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Abstract 

A thermogravimetric technique for following lipase reaction kinetics has been developed. The 

relationships between the reaction rate and substrate have been determined for Candida antarctica 

lipase B. At higher concentrations, evidence of substrate inhibition was found, due to the pH of 

the system decreasing as the concentration of acid increased. This has a dramatic adverse effect 

on the enzyme activity as it moves away from the optimum pH 7.0. Buffering the system closer 

to optimum pH increased the reaction rate. Also, it was found that as the hydrophobicity of the 

medium, expressed as C logP, increased the reaction rate became slower. 

The effect of substitution on the acid substrates was studied; it was found that the enzyme 

accepted substrates with substitution in the 3-position but not in the 2-position. As a result of 

modelling, this effect was explained by the disruption of hydrogen bonding, which stabilised the 

acyl enzyme tetrahedral intermediate. 

The thermodynamic reaction parameters were determined using Isothermal Titration Calorimetry. 

The difference in reactivity of ester and acid carbonyls was detennined together with the entropy 

and enthalpy of formation of the acyl intermediates. In the solvent free reaction low dispersity 

and high molecular weight polyesters are formed due to the limited solubility of the polyester in 

the diol, only limited transesterification occurring at the ends of the chain. 

Molecular modelling was used to map the surthce hydrophobicity around the enzyme active site 

in an attempt to explain the observed hydrophobic effects. Modelling around and within the 

active site was carried out in order to explain the activity of different substrates. The information 

gained from these studies led to the synthesis of several novel polyesters and polyurethanes, 

which may have commercial utility in coatings and adhesives. 

We have investigated the secondary structure of the Candida antarctica lipase B enzyme using 

conventional CD and synchrotron radiation CD in aqueous buffers and solvents. The secondary 

structure was determmed under different conditions, using the CDSSTR and Selcon programs. 

Little difference was found between the structure in aqueous buffers and solvents such as hexane, 

however, really polar solvents like dioxane and THF unfolded the protein. 

Novel Near Infrared (NIR) spectroscopic methods were developed for the determination of the 

acid number and the hydroxyl number of polyesters. The effect of changes in the backbone 

structure of the polyester on the NIR spectrum of the polyester was determined and calibration 

curves developed for all the common types of linear aliphatic polyesters. The importance of the 

intra-molecular hydrogen bonding between the acid carbonyl and the hydroxyl groups has been 

established and the effect of temperature on the degree of association determined. It was found 

that even at a temperature of 120°C there was still substantial association between the two groups. 

Partial least squares analysis was developed for the simultaneous determination of both acid 

number and hydroxyl number. It has been shown that the principal difference between the 

conventionally synthesised polyesters and those synthesised using enzymatic catalysis is that the 

latter have little or no carboxyl termination at the ends of the polymer chain. This effect has been 

explained by the mechanism of the enzymatic polymerisation. 
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1 	Introduction. 

1.1 	Background. 

Linear polyesters are a commercially important class of polymers that find their way into 

many different applications. The most common polyesters are those derived from 

ethylene glycol and terephthalic acid by intermolecular condensation of the diacid and 

diol or by transesterification of the dimethyl ester with the diol.' 

These polyesters form high molecular weight polymers, which are used extensively as 

fibres in clothing and tire cord, as film in the manufacture of magnetic tapes and as a 

thermoplastic polymer in the manufacture of bottles. 2  There are other types of polyesters 

made by the condensation of adipic acid and diols, for example 1,4-butanediol and 

1,6-hexanediol (see Scheme 1). 

I F'2 
C  
F!2 

OH 
Ho c c 	 112 112 

cAo c cH + H20 
H2 

F'2  H2 H2 	 Ho4C _.0 H2 	112 	H2 	H2   

+ HOC_CC_C..OH 	 o 
H2 	H2  

H2 	H2 	1? 
112 	H2 

o H2  H2 	 H3C H2H2j 	

C C in 
.C.. J..-OH + H C —OH 

II  
112 	H2 	 0 	

H2 	11 2 	11 2 	H2 
 

+ HO C_C C C OH  
112 	H2 

Scheme I 	Reaction of adinic acid and 1.4-butanediol. 

These adipate polyesters are used as intermediates in the manufacture of polyurethane 

polymers by reaction of the hydroxyls of the polyester with isocyanates such as 
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2,4-/2,6-di-isocyanatotoluene and 4,4'-di-isocyanatodiphenylmethane (MDI), 3  see 

Scheme 2. 

NO4OH + 

hydroxy.Ienninated poIester 	 MDI 

prepolymer 

hard section 	 'soft 

Scheme 2 	Synthesis of polyurethane i,olvmer. 

These polyester urethanes are used as solid elastomers, in shoe soles and print rollers. 

They are used extensively in the manufacture of foamed polyurethane, which is used in 

components in cars, shoes and garments. 4  Special types of polyester urethanes are used in 

high performance surface coatings and adhesives. The form of the polyester (which is 

termed the 'soft segment'), controls the physical properties of the polyurethane polymer to 

a large degree because it forms the bulk of the polymer. Although it is the di-isocyanate 

that forms the 'hard segment' of the polyurethane, the actual frequency of hard segment 

formation is controlled by the molecular weight of the polyester. 5  

The reactions of the diacids and diols are thermodynamically unfavourable and it requires 

the elimination of water to push the reaction to completion. The common reaction 
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conditions are a temperature in excess of 220°C and either a reduced pressure or a rapid 

sparge of inert gas to remove the water of condensation. In the case of the high molecular 

weight polyesters the reaction temperature is over 270°C and the pressure may be as low 

as 1-5mmHg. 6  

In addition to the cost of the energy used, there are several other disadvantages to the 

process. Heat labile monomers cannot be used at the temperature at which the reaction is 

carried out. In the case of the adipate polyesters the reaction is reversible, this limits the 

molecular weight of the polyester to a maximum of approximately 4000 Daltons. 7  In 

addition, at 270°C undesirable side products start to form, such as macrolactones, which 

can cause deterioration in the physical properties of the final polymer 

Most of the original work on these polyesters was carried out in the 1930's by famous 

names such as Carothers, 8  and Winfeld and Dickson. 9  Over the intervening years much 

process and application development has been done, but very little novel work has been 

carried out since those early days. 

In the period between 1965-1970 the potential biosynthesis of polyesters was recognised 

and IC! developed a semi-commercial fermentation process to a polybutyrate polyester; 

however, this process was abandoned after several years of development. 

1.2 	Enzymatic synthesis. 

In the late 1970's Kiibanov and his co-workers pioneered the use of enzymes as catalysts 

in non-aqueous systems 10  and by 1980 this work had been extended to the use of lipases 
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in organic synthesis." 

In the 1980's it was discovered that a lipase could act as an esterase in a non-aqueous 

system, however, the reactants were limited to activated acids or alcohols or to the 

transesterification of divinyl adipate in solvent.' 2  

At Baxenden Chemicals it was decided to explore the lipase catalysed reaction of un-

activated intermediates such as adipic acid and butane-i ,4-diol. Using di-iso-propyl ether 

as the solvent, the lipase from Rhizomucor miehei catalysed the reaction of these starting 

materials: the water of reaction being removed by molecular sieves. t3  

Subsequent work showed that it was possible to synthesise polyesters in excellent yield, 

without the use of solvent by using the lipase B (CALB) from Candida antarctica.14  The 

polyesters produced were superior to conventional polyesters as they had a much 

narrower molecular weight distribution, typically 6000 Daltons with a dispersity of 1.5. 

These polyesters produced adhesives with much improved physical properties.' 5  

In order to explain why the enzyme produced such low dispersity polyesters, the 

polymerisation process was investigated in detail. It was found that in the early part of 

the reaction the diol monoadipate, 6-carboxy-1 I-hydroxy-7-oxaundecanoic acid (AB), 

was the principal intermediate and that the polyesters were formed primarily by the 

polymerisation of AB.' 6  

0 

HO 	

OH 
0 

AR 

El 



It was also found that while the intermediate, I ,6-hexanedioic acid di-(4'-

hydroxybutyl)ester BAB was formed, the species ABA, and other acid terminated 

oligomers, were never found and, furthermore, transesterification did not appear to 

occur. 16  

HO 	 O O 	 OH 

BAB 

C, 

LA OH 

ABA 

However, when the reaction was carried out in toluene as solvent, transesterification did 

occur and the polyesters produced had a much broader molecular weight distribution with 

consequently inferior physical properties. 

As the development of the process continued a number of observations were made which 

could not be explained readily. Deactivation of the enzyme occurred to a much greater 

extent when hydrophilic diols such as butane-1,4-diol were used, compared to more 

lipophilic diols such as hexane-I,6-diol. 17  It was also observed that the reaction with high 

molecular weight diols, such as ct,u—polytetramethylene ether diol, was comparatively 

fast in spite of the size of the reacting molecule and that there was no de-activation of the 

enzyme during the reaction. The apparent selectivity of the enzyme to what appeared to 
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be structurally similar substrates was surprising. Insofar as a number of diacids and diols 

had been tried as substrates with varying success, maleic acid, fümaric acid, itaconic acid 

and hex-3-ene-dioic acid were all found to be un-reactive in the solvent free system. The 

C3 to C6 diols were also tried and found to give significantly different degrees of 

oligomerisation with adipic acid under similar conditions.' 7  

1.3 	Mechanism of the enzyme catalysis. 

The mechanism by which lipases produce such dramatic rate enhancement on the 

hydrolysis and synthesis of fatty acid esters and related compounds has been the subject 

of extensive work for many years. It was Pauling, 18  in 1946, who first proposed that 

enzymes catalyse their specific reactions by the stabilisation of a transition state of the 

compound. Then in 1969 work by Blow, etal., 19  on serine proteases identified the nature 

and function of the serine (Ser), histidine (His) and aspartate (Asp) catalytic triad as the 

key to the active site of the protease. Subsequent work by Brady, etal.,2°  showed that the 

lipases also worked by an identical active site containing the Ser-His-Asp catalytic triad. 

For a number of years this mechanism was accepted as the explanation for most, if not all, 

of the rate enhancement produced by the lipase family of enzymes. In recent years, 

however, it became obvious that this was not the complete explanation and more 

sophisticated theories have since been developed. It was proposed initially that the 

geometry of the active site exerted a steric force on a molecule in the site that reduced the 

activation energy by destabilising the ground state of the substrate. 2 ' Warshel, 22  has 

shown that theoretically the catalytic contribution caused by steric effects is in effect 

minimal; this is almost certainly due to the fact that the enzyme is quite flexible and 



undergoes changes in conformation due to the presence of the substrate, without any 

significant increase in free energy. Experimental work has been done by Raines, ci al. ,23  

to modi!' the shape of the substrate or the conformation of the enzyme in the region of 

the active site. However, in all cases there was a decrease in enzyme activity compared to 

the natural state. While this work proves that steric effects can damage enzymatic 

activity, it does not prove the converse that steric effects can cause rate enhancement 

A number of authors, notably Crosby 24  and Dewar and Cohen 25  have proposed that the 

basis of enzyme catalysis is their ability to desolvate ground states which are strongly 

solvated in solution, thereby reducing the solvation energy of both the ground and 

transition states. Warshel, 26  however, has shown by thermodynamic considerations that 

enzymes do not use a desolvation mechanism, because enzymes that enhance the ks/Km, 

do not benefit from destabilising the ground state, but rather from the stabiisation of the 

transition state. 

In 1971, it was proposed by Page and Jencks 27  that the substrate having entered the 

reactive site, became fixed in a configuration that limited both the rotational and 

translational degrees of freedom so that the molecule was fixed in the optimum 

orientation for the reaction to take place. Storm, et al., 28  extended this work by the 

development of the theory of an orbital steering mechanism, which proposed that the 

enzyme keeps the reactive group on the substrate in the optimum orientation for the 

formation of the transition state. This was tested by Bruice, 29  who reacted a series of 

model compounds in solution and showed that restriction of the rotation about a bond 

could lead to large increases in the reaction rate of the compounds. It requires a major 

leap of imagination to extrapolate his work on the ring closure reactions of diacids and 

diesters in solution, to the reactions that take place in the active site of an enzyme. While 
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it is possible that entropic factors may not have a major role in enzyme activity when 

small molecules are involved, intuitively when one considers the size of the molecules 

with which we are working, these factors must be significant. A simple consideration of 

statistical thermodynamics would lead to the conclusion that the probability of either the 

carboxyl or hydroxyl group at the end of a molecule, which may be 2000 Daltons, coming 

close enough and in the correct orientation to react at 60°C, would be quite small. 

It is now becoming obvious that the enzyme does not have just one means of enhancing 

the reaction rate, but several, which may or may not be used in concert depending on the 

substrate and the media in which the reaction takes place. In the case of our lipase, we 

can break down the explanation of the enzymatic activity into a number of different 

factors. When we do this the explanations for the behaviour of the enzyme in non-

aqueous media also becomes more understandable. 

IA 	Hydroohobic/hydrophilic attraction. 

Enzymatic processes usually take place in water, which is essential to all biological 

processes and to the forces that govern protein folding. The proteins typically fold in 

such a way that apolar residues form the core whereas the poiar residues tend to be on the 

surface where they are hydrated. In 1990 DilL et al.,30  showed that it is hydrophobic 

forces that control protein folding. However, this is an over-simplification and non-polar 

amino acid residues may cover up to 50 1/6 of the enzyme surface, where they are 

organised into clusters that form hydrophobic areas of the surface. The distribution and 

extent of the hydrophobic regions may be critical to the performance of the enzyme. 

X-Ray studies on a number of lipases by Brady 20  identified a loop of hydrophobic 



protein, which formed a lid over the active site making it inaccessible to the substrate. 

While this lid formation is common to most lipases, it was shown by Cygler and Schrag 31  

not to be present in Candida antarctica lipase B 

In the case of most lipases, it is the variation in surface hydrophobic/hydrophilic 

properties between enzyme and substrate that gives rise to the oil/water interfacial 

activation, which is necessary for the hydrophobic lid to open, allowing the substrate 

access to the active site. 32  However, the attraction of hydrophobic molecules to each 

other, like the breaking of an oil in water emulsion, brings the typically hydrophobic fatty 

substrate into contact with the lipase, which in water will cleave the fat into its 

components. Lango and Combes 33  modified the hydrophobic surface of lipases by 

glycosylation and showed that as the surface becomes more hydrophilic there is a 

decrease in lipase activity. When chymotrypsin is made more hydrophilic, the rate of 

hydrolysis is halved, but in the case of C. rugosa lipase, all activity is lost. However, 

when the lipase is made more hydrophobic on the surface the rate increases by more than 

50%. This work is particularly relevant to the use of lipases in non-aqueous media 

because it was shown that increasing the hydrophilicity of the enzyme surface helped the 

enzyme retain its activity in polar solvents, probably by helping the enzyme retain its 

loosely bound water. Increasing the hydrophobicity of the enzyme increased activity in 

non-polar solvents probably by helping the solubilisation of the enzyme in the non-polar 

solvent. 

