted 

under controlled environmental conditions with the litter-feeding earthworm Lumbricus 

terrestris. For the current study, L. terrestris was selected as it was one of the most 

abundant earthworm species found within SRF sites (see earthworm survey results in 

Table 4.2.3). According to the literature, L. terrestris are widely distributed in UK 

forests and make a great contribution to tree litter decomposition (see section 2.3.2.1 for 

details). These set out:  

 

a) To assess and compare the effect of SRF litter on earthworm growth. 

b) To assess and compare the effect of SRF litter on earthworm reproduction. 

 

4.3.2 Materials and Methods 

 

Two separate experiments were conducted to examine (1) growth and (2) reproduction 

of L. terrestris. For each experiment, six SRF litter treatments; A. glutinosa (Ad), F. 

excelsior (Ah), B. pendula (Br), E. nitens (En) C. sativa (Sw) and A. pseudoplatanus 

(Sy) were used. Standard sterilised Kettering loam (see Table 3.3.5 for details) with a 

moisture content of 25% was utilised as a substrate for earthworms and sealed opaque 

http://www.just-green.com/2533/Just-Green-Silver-Birch-Trees--Betula-Pendula-.html?referrer=froogle&utm_source=google&utm_medium=froogle&utm_campaign=pid2533
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plastic containers (Lakeland Plastics Limited, UK) with ventilation holes in lids (made 

with a mounted needle) were used as experimental vessels. These vessels were 

maintained in darkness at 15 °C in temperature-controlled incubators (Lowe and Butt, 

2005).    

 

4.3.2.1 Growth  

 

Experimental L. terrestris hatchlings were collected from laboratory-produced cocoons 

which had been incubated at 15 °C. Emerging hatchlings were collected on a daily basis 

and kept in a sealed plastic vessel of water (with a few small ventilation holes in the lid) 

at 5 °C, until the required number was gathered. The experiment began in January 2011, 

with hatchlings of mean individual mass of 0.06 g. Plastic vessels of 0.4 L (depth 0.04 

m) were filled with 0.3 L of moist soil and a single hatchling was introduced into each 

vessel.  As hatchings are unable to consume whole plant leaves, they were fed with 

previously collected and air-dried SRF litter that was ground (MAGIMIX 4150W food 

processor) and passed through a 2 mm sieve before feeding to prevent any influence of 

particle size on earthworm growth. A known amount of sieved litter from each tree 

species was soaked in water for 10 minutes and surface applied to experimental vessels. 

Initially, the hatchlings were fed with 2 g (dry basis) of litter individual
-1 

4 weeks
-1

, 

which from sixteen weeks onwards was increased to 4 g individual
-1 

4 weeks
 -1

.  

 

Experimental vessels were examined every four weeks and earthworm survival, mass 

and their development stages were recorded before each one was returned to its vessel. 

After each four week interval, soils were replenished. Four replicates per treatment were 

maintained and the experiment was terminated after 28 weeks (when one treatment had 

recorded 100% clitellate animals). Earthworm masses after 28 weeks were used for 
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direct comparison of treatments using the Tukey-Kramer multi-comparison one way 

analysis of variance (ANOVA). 

 

4.3.2.2 Reproduction  

 

Field-collected L. terrestris adults (n = 40) were acclimated to laboratory conditions for 

four weeks (4 adults in 2 L vessels). A mixture of experimental SRF leaves was 

supplied to ensure that no pre-conditioning occurred with respect to litter (Butt, 2011). 

Earthworms (mean individual mass 5.15 g) were randomly assigned as 12 pairs and 

each pair kept in a 0.75 L vessel (depth 0.1 m). Six litter species were used separately as 

feed treatments, so that two pairs were fed with each experimental litter species. A 

known amount of air-dried whole leaves (2 g adult
-1 

4 weeks
-1

) was soaked with water 

for 20 minutes and surface applied to experimental vessels. This set up continued for 

four weeks to ensure adequate mating opportunity. After four weeks, each pair was 

separated and animals were introduced to individually coded 0.75 L vessels and fed, as 

before, with the same litter species (n = 4 per litter species).  Experimental vessels were 

examined every four weeks.  At sampling, any litter remaining at the soil surface was 

collected and air-dried for weighing, to allow earthworm litter removal calculations. 

Earthworm survival, and mass changes were recorded and they were re-housed in fresh 

soils and fed as before. Soil removed from vessels on a four-weekly basis was wet-

sieved through a series of 6.7, 4.0 and 2.8 mm meshes for collection of cocoons (Butt et 

al., 1994). The experiment was started in December 2010 and completed after 16 

weeks. Final earthworm masses, monthly cocoon production, and monthly litter 

removal were compared across treatments using multi-comparison one way ANOVA. 
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4.3.3 Results 

 

4.3.3.1 Growth  

 

Figure 4.3.1 shows the growth of L. terrestris hatchlings fed with six different types of 

SRF litter. A difference in mass was first discernible graphically after 4 weeks, and 

became more obvious thereafter. After 28 weeks, individual mean mass was 

significantly greater (p < 0.05) in A. glutinosa-fed earthworms, while it was 

significantly lower (p < 0.05) in C. sativa-fed earthworms. F. excelsior, B. pendula, A. 

pseudoplatanus and E. nitens-fed earthworms showed a relatively similar mean growth 

rate throughout the experiment. Tubercula pubertatis (glandular swellings on the ventral 

surface, either on or near the clitellum and key feature to identify maturity of 

earthworms) were first recorded for A. glutinosa-fed earthworms after 20 weeks (n = 1) 

and after 28 weeks for F. excelsior-fed earthworms (n = 2). The first clitellate animal 

was observed after 24 weeks with A. glutinosa (n = 1). Even after 28 weeks, B. pendula, 

A. pseudoplatanus, E. nitens and C. sativa-fed animals showed no signs of maturity, 

while A. glutinosa-fed animals were all clitellate. After 28 weeks, A. glutinosa-fed 

earthworms recorded the highest mean mass (5.02 g), while C. sativa-fed earthworms 

recorded the lowest mean mass (1.55 g) of the SRF species examined. Table 4.3.1 

summarises the production results and significant differences (p < 0.05) for the growth 

experiment after 28 weeks. At termination of the experiment, 100% earthworm survival 

was recorded for all treatments. 

 

http://www.just-green.com/2533/Just-Green-Silver-Birch-Trees--Betula-Pendula-.html?referrer=froogle&utm_source=google&utm_medium=froogle&utm_campaign=pid2533
http://www.just-green.com/2533/Just-Green-Silver-Birch-Trees--Betula-Pendula-.html?referrer=froogle&utm_source=google&utm_medium=froogle&utm_campaign=pid2533
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Figure 4.3.1 Mean (± se) growth (g) of hatchling L. terrestris fed with A. glutinosa 

(Ad), F. excelsior (Ah), B. pendula (Br), E. nitens (En) C. sativa (Sw) and A. 

pseudoplatanus (Sy) over a period of 28 weeks.   

 

Table 4.3.1 Summary production results for L. terrestris hatchlings supplied with 

six types of litter materials - after 28 weeks [Abbreviation of SRF species as for 

Figure 4.3.1] 

 

Attribute 

SRF species 

Ad Ah Br En Sw Sy 

Mean growth rate (mg g
-1

 wk
-1

) 2949 1607 1518 1455 885 1451 

Mean individual mass after 28 

weeks 5.02
a
 2.76

b
 2.61

b
 2.51

b
 1.55

c
 2.5

b
 

Maturation (fully clitellate) at 28 

weeks (%) 100 0 0 0 0 0 

Different letters in a row indicate significant differences (p < 0.05, n = 4). 
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4.3.3.2 Reproduction  

 

Figure 4.3.2 shows cocoon production for field-collected adult L. terrestris fed with 6 

different litter types. Mean individual cocoon production, over the period of 16 weeks 

was recorded as A. glutinosa (11 ind
-1

), B. pendula and F. excelsior (4 ind
-1

) E. nitens 

and A. pseudoplatanus (2 ind
-1

) and C. sativa (1 ind
-1

) which equated to 2.69, 1.00, 0.44 

and 0.31 ind
-1

 4 weeks
-1

 respectively. Mean cocoon production was significantly higher 

(p < 0.05) for earthworms fed with A. glutinosa litter while B. pendula, E. nitens, A. 

pseudoplatanus, C. sativa, and F. excelsior-fed earthworms showed no significant 

difference (p > 0.05) in cocoon production.  

 

 

 

Figure 4.3.2 Mean (± se) cocoon production by L. terrestris fed with six types of leaf 

litter after 16 weeks. Different letters denote significant differences between 

treatments (p< 0.05) [Abbreviation of SRF species as for Figure 4.3.1].   
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Figure 4.3.3 shows mean mass change of earthworms over the experimental period. 

After 16 weeks, an 8% mass increment was recorded by A. glutinosa-fed earthworms, 

while all other treatments recorded a mass loss; C. sativa  (44%), A. pseudoplatanus 

(37%), B. pendula (17%), E. nitens (11%.) and  F. excelsior (12%.) At termination of 

the experiment, C. sativa recorded a 75% survival rate (1 animal died) while all other 

treatments recorded 100% survival.  

 

 

 

 

Figure 4.3.3 Mean (± se) change of individual biomass (%) of adult L. terrestris 

supplied with six types of leaf litter over a period of 16 weeks [Abbreviations as for 

Figure 4.3.1].  
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As illustrated in Figure 4.3.4, the mean monthly surface litter removal by individuals 

was recorded as 1.5 g for A. glutinosa (75%), 1.19 g for B. pendula (59%), 0.88 g for F. 

excelsior (44%), 0.69 g for E. nitens (35%), 0.44 g for A. pseudoplatanus (22%), and 

0.19 g for C. sativa (10%). Table 4.3.2 summarises the results for reproduction 

experiment after 16 weeks. 

 

 

 

 

 

Figure 4.3.4 Mean (± se) surface litter removal by L. terrestris supplied with six 

types of leaf litter after 16 weeks. Different letters denote significant differences 

between treatments (p < 0.05) [Abbreviation of SRF species as for Figure 4.3.1]. 

  

Table 4.3.2 Summary production results for L. terrestris adults supplied with six 

types of leaf litter - after 16 weeks [Abbreviation of SRF species as for Figure 4.3.1] 
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Attribute 

SRF species 

Ad Ah Br En Sw Sy 

Survivorship (%) 100 100 100 100 75 100 

Initial mean mass (g ind. 
-1

) 5.19
 
 5.27

 
 4.95

 
 4.88

 
 5.42

 
 5.20

 
 

Final mean mass (g ind. 
-1

) 5.58 4.65 4.09 4.33 3.04 3.26 

Mass change of survivors 

(% of starting mass) +8 -12 -17 -11 -44 -37 

Mean litter removal (g ind
-1

 

4 weeks
-1

) 1.50
a
 0.88b

c
 1.19

ab
 0.69

bcd
 0.19

d
 0.44

cd
 

Mean cocoon production 

(ind.
-1

 4 weeks
-1

) 2.69
a
 1.00

b
 1.00

b
 0.44

b
 0.31

b
 0.44

b
 

Different letters in a row indicate significant differences (p < 0.05, n = 4) 

 

As shown in Table 4.3.3, A. glutinosa litter had the highest total N (%) and lowest C:N 

while C. sativa recorded lowest total N (%) and highest C:N. The Ca (%) was high in A. 

pseudoplatanus and F. excelsior while it was lowest of the litter examined in C. sativa 

 

Table 4.3.3 Selected litter chemistry parameters for experimental SRF species 

(Refer to section 3.3.3 for details), [Abbreviation of SRF species as for Figure 4.3.1]   

 

Litter 

parameter 

SRF species 

Ad  Ah Br  En Sw  Sy  

Total N (%) 2.76 1.51 1.59 1.33 0.94 1.45 

Total C (%) 50.5 47.3 51.5 52.5 48.7 47.9 

C:N  18.3 31.3 32.5 39.5 52.0 33.0 

 P (%) 0.12 0.15 0.10 0.09 0.09 0.08 

Ca (%) 1.91 2.66 1.17 1.36 0.93 2.55 
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4.3.4 Discussion 

 

4.3.4.1 Growth  

 

The results from this experiment suggest that SRF litter has an influence on L. terrestris 

growth. Litter chemistry results suggest that total N (%), C:N and Ca (%) in litter 

material are likely to be the reason for recorded differences in earthworm growth. A. 

glutinosa litter with the highest amount of N and lowest C:N led to a significantly 

greater final mass. C. sativa litter with highest C:N and lowest amount of N and Ca led 

to a significantly lower mass after 28 weeks.  B. pendula, F. excelsior. E. nitens and A. 

pseudoplatanus which showed mid-range value for litter quality had an average effect 

on L. terrestris growth. Most of the previous field studies on earthworms and trees (e.g. 

Hendriksen, 1990; Tian et al., 1993; Zou, 1993; Reich et al., 2005; Hobbie et al., 2006; 

Sarlo, 2006) have suggested that leaf litter N content, C:N, and Ca content play a 

critical role in earthworm abundance and activity. These studies have further suggested 

that lignin content and phenolic compounds (tannins) have a potential influence on 

earthworms, which was not analysed in the current study. All of the aforementioned 

studies have focused on the influence of litter quality on earthworm density, diversity, 

total biomass and rate of litter decomposition, but not on individual earthworm growth 

or reproduction. However, Lakhani and Satchell (1970) conducted a long-term (three 

year) earthworm growth experiment and recorded mean adult mass of L. terrestris 

around 9.5 g from earthworms kept in mesh bags in the field, regularly fed with mixed 

deciduous tree leaves. These earthworms were on average 3 g heavier than animals 

collected from adjacent unmanaged field conditions.  
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A number of laboratory experiments have been conducted to evaluate the influence of 

different organic sources, such as animal manure (LÖfs-Holmin, 1983; Butt, 1998; Berry 

and Jordan, 2001), paper pulp (Butt, 1991) and paper pulp plus yeast extract, (Butt et 

al., 1992) on L. terretris growth. However, very few growth experiments have been 

recorded with tree litter (e.g. Curry and Bolger, 1984; Butt 2011).  At 15 °C, Curry and 

Bolger (1984) fed L. terrestris (together with A. caliginosa) with excess Salix litter and 

recorded a mean increase in growth of 3 g (from 1.8 g to 4.8 g) over a period of 24 

weeks. At 15 °C, Butt (2011) fed L. terrestris hatchings (initial mean mass 60 mg) with 

excess amounts of B. pendula litter or horse manure and recorded a mean mass of 4.19 

g and 6.17 g respectively and 100% maturity after 28 weeks,  showing that a diet of 

horse manure led to a significantly greater final adult mass, but that the rate of 

maturation was similar for both manure and B. pendula leaves as food. However, 

current experiments with the same species of earthworm with B. pendula litter recorded 

a comparatively lower mean mass (2.61 g) and no attainment of maturity at week 28. 

The quality and quantity of litter supplied could be the reason for this difference.  The 

C:N of B. pendula litter used by Butt (2011) was low (21) compared with the same 

species of leaf litter (32.5) used in the current experiment. Further, Butt (2011) used 

excess amounts of litter, but in the present study, a limited amount of litter (2-4 g 

individual
-1 

4 weeks
-1

) was supplied.  However, it is noteworthy that a similar amount of 

A. glutinosa litter in the current experiment resulted in a mean mass of 5.02 g and 100% 

maturity of earthworms after 28 weeks while, C. sativa resulted in mean mass of 1.55 g 

and 0% maturity. Overall, the experiment suggests that SRF litter quality has a major 

influence on L. terrestris growth and maturation.   
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4.3.4.2 Reproduction  

 

This experiment demonstrated that SRF species litter has a major effect on reproduction 

of field-collected L. terrestris.  A. glutinosa litter, with highest content of N, recorded 

significantly greater cocoon production, while C. sativa litter with lowest content of N, 

recorded the lowest cocoon production of the species examined. This study further 

suggests that SRF litter quality influences the amount of litter removal by L. terrestris 

and even body mass maintenance of mature animals. A. glutinosa litter recorded the 

highest value in terms of both of these aspects, while C. sativa recorded the lowest. 

 

Butt (2011) suggested that food quality affects both somatic growth and reproductive 

potential of L. terrestris. In this study a significantly increased cocoon production and 

increased mean mass from B. pendula litter-fed earthworms, followed a switch to green 

leaves. An almost immediate reversal of this trend following a reversion to fallen litter 

was also noted by the author. This study suggested that the larger nitrate content in 

green leaves led to higher utilisation and rapid protein synthesis as required for growth 

and reproduction. This comparable study by Butt (2011) further recorded an average 

cocoon production of 5.15 ind
-1

 month
-1

 when laboratory cultured L. terrestris (mean 

mass 6.93 g) were fed with excess amounts of B. pendula litter. Generally at 15 °C, the 

average cocoon production of manure-fed L. terrestris (laboratory cultured) was 

recorded as more than 4 cocoons ind
-1

 month
-1

 (Butt et al, 1994, Butt, 2011). However, 

in the current study, except for A. glutinosa, all other litter species recorded a 

production of 1 or less cocoon ind
-1

 4 weeks
-1

. It could be suggested that the origin of 

the earthworms (field-collected L. terrestris - mean mass 5.51 g), food quantity (2 g ind
-

1 
4 weeks

-1
) and quality had negatively influenced cocoon production in the current 

work.   
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Summary of major findings of two laboratory experiments: 

 

 Native A. glutinosa litter had a very positive effect on L. terretris growth and 

reproduction and out-performed other selected SRF species.  

 Naturalised C. sativa showed the most depressed effect on hatchling growth, 

adult mass maintenance and even cocoon production compared with other 

selected SRF species.  

 Non-native E. nitens litter was as effective as native SRF species such as B. 

pendula and F. excelsior in terms of earthworm growth in addition to adult mass 

maintenance. 

 Overall, this work showed that SRF species litter had a marked influence on L. 

terresris growth and reproduction depending on litter quality (e.g. N 

concentration C:N ratio and Ca concentration).  

 

Further growth and reproduction studies are recommended with other earthworm 

species to confirm the influence of SRF litter quality on overall earthworm community 

development.  
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CHAPTER 5:  EARTHWORM PREFERENCE FOR SRF SPECIES LITTER 

 

5.1 Introduction 

 

Earthworms have been shown to demonstrate a preference for certain types of leaf litter 

over others (Darwin, 1881; Satchell and Lowe, 1967; Hendriksen, 1990). Selection 

depends on the palatability of the litter which is determined by some of its physical and 

chemical characteristics (Satchell and Lowe, 1967). Darwin (1881) observed that 

earthworms preferred some leaves more than others and suggested that these animals 

can distinguish between varieties. He further noticed that earthworms preferred plant 

leaves of a particular shape. A leaf litter selection experiment by Satchell and Lowe 

(1967) suggested that when provided with uniform disks of leaf material, L. terrestris 

preferred leaf litter from alder (A. glutinosa), ash (F. excelsior), elder (Sambucus nigra) 

and elm (Ulmus glabra) over larch (Larix deciduas), oak (Quercus petraea) or beech 

(Fagus sylvatica). In a litterbag experiment, Edwards and Heath (1963) found that L. 

terrestris preferred oak over beech.  Hendriksen (1990) also used a litterbag technique 

to show that Lumbricus spp. prefered ash and lime over beech litter. These studies 

identified that the chemical composition of plant litter, especially nitrogen content, 

carbon to nitrogen ratio, lignin content, phenolic compounds and calcium content 

greatly influenced earthworm litter selection. Further, some investigators observed that 

earthworms preferred decomposed litter over fresh litter and concluded that bacterial 

and fungal activity on leaf litter enhances its palatability to earthworms (Satchell and 

Lowe, 1967; Wright, 1972; Hendriksen, 1990). Plant litter palatability has a strong 

influence on aggregation of decomposer communities and overall establishment of soil 

faunal population (Swift et al., 1979).  
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Previous researchers who investigated the preference of earthworms on various organic 

food sources such as manure, soil fungi and upland pasture plant species, used different 

species of earthworm for their studies (e.g. Doube et al., 1997a; Bonkowski et al., 2000; 

Neilson and Boag, 2003). However, most of the aforementioned tree litter preferential 

studies were limited to L. terrestris and barely investigated other earthworm species. 

Further, these studies have focused on common temperate forest tree species and the 

preference of European earthworms for non-native tree species such as E. nitens is 

almost unknown. 

 

The aim of the present study was to investigate the preference of native British 

earthworms for SRF species litter. Based on a technique used by Doube et al. (1997a), 

choice chamber experiments were designed  to explore SRF species litter preference by 

four species of earthworm; Allolobophora chlorotica, Aporrectodea caliginosa, 

Aporrectodea longa and Lumbricus terrestris.  This system permitted quantification and 

comparison of litter removal by earthworms over time. In addition, a more sophisticated 

webcam recording technique was used to observe SRF litter selection of L. terrestris 

under cover of darkness. This recording approach allowed collection of direct evidence 

for litter selection behaviour. 

 

This chapter therefore presents choice chamber experiments and then webcam recording 

experiments which observed L. terrestris feeding behaviour. All were conducted under 

controlled environmental conditions. 
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5.2 Choice chamber experiments 

 

5.2.1 Introduction 

 

The specifically designed leaf litter choice chamber used in this study was a 

modification of a simple choice chamber described by Doube et al. (1997a). The novel 

soil-mediated choice chamber system provided more natural and improved conditions 

for soil-dwelling earthworms and allowed quantification of the leaf litter selected as 

food over time, without disturbing the earthworms or the soil in which they were living. 

A series of experiments were conducted under controlled environmental conditions to 

assess and compare the SRF species litter preference by selected species of earthworms. 

 

5.2.2 Materials and methods 

 

Circular aluminium foil trays (diameter 0.16 m and depth 0.03 m) and Eppendorf tubes 

(diameter 0.01 m and depth 0.04 m) were used as the basis for the leaf litter choice 

chambers. Caps of Eppendorf tubes were separated and the centre was drilled-out, so 

that earthworms could move through. Holes were then made in the foil tray, so that the 

drilled caps could be fixed into equally spaced positions on the inner side of the tray 

wall, such that the Eppendorf tubes could be attached from the outside. This technique 

allowed removal of the Eppendorf tubes, weighing and re-fixing without disturbance to 

the experimental system (see Figure 5.2.1). 
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Figure 5.2.1 Basic choice chamber consisting of an aluminium tray (diameter 0.16 

m, depth 0.03 m) with six Eppendorf tubes (diameter 0.01 m and depth 0.04 m) 

attached; viewed from above. 

 

Empty Eppendorf tubes were fixed into each position to initially hold the cap in 

position. Trays were then filled with Kettering loam (25% moisture) as a substrate for 

earthworms (Butt et al., 1994). The experimental earthworms were introduced to each 

tray as per experiment (see Figure 5.2.2) and sprayed with water. Trays were covered 

with aluminium foil, which was held in place with a rubber band to prevent moisture 

loss and earthworm escape. Two holes were made with a mounted needle in the foil 

sheet to ensure air circulation. Trays were kept in darkness for 24 hours in 15 °C 

temperature-controlled incubators for earthworms to equilibrate to the system (Figure 

5.2.5). Field-collected adult earthworms were used in the experiments and species used 

differed for each experiment (see specific details in sections 5.2.2.1 - 3). Animals had 

been acclimated to laboratory conditions for 8 weeks prior to experimentation (Fründ et 
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al., 2010). Leaves from the range of tree species to be tested were mixed and supplied as 

food during this period to ensure that no pre-conditioning occurred with respect to litter 

(Butt, 2011).  

 

 

(a) (a)         (b) 

Figure 5.2.2 Earthworm species introduction to separate soil trays; (a) A. chlorotica 

(n = 30), (b) L. terrestris (n = 2).  

 

After 24 hours, previously collected, air-dried SRF litter was ground separately (using a 

MAGIMIX 4150W food processor) and passed through a series of sieves (2.8, 2.0 and 

1.0 mm). Leaf particles (1 - 2 mm) were used for this experiment to prevent undue 

influence of particle size on earthworm food selection (Lowe and Butt, 2003). Chemical 

analyses were performed on sub-samples of this fraction using the method described in 

section 3.3.3.  

 

A new set of Eppendorf tubes were weighed separately and filled (0.20 - 0.25 g) with 

dry leaf litter particles (1 - 2 mm) and reweighed. Leaf litter-filled tubes were then 

soaked with water for two hours (see Figure 5.2.3). After two hours, excess water was 

drained by invertion (5 minutes) on absorbent tissue paper.  Tubes with moistened litter 
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were then reweighed. The empty Eppendorf tubes from previously prepared earthworm-

containing choice chambers were replaced with experimental moist litter-filled 

Eppendorf tubes (food tubes) and maintained in incubators as before. 

 

 

Figure 5.2.3 Eppendorf tubes filled with air-dried leaf litter (0.20 – 0.25 g) and 

water-soaked for 2 hours before attaching into previously prepared choice 

chambers. 

 

SRF litter removal by earthworms was assessed by recording the weight loss of 

individually labelled food tubes over time. Choice chambers were examined two/three 

times per week; food tubes were removed, weighed and re-fixed in the same position. At 

this time, each tray was sprayed with an equal amount of water to maintain the soil 

moisture level throughout the study. A control was prepared without earthworms and 

treated similarly to measure the moisture variation throughout the experiment. Three 

sets of separate choice chamber experiments were conducted to investigate and compare 

the SRF litter preference by selected species of earthworms. At the end of each 

experiment, the number of surviving earthworms and their masses were also recorded.  
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5.2.2.1 Choice Chamber Experiment 1 

 

This initial experiment was conducted to investigate SRF litter preference by four 

species of earthworm from two ecological categories (see section 2.3.1.1). Those 

selected were; A. chlorotica and A. caliginosa (endogeic), A. longa and L. terrestris 

(anecic) with initial individual mean masses of 0.19, 0.43, 1.56 and 4.27 g respectively. 

The six SRF species selected were; alder (A. glutinosa), ash (F. excelsior), birch (B. 

pendula), eucalyptus (E. nitens), sweet chestnut (C. sativa), and sycamore (A. 

pseudoplatanus). Each earthworm species was introduced to separate choice chambers 

in the following numbers; A. chlorotica (30), A. caliginosa (15), A. longa (4) and L. 

terrestris (2). The earthworm numbers were selected so that each treatment received an 

approximately similar earthworm biomass and that an effect might be observed in a 

reasonable time frame. The food tubes containing different SRF species litter were 

randomly arranged around the tray, (n = 6; one from each SRF species, see Figure 

5.2.4). Three replicate trays were prepared for each earthworm species. SRF litter 

preference was assessed by mean weight loss of individual food tubes, measured three 

times per week over four weeks. 
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(a)                (b) 

Figure 5.2.4 Leaf litter choice chambers: (a) Details of 6 SRF species: alder (A. 

glutinosa), ash (F. excelsior), birch (B. pendula), eucalyptus (E. nitens), sweet 

chestnut (C. sativa), and sycamore (A. pseudoplatanus), arranged randomly around 

the tray; (b) Complete set of choice chambers for Experiment 1 (Four earthworm 

species; A. chlorotica, A. caliginosa, A. longa, and L. terrestris plus control). 
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Figure 5.2.5 Choice chambers covered with aluminium foil and maintained at 15 

°C; 24 hour darkness in incubators. 

 

5.2.2.2 Choice Chamber Experiment 2 

 

Based on results from experiment 1, this experiment was conducted to provide more 

evidence on earthworm SRF litter choices.  The experiment used three selected SRF 

species; eucalyptus (E. nitens), sweet chestnut (C. sativa), and sycamore (A. 

pseudoplatanus).  Two major litter feeding earthworms used for the experiment were A. 

longa and L. terrestris with initial mean masses of 1.63 g and 3.78 g respectively. Each 

earthworm species was introduced to separate choice chambers in the following number; 

A. longa (4) and L. terrestris (2). Similar to Experiment 1, the earthworms were 

introduced to individual trays so that each replicate for the same earthworm species 
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received an approximately similar biomass. The food tubes with different SRF species 

litter were arranged sequentially around each tray as each tray had a total of nine food 

tubes (three for each SRF species, see Figure 5.2.6). The new food tube arrangement in 

this experiment was used to test if earthworm SRF choice is random. Four replicate 

trays were prepared for each earthworm species. SRF litter selection was assessed by 

recording weight loss of individual food tubes twice per week for five weeks.  

 

(a)       (b) 

Figure 5.2.6 Leaf litter choice chambers with three SRF species: eucalyptus (E. 

nitens), sweet chestnut (C. sativa), and sycamore (A. pseudoplatanus) (a) Sequential 

food tube arrangement around the tray (three from each SRF species); (b) 

Complete set of choice chambers for Experiment 2 (two earthworm species; A. 

longa  and L. terrestris).    
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5.2.2.3  Choice Chamber Experiment 3 

 

This experiment was also based on results from the first choice chamber experiment and 

to provide further evidence of SRF litter choice by earthworms.  The experiment was 

conducted using three selected SRF species; alder (A. glutinosa), ash (F. excelsior), and 

birch (B. pendula). The earthworm species were A. longa and L. terrestris with initial 

mean masses of 1.52 g and 4.11 g respectively. Each earthworm species was introduced 

to separate choice chambers in the following number: L. terrestris (1) and A. longa (1). 

The food tubes with different SRF species litter were arranged sequentially around each 

tray as one tray received a total of nine food tubes (three for each SRF species) which 

was similar to Experiment 2. Four replicate trays were prepared for each earthworm 

species. SRF litter selection was once again assessed by recording weight loss of 

individual food tubes twice per week for four weeks. 

 

5.2.2.4   Statistical analysis 

 

Leaf litter selection behaviour was assessed by calculating the weight of litter remaining 

in individual food tubes over time. The remaining litter amount was considered to be 

associated with earthworm preferences, as highest remaining (%) for non-preferred and 

lowest remaining (%) for preferred. The point of 50 % total litter removal was taken as 

the criterion for statistical analysis. This was similar to the point used by Doube et al., 

(1997a). One way analysis of variance (ANOVA) was used to test the SRF litter 

preference by each species of earthworm separately. A Tukey-Kramer multiple 

comparison test was applied for all of the pair-wise comparisons. The amount of litter 

removed by each earthworm species was calculated by subtracting the remaining weight 

from the original weight.   

http://www.just-green.com/2533/Just-Green-Silver-Birch-Trees--Betula-Pendula-.html?referrer=froogle&utm_source=google&utm_medium=froogle&utm_campaign=pid2533
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5.2.3 Results 

 

Table 5.2.1 shows selected litter chemistry parameters for the 1 - 2 mm fraction of 

experimental SRF species. The results were similar to total litter analysis results (see 

Table 3.3.1). A. glutinosa (Ad) litter had the highest N (%) and lowest C:N while C. 

sativa (Sw) had lowest N (%) and highest C:N. The Ca (%) was highest in A. 

pseudoplatanus (Sy) and F. excelsior (Ah), while it was lowest in C. sativa (Sw). 

 

Table 5.2.1 Selected litter (1-2 mm fraction) chemistry parameters of experimental 

SRF species; A glutinosa (Ad), F. excelsior (Ah), B. pendula (Br), E. nitens (En), C. 

sativa (Sw), and A. pseudoplatanus (Sy) 

 

Litter parameter SRF species 

Ad Ah Br En Sw Sy 

N (%) 2.55 1.47 1.46 1.36 0.89 1.43 

C (%) 50.3 47.4 51.5 52.7 49.0 48.4 

K (%) 0.41 0.22 0.20 0.45 0.40 0.19 

Ca (%) 1.99 2.65 1.18 1.35 0.93 2.32 

Mg (%) 0.16 0.24 0.20 0.21 0.26 0.17 

P (%) 0.12 0.16 0.10 0.10 0.09 0.08 

C: N 19.7 32.2 35.3 38.9 54.8 33.9 

 

5.2.3.1 Choice Chamber Experiment 1 

 

Figures 5.2.7 to 5.2.10 illustrate the temporal pattern of leaf litter removal by four 

species of earthworm supplied with six types of SRF litter. The results show that the 

novel soil-mediated choice chamber approach was successful in helping to quantify 

earthworm litter selection behaviour. At the termination of the experiment (after 28 

days), 100% survival was recorded for all four species of earthworms. The earthworm 
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mass changes were recorded as 1 – 7% loss across all species with respect to the original 

masses (see Table 5.2.2). Endogeic A. chlorotica had the highest mass loss, at 6.5%. 

 

Table 5.2.2 Summary of earthworm parameters for Choice Chamber Experiment 1 

 

Earthworm attribute 

Earthworm species 

Ach Acal Al Lt 

Number (ind tray
-1

) 30 15 4 2 

Initial mean mass (g tray
-1

) 5.83 6.40 6.25 8.54 

Final mean mass (g tray
 -1

) 5.45 6.36 6.08 8.42 

Mean  mass change (% of original mass) -6.5 -0.6 -2.7 -1.5 

Survival (%) 100 100 100 100 

[A. chlorotica (Ach), A. caliginosa (Acal), A. longa (Al) and L. terrestris (Lt)] 

 

Figure 5.2.7 shows the pattern of leaf litter removal from choice chambers by A. 

chlorotica over the experimental period. The experiment started with 1.37 - 1.43 g of 

litter (wet basis) in individual food tubes. After 28 days, the remaining litter masses (wet 

basis) were recorded as A. glutinosa (48%), F. excelsior (27%), B. pendula (28%), E. 

nitens (64%),  C. sativa (99%) and A. pseudoplatanus (63%) which equated to mean 

litter removal of 52%, 73%, 72%, 36%, 1% and 37% respectively (see Table 5.2.3 for 

statistical analysis).     
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Figure 5.2.7 Mean (± se) mass (% wet basis) of remaining litter in choice chambers 

of A. chlorotica supplied with six types of SRF litter over a period of 28 days, 

[Abbreviation of SRF species as for Table 5.2.1].  

 

Figure 5.2.8 shows the pattern of leaf litter removal from choice chambers by A. 

caliginosa over a period of 28 days. The experiment started with 1.37 - 1.45 g of litter 

(wet basis) in individual food tubes. The first 100% leaf litter removal was recorded for 

F. excelsior after 21 days. At the end of the experiment, the remaining leaf litter (wet 

basis) for the rest of the SRF species were recorded as; for both A. glutinosa and B. 

pendula (2%), E. nitens (48%), C. sativa (92%) and A. pseudoplatanus (37%), which 

equated to mean leaf litter removal of 98%, 52%, 8% and 63% respectively (see Table 

5.2.3 for statistical analysis).   
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Figure 5.2.8 Mean (± se) mass (% wet basis) remaining litter in choice chambers of 

A. caliginosa supplied with six types of SRF litter over a period of 28 days, 

[Abbreviation of SRF species as for Table 5.2.1].  

 

Figure 5.2.9 illustrates the trend of leaf litter removal from choice chambers by A. longa 

over the experimental period. The experiment started with 1.36 - 1.48 g of litter (wet 

basis) in individual food tubes. A complete leaf litter removal was recorded for A. 

glutinosa and F. excelsior after 7 days, for B. pendula after 10 days and for E. nitens 

after 17 days. At the end of the experiment, the mean remaining leaf litter in choice 

chambers for C. sativa was 89% and A. pseudoplatanus was 4% which equated to mean 

leaf litter removal of 11% and 96% respectively (see Table 5.2.3 for statistical analysis).  
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Figure 5.2.9 Mean (± se) mass (% wet basis) remaining litter in choice chambers of 

A. longa supplied with six types of SRF litter over a period of 28 days, 

[Abbreviation of SRF species as for Table 5.2.1].  

 

Figure 5.2.10 shows the pattern of leaf litter removal by L. terrestris from choice 

chambers, over a period of 28 days. The experiment started with 1.37 g - 1.41 g of litter 

(wet basis) in individual food tubes. A 100% leaf litter removal was recorded for A. 

glutinosa and B. pendula after 7 days, for F. excelsior after 10 days and for E. nitens 

after 24 days. At the end of the experiment, the remaining leaf litter (wet basis) was 

recorded as C. sativa (93%) and A. pseudoplatanus (31%) which equated to the mean 

litter removal of 7% and 69% respectively (see Table 5.2.3 for statistical analysis). 

Figure 5.2.11 demonstrates the observable leaf litter removal from choice chambers by 

A. longa (a) and L. terrestris (b) in Experiments 1 after ten days.  
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Figure 5.2.10 Mean (± se) mass (% wet basis) remaining litter in choice chambers 

of L. terrestris supplied with six types of SRF litter over a period of 28 days, 

[Abbreviation of SRF species as for Table 5.2.1].  
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(a) (a) (b) 

Figure 5.2.11 Leaf litter removal from choice chambers supplied with six types of 

litter materials; A glutinosa (Ad), F. excelsior (Ah), B. pendula (Br), E. nitens (En), 

C. sativa (Sw) and A. pseudoplatanus (Sy) after ten days by; (a) A. longa and (b)  L. 

terrestris; both earthworms showed completely empty food tubes for A. glutinosa, 

F. excelsior and B. pendula. 

 

Table 5.2.3 shows the significant differences (p < 0.05) in remaining leaf litter (%) in 

choice chambers of each earthworm species at 50% food removal. The time taken to 

remove 50% of total litter supplied varied with earthworm species; A. caliginosa (17 

days), A. chlorotica (28 days), A. longa (5 days) and L. terrestris (7 days). A. caliginosa 

and A. chlorotica took a relatively longer period to remove leaf litter from choice 

chambers than A. longa and L. terrestris. However, at 50% food removal, all four 

earthworm species showed a significantly distinct leaf litter selection (p < 0.05, Table 

5.2.3). For A. caliginosa, A. longa and L. terrestris, the remaining leaf litter of A. 

glutinosa, B. pendula and F. excelsior was significantly lower compared with A. 

pseudoplatanus, C. sativa and E. nitens (p < 0.05, Table 5.2.2). A. longa had a 

significantly (p < 0.05) lower percentage of remaining litter of E. nitens compared with 

http://www.just-green.com/2533/Just-Green-Silver-Birch-Trees--Betula-Pendula-.html?referrer=froogle&utm_source=google&utm_medium=froogle&utm_campaign=pid2533
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both A. pseudoplatanus and C. sativa. L. terrestris also showed a similar litter 

preference result to A. longa although the result for E. nitens was not statistically 

significant. Endogeic A. caliginosa and A. chlorotica had a smaller amount of remaining 

litter of both E. nitens and A. pseudoplatanus compared with C. sativa although these 

differences were not statistically significant (p > 0.05).  

 

Table 5.2.3 Mean remaining leaf litter (% from original mass) wet basis in choice 

chambers of different earthworms at 50% of total litter removal, SRF species; A. 

glutinosa (Ad), F. excelsior (Ah), B. pendula (Br), E. nitens (En), C. sativa (Sw), and 

A. pseudoplatanus (Sy) 

 

Earthworm 

species 

SRF species 

Ad Ah Br En Sw Sy 

A. caliginosa 16.0 
b
 6.1

 b
 26.3

 b
 70.9 

a
 94.8 

a
 69.4 

a
 

A. chlorotica 48.4 
b
 26.9

 b
 28.5

 b
 64.2

 ab
 99.3

 a
 63.6 

ab
 

A. longa 7.8
 c
 0.7

 c
 3.8

 c
 57.0

 b
 96.3

 a
 92.2

a
 

L. terrestris 0.0
 b
 13.4

 b
 0.0

 b
 67.1

 a
 99.1

 a
 100 

a
 

Different letters in a row indicate significant differences, (p < 0.05, n = 3) ANOVA, 

Tukey-Kramer. 

 

Based on the results presented in Table 5.2.3, the SRF litter preference order by selected 

species of earthworm are summarised in Table 5.2.4 by taking the highest amount of 

remaining litter (%) recorded as least preferred SRF species, least amount of remaining 

litter (%) recorded as most preferred SRF species. 
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Table 5.2.4 Selected SRF litter preference shown by selected species of earthworm 

 

Earthworm species SRF litter preference order 

A. chlorotica Ad, Ah, Br > En, Sy > Sw 

A. caliginosa Ad, Ah, Br > En, Sy, Sw 

A. longa Ad, Ah, Br > En > Sy, Sw 

L. terrestris Ad, Ah, Br > En, Sy, Sw 

A. glutinosa (Ad), F. excelsior (Ah), B. pendula (Br), E. nitens (En), C. sativa (Sw), and 

A. pseudoplatanus (Sy) 

 

These results led to the selection of two sets of three, from the original six SRF species 

for Choice Chamber Experiment 2 and 3 with A. longa and L. terrestris. 

 

5.2.3.2  Choice Chamber Experiment 2 

 

Figures 5.2.12 and 5.2.13 illustrate the temporal pattern of leaf litter removal by two 

species of earthworms supplied with three types of less preferred SRF litter materials. 

At the termination of the experiment (after 35 days), 100% survival was recorded for 

both species of earthworms. However, earthworm species recorded a different mass loss 

as shown in Table 5.2.5. 
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Table 5.2.5 Summary of earthworm parameters for Choice Chamber Experiment 2 

 

Earthworm attribute  

Earthworm species 

A. longa L. terrestris 

Number  (ind tray
-1

) 4 2 

Initial mean mass (g tray
-1

) 6.54 7.52 

Final mean mass (g tray 
-1

) 5.75 7.46 

Mean mass change (% of original mass) -12.1 -0.8 

Survival (%) 100 100 

 

 

Figure 5.2.12 shows the trend of leaf litter removal from choice chambers by A. longa 

supplied with three SRF species over the experimental period. The experiment started 

with mean litter masses (wet basis) in individual food tubes as; E. nitens (1.31g), C 

sativa (1.42 g) and A. pseudoplatanus (1.34 g). At termination of the experiment, the 

remaining leaf litter masses in food tubes were recorded as E. nitens (3%), C. sativa 

(91%) and A. pseudoplatanus (30%) which equated to mean leaf litter removal of 97%, 

9% and 70% respectively (see Table 5.2.6 for statistical analysis).  
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Figure 5.2.12 Mean (± se) mass (% wet basis) remaining litter in choice chambers 

of A. longa supplied with three types of SRF litter; E. nitens (En), C. sativa (Sw) 

and A. pseudoplatanus (Sy) over a period of 35 days.  

 

Figure 5.2.13 shows the pattern of leaf litter removal from choice chambers by L. 

terrestris supplied with three SRF species over a period of 35 days. The experiment 

started with mean litter mass (wet basis) in individual food tubes as; E. nitens (1.32g), 

C. sativa (1.41 g) and A. pseudoplatanus (1.32 g). At termination of the experiment, the 

mean remaining leaf litter in individual food tubes were recorded as; E. nitens (9%), C. 

sativa (87%) and A. pseudoplatanus (15%) which equated to mean leaf litter removal of 

91%, 13% and 85% respectively (see Table 5.2.6 for statistical analysis). Figure 5.2.14 

demonstrates leaf litter removal by L. terrestris in choice chamber experiment 2 after 10 

and 35 days. 
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Figure 5.2.13 Mean (± se) mass (% wet basis) remaining litter in choice chambers 

of L. terrestris supplied with three types of SRF litter over a period of 35 days [SRF 

species abbreviation as for Figure 5.2.12]. 
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(a)       (b) 

Figure 5.2.14 Leaf litter removal from food tubes by L. terrestris supplied with 

three types of litter materials; A. pseudoplatanus, C. sativa and E. nitens; In (a) all 

three E. nitens litter tubes emptied after 10 days, and in (b) all three C. sativa food 

tubes remain full even after 35 days (tail of one worm visible at the surface). 

 

Table 5.2.6 shows the significant differences (p < 0.05) of remaining leaf litter (%) in 

choice chambers of each earthworm species at 50% food removal. The time taken to 

remove 50% of total litter supplied was 28 days for A. longa and 21 days for L. 

terrestris.  
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Table 5.2.6 Mean remaining leaf litter (% wet basis) in choice chambers at 50% of 

total litter removal [Abbreviation of SRF species as for Figure 5.2.12] 

 

Earthworm spp. 

SRF spp. 

En Sw Sy 

A. longa 3.7
c
 92.3

a
 48.5

b
 

L. terrestris 22.1
c
 92.8

a
 49.3

b
 

Different letters in the same row indicate significant differences (p < 0.05, n = 12), 

ANOVA, Tukey-Kramer. 

 

Based on the results presented in Table 5.2.6, the SRF litter preference order by A. longa 

and L. terrestris are given in Table 5.2.7. 

 

Table 5.2.7 Selected SRF litter preference by selected species of earthworms 

 

Earthworm species SRF litter preference order 

A. longa En > Sy > Sw 

L. terrestris En > Sy > Sw 

E. nitens (En), A. pseudoplatanus (Sy), and C. sativa (Sw).  

 

5.2.3.3  Choice Chamber Experiment 3 

 

Figures 5.2.15 and 5.2.16 illustrate the temporal pattern of leaf litter removal by two 

species of earthworms supplied with three types of initially most preferred SRF litter 

materials (from experiment 1). At the termination of the experiment (after 35 days for A. 

longa and 28 days for L. terrestris), 100% survival was recorded for both species. 

Earthworm species recorded a mass gain for A. longa (52%) and L. terrestris (13%) by 

the end of the experiment (see Table 5.2.8). 
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Table 5.2.8 Summary of earthworm parameters for Choice Chamber Experiment 3    

 

Earthworm attribute A. longa L. terrestris 

Number (Ind tray
-1

) 1 1 

Initial mean mass (g tray
-1

) 1.52 4.11 

Final mean mass (g tray 
-1

) 2.30 4.64 

Individual mean mass change (% of starting mass) 52 13 

Survivorship (%) 100 100 

 

Figure 5.2.15 shows the pattern of leaf litter removal from choice chambers by A. longa 

over a period of 35 days. The experiment started with mean (wet basis) leaf litter of A. 

glutinosa (1.43 g), B. pendula (1.38 g), and F. excelsior (1.39 g) in individual food 

tubes. At termination of the experiment, the mean remaining leaf litter in food tubes was 

recorded as F. excelsior (18%) A. glutinosa (22%) and B. pendula (24%) which equated 

to mean leaf litter removal of 82%, 78% and 76% respectively (see Table 5.2.9 for 

statistical analysis).  
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Figure 5.2.15 Mean (± se) mass (% wet basis) remaining litter in choice chambers 

of A. longa supplied with three types of SRF litter; A. glutinosa (Ad), F. excelsior 

(Ah) and B. pendula (Br) over a period of 35 days. 

 

Figure 5.2.16 shows the pattern of leaf litter removal by L. terrestris from choice 

chambers over a period of 28 days. The experiment started with mean (wet basis) leaf 

litter of A. glutinosa (1.44 g), B. pendula (1.39 g), and F. excelsior (1.38 g) in individual 

food tubes.  Total leaf litter removal was recorded for B. pendula after 21 days and for 

F. excelsior after 28 days. At the end of the experiment, the remaining leaf litter for A. 

glutinosa was recorded (6%), which equated to the mean litter removal of 94% (see 

Table 5.2.9 for statistical analysis). 
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Figure 5.2.16 Mean (± se) mass (% wet basis) remaining litter in choice chambers 

of L. terrestris supplied with three types of SRF litter; A. glutinosa (Ad), F. excelsior 

(Ah) and  B. pendula (Br) over a period of 28 days.  

 

Table 5.2.9 shows the significant differences (p < 0.05) in remaining leaf litter (%) in 

choice chambers for both earthworm species at 50% food removal. The time taken to 

remove 50% of total litter supplied was recorded as; A. longa (21 days) and L. terrestris 

(10 days). The remaining litter material showed no significant difference (p > 0.05) for 

A. longa at the 50% removal point. However, for L. terrestris, the remaining leaf litter 

was significantly lower (p < 0.05) for B. pendula, i.e. more birch was removed. 
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Table 5.2.9 Mean remaining leaf litter (% wet basis) in choice chambers of 

earthworms at 50% litter removal [Abbreviation of SRF species as for Figure 

5.2.16] 

 

Earthworm species 

SRF species 

Ad Ah Br 

A. longa 41.9
a
 48.7

a
 49.6

a
 

L. terrestris 63.4
a
 45.8

a
 21.4

b
 

Different letters in a row indicate significant differences (p < 0.05, n = 12) ANOVA, 

Tukey-Kramer. 

 

Based on the results presented in Table 5.2.9, the SRF litter preference order by selected 

species of earthworms, are given in Table 5.2.10. 

 

Table 5.2.10 Selected SRF litter preference by selected species of earthworms  

 

Earthworm species SRF litter preference order 

A. longa Ad = Ah = Br 

L. terrestris Br > Ah = Ad 

A. glutinosa (Ad), F. excelsior (Ah), and B. pendula (Br) 

 

The appropriate controls prepared without earthworms showed no significant moisture 

variation throughout the duration of the experiments. 
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5.2.4 Discussion 

 

5.2.4.1  Choice Chamber Experiment 1 

 

The results from this experiment suggested that native British earthworms; A. 

chlorotica, A. caliginosa, A. longa and L. terrestris had a clear leaf litter selection and 

they preferred leaf litter of A. glutinosa, B. pendula, F. excelsior over A. 

pseudoplatanus, C. sativa and E. nitens. Anecic L. terrestris and A. longa, which feed 

directly on litter materials, demonstrated a rapid and clear pattern of leaf litter removal 

from choice chambers. Endogeic A. caliginosa, which feeds on mineral soils, showed a 

relatively slow, but clear pattern of litter removal from choice chambers. Endogeic A. 

chlorotica, which is predominantly geophagous, recorded the slowest litter removal 

from choice chambers. However, both endogeic earthworm species indicated a similar 

pattern of litter removal to experimental anecic earthworms. The differences in rate of 

litter removal by different species of earthworms could be associated with feeding 

behaviour of different ecological groupings and their physical size.  

 

Doube et al. (1997a) used a similar type of choice chamber approach to study organic 

matter selection behaviour of four species of earthworms; A. caliginosa, A. longa, L. 

rubellus and L. terrestris. Each species of earthworm was provided with nine potential 

food types; four types of organic matter (cow dung, sheep dung, decomposed leaf litter, 

sewage sludge) either alone or mixed with sandy loam soil (1:4 organic matter: soil on a 

dry weight basis), soil alone was also used as a food source. All earthworm species 

demonstrated a clear preference for pure mineral soil over pure organic matter. Also, 

soil-organic mixtures were clearly preferred over pure organic sources, with leaf litter 

plus soil being the preferred mixture for all four earthworm species tested. L. terrestris 
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showed an equal preference for soil, and a litter plus soil treatment where litter was 

mainly A. pseudoplatanus. However, this study did not use a soil-mediated environment 

for earthworms and instead, authours introduced earthworms to damp filter papers. As a 

result, the first choice of earthworms was soil, which was a potential food source, but 

may also have simply been a place of refuge for these soil dwelling animals.  

 

Neilson and Boag (2003) used a feeding chamber approach and offered soils and seven 

species of plant materials from (Scottish upland pasture) to earthworms to determine if 

any dietary preference existed.  The food sources used were foliage of Agrostis 

capillaris, Cerastium fontanum, Holcus lanatus, Lolium perenne, Poa annua, 

Ranunculus repens and Trifolium repens. The six earthworm species used were; A. 

chlorotica, A. caliginosa, A. longa, L. rubellus, L. terrestris and Octolasion cyaneum. 

Comparable to the current study, it also showed that earthworms with a low biomass (A. 

chlorotica) removed the least amount of food while bigger earthworm (A. longa and L. 

terrestris) removed most food. This study suggested that the amount of food removal 

was positively correlated with body size of earthworm species. It also recorded that L. 

terrestris preferred P. annua and rejected soils compared to other available food types. 

A. longa had no obvious food preference, but rejected R. repens compared with L. 

perenne and soil. A caliginosa had no single preferred food choice while A. chlorotica 

removed noticeably less soil than other available food.  The study recorded an unclear 

reason for selective feeding of available plant material as all materials were very similar 

in C:N ratio and nutritional quality. However, chemical analyses for other possible 

chemical compounds which might affect earthworm food selection were not conducted. 

 

The N content, C: N, lignin content, phenolic compounds (tannins), calcium content and 

protein content in plant materials have been considered to influence selective feeding by 
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earthworms (Edward and Heath, 1963; Satchell and Lowe, 1967; Hendriksen, 1990). 

The hardness, hairiness, water content even shape and colour of the litter material are 

also known to influence earthworm food selection (Darwin, 1881; Satchell and Lowe, 

1967). Of the six SRF species considered in the current experiment, C. sativa litter was 

the least preferred food for all four earthworms. Litter chemistry results suggested that 

particularly low total N, Ca content and highest C: N in C. sativa litter material can be 

associated with its lesser preference by earthworms (Satchell and Lowe, 1967; 

Hendriksen, 1990; Reich et al., 2005; Hobbie et al., 2006). However, the differences in 

selection of other SRF litter materials cannot be explained only by the above litter 

quality parameters particularly, low earthworm preference for A. pseudoplatanus litter 

which had a high level of N and Ca similar to other preferred species. Other chemical 

analyses for lignin content and phenolic compounds (tannins), which have a potential 

influence on earthworm food selection might have assisted here, but were not performed 

in the current study. Satchell and Lowe (1967) and Hendriksen (1990) further suggested 

that earthworm litter selection can be influenced by the relative state of 

decomposition/weathering of litter materials. This cannot have influenced litter selection 

in the current experiment, as freshly fallen litter was used. Food particle size can 

influence earthworm food intake, hence their growth and reproduction (Boström and 

Lofs-Holmin, 1986; Boyle, 1990). Lowe and Butt (2003) suggested that the influence of 

food particle size on earthworm growth is both species and life stage specific. This study 

further recorded that smaller earthworms benefit more from reduced particle size. Boyle 

(1990) recorded that food particle size was not important for L. terrestris, but it 

influenced A. caliginosa growth. This study recorded that A. caliginosa fed with food 

particles < 0.2 mm, doubled in weight after 150 days compared with animals fed with 

food particles between 0.2 – 1.0 mm. The possible effect of food particle size in the 

current experiment was minimised by using a uniform size of litter particles (1 - 2 mm). 
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However, this size could have negatively influenced the rate of litter removal from 

choice chambers by small earthworms such as A. caliginosa and A. chlorotica, even 

though adult animals were used.  

 

5.2.4.2 Choice Chamber Experiment 2 

 

The results from this experiment suggest that of the three less preferred SRF species, the 

first choice for both L. terrestris and A. longa was E. nitens. The second choice was A. 

pseudoplatanus whilst final and least preferred was C. sativa. These results confirm that 

earthworm leaf litter selection is non-random as it provided three food tubes for each 

SRF species to each choice chamber which was not applied in experiment 1. This also 

authenticates the less preferred SRF litter selection sequence as it had no influence from 

preferred SRF species which existed in Experiment 1. The least preference for C. sativa 

can be equated with litter chemistry analyses, as explained in section 5.2.3.1., but, 

preference for E. nitens over A. pseudoplatanus cannot be explained with reference to 

N, Ca content or C:N ratio difference. Further chemical analyses for lignin, phenolic 

compounds (tannins), protein and carbohydrate content in leaf litter are recommended to 

identify the reason for the given preferential sequence of the selected earthworms for 

SRF litter.  

 

5.2.4.3 Choice Chamber Experiment 3 

 

The results suggest that A. longa has an equal preference for native A. glutinosa, B. 

pendula and F. excelsior. However, L. terrestris preferred B. pendula over A. glutinosa, 

and F. excelsior. In the first experiment, both earthworm species removed all three 

species of native SRF litter rapidly (within 5 - 7 days) where earthworm numbers were 
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four and three per choice chamber for A. longa and L. terrestris, respectively, so did not 

permit a preferential sequence to be established. To slow down the litter removal rate 

and the potential competition between individuals, the earthworm number was reduced 

to one per choice chamber for both species in Experiment 3. Therefore, in this 

experiment, A. longa took 35 days to remove 84% of litter and L. terrestris took 28 days 

to remove 98% litter from the total supply. Most of the previous earthworm-tree studies 

(e.g Satchell and Lowe, 1967; Hendriksen, 1990; Muys et al., 1992) have shown that 

Alnus and Fraxinus litter was highly palatable to earthworms. Butt (2011), in laboratory 

experiments, suggested that B. pendula was a highly palatable source of food for L. 

terrestris which is in line with current findings. 

 

The novel leaf litter choice chamber approach which recorded 100% earthworm 

survival throughout the series of experiments was successful in determining earthworm 

food selection behaviour. This was the first choice chamber experiment which provided 

a soil-mediated environment for experimental earthworms.  Further, this was the first 

record of using a choice chamber approach to compare earthworm preference for forest 

tree litter.  

 

This study demonstrated that a choice chamber approach was more useful for larger, 

litter feeding earthworms such as L. terrestris and A. longa than small geophagous 

earthworms such as A. caliginosa and A. chlorotica. However, the experimental system 

was associated with a few practical difficulties. Sometimes soil particles entered the 

food tubes (through earthworm activities). Also small earthworms (especially A. 

chlorotica) sometimes took up residence within food tubes. On some occasions 

earthworm casts were also observed within food tubes. These practical issues were 

mostly associated with the smaller earthworms. Because of this, a slight mass increment 
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of food tubes/remaining litter within the experimental period was recorded for A. 

chlorotica (see Figure 5.2.8) which was unexpected, but could therefore be explained. 

 

Summary of the major findings of the leaf litter choice chamber experiments:  

 

 This work suggested that native British earthworms preferred native A. glutinosa B. 

pendula and F. excelsior litter over non-native A. pseudoplatanus, C. sativa and E. 

nitens litter.  

 All selected earthworms showed least preference for poor quality (e. g. low in N, 

Ca and high in C:N) C. sativa litter.  

 Litter-feeding British earthworms preferred E. nitens more than A. pseudoplatanus 

and C. sativa. 