The attraction of non-polar fatty substrates to the hydrophobic parts of the enzyme is best 

understood when we think of these as oils in water being surrounded by layers of water, 

with a large decrease in entropy when the oil in water emulsion is formed. When the 

substrate enters the site and forms the Enzyme-Substrate complex, ES, there is a 



corresponding large increase in entropy, which is the driving force for the first part of the 

binding process. 34  The low solubility of the fatty substrate in water has been correlated 

with its high affinity for the corresponding non-polar parts of the active site. It is obvious 

that these hydrophobic interactions will be affected when the enzyme is operating in non-

aqueous media. Maurel, 35  has shown that the higher the solubility of the substrate in the 

medium the lower its affinity for the enzyme site and the higher its Michaelis constant, 

Km. The Michaelis constant can be considered to give a measure of the affinity of an 

enzyme for its substrate and is derived from Michaelis-Menten kinetics. It was shown 

that the greater the contribution of hydrophobic interactions in the binding process, the 

greater the effect of organic solvents on the reaction. 

1.5 	Electrostatic Factors. 

Having reached the active site of the enzyme, we may now consider the impact of short 

range electrostatic forces and hydrogen bonding. It was Jencks 36  who first proposed in 

1975 that enzymes use electrostatic binding interactions away from the catalytic triad to 

enhance the catalytic power of the enzyme. This effect was confirmed by Fersht, 37  who 

showed that by changing or removing polar amino acid residues remote from the active 

site, it was possible to destroy all activity, even though the active site itself was 

unchanged. It is proposed that direction into the site and the positioning of the substrate 

molecules, with respect to each other and to the active site, is controlled largely by 

electrostatic forces. 30 '38'39  This effect has been proven in a number of different enzymes, 

including the triad in the serine proteases. This concept is particularly relevant to 

enzymatic activity involving large molecules as substrates, or the assembly of large 
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molecules such as RNA and our aliphatic polyesters 

Once the substrate has entered the site and been positioned by electrostatic forces so that 

the requisite orbitals are aligned optimally, other electrostatic binding interactions come 

into play. They may act to desolvate or destabilise the substrate ground state or stabilise 

the transition state. The binding of the substrate does not enhance the reaction rate, 

whereas stabilisation of the transition state does increase the rate. 40  

In the last few years, the concept of the low barrier hydrogen bond (LBHB) has been 

introduced into enzymology. The LBFIB is nothing more that a short, very strong 

hydrogen bond: an average hydrogen bond has a bond energy of 5 kcal moE', whereas the 

LBHB may have a bond energy as high as 20 kcal moE'. It is surprising that this has only 

been considered recently. It has been known for many years, that in polar polymers such 

as polyamides most, if not all, of the strength of the polymer comes about because of the 

strong hydrogen bonds that form between amide groups when aligned in the optimum 

conformation. 41  It is not surprising therefore that many strong hydrogen bonds form 

between the peptide groups of the enzyme and between the peptide groups and the polar 

parts of a substrate. It is possible to have ordinary hydrogen bonds form with many of the 

amino acid side chains, but most will not have the polarity of the amide groups required 

to form a LBHB. 

The strength of the hydrogen bond depends on its length, its geometry and the nature of 

its environment. In water, the hydrogen bonds to the oxygen atoms are 2.8 A long and 

the bond energy 5 kcal moE'. They are weak because of the difference in the pK of the 

two oxygen atoms in H30 and H20, therefore the proton in H 20—H-OH is tightly bound 

to the OW as a water molecule. In solvents, however, strong hydrogen bonds can form 

with bond energies of up to 20 kcal moE'. It is obvious therefore that the properties of 
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hydrogen bonds in organic solvents are extremely relevant to our work. In the serine 

protease y-chymotrypsin a LBI-LB has been identified by NIMR spectroscopy between 

histidine 57 and aspartate 102, this LBFIB is related to the formation of the acyl 

chymotrypsin. 42  It has been proposed by Cassidy, ci al.,43  that this LBHB in the active 

site stabilises the transition state and lowers the activation energy for its formation. When 

the substrate enters the site it causes conformational changes in the enzyme which bring 

the His-57 and Asp-102 closer together, which in turn enhances its ability to remove a 

proton from the serine, Ser-195, and lowers the energy of the transition state, or 

tetrahedral intermediate. 

Similar low field protons indicating LBHB formation have been found in a number of 

serine proteases 44,45  and there is no reason not to suppose that the same effect occurs in 

lipases. It has been calculated by Cleland, that the bond energy of the LBHB of 18 kcals 

moF 1  corresponds to a rate enhancement of 13 orders of magnitude. 

1.6 	The Catalytic Triad. 

The next and most quoted aspect of lipase activity is the mechanism of the catalytic triad 

that is shared with the serine proteases. 

The early work of Blow 1 9 on proteases demonstrated the significance of the catalytic 

triad Asp-His-Ser, these three residues occur in the active site of a whole family of 

eponymous proteases, the aspartic proteases and the serine proteases. Polgar, et al.,47  

found that the aspartic residue remains ionised in the active site and Hunkerpillar 48  
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introduced the notion of a charge relay system, see Figure 1 1, whereby the ionised 

aspartate pulls a proton from the histidine, which in turn activates the serine hydroxyl by 

the removal of a proton. 

*r 

Liun  
flhistrate 

Catalytic Had of Active Site of Chymotrypsin 

Figure 1.1 	The Charge relay system of yroteases and lipases. 

Carbon - black, Nitrogen - blue, Oxygen - red 

More recently, this theory has been modified by Kossiakoff, 49  who has shown by NMR 

studies that a proton is not transferred to the histidine from the serine. Naray-Szabo, ci 

at, 50  state, that the role of the aspartate residue when ionised is to increase the stability of 

the ion pair formed by the protonated histidine and the transition state of the substrate 

(tetrahedral intermediate). Either way it has been shown by site directed mutagenesis that 

the removal of the aspartate residue from the active site reduces the activity of the 

enzyme by several orders of magnitude." 52  Recent work, 53  has confirmed the theory of 
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Derewanda that the His residue of the triad has an additional hydrogen bond between the 

C cH  of the histidine and a carbonyl of the backbone. Derewanda, 54  proposed that this 

H-bond has three possible roles: (i) to pre-align the His in the optimum position to 

activate the Ser; (ii) to increase the electronegativity of the N 2  and (iii) to facilitate 

deprotonation of the His to form the imidazolium ion. However, a fourth role has been 

proposed that involves the H-bond causing the His to flip through 1800  during the 

reaction, so that it can catalyse both formation and decomposition of the acyl tetrahedral 

intermediate. 

It should be noted that while the most common catalytic triad in proteases and lipases is 

that of the Set-His-Asp there are occasions in both types of enzyme where the aspartate is 

replaced by glutamate and in some cases the serine might be replaced by threonine. The 

three members of the triad lie in close proximity, but they do not lie near to each other in 

the peptide chain, nor is there any commonality in their position in the chain. 
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Figure 1.2 	y-Chvmotrvpsin from the ExPASy database. 55  

The catalytic triad is in orange, bound ligand in magenta and Calcium in white 

The histidine residue can be seen in the centre of the picture, with the aspartate on its 

right and the serine just discernible on its left. 

The mechanism of the aspartic protease was shown to be common to the acyl lipases and 

the phospholipases by the work of Rubin 56  and Brzozowski, el al.,57  this may be seen in 

the list of proteases and lipases together with their catalytic triads given below. 
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Table 1.1 	The positions of the relevant amino acids in the active sites of the 

following enzymes. 58 ' 59  

Rhizomucor miehei lipase Asp 203 His 257 Ser 144 

Candida antarctica lipase Asp 187 His 224 Ser 105 

Candida rugosa lipase Glu 341 His 449 Ser 209 

y-Chymotrypsin Asp 102 His 57 Ser 195 

Subtilisin Asp 32 His 64 Ser 221 

Geotrichum candidum lipase Glu 354 His 463 Ser 217 

Figure 1.3 is taken from the ExPASy protein database and shows the detail of the active 

site of y-chymotrypsin with the catalytic triad shown clearly. The other residues marked, 

form the limits of the oxyanion hole, which will house the tetrahedral intermediate of the 

enzyme-substrate transition complex. 

All of the above mechanisms and molecular behaviour are affected in differing ways by 

changes in the media which surround the enzyme molecule. The greatest change, which 

is relevant to our work, is the change in enzymatic activity that occurs when the 

surrounding aqueous medium is replaced by an organic solvent. Other more subtle 

changes may occur, depending on the physical properties of the specific organic medium. 

Other factors such as pH also affect the activity of the enzyme, but none approach the 

significance of the aqueous medium and the concentration of water in the organic solvent 

in non-aqueous media. 6°  
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Figure 1.3 	Active site of y-chymotrvp sin. 

Showing the key residues and the catalytic triad (in red) ofAsplO2, His 57, and Ser 195 

.1.1 	The role of water. 

It has long been realised that enzymes, which have evolved to function in water need 

water for optimum activity and there is a fall in activity of many orders of magnitude 

when the enzyme fUnctions in non-aqueous media. Furthermore, the conformation of the 

protein depends on the presence of water; in anhydrous conditions, enzymes become 

more rigid and more resistant to heat. It is often stated that water acts as a lubricant 

within the enzyme molecule, allowing flexibility and movement which is necessary for 

the changes in conformation that are thought to occur during the change from enzyme- 
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substrate binding to enzyme-transition state binding. 6 ' However, we believe that this 

interpretation is an over simplification, which does not give the true picture of the rote of 

water in the enzyme. 

It has been shown by Parker, et at ,62  and Lee, et at ,63  that the water associated with the 

enzyme molecule exists in three states, tightly bound water, less tightly bound water and a 

reservoir of free water. It is proposed that each type of "bound water" is fi.ilfilling a 

different function within the enzyme. 

Firstly the tightly bound water 

This water is bonded by LBHB to the extremely polar peptide units of the enzyme. If we 

consider the analogy with polyamides, they absorb 2-5% of their weight of water readily, 

which causes a dramatic fall in physical properties of the polymer. 64  Absorption of 2-3% 

by weight of water corresponds to 25% of all amide cross-linking sites being blocked by 

hydrogen bonded water. In a polyanñde, there are sufficient sites for hydrogen bonding 

still remaining to form a crystalline polymer of outstanding physical properties. In the 

protein, the polarity of a peptide unit is identical to the amide unit and these form 

extremely strong hydrogen bonds with water on the protein. This water does not lubricate 

the protein, as is often stated, but by analogy to a polyamide it actually stops it becoming 

an unfavourable rigid molecule, with most of the peptide groups cross-linked to each 

other by hydrogen bonds. The absorption of this water on to various peptide units is an 

integral part of the folding process of the protein and is essential for the maintenance of 

enzyme activity. 

Less tightly bound water. 
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Other water molecules are bound by conventional hydrogen bonds to the less polar side 

chains of the hydrophilic amino acids. There is also an excess of water associated with 

the protein, more than is required for the formation of all the hydrogen bonds, the "less 

tightly bound water". These water molecules are in equilibrium with those bound to the 

less polar sites. They can in effect change from being inter-molecularly bonded with 

water to being intra-molecularly bonded, forming new cross-link sites and allowing the 

protein to change conformation within the limits of the folding process and to hydrogen 

bond to the substrate. The proposal is that these hydrogen bonds are continually being 

broken and reformed in equilibrium, as the water molecules move on and off the polar 

side chains of the protein. 

Once the protein has folded to its correct conformation, with its water hydrogen bonded 

to the appropriate polar sites, we can look on it as a closed system. Any changes in 

movement of water to a site or away, providing there is no increase in cross-linking or 

folding, does not involve any further change in entropy. Once the protein is folded, it 

does not require any further input of energy, while it may change shape, this does not 

increase or decrease the order of the molecule, therefore there is no overall change in the 

entropy of the system. 

When the substrate molecule approaches the enzyme and enters the site, it has all the 

degrees of freedom as if it were in dilute solution. However, once it becomes bound, first 

by hydrophobic attraction and then by the electrostatic attraction, there is a significant 

loss of entropy as it loses all or most of its translational and rotational degrees of freedom. 

The remaining energy can now only be vibrational energy, but with the orbital steering 

due to the geometry of the site and the electrostatic forces, all this energy is directed to 

the formation of the covalent bond of the enzyme transition complex. However, the 
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hydrogen bonding of the substrate occurs only to poiar sites that were previously 

hydrogen bonded with water. Once the transition state becomes the product, the water 

then re-associates with the polar side chains of the enzyme. In the course of the reaction 

the enzyme may have changed conformation and been temporarily bound to substrate 

instead of water, but at no time has the enzyme become more or less ordered. Therefore, 

the entropy of the system has not changed, but for the substrate and transition state there 

has been a large decrease in entropy until such time as it leaves the enzyme site as 

product. 

Therefore, we may consider the remarkable efficacy of the enzyme as a catalyst to be due 

to the following factors. 

I. 	A physical attraction between enzyme and substrate in aqueous media. 

2. An electrostatic attraction, which pulls the enzyme and substrate into close contact 

in the optimum spatial arrangement to enter the active site. 

3. Within the active site, binding gives orbital steering and the focussing of the 

molecule's energy into only one degree of freedom with the transition state being 

stabilised by preoriented dipoles. 

4. In the case of the serine proteases and lipases, the remarkable proton transfer 

mechanism of the triad, which activates the serine hydroxyl group. 

In our particular system, we believe there is a fUrther mechanism that will be developed in 

our later discussions. 
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Since all enzymes evolved to catalyse reactions in dilute aqueous solutions, we need to 

consider how the transition to operating in a non-aqueous system, with high concentration 

of substrates, affects each of these individual rate enhancing mechanisms 

Overall, it has been shown that the activity of an enzyme such as a protease can decline 

by many orders of magnitude when it fbnctions in a non-aqueous solvent. Zaks and 

Klibanov 65  demonstrated that the activity of subtilisin Carlsberg declined by 6 orders of 

magnitude when used in acetonitrile compared to its activity in water. This fact used to 

be explained by stating that the enzyme changed conformation in solvent, or became less 

flexible in solvent. However, the reality is far more complex. 

Several authors, including Fitzpatrick 66  and Xu, et al.,67  have shown that the overall 

structure of the enzyme does not change when transferred from water to solvent, but there 

is always the massive drop in activity. Schmittke, 68  investigated these different factors 

using subtilisin Carlsberg. They also observed a fall in activity, of 7 orders of magnitude, 

when the enzyme was in solvent. 

Of this difference, approximately 2 orders of difference were attributed to the change in 

the activity - pH profile when the enzyme was changed from water to solvent. 

The desolvation energy of the substrate is much higher in non-aqueous media than in 

water, this affects the binding energy that is required for catalysis. It was estimated that 

this would also cause a drop in activity of 2 orders of magnitude 

The third cause is the reduced flexibility of the protein due to the solvent dehydrating the 

enzyme by displacing some of the less tightly bound water molecules on the enzyme. 

Though this cannot be seen by any difference in secondary structure of the enzyme, there 

are subtle differences in the tertiary structure that may be picked up by NIMR and Far UV 
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spectroscopy. This effect has also been attributed to an expected fall in activity of 

approximately 2 orders of magnitude. 

The above work leaves just one order of magnitude unexplained. This may possibly be 

due to the lack of hydrophobic interaction between the enzyme and substrate, which was 

not considered in the above work. 

It has been shown by HaIling 69  that for many non-aqueous enzyme systems, it is the 

water content which is the single most important parameter. This affects the activity of 

the enzyme and the thermodynamic water equivalent (a) is the best way of measuring 

the availability of the water in the system. It must be remembered that the importance of 

the water content as measured by a is not due to the fact that it is a reactant, but rather 

because of its effect on the free water/less tightly bound water equilibrium within the 

enzyme. 

There are some enzymes; our Candida antarctica lipase B (CALB) is one, where the 

activity of the enzyme is largely independent of the water activity of the system, 70  though 

why this should be is not clear at present. 

ii 	Outline of the research project. 

After consideration of the above, it is obvious that in our work on the kinetics of the 

esterification using CALB we must consider the following. 

1. 	The effect of the hydrophobicity of the system, including both reactants and 

medium; its impact on enzyme substrate binding and on the electrostatics within the 

enzyme and on its surface. 
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2. 	The solubility of the substrates in the medium in which the reaction is being 

carried out and the changing solubility as the reaction proceeds. 

3. The effect of pH on both the p1< 0  of the key components of the catalytic triad and 

on the electrostatic forces within the enzyme and between the enzyme and substrate. 

4. What structural changes, if any, occur within the enzyme under the conditions of 

the reaction in the different media and during the course of the reaction? 

In particular, we wish to determine why transesterification occurs under some conditions 

and not others? Knowledge of the conditions required for optimum enzyme activity will 

lead to shorter reaction times and improved enzyme recyclability. 

23 



2 	Development of methods. 

In order to decide on the experimental techniques that we might use to follow the kinetics 

of the polyesterification reaction we need to consider the mechanisms of the reactions 

most likely to be involved. 

The reaction of the diacid with the diol in our system is a typical esterification reaction. 

As an enzyme catalysed reaction, it is complicated by the fact that it is a 'ping-pong' 

reaction; 7 ' nevertheless, like all esterifications the reaction rate is affected by the 

concentration of both acid and diol. 

Rate = k[A][B] 

The actual progress of the reaction is best shown as a Cleland plot; 72  see Scheme 3. 

Acid(A) + Enzyme(E) 
	

AE + Diol(B) 	Ester(AB) 

140 	 E 

Scheme3 	Cleland plot for the esterification reaction. 

In our case, the rate considerations are complicated, by the complex and changing nature 

of the polymerisation reaction, which involves a number of steps, viz.: 

A+B —*AB 
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The only possible reaction which might be expected, but which has been shown not to 

occur is: 

M:tsscns :y 

In addition to the number of possible reactions, there are changes in the rate caused by the 

changing concentration of the reactants. In addition, the rate becomes diffusion 

controlled and finally as the polymerisation proceeds there is a significant increase in the 

viscosity of the medium, which adversely affects the rate according to the Stokes-Einstein 

equation.' 3  

In order to overcome these problems and to simpli& the reaction being studied we chose 

univ to investigate the reaction of A + B in a vast excess of diol B. The reaction then 

becomes independent of [B] and the only reaction of consequence is: 

A + B --> AB + H20 

\'v'hen studying the kinetics of a reaction it is necessary to decide first, on what is to be 

measured. The rate of increase of formation of product, the rate of decrease of substrate 

or the change in some physical property such as viscosity, pH or absorbance that may be 

related directly to the rate of reaction. 

In the esterification reaction it was thought feasible that we could measure the decrease in 

diol or acid substrate or the production of product, in particular the water produced during 

the reaction. It was then necessary to decide between a continuous and a stopped assay of 

the reaction. Most studies of enzyme kinetics use some form of stopped assay either by 

sampling from the continuing reaction or by stopping the reaction at specific times during 
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A stopped assay using chromatographic techniques such as HPLC or GCMS was 

considered so that the decline in substrate and increase in product could be followed, 

however, we did not have regular continuous access to these instruments. It was 

considered that having to take samples and store them until such access was available 

would introduce significant unknowns, particularly as the enzyme is active at a 

temperature only slightly above ambient. Also the substrates were known to absorb water 

from the air, this would cause distortion of the results or at worse, reversion of the 

esterification reaction. 

There is an inherent attraction in a continuous assay, in that there is a sense of being able 

to watch the reaction as it proceeds. We were interested in the initial rate of reaction, but 

were reluctant to use a technique which involved extrapolating a later rate back to zero 

time. It is the initial rate that gives all the information about the affinity of the enzyme 

for the substrate. Therefore, the uncertainties that would arise from the back 

extrapolation of data would create doubts about the validity of any conclusions resulting 

from such data. 

Therefore, having reviewed all available techniques, it was decided to attempt to develop 

methods that would enable one to carry out a continuous direct measurement of the rate 

of reaction, with sufficient sensitivity that the initial rate data would be meaningful. 

U. 	Spectrophotometrv. 

Spectrophotometric techniques have been used for many years to follow the kinetics of 

enzymatic reactions, however, they do require one of the reactants or the product to 

absorb light, most commonly in the ultraviolet or visible regions of the spectrum. 
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Spectrophotometry is most usefUl in enzyme kinetics, when one of the products is a 

naturally occurring chromophore like NADH, a co-enzyme to some of the 

dehydrogenases. 74  In the case of the lipases and esterases, much work has been done 

using artificial substrates such as p-nitrophenyl esters, because the p-nitrophenolate ion 

absorbs strongly at 400 nm. 75  These methods become impractical when the reactants do 

not have a chromophore, are present at high concentrations or the system is not 

homogenous, all of which apply in our lipase system. In addition, it is known that both 

the reaction profile and the products formed in our system vary according to the reaction 

media and conditions. We therefore considered that the use of an artificial chromophore 

in the system would give results that would not be relevant to the studies on the 

polyesterification of diols and diacids. 

When considering other possible spectroscopic methods that might be used to follow the 

reaction kinetics of the polyesterification reaction, it seemed obvious that the choice was 

to follow either the conversion of the carboxylic acid to ester, the concomitant formation 

of water or the conversion of the hydroxyl to ester. The OH stretch from water and both 

types of hydroxyl overlap in the mid-infrared region, as do the carbonyl bands of the ester 

and carboxylic acid. Therefore, it was decided to explore the possibility of using near 

infrared (NIR) spectroscopy to differentiate between these compounds. 

22 	Introduction to near infrared syectrosconv. 

The MR region of the electromagnetic spectrum covers the range of wavelength between 

approximately 780-2500 nm. NIP. spectroscopy has been used by a number of workers to 

measure the hydroxyl content in alcohols, albeit in simple laboratory conditions. 76 ' 77' 78  
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More recently, several authors have developed NIR methods for following the process of 

the manufacture of polyether and polyester polyols by monitoring the hydroxyl number as 

the reaction proceeds. 79 ' 80' 8 ' 

The principle behind all infrared spectroscopy is that by using radiation of a specific 

wavelength it is possible to excite a chemical bond from its vibrational ground state to its 

fi.rndamental state. The measurement of the absorbance at a specific wavelength gives a 

fingerprint of the different types of chemical bonds within the molecule. Generally, in the 

mid infrared range the spectra exhibit sharp and narrow peaks that are essentially the 

fi.indamental modes of vibration of specific bonds. In the near infrared region, in essence, 

too much energy is put into the bond and so like any harmonic oscillator the vibrational 

energy, which is made up of many forms of bending and stretching moments, creates 

significant overtones of the fbndamental vibration. In addition, when a bond absorbs a 

quantum of energy, thereby increasing its own overtone and combination vibrational 

energy, it can share some of this energy in a non-quantised manner with adjacent bonds. 

Therefore, the absorbance seen is due to the infrared energy absorbed by the principal 

bond plus that shared with adjacent bonds; this absorbance is termed a combination band. 

The NIP. region contains numerous bands, especially those related to the fUndamental 

C-H, 0-H and N-H vibrations. Such vibrations are particularly significant because of the 

anharmonicity of these vibrations, which arises due to the light hydrogen atom in the 

bond. 

In the near infrared spectrum the merging of many combination bands with the I , 2's" and 

overtones produces broad bands, which are the result of many individual overlapping 

peaks, this usually gives a hopelessly complex spectrum. The apparent impossibility of 

obtaining meaningfUl results from such a spectrum is overcome by the use of 



sophisticated computational methods such as: multiple regression analysis of selected 

wavelengths, or global methods such as principal components regression (PCR) or partial 

least squares (PLS), which use the whole spectrum. 82  In order for such mathematical 

techniques to produce useful results, two criteria must be met. Firstly, a large number of 

scans should be taken at a constant temperature and averaged by the software. Secondly, 

many samples of differing known composition should be available so that using the 

statistical techniques available in the software it becomes possible to set up a good 

calibration curve. 

As mentioned above, the bonds with the greatest anharmonicity (e.g. those involving 

hydrogen) vibrate at high energy with large amplitude and have the greatest intensity. In 

the specific system being considered there is a strong absorbance of the 1st  hydroxyl 

overtone at 1450 nm, unfortunately there is the possibility of confusion with water, which 

produces an overtone at 1410 run. However, amongst the stretching/bending combination 

bands, there is a significant separation between the water combination band at 2250 nm 

and the hydroxyl combination band at 2075 nm. Furthermore, in the mid infrared, the 

carbonyl stretch differs little between an ester and a carboxylic acid, but in the near 

infrared, there is a reasonable separation by the time we get to the 2' overtone of the 

carbonyl stretch. In the MR, the ester absorbs at Ca. 1950 nm (wavenumber 5128 cr1') 

and the carboxyl absorbs at ca. 1900 nm (wavenumber 5263 cnit)  (see Figure 2.1). 

Initially, we looked at these carboxyl carbonyl overtones, over a range of concentrations, 

in the NIR spectra of decanoic acid in n-heptane, Figure 2.2. We found a good 

correlation of about 0.99 between absorbance and the concentration of decanoic acid at 

1999 nm (5002 cr1 1 ), the OH combination region, but not at the expected carbonyl 

overtone position of 1901 rim (5260 cr1 1 ). 
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Figure 2.1 	Typical Near Infrared spectra of polyesters. 

Figure 2.2 	NW. spectrum of decanoic acid in n-he ptane. 

This experiment was repeated using decanoic acid in 1 ,4-butanediol; however, it was 

found that the correlation at cci. 2000 nm had disappeared, even though there appeared to 

be a reasonable separation and correlation at other parts of the spectrum. When the NIR 
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spectra of adipic acid in 1,4-butanediol were studied, a reasonable but non-linear 

correlation between acid concentration and total absorbance at 1960 rim was seen. 

However, this method might not be relevant when both ester and acid carbonyls are 

present at the same time. It was attempted therefore to add polyester to the solution in 

proportion to the reduction in adipic acid concentration in the 1,4-butanediol, in order to 

simulate conversion of acid to ester. We had great difficulty in getting the polybutane 

adipate polyester to dissolve in the 1 ,4-butanediolladipic acid solutions. The addition of 

co-solvents such as toluene/IPA and tetrahydrofliran were tried, but no useftil correlation 

between acid concentration and absorbance under these conditions could be obtained. 

23 	Development of NIR method for following reaction kinetics. 

Due to the specialised requirements of the proposed enzyme kinetics study, we then 

looked at developing a method for the determination of the acid concentration in diol at 

much lower concentrations than would be used in the actual commercial polyester 

synthesis. A number of standards were prepared of adipic acid in solution in 

1,4-butanediol with concentration of acid varying from 0.06% to 5.0% 
W/ The near 

infrared spectra were obtained at 60°C; initial examination of the spectra found a clear 

separation of the spectra across a wide range of wavenumbers. However, it proved 

impossible to obtain a good correlation between absorbance and the concentration of 

adipic acid. We then re-examined the spectra using the PLS Quant software. Because of 

our success in determining the acid values using the specific regions 1850-2080 nm and 

1430-1540 nm, we selected these bands for the calibration. The method PLSQ2 used 

was: Bands 1850-2080 rim and 1430-1540 rim, 6th  dimension, cross validate x 10. Using 

this method for the unknowns gave the results in Table 2.1 
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Table 2.1 	Determination of adiDic acid in 1 4-butanediol. 

Solution Titration %W/w NIR Determined %W/ 

AaBd-11 0.32 0.34 

AaBd-3 0.59 0.55 

AaBd-7 0.91 0.91 

A ftirther set of standards was prepared and the calibration curve was rechecked. The fit 

was not as good as we had hoped, therefore we re-examined the spectra. It was decided 

that the optimum spectral bands for the polyester determinations were not necessarily the 

best for the adipic acid in I ,4-butanediol determination. Examination of different regions 

of the spectrum and relating these to the accuracy of the PLS prediction led us to select 

the bands 1820-2000 nm and 1470-1670 nm. 

The unknowns: AaBd2-4, 2-9 and 2-10 gave the results shown in Table 2.2. 

Table 2.2 	Determination of adi,ic acid in 1.4-butanediol. 

Unknown Titration %W/ NIR Determined %W/ 

AaBd 2-4 2.034 2.03 

AaBd 2-9 0.222 0.174 

AaBd 2-10 0.246 0.262 

The spectra were then re-mn at 120°C to determine the effect of changing the hydrogen 

bonding in this system. The results are shown in Figure 2.3. 
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Figure 2.3 	NW. spectrum of adipic acid in 1.4-butanediol at 60°C and 120°C. 