 Litter-feeding British earthworms equally preferred A. glutinosa, B. pendula and F. 

excelsior litter. 
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5.3  A webcam technique to observe SRF litter choice by L. terrestris 

 

5.3.1 Introduction  

 

A relatively inexpensive webcam recording technique was used to observe SRF litter 

selection behaviour of L. terrestris. This particular earthworm species was purposely 

selected as these animals are capable of using their mouth to carry leaves and stones 

from the surrounding environment to their burrow. A webcam technique permitted 

recording and observation of night time foraging behaviour of individual earthworms at 

the soil surface. Similar types of techniques have been used in the past for different 

earthworm behavioural studies. Video recording was successfully used by Nuutinen and 

Butt (1997) to observe L. terrestris mating behaviour. Butt et al. (2005) used infrared 

video recording to observe night time foraging behaviour of the same earthworm species 

supplied with three types of organic materials; board-mill sludge, barley straw and 

board-mill sludge plus chicken manure. More recently, a webcam technique was used 

by Valckx et al. (2010) to observe the night time surface activity and dispersal 

behaviour of L. terrestris. In the current study, a series of infrared webcam recordings 

were made with the following objectives:  

 

a) To observe the surface leaf litter selection behaviour of L. terrestris in darkness. 

b) To provide direct evidence that SRF litter selection by L. terrestris is non-random. 

c) To compare the direct observation results with indirect choice chamber results of L. 

terrestris. 
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5.3.2 Materials and methods 

 

Circular plastic vessels of 20 L (depth 0.4 m, diameter 0.3 m) were half-filled with 10 L 

of moist (25%), sterilised Kettering loam (Butt et al., 1994; Butt, 2011) and compacted 

manually to have a smooth surface and similar bulk density (approx. soil depth was 0.2 

m). Then, using a standard pencil, an artificial burrow was created from soil surface to 

the base, in the centre of the each soil-filled vessel. Individual, field collected adult L. 

terrestris (mean mass 5.05 g) were introduced into the previously made artificial 

burrows (one individual per vessel, i.e. tail inserted first to encourage settlement in the 

burrow). Then, dry barley straw (Hordeum vulgare) was cut into 0.02- 0.04 m pieces 

and sprinkled on to the soil surface (1 g vessel
-1

) and moistened by water sprayed on to 

the surface of each vessel.  Before the experiment, the adult L. terrestris (n = 48) had 

been acclimated to laboratory conditions as described in section 4.2.3.4. 

 

 

Figure 5.3.1 Initial earthworm (20 L) vessel preparation for the webcam 

experiment; an adult L. terrestris was introduced to the artificial burrow made at 

the centre of each vessel with barley straw sprinkled on the surface for potential 

midden formation. 
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Earthworm vessels were closed with lids (ventilation was facilated by tiny holes made 

with mounted needle) and kept undisturbed for about 2 weeks to allow permanent 

burrow and midden formation. Straw particles were provided to encourage midden 

formation to prevent collection of leaf litter for this purpose during the experiment. 

Vessels were observed daily and supplied, as necessary, with further moisture. Any 

burrow made at the side of the vessels was filled using additional soil and pressed down 

manually. This procedure encouraged each earthworm to make its permanent burrow 

and midden at the centre of the experimental vessel. After 2 weeks, most of the 

experimental earthworms (Approx. 70%) made their permanent burrow and midden at 

the centre of the vessel. Those vessels, which had a clear central midden (see Figure 

5.3.2) were used for webcam recording. Fluorescent lights provided a 12 hour daylight 

period (6.30 - 18.30) to experimental vessels. Experimental vessels were adapted to this 

12:12 hour day/night cycle at least 2 days before experimental recording. 

 

 

Figure 5.3.2 A clear L. terrestris midden constructed with straw particles (observed 

in the centre of an earthworm vessel after 2 weeks) (Scale 1:1). 
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To reduce any bias associated with leaf shape or size, homogeneous leaf shapes were 

offered to the earthworms in this experiment. Previously collected, air-dried leaves of 

selected SRF species were water-soaked for 30 minutes. Then using a metal cork borer 

(Fisher Scientific, UK), 10 mm diameter leaf disks were cut (see Figure 5.3.3). This was 

a similar practice used by Satchell and Lowe (1967). When cutting leaf disks, the central 

main vein of the leaf was avoided. 

 

 

Figure 5.3.3 The 10 mm diameter leaf circles cut with metal cork borer (from C. 

sativa) for use in webcam behaviour experiment. 

 

Before recording, any remaining straw particles in experimental vessels, not used for 

midden formation, were removed. The surrounding clear area was then divided into 4 

zones (see Figure 5.3.4). These zones were identified with four straw pieces placed at 

the edge of the vessel, but had no physical barrier. The selected species of leaf disks 

were randomly arranged in each zone as required for each experiment. The experimental 

vessels were sprayed with sufficient water to prevent surface drying, before webcam 

recording began, over a period of 12 hours in darkness.  
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Figure 5.3.4 Leaf disks arrangement within four zones (A, B, C and D; labels 

removed before webcam recording) of the earthworm vessel. An earthworm 

burrow and midden made with previously introduced straw at the centre of the 

vessel. 

 

The night time foraging/leaf litter selection behaviour was studied in a room where 

ambient temperature varied from 15 - 18 °C. Infrared webcam recording of two 

earthworm vessels were simultaneously carried out with two individual IP webcams 

(VSTARCAM
TM

 Model: F6836W equipped with 640 x 480 resolutions-pixels) mounted 

on laboratory retort stands as shown in Figure 5.3.5.   Camera height was adjusted so 

that each captured the surface of a single vessel with a sufficient level of detail. Figure 

5.3.6 shows an example of infrared night vision of the surface of an experimental 
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earthworm vessel through the webcam.The software provided with the camera was 

installed to a laptop computer to record images of each session.    

 

 

Figure 5.3.5 Webcam setting for infrared recording of L. terrestris surface leaf 

litter selection behaviour at the soil surface.  

 

The 12 hours of darkness (18.30 – 6.30) in a 12:12 hour light/dark cycle were used for 

infrared webcam recording. Two consecutive nights per each active individual were 

recorded. Any inactive earthworm vessels were removed after two nights recording. 

Some of the inactive vessels were re-examined after a few days, but if still inactive for a 

second time, they were permanently removed from the experiment. 
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Figure 5.3.6 An example of infrared night vision view of the surface of an 

experimental earthworm vessel through the webcam. 

 

Three sets of webcam recording experiments were conducted to assess SRF litter 

selection behaviour and allow comparison with previous choice chamber results for L. 

terrestris.  

 

5.3.2.1 Webcam Recording Experiment 1 

 

This experiment was conducted to observe and record litter selection behaviour by L. 

terrestris supplied with six types of SRF litter materials; alder (A. glutinosa), ash (F. 

excelsior), birch (B. pendula), eucalyptus (E. nitens), sweet chestnut (C. sativa), and 

sycamore (A. pseudoplatanus). Sixteen earthworm vessels were initially prepared as 
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described above. Of these, only eleven made a burrow and midden at the centre which 

could be used for webcam recording. One disk from each of the six SRF species were 

randomly arranged within each of the four zones around the midden, in known initial 

positions. Each vessel therefore had a total of 24 litter disks. Infrared webcam recording 

was undertaken using two webcams as described above. In this series, eleven earthworm 

vessels had to be recorded to obtain five satisfactory replicates of two consecutive night 

activity. 

 

5.3.2.2 Webcam Recording Experiment 2 

 

This experiment was conducted to observe and record litter selection behaviour by L. 

terrestris supplied with three types of SRF litter materials; eucalyptus (E. nitens), sweet 

chestnut (C. sativa), and sycamore (A. pseudoplatanu). A new set of 14 earthworm 

vessels were prepared as described in section 5.3.2. Ten earthworms made a burrow and 

midden at the centre of the vessel which could be used for webcam recording. The litter 

disks from three SRF species were randomly arranged within each of the four zones 

around the midden (each zone receiving a total of six litter disks: two from each SRF 

species). The 12 hours infrared webcam recording was undertaken at night as described 

in section 5.3.2. A total of ten earthworm vessels were recorded to obtain five 

satisfactory replicates. 

 

5.3.2.3 Webcam Recording Experiment 3 

 

This experiment was conducted to observe and record litter selection behaviour by L. 

terrestris supplied with three types of SRF litter materials; alder (A. glutinosa) ash (F. 

excelsior), and birch (B. pendula). A new set of 12 earthworm vessels were prepared as 

described above. Eight of theses made a burrow and midden in the centre which could 
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be used for recording. The litter disks (n = 2) from the three different SRF species were 

randomly arranged within each zone around the midden. Each vessel received a total of 

24 litter disks (8 from each SRF species). The 12 hour infrared webcam recording was 

continued in darkness as described in section 5.3.2. A total of eight vessels were 

recorded to obtain five satisfactory replicates.  

 

5.3.2.4 Statistical analysis 

 

SRF preference was assessed by observing the webcam recording of leaf litter selection 

behaviour. The earthworm vessels which had more than 50% of the initially provided 

leaf disks removed after two nights were selected for data collection. Earthworm night 

time foraging activity on SRF leaf disks was divided into three major 

categories/incidents: (1) Taken into Burrow (TB); (2) Moved and Abandoned (MA) and 

(3) Rejection (RJ). TB included carrying leaf disks to the burrow mouth and 

disappearing within it. MA included moving towards the burrow and abandoning. RJ 

included all other encounters/touches which were not included in either TB or MA 

categories.   TB was considered to be associated with earthworm preference, RJ with 

non-preference and MA with indecision. Non parametric Kruskal-Wallis tests were used 

to compare medians of incidents, to test whether there was a significant difference in 

terms of SRF species. 
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5.3.3 Results 

 

5.3.3.1 Webcam Recording Experiment 1 

 

Figure 5.3.7 demonstrates the number of total incidents recorded by L. terrestris 

throughout Webcam Recording 1, when six types of SRF litter disk were provided. A 

total of 92 incidents were recorded during the experiment as; Taken into Burrow - TB 

(39), Moved and Abandoned - MA (21) and Rejection - RJ (32). TB incidents for 

different SRF species recorded as A. glutinosa (9), B. pendula (9), F. excelsior (8), A. 

pseudoplatanus (5) C. sativa (5) and E. nitens (3). RJ incidents were recorded as C. 

sativa (8), A. pseudoplatanus (7), E. nitens (7), A. glutinosa (4), B. pendula (4), and F. 

excelsior (2).  

 

Figure 5.3.7 and 5.3.8 clearly demonstrate that TB incidents were relatively high for A. 

glutinosa, B. pendula, F. excelsior compared with A. pseudoplatanus, C. sativa and E. 

nitens. Conversely, similar figures show that RJ was high for A. pseudoplatanus, C. 

sativa and E. nitens compared with A. glutinosa, B. pendula, and F. excelsior. As shown 

in Figure 5.3.7, MA had high representation for B. pendula and low for C. sativa. Table 

5.3.1 shows that there was no significant difference (p > 0.05) in median values of each 

incident with respect to different SRF species. However, recorded median value for TB 

high for A. glutinosa, B. pendua, F. excelsior compared with A. pseudoplatanus, C. 

sativa and E. nitens. Figure 5.3.9 shows night foraging behaviour of L. terrestris viewed 

via an infrared web camera. 
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Figure 5.3.7 Number of total incidents; Taken into Burrow (TB), Moved and  

Abandoned (MA), Rejection (RJ) recorded by L. terrestris throughout webcam 

experiment 1 - with six types of SRF litter; Ad (A. glutinosa), Ah (F. excelsior), Br 

(B. pendula), En (E. nitens), Sw (C. sativa), and Sy (A. pseudoplatanus), a total of 

120 leaf disks provided as 20 from each SRF species for five active earthworm 

vessels.  
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(a) (a)                      (b) 

Figure 5.3.8 Percentage contribution of SRF species for each separate incident; (a) 

Taken into Burrow - total number of incidents = 39, (b) Rejection – total number 

of incidents = 32, [Abbreviation of SRF species as for Figure 5.3.7]. 

 

Table 5.3.1 Median of incidents recorded by L. terrestris supplied with six types of 

litter materials [Abbreviation of SRF species as for Figure 5.3.7] 

 

Incident Ad Ah Br En Sw Sy P  Significance 

Taken into Burrow  2 2 2 0 1 1 0.184 ns 

Moved and Abandoned  0 0 1 0 1 0 0.767 ns 

Rejection  0 0 1 1 2 1 0.635 ns 

(Kruskal-Wallis Test, p < 0.05, n = 5). 
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Figure 5.3.9 Night foraging behaviour of L. terrestris viewed via an infrared web 

camera. The earthworm can be seen emerging from its burrow in the “11 o’ clock” 

position. 

 

5.3.3.2 Webcam Recording Experiment 2 

 

Figure 5.3.10 demonstrates the number of total incidents recorded by L. terrestris 

throughout Webcam Recording 2 supplied with three types of less preferred SRF litter 

disks (from Webcam Recording 1). A total of 94 incidents were recorded throughout the 

experiment; Taken into Burrow- TB (50), Moved and Abandoned - MA (10) and 

Rejection - RJ (34). TB for each SRF species recorded as E. nitens (24), A. 

pseudoplatanus (20) and C. sativa (6). RJ recorded as C. sativa (19), A. pseudoplatanus 

(11), and E. nitens (4).  
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Figures 5.3.10 and 5.3.11 show that TB was high for both E. nitens and A. 

pseudoplatanus compared with C. sativa, that RJ was highest for C. sativa. 

 

 

 

Figure 5.3.10 Number of total incidents recorded by L. terrestris throughout 

Webcam Recording 2 provided with three types of SRF litter; En (E. nitens), Sw 

(C. sativa), and Sy (A. pseudoplatanu)s; atotal of 120 leaf disks provided as 40 from 

each SRF species for five active earthworm vessels [Abbreviation for incidents as 

for Table 5.3.1].  
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(a) (a)       (b) 

Figure 5.3.11 Percentage contribution of SRF species for each separate incident (a) 

Taken into Burrow - total number of incidents = 50, (b) Rejection - total number of 

incidents = 34, [Abbreviation of SRF species as for Figure 5.3.10]. 

 

Table 5.3.2 shows comparisons of median values for each incident with respect to SRF 

species. TB recorded a significant difference (p< 0.05) between SRF species. However, 

RJ and MA did not show any significant differences (p> 0.05).   

 

Table 5.3.2 Median of each incident recorded by L. terrestris supplied with three 

types of SRF litter [Abbreviation of SRF species as for Figure 5.3.10] 

 

(Kruskal-Wallis Test, p < 0.05, n = 5). 

 

 

Incidence En Sw Sy p Significances 

Taken into Burrow (TB) 5 1 4 0.018 * 

Moved and  Abandoned (MA) 0 0 1 0.391 ns 

Rejection (RJ) 0 3 1 0.068 ns 
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5.3.3.3 Webcam Recording Experiment 3 

 

Figure 5.3.12 demonstrates the number of total incidents recorded by L. terrestris 

throughout Webcam Recording 3, supplied with three types of preferred SRF litter disks 

(based on results of Webcam Recording 1). A total of 75 incidents were recorded 

throughout the experiment as Taken into Burrow - TB (53), Moved and Abandoned - 

MA (8) and Rejection - RJ (14). TB recorded as; F. excelsior (19), B. pendula (18) and 

A. glutinosa (16). RJ recorded as; B. pendula (6) and A. glutinosa (5), and as F. 

excelsior (3). Figure 5.3.12 and 5.3.13 show that TB incidents were very similar for 

these selected SRF species. It is noteworthy that total number of RJ recorded was low 

throughout this experiment and did not show a clear difference between SRF species.  

 

 

Figure 5.3.12 Number of total incidents recorded by L. terrestris throughout the 

Webcam Recording 3 provided with three types of SRF litter; A. glutinosa (Ad), F. 

excelsior (Ah) B. pendula (Br); a total of 120 leaf disks were provided as 40 from 

each SRF species for five active earthworm vessels [Abbreviation for incidents as 

for Table 5.3.1].  
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Figure 5.3.13 Percentage contribution of SRF species for Taken into Burrow- total 

number of incidents = 53 [Abbreviation of SRF species as for Figure 5.3.12]. 

 

Table 5.3.3 shows that there was no significant difference (p > 0.05) in median values 

for each incident with respect to the SRF species used.  

 

Table 5.3.3 Median of each incident recorded by L. terrestris supplied with three 

types of SRF litter [Abbreviation of SRF species as for Figure 5.3.12] 

 

Incidences Ad Ah Br p Significance 

Taken into Burrow (TB) 3 4 4 0.719 ns 

Moved and Abandoned (MA) 0 0 0 0.851 ns 

Rejections (RJ) 0 0 1     0.394 ns 

(Kruskal-Wallis Test, p < 0.05, n = 5). 
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5.3.4 Discussion 

 

5.3.4.1 Webcam Recording Experiment 1 

 

The direct observations from this experiment show that L. terrestris has clear leaf litter 

selection behaviour and it is not a random activity. As with the first Choice Chamber  

Experiment (see Figure 5.2.10), the results from the current experiment suggest that L. 

terrestris preferred leaf litter of A. glutinosa B. pendula and F. excelsior over A. 

pseudoplatanus C. sativa and E. nitens.  An interesting phenomenon in this experiment 

is that both Taken into Burrow (TB) and Rejection (RJ) incidents reflect similar results 

for earthworm litter preference. Moved and Abandoned (MA) did not reflect a clear 

trend about the preference, although the records of this incident were highest for B. 

pendula and lowest for C. sativa. 

 

Satchell and Lowe (1967) provided uniform disks of leaf material to L. terrestris and 

determined the order of preference by counting the number of litter disks that 

disappeared in the night. Although, it was not a direct observation method like webcam 

recording, after a series of experiments, they suggested that L. terrestris preferred 

certain species of leaf litter over others. Similar to current findings, their study 

suggested that A. glutinosa and F. excelsior were highly palatable to L. terrestris. In 

contrast, Satchell and Lowe (1967) categorised A. pseudoplatanus as highly palatable 

and Betula spp. as a moderately palatable species. The difference in the quality of the 

litter used in the two sets of experiments could be a major reason for this difference. As 

an example, the N content of the A. pseudoplatanus litter used by Satchell and Lowe 

(1967) was high (1.99%) compared with 1.45% for the same species used in the current 
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experiment.  The N content in birch (B. verrucosa) litter they used was 0.84% compared 

with 1.59% for the B. pendula used in the current experiment. 

 

5.3.4.2 Webcam Recording Experiment 2 

 

The results from the current experiment suggest that L. terrestris preferred E. nitens 

more than A. pseudoplatanus and C. sativa, which coincided with the results of Choice 

Chamber Experiment 2 (section 5.2.3.2) conducted with the same similar species of 

earthworm. Confirming the findings from webcam experiment 1, both Taken into 

Burrow (TB) and Rejection (RJ) incidents reflect a similar result and Moved and 

Abandoned (MA) did not reflect any preference. However, the percentage of MA in this 

experiment, which used 3 SRF species, was recorded as low (11%) compared with 

webcam 1 (23%) which used 6 SRF species. The presence of a lower number of SRF 

species may, by a reduction in the complexity of the experiment, have influenced 

earthworm behaviour.  

 

5.3.4.3  Webcam Recording Experiment 3 

 

Equivalent to the third Choice Chamber Experiment, the results from the current 

experiment suggest that L. terrestris has an equal preference for native A. glutinosa, F. 

excelsior and B. pendula. Taken into Burrow (TB) incidents were recorded as very high 

(71%) in this experiment compared with webcam 1 (42%) and 2 (53%). This is almost 

certainly due to the use of preferred SRF species in this experiment. Moved and 

abandoned (MA) and Rejection (RJ) records were low (11% and 19% respectively) in 

this experiment and did not reflect any obvious about preference.  
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The webcam recording or similar kind of video recording approaches have been 

successfully used for various earthworm behavioural studies (Nuutinen and Butt, 1997; 

Butt et al., 2005; Valckx et al., 2010). But, this was the first time of use for observation 

of L. terrestris tree litter selection behaviour. Further, all other previous studies on 

earthworm tree litter selection provided information based on indirect techniques such 

as litterbags or litter disappearance (Edwards and Heath, 1963; Satchell and Lowe, 

1967; Hendriksen, 1990). Current webcam recording appears to be the only direct 

evidence on this aspect of earthworm tree litter selection.  

 

In this series of experiments, construction of a permanent burrow at the centre of the 

earthworm vessel was encouraged to provide adequate space to arrange leaf disks and 

prevent any proximity influence on leaf litter selection. Midden formation with straw 

particles prevented collection of leaf litter disks for the purpose of constructing a 

midden. This pre-establishment provided a more natural habitat for L. terrestris for their 

night time foraging.  Earthworms are known to prefer plant leaves of particular shape 

(Darwin, 1881). To eliminate that factor, uniform leaf disks (diameter 10 mm) were 

used throughout the experiment as suggested by Satchell and Lowe (1967). The leaf 

disk arrangements in four zones around the burrow were set up to cover each part of the 

vessel with each species of litter. The zonal arrangement made species identification 

straight forward through the webcam recording and also prevented any influence of 

earthworm emergence and movement pattern in similar directions (which was observed 

through pre-trials) on litter selection behaviour. 

 

The use of infrared sensitive web cameras proved to be inexpensive and immediately 

allowed observation of L. terrestris litter selection activity without interfering with the 

animal‟s natural behaviour. The camera had continued infrared LED illumination during 
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recording and it had already been demonstrated that red light and longer wavelength 

radiation have no effect on earthworm activity (Valckx et al., 2010). The requirement of 

a PC, internet facility and large amounts of storage capacity to save images were some 

of the limitations of this technique. In addition to technical issues, individual earthworm 

behaviour influenced the efficiency of the recording. Individual earthworm behaviour 

was unpredictable; some did not emerge at all, while some emerged from side burrows 

thus invalidating any true choices. These kinds of incidents need to be allowed for 

during such experiments. The large human workload associated with viewing and 

reviewing of recorded material was another factor which influenced the efficiency of 

this experimental technique.  

 

Summary of the findings of webcam recording experiments:  

 

 L. terrestris had clear leaf litter selection behaviour and it was not a random 

activity. 

 This supports the results of choice chamber experiments;  

-  L. terrestris preferred native A. glutinosa B. pendula, F. excelsior over non-

native A. pseudoplatanus, C. sativa and E. nitens and showed the least 

preference for C. sativa.  

-  L. terrestris preferred E. nitens litter more than A. pseudoplatanus and C. 

sativa litter, while it demonstrated an equal preference for A. glutinosa, B. 

pendula and F. excelsior litter. 
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CHAPTER 6: SRF LITTER DECOMPOSITION, CARBON AND NITROGEN 

RELEASE BY EARTHWORMS  

 

6.1 Introduction 

 

Decomposition of plant litter is essential for the transfer of nutrients and energy in any 

terrestrial ecosystem dominated by plants (Irmler, 2000). Litter decomposition regulates 

the release of plant nutrients, build-up of soil organic matter and flux of CO2 from soil 

(Zhang et al., 2008). In many forest systems, foliar litter is the main input of organic 

carbon into soils and its decomposition is the major supply of nutrients for tree growth 

(Zhang et al., 2008). The understanding of litter decomposition processes and governing 

factors are important for studying nutrient cycling, developing carbon budgets and 

assessing the implications for climate change (Zhou et al., 2008). The key factors 

regulating decomposition are commonly recognised as litter quality, microclimate and 

decomposer community (Swift et al., 1979; Meentemeyer, 1984).  

 

Earthworms are known to provide major contributions to overall breakdown and 

incorporation of tree litter within mineral soils in many temperate woodlands (Satchell, 

1967; Scheu and Wolters, 1991; Benham et al., 2012) (see section 2.3.2.1 for details). 

These animals greatly contribute to carbon cycling and nutrient mineralisation processes 

(Raw, 1962; Satchell, 1967; Irmler, 2000) directly by breakdown and digestion of litter 

materials (Bernier and Ponge, 1994) and also indirectly by the stimulation of micro-

organisms (Postma-Blaauw et al., 2006). The rate of litter decomposition and nutrient 

release by earthworms greatly depends on tree litter quality (Edward and Heath, 1963). 

Although the contribution of earthworms to litter decomposition and nutrient cycling 

has been widely explored within various British woodlands, it has not been investigated 
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within SRF systems.  Eually the contribution of native British earthworms to 

decomposition of non-native SRF species litter is almost unknown. 

 

The litterbag technique (section 2.4.2.3) is the method most often used to determine 

litter decomposition rate in various forest habitats (Bocock and Gilbert, 1957; Edwards 

and Heath, 1963; Irmler, 2000). This method is simple and inexpensive and allows 

quantification of decomposition pattern over a period of time. Past researchers used 

different size meshes to exclude certain groups of soil decomposer fauna and quantify 

the contribution of earthworms to litter decomposition and nutrient release (e.g. 

Edwards and Heath, 1963; Heath et al., 1964). In addition to the litterbag technique, 

some researchers have measured available nutrient content (especially N content) in 

earthworm casts to quantify the nutrient release by these animals (Parle, 1963; Syers et 

al., 1979; Syers and Springett, 1984; Parkin and Berry, 1994). Parkin and Berry, (1994) 

suggested that the magnitude of N accumulation in earthworm casts reflected the N 

content of the organic matter used as a food source. However, the influence of tree litter 

feeding on earthworm cast nutrient content has not been widely investigated. 

 

The major aim of the present study was to investigate the influence of earthworms on 

SRF litter decomposition and the temporal pattern of nutrient release under field 

conditions. A series of long-term (12 month) litterbag experiments were designed to 

explore this within selected, established forest systems. A parallel litterbag study at an 

ex-agricultural site was used to compare the decomposition of selected SRF species 

litter. In addition, a laboratory experiment was conducted with L. terrestris to 

investigate the influence of SRF species litter on earthworm N release through casts 

over a relatively short period. 
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This chapter initially presents litterbag experiments undertaken at selected forest sites 

and at an ex-agricultural site. The latter part of the chapter demonstrates the laboratory 

experiment which compared the mineral nitrogen content of L. terrestris casts fed with 

three selected SRF species litter. 

 

6.2 SRF litter decomposition: Field litterbag studies 

 

6.2.1  Introduction 

 

In litterbag studies, a known amount of freshly collected air-dried litter is enclosed in 

bags with appropriate mesh sizes and laid on the soil surface or buried at different 

depths of the soil profile.  A large number of litterbags are installed at the start and 

sampled periodically over time. Decomposition rates are determined from the mass loss 

of litter included in mesh bags. The mesh size is usually selected to optimise the access 

of all soil organisms to the litter while minimising excessive particle loss (Karberg et 

al., 2008). However, some studies have used different mesh sizes to exclude certain 

groups of soil decomposer fauna (e.g. Edwards and Heath, 1963, see section 2.4.2.3 for 

details). In the present study, litterbags were prepared with two different sizes of nylon 

mesh. A 5 mm mesh was used to facilitate earthworm access, while a 0.5 mm mesh was 

used to prevent earthworm access (Edwards and Heath, 1963). Two sets of litterbag 

experiments were set up and maintained at established forest sites and at an ex-

agricultural site from January 2011 until January 2012 with the following objectives;  

 

a) To evaluate the contribution of earthworm populations to SRF litter 

decomposition, C and N release at selected forest sites. 
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b) To quantify and compare SRF litter decomposition, C and N release by 

earthworms at an ex-agricultural site. 

 

6.2.2  Methodology 

 

The selected SRF species examined were; A. pseudoplatanus, B. pendula, C. sativa, E. 

nitens, and F. excelsior. The litterbags were prepared with 5 mm and 0.5 mm nylon 

meshes (Figure 6.2.1) bought from Plastok (Meshes and Filtration) Ltd, UK. The mesh 

bags (0.2*0.2 m) were prepared by stitching with nylon thread leaving one side open. 

Approximately 10 g of air-dried whole leaf litter (previously collected and prepared) 

from one SRF species was inserted into each bag as per experimental design. The open 

end of each litterbag was then covered with duct tape and affixed with staples (a heavy 

duty, hand-operated stapler was used for this process). The completed set of litterbags 

were clearly marked for identification purposes and taken to the allocated field sites.  

 

 

(a) (b) 

Figure 6.2.1 Litterbags (0.2 m * 0.2 m) containing e. g. C. sativa; (a) 0.5 mm mesh 

(b) 5 mm mesh (scale1: 4).  
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6.2.2.1 Experiment 1: Existing forest sites 

 

This litterbag experiment was conducted at existing Forestry Commission sites, to 

assess the contribution of earthworms to SRF litter decomposition within established 

forest systems. The forest sites and tree plantations (monoculture) used for this 

experiment are summarised in Table 6.2.1 (for further site details refer to section 

4.2.2.1).  

 

Table 6.2.1 Selected original forest sites and tree plantations used for litterbag 

experiment 1 

 

Site name Location Tree plantation 

1. Alcan Northumberland E. nitens 

2. Rogate  Hampshire C. sativa 

3. Gisburn Forest Lancashire a) A. pseudoplatanus;  

b)   B. pendula;  

c)   F. excelsior 

 

 

Litterbags with corresponding species of tree litter were established under each tree 

plantation, where the fresh litter layer was removed; bags placed as appropriate and 

pinned-down to the soil (with stiff wire) (Figure 6.2.2). The fresh litter layer was then 

re-spread above the litterbags and locations were marked with red pegs to assist 

relocation. A total of 24 litterbags (12 of each mesh size) were placed at each forest 

plantation site. This gave a total of 120 litterbags across the 5 sites. Figures 6.2.3 and 

6.2.4 show the initial litterbag set-up at two of the sites. These demonstrate that litterbag 

configuration in the field was largely determined by the tree planting arrangement.  
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(a) (b) 

Figure 6.2.2 Litterbag set-up at Rogate; (a) fresh litter layer removed (b) litterbag 

(0.5 mm mesh) pinned-down. 

 

 

 

Figure 6.2.3 Preparations for litterbag experiment 1 at Rogate (C. sativa site): 

January 2011. 
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Figure 6.2.4 Preparations for litterbag experiment 1 at Alcan (E. nitens site): 

January 2011. 