The very large peak at 2060 urn (4850 cm) is the hydroxyl combination band; 

surprisingly this does not change much between 60°C and 120°C. This is probably due to 

the large excess of hydroxyl groups overwhelming the influence of the carboxyl 

H-bonding. The C-H overtones at 1725-1785 nm changed very little, but unsurprisingly, 

there was a marked change in the 0-H overtone at 1430 nrn (7000 ciii'). Although there 

was an improvement in the correlation at 120°C, the method was still not sufficiently 

accurate at low concentrations. 

Due to the poor correlation between absorbance and the adipic acid content, even when 

using the power of the PLS software, it was necessary to develop a method that would 

give the accuracy required by the kinetic studies. We have seen the effect that the 

hydrogen bonding between the carbonyl and hydroxyl groups has on the accuracy of the 

hydroxyl number determination of polyesters (See Section 10). It can be assumed that the 

association of the relatively low concentration of carboxyl groups, compared to the vast 
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excess of hydroxyl groups, prevents an accurate correlation between carboxyl content and 

absorbance. Therefore, methods by which the hydrogen bonding could be disrupted were 

studied. The addition of several solvents both polar and non-polar was tried without 

effect until chloroform was tried, this has the advantages of being almost completely 

miscible with both the polyesters and the aliphatic diols and it has a relatively clean, 

simple spectrum in the NIR region. It has four distinct peaks (Figure 2.4), the CH 

combination at 1850 nm (5400 ciii'), the 1' C-H overtone at 1690 rim (5920 cm'), the P t  

overtone of the C-H combination at 1410 nm (7090 cm 4) and the 2nd C-H overtone at 

1150 rim (8695 cr1'). 

Figure 2.4 	Near Infrared spectrum of chloroform. 

It was hoped that the polarity of the CHCI3 molecule would disrupt the hydrogen bonding 

between the carbonyl of the carboxylic acid and the hydroxyl groups of the diol. One 

drop, about 0. 5%v/v,  was added to the cuvette containing the solution of adipic acid in diol 

and the NW spectrum was retaken (Figure 2.5). It was obvious that in addition to the 
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CHCI3 absorbance, a new peak had appeared at 1938 rim (5200 cm) in all the samples. 

This we attributed to the 2h11  overtone of the carbonyl stretch. 

Figure 2.5 	NIR spectrum of polybutane adipate + chloroform. (polvbutane adipate - 

blue. oolvbutane adipate + chloroform - red 

Because the new peak was so clear, we decided to look for a correlation between the 

absorbance and the concentration of acid without resorting to the use of PLS. After 

inspection, it was found that the net absorbance at 1938 nm, relative to a base-point at 

1887 rim, gave a correlation coefficient R 2  of 0.985 to the concentration of acid. In order 

to find out if the amount of CHCI3 added was critical, we ran the spectra with increasing 

amounts of CHCI3 up to 5%v/v of the acid/diol solution. No change was observed in the 

relative size or shape of any of the peaks other than those attributed to the chloroform. 

In order to confirm our theory that the chloroform disrupts the hydrogen bonding we 

repeated the experiments using carbon tetrachloride as the solvent. The carbon 

tetrachloride has no absorbance in the NIR region. No observable changes occurred, no 
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relative size or shape of any of the peaks other than those attributed to the chloroform. 

In order to confirm our theory that the chloroform disrupts the hydrogen bonding we 

repeated the experiments using carbon tetrachioride as the solvent. The carbon 

tetrachloride has no absorbance in the NIR region. No observable changes occurred, no 

carbonyl peak emerged and the spectra overlapped completely. The polarity of 

chloroform is far greater than that of carbon tetrachloride; therefore, the latter does not 

have the ability to form strong polar interactions with the carbonyls of either the ester or 

the acid groups. It is believed that this confirms that the effect is not a simple solvent 

effect, but is in fact due to the disruption of the hydroxyllcarboxvl hydrogen bonds, 

possibly via hydrogen bonding through the chloroform hydrogen (see also Chapter 5),83 

In confirmation, the etlëcts of addition of similar amounts of chloroform on the spectra of 

polyesters were investigated. No observable difference in the spectra on addition of 0.5-

5.0%'!. of Cl-lC13 to polyhexane adipate polyesters was seen. However, it is only when 

looking at the correlation between absorbance and substrate concentration, that subtle 

differences in the sensitivity of the method can be seen. The calibration of the absorbance 

of the polvbutane adipate polyesters against concentration was then repeated after the 

addition of approximately 1% of chloroform. The correlation coefficient improved from 

0.997 to 0.999. This increase was expected to be small because these were commercial 

polyesters and the acid numbers were all below 1%. so there was only a small hydroxyl 

concentration to be freed from association with the carbonyl groups of the acid ends. 

The correlation between acid number and the absorbance at the hydroxyl overtone region 

was then looked at. An excellent inverse correlation between the acid number and 

absorhance at 2028-2050 nm was noted. This confirmed the above point that the method 
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is able to detect the additional hvdroxvl groups that have been freed from association with 

carbonvI zroups. However. this is not a satisthctory method for the measurement of the 

actual acid number of the polyester, as it depends on the relative amount of hydroxyl in 

the polyester and requires the measurement of the absorbance both before and after the 

addition of chlorotbrm. A similar increase in the correlation between the absorbance at 

am and hvdroxvl number, from 0.997 to 0.999. was observed with a series of 

pobhexane adipate poesters using the same technique. The net absorbance. at the 

carbonvl overtone at 1937 nm to a base-point at 1886 nm. gave a poor correlation of 0.80 

to the acid number. However, as these were all commercial polyesters with very low acid 

numbers the correlation was not expected to be very good. as the titrimetric method does 

not have the accuracy to give a better correlation. 

it was hoped therethre to use this technique to follow the initial phase of the reaction in 

the cuvene in the NIR spectrometer by taking regular spectra as the reaction proceeds. 

5-10 mg of the ivophilised ('anclida antarctica lipase B was weighed accurately into NIR 

cuvettes and the cuvettes filled with a 0.4 M solution of adipic acid in 1.4-butanediol just 

above its melting point and below the temperature at which the reaction is measurable. 

l'hc contents were mixed mechanically and the cuvette placed into the Peltier cell of the 

NIR spcctrt'nwter where it was heated to 60°C over 2 minutes. At this point, a NIR 

spectrum was obtained even:  minute for 10 minutes. A distinct difference in the spectra 

was seen, the peak at 5155 cm" was quite clear so the absorbance at 5155 cm' 1  was 

plotted against time (SCC Figure 2.6). 
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Fiu ..c' 	Reaction of adipic acid and 1.4-butanediol by NIL 

the raze ofhange in absorbance was plotted against the amount of enzyme used in each 

run. We honed to see a clear first order relationship, which would enable us to use this 

technique over a range of substrate concentrations in order to determine the Michaelis-

\tenten consz:uus. 

I. ntrtunatetv. there was no correlation between the change in absorbance and the amount 

otenZ'11c used. 

there are sc'veml reasons tbr this apparent anomaly. Although the Peltier cell can raise 

the temperature quite quickly. it is difficult to ensure the rate is exactly the same for every 

experirncnt. In addition. it is difficult to ensure that the small amount of enzyme is 

adequately dispersed throughout the cuvette. The light beam passes only through a small 
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section of the cuvette; it is essential that the contents in this region contain a consistent 

amount of enzyme in order for accurate rate measurements to be made. It is known that 

water can affect the NIR spectrum and it is quite difficult to be certain that neither the 

cuvette nor the reaction medium pick up water during the preparation. 

In addition to these difficulties, we were concerned that the addition of a solvent such as 

chloroform might change the reaction as it had been observed in large scale preparations 

that differences in the reaction occurred if solvents were added. 

2.4 	Development of Thermogravimetric Methods for Following Enzyme Reactions. 

Thermogravimetric analysis (TGA) techniques have a number of advantages that are 

relevant to the study of any enzyme reaction where a weight loss or gain may be 

expected. TGA methods use very small sample weights, typically between 10-40 mg per 

reaction. This can be a valuable benefit where either the substrate or the enzyme is not 

readily available in large quantities. 

Modern TGA instruments have the ability to control the temperature of the sample more 

accurately than almost any other technique that may be used to follow a chemical 

reaction. Due to the small sample size, TGA instruments have the ability to raise the 

temperature to the chosen reaction temperature very quickly. In the case of an enzymatic 

reaction, where the enzyme may have some activity at or just above room temperature, 

this can be most important. When studying enzymatic reactions it is always the initial 

reaction rate that is used to characterise the enzyme, if the reaction occurs while the 

sample is being heated to the desired temperature the results obtained may be inaccurate. 



TGA instruments are designed to operate so that the reaction may be carried out in a 

controlled atmosphere with an accurately controlled gas flow. This is particularly 

relevant, when volatile products or co-products are produced which may need to be 

removed for the forward reaction to proceed. 

The major disadvantage with TGA instruments is that there is no provision for stirring the 

sample during the reaction; therefore, studies where mass transfer is important cannot be 

carried out. In the case of an enzymatic reaction, provided that the enzyme can be readily 

incorporated into the sample, this is not a major problem, as interest is usually in the 

initial reaction. 

As stated previously, it is essential that the reaction studied involve a measurable change 

in weight in order to use TGA techniques. The synthesis of esters by direct esterification 

or transesterification, because of the production of volatile co-products such as water or 

an alcohol, seemed to be potential candidates for study using TGA. 

One of the problems that is specific to enzymatic reactions is that different enzymes 

contain differing amounts of water and more importantly require different amounts of 

water in order to function, 84  (see Section 1.7). The actual water requirement is usually 

specified as the thermodynamic water equivalent that gives the optimum activity of the 

enzyme. The lipases typically require a lower water activity in order to function than 

other enzymes. Candida antarctica lipase B has been shown to require very little water, 

expressed as water equivalent in order to function. 85  Therefore, we were optimistic that 

residual water in the enzyme would not have a significant effect on our measurements nor 

would the low water environment have an adverse effect on the activity of the enzyme. 

EM 



Experiments were then carried out involving the polyesterification of the diols 

1 ,4-butanediol and 1 ,6-hexanediol with adipic acid in order to evaluate the utility of TGA 

for following these reactions. It became obvious that there were several problems, some 

general and some specific to our system, which had to be considered when using the TGA 

for this purpose. 

In order to obtain consistent, reproducible results it is necessary to remove the water of 

reaction, this we did by passing thy nitrogen over the sample. We found that if the flow 

rate varied by more than ± 20% we could easily see the difference in the rate of removal 

of water. It also became obvious that the surface area to volume ratio of the sample 

affected the rate of removal of water. However, both of these problems were easily 

resolved. 

The TGA has an accurate gas flow control system so it was decided to control the 

nitrogen flow at 50 ml miii' for all future experiments. The TGA uses aluminium pans, 

which are of closely matched size and shape so that the surface area of the sample can be 

fixed. It was not difficult to develop a technique whereby the sample volume was 

maintained between 20-25 p1. However, if the sample volume were increased to 40 p1 

then there was a measurable reduction in the rate of removal of water from the sample. 

We assumed that this was due to the longer diffusion path for the water to reach the 

surface and that this was becoming the rate-limiting factor. 

We found that some of the substrates, such as 1,4-butanediol and 1,6-hexanediol, 

although having boiling points of 208°C and 235°C respectively, nevertheless had 

significant volatility at 60°-70°C with a flow of nitrogen over the surface. It was realised 

that if the weight loss due to the volatility of the diol was significant compared to the 

weight loss due to the removal of water, then this would have an adverse effect on the 
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accuracy of the method. Therefore, the weight loss of I ,4-butanediol. I .6-hexanediol and 

polytetramethylene diol (PTMEG 650) was determined both from neat samples and from 

samples containing dissolved adipic acid under a nitrogen flow of 50 ml min' (see Tables 

2.3 and 2.4). 

Table 2.3 	Weight loss of diols at 60°C after drying. 

Time. mins 1 ,4-butanediol, mg 1 ,6-hexanediol, mg PTMEG 650, mg 

0 23.827 25.112 22.382 

2 23.819 25.110 22.382 

4 23.897 25.105 22.382 

6 23.877 25.101 22.381 

8 23.856 25.097 22.381 

to 23.834 25.093 22.381 

12 23.814 25.090 22.381 

14 23.795 25.086 22.381 

16 23.775 25.082 22.381 

20 23.736 25.075 22.381 

The I .4-butanediol was dried over molecular sieves, whereas the 1 .6-hexanediol and 

PTMEG 650 were stored in a desiccator over phosphorus pentoxide and then preheated to 

110°C prior to measuring the volatility at 60°C. The experiments were repeated at 50°C 

and 70°C. The weight losses measured are shown in Table 2.4. 
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Table 2.4 	Volatility of I .4-butanediol, I .6-hexanediol and PTMEG at relevant 

temperatures. 

Volatility, xg mirf 

50°C 60°C 70°C 

1.4-butanediol 2.5 10.0 16.0 

0.4M adipic acid 2.5 9.8 not done 

in I .4-butanediol 

1.6-hexanediol 0.0 2.0 4.0 

0.4M adipic acid 0.0 2.0 4.0 

in I .6-hexanediol 

PTMEG 650 0.0 0.0 0.0 

These weight losses were used subsequently as the correction factors to be deducted from 

the observed weight loss in the relevant experiments. 

We were also concerned that the lack of mixing might affect the accuracy of the method 

adversely. Thus, several procedures were evaluated. 

Diacid. diol and enzyme were mixed below the temperature at which the enzyme was 

expected to be active and then the temperature was raised quickly to the reaction 

temperature. This method failed. as I .6-hexanediol is solid below 45°C and the adipic 

acid is not readily soluble in either of the diols at lower temperatures and does not 

dissolve readily at the reaction temperature. 

Secondly, the enzyme and diol were mixed prior to putting into the TGA and then a 

known weight of adipic acid was added to the pan at, or just below the reaction 

temperature. A dispersion of 0.25% 
WI  Candida antarctica lipase B was made in 

I .6-hexanediol. this premix was stored refrigerated and solid samples put into the pan of 
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the TGA and weighed. The sample was melted, by heating to 50°C and then adipic acid 

added to the pan and weighed. The temperature was raised to 70°C at a rate of 5°C mm 1  

under a N2 flow of 50 ml miii' and the reaction started within a few minutes as the adipic 

acid began to dissolve in the diol. The weight loss was monitored over a period of 140 

mm (see Figures 3.9. 3.17 and 3.18 for examples of raw data), the rate was measured and 

the weight loss due to the evaporation of I ,6-hexanediol was deducted to give the weight 

loss due to the loss of water of reaction. The experiment was repeated using a range of 

adipic acid concentrations from 0.23 M to 1.66 M. The results are shown below in Table 

2.5 and Figure 2.7. 