 

This experiment began in January 2011 and during the subsequent year, three replicates 

of each mesh size were collected after three, six, nine and twelve months for each SRF 

species. On collection, litterbags were separately placed into polythene bags, sealed and 

transported to the laboratory. The content of each bag was removed and adhering debris 

such as plant roots, soil, and organisms were carefully separated. The remaining litter 

was air-dried to a constant mass. The litter mass (dry basis) for each SRF species was 

recorded to estimate the pattern of mass loss over time. Sub-samples from air-dried 

litter were ground (after drying at 70 °C) and analysed for total C and N following a 

standard procedure used by the Forest Research laboratory (see section 3.3.3 for 

details). 

 

 



171 

 

6.2.2.2 Experiment 2: Carlshead ex-agriculture site 

 

Parallel to experiment 1, using the same species of SRF, this litterbag experiment was 

conducted at Carlshead, an ex-agricultural (arable) site, to assess and compare SRF litter 

decomposition. The site (National Grid Reference SE 360468) is located in Yorkshire, 

where the mean annual temperature is 9.0 
°
C and mean annual precipitation is 1,000 

mm. The experimental site was generally flat and consisted of a clay loam soil. 

Earthworm and soil sampling was conducted at this site as described in chapter 4 (see 

section 4.2.2.2 and 4.2.2.3). This site was recently (May 2010) planted with numerous 

SRF species, but experimental litterbags were set-up within a control area (unplanted 

with trees). A total of 120 litterbags (24 of each SRF species; 12 of each mesh size) 

were placed on site. Litterbags were pinned-down to the soil surface and locations were 

marked with red pegs (Figure 6.2.5). The experiment commenced in January 2011 and 

litterbags were collected and processed as described in Experiment 1.  

 

 

Figure 6.2.5 Initial litterbag set up at Carlshead ex-agriculture site: January 2011. 
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6.2.2.3 Statistical analysis 

 

The percentage mass remaining after twelve months and annual decomposition rate 

constants were used for statistical analysis. Annual decomposition rate constants (k yr
-1

) 

were calculated from data on the percentage of remaining litter mass, using an 

exponential decay model proposed by Olson (1963). 

 

Xt = X0 e
-kt

 

 

Where Xt is remaining mass at time t, X0 is initial mass of the litter, e is the base of the 

natural logarithm, and k is the decomposition rate constant. Since the mass loss curve is 

exponential, it is not possible to calculate the total disappearance time, so the 99% 

disappearance time was used for required calculations. Student‟s t-test was used to 

compare two different mesh sizes of each SRF species in each site. One way analysis of 

variance (ANOVA) was used to compare similar sized mesh bags of the five SRF 

species at the ex-agricultural site. As appropriate, the amount of litter loss was 

calculated by subtracting the remaining mass from the original mass.   

 

6.2.3 Results 

 

6.2.3.1 Experiment 1: Existing forest sites 

 

Figure 6.2.6 shows the pattern of litter loss from the two litterbags sizes for E. nitens at 

the Alcan site, over a period of nine months. The difference in remaining mass (%) 

between the two sizes of mesh, was graphically discernible after three months, and 

became more obvious thereafter. After nine months, mean mass loss was recorded as 
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36.5% for 0.5 mm mesh and 85.9% for 5 mm mesh. The litterbag experiment at this site 

had to be terminated after nine months due to unexpected site disturbances. 

 

 

 

Figure 6.2.6 Mean (± se) percentage of mass remaining in litterbags of different 

mesh size containing E. nitens at the Alcan site over a period of nine months: Jan 

2011 – Oct 2011, (n = 3).  

 

The changes in N and C content (g) in decomposing litter of E. nitens at the Alcan site, 

with respect to the remaining litter mass, are demonstrated in Figure 6.2.7.  N content in 

0.5 mm mesh litterbags initially increased and then decreased after six months, while in 

5 mm mesh litterbags N content initially remained constant and decreased after three 

months. C content in both sizes of litterbags decreased throughout the experimental 

period. However, C content in 5 mm mesh litterbags was lower at month three and six 

compared with 0.5 mm mesh litterbags and became very similar at month nine (at zero).  
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(a) (b) 

 

Figure 6.2.7 Mean (± se) N and  C content (g) in decomposing litter of E. nitens in 

different mesh size litterbags (with respect to remaining litter mass) at the Alcan 

site over nine months; (a) total N, (b) total C, (n = 3).   

 

Figure 6.2.8 illustrates the pattern of litter loss from the two sizes of litterbag for C. 

sativa at the Rogate site over a period of twelve months. The remaining litter masses 

(%) in the two types of litterbag were not noticeably different over the experimental 

period. At the termination of the experiment (after twelve months), mean litter mass loss 

equated to 51.7% for 0.5 mm mesh and 52.7% for 5 mm mesh.   
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Figure 6.2.8 Mean (± se) percentage of mass remaining in litterbags of different 

mesh size containing C. sativa at the Rogate site over a period of twelve months: 

Jan. 2011 – Jan. 2012, (n = 3).  

 

The changes in N and C content (g) in decomposing C. sativa litter at the Rogate site, 

with respect to remaining litter mass, are shown in Figure 6.2.9. Differences in C or N 

content in the two types of litterbags were not discernible. N content in both litterbags 

initially increased and then decreased after three months. However, it did not fall below 

the initial levels even after twelve months. C content in both litterbag mesh sizes 

recorded a slight decrease throughout the experimental period. 
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(a) (b) 

 

Figure 6.2.9 Mean (± se) N and C content (g) in decomposing litter of C. sativa in 

different mesh size litterbags (with respect to remaining litter mass) at the Rogate 

site over twelve months; (a) total N, (b) total C, (n = 3).    

 

Figure 6.2.10 demonstrates the pattern of litter loss from two sizes of litterbag of A. 

pseudoplatanus at Gisburn Forest over a period of twelve months. Although the 0.5 mm 

mesh recorded a slightly higher rate of remaining litter over the period, a considerable 

difference in the two sizes of litterbag was not observed.  After twelve months, mean 

litter mass loss equated to 44.4% for 0.5 mm mesh and 53.2% for 5 mm mesh.    
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Figure 6.2.10 Mean (± se) percentage of mass remaining in litterbags of different 

mesh size containing A. pseudoplatanus at Gisburn Forest over a period of twelve 

months: Jan. 2011 – Jan. 2012, (n = 3). 

 

Figure 6.2.11 illustrates the changes in N and C content in decomposing litter of A. 

pseudoplatanus at Gisburn Forest over twelve months with respect to the remaining 

litter mass. Significant differences in C or N content in the two sizes of litterbag were 

not observed over the experimental period. However, C and N content in both litterbags 

recorded a slight decrease throughout the experimental period.  
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(a) (b) 

 

Figure 6.2.11 Mean (± se) N and C content (g) in decomposing litter of A. 

pseudoplatanus in different mesh size litterbags (with respect to remaining litter 

mass)  at Gisburn Forest over a period of twelve months (a) total N, (b) total C, (n 

= 3).   

 

Figure 6.2.12 shows the pattern of litter loss from two different litterbags of B. pendula 

at Gisburn Forest over a period of twelve months. Although the 0.5 mm mesh had a 

slightly higher amount of remaining litter over the period, no significant difference (p > 

0.05) in the two mesh sizes of litterbag was recorded.  After twelve months, mean litter 

mass loss equated to 48.5% for 0.5 mm mesh and 53.4% for 5 mm mesh.    
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Figure 6.2.12 Mean (± se) percentage of mass remaining in litterbags of different 

mesh size containing B. pendula at Gisburn Forest over a period of twelve months; 

Jan. 2011 – Jan. 2012, (n =  3). 

 

The changes in N and C content (g) in decomposing litter of B. pendula at Gisburn 

forest, with respect to remaining litter mass, are shown in Figure 6.2.13. N content in 5 

mm mesh litterbags decreased throughout the experimental period, while in 0.5 mm 

mesh litterbags N content was initially slightly increased and then decreased after six 

months. C content in both litterbag mesh sizes recorded a decrease throughout the 

experiment, but was always lower for 5 mm than for 0.5 mm litterbags. 
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(a) (b) 

 

Figure 6.2.13 Mean ± se N and C content (g) in decomposing litter of B. pendula in 

two different mesh size litterbags (with respect to remaining litter mass) at 

Gisburn Forest over a period of twelve months;  (a) total N, (b) total C, (n = 3).   

 

Figure 6.2.14 illustrates the pattern of litter loss from two different sizes of litterbag of 

F. excelsior at Gisburn Forest, over a period of twelve months. A difference in 

remaining mass (%) was graphically discernible after three months, and became more 

obvious thereafter. The 5 mm mesh litterbags recorded a 100% litter mass loss after nine 

months. The 0.5 mm mesh recorded a mean litter mass loss of 66.2% after twelve 

months.   
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Figure 6.2.14 Mean (± se) percentage of mass remaining in litterbags of different 

mesh size containing F. excelsior at Gisburn Forest over a period of twelve 

months; Jan. 2011 – Jan. 2012, (n = 3). 

 

Figure 6.2.15 shows changes in N and C content (g) in decomposing litter of F. 

excelsior at Gisburn Forest over the experimental period, with respect to the remaining 

litter mass. The N and C content in both sized mesh bags decreased over the 

experimental period. However, both N and C content was always lower for 5 mm mesh 

compared with 0.5 mm mesh litterbags. 

0

20

40

60

80

100

0 3 6 9 12

M
a

ss
 r

e
m

a
in

in
g

 (
%

) 
d

ry
 b

a
si

s 

Time (months) 

(0.5 mm) mesh (5 mm) mesh



182 

 

 

(a) (b) 

Figure 6.2.15 Mean ± se N and C content (g) in decomposing litter of F. excelsior in 

two different mesh mesh size litterbags (with respect to remaining litter mass) at 

Gisburn Forest over period of a twelve months; (a) total N, (b) total C, (n = 3).   

 

Table 6.2.2 summarises the significant differences in litter decomposition attributes (% 

litter remaining and annual decomposition rate constant) between two mesh sizes of 

litterbag at each original forest system.  Alcan (E. nitens) and Gisburn (F. excelsior) 

sites recorded significant differences (probability levels are indicated in Table 6.2.2) 

between two litterbag mesh sizes in terms of both litter remaining (%) and the annual 

decomposition rate constant (k yr
-1

). However, Rogate (C. sativa) and Gisburn Forest 

(A. pseudoplatanus and B. pendula) sites showed no significant difference (p > 0.05) 

between the two mesh sizes of litterbag for both litter decomposition parameters.  
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Table 6.2.2 Mean earthworm density, biomass and % litter mass remaining at the termination of the experiment (Alcan: E. nitens after 9 

months, all others after 12 months) and the annual decomposition rate constant (k yr
-1

) for two mesh sizes of litterbags in established forests.  

 

ns: not significant, * significant at p < 0.05, ** significant at p < 0.01, *** significant at p < 0.001 (n = 3), (refer to chapter 4 for earthworm species 

composition in each forest system).

Forest site: SRF species Mean earthworm parameters Decomposition attribute Litterbag (mesh size) Significance 

Density (No. m
-2

) Biomass (g m
-2

) 0.5 mm  5 mm  

Alcan 

(Eucalyptus nitens) 

152.5  89.7 % litter mass remaining 69.5 14.1 ** 

k yr
-1

 0.21 1.14 ** 

Rogate 

(Castaneas sativa) 

23.0  3.7 % litter mass remaining 48.3 47.3 ns 

k yr
-1

 0.32 0.33 ns 

Gisburn 

(Acer pseudoplatanus)  

26.0   8.7 % litter mass remaining 55.6 46.8 ns 

k yr
-1

 0.26 0.33 ns 

Gisburn 

(Betula  pendula) 

6.0  0.9 % litter mass remaining 51.4 45.6 ns 

k yr
-1

 0.30 0.34 ns 

Gisburn 

(Fraxinus excelsior) 

66.0  13.6 % litter mass remaining 33.8 0.0 *** 

k yr
-1

 0.47 2.67 *** 
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6.2.3.2 Experiment 2: Carlshead ex-agriculture site  

 

Table 6.2.3 summarises the mean soil and earthworm parameters for the Carlshead ex-

agricultural site, where sampling was conducted in October 2011.  

 

Table 6.2.3 Mean (± se) soil properties of the Carlshead ex-agriculture site (n = 4), 

plus earthworm community measurements (n = 10) 

 

Carlshead ex-agriculture site 

Soil parameters 

Soil moisture (%) 14.8 ± 0.5 

Soil pH (H2O) 6.4 ± 0.02 

Organic matter (%) 6.6 ± 0.08 

Total N (%) 0.2 ± 0.00 

Total C (%) 2.0 ± 0.03 

CEC (cmol+/kg) 11 ± 0.08 

BS (%) 98.4 ± 0.10 

Earthworm measurements 

Density (No. m
-2

) 298  ± 24.5 

Biomass (g m
-2

) 56.6 ± 4.9 

 

 

Table 6.2.4 shows the earthworm species composition at the Carlshead site. A total of 

six earthworm species were recorded; two anecic, three endogeic, and one epigeic. A. 

chlorotica was the most dominant species, while L. terrestris records were relatively 

low.  
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Table 6.2.4 Earthworm species and detail of density and biomass at the Carlshead 

site 

 

Earthworm species Density (No m
-2

) Biomass (g  m
-2

) 

A. caliginosa 40 9.14 

A. chlorotica 127 9.47 

A. longa 18 17.2 

A. rosea 29 2.86 

L. castaneus 30 3.99 

L. terrestris 2 10.3 

L. spp. (Immature) 52 3.59 

Total   298 56.6 

 

 

Figure 6.2.16 shows the litter mass loss of five SRF species from litterbags with two 

mesh sizes at the Carlshead site over a period of twelve months. The difference in 

remaining masses (%) between the two mesh sizes was graphically discernible after 

three months, and became more obvious thereafter. From the 5 mm mesh litterbags, F. 

excelsior showed the highest mass loss throughout and recorded 100% mass loss after 

nine months. The other four SRF species in 5 mm mesh bags: B. pendula, E. nitens, C. 

sativa and A. pseudoplatanus, showed a relatively similar pattern of mass loss 

throughout the experimental period.  From the 0.5 mm mesh litterbags, again F. 

excelsior showed a relatively higher rate of mass loss compared with the other four 

species.  
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Figure 6.2.16 Mean (± se) percentage of mass remaining in litterbags of different 

mesh sizes for five SRF species; F. excelsior (Ah), B. pendula (Br), E. nitens (En), 

C. sativa (Sw) and A. pseudoplatanus (Sy) at the Carlshead ex-agriculture site, over 

a period of twelve months; Jan. 2011 – Jan. 2012, (n = 3). 

 

The changes in N content (g) in decomposing litter from litterbags with two mesh sizes 

at the Carlshead site are shown in Figure 6.2.17. N content in 0.5 mm mesh litterbags of 

C. sativa and E. nitens was initially increased. In similar mesh bags, N content in all 

five species of litter stayed constant between three to nine months and then after nine 

months it was slightly decreased in all species of litter except B. pendula. N content in 5 

mm mesh litterbags of F. excelsior and B. pendula was decreased throughout the 

experimental period, but in similar mesh of C. sativa and E. nitens, it was initially 
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increased. However N content in 5 mm mesh bags decreased after six months for all 

five SRF species used while it was lowest for F. excelsior .  

 

 

(a) (b) 

 

Figure 6.2.17 Mean (± se) N content (g) in decomposing litter of five SRF species 

(with respect to remaining litter mass) at the Carlshed ex-arable site over a period 

of twelve months; (a) 0.5 mm mesh, (b) 5 mm mesh, (n = 3), [Abbreviation of SRF 

species as for Figure 6.2.16].  

 

Figure 6.2.18 demonstrates the changes in C content in decomposing litter in litterbags 

with two mesh sizes at the Carlshed site. Total C content in both 0.5 and 5 mm mesh 

litterbags was decreased for all five SRF species throughout the experimental period. 

However, rate of decrease was more rapid with 5 mm mesh compared with 0.5 mm 

mesh litterbags. 
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(a) (b) 

 

Figure 6.2.18 Mean (± se) C content (g) in decomposing litter of five SRF species 

(with respect to remaining litter mass) at the Carlshead ex-arable site over a period 

of twelve months; (a) 0.5 mm mesh, (b) 5 mm mesh, (n = 3), [Abbreviation of SRF 

species as for Figure 6.2.16]. 

 

Table 6.2.5 summarises the significant differences in litter decomposition parameters 

between litterbags with two mesh sizes at the Carlshed site. At this ex-agricultural site, 

where mean earthworm density was recorded at 298 m
-2

 (biomass = 56.6 g m
-2

), 

percentage litter mass remaining after twelve months and the annual decomposition rate 

constant (k yr
-1

)  for all individual SRF species were significantly different for 0.5 and 5 

mm mesh litterbags (probability levels for each individual parameter are indicated in 

Table 6.2.5).  
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Table 6.2.5 Mean litter mass (% remaining) after twelve months and annual 

decomposition rate constant (k yr
-1

) for two mesh sizes of litterbags at the 

Carlshead ex-agriculture site [Abbreviation of SRF species as for Figure 6.2.16] 

 

SRF 

Species 

Attribute Litterbag – mesh size Significance 

0.5 mm 5 mm 

Ah % mass remaining 46.8 0.0 *** 

k yr
-1

 0.33 2.67 *** 

Br % mass remaining 75.3 8.3 *** 

k yr
-1

 0.12 1.10 *** 

En % mass remaining 68.7 13.1 ** 

k yr
-1

 0.16 0.91 ** 

Sw % mass remaining 62.0 7.7 ** 

k yr
-1

 0.21 1.31 ** 

Sy % mass remaining 62.0 5.5 ** 

k yr
-1

 0.21 1.61 ** 

** significant at p < 0.01, *** significant at p < 0.001 (n = 3). 

 

Table 6.2.6 summarises the significant differences in litter decomposition parameters 

between five SRF species at the Carlshead site. In 5 mm mesh litterbags, % litter masses 

remaining after 12 months were not significantly different (p > 0.05) for five SRF 

species. However, the annual decomposition rate constant (k yr
-1

) in similar mesh size 

was significantly (p < 0.05) higher for F. excelsior compared with other species. In 0.5 

mm mesh litterbags, both % litter mass remaining after twelve months and annual 

decomposition rate constant (k yr
-1

) were significantly (p < 0.05) different as stated in 

Table 6.2.6. 
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Table 6.2.6 Mean litter mass (% remaining) after twelve months and 

decomposition rate constant (k yr
-1

) for five species of litter at the Carlshead ex-

agriculture site for two meshsizes of litterbag [Abbreviation of SRF species as for 

Figure 6.2.16] 

 

Litterbag 

mesh size 

Attribute Ah Br En Sw Sy 

0.5 mm % mass remaining 46.8
c
 75.3

a
 68.7

ab
 62.0

b
 62.0

b
 

k yr
-1

 0.33
a
 0.12

c
 0.16

bc
 0.21

b
 021

b
 

5 mm % mass remaining 0.0
a
 8.3

a
 13.1

a
 7.7

a
 5.5

a
 

k yr
-1

 2.67
a
 1.10

b
 0.91

b
 1.31

b
 1.61

b
 

Different letters in a row indicate significant differences (p < 0.05, n = 12), ANOVA, 

Tukey-Kramer. 

 

 

6.2.4  Discussion 

 

6.2.4.1 Experiment 1: Existing forest sites 

 

The litter decomposition study in original forest sites suggests that earthworms can have 

a large contribution to SRF litter mass loss plus C and N cycling within these systems 

when they are present in considerably high numbers. Alcan (E. nitens) and Gisburn (F. 

excelsior) sites which had relatively high densities of earthworms (152.5 and 66 m
-2

 

respectively) recorded significantly higher rates of mass loss in earthworm-accessible 

litterbags (5 mm mesh) compared with earthworm-inaccessible controls (0.5 mm mesh). 

Contrastingly, Rogate (C. sativa), Gisburn (A. pseudoplatanus and B. pendula) which 

had relatively low earthworm densities (23, 26 and 6 m
-2

 respectively), showed no 

significant difference in rate of mass loss between earthworm-accessible litterbags and 

http://www.just-green.com/2533/Just-Green-Silver-Birch-Trees--Betula-Pendula-.html?referrer=froogle&utm_source=google&utm_medium=froogle&utm_campaign=pid2533
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inaccessible-controls. Earthworms showed a positive influence on N and C release from 

litter, if they were present in large numbers (e. g. Alcan: E. nitens site). An increment of 

N content (g) in litterbags (especially in smaller mesh bags) at the early stage of 

decomposition (e.g. after three and six months) was observed in some sites e.g. Alcan: 

E. nitens, Rogate: C. sativa, Gisburn: B. pendula. This is likely due to early colonisation 

of litterbags by nitrogen-rich microorganisms (Irmler, 2000), in addition to growth of 

fungus. Litter decomposition, C and N release can also be influenced by the earthworm 

species present. Anecic species, such as L. terrestris largely contribute to breakdown, 

and incorporation of surface litter into the soil in many temperate woodlands (Satchell 

1967; Scheu and Wolters, 1991; Benham et al., 2012). Epigeic earthworms such as L. 

rubellus and L. castaneus also consume considerable amounts of plant litter. Endogeic 

earthworms such as A. caliginosa and A. rosea feed mainly on fine organic matter 

mixed with mineral soil and are known to largely contribute to nutrient release (Scheu 

1987). Presence of L. terrestris certainly accelerates the leaf litter breakdown and 

incorporation into mineral soil, but increased earthworm diversity can make litter 

decomposition and nutrient release more efficient. As an example, at Alcan (E. nitens) 

site, which was rich with large number of L. terrestris (22 m
-2

) and other epigeic and 

endogeic species (seven species all together) showed a significant earthworm influence 

(p < 0.05) for litter decomposition, C and N release compared with the control. 

However, this influence was not significant at the Rogate (C. sativa) site which had no 

L. terrestris and less diversity of earthworms (three species) (see Tables 4.2.3, 4.2.5, 

4.2.7 and 4.2.9 for earthworm species composition at each site). 

 

Bocock and Gilbert (1957) studied the litter decomposition in three different forest sites 

in the British Isles using nylon net litterbags. This study recorded that birch (Betula 

verrucosa) and lime (Tilia cordata) litter disappearance was greater on mull soils than 
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two other sites; with moder and peat soil. The authors suggested that this difference was 

mostly due to the abundance of large invertebrates/earthworms in mull soils.  Similarly, 

Edwards and Heath (1963) studied and compared the rate of disappearance of oak 

(Quercus spp.) and beech (Fagus spp.) leaves in selected forest sites at Rothamsted. 

They used nylon mesh bags of different mesh size to exclude different soil fauna and 

found that leaf disks of both oak and beech disappeared three times more rapidly in 7 

mm mesh bags compared with those in 0.5 mm mesh bags. This experiment showed the 

overall importance of earthworms in fragmenting leaf materials in forest soils. Heath et 

al. (1964) further investigated the litter decomposition in various forest sites in England 

and confirmed the importance of earthworms on forest litter fragmentation. Hendriksen 

(1990) conducted a field litterbag study with major European forest tree species and 

suggested that there was a positive correlation between the percentage of mass loss and 

the number/biomass of detritivores below the litterbags. Contrastingly, Irmler (2000) 

used litterbags of 0.02 mm and 5 mm mesh sizes and investigated the mass loss and N 

release in a beech (Fagus spp.) and mixed forest in northern Germany and suggested 

that biomass of epigeic Lumbricidae was negatively correlated with litter mass loss, 

particularly in beech forest. However, this study suggested that Lumbricidae were 

positively correlated with N release at both sites. Scheu (1987) found a remarkable 

influence of endogeic earthworms on N mineralisation within beech woods established 

on lime soils. The current study stands-out from the aforementioned investigations, as 

this was the first attempt to investigate the influence of earthworms on litter 

decomposition and nutrient release within SRF systems, which is different from natural 

forest systems in terms of tree species, tree age, planting density and level of human 

intervention. 
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Litterbags with selective mesh sizes have been widely used to estimate the contribution 

of soil faunal groups to decomposition rates in the field. However, selection of 

appropriate mesh size is really important to estimate actual contribution. Edwards and 

Heath (1963) initially suggested using 1 mm mesh to avoid earthworms, but later they 

noticed that this size did not always exclude smaller earthworms. In the current 

experiment 0.5 mm mesh was used as a control to exclude earthworm access. However, 

after nine months, some tiny earthworm hatchlings were even found within 0.5 mm 

mesh litterbags.  In the past, researchers had used 5 mm (e.g. Swift et al., 1979; Irmler, 

2000) or 7 mm mesh (e.g. Edwards and Heath, 1963, Heath et al., 1964, Hendriksen, 

1990) to facilitate earthworm access. The 5 mm mesh was selected in the current study 

to maximise earthworm access while minimising the fragmentation loss.  The 20 cm* 

20 cm litterbag size was selected for the current study, so that each of the litter species 

could be inserted without a need for cutting. A major practical problem faced in the 

current study was missing litterbags at some sites, especially when the experimental site 

was located close to public walking paths. This could be avoided by selecting the sites 

away from human and dog access and minimising the above ground visible markings 

and signs. Soil animals found in 0.5 mm mesh bags included springtails and mites. In 

addition to microorganisms, these animals largely contribute to mass loss in earthworm-

inaccessible litterbags. In addition to earthworms, 5 mm mesh bags contained ants, 

slugs, woodlice, millipedes, and centipedes. These soil animals could also have directly 

contributed to litter mass loss in 5 mm mesh bags. In Rogate (C. sativa), where 

earthworm density and diversity was low, a considerable number of woodlice (6 - 8 per 

bag) were recorded in 5 mm mesh bags in addition to millipedes and centipedes. 

However, litter mass losses in both 0.5 and 5 mm litterbags were very similar at this 

site. This suggests that the influence of the above soil animals on C. sativa litter mass 

loss was negligible. Similarly, at Gisburn (B. pendula), which had very low numbers of 
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earthworms, recorded large numbers of ants within its 5 mm mesh bags, but again litter 

mass loss was not significantly different between 0.5 and 5 mm mesh bags, suggesting 

that ants had no significant contribution to B. pendula litter mass loss at this site.  

 

Summary of the major finding of litterbag Experiment 1: 

 

 The Alcan (E. nitens) site showed that native British earthworms had a significant 

contribution to non-native E. nitens litter decomposition, C and N release within 

this SRF system. 

 The Rogate (C. sativa) site showed that earthworms had no significant contribution 

for C. sativa litter decomposition, C and N release at this site. Nevertheless, there 

were few earthworms present. 

 The Gisburn Forest work showed that earthworms had a significant contribution to 

F. excelsior litter decomposition, but not for B. pendula and A. pseudoplatanus 

litter within this site.  

 Overall results at various forest sites showed that the contribution of earthworms to 

SRF litter decomposition, C and N release depends on earthworm density and 

diversity present which is a function of tree species, soil type and land-use history. 

 

6.2.4.2 Experiment 2: Carlshead ex-agriculture site 

 

This comparative litter decomposition study at the Carlshead ex-agricultural site 

suggests that earthworms have a great influence on SRF litter decomposition, C and N 

release. It also suggests that this influence can vary with SRF species. For all considered 

SRF species, earthworm-accessible litterbags recorded significantly higher rates of mass 

loss compared with earthworm-inaccessible controls. In terms of earthworm-accessible 
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mesh, F. excelsior recorded a significantly higher (p < 0.05) rate of mass loss whilst all 

other SRF species; A. pseudoplatanus, B. pendula, C. sativa and E. nitens had a similar 

pattern of mass loss. In terms of N and C release from litter, earthworm-accessible 

litterbags showed a higher rate of release compared with controls. F. excelsior 

demonstrated the highest rate of N and C release from earthworm-accessible litterbags 

compared with other selected SRF species. 

 

Litter decomposition results for A. pseudoplatanus, B. pendula, and C. sativa in this 

experiment were completely different from litterbag Experiment 1, conducted with 

similar species at original forest sites. The difference between earthworm-accessible and 

inaccessible litterbags for the above three litter species was significant (p < 0.01) at the 

ex-agriculture site (see Table 6.2.5) where earthworm density was 298 m
-2

. However, 

this difference was not significant for similar SRF species at Gisburn and Rogate where 

earthworm densities were lower than 26 m
-2 

(see Table 6.2.2). One reason for these 

different results could relate to earthworm population size, but other variables such as 

local climate and soil type could also play an important role as sites were in different 

locations.    

 

Similar to current findings, former researchers suggested that tree species have a great 

influence on litter decomposition rates. Bocock and Gilbert (1957) observed litter 

decomposition in mull soils in Britain with an order of disappearance rate as: B. 

verrucosa (birch) > T. cordata (lime) > Q. petraea and Q. robur (oak).   Edwards and 

Heath (1963) observed that Quercus spp. litter disks were consistently fragmented more 

quickly than Fagus spp. The leaf litter from non-deciduous broadleaves such as 

eucalyptus are generally known to take a relatively longer time to decompose in the soil 

system compared with native broadleaves (Cornelissen, 1996; Louzada et al., 1997). 
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The leaf litter decomposition rates for some of the SRF species are summarised in Table 

2.5.2.  The past studies have widely compared the overall litter decomposition of 

various tree species, but the current experiment was unique as it compared the influence 

of earthworms for decomposition of selected SRF species litter.  

 

This study recorded a seasonal influence of earthworm activity. In 2011, spring was 

very dry (soil moisture < 10%) and may not have supported earthworm activity and the 

expected rate of litter mass loss during the first six months.  However, the wet summer 

(soil moisture > 18%) of 2011 had a positive influence on earthworm activity and 

accelerated litter decomposition between six to nine months of the experiment. Edwards 

and Heath (1963) suggested that the rate of leaf disk disappearance had a seasonal 

fluctuation and these changes were markedly correlated with the moisture condition in 

the litter. The soil animals found in 0.5 mm mesh bags of this site included springtails 

and mites. In addition to microorganisms, these animals may largely contribute to mass 

loss of earthworm-inaccessible litterbags.. Within 5 mm mesh bags, earthworms, slugs, 

woodlice and millipedes were found. In addition to earthworms, these soil animals 

could have certainly contributed to litter mass loss in 5 mm mesh bags. However, 

parallel litterbag studies at Rogate and Gisburn suggested that the contribution of these 

animals for litter mass loss was not significant, although they were present in relatively 

large numbers. At the Carlshead site, these other animals were found in lower numbers, 

suggesting that their contribution to litter mass loss was negligible.  
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Summary of the major finding of litterbag Experiment 2: 

 

 This showed that earthworms have a major contribution to decomposition of F. 

excelsior, B. pendula, E. nitens, C. sativa, and A. pseudoplatanus litter, when they 

are present at high density and diversity.  

 It also showed that the earthworm contribution to SRF litter decomposition varied 

with tree species; F. excelsior recorded a significantly higher decomposition rate 

while B. pendula, E. nitens, C. sativa, and A. pseudoplatanus showed a similar rate 

of decomposition.   

 

However, presence of litterbags on ex-agricultural (arable) site where no trees are 

present can offer a „bonanza‟ of food for soil fauna present. This can increased 

earthworm activity on any litter available and manipulate true choice in this type of 

study. The Carlshead ex-arable site was recently planted with a variety of potential SRF 

species. This habitat change can influence the soil faunal population present and future 

studies are recommended to investigate longer-term influences.  
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6.3 Influence of SRF species litter on mineral nitrogen content of earthworm 

casts: A laboratory experiment with Lumbricus terrestris 

 

6.3.1 Introduction 

 

Earthworms are considered to make a major contribution to the mineralisation process 

of several elements in the soil system, especially nitrogen (Anderson et al., 1985; 

Scheu, 1987). Earthworm casts are known to contain elevated amounts of plant-

available nutrients compared with surrounding soils (Parle, 1963; Syers et al., 1979; 

Syers and Springett, 1984). Most of these studies recorded that freshly deposited casts 

were high in NH4
+
, but with time this decreased and NO3

ˉ
 concentration increased. 

Parkin and Berry (1994) evaluated N transformation in earthworm casts and confirmed 

the earlier observations that earthworm casts are rich with mineral N. In addition, this 

study suggested that the amount of N accumulation in earthworm cast can be affected 

by the organic matter used as a food source by earthworms. However, feeding on 

different tree litter and influences of these on earthworm cast N content was not the 

focus in any on the above studies. 

 

The current experiment, under controlled environmental conditions, investigated the 

influence of SRF species litter on mineral nitrogen content of L. terrestris casts over a 

period of five weeks. 

 

6.3.2 Methodology 

 

An experiment was set up that utilised three selected SRF species (A. pseudoplatanus, 

B. pendula and E. nitens of different origins, as stated in Table 3.3.1) and experimental 

http://www.just-green.com/2533/Just-Green-Silver-Birch-Trees--Betula-Pendula-.html?referrer=froogle&utm_source=google&utm_medium=froogle&utm_campaign=pid2533
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earthworms which were field-collected adult L. terrestris. All experimental earthworms 

(n = 48) were acclimated to laboratory conditions for six weeks prior to experiment as 

described in section 4.2.3.4. At the start of the experiment, plastic vessels of 2 L (depth 

0.2 m) were partially filled with moist Kettering loam (1,800 g dry soil, 25% moisture, 

approx. soil depth 0.16 m). Four earthworms (mean individual mass 5.52 g) were 

randomly assigned to each individual vessel. A known mass (8 g vessel
-1

) of air-dried 

whole leaves from single SRF species was water-soaked for 20 minutes and surface 

applied to a previously labelled experimental vessel (Figure 6.3.1). A control was set up 

in exactly the same way with earthworms and soil but without any litter. Three 

replicates per treatment were established (n =12 vessels in total). The vessels were kept 

in 24 hour darkness, in temperature-controlled incubators at 15 
o
C (Figure 6.3.2). Soil 

moisture was maintained as 25-30% throughout the experiment by watering on 

inspection. Earthworm vessels were initially kept undisturbed for two weeks to 

encourage formation of vertical burrows.  

 

 

(a) (b)  (c) 

Figure 6.3.1 Surface litter supply to 2 L experimental earthworm vessels; (a) A. 

pseudoplatanus (b) B. pendula (c) E. nitens. 
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Figure 6.3.2 Experimental earthworm vessels (2 L) kept at 15 °C in darkness.  

 

Fresh earthworm cast collection for mineral nitrogen extraction was begun after two 

weeks of the experiment set up. To do this, the surface litter layer was carefully 

removed and 2 g of fresh cast was taken from the soil surface (mainly close to the 

burrow entrance, see Figure 6.3.3), collected with a small metal spatula. After cast 

collection, removed litter was replaced in individually coded vessels which were then 

returned to incubators.  
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Figure 6.3.3 Surface view of a 2 L vessel showing fresh L. terrestris casts at the soil 

surface and also burrow entrances.  

 

A standard procedure provided by the Soil Chemistry Laboratory at the Department of 

Geography and Environmental Science, University of Reading, was used for potassium 

chloride (KCl) extraction. Collected fresh casts were immediately transferred into 50 ml 

polyethylene bottles and 20 ml of 1 M KCl was added (1:10 casts: solution extraction 

ratio). Bottles were closed tight and shaken for one hour on a mechanical shaker at 200 - 

300 rpm.  The suspension was filtered using Whatman No. 42 filter paper. The extracted 

samples were labelled and immediately transferred to (-20 °C) freezers. Cast collection 

and KCl extraction was conducted weekly for four weeks. After four weeks, the whole 

set of frozen samples plus blank KCl samples were sent to the University of Reading for 

mineral N analysis (NH4
+
 and NO3

ˉ
). At the termination of the experiment, 

unadulterated surface litter was removed, and earthworm survival and mass changes 
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were recorded. Mineral N contents in casts were compared across treatments using 

multi-comparison one way ANOVA. 

 

6.3.3 Results 

 

Table 6.3.1 demonstrates the initial C and N content of the soil and SRF litter used.  

Table 6.3.2 summarises the earthworm production summary for the experiment. At the 

end of the experiments (after 5 weeks), an earthworm mass reduction was recorded for 

all 4 treatments, (greatest -28.3% for control which had no litter supply). Of the 3 litter 

treatments, B. pendula recorded the highest mean litter removal (92%). At the 

termination of the experiment 100% earthworm survival was recorded for all treatments 

including control. 

 

Table 6.3.1 Initial C and N content of soil and SRF litter used in an experiment 

examining mineral N content of L. terrestris casts 

 

Materials C (%) N (%) C:N 

Kettering loam soil 2.5 0.2 12.5 

A. pseudoplatanus 47.9 1.45 33.0 

B. pendula 51.5 1.59 32.4 

E. nitens 52.5 1.33 39.5 
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Table 6.3.2 Summary of earthworm attributes (after five weeks) from an 

experiment examining mineral N content of L. terrestris casts  

 

Earthworm attribute 

SRF species 

Br En Sy Control 

Number (ind vessel
-1

) 4 4 4 4 

Initial mean mass (g vessel
-1

) 22.2 22.0 22.4 21.7 

Final mean mass (g vessel
-1

) 21.1 20.5 20.3 15.6 

Mean  mass change (% of original mass) -5.0 -7.1 -9.2 -28.3 

Mean Litter removal (%)  92 65.9 55.5 0 

Survivorship (%) 100 100 100 100 

B. pendula (Br), E. nitens  (En)  and A. pseudoplatanus (Sy). 

 

Figure 6.3.4 illustrates the change of NH4
+
 - N content in fresh casts of L. terrestris fed 

with three species of litter and with no litter (control) over a period of five weeks. 

Throughout the experiment, no significant difference in NH4
+
 content was observed 

between treatments. However, up to week 4, NH4
+ 

content in all treatments had 

increased. Thereafter, this decreased for E. nitens and the control although it continued 

to increase for B. pendula and  A. pseudoplatanus.  Initially, B. pendula recorded the 

lowest amount of NH4
+ 

while E. nitens recorded the highest amount. After five weeks, 

B. pendula recorded the highest amount of NH4
+ 

while E. nitens recorded the lowest 

amount. 
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Figure 6.3.4 Mean (± se) NH4
+
 content in casts of L. terrestris fed with three SRF 

species litter; B. pendula (Br) E. nitens  (En) A. pseudoplatanus (Sy) and control 

(Con) over a period of five weeks (n = 3, control with no litter supply). 

 

Figure 6.3.5 illustrates the change of NO3
ˉ
 - N content in fresh casts of L. terrestris fed 

with 3 species of litter and no litter (control) over a period of 5 weeks. Generally, NO3
ˉ 

content in fresh casts of all 4 treatments increased with time. Throughout the 

experiment, a significantly (p < 0.05) increased NO3
ˉ
 content was observed in the 

control compared with all litter treatments. However there were no significant 

differences (p > 0.05) between the 3 litter treatments. 
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Figure 6.3.5 Mean (± se) NO3
ˉ
 content in casts of L. terrestris fed with three SRF 

species litter and control over a period of five weeks, (n = 3), [Abbreviation of 

treatments as for Figure 6.3.4]. 

 

6.3.4 Discussion 

 

This laboratory study suggests that SRF species litter have an influence on mineral N 

content of L. terrestris casts and its temporal trend. As an example, B. pendula-fed 

earthworms initially recorded a lower amount of NH4
+
 in their casts and a higher 

amount at the end of the experiment. Conversely, E. nitens-fed earthworms initially 

showed a higher amount of NH4
+
 in their casts and lower amounts after five weeks.  

 

Buck et al. (2000) studied cast production of L. terrestris and suggested that mulching 

materials, as well as soil compaction, influenced earthworm burrowing activity, quantity 

and nutrient quality of earthworm casts.  In the present study, the soil was compacted 

manually to provide a smooth surface and similar bulk density to avoid a soil 
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compaction influence on experimental results.  L. terrestris are known to produce casts 

at the soil surface as well as within the soil profile. Shipitalo and Protz (1989), who 

collected surface deposited cast of L. terrestris, recorded a 70-180 mg g
-1

 cast 

production per day while Flegel et al. (1998) who also collected the cast from the whole 

bulk soil recorded 228 – 461 mg g
-1

 cast production per day.  In the present study, only 

fresh surface L. terrestris casts were collected for the purpose of chemical analysis and 

this could have influenced experimental results. 

 

Amounts of mineral N in earthworm casts and their transformations have been widely 

studied (Parle, 1963; Syers et al., 1979; Syers and Springett, 1984; Parkin and Berry, 

1994). Parle (1963) reported that freshly deposited earthworm casts were high in NH4
+
, 

but with time NH4
+
 decreased, while NO3

ˉ
 increased, indicating high microbial 

nitrification activity. Similarly, Syers et al. (1979) who incubated fresh earthworm casts 

for 12 days recorded that 87% of the NH4
+ 

initially present was lost, but increases in the 

NO3
ˉ
 did not match the losses of NH4

+
. They suggested that the resulting deficit was due 

to immobilisation and denitrification. Lavelle et al. (1992) suggested that NO3
ˉ
 is not an 

earthworm metabolic product and therefore fresh earthworm cast always recorded low 

amount of NO3
ˉ
 with which current experimental results agree. Further, in the current 

study,  NO3
ˉ
 content in earthworm casts significantly increased (p < 0.05) in the (no 

litter) control compared with litter-amended treatments, suggesting that these litter 

amendments have an influence on nitrification activity. Major factors affecting 

nitrification in soils include soil moisture, aeration, temperature, and pH (Sahrawat, 

2008). In addition, Vernimmen et al. (2007) suggested that C:N ratio of the litter and  

the presence of plant-produced allelochemicals  and supply of other nutrients can 

influence soil nitrification. 
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Parkin and Berry (1994) evaluated the influence of selected organic residues on 

microbial N transformations associated with earthworm casting. In this study, they fed 

two species of earthworms (Octolasian tyrtaeum and Aporrectodea tuberculata) with 

chopped, fresh hairy vetch (Vicia villosa) (20 g), air-dried vetch (5.5 g) or air-dried 

horse manure (5.5 g) and measured the NH4
+
 and NO3

-
 in fresh casts over a period of 

four weeks. The control was conducted with no litter supply. Similar to the current 

study, these authors suggested that N- transformation in earthworm casts were affected 

by the organic residue used as a food by earthworms. The study further indicated that 

the magnitude of N accumulation in earthworm casts reflected the N content of the 

organic matter used. Contrasting with the current study, in this experiment NH4
+
 content 

in the casting of all the treatments decreased after 2 weeks, but similarly, NO3
- 
content 

was increased with time. However, the current experiment cannot be compared directly 

with Parkin and Berry (1994), as soil type, earthworm species, food source, food 

quantities, and food particle sizes were all different.  

 

The present study was the first recorded attempt to investigate the influence of different 

tree litter on cast N content of L. terrestris. It suggested that mineral N content and its 

temporal trend in L terrestris casts is affected by SRF litter used as a food source. The 

magnitude of N accumulation in earthworm casts did not reflect the N content of the 

SRF litter type and the total N content of the initial system. One reason for this may be 

the similar initial total N content of the selected SRF species litter (see Table 6.3.1). In 

terms of NH4
+
, a significant difference was not observed between litter treatments and 

control. This may be due to the small amount of added litter (2g per vessel - dry basis) 

which may not have been enough to have considerably influenced the initial total N 

content of the system, compared with the (no litter) control. Further, only surface casts 

were collected in this study, but as previously mentioned, L. terrestris also deposits 
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some casts within the soil. Also, L. terrestris are known to have a large contribution to 

breakdown of, and incorporate of surface litter into the soil (Satchell 1967; Scheu and 

Wolters, 1991) while endogeic earthworms such as A. caliginosa and A. rosea feed 

mainly on fine organic matter mixed with mineral soil and  largely contribute to nutrient 

release (Scheu, 1987). This author found a remarkable influence of endogeic 

earthworms on N mineralisation within beech woods. Therefore, further experiments 

with interaction of L. terrestris in combination with other earthworm species would be 

useful to examine the direct influence of individual SRF species on earthworm cast 

production and N mineralisation activity.  

 

Major findings of this laboratory study: 

 

 B. pendula-fed L. terrestris initially showed a lower amount of NH4
+
 in their casts 

and a higher amount after five weeks, while E. nitens-fed earthworms initially 

showed a higher amount of NH4
+
 in their casts and a lower amount after five weeks.  

 Further, NO3
-
 content in L. terrestris casts increased in the (no litter) control 

compared with litter-amended treatments. 

 SRF species litter have an influence on mineral N content of L. terrestris casts and 

on its temporal trend. 
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CHAPTER 7: A FIELD-BASED SRF-EARTHWORM INTERACTION 

EXPERIMENT USING NATIVE AND NON-NATIVE TREE 

SPECIES WITH ANECIC AND ENDOGEIC EARTHWORMS 

 
7.1 Introduction 

 

 

Effects of earthworms on soil nutrient dynamics and plant growth have been extensively 

studied. Scheu (2003) reviewed a total of 67 papers (1947 – 2002), which investigated 

the influence of earthworms on plant growth. However, most of these studies focused 

on arable and grassland plant species. Only a very few studies have investigated the 

influence of earthworms on forest tree species (e.g. Marshall, 1971; Haimi et al., 1992; 

Muys et al., 2003; Welke and Parkinson, 2003). Marshall (1971), in a pot experiment, 

observed a slight increase in the stem weight of black spruce (Picea mariana) seedlings 

with introduction of earthworms into forest soil. In a laboratory study, Haimi et al. 

(1992) indicated that presence of Lumbricus rubellus can increase above-ground 

biomass of Betula pendula seedlings. Welke and Parkinson (2003) indicated that 

activity of the endogeic earthworm Aporrectodea trapezoides increased root biomass of 

Douglas-fir (Pseudotsuga menziesii) seedlings which were grown in a temperature-

controlled (15 °C) growth chamber.  Most of the aforementioned observed a positive 

influence of earthworms on forest tree growth.  However, almost all of these 

investigations were pot experiments conducted with very young seedlings (< 1 year) 

under controlled environmental conditions.  The investigation by Muys et al. (2003) 

was the only field study, but these authors did not observe a significant influence of 

earthworms on growth of Fraxinus excelsior established on an acidified sandy loam.  

 

In addition to the effects of earthworms on tree growth, some studies have focused on 

the effects of tree species on earthworms (Muys et al., 1992; Neirynck et al., 2000; 
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Sarlo, 2006) (see chapter 2, section 2.4.2 for more details). These studies, which were 

mostly based on field surveys, suggested that litter quality and quantity are the 

determining factors for earthworm community development. However, the direct 

influences of forest trees and their root systems on earthworms have not been closely 

investigated in such field surveys.   

 

Some studies which focused on arable and grassland plant species, suggested that 

effects of earthworms on plant growth can vary with soil type, especially texture, 

mineral nutrient content and organic matter (Brown et al., 2004). Jana et al. (2010) 

suggested that in poor soil with low content of mineral nutrients and organic matter, 

earthworms increased soil nitrate content significantly and boosted above-ground 

biomass production of Arabidopsis thaliana. Further, plant responses to earthworms can 

vary with earthworm species or functional group. Laossi et al. (2010) suggested that the 

combined presence of anecic and endogeic earthworms could promote mineralisation 

and hence plant growth. Besides, the response of plants to earthworms can be 

influenced by the physiology associated with plant species. As an example, legumes are 

less responsive to earthworms compared with grasses, since these are less limited by 

nitrogen (Brown et al., 2004). Eisenhauer et al. (2009a), who studied the influence of 

earthworms on regrowth of grassland plant communities, suggested that rapidly 

growing plant species are promoted more by earthworm activity than slower growing 

species. However, available evidence concerning the above aspects relevant to forest 

tree species is very limited. 

 

The aim of the present study was to investigate direct interactions between SRF trees 

and earthworms under field conditions. Based on a technique used for a tree rooting 

experiments by Bending and Moffat (1997), a field-based experiment was designed to 
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provide results within one year.  To promote the interaction between tree root systems 

and earthworms, the trees were grown in tubes buried in the field. This technique 

allowed removal of the whole experimental system from the ground at the end, 

permitting very detailed examination of all component parts. The experiment was 

designed to achieve the following objectives: 

 

a) To investigate the influence of selected SRF species on establishment of 

introduced earthworms. 

b) To explore the effects of earthworm presence on SRF growth and biomass 

production. 

c) To investigate the influence of earthworms on nutrient uptake by SRF trees. 

d) To assess the influence of earthworms on SRF litter decomposition and nutrient 

release.  

e) To estimate the influence of earthworms on change of soil properties under 

selected SRF trees.  

 

7.2 Methodology 

 

7.2.1 Experimental site 

 

The experiment was established at the Forestry Commission Research Agency, Headley 

nursery (National Grid Ref. SU 808379), Headley Down, Hampshire. The area, with a 

mean annual temperature of 11.2 °C, receives an annual average rainfall of 629.8 mm. 

Local soil type is classified as a sandy humic – ferric podzol (Mackney et al., 1983).  
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7.2.2 SRF and earthworm species 

 

The SRF species used were one year old Betula pendula (mean above-ground height 0.6 

m) and Eucalyptus nitens (mean above-ground height 0.4 m). Initial root depth was 0.1 

m for both species. These two SRF species, with different origins (native/non-native) 

were selected for comparative purposes. One year old seedlings were selected, as this is 

the standard age for field transplantation of these trees. B. pendula and its litter has been 

commonly used for investigations of plant-earthworm interactions (e.g. Satchell and 

Lowe, 1967; Haimi and Einbork, 1992; Haimi et al., 1992; Raty and Huhta, 2004; Butt, 

2011). However, investigations on this aspect with eucalyptus are non-existent. The 

current study permitted comparisons to be drawn with the results of previous studies 

while providing new information for E. nitens.   

 

The earthworm species used were a combination of field-collected Lumbricus terrestris 

(anecic) and Allolobophora chlorotica (endogeic) (see Table 7.2.1).  L. terrestris was 

selected based on previous earthworm surveys, as it was the most dominant litter-

feeding species in most of the SRF sites surveyed (see Chapter 2). A. chlorotica was 

selected with the purpose of testing tree root-earthworm interactions as this endogeic 

species lives in the upper 0.1 m of the soil and shows a close association with plant root 

systems (Martinucci et al., 1983; Zorn et al., 2005). Combinations of the above species, 

from different ecological groupings, were used to minimise competition (Lowe and 

Butt, 1999), but maximise the resource use and influence on soils and plants (Laossi et 

al., 2010). 
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7.2.3 Tree establishment 

 

Commercially available PVC tubes (0.25 m diameter) were used as tree growing 

vessels. The tubes were cut into 0.6 m lengths and the base was covered with 1 mm 

nylon mesh before establishment in the field (Figure 7.2.1).  

 

 

Figure 7.2.1 Base of inverted PVC tubes (d=0.25 m, h = 0.6 m) covered with 1 mm 

mesh before establishment in the field. 

 

The tubes were buried (mesh covered end at the base) in previously marked positions of 

an experimental plot, leaving 0.2 m protruding above the soil surface (Figure 7.2.2). 

The mesh was present to prevent earthworm escape/ingress from the base and the raised 

height above the soil surface was to deter entry into the top of the tubes during the 

experiment. Each tube was filled with standard sterilised Kettering loam (Butt et al., 

1994; Butt, 2011) to the level of the soil surface (approximately 20 kg dry soil per tube) 
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and moistened to 25 - 30%. The selected SRF species (B. pendula and E. nitens) were 

individually planted into the soil-filled PVC tubes (Figure 7.2.3) with 24 trees of each 

SRF species used.  The planting distance was 4 m (between rows) * 2 m (between 

trees). Each row contained either B. pendula or E. nitens. A continuous drip irrigation 

system was allocated to each tube to maintain the required soil moisture level (25%) for 

optimal tree growth (see Figure 7.2.3). Trees were allowed to equilibrate in the field for 

two weeks, before earthworm introduction.   

 

 

(a) (b) 

Figure 7.2.2 Buried PVC tubes in the experimental plot; (a) 1 mm mesh at the 

base, (b) 0.2 m gap from soil surface to top of the tube.  
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Figure 7.2.3 One year old E. nitens planted in a PVC tube and supplied with drip 

irrigation (at the start of the experiment). 

 

7.2.4 Earthworm introduction 

 

Two weeks after tree establishment, a combination of adult L. terrestris + juvenile L. 

terrestris + adult A. chlorotica was introduced to half of the experimental tubes (Table 

7.2.1, Figure 7.2.4).  The second half of the tubes (12 for each tree species) was kept as 

a control, with no earthworm addition. A known amount (50 g per tube at the outset) of 

previously collected air-dried leaf litter from the same tree species, was surface-applied 

to the tubes as an organic matter source (Figure 7.2.5). The top of each tube was 

covered with 2 mm mesh to prevent earthworm escape/ingress (Figure 7.2.6). This 

cover also prevented leaf litter from being blown by the wind and access of predators to 

the earthworms. Litter addition by the trees to the experimental system was considered 

as zero due to this upper mesh cover. 
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Table 7.2.1 Earthworm inoculum at the beginning of the experiment 

 

Earthworm species Mean individual 

biomass (g) 

Density 

(No. tube
-1

) 

Biomass 

(g tube
-1

) 

L. terrestris (adult) 4.27  3 12.8 

L. terrestris (juvenile) 0.66  2 1.3 

A. chlorotica (adult) 0.36  10 3.6 

Total per tube  15 17.7 

 

 

 

(a) (b) 

Figure 7.2.4 Earthworm introduction; (a) L. terrestris addition (b) Introduced 

earthworms on the surface of a tube.  
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(a) (b) 

Figure 7.2.5 Surface-applied leaf litter in experimental tubes; (a) B. pendula, (b) E. 

nitens. 

 

 

Figure7.2.6 Upper end of an experimental tube being covered with 2 mm mesh.  
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A total of 150 g of air-dried litter was added per tube throughout the experimental 

period (on three occasions). No mineral or organic fertilisers were applied. The 

experimental duration was 12 months, from May 2011 to May 2012.  

 

An electrified (standard) rabbit fence was established around the experimental plot 

(Figure 7.2.7) to protect trees from small herbivorous mammals. 

 

 

Figure 7.2.7 Headley experimental plot in June 2011. 

 

 

 

7.2.5 Destructive sampling 

 

After 12 months, any remaining litter on the tube surface was removed to measure litter 

mass loss. Each expemental tube was carefully lifted from the ground as a complete unit 

after digging away the surrounding soil (Figure 7.2.8). The lifted tubes were placed on 

plastic trays and taken into a nearby workshop for processing (Figure 7.2.8 – 7.2.10).  
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Figure 7.2.8 Removal of experimental tubes from the ground – May 2012. 

 

 

Figure7.2.9 Ground-lifted E. nitens tubes before processing. 
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Figure7.2.10 Ground-lifted B. pendula tubes before processing.  

 

Initially, the above-ground tree section was removed (B. pendula from the soil surface 

and E. nitens from the basal node) and processed separately. The above-ground section 

of B. pendula was separated into three sub-samples; leaves, branches and stem (Figure 

7.2.11). For E. nitens, the above-ground section was divided into four sub-samples; new 

leaves, old leaves, branches and stem (Figure 7.2.12).  
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Figure 7.2.11 B. pendula above-ground sub-samples: stem leaves and branches 

 

 

Figure 7.2.12 E. nitens above-ground sub-samples: stem, new leaves, old leaves and 

branches.  
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Once the above-ground plant sections had been removed, tubes were laid horizontally 

on a bench, and cut twice along the vertical axis with an electric saw (Makita BSS611Z 

18V LXT Cordless Circular Saw; Figure 7.2.13). This allowed the soil column to be 

opened undamaged (Figure 7.2.14) and permitted detailed examination of the 

experimental system including plant roots, earthworm distribution and burrowing below 

the soil surface.  

 

 

Figure 7.2.13 An experimental tube being cut with a circular saw. 

 

The soil column with plant root system was divided into two sections for sampling; 

upper (0 - 0.2 m) and lower (0.2 – 0.4 m). Earthworms were hand-sorted from the soil, 
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washed and species were identified, with earthworm number and live biomass recorded. 

Non-experimental species were preserved in 4% formaldehyde and taken to the 

laboratory for identification. Bulk soil and rhizosphere soil (root-attached soil) samples 

were taken from both upper and lower tube sections for chemical analysis. Rhizosphere 

soils were separated from roots by shaking the root system directly into a plastic bag. 

Root samples were divided into 3 sub categories; main root, fine roots (0 – 0.2 m soil 

depth) and fine roots (0.2 – 0.4 m soil depth). Main root included the stump and all 

roots bigger than 2 mm in diameter. Fine roots included roots less than 2 mm in 

diameter. Root samples were jet washed through a sieve (0.5 mm) mesh before oven 

drying. 

 

Sampling of all experimental tubes was completed within three days. All plant samples 

were oven-dried at 70 °C for 48 hours. Thereafter, oven dry biomasses were recorded 

and chemical analyses were performed as described in section 3.3.3. Soil samples were 

air-dried and chemical analyses were performed as described in section 3.3.5.  

 

 

Figure 7.2.14 A cut open experimental tube containing an intact soil column.  
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7.2.6  Statistical analysis 

 

The direct effects of birch and eucalyptus on earthworms were measured with reference 

to earthworm density, biomass and population change.  The influence of earthworms on 

the trees was evaluated by recording survival, above and below-ground biomasses and 

plant nutrient content. The influence of earthworms on litter decomposition was 

assessed by recording amounts of surface-remaining litter and their nutrient contents. 

The effect of earthworms on soil was assessed by recording soil moisture, pH, C and N 

contents. Statistical analyses were performed using Minitab statistical software. A two 

sample students t-test was used to compare the means of two treatments of each SRF 

species. Two-way ANOVA was applied to assess the interaction effect of SRF species 

and earthworms on measured parameters (e.g. tree growth, nutrient stocks, litter 

decomposition and soil properties). 

 

7.3 Results 

 

The experimental plot, which consisted of less fertile sandy soil initially recorded as 

having no earthworms present. The sterilised Kettering loam (see Table 3.3.5 for soil 

properties) was used for the experiment to minimise the influence of soil type on 

earthworm establishment. Further, this provided the opportunity to compare the result 

with laboratory experiments, as the same soil was used for all the laboratory 

experiments reported in this thesis. 
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7.3.1 Effects of SRF trees on earthworms 

 

Table 7.3.1 shows the mean earthworm density and live biomass in SRF tubes with 

earthworms after 12 months. B. pendula recorded a significantly higher earthworm 

density (p < 0.05) compared with E. nitens, although the same density/live biomass was 

introduced at the outset of the experiment. However, total earthworm biomass was not 

significantly different (p > 0.05) between the two tree species, even though this was 

slightly lower under E. nitens.   

 

Table 7.3.1 Mean (± se) parameters after 12 months in earthworm-introduced SRF 

tubes: B. pendula (Br) and E. nitens (En)  

 

Earthworm parameter Br En Significance 

Total density (No tube
-1

) 15 ± 1.3 10 ± 1.3 * 

Total biomass (g tube
-1

) 15.5 ± 1.2 13.1 ± 0.8 ns 

ns: not significant, * significant at p < 0.05 (n = 12).  