Table 2.5 	Rate of reaction of adipic acid and I .6-hexanediol at 70°C. 

[adipic acid] Enzyme Rate of water toss* Adipic acid 
conversion 

mol dn13  mg pg ruin1  p.mol miii' mj' j.tmol mm 1  mg' 

0.23 0.325 9.84 16.9 8.5 

0.35 0.245 8.8 20.4 10.2 

0.4 0.252 10.4 23.0 11.5 

0.49 0.252 13.0 28.5 14.5 

0.85 0.662 11.9 10.0 5.0 

1.02 I 	0.725 14.5 10.7 5.5 

1.07 0.593 9.7 9.1 4.5 

1.23 0.751 31.1 8.2 4.0 

1.66 0.598 7.9 7.3 3.7 

*Coaection  factor for I ,6-hexanediol loss is 2pg miii 
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Fhure 17 	Efièct of adipic acid concentration on its reaction with I .6-hexanediol. 

The graph in Fhuxe .7 shows two quite distinct regions: up to a concentration of 0.49 M 

the nue imeztxs as expected with the increase in the concentration of the substrate. 

Akne thiscvIn.xnrn1txn.. we see a marked decline in the reaction rate. which is more or 

le imkçtmient of the subsuate concentration at a constant rate of 10 ig miii' mg'. It 

was th'uhc thu this apparently anomalous observation was due to the limited solubility 

of adipE xki ab've 0.5 NI when the dissolution of adipic acid becomes the rate-

.'ontroEhxb thctor. However, this would not explain the decline in rate above 0.5 M. 

Suk'tseuuent wt'r4 showed that at the higher concentrations of acid, the increased p1-1 of the 

nx'diurn has an adwrse effect on the enzyme. In addition, it was considered that at a 

temperature of 0C the evaporation errors were becoming significant. thereby decreasing 

L'onnden.'c in the resuhs. 

ftc main disidvantages of this technique arise due to the poor solubilitv of adipic acid in 

45 



the diol and the thct that each of the acids to be studied has a different solubility. Because 

of this, we might not know the concentration of the acid accurately during the key initial 

stages oldie reaction, we decided therefore not to continue using this method. 

The third method evaluated involved pre-preparation of a solution of the acid in the diol 

at an accurately known concentration: approximately 25mg (accurately weighed) were 

placed in the IGA pan. The enzyme was then added to the solution at just below the 

teniperatuTe at which it becomes active. i.e. 30°-40°C. and then the temperature was 

raid quickly to the reaction temperature. The obvious problems with this technique 

were the non-dispersion of the enzyme into the substrate solution and the impossibility of 

adding exacdv the same amount of enzyme to each experiment. We also found 

subsquentiv that if the enzyme is added to the mix below its melting point the gas flow 

in the apparatus may blow some of the enzrne from the surface before it has had a 

chance to disperse. However, we found that the finely powdered nature of the lyophilised 

enmme meant that it was readily absorbed if added to the liquid reactants in the TGA 

pan. Pnwiding that no lumps or aggregates are added then the enzyme is rapidly wetted 

by the substrate and the reaction starts immediately at a temperature above 50°-55°C. 

The prohkm of not being able to control the exact amount of added enzyme was not 

considered to be important, providing the exact amount of enzyme was known and that 

the reaction rate could be shown to be first order with respect to the concentration of 

cnzvnw. All things being considered we were confident that this would be the best 

technique to use. 

Using this technique. we looked at the effect of varying enzyme concentration on the 

reaction rate when the substrate is at a concentration above 0.5 M. We prepared a 1.14 M 

solution of adinic acid in 1.6-hexanediol by heating to 100°C for 1 hour and then 
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tnnsn1Ted appsv'xintnety 25 mg to the TGA pan and weighed accurately. When the 

TaA FS txiokd to oO°C some of the adipic acid would thE out of solution. When the 

mixture lttd ceokd to 50°C. the Candida antarctica lipase B was weighed carefl.tlly onto 

the surtitce of the substrate 'stiere it was absorbed rapidly into the solution. The reactants 

we-re then heated to c'VC at 5°C mm 4  whereupon the reaction would start. The results 

are skknvn in [able .ø and Figure 2.8. 

Vahk 2.c' 	Rate of reaction of adipic acid and 1.6-hexanediolat 60°C. 

Aiipic acid 1 	Enzme Water 1os 

mg Mg jsmol mm 4  mg' 

.14 	 ()43 99 	1 
0.099 5.4 	

] 
3.0 

0.100 6.6 37 

- 	 0.160 9.0 3.15 

0.170 8.8 2.9 

0.175 10.2 3.2 

• 	 0.295 16.3 3.1 

0.382 21.1 3.1 

• 	 0.518 29.0 3.1 

Cc.rrection tactor for 1.6-hexanediol toss 2j.tg miii'. 

The data shown in Figure 2.8 wns analysed using the Enztitter curve-fitting program. The 

\Iaruanit-1.cenhen algorithm was used to get the best lit and to give the analysis of 

varjamx. the flited data are shown in Table 2.7. 
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Figure 2.8 	EIIbct of enzyme concentration on rate of reaction. 

Tabk 2.7 	Statistical analysis of effect of enzyme concentration on rate. 

Enzyme nnz Observed 
Water .tg mm" 

Predicted 
Water lig mirf 

Residual % Residual 

0.043 2.7 2.4346 0.2654 9.83 

0.09 5.4 5.5931 -0.1931 -3.58 

0.1 	 6.6 5.6494 0.9506 14.40 

0.16 	 9 9.0181 -0.0181 -0.20 

0.17 	 9.3 9.5781 -0.2781 -2.99 

0.175 	 10 9.8579 0.1421 1.42 

0.295 	 16.3 16.541 -0.2412 -1.48 

0.382 	 21.1 21.348 -0.2483 -1.18 

0.518 	 29 28.799 0.201 0.69 

The analysis of variance gave a correlation coefficient. R-squared. of 0.9978. This R 

squared value, is substantially better than anything achieved using the NIR 
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speetrophotometric methods. On examination of the fitted data it is important to note that 

the largest percentage residuals (difference between the observed values and the predicted 

values) are at the low end of the enzyme concentration. This is understandable because of 

not only the overall sensitivity of the instrument, but the difficulty of determining the 

exact weight of added enzyme due to minor oscillations of the balance: these errors being 

of zreater significance at the lower weights of enzyme. It was concluded that the 

optimum weight of enzyme for accurate measurement of the reaction kinetics was 

between 200-500 ig and that the reaction rate as measured by water loss is in fact first 

order with respect to the amount of enzyme present. 
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3. 	Investigation of the kinetics of the esterification reaction. 

	

3.1 	Acid-Diet Esierification. 

Using the lilA method developed in Chapter 2 the reaction kinetics were determined for 

the various substrates of potential interest in the large scale process. While various 

diacids are available the principal one used in the manufacture of polyesters is adipic 

acid. Tlwrethre. all of the initial work was done investigating the reaction of adipic acid 

with various diets. The first system to be investigated was that of adipic acid in 

I .c-hexanediol. Solutions of adipic acid in I .6-hexanediol were prepared. dried, added to 

the T6A and then an accurately weighed amount of the lyophilised Candida antarctica 

lipase added. After following the pre-programmed heating rate to 60°C the rate of weight 

loss due to the loss of water was measured. The results for the reaction of adipic acid and 

I .o-hexaneutei are given in Table 3.1. The Enzfitter program was used to analyse the 

data and to plot the best fit curve shown in Figure 3.1. The Analysis of Variance gave R-

squared icorreiation coefficienti as 0.98. 

f he reaction rate of the intermediate BAB with adipic acid was then determined and 

compared to the reaction rate with 1.6-hexanediol. The same procedure as the previous 

cxr'nnx'nts was t.illowed. However, when detcrmining the correction factor. the BAB 

\\tls  tounU to be extremely vet. Thus, it was necessary to develop an alternative 

procedure sc' that the BAB could be dried prior to the experiments. 

\k'ith only a relatively small amount of BAB, insufficient to make up pie-prepared 

sampks. the BAR was weighed directly into the TGA pan before adding the requisite 

anx'unt C'!' duiric acid. The temperature of the pan was raised at 20°C mm" to 110°C and 

held tr at least 30mins until the rate of weight loss was constant. We assumed that at 
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this point all the water had been removed and the continuing weight loss was due to the 

evaporation of the BAB. The sample was cooled to 30°C and re-weighed, we assumed 

that the weight loss had been due entirely to the loss of water and BAB, i.e. no adipic acid 

has been lost. The Candida antarctica lipase B (Ca1B) was added to the pan. 

Table 3.1 	Rate of reaction of adipic acid and 1,6-hexanediol at 60°C. 

[adipic acid] Enzyme Water loss* Reaction rate 

mol dm 3  mg .tg mm 1  .tmol mm 1  mj' 

0.74 0.271 15.0 3.06 

0.78 0.055 3.1 3.13 

0.36 0.094 3.9 2.34 

0.51 0.210 10.0 2.68 

0.35 0.070 3.0 2.44 

0.13 0.550 7.75 0.9 

0.21 0.040 1.0 1.39 

0.21 0.077 1.75 1.28 

0.2 0.260 7.0 1.5 

0.74 0.335 19.3 3.2 

0.51 0.261 12.4 2.64 

0.13 0.165 3.27 1.1 

0.1 0.725 7.5 0.7 

*Corec tion  factor for loss of 1.6-hexanediol 2pg miii'. 
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Figure 3.1 	Effect of substrate concentration on the reaction rate of adipic acid and 

1 .6-hexanediol. 

In earlier experiments, it was believed that some of the previous inaccuracies were due to 

the enzyme starting to react while the sample was being heated to the reaction 

temperature. Therefore, the heating rate was changed to 20°C mm 4  to 50°C, 7°C mill 1  to 

58°C and 1°C miii' to 60°C. Using this profile we reached 60°C in 100-120s, passed it 

by 0.5°C and then settled between 59°-60°C. After drying, the weight loss due to the 

evaporation of BAB at 60°C, was found to be I jig miii', this was then used as the 

correction factor. The results are shown in Table 3.2 and Figure 3.2 
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Table 3.2 	Rate of reaction of Adipic acid with BAB. 

[adipic acid] Enzyme Water loss* 

mol dm 3  mg pg mm 1  ltmol nu& mj' 

0.21 0.215 4.25 1.2 

0.36 0.460 9.5 1.9 

0.26 0.319 9.0 1.6 

0.16 0.203 3.5 1.0 

0.24 0.350 9.5 1.5 

0.44 0.476 17.0 2.0 

0.16 0.160 2.5 0.9 

0.1 0.255 2.8 0.6 

0.1 0.312 3.7 0.66 

0.44 0.287 11.3 2.2 

0.57 0.206 8.7 2.34 

0.57 0.398 17.0 2.4 

0.21 0.401 9.4 1.3 

*correction factor for loss of BAB 1.tg min'. 

The Enzfltter program was used to analyse the above data and to produce the best fit 

curve, shown in Figure 3.2. The Analysis of Variance gave R-squared of 0.98. 
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Figure 3.2 	Effect of substrate concentration on the reaction of adinic acid and BAB. 

Although the rate of conversion of adipic acid was slower with BAB than with 

I ,6-hexanediol, we were surprised at the comparability of the rate considering the relative 

size of BAB to 1,6-hexanediol. In order to explore the effect of a significant increase in 

the size of the diol on the rate it was decided to investigate the reaction of adipic acid with 

the ct,@—polytetramethylene ether glycol of average molecular mass 650. The procedure 

followed was the same as that used for BAB. The results obtained are shown in Table 3.3 

and Figure 3.3. 
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Table 3.3 	Rate of reaction of adiyic acid with PTMEG 650. 

[adipic acid] Enzyme Water losst 

mol dm 3  mg .tg min t  Rmol min' mg' 

0.84 0.120 7.00 3.24 

0.3 0.095 3.00 1.80 

0.25 0.097 2.80 1.60 

0.2 0.103 2.25 1.20 

0.45 0.156 6.20 2.20 

0.41 0.124 6.50 2.90 

0.21 0.180 7.40 2.20 

0.36 0.180 7.60 2.35 

0.36 0.152 7.00 2.40 

0.4 0.269 12.75 2.63 

0.4 0.147 6.00 2.27 

0.1 0.022 4.00 1.00 

0.4 0.345 14.50 2.33 

0.1 0.282 4.40 0.90 

*No correction factor needed for loss of PTMEG. 

The Enzfitter program was used to produce the best fit curve shown in Figure 3.3. The 

Analysis of Variance gave R-squared as 0.90. 
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Figure 3.3 	Effect of substrate concentration on the reaction of adipic acid with 

PTMEG 650. 

It can be seen that the scatter of the results is greater than for previous series. This may 

be explained by the limited solubility of adipic acid in the PTMEG. Care had to be taken 

to ensure that some of the adipic acid did not fall out of solution during the cooling down 

after the drying cycle, prior to the addition of the enzyme. 

The reaction rate was greater than that of adipic acid with BAB in spite of the fact that the 

excess of hydroxyl groups is significantly lower because of the high molecular weight of 

the PTMEG 650. 

In our earlier work,' 3  we had shown the existence of both AB and BAB in the early stages 

of the polymerisation reaction. Both had been synthesised by the method of Harffey. 16  It 
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was now logical to look at the rate of reaction of AB under the same conditions as our 

experiments on adipic acid with the various diols. 

The AB was added to the TGA pan and dried by heating for 15min until the weight was 

constant. It was then cooled and the weight loss at 60°C was measured and found to be 

negligible. Therefore, weight losses due to AB evaporation were ignored. The sample 

was then cooled to 30°C and the enzyme added; the temperature was raised to 60°C using 

the heating profile used for the previous experiments. The results are shown in Table 3.4. 

Table 3.4 	Reaction rate of AB polvmerisation. 

Enzyme Water loss* AB conversion 

mg ltg mind  Pmol miii' mg .tmol mm 4  mg' 

0.130 11.3 4.8 4.8 

0.432 38.5 5.0 5.0 

0.246 22.5 5.1 5.1 

0.233 17.5 4.2 4.2 

Average 4.8 

No correction factor needed for loss or Ab. 