 

Table 7.3.2 indicates the earthworm species composition in SRF tubes at the end of the 

experiment. The total number of L. terrestris recorded was similar (4) for both tree 

species. However, total number of A. chlorotica was lower for E. nitens (4) compared 

with B. pendula (9). In addition to experimental earthworms, a few L. rubellus were 

recorded in both B. pendula and E. nitens tubes which equated to a mean population of 

0.83 and 0.08 per tube respectively. As shown in Table 7.3.3, compared with initial 

introduced numbers, the L. terrestris population decreased (20%) under both tree 

species after 12 months.  The A. chlorotica population also decreased by 60% under E. 

nitens, but only by 10% under B. pendula. 
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Table 7.3.2 Mean earthworm data in earthworm-treated tubes after 12 months 

[Abbreviations for SRF as for Table 7.3.1) 

 

 

 

Table 7.3.3 Population change (%) in earthworm treatments compared with initial 

numbers  

 

Earthworm species Population change (%) 

B. pendula E. nitens 

L. terrestris  -20 -20 

A. chlorotica  -10 -60 

 

 

In terms of vertical distribution in soil columns, more than 80% of earthworms were 

recovered from the upper zone (0 – 0.2 m) for both tree species. L. terrestris was the only 

earthworm recorded in the lower zone (0.2 – 0.4 m) from where 50% of this species was 

recovered.  

 

Although the control tree tubes were expected to be earthworm-free, a few earthworms 

were recovered. L. rubellus was found in both B. pendula and E. nitens; mean population 

= 1.25 and 0.92 per tube respectively. In addition, a few A. caliginosa were recorded 

Earthworm species Density (No. tube
-1

) Biomass (g tube
-1

) 

Br En Br En 

L. terrestris (mature) 3 2 11.3 7.81 

L. terrestris (immature) 1 2 1.96 3.82 

A. chlorotica (mature) 3 2 0.65 0.44 

A. chlorotica (immature) 6 2 0.59 0.27 

L. rubellus  (mature) 0.83 0.08 0.65 0.20 

L. spp (immature) 1 2 0.36 0.74 

Total 15 10 15.5 13.1 
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under the B. pendula control (mean population = 0.08). None of the experimental 

earthworm species were recovered from the control tubes. 

 

Figure 7.3.1 shows an L. terrestris burrow opening and middens at the soil surface of an 

E. nitens tube after removal of the surface litter layer at 12 months. Figure 7.3.2 shows an 

L. terrestris burrowing pattern at the edge of the soil column with some burrows 

extending down to the base (0.4 m).  

 

 

Figure 7.3.1 L. terrestris middens and burrow (A and B respectively) at the soil 

surface of an E. nitens tube after 12 months.  

 

A 
B 
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Figure 7.3.2 L. terrestris burrows at the edge of an E. nitens soil column (roots also 

clearly seen).  

 

7.3.2 Effects of earthworms on SRF growth  

 

A 100% tree survival was recorded for both SRF species at termination of the 

experiment. Compared with B. pendula, E. nitens showed pronounced growth 

throughout the experimental period. Figures 7.3.3 and 7.3.4 demonstrate a visual change 

of experimental trees during the 12 month period. Differences of root system between 

tree species (after 12 months) are shown in Figure 7.3.5. Some of the E. nitens roots 

grew through and beyond the basal mesh (Figure 7.3.6). 
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(a) (b) 

Figure 7.3.3 Trees at the beginning of the experiment; (a) B. pendula (height = 0.6 

m), (b) E. nitens (height = 0.4 m). 

 
  

 

 

 

(a) (b) 

Figure 7.3.4 Typical trees after 12 months of growth under the given experimental 

condition; (a) B. pendula, (b) E. nitens (scale 1:12). 
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Figure 7.3.5 Typical roots after 12 months of growth under the given experimental 

condition; B. pendula (left) E. nitens (right) separate into upper (0 – 0.2 m) and 

lower (0.2 – 0.4) sections (scale 1:8).   

 

 

Figure 7.3.6 An E. nitens root which penetrated through the basal mesh. 
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Table 7.3.4 shows the mean biomass (oven dry g) of B. pendula after 12 months, grown 

in the presence and absence (control) of earthworms. Introduced earthworms (L. 

terrestris + A. chlorotica) showed no significant influence (p > 0.05) for below or 

above-ground biomass of trees compared with the control. However, compared with 

control, earthworm-treated B. pendula trees recorded a slightly lower overall biomass at 

the termination of the experiment (see Table 7.3.4).  

 

Table 7.3.4 Mean (± se) below and above-ground biomass (oven dry g) of B. 

pendula after 12 months of growth 

 

Attribute Plant section Earthworm 

treatment 

Control Significance 

Below-ground 

biomass 

Main root  7.0 ± 1.3 8.4 ± 1.2 ns 

Fine roots  

(0 - 0.2 m soil depth) 

2.3 ± 0.1 2.6 ± 0.2 ns 

Fine roots  

(0.2 - 0.4 m soil depth) 

1.6 ± 0.3 1.9 ± 0.4 ns 

Total  10.9 ± 1.6 12.9 ± 1.8 ns 

Above-ground 

biomass 

Stem 8.3 ± 1.4 10.8 ± 1.0 ns 

Branches 2.6 ± 0.3 3.6 ± 0.5 ns 

Leaves 1.9 ± 0.2 2.2 ± 0.3 ns 

Total  12.9 ± 1.6 16.6 ± 1.7 ns 

ns - not significant; (n =12). 

 

Table 7.3.5 demonstrates the mean biomass (oven dry g) of E. nitens after 12 months in 

the presence and absence of earthworms. Earthworm-treated E. nitens showed a 

significantly increased (p < 0.05) below-ground, in addition to above-ground biomass 

compared with the control. In terms of below-ground biomass, earthworms significantly 

(p < 0.05) increased the main root biomass, but showed no significant influence on fine 

root (< 2 mm) biomass. In terms of above-ground biomass, introduced earthworms 
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significantly influenced stem (p < 0.01) and branch (p < 0.05) biomass. Leaf biomass 

was slightly higher in earthworm-treated E. nitens trees compared with control, but it 

was not significantly different (p > 0.05). 

 

Table 7.3.5 Mean (± se) above and below-ground biomass (oven dry g) of E. nitens 

after 12 months of growth 

 

Attribute Plant section Earthworm 

treatment 

Control Signifi 

cance 

Below-ground 

biomass 

Main root  64.2 ± 5.0 45.1 ± 3.8 * 

Fine roots  

(0 - 0.2 m soil depth) 

4.9 ± 0.4 5.6 ± 0.2 ns 

Fine roots  

(0.2 - 0.4 m soil depth) 

6.7 ±1.0 6.7 ±0.8 ns 

Total  75.9  ± 4.9 57.5  ± 3.8 * 

Above-ground 

biomass 

Stem 68.9 ± 4.8 49.8 ± 3.4 ** 

Branches 24.9 ± 2.8 17.6 ±1.2 * 

Leaves (old + new) 92.1± 5.5 84.5 ±7.4 ns 

Total  186 ± 11.8 152 ± 12.2 * 

ns - not significant; * significant at p < 0.05; ** significant at p < 0.01; (n =12). 

 

Figure 7.3.7 graphically demonstrates differences of the total tree biomass of both SRF 

species with and without earthworms. The effect of earthworms on total tree biomass 

was significant in fast growing E. nitens, but not in B. pendula. Introduced earthworms 

showed no significant influence on shoot/root ratio (Figure 7.3.8, p > 0.05) or basal 

stem diameter (Figure 7.3.9, p > 0.05) of both tree species.  
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Figure 7.3.7 Mean (± se) B. pendula (Br) and E. nitens (En) tree biomass (oven dry 

grams) at the termination of the experiment (significant differences between 

earthworm treatment and control for each tree species are indicated by different 

letters).  

 

 

Figure 7.3.8 Mean (± se) shoot:root ratio of B. pendula (Br) and E. nitens (En) at 

the termination of the experiment (significant differences between earthworm 

treatment and control for each tree species are indicated by different letters).  
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Figure 7.3.9 Mean (± se) basal stem diameter (mm) of B. pendula (Br) and E. nitens 

(En) at the termination of the experiment (significant differences between 

earthworm treatment and control for each tree species are indicated by different 

letters).  

 

The significant interactions in Table 7.3.6 demonstrates that the influence of 

earthworms on SRF biomass varied with tree species.  

 

Table 7.3.6 ANOVA Table of F-values showing the effect of SRF species and 

earthworms on plant oven dry biomass plus stem diameter 

 

* significant at p < 0.05; ** significant at p < 0.01; *** significant at p < 0.001; (n =12). 
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Source of 

variation 

df Below-ground 

biomass 

Above-ground 

biomass 

Total tree 

biomass 

Stem 

diameter 

SRF spp. 1 272 *** 326 *** 336*** 227*** 

Earthworm 1 6.1 * 3.2 4.2* 1.1 

Interaction 1 9.5 ** 4.9 * 6.5* 0.5 
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7.3.3 Influence of earthworms on SRF carbon and nutrient stocks and fluxes 

 

Table 7.3.7 demonstrates the mean carbon and nutrient content of different sections of 

B. pendula in the presence and absence of earthworms. Introduced earthworms had no 

significant influence (p > 0.05) on carbon and nutrient stocks of B. pendula after 12 

months. Table 7.3.8 shows the mean carbon and nutrient content in different sections of 

E. nitens and significant differences in the presence and absence of earthworms.  N 

content in new leaves was significantly increased (p < 0.05) in the earthworm treatment 

compared with control. C, K, Ca, Mg and P content in E. nitens branches was 

significantly increased (p < 0.05) in the earthworm treatment compared with control.  
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Table 7.3.7 Mean (± se) carbon (g) and nutrient (mg) per plant in different sections 

of B. pendula with respect to oven dry biomass 

 

Tree section Element Earthworm 

treatment 

Control Significance 

Leaves C  1.01 ± 0.13  1.16 ± 0.18 ns 

N  93.7 ± 9.8 114 ± 17.0 ns 

K  19.0 ± 1.7 24.1± 3.3 ns 

Ca  8.5 ± 1.1. 8.3 ± 1.1 ns 

Mg  4.0 ± 0.6 4.3 ± 0.7 ns 

P  10.6 ± 1.0 14.0 ± 2.2 ns 

Branches C 1.3 ± 0.2  1.8 ± 0.3 ns 

N 39.9 ± 5.1 40.0 ± 7.2 ns 

K 7.6 ± 1.0 10.5 ± 1.6 ns 

Ca 12.9 ± 1.5 17.5 ± 2.6 ns 

Mg 2.0 ± 0.3 2.8 ± 0.4 ns 

P 3.1 ± 0.4 4.3 ± 0.7 ns 

Fine roots  

(0 – 0.2 m  

soil depth) 

C 0.99 ± 0.1 1.25 ± 0.1 ns 

N 55.1 ± 5.9 65.6 ± 6.3 ns 

K 5.1 ± 0.6  6.3 ± 0.4 ns 

Ca 23.0 ± 3.0 29.5 ± 3.2 ns 

Mg 2.3 ± 0.3 3.1 ± 0.3 ns 

P 6.1 ± 0.7 8.0 ± 0.8 ns 

Fine roots  

(0.2 – 0.4 m 

soil depth) 

C 0.75 ± 0.14 0.92 ± 0.21  ns 

N 35.4 ± 6.4 40.7 ± 8.4  ns 

K 4.2 ± 0.8 4.3 ± 0.6 ns 

Ca 17.6 ± 3.3 24. 0 ± 6.1 ns 

Mg 1.9 ± 0.4 2.1 ± 0.4 ns 

P 3.7 ± 0.8 4.7 ± 1.1 ns 

ns - not significant at p > 0.05; (n =12). 
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Table 7.3.8 Mean (± se) carbon (g) and nutrient (mg) per plant in different sections 

of E. nitens with respect to oven dry biomass 

 

 

Tree section Element Earthworm 

treatment 

Control Significance 

New leaves C 11.3 ± 1.6 9.3 ± 1.0 ns 

N 265 ± 32.6 178 ± 27.9 * 

K 153 ± 21.0 127 ± 13.8 ns 

Ca 137 ± 21.8 108 ± 9.8 ns 

Mg 25.4 ± 3.7 21.7 ± 1.7 ns 

P 21.5 ± 2.6 17.0 ± 3.4 ns 

Old leaves C 35.4 ± 2.3 33.1 ± 3.0 ns 

N 729 ± 76.4 571 ± 75.9 ns 

K 467 ± 37.3 433 ± 46.4 ns 

Ca 724 ± 64.0 700 ± 68.4 ns 

Mg 82.7 ± 6.7 83.1 ± 8.9 ns 

P 64.4 ± 6.3 54.4 ± 6.8  ns 

Branches C 11.9 ± 1.3 8.4 ± 0.82 * 

N 153 ± 17.8 104 ± 18.7 ns 

K 174 ±22.7 115 ±15.6  * 

Ca 361 ± 31.8 257 ± 21.5 * 

Mg 23.4 ± 2.2 17.3 ±1.7 * 

P 29.1 ± 2.9 19.7 ± 2.7 * 

Fine roots  

(0 – 0.2 m soil 

depth) 

C 2.2 ±  0.21 2.5 ± 0.10 ns 

N 24.1± 1.9 30.5 ± 3.6 ns 

K 25.4 ± 2.6 26.6 ± 2.8 ns 

Ca 80.6 ± 8.3 91.6 ± 5.0  ns 

Mg 6.8 ± 0.7 7.9 ± 0.5 ns 

P 12.2 ± 1.2 12.1 ± 1.2 ns 

Fine roots  

(0.2 – 0.4 m soil 

depth) 

C 3.0 ± 0.4 3.0 ± 0.4 ns 

N 32.1 ± 4.0 33.5 ±3.1  ns 

K 38.3 ± 8.2 36.8 ± 5.3 ns 

Ca 109 ± 22.8 113 ± 14.6 ns 

Mg 9.6 ± 1.9 10.1 ± 1.4 ns 

P 24.1 ± 5.2 22.5 ± 3.6 ns 

ns - not significant; * significant at p < 0.05; (n =12). 
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Tables 7.3.9 to 7.3.12 demonstrate that tree species have a significant influence on 

carbon and nutrient content in major sections of experimental trees in the current work. 

 

Table 7.3.9 ANOVA Table of F-values showing the effect of SRF species and 

earthworms on C (g) and nutrient (mg) of leaves per plant with respect to oven dry 

biomass  

 

Source of variation df Elements in leaves 

C N K Ca Mg P 

SRF spp. 1 347*** 117*** 272*** 265*** 252*** 113*** 

Earthworm 1 0.3 1.9   0.4 0.1 0.04 0.5 

Interaction 1 0.4 2.8 0.6 0.1 0.06 1.5 

* significant at p < 0.05; *** significant at p < 0.001; (n =12). 

 

Table 7.3.10 ANOVA Table of F-values showing the effect of SRF species and 

earthworms on C (g) and nutrient (mg) of branches per plant with respect to oven 

dry biomass  

 

Source of variation df Elements in branches 

C N K Ca Mg P 

SRF spp. 1 103*** 40.4*** 93.2*** 226*** 159*** 99*** 

Earthworm 1 0.3 1.0 0.3 1.2 1.2 0.4 

Interaction 1 1.1 2.7 0.6 1.8 2.8 1.4 

*** significant at p < 0.001; (n =12). 
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Table 7.3.11 ANOVA Table of F-values showing the effect of SRF species and 

earthworms on C (g) and nutrient (mg) of fine roots (0 – 0.2 m soil depth) 

per plant with respect to oven dry biomass 

 

Source of variation df 

 

Elements in fine roots (0 – 0.2 m soil depth) 

C N K Ca Mg P 

SRF spp. 1 77.3*** 47.9*** 152*** 127*** 100*** 24.2*** 

Earthworm 1 4.4* 3.1 0.5 2.7 3.9 0.8 

Interaction 1 0.06 0.2 0.00 0.2 0.1 0.9 

*** significant at p < 0.001; (n =12). 

 

Table 7.3.12 ANOVA Table of F-values showing the effect of SRF species and 

earthworms on C (g) and nutrient (mg) of fine roots (0.2 – 0.4 m soil depth) 

per plant with respect to oven dry biomass 

 

 

Source of variation df 

 

Elements in fine roots (0.2 – 0.4 m soil depth) 

C N K Ca Mg P 

SRF spp. 1 47.0*** 0.8 45.8*** 41.8*** 41.6*** 34.7*** 

Earthworm 1 0.1  0.3 0.02 0.1 0.1 0.01 

Interaction 1 0.04 0.1 0.03 0.01 0.01 0.17 

*** significant at p < 0.001 (n =12). 

 

7.3.4 Influence of earthworms on leaf litter decomposition and nutrient release  

 

At the termination of the experiment, surface-remaining litter masses (% dry basis) for 

both tree species were significantly decreased (Figure 7.3.10, p < 0.001) in earthworm 

treatments compared with controls. Surface litter removal of B. pendula was recorded as 

61% in the presence of earthworms and 13% without earthworms, while for E. nitens, 

removal was 45% and 17% with and without earthworms respectively. 
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Figure 7.3.10 Mean (± se) remaining litter mass (%) under B. pendula (Br) and E. 

nitens (En) at the termination of the experiment (significant differences between 

earthworm treatment and control for each tree species are indicated by different 

letters). 

  

Table 7.3.13 demonstrates carbon and nutrient content in remaining litter of B. pendula 

with respect to litter mass. After 12 months, carbon and major nutrient content in 

remaining litter had significantly decreased (probability levels as indicated in Table 

7.3.13) in the presence of earthworms compared with no earthworm control.  
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Table 7.3.13 Mean (± se) carbon and nutrient content (g) in remaining litter of B. 

pendula at the termination of the experiment with respect to litter mass 

 

* significant at p < 0.05; *** significant at p < 0.001; (n =12). 

 

Table 7.3.14 demonstrates carbon and nutrient content in remaining litter of E. nitens 

with respect to litter mass. At the termination of the experiment, carbon and all other 

major nutrient in remaining litter had significantly decreased in the earthworm treatment 

compared with the control.  

 

Table 7.3.14 Mean (± se) C and nutrient content (g) in remaining litter of E. nitens 

at the termination of the experiment with respect to litter mass  

 

Element Earthworm treatment Control 

 

Significance 

C 42.7 ± 1.1 63.2 ± 1.0 *** 

N 0.84 ± 0.03 1.47 ± 0.04 *** 

K 0.08 ± 0.00 0.13 ± 0.01 *** 

Ca 1.64 ± 0.05 1.99 ± 0.16 * 

Mg 0.12 ± 0.00 0.19 ± 0.00 *** 

P 0.04 ± 0.00 0.08 ± 0.00 *** 

* significant at p < 0.05; *** significant at p < 0.001 (n =12). 

Element Earthworm treatment Control 

 

Significance 

C 22.9 ± 2.0  58.8 ± 2.8 *** 

N 0.66 ± 0.05 1.97 ± 0.09 *** 

K 0.15 ± 0.02 0.22 ± 0.02 * 

Ca 0.65 ± 0.06 1.44 ± 0.05 *** 

Mg 0.09 ± 0.01 0.23 ± 0.01 *** 

P 0.05 ±  0.00 0.13 ± 0.00 *** 
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The significant interactions in Table 7.3.15 indicate that the influence of earthworms on 

SRF litter decomposition and nutrient release varied with tree species.  

 

Table 7.3.15 ANOVA Table of F-values showing the effect of SRF species and 

earthworms on remaining litter mass (%) and element content (g) after 12 months 

with respect to litter mass 

 

Source of 

variation 

df 

 

Remaining 

litter (%)  

C N K Ca P 

SRF spp. 1 7.9** 42.5*** 7.2* 27.2*** 68.2*** 57.9*** 

Earthworm 1 313***   231*** 260*** 14.8*** 37.3*** 225*** 

Interaction 1 22.2*** 17.1*** 32.4*** 0.5 5.5* 29.4*** 

* significant at p < 0.05; ** significant at p < 0.01; *** significant at p < 0.001; (n =12). 

 

Figure 7.3.11 demonstrates the N loading to soil (g tube
-1 

year 
-1

) through litter 

decomposition. In the presence of earthworms, N loading was four times greater under 

B. pendula compared with the control. The same was double under E. nitens in the 

presence of earthworms compared with the control.  
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Figure 7.3.11 Mean (± se) N loading to the soil system (g tube
-1

 year
-1

) through 

litter decomposition under B. pendula (Br) and E. nitens (En) (significant 

differences between earthworm treatment and control for each tree species are 

indicated by different letters).  

 

 

Figure 7.3.12 shows the C loading to the experimental system (g tube
-1 

year
-1

) through 

litter decomposition. In the presence of earthworms, it was nearly three times greater for 

B. pendula compared with the control. Carbon loading under E. nitens was almost 

double in the presence of earthworms compared with the control. 
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Figure 7.3.12 Mean (± se) C loading to the soil system (g tube
-1

 year
-1

) through 

litter decomposition under B. pendula (Br) and E. nitens (En) (significant 

differences between earthworm treatment and control for each tree species are 

indicated by different letters).  

 

 

Figure 7.3.13 shows the K loading (g tube
-1 

year
-1

) through litter decomposition. For 

both tree species, K loading was not significantly different (p > 0.05) between the 

earthworm treatment and control. However, K loading was greater under E. nitens 

compared with B. pendula. 
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Figure 7.3.13 Mean (± se) K loading to the soil system (g tube
-1

 year
-1

) through 

litter decomposition under B. pendula (Br) and E. nitens (En) (significant 

differences between earthworm treatment and control for each tree species are 

indicated by different letters).  

 

 

Ca loading (g tube
-1 

year
-1

) through litter decomposition is demonstrated in Figure 

7.3.14. In the presence of earthworms, it was three times greater for B. pendula 

compared with the control. Ca loading under E. nitens was also significantly greater (p 

< 0.05) in the presence of earthworms compared with control. 

 

a 

a 

a 

a 

0.0

0.2

0.4

0.6

Br En

K
 l

o
a

d
in

g
 (

g
 t

u
b

e
-1

) 

SRF species 

Earthworm Control



246 

 

 

 

Figure 7.3.14 Mean (± se) Ca loading to the soil system (g tube
-1

 year
-1

) through 

litter decomposition under B. pendula (Br) and E. nitens (En) (significant 

differences between earthworm treatment and control for each tree species are 

indicated by different letters).  

 

Mg loading (g tube
-1 

year
-1

) in the experiment through litter decomposition is shown in 

Figure 7.3.15 In the presence of earthworms, it was significantly greater (p < 0.05) for 

B. pendula compared with the control while under E. nitens, there was no significant 

difference (p > 0.05) between the earthworm treatment and the control. 
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Figure 7.3.15 Mean (± se) Mg loading to thesoil system (g tube
-1

 year
-1

) through 

litter decomposition under B. pendula (Br) and E. nitens (En) (significant 

differences between earthworm treatment and control for each tree species are 

indicated by different letters).  

 

Figure 7.3.16 shows the P loading (g tube
-1 

year
-1

) through litter decomposition. In the 

presence of earthworms, it was significantly greater (p < 0.05) for B. pendula compared 

with the control. P loading under E. nitens was not significantly different (p > 0.05) 

between the earthworm treatment and control. 
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Figure 7.3.16 Mean (± se) P loading to the soil system (g tube
-1

 year
-1

) through 

litter decomposition under B. pendula (Br) and E. nitens (En) (significant 

differences between earthworm treatment and control for each tree species are 

indicated by different letters).  

 

Table 7.3.16 demonstrates the average C and nutrient loading (kg ha
-1

 yr
-1

) through 

decomposition of B. pendula and E. nitens litter in the presence and absence of 

earthworms. 
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Table 7.3.16 Carbon and nutrient loading (kg ha
-1

 yr
-1

) to soil system through 

decomposition of SRF species litter in the presence and absence of earthworms 

 

Element  

 

B. pendula E. nitens 

Earthworm No earthworm Earthworm No earthworm 

N 350.3 83.5 234.2 105.9 

C 11067 3766 7348 3173 

K 30.5 22.4 112.0 101.8 

Ca 224.0 63.1 81.5 8.1 

Mg 44.8 16.3 36.7 38.7 

P 12.2 4.1 18.3 16.3 

 

 

7.3.5 Effects of earthworms on soil properties 

 

Table 7.3.17 demonstrates the mean soil parameters under B. pendula, and significant 

differences between earthworm treatment and control after 12 months. The C content 

(%) in bulk soil (0.2 – 0.4 m) was the only parameter to show a significant influence (p 

< 0.05) produced by earthworms. Soil moisture, pH, C or N content (%) in bulk soil (0 – 

0.2 m depth), rhizosphere soil (0 – 0.2 m depth) and rhizosphere soil (0.2 – 0.4 m depth) 

were not influenced by earthworms after 12 months. 
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Table 7.3.17 Mean soil parameters under the two treatments of B. pendula at the 

termination of the experiment 

 

Sample type Soil parameter Earthworm 

treatment 

Control Significance 

Bulk soil  

(0 – 0.2 m) 

Soil moisture (%) 30.3 ± 0.37  30.7 ± 0.34  ns 

Soil pH (H2O) 8.18 ± 0.00  8.19 ± 0.00  ns 

N (%) 0.18 ± 0.00  0.18 ± 0.00  ns 

C (%) 2.27 ± 0.02  2.27 ± 0.02  ns 

Bulk soil  

(0.2 – 0.4 m) 

Soil moisture (%) 32.8 ± 0.1 32.5 ± 0.2 ns 

Soil pH (H2O) 8.18 ± 0.01 8.19 ± 0.01 ns 

N (%) 0.19 ± 0.00 0.18 ± 0.00 ns 

C (%) 2.28 ± 0.02 2.18 ± 0.02 * 

Rhizosphere soil 

(0 – 0.2 m) 

Soil moisture (%) 33.7 ± 0.8 33.3± 1.5 ns 

Soil pH (H2O) 8.10 ± 0.01 8.13 ± 0.01 ns 

N (%) 0.20 ± 0.00 0.20 ± 0.00 ns 

C (%) 2.68 ± 0.1 2.65 ± 0.1 ns 

Rhizosphere soil 

(0.2 – 0.4 m) 

Soil moisture (%) 31.8 ± 0.6 31.9 ± 0.8 ns 

Soil pH (H2O) 8.14 ± 0.02 8.16 ± 0.02 ns 

N (%) 0.19 ± 0.00 0.19 ± 0.00 ns 

C (%) 2.24 ± 0.04 2.23 ± 0.04 ns 

ns – not significant; * significant at p < 0.05; bulk soil (n = 6) and rhizosphere soil (n = 

12) 

 

 

Table 7.3.18 indicates that earthworms had no significant influence (p > 0.05) on any of 

the measured soil parameters under E. nitens.  
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Table 7.3.18 Mean soil parameters under the two treatments of E. nitens at the 

termination of the experiment 

 

Sample type Soil parameter Earthworm 

treatment 

Control Significance 

Bulk soil  

(0 – 0.2 m) 

Soil moisture (%) 30.4 ± 0.5 30.4± 0.2 ns 

Soil pH (H2O) 8.20 ± 0.01 8.19 ± 0.00 ns 

N (%) 0.19 ± 0.00 0.19 ± 0.00 ns 

C (%) 2.35 ± 0.04 2.30 ± 0.02 ns 

Bulk soil 

 (0.2 – 0.4 m) 

Soil moisture (%) 31.2 ± 0.5 30.5 ± 0.3 ns 

Soil pH (H2O) 8.18 ± 0.01 8.20 ± 0.01 ns 

N (%) 0.18 ± 0.00 0.18 ± 0.00 ns 

C (%) 2.22 ± 0.01 2.21 ± 0.02 ns 

Rhizosphere soil 

(0 – 0.2 m) 

Soil moisture (%) 33.3 ± 2.1  33.6 ± 1.3 ns 

Soil pH (H2O) 8.05 ± 0.02 8.05 ± 0.01 ns 

N (%) 0.20 ± 0.00 0.19 ± 0.00 ns 

C (%) 3.04 ± 0.3 2.91 ± 0.2 ns 

Rhizosphere soil 

(0.2 – 0.4 m) 

Soil moisture (%) 28.2 ± 0.6  29.2 ± 0.6 ns 

Soil pH (H2O) 8.17 ± 0.01 8.17 ± 0.01 ns 

N (%) 0.19 ± 0.00 0.19 ± 0.00 ns 

C (%) 2.24 ± 0.03 2.23 ± 0.04 ns 

ns – not significant; bulk soil (n = 6) and rhizosphere soil (n =12). 

 

The significant interactions in Tables 7.3.19 and 7.3.20 indicated that the influence of 

earthworms on soil properties varied with tree species.  
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Table 7.3.19 ANOVA Table of F-values showing the effect of SRF species and 

earthworms on bulk soil properties 

 

 

Source of 

variation 

df Bulk soil (0 – 0.2 m) Bulk soil (0.2 – 0.4 m) 

Moisture pH N C Moisture pH N C 

SRF spp. 1 0.05 5.3* 5.3* 3.3  26.4*** 0.9 3.1 0.8 

Earthworm 1 0.2 1.0  0.06 0.8 1.7 2.3 0.4 5.6* 

Interaction 1 0.4 1.7 0.02 0.5 0.3 0.1 6.9* 4.8* 

* significant at p < 0.05; *** significant at p < 0.001; (n = 6). 

 

Table 7.3.20 ANOVA Table of F-values showing the effect of SRF species and 

earthworms on rhizosphere soil properties  

 

Source of 

variation 

df Rhizosphere soil (0 – 0.2 m) Rhizosphere soil (0.2 – 0.4) m) 

Moisture pH N C Moisture pH N C 

SRF spp. 1 0.0 18.2*** 1.1 2.7 18.7*** 2.1 4.0* 4.0* 

Earthworm 1 0.03 1.39 0.01 0.2 0.6 0.3 0.9 0.9 

Interaction 1 0.03 1.0 0.1 0.1 0.4 0.1 1.7 1.7 

* significant at p < 0.05*** significant at p < 0.001; (n =12). 

 

 

7.4  Discussion 

 

7.4.1 Effects of SRF species on earthworms 

 

Results suggest that individual SRF species differ in their influence on establishment of 

introduced earthworms. Compared with B. pendula, E. nitens offered less support for 

overall earthworm establishment. This study further suggests that influence of tree 

species on earthworms can vary with earthworm species. Both B. pendula and E. nitens 

had a positive influence on an L. terrestris population, however, E. nitens had a 
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negative influence on an A. chlorotica population, although this earthworm species was 

well established under B. pendula.  

 

Previous research has suggested that individual tree species have differing effects on 

earthworm community development, depending on litter quality and quantity (e.g. 

Hendriksen, 1990; Tian et al., 1993; Zou, 1993; Neirynck et al., 2000; Sarlo, 2006). In 

the current experiment, litter quantity was kept constant, but litter quality differed (see 

Table 3.3.3 for litter chemistry). Lower quality E. nitens litter, with a relatively low N 

content and high aluminium (Al) content, may negatively influence earthworm 

population development. However, if the litter quality was such a determinant factor in 

this experiment, it should have had the greatest influence on the litter-feeding species L. 

terrestris. Nevertheless, L. terrestris population establishment did not significantly 

differ between experimental SRF species. The major difference was observed with the 

endogeic A. chlorotica, which feeds on mineral soil (Bouché, 1977) and lives in close 

proximity of plant root systems (Zorn et al., 2005). Table 7.4.1 indicates the root 

chemistry of B. pendula and E. nitens (at 0 - 0.2 m soil depth) where this earthworm 

species has normally colonised. This suggests that significantly lower N concentration 

(p < 0.001) and significantly higher Al content (p < 0.05) in E. nitens roots (compared 

with B. pendula) may negatively influence A. chlorotica establishment under E. nitens.   
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Table 7.4.1 Root chemistry of B. pendula and E. nitens at 0 - 0.2 m soil depth 

 

Element B. pendula E. nitens Significance 

N (%) 2.49 ± 0.1 0.54 ± 0.1 *** 

C (%) 47.6 ± 0.2 45.1± 0.2 *** 

K (%) 0.24 ± 0.03 0.47 ± 0.03 *** 

Ca (%) 1.10 ± 0.06 1.62 ± 0.06 *** 

Mg (%) 0.11± 0.00 0.14 ± 0.00 * 

P (%) 0.30 ± 0.01 0.21 ± 0.02 * 

Na (mg/kg) 163 ± 16 2126 ± 92 *** 

Al (mg/kg) 1369 ± 107 2032 ± 212 * 

 * significant at p < 0.05;*** significant at p < 0.00l; (n =12) 

 

A significantly lower pH in rhizosphere soil (0 – 0.2 m depth) was observed below E. 

nitens compared with B. pendula (Table 7.4.2, p < 0.001). The decreased pH under E. 

nitens might be associated with root exudes which may influence earthworm 

development. 

 

Table 7.4.2 Chemistry of rhizosphere soil of two SRF species at 0 – 0.2 m depth  

Soil parameter B. pendula E. nitens Significance 

Soil moisture (%) 33.3 ± 1.5 33.4 ± 1.3 ns 

pH 8.13 ± 0.01 8.05 ± 0.01 *** 

C (%) 2.61 ± 0.17 2.91± 0.15 ns 

N (%) 0.20 ± 0.00 0.19 ± 0.00 ns 

ns - not significant* significant at p < 0.05; (n =12) 

 

Leaf litter quality can have a certain influence on A. chlorotica development as L. 

terrestris mix surface leaf litter with mineral soil. In the current experiment, the 
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negative influence of E. nitens on A. chlorotica is likely to be a combined effect of root 

chemistry and litter quality.  

 

7.4.2 Effects of earthworms on SRF growth  

 

In the presence of earthworms, E. nitens growth was significantly increased. However, 

growth of similarly treated B. pendula was not significantly influenced by earthworms 

after 12 months. This suggests that fast growing tree species such as E. nitens benefit 

more from earthworm activity than relatively slower growing SRF species such as B. 

pendula.  

 

With E. nitens, L. terrestris was considered to be the most responsible species for 

increasing plant growth, as A. chlorotica was not well-established under this tree (only 

40% of the initial population was recovered after 12 months). However, there was a 

possibility that dead A. chlorotica may have acted as a nutrient source, especially as a N 

source for E. nitens and this could have increased tree growth. Haimi et al. (1992) 

recorded such an influence for B. pendula seedling growth caused by dead L. rubellus. 

However, this influence in the present study is suggested to be negligible as dead A. 

chlorotica cannot provide such an amount of N as its biomass was very small 

(individual mean mass = 0.36 g) compared with the whole experimental system. 

 

In the present experiment, both below and above-ground tree biomasses (oven dry 

grams) of E. nitens were enhanced by introduced earthworms. In terms of below-ground 

biomass, earthworm influence was significant for main root production but not for the 

fine roots (< 2 mm in diameter). For above-ground biomass, earthworm influence was 

significant for stem and branches but not for the leaves. Both fine roots and leaves are 
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the plant feeders from soil and air respectively and the most active part of the plant. 

These behave differently from the other parts such as stems, branches and main root 

which act as translocators and storage places for nutrients. This may be the reason for 

the above results when evaluating longer term earthworm influence on biomass of 

different sections of E. nitens. However, all of the above tree growth parameters of B. 

pendula were not significantly influenced by earthworms. Since B. pendula was slow 

growing compared with E. nitens, effects on growth as a result of earthworm influence 

may not be observed within 12 months, especially when exposed to field conditions. 

Although not statistically significant, results for B. pendula in the current experiment 

showed a slight decrease in both below and above-ground biomasses in the presence of 

earthworms. Contrasting with current findings, Haimi et al. (1992) recorded a 

significant increase in above-ground biomass of B. pendula seedlings in the presence of 

L. rubellus in a laboratory experiment. This 51 week experiment grew B. pendula 

seedling (height = 90 mm) from seeds on a reconstructed forest soil (which included 

mineral, humus and litter horizons). These authors suggested that enhanced 

decomposition and nutrient mineralisation by earthworms could be the most important 

factors which increased seedling growth. The plant growth stage, soil type, the 

manipulated environmental conditions and the earthworm species can be reasons for 

completely different results in this study compared with current experimental results. 

However, similar to current findings, Haimi et al. (1992) also recorded a slight decrease 

in B. pendula root biomass in the presence of earthworms.  

 

Welke and Parkinson (2003) found significant increase in root biomass of Douglas-fir 

(Pseudotsuga menziesii) seedlings grown in Aporrectodea trapezoides-worked soil. The 

experiment, conducted in temperature controlled (15 °C) growth chambers, recorded no 

significant increase in shoot biomass following earthworm activity. However, in 
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addition to differences in environmental conditions, plant species and earthworm 

species, Welke and Parkinson‟s work differed from the current work as they grew 

seedlings on previously earthworm-worked soil, not in the presence of earthworms. To 

date, this was the only study which suggested a positive influence of earthworms on 

forest tree root biomass, but it did not measure the direct influence of earthworm on tree 

roots. 

 

Jana et al. (2010) studied the influence of A. caliginosa on growth of a model plant, 

Arabidopsis thaliana, in growth chambers. Although this was not a forest tree species, 

this laboratory experiment is worthy of comparison with the current study as it 

investigated the influence of earthworms on plant root growth in depth. The authors 

used two types of soil and concluded that in poor soil (with low mineral nutrients and 

organic matter content), earthworms increased soil nitrate content significantly and 

boosted above-ground biomass production. This study recorded a slight decrease in 

plant root biomass and length in the presence of earthworms in both types of soils. The 

authors further indicated that in poor soil, earthworms influenced the architecture of the 

root system. The biomass corresponding to fine roots was significantly reduced in the 

presence of earthworms, whereas biomass allocation to larger roots was increased. The 

current findings with E. nitens concur with this, as a significant increase in main root 

biomass, but slight reduction in fine root biomass was found.  However, this was not the 

case with B. pendula root biomass, as a slight reduction in both main and fine root 

biomass was found. As most B. pendula results (+/- earthworms) are not statistically 

significant after 12 months, a longer-term experiment would be required to confirm the 

actual influence of earthworms on slower growing SRF species.  
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In addition to previously discussed laboratory or greenhouse-based experiments, Muys 

et al. (2003) introduced a combination of anecic (L. terrestris and Nicodrilus longus) 

and endogeic (A. caliginosa, A. rosea and A. limicola) earthworms to field planting pits 

of F. excelsior, established on acidified sandy soil with P, K, Ca and Mg fertilisers. In 

this long-term experiment, tree growth was monitored annually. Control trees with no 

fertiliser or earthworms failed to grow and died after two years. Fertilised trees grew 

more rapidly than fertilised plus earthworm-treated trees during the first two years, but 

this trend was reversed from four years onwards. However, after 10 years, the difference 

between fertilised plots with and without earthworms was not significant. These authors 

observed that endogeic earthworms recolonise more successfully in acidified forest soil, 

than the less acid-tolerant anecic earthworms. The study suggested that the initial 

inferior growth of F. excelsior, in the presence of earthworms, may reflect N 

immobilisation caused by development of the earthworm population. This kind of N 

immobilisation by earthworms had been previously suggested by several authors (Syers 

and Springett, 1984; Robinson et al, 1992). The slightly slow growth of B. pendula in 

the presence of earthworms in the current experiment could well be mostly associated 

with initial N immobilisation by developing earthworms. The well-established 

earthworm population under B. pendula may create resource competition, especially in 

this closed system and retard tree growth. However, fast growing E. nitens may out-

compete earthworms for nutrient resources.  Further, less B. pendula growth in the 

presence of a high earthworm population can be associated with root feeding; especially 

by A. chlorotica, which lives in close proximity to plant root systems and could possess 

this kind of influence. Although various authors have suggested that earthworm have 

the potential to damage plant roots, only one study has confirmed that earthworms feed 

on unhealthy plant roots (Cortez and Bouché, 1992).  The direct influence of A. 

chlorotica on plant growth could not be confirmed in the current study, as it was used in 
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combination with L. terrestris. Therefore, further investigations would be required for 

confirmation using individual earthworm species inoculation. 

 

7.4.3 Influence of earthworms on SRF carbon and nutrient stocks and fluxes 

 

In the current experiment, carbon and nutrient content in any section of B. pendula was 

not significantly influenced by earthworms after 12 months. However, introduced 

earthworms had significantly increased carbon and nutrient content of some parts of E. 

nitens e.g. N content in new leaves and C, K, Ca, Mg and P in branches.  

 

Some previous investigations found that foliar nutrient levels were elevated in the 

presence of earthworms, especially N concentration (Haimi et al., 1992; Stephens et al., 

1994; Doube et al., 1997b).  Contrasting with current findings of B. pendula, Haimi et 

al. (1992), observed significantly increased leaf N content of seedlings grown in the 

presence of L. rubellus which they related to increased mineralisation in the presence of 

earthworms. However, Marshall (1971) found no effect of earthworm activity on the N 

content of Black spruce needles, whereas Robinson et al. (1996) recorded increased 

uptake of K and Mg by spruce (Picea sitchensis) roots grown in limed peat forest soil in 

the presence of A. caliginosa. Welke and Parkinson (2003) observed enhanced Ca in 

Douglas-fir needles, grown in earthworm-worked soil but not N levels. All of these 

previous findings, along with current results suggest that the scale of influence of 

earthworms on plant nutrient uptake, stocks and fluxes can vary with tree species, 

earthworm population size, earthworm species, soil type, tree growth stage and 

environmental conditions.  
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7.4.4 Influence of earthworms on SRF litter decomposition and nutrient release 

 

Results suggest that earthworms have a significant influence on surface litter removal of 

both experimental SRF species. Litter removal of B. pendula by earthworms was more 

rapid than for E. nitens. Previous studies observed that B. pendula is a preferred source 

of food, especially for L. terrestris (Satchell and Lowe, 1967; Butt, 2011). Some studies 

suggest that L. terrestris has a major contribution to overall breakdown and 

incorporation of tree litter into mineral soils in many temperate types of woodland 

(Satchell, 1967; Scheu and Wolters, 1991). Endogeic earthworms such as A. chlorotica 

feed mainly on mineral soil and do not directly remove leaf litter from the soil surface.  

However, anecic and endogeic earthworms have synergistic effects on organic matter 

distribution within the soil system (Lowe and Butt, 2003). In the current experiment, 

total C, N, Ca, Mg and P loadings to the soil system (g tube
-1

year
-1

) through litter 

decomposition was significantly increased for B. pendula in the presence of earthworms 

compared with control. For E. nitens, C, N and Ca loading was increased in the 

presence of earthworms compared with control. Total C and nutrient loading through 

litter decomposition vary with tree litter species. Generally B. pendula showed a higher 

earthworm-mediated C, N, Ca and Mg loading than E. nitens. The current study 

suggests that litter decomposition and nutrient loading to the soil system by earthworms 

vary with tree litter species. 

 

7.4.5 Effects of earthworms on soil properties 

 

In the present study, a significant influence of earthworms on soil properties was 

recorded only for total C content in bulk soil (0.2 – 0.4 m) of B. pendula.  All of the 
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other soil properties (soil moisture, pH, N or C) under B. pendula or E. nitens were not 

significantly influenced by introduced earthworms compared to their control soils.  

 

Positive influences of earthworms on soil physical, chemical and biological properties 

are widely reported by previous researchers (see section 2.3.2 for details). Zhang and 

Hendrix (1995) found that the endogeic A. caliginosa enriched the upper soil layer with 

13
C from litter through translocation from the humus layer. Welke and Parkinson (2003) 

recorded less amounts of organic matter in the upper horizon (forest floor) of 

earthworm-worked soil and significantly higher organic matter content in earthworm-

worked lower horizon (mineral soil) compared with counterpart controls.  

 

Many studies have investigated the influence of earthworms on soil N content (Syers 

and Springett, 1984; Lee, 1985; Haimi and Huhta, 1990; Subler et al., 1997). However, 

this effect varied with earthworm species, soil type, as well as tree species grown. Most 

of the studies on the effects of earthworms on soil N have focused on available N, 

specifically NO3
ˉ 

and NH4
+
 levels. In a laboratory experiment, Haimi and Einbork 

(1992) found an increase of NH4
+
 levels in soils in the presence of A. caliginosa 

tuberculata, but no effect on NO3
ˉ
. Welke and Parkinson (2003) observed that NO3

- 

levels were significantly increased in earthworm-worked soil compared with control 

after 5 months. At final sampling (10 months), there was no clear trend, although NO3
- 

was significantly lower compared to the first sampling. These authors suggested that
 
the 

low
 
NO3

-
 concentration at the end of experiment was due to microbial immobilisation or 

uptake by plants. In this study, NH4
+
 levels did not differ significantly between 

earthworm-worked soil and control. Jana et al. (2010) reported that in nutrient rich soil, 

neither earthworms nor the A. thaliana plant significantly impacted on NO3
ˉ 

or NH4
+ 

content in soil. However, in nutrient poor soil, they observed increased amounts of soil 
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NO3
ˉ 

content and decreased amounts of NH4
+
 content in the presence of earthworms. 

Compared with earthworms, plants had an opposite impact on N content. However, 

when both earthworms and plant were present, soil NO3
ˉ 

content was increased but 

NH4
+ 

was decreased. The current study measured only the total N content of soil, 

neither the NO3
ˉ
 - nor NH4

+ 
levels. The results suggest that earthworms had no 

significant influence on soil total N content under B. pendula or E. nitens after 12 

months, but this may be too short a time to identify such effects. However, an observed 

difference in plant N stocks in E. nitens suggests a certain influence on available NO3
ˉ
 

and NH4
+
 by earthworms.  

 

Previous studies of effects of earthworms on soil pH recorded variable results; from 

remarkable increases to minor or no effects. Muys et al. (2003) reported an increase of 

pH in acidified sandy soil with earthworm activity. Haimi and Einbork (1992) found no 

significant difference in soil pH value in A. caliginosa tuberculata-worked humus or 

mineral soil compared with control soil. Haimi and Huhta (1990), who used epigeic 

earthworms, observed significant increases in pH of leachate from their experimental 

systems. Trigo and Lavelle (1993) detected a slight increase in pH near the drilosphere 

(lining of an earthworm burrow) of L. terrestris and Allolobophora molleri. The current 

study, which used pH neutral loam soil, suggested that earthworms had no significant 

influence on soil pH after 12 months.  

 

This field-based approach, which recorded 100% tree survival at the termination of the 

experiment, was successful at determining earthworm-tree interactions. The current 

experiment stands out from past studies, as it was the first field experiment to 

investigate the direct interaction between SRF trees and earthworms. Also, to date, this 

appears to be the only use of eucalyptus for such an interaction study.  



263 

 

However, a few practical problems were noted in the current system, although these did 

not influence experimental results. A very small number of earthworms from the 

environment entered the experimental system, although the experimental system was 

designed to prevent earthworm escape or ingress. Further, the main root of two E. nitens 

grew down beyond the basal mesh. These practicalities could be minimised by 

increasing the tube depth and by leaving a larger distance between soil surface and tube 

top and by covering top and base of tubes more securely with very fine mesh (< 1mm). 

The influence of earthworms on B. pendula growth was not obvious in this 12 month 

experiment. A longer-term experiment, probably with a higher density of earthworms is 

suggested to confirm the influence of earthworms on B. pendula growth.  The actual 

influence of A. chlorotica on plant growth, especially on roots was not clear in this 

experiment, as this species was used in combination with L. terrestris. A further 

investigation would be required to confirm this fact, using A. chlorotica inoculation 

alone. 

 

A summary of the major findings from the field-based SRF-earthworm interaction 

experiment: 

  

 Non-native E. nitens had a negative impact on A. chlorotica population 

establishment compared with native B. pendula. 

 Earthworms increased nutrient uptake, growth and biomass production of fast 

growing E. nitens compared with control. 

 Earthworms did not significantly influence B. pendula nutrient uptake or growth. 

 Surface litter removal of E. nitens was three times greater in the presence of 

earthworms compared with control. 
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 B. pendula surface litter removal was five times greater in the presence of 

earthworms compared with control. 

 The rate of litter decomposition, carbon and nutrient loading to the soil system by 

earthworms were greater for B. pendula than E. nitens. 
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CHAPTER 8: DISCUSSION 

 

 

8.1 Introduction 

 

 

This study set out to investigate the effects of SRF tree species and their litter quality on 

earthworm communities, diversity and activity. In addition, the effects of earthworms 

on SRF litter decomposition, carbon and nutrient cycling and tree growth were assessed 

in order to understand more about the interactions of these two ecosystem components. 

The scientific literature on this area, especially with respect to non-native tree species in 

the context of the UK is sparse and several vital questions within the area awaited 

investigation. The investigation sought to answer such research questions while 

providing valuable information to support sustainable SRF expansion. This thesis began 

with a number of aims and objectives that have been addressed through field survey, 

laboratory experiments and a field experiment. Results have provided answers to 

specific questions and hypotheses and an array of SRF-earthworm interactions have 

been amassed. This final chapter seeks to utilise these findings (as detailed in Chapters 

4 - 7), draw them together and present a unified assessment of how the aims and 

objectives have been met. In addition the implications of research, limitations and 

suggestions for future research directions are further discussed. 

 

 

8.2 SRF-Earthworm interactions 

 

 

8.2.1 Effects of SRF growth in different land-use systems on earthworm 

community development 

 

Baseline earthworm and soil surveys (section 4.2) suggested that conversion of various 

land-use systems (e.g. ex-arable and reclaimed sites) to SRF can act to support 

earthworm community development. However, the degree of benefit of such 



266 

 

conversions depends not only on the prior land use but also on the SRF species, tree age 

and soil type. The survey work at an ex-arable loamy soil where eucalyptus was grown 

as SRF showed that E. nitens had grown well, produced large quantities of litter and this 

had significantly increased earthworm density and diversity after six years, something 

was not apparent in an adjacent E. gunnii stand. Similar eucalyptus growth in reclaimed 

sandy soil supported rapid earthworm colonisation and after five years, the earthworm 

density under both E. nitens and E. gunnii had reached a similar density to adjacent 

pasture.  These eucalyptus plantations were still young and over the time frames 

investigated, there is every suggestion that the presence of these trees on the considered 

SRF sites has positively influenced earthworm community development. However, in 

time, the trees will impose their real impact on the soil completely and may change soil 

faunal density and diversity. Only longer term investigations will reveal full eucalyptus 

effect on soil attribute.  

 

Further investigations on growth of B. pendula and A. pseudoplatanus on a previously 

coniferous forest site showed no positive influence on earthworm re-establishment even 

after 15 years. This suggests that the longer-term negative influence imposed by 

coniferous trees on earthworm development could not be recovered with short-term 

SRF development and it may require a few rotations to acquire significant change. Also, 

the growth of B. pendula and C. sativa on acidic sandy soils had not significantly 

increased earthworm density, but had affected the species composition after 20 years. 

An overall comparison could not be established during the field survey across the entire 

tree species investigated due to the associated number of variables. However, the survey 

work at selected sites demonstrated that land-use history, soil type, SRF species and tree 

age display an interactive effect on earthworm density and diversity. This needs further 

field investigations, but it does mean that selection of suitable SRF species for 
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appropriate land-use systems is very important for land improvement and sustainable 

soil management while ensuring maximum biomass benefit.  

 

8.2.2 Effects of SRF litter quality and root chemistry on earthworm community 

development 

 

Earthworm food selection, feeding, growth and reproduction are vital activities which 

determine overall earthworm community development. Comparative laboratory-based 

experiments showed that SRF species litter had a direct influence on earthworm life 

history parameters and behaviour. Choice chamber experiments conducted with ground 

litter particles (1 – 2  mm) (section 5.2)  demonstrated that native British earthworms 

(A. chlorotica, A. caliginosa, A. longa and L. terrestris) preferred native A. glutinosa, B. 

pendula and F. excelsior litter over non-native A. pseudoplatanus, C. sativa, and E. 

nitens litter. Of the six species used, all earthworm species showed least preference for 

C. sativa litter. Further investigation using the same techniques suggested that litter-

feeding A. longa and L. terrestris equally preferred native tree litter and it is notable that 

both showed a greater preference for E. nitens over other non-native tree species. 

Webcam recording experiments conducted with 10 mm leaf disks (section 5.3) showed 

that L. terrestris had clear leaf litter selection behaviour and this was not a random 

activity. These results authenticated the results of choice chamber experiments for the 

same earthworm species. Growth and reproduction experiments with L. terrestris 

suggested that native A. glutinosa litter demonstrated a very positive effect while C. 

sativa showed the most depressed effect on hatchling growth, adult mass maintenance 

and even cocoon production compared with other selected SRF species. Non-native E. 

nitens litter was as effective as native SRF species such as B. pendula and F. excelsior 

in terms of promoting earthworm growth in addition to adult mass maintenance. The 

litter chemistry results suggested that the SRF litter quality, especially N concentration, 

http://www.just-green.com/2533/Just-Green-Silver-Birch-Trees--Betula-Pendula-.html?referrer=froogle&utm_source=google&utm_medium=froogle&utm_campaign=pid2533
http://www.just-green.com/2533/Just-Green-Silver-Birch-Trees--Betula-Pendula-.html?referrer=froogle&utm_source=google&utm_medium=froogle&utm_campaign=pid2533
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C:N ratio and Ca concentration, was the reason for observed difference between SRF 

species in the above laboratory experiments. However, in contrast with the laboratory 

findings, a comparative (litterbag) feeding experiment at an ex-agricultural field 

(section 6.2) showed that a mixed earthworm community accepted A. pseudoplatanus, 

B. pendula, C. sativa, and E. nitens equally, but favoured F. excelsior. A field-based 

SRF-earthworm interaction experiment (Chapter 7) suggested that B. pendula litter was 

more acceptable than E. nitens litter to a mixed earthworm community consisting of L. 

terrestris and A. chlorotica. This experiment showed that in addition to litter quality, 

SRF root chemistry (N and Al content and root exudates) had a direct influence on 

earthworm populations. As a result of the combined effect of litter and root chemistry, 

E. nitens had a negative influence on A. chlorotica development while B. pendula 

demonstrated a greater support for the same species development. In this experiment, 

both tree species supported L. terrestris development similarly suggesting that influence 

of trees on earthworms may vary with earthworm species. Overall, laboratory and field-

based results suggest that SRF litter quality and root chemistry impose a direct influence 

on earthworm community development. 

 

 

8.2.3 Influence of earthworms on SRF litter decomposition, carbon and nutrient 

release 

 

 

Both field and laboratory-based experimental results suggested that earthworms make a 

great contribution to SRF litter decomposition, carbon and nutrient release. The litterbag 

studies at various original forest sites (section 6.2) showed that the magnitude of the 

earthworm contribution to litter decomposition and nutrient release was site-specific; 

Alcan (E. nitens) and Gisburn (F. excelsior) sites which recorded a high earthworm 

density and diversity showed a significant contribution, while Rogate (C. sativa) and 

http://www.just-green.com/2533/Just-Green-Silver-Birch-Trees--Betula-Pendula-.html?referrer=froogle&utm_source=google&utm_medium=froogle&utm_campaign=pid2533
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Gisburn (B. pendula and A. pseudoplatanus) sites with low earthworm density and 

diversity showed no significant contribution. These results suggested that the 

contribution to SRF litter decomposition, C and N release depends on earthworm 

density and diversity present which is a function of tree species, soil type and land-use 

history. The comparative litterbag study at an ex-agricultural site (section 6.2) which 

was earthworm rich also suggested that earthworms have a major contribution to litter 

decomposition on both native and non-native SRF species. This comparison revealed 

that earthworm contribution to SRF litter decomposition varied with tree species; F. 

excelsior recorded a significantly higher decomposition rate while B. pendula, E. nitens, 

C. sativa and A. pseudoplatanus showed a similar rate of decomposition in the presence 

of a mixed earthworm community. The field-based SRF-earthworm interaction 

experiment (chapter 7) suggested that earthworms contribute to both B. pendula and E. 

nitens litter decomposition, carbon and nutrient stocks and fluxes in the soil system. 

This experiment further indicated that this contribution was greater for B. pendula than 

E. nitens. Further, a laboratory cast analyses experiment (section 6.3) suggested that L. 

terrestris had a direct influence on SRF litter decomposition and N mineralisation. The 

temporal trend of earthworm-mediated NH4
+
- nitrogen release varied with SRF species. 

B. pendula-fed earthworms initially showed a lower level of NH4
+
 in their casts and 

higher amounts after five weeks, while E. nitens-fed earthworms showed the reverse. 

Further, NO3
-
 content in earthworm casts of litter-amended treatments decreased 

throughout the experiment compared with control casts suggesting that litter 

amendments have an influence on nitrification activity mediated by earthworms. 

Overall laboratory and field-based results suggest that earthworms are a major 

component which determines the SRF litter decomposition, carbon and nutrient cycling 

within most of these sustainable systems. 
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8.2.4 Influence of earthworm on SRF nutrient uptake and tree growth  

 

The field-based SRF-earthworm interaction experiment with one year-old tree seedlings 

(chapter 7) suggested that earthworms have a direct influence on SRF nutrient uptake, 

tree growth and biomass production. However, the degree of influence varied with tree 

species. Presence of a mixture of endogeic and anecic earthworms (A. chlorotica + L. 

terrestris) increased nutrient uptake and biomass production of E. nitens, but the same 

earthworms showed no significant influence on B. pendula. This short-term (12 month) 

experiment suggested that rapidly growing tree species, at least in their initial stage of 

growth, benefit more from earthworm activity than slow growing species during the 

time frame investigated.  

 

The findings of this research demonstrated a direct influence of tree species on 

earthworm and soil development. Additionally, it showed the importance of earthworms 

for litter decomposition, nutrient cycling and tree growth. In a natural ecosystem, all 

these effects and responses are inter-linked and existence of affirmative mutual-

relationships between trees, soils and soil fauna are very important for stability and 

health of ecosystems. 

 

8.3 Key findings 

 

1. Growth of SRF eucalyptus within marginal-arable or reclaimed sites has led to 

either relatively rapid earthworm colonisation and community development, or 

maintenance and enhancement of an established earthworm community after five to 

six years. SRF species, tree age, land-use history and soil type exhibited an 

interactive effect on overall earthworm community development. 
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2. SRF litter quality showed a direct effect on earthworm food selection, growth and 

reproduction. The native A. glutinosa, B. pendula and F. excelsior litter supported 

earthworms and their activities over non-native A. pseudoplatanus, C. sativa, and 

E. nitens. Evidence suggests that earthworms preferred E. nitens litter over A. 

pseudoplatanus or C. sativa. 