It was surprising to find the rate to be significantly greater than the reaction rate of adipic 

acid with 1,6-hexanediol, BAB or PTMEG. Although the AB is not in solution, it must 

be remembered that the concentration of carboxyl groups is half that compared to adipic 

acid as it has only the single carboxyl group. In the early stages of the enzymatic 

polyesterification, we find significant amounts of AB in the reacting mixture, 13  this is 

surprising in view of the much higher reactivity of the AB, compared to the reactivity of 

adipic acid with either I ,6-hexanediol or BAB. In order to investigate this apparent 

anomaly we repeated the AB polymerisation experiments in the presence of adipic acid, 
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thus simulating the reaction niix in the early stages of the polyesterification. It was 

assumed that the carboxyl groups of the adipic acid were unlikely to react because of the 

great excess of AB and the demonstrated much higher reactivity of the AB carboxyl 

group, see Table 3.5. 

Table 3.5 	Rate of reaction of AB in the presence of adipic acid. 

Adipic acid Enzyme Water loss* AB conversion 

mg gg mind  j.tmol mm 4  mg' Rmol min' mg' 

3.9 0.570 19.5 1.90 1.90 

5.9 0.544 19.25 1.97 1.97 

*No correction factor needed for loss of AB. 

As may be seen from these two experiments there is a significant drop in the reactivity of 

AB when in the presence of adipic acid. This observation parallels that of the decline in 

reaction rate of adipic acid with 1,6-hexanediol at higher concentrations of adipic acid. 

Paktar, ci al.,86  have shown that pH 7.0 is optimum for the Candida antarctica lipase B 

and that below pH 6.0 there is a dramatic fall in the activity of the enzyme (Figure 3.4). 
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Figure 3.4 	The relationship of i,H to Activity as determined by Paktar. 72  
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The dissociation constants for a series of acids with a range of piL's,  taken from the 

Chemical Handbook, 87  are collected in Table 3.6. 

Table 3.6 	Dissociation Constants of a variety of carboxvlic acids. 

Acid pLC 

Aspartic acid 3.9 

Adipic acid 4.1 and 4.3 

Succinic acid 4.2 and 5.6 

Decanoic acid 5.0 

Octanoic acid 4.9 

Lactic acid 3.1 

Unless there are other factors, that might affect the enzyme-substrate reaction, such as 

steric effects or high concentration, all the acids listed with a plC  above that of aspartic 

acid should make suitable substrates for the CALB enzyme. They will not inhibit the 

dissociation of the proton from the aspartic acid in the catalytic triad. However, these 

acids will inhibit the protonation of the histidine residue, which has a pKa of 6.0. By 

preventing the charge transfer across the histidine ring the media with low pH will slow 

the reaction rate dramatically as shown in Figure 3.4. 

In theory an aspartic lipase should not be able to catalyse the esterification of lactic acid. 

However, From et al., have found some small activity with lactic acid although the rate 

of reaction was very slow. 88  

In addition to the dissociation of aspartic acid, enzymes like all proteins are sensitive to 

the pH of their environment and their conformation is affected by changing pH. The 
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dissociation of the proton from the aspartic acid in the catalytic triad. However, these 

acids will inhibit the protonation of the histidine residue, which has a pICa of 6.0. By 

preventing the charge transfer across the histidine ring the media with low pH will slow 

the reaction rate dramatically as shown in Figure 3.4. 

In theory an aspartic lipase should not be able to catalyse the esterilication of lactic acid. 

However. From, et al., have found some small activity with lactic acid although the rate 

of reaction was very slow. 88  

In addition to the dissociation of aspartic acid, enzymes like all proteins are sensitive to 

the pH of their environment and their conformation is affected by changing p11. The 

enzyme is held in its optimum conformation by a large number of 11 bonds, which are 

altered by changes in pH. In the case of the C. antarctica lipase B. Anthonsen has 

computed the charge distribution around the active site and shown that at pH 4.0 there is a 

significant difference in the charge distribution and site shape compared to that at pH 7.0 

and 9.0. Peterson has shown that the electrostatic potential distribution on the surface of 

a lipase as a fi.inction of pH, determines the pH activity profile of the enzyme. 9°  The 

change in pH affects not only the ionisation of the residues but also the distribution and 

strength of electrostatic interactions, on or near the surlhce of the enzyme. 

The reduction in the esterification reaction rate of AB in the presence of excess adipic 

acid implies that the acid is having an adverse effect on the activity of the enzyme. 

Adipic acid, with its pair of carboxyl groups of similar pK 3 , produces a Ft concentration 

of between 1.5-1.8 times that produced by a similar mono-carboxylic acid at the same 

mo larity. 

In view of these findings it was necessary to learn more about the pH of the various 
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Table 3.9 	p1-I of adipic acid in waterfPTMEG emulsiori. 

[adipic acid] in water/PTMEG p 1-1  

5m1 0.3 M AA in water 2.69 
• 5rnl PTMEG 650, i.e. 0.15 M 

5m1 0.3 M AA in water 2.94 
+ lOmi PTMEG, i.e. 0.1 M 

5m10.3 MAA in water 3.03 
• 15m1 PTMEG 6, i.e. 0.075 M 

5m10.3MAAinwater 3.2 
+ 25m1 PTMEG, i.e. 0.05 M 

The relevance to our system is obvious. Even in non-aqueous media there is a shell of 

water associated with the enzyme, this aqueous microenvironment is essential for the 

enzyme to remS active. In a water miscible non-aqueous medium where the water 

dissociation is suppressed by the organic component, the apparent pH is much higher than 

when the organic phase at the same concentration is immiscible with the water. With the 

miscible system, the enzyme experiences a much lower Jjf  concentration in its aqueous 

shell and the pH is much closer to its optimum. This is a simplification of the numerous 

and complex actual effects that the aqueous/non-aqueous media have on the enzyme. 

Some organic solvents that are miscible with water will strip the water from the enzyme, 

since the water has a greater affinity for the polar solvent than for the enzyme. When this 

occurs the enzyme loses activity and may be denatured completely. 9 ' Furthermore, the 

substrate solubility will differ in various organic media and there will be differences in 

the partitioning of the acid between the aqueous and non-aqueous phases, which will 

affect the apparent pH of the enzyme's water shell. Maurel, et al., have shown that in 
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solvent systems there is a significant perturbation of the plC 0  of the ionisable groups of the 

active site and surface of the enzyme. 92 ' 93  

In order to confirm the effect of pH on the rate of reaction of adipic acid with 

1,6-hexanediol, we repeated earlier experiments with and without the addition of 

tris-(2-amino-2-.hydroxymethyl- I ,3-propanediol) buffer and with part of the acid replaced 

by the ammonium salt or the amine salt of triethylamine. 

A 0.4M solution of adipic acid in I ,6-hexanediol was prepared, the tris buffer was then 

added; the solution was left at 100°C for 48 hours; then cooled and the lipase added. A 

very low reaction rate was observed, possibly due to the reaction of tris with the acid or 

enzyme prior to esterification. A sample of the solution was examined by FTIR and it 

was found that most of the adipic acid had been converted to the amine salt and rendered• 

inactive. The experiment was repeated without the prolonged heating. The reactants 

were dried as in previous experiments, the solid tris added and the sample heated to 60°C 

for 15min until all the buffer material had dissolved. The mixture was cooled, the lipase 

added and then heated to 60°C (see Table 3. 10), 

Table 3.10 Reaction rate of 0.4 M adipic acid (AM + I .6-hexanediol (HD) + tris buffer. 

Substrate Enzyme Water losst 

mg l.Lg mind  j.trnol mm 1  mg1  

AA+ 1,6-MD 0.41 17.0 2.1 

AA + 1,6-HD + tris 0.548 28.5 2.9 

AA+ 1,6-HD 0.389 16.5 2.4 

AA + I,6-HD + tris 0.375 18.0 2.7 

tCoaection factor for loss of 1,6-hexanediol 2 l.Lg min'. 



Several workers have reported a rate enhancement with the addition of triethylamine to 

enzymatic reactions. This observation was confirmed in our earlier work.' 7  it was 

suspected that in the case of the synthesis of polyesters, this enhancement was due to a 

buffering effect, which protected the enzyme from the low pH caused by the ionisation of 

the adipic acid. 

The ammonium salt of adipic acid and the amine salt of triethylamine and adipic acid 

were prepared. A 0.4 M solution of adipic acid in I ,6-hexanediol was prepared with part 

of the acid replaced by the corresponding amount of acid as either the ammonium or 

triethylamine salt. No loss of either ammonia or triethylamine could be detected during 

the standard weight loss calibration checks. The reaction rates observed with these part 

neutralised substrates are given in Table 3.11. 

Table 3.11 	Effect of amine salts on the reaction rate of adipic acid and diol. 

Substrate 
% W/ amine salt 

Enzyme mg Water .tg mm 4  Rate of water loss 
pmol miii' mg4  

90% NH4 AA 0.368 5.4 0.7 

62% NH4 AA 0.487 12.5 1.4 

10% NH4 AA 0.547 17.8 1.4 

24% TEA AA 0.801 44.6 3.2 

These results appear to confirm that in the case of the triethylammonium salt the presence 

of the bufIèr, which increases the pH of the medium, does indeed increase the reaction 

rate. 94  However, it would appear that the presence of the ionic ammonium salt of adipic 

acid gives a poorer substrate for Ca1B. Although triethylamine is the stronger base and 

therefore the TEA salt more ionised, it may, however, be less polar overall as it has an 
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organic "sheath" around the N, thus it becomes more available as a buffer in the non-

aqueous environment. It has been confirmed that buffering can overcome some of the 

problems caused by the acidity of the adipic acid. The work was discontinued, however, 

when it was realised that the presence of any of these buffers would have a deleterious 

effect on the final polyester. 

As a result of this work a recommendation was made to change the manufacturing 

process so the concentration of adipic acid was kept to a minimum particularly in the 

initial stages of the reaction. Instead of adding the stoichiometric amount of adipic acid at 

the beginning it was recommended that only the amount of adipic acid be added that 

could be dissolved in the diol and that this be done prior to the addition of the lipase; the 

remaining adipic acid being added in stages as the reaction progressed. This procedure 

was also followed for all the syntheses described in Chapter 9. 

3.2 	The effect of hydrophobicjty of the medium on the enzymatic catalysis of the 

reaction. 

The degree of dissociation of the acid depends on the hydrophobicity of the medium in 

which it is dissolved and most enzymes are affected significantly by the hydrophobicity 

of the medium in which they are placed. 95  It is known that most lipases have large 

hydrophobic regions around the outside of the active site. 96  Some lipases, though not 

CALB, need a hydrophobic/hydrophilic interface in order to open the 'lid', which is the 

protein segment covering the active site of the enzyme. 31 ' 97  

Next we investigated the effect of changing the hydrophobicity of the alcohol, effectively 

the medium, and the second substrate, the acid, and the combination of both of these. 

T. 



A problem, which affected the choice of alcohols and acids to be studied, is the much 

higher volatility of the monohydric alcohols and monocarboxylic acids, compared to the 

di-fijnctional compounds of similar molecular weight. In order to evaluate a much more 

hydrophobic medium with a relatively low vapour pressure at 60°C we decided to look at 

the reaction of adipic acid with dodecanol. The dodecanol and adipic acid were dried in a 

desiccator over P205 and added to the TGA pan. The solution was heated to 110°C for 15 

minutes, cooled to 25°C, the Candida antarctica lipase B (CaIB) added, the temperature 

raised to 50°C at 20°C mm 1 , to 58°C at 7°C miii' and to 60°C at 1°C min* The results 

are shown in Table 3.12 and Figure 3.5. 

Table 3.12 	Rate of reaction of adipic acid with dodecanol. 

[adipic acid] Enzyme Water losst 

mol dm 3  mg p.g mm 4  imo1 mm 4  mg' 

0.21 0.309 6.78 1.22 

0.21 0.400 8.64 1.2 

0.26 0.282 7.91 1.56 

0.12 0.275 4.63 0.8 

0.44 0.322 10.5 1.8 

0.5 0.206 7.19 1.94 

0.55 0.358 13.5 2.1 

Correction factor for loss ofdodecanol 2.5 jig mm'. 

The data was analysed using the Enzfitter program to produce the best fit curve shown in 

Figure 3.5. The Analysis of Variance gave R-squared as 0.99. 
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Figure 3.5 	Effect of substrate concentration on the reaction rate of adipic acid with 

do decano 1. 

We then repeated the experiments using solutions of decanoic acid in 1 ,6-hexanediol and 

decanoic acid in dodecanol. Because of the extremely low vapour pressure of adipic acid 

it had been assumed that in all previous experiments there was no loss of adipic acid by 

evaporation; therefore no loss in concentration during the experiments. However, this 

assumption cannot be made for a monocarboxylic acid like decanoic acid in a 

monohydric alcohol. Literature 98  vapour pressure data for decanoic acid and dodecanol 

are compared in Figure 3.6. The two curves are almost identical, so it was assumed that 

the relative composition of decanoic acid in dodecanol would not change during the 

drying cycle or reaction. The weight loss correction factors for decanoic and adipic acid 

solutions in 1,6-hexanediol were the same. The reaction conditions were the same as for 

the previous experiment and the results are in Table 3.13 and Figure 3.7. 
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Figure 3.6 	Vapour Pressure curves for dodecanol and decanoic acid. 

Table 3.13 	Rate of reaction of decanoic acid with 1,6-hexanediol. 

[decanoic acid] Enzyme Water losst 

mol dm 3  mg jig mind  jimot miii' mg' 

0.1 0.294 3.44 0.65 

0.10 0.410 4.20 0.60 

0.21 0.210 3.86 1.03 

0.21 0.464 8.50 1.01 

0.21 0.354 6.50 1.02 

0.22 0.310 6.00 1.1 

0.33 0.226 6.25 1.5 

0.41 0.355 10.0 1.6 

0.6 0.396 12.62 1.77 

0.6 0.492 14.5 1.72 

tcor'iection factor for loss of 1,6-hexanediol and decanoic acid 2 jig mm 4 . 
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The Enzfitter program was used to analyse the data and to produce the best fit curve 

shown in Figure 3.7. The Analysis of Variance gave R-squared as 0.99. 

Figure 3.7 	Effect of substrate concentration on the reaction rate of decanoic acid with 

I .6-hexanediol. 

Similar results for the reaction of decanoic acid with dodecanol are given in Table 3.14 

and Figure 3.8. 
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Table 3.14 	Rate of reaction of decanoic acid and dodecanol. 

[decanoic acid] Enzyme Water loss* 

mol dm 3  mg g mind  prnol miii' mg' 

0.21 0.381 3.40 0.50 

0.44 0.452 4.80 0.6 

0.44 0.370 4.35 0.64 

0.80 0.441 6.35 0.8 

0.80 0.545 7.7 0.78 

0.1 0.463 2.1 0.25 

0.1 0.341 1.7 0.28 

1.21 0.353 5.65 0.89 

1.21 0.770 11.73 0.85 

92orrection factor fOr loss of dodecanoic acid and dodecanol 2.5 pg miii'. 

Up to this point all of the rate studies had been carried out using a 100% pure sample of 

Candida antarctica lipase B produced commercially. When this was no longer available 

the work was continued using Chirazyme L-2 lyo supplied by Roche Diagnostics 

(formerly Boehringer Ingeiheim). This is exactly the same enzyme as that used 

previously, except that it is diluted with a combination of lyoprotectant and inert diluent. 

In order to be able to compare the results obtained with the two enzymes the relative 

activities were determined using the lipase assay method described in Appendix 3. 

Because of the special nature of the enzymatic polyesterification reaction, the activity of 

the two enzymes was determined in two esterification assays. The results of these are 

given in Table 3.15. 
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Figure 3.8 	Effect of substrate concentration on the reaction rate of decanoic acid and 

dodecanol. 

Table 3.15 	Comparison of activity of C. antarctica products. 

Enzyme Substrate V. 
MmoI miii' mg' 

K. 
mol dm 3  

Lipase units 

CaIB AA+HD 4.60 0.52 - 

Chirazyme L-2 " 1.46 0.53 - 

Ca1B AA+PTMEG 4.89 0.41 - 

ChirazymeL-2 11 1.89 0.56 - 

CaIB - - - 485 

ChirazymeL-2 - - - 165 

The results obtained are compatible with the claim by Roche Diagnostics that Chirazyme 

L-2 contains 3335%"Vw  of the active Candida antarctica lipase B enzyme. The structural 
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studies carried out using circular dichroism (Chapter 9) confirm that the secondary 

structures of the pure CaIB and the Chirazyme L-2 are the same. Therefore, it is possible 

to compare approximately the results obtained using the two enzymes, using a multiple of 

3.0 as a correction factor to resolve the difference in activity due to the different active 

enzyme content. The studies of the effect of hydrophobicity of the substrates and media 

were continued using Chirazyme L-2 lyo. 

The previous experiments using adipic acid in PTMEG 650 had given substantial 

variability in the results as may be seen in Figure 3.3. The lack of accuracy had been 

attributed to the low solubility of adipic acid in PTMEG 650 below 35°C. Therefore the 

series of experiments was repeated using the same reaction conditions as before; except 

that after the adipic acid solution in diol had been through the drying cycle, the enzyme 

was added as soon as the temperature in the TGA had fallen to 40°-42°C. The raw data 

for these experiments are given in Table 3.16 and are plotted in Figure 3.9. 

Figure 3.9 	Weight loss with time per mg of enzyme for the reaction of 0.4 M adipic 

acid with PTMEG 650 at 60°C. 
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Table 3.16 	The reaction of 0.4 M adipic acid with PTMEG 650 at 60°C. 

Exp. I Exp.2 Exp. 3 

Time 
rnins 

Wt. los? 
pg mg' of enzyme 

Wt. losst 

pg mg 1  ofenzyme 
Wt. losst 

pg mg' of enzyme 

0 0.0 0.0 0.0 

2 9.6 3.0 0.0 

4 38.4 36.0 27.0 

6 67.1 77.0 61.7 

8 93.5 101.0 98.8 

10 124.7 124.0 117.3 

12 151.1 135.0 135.8 

14 170.3 147.8 142.0 

16 189.0 160.4 164.0 

20 218.0 180.8 167.0 

No correction factor was required for loss of PTMEG. 

The maximum rates were taken between 4-10 minutes and were:- 

Experiment 1 	0.80 pmol min' mg' 

Experiment 2 	0.81 pmol mm 1  mg'. 

Experiment 3 	0.83 pmol mm 1  mg'. 

The reaction between adipic acid and PTMEG 650 did not require the deduction of any 

correction factor. The results of the reaction between 0.4 M adipic acid and PTMEG 650 

are shown in Table 3.17. It is obvious that these results are far more consistent than the 

earlier series (see Figure 3.3). 
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Table 3.17 	Rate of reaction of adipic acid and PTMEO 650. 

[adipic acid] 
mol dm 3  

Enzyme 
mg 

Water losst 
i.xg mm 1  

Reaction rate 
jimol mm 1  mg4  

0.1 0.503 3.0 0.33 

0.1 0.573 2.9 0.27 

0.2 0.236 2.0 0.47 

0.2 0.297 2.4 0.45 

0.2 0.120 1.2 0.56 

0.2 0.282 2.7 0.53 

0.4 0.417 6.0 0.80 

0.4 0.636 9.3 0.81 

0.4 0.162 2.4 0.83 

0.6 0.347 6.2 0.99 

0.6 0.315 5.7 1.00 

0.6 0.240 4.3 1.00 

0.8 0.322 6.2 1.07 

0.8 0.153 3.2 1.17 

0.8 0.387 8.4 1.20 

"No correction factor was required for loss of PTMEG 650. 

The data was analysed using the Enzfitter program to give the best fit curve shown in 

Figure 3.10. The Analysis of Variance gave R-squared as 0.99. 
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Figure 3.10 Effect of substrate concentration on the rate of reaction of adipic acid and 

PTMEG 650. 

In order to investigate the effect of hydrophobicity of the medium on the reaction rate 

further, two extremely hydrophilic diols were used as media and substrate. The first, 

diethylene glycol gave no discernible reaction, measurable with the TGA. This 

confirmed the unsuccessful attempts to use enzymes to synthesise polyesters based on 

diethylene glycol on a larger scale. The second hydrophilic diol that was tried was 

polyethylene glycol 400. The reaction conditions were exactly the same as in earlier 

experiments and the results are given in Table 3.18. 
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Table 3.18 	The rate of reaction of adipic acid and PEG 400. 

[adipic acid] 
mM dm 3  

Enzyme 
mg 

Water loss 
gg miii' 

Rate of reaction 
.xmol mlii' mg1  

0.1 0.840 7.6 0.5 

0.1 0.521 7.2 0.77 

0.1 0.173 1.5 0.48 

0.2 0.737 12.7 0.96 

0.2 0.546 8.5 0.86 

0.2 0.738 15.5 1.17 

0.4 0.497 15.2 1.7 

0.4 0.531 15.3 1.6 

0.4 0.687 18.5 1.5 

0.6 0.269 10.0 2.06 

0.6 0.410 16.2 2.2 

0.6 0.511 16.6 1.8 

0.8 0.242 9.6 2.2 

0.8 0.363 13.7 2.1 

0.8 0.392 16.9 2.4 

1.0 0.304 13.8 2.52 

1.0 0.484 20.5 2.35 

1.0 0.506 19.1 2.1 
*No  correction Iàctor needed for loss of PEG 400. 

The Enzfitter program was used to produce the best fit curve shown in Figure 3.11. The 

Analysis of Variance gave R-squared 0.99. 
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Figure 3.11 The reaction of adinic acid with PEG 400. 

When we compare the rates of reaction of the diols: 1 ,6-hexanediol, BAB, PTMEG 650, 

PEG 400 and dodecanol (Figure 3.12), a number of interesting conclusions emerge. 
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Figure 3.12 Reactivity of adipic acid with  various diols. 
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The reaction rates of adipic acid in 1 ,6-hexanediol and PTMEG 650 are almost identical; 

bearing out observations made on large-scale syntheses at Baxenden Chemicals Ltd. The 

polyesterification of adipic acid and PTMEG is a surprisingly facile and relatively fast 

reaction. When one compares the relative size of the I ,6-hexanediol molecule at 118 

Daltons, with PTMEG at 650 Daltons, it seems surprising that there is no significant 

difference in rate, bearing in mind the size of the PTMEG molecule. In addition, the 

molar concentration of hydroxyl groups is almost 6 times less in the PTMEG solutions 

than in the 1,6-hexanediol solutions. 

A 0.4 M solution of adipic acid in 1,6-hexanediol has a 23 times molar excess of hydroxyl 

to carboxyl groups, whereas in a 0.4 M solution of adipic acid in PTMEG 650 there is 

only a 4 times molar excess of hydroxyl to carboxyl. Similarly, the polyethylene glycol 

400 has a significantly smaller molar excess of hydroxyl groups yet it has the highest 

reactivity of all the diols used. 

The phenomenon of alcohol inhibition is quite common with lipase enzymes, 99  however, 

there appears to be no relationship between the hydroxyl concentration and the reaction 

rate in the various diols. The hydroxyl concentrations in descending order are, 

I ,6-hexanediol, BAB, dodecanol, PEG 400 and PTMEG 650, whereas the highest rate is 

found with the PEG 400 and the lowest rate with dodecanot 

Both observations seem to point to the fact that under the conditions of our experiments, 

the reaction of the hydroxyl group of the diol with the acylated enzyme is so fast that it is 

not the rate controlling factor in the overall reaction. This conclusion is in accordance 

with observations in other lipase systems.' °°  
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There doeshowever appear to be an inverse relationship between rate of reaction and the 

hydrophobicity of the diol used. 

We looked initially to see if this relationship could be quantified by using the dielectric 

constant as a measure of the hydrophobicity of the diol, however, this was not 

successfiul. 35  The relationship between the reaction rate and the logP, the partition 

coefficient of the diol between octanol and water, was studied. In some cases, we had 

insufficient material to determine the partition coefficient; therefore, we used the 

Summation of Common Fragment Constants method, also known as 'The Fragment 

Method', developed by Hansch and Leo,' ° ' to determine the ClogP. In order to be 

consistent we then used the CIogP for all comparisons with reaction rate. The ClogP 

partition coefficients for the relevant substrates are collected in Table 3.19. 

Table 3.19 	C logP of diols. 

Substrate C logP 

1,4-Butanediol -0.9. 

1,6-Hexanediol 0.80 

Dodecaziol 5.4 

PTMEG 650 2.5 

PEG 400 -3.2 

BAB 1.7 

AB 1.04 

Although a form of correlation between the reaction rate and the C logP may be seen in 

the Figure 3.12, it is not very clear. Therefore, using Enzfitter to determine the V. of 

the reaction of adipic acid with the various diols a study of the effect of the 
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hydrophobicity as measured by C togP on the rate as measured by V., determined by 

Enzfitter, was made. The results are shown in Figure 3.13. 

ClogP 

Figure 3.13 	The effect of ClogP on the Vmf the reaction of adipic acid with diol. 

There are a number of possible reasons for the pronounced effect of the hydrophobicity of 

the medium on the reaction rate. The desolvation of the acid substrate from the diol 

solution into the enzyme site will depend on the solubility of the acid in the diol, 

however, the hydrophilic diols are the best solvents for the acid, which means they would 

require the greatest desolvation energy, the converse of what would be expected. It has 

been shown in Chapter 6 on structural studies that the enzyme is not affected structurally 

by changes in the hythophobicity of its surroundings; therefore it is unlikely that the 

enzyme is behaving differently in the different media. The most plausible explanation for 

this effect is the desolvation of the product from the active site. If the rate controlling 

reaction is the acylation of the enzyme then the product being formed is water. The rate 

of reaction will be controlled by the rate of removal of water from the active site of the 

enzyme. The more hydrophilic the surrounding medium, the faster the water will be 
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removed, however, it is not only the removal of the water from the enzyme that is 

affected by the hydrophilic surroundings. The mass transport of water through the 

medium is much faster if it is hydrophilic so that it reaches the surface rapidly where the 

stream of dry nitrogen removes it. 

When we compare the reaction rates of the acids in the different diols it appears that not 

only does increasing the hydrophobicity of the diol have an adverse effect on the rate, but 

as will be seen below, the hydrophobicity of the acid substrate also appears to slow the 

reaction. The hydrophobicity of various acid substrates as measured by ClogP are shown 

in Table 3.20. 

Table 3.20 	ClogP of acid substrates. 

Substrate ClogP 

AB (AA + I ,4-BD) 1.04 

Adipic acid 0.42 

Decanoic acid 4.2 

Dodecanoic acid 6.0 

I 1-Hydroxyundecanoic acid 3.85 

I 5-Hydroxypcntadecanoic acid 4.9 

The fastest reacting was the AS hydroxy acid which has a visceral ester group, this makes 

it an extremely polar compound, but not as polar as adipic acid as it has only one carboxyl 

group. Thus, the [I-l] derived from the ionisation of the AS is such that the pH of the AB 

system stays within the optimum range for the activity of the enzyme. 
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Reaction of AB and two fi.irther hydroxy acids, were studied, II -hydroxyundecanoic acid 

(II -1-JUDA) and I 5-hydroxypentadecanoic acid (I 5-HPDA), which are similar to AB, but 

without the visceral ester group. 

The experimental procedure was the same as the earlier experiments, except that the 

I 5-hydroxypentadecanoic acid does not melt until 85°C. Therefore, in this case the acid 

was heated to 100°C for 10 minutes. No weight loss was observed; it was cooled to 45°C 

and the Candida antarctica lipase B added, after which the temperature was raised to 

86°C at 20°C min4 . It is known that CalB, being a thermozyrne, is fully active at this 

temperature and that the enzyme's activity does not start to decrease unless kept above 

90°C for some time. In order to make a useihI comparison with the reactivity of AB and 

11 -HUDA the reaction rate at 60°C was estimated using the Arrhenius equation. The 

results are shown in Table 3.21. 

Table 3.21 	Comparison of reactivity to C logP for hydroxyacids. 

Substrate Rate 

pmol mm 4  mg' 

C logP 

AB 4.8 1.0 

Il -HUDA 1.1 4.1 

15-HPDA 0.2 4.9 

With these limited data, it can be seen that there appears to be a direct inverse relationship 

between the reactivity of the acid and its hydrophobicity, as measured by its ClogP. 

These experiments were all carried out using the 100% hydroxy acid and therefore not 

directly comparable with the results obtained from the solutionsof acid in diol. 
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It has been showii that the hydrophobicity of the diol, which is the overall medium, has a 

major effect on the activity of the enzyme. We wanted to know if the polarity of the acid 

substrate would have an effect on the reaction rate even when in a large excess of diol. 

Four monocarboxylic acids were selected (see Table 3.22) with differing hydrophobicity 

and their reactivity determined when in dilute solution in I ,6-hexanediol. 

Using the same experimental procedures as before: 0.4 lvi solutions of the acid in 

I ,6-hexanediol, were prepared and the solution dried by heating in the TGA at 110°C for 

20niin, cooling to 25°-30°C, adding the enzyme and heating to 60°C at the standard rate. 