 

3. Earthworms showed a significant contribution to SRF litter decomposition and C 

nutrient release within SRF systems and the degree of contribution varied with SRF 

species, earthworm density and diversity. Field studies demonstrated that a mixed 

earthworm community accepted litter provision from some non-native species but 

favoured particular native trees.  

 

4. Earthworm influence on nutrient uptake, growth and biomass production varied 

with tree species. A one year field experiment showed that rapidly growing E. 

nitens benefited more from earthworm activity than relatively slow growing B. 

pendula. 

 

5. The current work supports the production of SRF as being beneficial to 

belowground biodiversity and carbon and nutrient cycling, as with only one 

exception (C. sativa), results tended to show that SRF-earthworm interactions were 

positive. It is perhaps most interesting that non-native E. nitens showed a positive 

interaction with native British earthworms.  

 

 

 

 

 

 

http://www.just-green.com/2533/Just-Green-Silver-Birch-Trees--Betula-Pendula-.html?referrer=froogle&utm_source=google&utm_medium=froogle&utm_campaign=pid2533
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8.4 Implication for sustainable SRF expansion  

 

 

Besides demonstrating benefits from the presence of earthworms in SRF systems, this 

study revealed the direct and indirect effects of SRF species on earthworm community 

development.  The earthworm density and diversity results at SRF study sites will be 

very useful for SRF scientists when modelling the effect of SRF growth on soils and 

soil biodiversity and their feedback effects on nutrient uptake and aboveground growth. 

Since earthworms have a direct link with above-ground plants and animals, earthworm 

data will be beneficial in assessing overall ecosystem sustainability. The baseline 

earthworm and soil survey data will be advantageous in the future when assessing and 

comparing the long-term effects of SRF on soil sustainability. The comparative 

laboratory and field findings related to SRF litter quality will support practitioners to 

decide the appropriate tree species for sustainable SRF expansion within the UK. The 

litter decomposition, carbon and nutrient release/loading data will be useful for 

modelling carbon sequestration and nutrient cycling within these systems. The 

earthworm-mediated nutrient release/loading data will be further beneficial for nutrient 

management and fertiliser application process.  The tree growth experiment indicated 

that earthworm inoculation, especially with litter feeding L. terrestris in the short-term 

can, benefit the rapidly growing SRF systems such as eucalyptus in terms of litter 

decomposition, nutrient cycling, tree growth and biomass production. These data will be 

useful for reforestation of loamy soil sites with such trees. Overall, this work supports 

the production of SRF, as with only one exception (C. sativa), results tended to show 

that SRF species support, maintain or enhance soil biodiversity functions, hence soil 

sustainability. In respect of the use of eucalyptus (particularly E. nitens), during the time 

frame investigated, this research has found no reason to restrict expansion of planting in 

terms of earthworms and soil sustainability.  
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8.5 Limitations 

 

This research showed clear interactions between SRF species and earthworms. 

However, a number of caveats need to be noted regarding the present study. The 

baseline earthworm survey did not permit comparison of all SRF species due to the 

limited availability of appropriate sites. Further, some of the sites used in this study 

were not actual SRF trial sites (e.g. Gisburn Forest, Rogate) but were general forest sites 

which consisted of monoculture plantations of potential SRF species. A seasonal or 

annual comparison of earthworm density or diversity could not be performed in selected 

SRF sites due to limited labour and resource availability. A tree ageing or harvesting 

effect could not be investigated due to time constraints during the current project.  

Laboratory earthworm growth and reproduction experiments were limited to a major 

litter-feeding earthworm (L. terrestris) and six SRF species due to usual scientific 

limitations. Choice-chamber experiments were expanded to four species of earthworm 

(in monoculture), but were still had to be limited to six SRF species. The webcam 

experiment could not be replicated as much as was desired due to the requirement for 

large amounts of storage capacity to save images and human workload associated with 

setting-up, viewing and reviewing of recorded materials. Field litter decomposition 

studies were limited to five SRF species because of the material costs, in addition to 

limitations of finding appropriate sites for such an investigation. The laboratory casting 

experiment was limited to three SRF species due to the associated analytical cost. The 

field-based SRF-earthworm experiment was limited to two tree species and two species 

of earthworm and only one year of duration due to maintenance, analytical costs and 

time constraints of this research. 
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8.6 Future Research 

 

Based on current findings, innumerable investigations could be developed for further 

research in this area. However, a number of important studies using similar 

experimental designs are suggested. 

 

1. Expanded field survey work to new SRF sites to included monitoring of other 

types of soil fauna. This would help to establish the effects of SRF species on 

overall soil biodiversity. 

2. Longer-term surveys, throughout the SRF cycle, to monitor effects of tree 

growth and harvesting on the earthworm community. 

3. Further laboratory growth and reproduction experiments with a greater number 

of earthworm species to investigate combinations of species (interactions) to 

present more realistic results comparable with field data. 

4. Longitudinal litterbag studies in SRF systems to establish litter decomposition 

and nutrient cycling as SRF trees grow with associated soil faunal development.   

5. Longer-term (e.g. two-four years) tree growth experiments with selected species 

of SRF and earthworms to reveal the direct effects of earthworms on SRF 

nutrient uptake and tree growth.  

6. Further laboratory and field experiments to confirm direct effect of eucalyptus 

root exudates on earthworms and other soil fauna. 

 

 

With a growing requirement for biomass production to satisfy energy demand, SRF 

could be one part of the solution. Nevertheless, this could lead to vast areas of the UK 

diverted into SRF, e.g. eucalyptus, but perhaps food production will be more important. 

Either way, earthworms will have a vital role to play.  
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Appendix I. Project Milestones (Oct 2009 – Dec 2012) 

 

Activity  Months 

0 3 6 9 12 15 18 21 24 27 30 33 36 39 

1. Comprehensive literature survey               

2. Development of an experimental design               

3. Field earthworm/soil survey                

4. Laboratory earthworm growth and reproduction 

experiments  
              

5. Laboratory choice-chamber experiments               

6. Web-cam recording experiments                 

7. Field litterbag studies               

8. Laboratory earthworm cast analysing experiment               

9. Field-based SRF-earthworm interaction experiment               

10. Data analysis & interpretation               

11. Thesis writing               

12. Conferences/Seminars               
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Appendix II. Application for safety and ethical approval for all projects 

Faculty of Science and Technology 

All undergraduate, postgraduate, commercial and research projects need ethical approval. No field work, 

experimentation or work with participants can start until approval is granted. The questions below should 

be completed by the Principal Investigator or supervisor of the proposed project. Where projects involve 

students, the Principal Investigator is always the supervisor and never the student.  

For undergraduate and postgraduate taught projects: use the questions to identify whether the project 

should be referred to the relevant Ethics Committee.  

 If you answer “No” to questions, then do not apply for approval. 

 If you answer “Yes” to any of the questions, please discuss them with your supervisor. If your 

supervisor is confident that you can follow standard forms, protocols or approaches, then your 

supervisor can approve your application. If your supervisor is not, then the application should be 

sent for approval. 

For research, commercial and other projects: use the questions to help compile suitable evidence to 

support your application. 

 If you answer “No” to questions, then your application is likely to be approved quickly.  

 If you answer “Yes” to any of the questions, please provide evidence relating to the management 

of the activity. If your approach seems appropriate, then your application is likely to be approved 

quickly. 

Submit the application form and any supporting evidence to an appropriate Ethics Committee. Different 

committees might have different approval processes. 

Principal Investigators, or project supervisors, are responsible for ensuring that all activities fall within 

the principles set down in the University Code of Conduct for Research and the University Ethical 

Principles for Teaching, Research, Knowledge Transfer, Consultancy and Related Activities. They are 

also responsible for exercising appropriate professional judgment in undertaking this review and 

evaluating the activity according to the criteria laid down in this application. If you are uncertain about 

any sections of this document, or need further information and guidance, please consult a member of the 

relevant Faculty/School Ethics Committee. 

The Faculty and School Ethics and Safety Committees are to ensure that you comply with the 

University‟s ethical principles in the conduct of the activity. Committees can ask for clarification or set 

conditions for you to meet before approval is granted.  

Expiry and review: The principal investigator is responsible for ensuring activities are reviewed. 

Normally: 

 each year: review risk assessments: check for changes to hazards and training refreshers  

 after 5 years: review ethics: check for new laws, practices  

 closure: dispose of materials and sensitive data properly  

Refer to the relevant documents from the following links: 

1. Ethical Principles for Research, Consultancy, Practical Work and Related Activities 

2. Research Governance (Multiple documents) 

3. Health, Safety & Environment (Multiple documents) 

 

http://www.uclan.ac.uk/information/research/research_degrees/ethics_research_governance.php
http://www.uclan.ac.uk/information/research/research_degrees/ethics_research_governance.php
http://www.uclan.ac.uk/information/research/research_degrees/ethics_research_governance.php
http://www.uclan.ac.uk/information/services/fm/environment/files/Hazardous_Waste_Disposal_GuidancePDF.pdf
http://www3.imperial.ac.uk/secretariat/policiesandpublications/informationsystemssecurity/guidelines/guide11/
http://www.uclan.ac.uk/scitech/files/aethics.doc
http://www.uclan.ac.uk/information/research/research_degrees/ethics_research_governance.php
http://www.uclan.ac.uk/information/services/fm/safety_and_health/guidance_procedures.php
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1 Project synopsis  Approver: Cmte number: 

1.1 Title  Soil fauna diversity under short rotation forestry – impacts and responses 

1.2 Project type 
Original 

research 
 

Research 

degree 
x PG taught  UG taught  Commercial  

1.3 Short 

description  

in layman's terms 

[no acronyms or 

jargon] 

 

The overall aim of this project is to investigate effects of interacting factors of SRF 

species and soil types on the below-ground diversity of earthworms. In addition, the 

effects of varying earthworm population on SRF tree growth will be assessed. 

Results on earthworm diversity and functions will be linked with litter quality and 

quantities, soil carbon and nutrient cycling of these systems in addition to above-

ground biodiversity. A range of field and laboratory experiments will be used to 

investigate interactive effects between plants, soils and earthworms within SRF 

ecosystem. 

1.4 Dates   Start 01/10/2009 End 30/12/2012 

1.5 School of ….. Built and Natural Environment 

 

2 Participants 

2.1 Project supervisor 

/principal investigator: 

name, position 

and original signature  

Dr. Kevin Butt (DoS) 

Dr. Elena Vanguelova (2
nd

 Supervisor) 

Prof. Andy Moffat (3
rd

 Supervisor) 

2.2 Co-workers:  

names and positions  

[eg student] 

 

Nalika Rajapaksha (Research student) 

 

3 External collaborators 

3.1 List external collaborating bodies 

Forestry Commission 

3.2 Provide evidence of any ethical approvals obtained [or needed] by external collaborators 

N/A 

3.3 Indicate whether confidentiality agreements have been or will be completed  

N/A 

 

Read any associated procedures and guidance or follow any associated checklist, and delete, Yes or No, 

for each characteristic in A) to F) below.  

If you respond No, then in your judgment you believe that the characteristic is irrelevant to the 

activity. 

If you respond Yes, then you should provide relevant documentation [including risk assessments] 

with the application, and cross-reference to it, eg A2 or B9. Use reference numbers of standard 

forms, protocols and approaches and risk assessments where they exist. 

 

A) Does the activity involve field work or travel to unfamiliar places? If Yes: 

1. Does the activity involve field work or leaving the campus [eg overseas]? 

2. Does the field work involve a „party‟ of participants or lone working ? 

3. Does the activity involve children visiting from schools? 

A) Yes/No 

1. Yes/No   

2. Yes/No   

3. Yes/No   

B) Does the activity involve humans other than the investigators? If Yes: 

1. Will the activity involve any external organisation for which separate and 

specific ethics clearance is required (e.g. NHS; school; any criminal justice 

agencies including the Police, CPS, Prison Service)? – start this now [CRB 

clearance process at Loughborough; Uclan contact Carole Knight]  

2. Does the activity involve participants who are unable to give their informed 

consent (e.g. children, people with severe learning disabilities, unconscious 

patients etc.) or who may not be able to give valid consent (e.g. people 

experiencing mental health difficulties)?  

3. Does the activity require participants to give informed consent? [consent 

guidance at City U]  

4. Does the activity raise issues involving the potential abuse or misuse of power 

and authority which might compromise the validity of participants‟ consent (e.g. 

relationships of line management or training)? 

5. Is there a potential risk arising from the project of physical, social, emotional or 

psychological harm to the researchers or participants? 

B) Yes/No 

1. Yes/No 

 

 

 

2. Yes/No 

 

 

 

3. Yes/No 

 

4. Yes/No 

 

 

5. Yes/No   

 

http://www.uclan.ac.uk/information/services/fm/safety_and_health/risk_assessment_guidance.php
http://www.uclan.ac.uk/information/services/fm/safety_and_health/field_trips.php
http://www.uclan.ac.uk/information/services/fm/safety_and_health/staff_travel.php
http://www.uclan.ac.uk/information/services/fm/safety_and_health/staff_travel.php
http://www.uclan.ac.uk/information/services/fm/safety_and_health/lone_working.php
http://www.uclan.ac.uk/information/services/fm/safety_and_health/school_visits.php
http://www.lboro.ac.uk/admin/personnel/recordchecks.html
http://www.uclan.ac.uk/information/services/sas/admissions/staff_list.php
http://www.city.ac.uk/acdev/academic_framework/re/guidance_consent.html
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6. Does the activity involve the researchers and/or participants in the potential 

disclosure of any information relating to illegal activities; the observation of 

illegal activities; or the possession, viewing or storage (whether in hard copy of 

electronic format) which may be illegal? 

7. Will deception of the participant be necessary during the activity? 

8. Does the activity (e.g. art) aim to shock or offend? 

9. Will the activity involve invasion of privacy or access to confidential information 

about people without their permission? 

10. Does the activity involve medical research with humans, clinical trials or use 

human tissue samples or body fluids? 

11. Does the activity involve excavation and study of human remains? 

6. Yes/No 

 

 

 

7. Yes/No   

8. Yes/No 

9. Yes/No 

 

10. Yes/No   

 

11. Yes/No   

C) Does the activity involve animals and other forms of life? If Yes: 

1. Does the activity involve scientific procedures being applied to a vertebrate 

animal (other than humans) or an octopus? 

2. Does the activity involve work with micro-organisms? 

3. Does the activity involve genetic modification? 

4. Does the activity involve collection of rare plants? 

C) Yes/No 

1. Yes/No   

 

2. Yes/No   

3. Yes/No   

4. Yes/No   

D) Does the activity involve data about human subjects? If Yes: 

1. After using the data protection compliance checklist, have you any data 

protection requirements? 

2. After answering the data protection security processing questions, have you any 

security requirements? [Data storage] [keep raw data for 5 years]  

D) Yes/No 

1. Yes/No 

 

2. Yes/No   

E) Does the activity involve hazardous substances? If Yes: 

1. Does the activity involve substances injurious to human or animal health or to the 

environment? Substances must be disposed properly.  

2. Does the activity involve igniting, exploding, heating or freezing substances?  

E) Yes/No 

1. Yes/No 

 

2. Yes/No   

F) Other activities: 

1. Does the activity relate to military equipment, weapons or the Defence Industry? 

2. Are you aware of any ethical concerns about the company/ organisation, e.g. its 

product has a harmful effect on humans, animals or the environment;  it has a 

record of supporting repressive regimes; does it have ethical practices for its 

workers and for the safe disposal of products? 

F)  

1. Yes/No   

 

2. Yes/No   

Note: in all cases funding should not be accepted from tobacco-related industries   

 

If you respond Yes, then you should provide relevant documentation [including risk assessments] with 

the application, and cross-reference to it, eg A2 or B9. Use reference numbers of standard forms, 

protocols and approaches and risk assessments where they exist. 

 

These standard forms are being followed [cross reference to the characteristic, eg A2]: 

 

 

 

 

 

 

 

 

 

A1 – This research includes travelling and field work within UK. Complete risk assessments for 

travelling and all the field works are attached. 

A2 – The particular project include lone field work. A complete risk assessment for lone field work is 

attached. 

C2 - This research involve with soil invertebrate fauna mainly earthworms.  

E1 - Some project activities are engaged with hazardous substances (Formaldehyde). CoSHH risk 

assessment for Formaldehyde is attached 

http://www.uclan.ac.uk/information/services/sds/dpa_foia_management/data_protection.php
http://www.uclan.ac.uk/information/services/sds/dpa_foia_management/advice.php
http://www.uclan.ac.uk/information/services/sds/dpa_foia_management/DP_code_of_practice.php
http://www.uclan.ac.uk/information/services/sds/dpa_foia_management/advice.php
http://www.uclan.ac.uk/information/services/sds/dpa_foia_management/DP_code_of_practice.php#SECURITY
http://www.uclan.ac.uk/health/research/data_storage.php
http://www.uclan.ac.uk/health/research/data_storage.php
http://www.uclan.ac.uk/information/services/fm/safety_and_health/coshh.php
http://www.uclan.ac.uk/information/services/fm/environment/files/Hazardous_Waste_Disposal_GuidancePDF.pdf
http://www.uclan.ac.uk/information/services/fm/safety_and_health/risk_assessment_guidance.php
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Appendix III. Risk Assessments 

                                                                                Safety, Health and Environment Section 

 

RISK ASSESSMENT FORM 

 
 

Risk Assessment For  Assessment Undertaken By  Assessment Reviewed 

Service / Faculty / Dept:  

School of Built and Natural Environment 

 Name:  Nalika Rajapaksha  Name:  

 

Location of Activity: Forestry sites in England and 

Scotland 

 Date: 01/01/10  Date: 

Activity: Travelling by Hired vehicle/train  Signed by Head of Dept / equivalent 

 

  

REF:   Date : 10/01/10   

 

List significant hazards 

here: 

List groups of 

people who are at 

risk: 

List existing controls, or refer to safety procedures etc. For risks, which are 

not adequately 

controlled, list the 

action needed. 

Remaining level of risk: 

high, med or low 

Vehicle Nalika Driver to complete pre-trip check of vehicle, Car Use Self Declaration 

Statement has been completed, Drivers to familiarise themselves with 

controls of hire cars before setting off, Seat belts must be worn 

 Low 

Slips trips and falls Nalika Particular care should be used when walk  Low 

Manualhandling 

(luggage) 

Nalika Manual handling assessments, trolley available, information 

provision, training 

 Low 

Hotel Nalika Approved hotel list, Should read evacuation procedures at hotel   Low 

Personal 

Security 

Nalika Route will be planned in advance and the Line Manager 

Should be notified of the estimated time of arrival. Mobile phone 
 Low 

Environmental 

Conditions (weather) 

Nalika Check weather forecast, Personal protective equipment as appropriate  Low 
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Safety, Health and Environment Section 

 

RISK ASSESSMENT FORM 

 

 

Risk Assessment For  Assessment Undertaken By  Assessment Reviewed 

Service / Faculty / Dept:  

School of Built and Natural Environment 

 Name:  

Nalika Rajapaksha  

 Name:  

 

Location of Activity: Field/Le206/Forest research 

centre 

 

 Date: 01/01/10  Date: 

Activity: Soil Analysis 

 
 Signed by Head of Dept / equivalent 

 

  

REF:   Date : 10/01/10   

 

List significant hazards 

here: 

List groups of 

people who are at 

risk: 

List existing controls, or refer to safety 

procedures etc. 

For risks, which are not adequately 

controlled, list the action needed. 

Remaining level of risk: 

high, med or low 

Trips, slip and falls Nalika Avoid lone working, Mobile phone, 1
st
 aid 

training 

 Low 

Microbial infection from soil Nalika Tetanus vaccination (current)  Low 

Mechanical injury to hands Nalika Use equipment as directed, Wear gloves  Low 

Burns (Oven and muffle 

furnace) 

Nalika Follow manufacture guideline  Low 

Inhalation of dust Nalika Ware protective mask  Low 

Broken glass Nalika Use glassware as instructed  Low 

Electrocution from mains Nalika Follow manufacture guidelines  Low 



g 
 

 

 

Safety, Health and Environment Section 

 

RISK ASSESSMENT FORM 

 

 

Risk Assessment For  Assessment Undertaken By  Assessment Reviewed 

Service / Faculty / Dept:  

School of Built and Natural Environment 

 Name:   

Nalika Rajapaksha 

 Name:  

 

Location of Activity: Field/Le206 

 

 Date: 01/01/10  Date: 

Activity: Field earthworm collection (Standard) 

 
 Signed by Head of Dept / equivalent 

 

  

REF:   Date : 10/01/10   

 

List significant hazards here: List groups of 

people who are at 

risk: 

List existing controls, or refer to safety procedures etc. For risks, which are not 

adequately controlled, 

list the action needed. 

Remaining level of risk: 

high, med or low 

Contact formaldehyde with Skin Nalika Use of disposable gloves and lab coat to protect skin  Low 

Contact formaldehyde with eye Nalika Safety specs/goggles  Low 

Ingestion/inhalation Nalika Work with concentrated formaldehyde in fume cupboard   Low 

Slips, trips and falls Nalika Avoid long working, Mobile phones, 1
st
 aid training  Low 

Microbial infection from soil 

(Tetanus) 

Nalika Ensure inoculation is current  Low 

Mechanical damage to body from 

spade  

Nalika Wear protective footwear/gloves  Low 

Electrocution from mains Nalika Follow manufacturers guidelines  Low 

Working alongside heavy plants Nalika Follow on site safety guidelines (specific training)  Low 
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Safety, Health and Environment Section 

 

RISK ASSESSMENT FORM 

 

 

Risk Assessment For  Assessment Undertaken By  Assessment Reviewed 

Service / Faculty / Dept:  

School of Built and Natural Environment 

 Name: 

Nalika Rajapaksha   

 Name:  

 

Location of Activity: Field/Le206 

 

 Date: 01/01/10   Date: 

Activity: Feed preparation for earthworms (Horse 

manure drying and granulation) 

 

 Signed by Head of Dept / equivalent 

 

  

REF:   Date : 10/01/10   

 

List significant hazards 

here: 

List groups of 

people who are at 

risk: 

List existing controls, or refer to safety 

procedures etc. 

For risks, which are not adequately 

controlled, list the action needed. 

Remaining level of risk: 

high, med or low 

Microbial infection from 

manure 

Nalika Wear gloves, wash hands  Low 

Burns skin from 105
o
C Nalika Follow manufacture guidelines  Low 

Electrocution Nalika Follow manufacture guidelines  Low 

Inhalation of small particles Nalika Wear protective mask  Low 
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Safety, Health and Environment Section 

 

RISK ASSESSMENT FORM 

 

 

Risk Assessment For  Assessment Undertaken By  Assessment Reviewed 

Service / Faculty / Dept:  

School of Built and Natural Environment 

 Name:   

Nalika Rajapaksha 

 Name:  

 

Location of Activity: Le206 

 

 Date: 01/01/10  Date: 

Activity: Cocoon collection by wet sieving 

 
 Signed by Head of Dept / equivalent 

 

  

REF:   Date : 10/01/10   

 

List significant hazards 

here: 

List groups of 

people who are at 

risk: 

List existing controls, or refer to safety 

procedures etc. 

For risks, which are not adequately 

controlled, list the action needed. 

Remaining level of risk: 

high, med or low 

Trips, slips and falls Nalika Avoid lone working, Mobile phone 1
st
 aid 

training 

 Low 

Microbial infection from soil Nalika Tetanus vaccination current  Low 

Mechanical injury to hands Nalika Follow manufactures guidelines for sieve use  Low 
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Safety, Health and Environment Section 

 

RISK ASSESSMENT FORM  

 

 

Risk Assessment For  Assessment Undertaken By  Assessment Reviewed 

Service / Faculty / Dept:  

School of Built and Natural Environment 

 Name:   

Nalika Rajapaksha 

 Name:  

 

Location of Activity: Le206 

 

 Date: 01/01/10  Date: 

Activity: Laboratory culture of earthworms  Signed by Head of Dept / equivalent 

 

  

REF:   Date : 10/01/10   

 

List significant hazards 

here: 

List groups of 

people who are at 

risk: 

List existing controls, or refer to safety 

procedures etc. 

For risks, which are not adequately 

controlled, list the action needed. 

Remaining level of risk: 

high, med or low 

Slips, trips and falls Nalika Avoid long working, Mobile phones, 1
st
 aid 

training 
 Low 

Microbial infection from soil  Nalika Ensure inoculation is current  Low 

Mechanical damage to hands Nalika Follow manufacturers guidelines  Low 

Electrocution  Nalika Follow manufacturers guidelines  Low 

Back injury from lifting Nalika Follow established manual lifting and 

handling protocol 
 Low 
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Safety, Health and Environment Section 

 

RISK ASSESSMENT FORM 

 

 

Risk Assessment For  Assessment Undertaken By  Assessment Reviewed 

Service / Faculty / Dept:  

School of Built and Natural Environment 

 Name:   

Nalika Rajapaksha 

 Name:  

 

Location of Activity: Forest sites in England and 

Scotland 

 

 Date: 01/01/10  Date: 

Activity: Lone field work (soil/earthworm sampling) 

 
 Signed by Head of Dept / equivalent 

 

  

REF:   Date : 10/01/10   

 

List significant hazards here: List groups of 

people who are at 

risk: 

List existing controls, or refer to safety procedures etc. For risks, which are not 

adequately controlled, list the 

action needed. 

Remaining level of risk: 

high, med or low 

Slips, trips and falls Nalika Mobile phones, Regular contact with a responsible person, 

1
st
 aid training 

 Low 

Microbial infection from soil 

(Tetanus) 

Nalika Ensure inoculation is current  Low 

Mechanical damage to body 

from spade/spike  

Nalika Wear protective cloths/footwear/gloves   Low 

Weather condition Nalika Appropriate clothing  Low 

Working alongside heavy plants Nalika Follow on site safety guidelines (specific training)   

Skin/eye contact of 

Formaldehyde 

Nalika Wash off immediately, if appropriate seek medical aid.  Low 

Loss the way Nalika Carry a local map  Low 
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Appendix IV. COSHH Risk Assessment 

 

 

 
Faculty/Department 

 

School of Build and Natural 

Environment 

Assessors Name(s) 

Nalika Rajapaksha 

Job Title/Position 

Research student 

 

4218 

 

Briefly describe the task/process. (description, use, users) 

Preservation of collected earthworms in diluted formaldehyde (3.7%).  

This dilution from concentrated (37%) 

User: Nalika Rajapaksha 

 

Substances 

(used or 

produced as by-

products or 

wastes) 

Quantity Hazard  

Class 

WEL Exposure 

Route(s) 

Frequency 

and 

Duration of 

Exposure 

Known Health 

Effects: 

 

Water solution 

containing 37% 

formaldehyde, 

1% methanol 

2 L Toxic 

Sensitisi

ng 

 Skin 

Eye 

Inhalation 

 Toxic by inhalation, 

in contact with skin 

and if swallowed. 

Causes burns. 

Limited evidence of a 

carcinogenic effect. 

May cause 

sensitization by skin 

contact. 

 

 

      

Results of Relevant Health Surveillance Results of Exposure Monitoring 

 

 

 

 

 

Control Measures 

 Elimination  Substitution  Reduction  Isolation X Eng. Control 

Details 

 

 

Details 

 

Details 

 

Details (glovebox) 

 

Details(LEV, 

fumehood) 

 

Further Details (if required) 

Any work with concentrated (37%) to be undertaken in fume cupboard (dilution) 

 

 

 

Personal Protective Equipment 

X Gloves  X Eye protection X Coverall/lab coat  Foot protection X Respiratory 

protection 

Details 

 

 

Details 

 

Details 

 

Details 

 

Details:  

 

  

 Health Surveillance required   Exposure monitoring required 

 

 

 

COSHH RISK ASSESSMENT FORM. (Page 1 of 2) 
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Emergency Arrangements 

First Aid: 

Eyes Rinse immediately with plenty of water (15 min), seek medical advice 

Skin Irritant to skin, Wash off immediately, if appropriate seek medical aid. 

Ingestion Toxic if swallowed. Seek immediate medical attention. Do not induce vomiting 

Inhalation Irritant to respiratory track, move to fresh air. 

 

Fire: Extinguisher Type 

X Water  X Foam   Powder  X CO2  

 

Spillage/release: 

 

 

Waste Disposal procedure 

Disposal as special (hazardous) waste 

 

 

 

Persons likely to be exposed 

Staff X Student   Visitor   Contractor 

Public  Other (specify)   

 

Additional risks: for example circumstances where work will involve exposure to more than one 

substance hazardous to health, consider the risk presented by exposure to such substances in 

combination. Also, non-routine maintenance may present additional risk of exposure. 

 

Long Term Exposure Limit (LTEL) (8- hour TWA): 0.75 ppm 

Short Term Exposure Limit (STEL) (15- minute TWA): 2 ppm 

 

Authorised by (sign): 

 

Review date due:  

Date: 10/01/10  

 

  

 

Notes: 

 

Hierarchy of control 

Change the task or process so that the hazardous substance is not required or generated. 

Replace the substances with a safer alternative. 

Totally isolate or enclose the process. 

Partially enclose the process and use local exhaust ventilation. 

Ensure good general ventilation. 

Use a system of work that minimises the chance and degree of exposure. 

Provide personal protective equipment (PPE). 

Train and inform staff in the safe system of work and risks. 

Additional supervision. 

Examination, testing and maintenance of engineering controls and/or PPE. 

Monitoring of exposure. 

Health Surveillance. 

Other (specify). 
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