The weight loss used as the correction factor was determined and found to be 2 pg miii', 

the same as for previous I ,6-hexanediol experiments. After several runs had been 

completed and very erratic results obtained, we realised that both levulinic acid and 

acetylvaleric acid are quite volatile at 60°-80°C in spite of having boiling points in excess 

of 240°C. We measured a weight loss of 20 pg miii' for each acid when heated to 60°C 

in the TGA. We were concerned therefore, that during the drying cycle up to 110°C there 

could be a significant loss of the acid from the solution and a large unknown change in 

the concentration of the acid in the diol. Therefore, we decided to dry the acid and 

acid/diol solution over P205 prior to the experiment, dispensing with the drying cycle. 

This gave a significantly higher reaction rate than the previous experiments; this was 

assumed to be due to our having lost a significant amount of substrate during the previous 

drying cycle. 

The maximum conversion rates of the four acids as 0.4 M solutions in 1,6-hexanediol 

were compared to their partition coefficients, ClogP, as shown in Table 3.22 and Figure 

3.14. 
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Table 3.22 	Effect of substrate i,olarity on reaction rate. 

Substrate Initial rate gmol mm 1  mg' ClogP 

Levulinic acid 3.5 1.0 

Acetylvaleric acid 2.9 2.0 

Decanoic acid 1.6 5.0 

Dodecanoic acid 0.9 6.0 

4- 

3.5  

fi 	3- 

2.5 

2 	 4 6 8 

ClogP 

Figure 3.14 	Effect of substrate hydrophobicity on initial reaction rate. 

The relationship between the substrate polarity and the reactivity with the enzyme is quite 

clear. The explanation as to how the changes in polarity of the substrate molecule can 

affect the reaction rate when those changes are brought about by the introduction of a 

polar carbonyl group remote from the reacting carboxyl is more difficult. In Candida 

rugosa the binding of fatty acids has been shown to decrease with increasing chain 

length.' °2  The rate of transesterification of fatty esters using Candida antarctica lipase B 

has also been found to be dependant on the acyl chain length, the optimum length being a 

six carbon chain.' 03  Therefore, the observation of declining rates with the more 



hydrophobic acids has probably more to do with the acyl chain fitting the active site 

rather than any physical effect due to the increasing hydrophobicity. 

3.2.1 	Michacis-Menten kinetics. 

In order to investigate the characteristics of the enzyme that have such dramatic effects on 

its activity with different substrates and in different media, it is first necessary to 

determine the Michaeis-Menten constants of the enzyme in the various systems. While 

the graphs of reaction rate against substrate concentration appear to resemble a Michaelis-

Menten plot superficially, there is a major problem with this method. The difficulty 

arises in determining when the rate no longer changes with increasing concentration. 

Although in theory when all the enzyme sites are filled the rate should not increase with 

increasing concentration in reality the plot rarely becomes flat. Therefore, there is always 

a degree of estimation in determining the maximum rate, V,,,. 

There are two problems with the systenis studied, which in common with many other 

systems make it difficult to estimate the maximum rate. Firstly, the substrates used are 

not very soluble in the diols, which acts as both substrate and reaction medium, therefore 

high substrate cancent.rations cannot be used. A further difficulty arises when comparing 

the acid substrates; their solubility varies considerably in the reaction medium according 

to the chain length of the particular acid. It is not unusual to find that substrates are also 

enzyme inhibitors. In the systems studied, the increasing p14 at higher concentrations of 

the acid substrate had a significant adverse effect on the activity of the enzyme. 

The rate data was plotted to confirm that a reasonable rate/concentration curve had been 

obtained and then one of the traditional data manipulation procedures was used to get a 
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better estimate of the maximum rate. The most common of these techniques is the 

Lineweaver—Burke,' ° ' or double reciprocal method, was tried first. This involves plotting 

the reciprocal of the rate against the reciprocal of the concentration, so that the rate 

equation becomes: 

1K 	1 	1 

V V 	s} Vmax  

V = Rate, V. = Maximum rate, K. = Value of [S] giving V = V/2, [S] = Substrate 

concentration. 

The straight line produced by this method intersects the y-axis at IN and intercepts the 

x-axis at 1 /[S]. 

Although the Lineweaver-Burke method is taught widely and is used commonly, it has 

some fundamental flaws. The major problem is that the slope of the graph is heavily 

biased by the rates determined at the lowest concentrations. Any errors are accentuated 

because for small values of V, small errors give enormous errors in iN, whereas, at large 

values of V the same errors give hardly noticeable errors in I/V. The data from any 

kinetic experiment will be less accurate at the lowest substrate concentrations. 

An alternative technique is the one developed by Eadie-Hofstee,' °5  which attempts to 

overcome the problems of the Lineweaver-Burke method. The equation above is 

multiplied on both sides by V. and rearranged. The equation becomes therefore: 

V=Vm 	Kfflx[S] 
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A plot of V against V/[S] isa straight line with a slope of-Km and which intercepts V, 

on the rate axis and V/Km on the rate/Km axis. 

A straight line plot is obtained which intercepts the y-axis at V. and the x-axis at V/Km. 

Although in principle this method overcomes the errors resulting from measurements at 

low concentrations, any errors that do occur will be present on both axes of the plot. 

However, the Eadie-Hofstee method is still generally accepted as a better method than 

that of Lineweaver-Burke. There are other methods such as the Hanes plot, which uses 

the slope of the graph obtained when plotting [S]/V substrate concentration over rate 

against [S] substrate concentration.' 34  The intercept on the y-axis gives KIIJV,  while the 

intercept on the x-axis is Km. The only advantage of this method is that it avoids any 

problems caused by rate errors influencing the data on the x-axis. 

At the end of the work using the lyophilised Candida antarctica lipase B the Michaelis 

Menten constants determined by these methods were found to be as shown in Table 3.23. 

Table 3.23 	Michaelis-Menten constants for the esterification reactions. 

System Observed Lineweaver-Burke Eadie-Hofstee 

pmol min' mg' 
K. 

mol dni3  
V 

j.tmol mm 4  
K. 

mol dm 3  i.xmol nt1  mg 4  

AA+ 1,6-HD 3.2 0.6 6.88 1.1 5.3 

AA + BAB 2.8 0.72 6.90 1.02 4.3 

AA + PTMEG 3.5 0.84 4.64 0.72 4.7 

AA+ DDOH 2.4 1.66 2.72 1.10 2.28 

DA+ 1,6-HD 2.0 0.80 5.88 0.58 4.54 

DA + DDOU 0.9 0.38 1.96 0.38 1.82 



We were somewhat surprised by the size of the difference of the apparent Vnrn taken 

from our rate graphs and the V. given by the Lineweaver-Burke plots. For example 

adipic acid and 1 ,6-hexanediol had an apparent V. of 3.2 jimot mind  mg 1  compared to 

the Lineweaver-Burke V. of 6.88 p.mol min 4  mg4 . In addition, in the case of adipic 

acid in dodecanol, the Km did not appear to fit in with that of the other systems. The 

Eadie-Hofstee method,' °5  which involves plotting the rate against the rate/[substrate], was 

then tried as it is generally accepted to give results that are more accurate. 

It may be seen that for some systems, notably decanoic acid in 1,6-hexanediol, decanoic 

acid in dodecanol and adipic acid in PTMIEG, there is a reasonably good correlation 

between the two methods. In other cases, there are significant discrepancies between the 

two methods. 

Although we had some confidence in the constants determined by the Eadie-Hofstee plots 

we did not like the potential uncertainties inherent in techniques, which are little more 

than primitive methods of data manipulation to force the information into a straight line. 

Therefore, we decided to use the curve fitting program together with the analysis program 

in the Enzfitter software , which is discussed in the Development of Methods Chapter. 

One problem with the use of K. for analytical purposes is that it often underestimates the 

binding energy of the process. Whereas the specificity constant VfKm includes both 

activation energy and binding energy. We were interested specifically in the affinity or 

specificity constant of the enzyme with the different substrates. It is the best method to 

test the relevance of substrate, solvent or enzyme changes in enzymatic catalysis.' °6  The 

rate of formation of the acyl enzyme is governed by the specificity constant, because it is 

the rate of reaction between the free enzyme with the free substrate. It depends only on 

the acylation step and is independent of the reaction between acyl enzyme and alcohol. A 
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summary of the results obtained from the two traditional methods and the powerfiul 

Enzfitter software is given in Table 3.24. 

Table 3.24 	Comparison of methods for the determination of Michaelis constants. 

System Specificity 
L-B 

Specificity 
El-I 

V=X 
Enzfitter 

Km 
Enzfitter 

Specificity 
Enzfitter 

AA+I-ID 11.46 4.82 5.60 1.14 4.91 

AA+BAB 9.56 4.22 5.15 1.29 3.99 

AA+PTMIEG 5.52 6.53 4.92 0.84 5.86 

AA+DDOH 1.6 2.07 3.38 0.71 4.76 

DA+HD 7.35 7.83 2.82 0.35 8.05 

DA+DDOH 5.16 4.79 1.07 0.29 3.69 

In both the case of the hydrophobicity of the medium and the substrate there appeared to 

be a close relationship between the ClogP and the reaction rate measured by the 

maximum rate V. However, it was found that there is no relationship whatsoever 

between either the hydrophobicity and the K m  or the specificity VfK m, which is 

extremely interesting, as earlier work with decanoic acid and dodecanol had claimed the 

reverse, the more hydrophobic solvents giving a higher rate of esteriflcation. 107  The 

higher logP solvents gave a low Km due to the effect of the solvent on substrate 

desolvation. The V, however, did not show any correlation with logP because, as the 

authors state: W. is only changed if the enzyme conformation or structure or 

mechanism is changed".' °7  They examined six different solvents, although two were 

disregarded because of apparently anomalous results! Maurel proposed that the greater 

the role of hydrophobic interactions the greater the effect the solvent logP has on the 

binding process (Km). The higher the solubility of the substrate in the organic media the 



lower its relative affinity for the enzyme and the higher the Km. 35  Although the work was 

done with subtiisin and not a lipase, Kim, a aL, °8  showed that the increased rate of 

transesterification with poiar solvents was due to the polar transition state being stabilised 

by the medium, this then lowers the activation energy for the reaction. However, they 

also found no correlation between VEO.XflC m  and hydrophobicity as measured by the 

dielectric constant. 

If we consider the implications based on Michaelis-Menten theory, which states that: 

K =k2  

then when we have a reaction like ours, which is a typical ping-pong lipase reaction, and 

k2 is always significantly less than k1, that is: 

Acid(A) + Enzyme(E) 	
k1 

	

AE + Diol(B) 	- Ester(AB) 
k 1 	 Fast 

E120 	 E 

Since the de-acylation step is the faster reaction and a large excess of diol is maintained 

throughout, when we measure the rate of water produced we are measuring k1, however, 

because of the association of the two moieties in AE the determination of k1 will include 

an approximation for k-1. Therefore, the determination of Km will approximate to the 

dissociation constant I(j for the reaction below. 

kd  
A + E '< 	' AB 



K m  = [E]free 	
[A] 

In Michaelis-Menten kinetics the Km is a measure of how tightly the enzyme binds to the 

substrate, which means that K. is a measure of the affinity of the substrate for the 

enzyme. V. is a measure of how fast the enzyme can go when all the reactive sites are 

acylated, i.e. all are in the form of the covalent AE complex. 

Our results show that changing the hydrophobicity of the medium does not appear to 

change the affinity of the substrate for the enzyme or, apparently, the nature of the 

binding between enzyme and substrate. 

There are a number of possible reasons for the pronounced effect of the hydrophobicity of 

the medium on the reaction rate as measured by V. The desolvation of the acid 

substrate from the diol solution into the enzyme site will depend on the solubility of the 

acid in the diol, however the hydrophilic diols are the best solvents for the acid, which 

means they would require the greatest desolvation energy, the converse of what would be 

expected. It has been shown in Chapter 6 on structural studies that the enzyme is not 

affected a great deal structurally by changes in the hycirophobicity of its surroundings; 

therefore, it is unlikely that the enzyme is behaving differently in the different media. 

The most plausible explanation for this effect is the desolvation of the product from the 

active site. If the rate controlling reaction is the acylation of the enzyme then the product 

being formed is water. The rate of reaction will be controlled by the rate of removal of 

water from the active site of the enzyme. The more hydrophilic the surrounding medium, 

the faster the water will be removed, however, it is not only the removal of the water from 

the enzyme that is affected by the hydrophilic surroundings. The mass transport of water 

through the medium is much faster Wit is hydrophilic so that it reaches the surface rapidly 



where the stream of dry nitrogen removes it. It has been proposed that there is a better 

correlation between the solubility of water in the solvent and enzyme activity than 

between activity and log P, this intuitively is attractive and is almost certainly relevant but 

is probably an over simplification.' 07  The correlation found over a large number of 

solvents was tenuous and unconvincing. The truth is probably that the solvent affects 

substrate desolvation, transition state stabilisation as well as product desolvation from the 

active site. More hydrophobic solvents will also increase the strength of dipoles and 

perturb the pKa of relevant residues in the enzyme. The observed relationship being a 

summation of all these effects the importance of which will vary from system to system. 

3.3 	Investigation of the acyl binding site. 

In the work of Pleiss " and others 31 it was shown that the active site of the lipase is 

divided into the acyl binding side and the alcohol binding side. The acyl binding side is 

usually described as being relatively non-specific whereas the alcohol side is far more 

specific. A considerable amount of work has been published on the stereospecificity of 

the alcohol side of the lipase binding site. 59  Candida antarctica lipase B as an example is 

highly stereospeciflc for secondary alcohols because of the geometry of the oxyanion 

hole, which stabilises the tetrahedral intermediate of the alcohol-acyl enzyme reaction. t09  

Apart from work showing the preferences of lipases for different chain lengths according 

to the overall shape of the active site, as discussed in Chapter 7, very little has been 

published on the detaiied effect of chain length and substitution along the chain. 

All previous work has been carried out using monocarboxylic acids, 110  however, because 

of our interest in polyesterification it was decided to use dicarboxylic acids. Firstly 
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because they are the acids required for the process but also being short chain acids, such 

as adipic acid, the w-carboxyl group is inside the active site of the enzyme when the 

ct-carboxyl group is approaching and acylating the serine of the active site. Because of 

the abundance of hydrophobic areas at the entrance to the site (See Chapter 7) and 

electrostatic interactions within the site it was considered likely that the position of the 

co-carboxyl could well influence the overall reactivity of the acid and the enzyme. 

The dicarboxylic acids chosen for this study were:- 

Succinic acid 	HOOC-(CJ-12)2-COOF{ 

Glutaric acid 	HOOC-(CH2)3-COOl-f 

Adipic acid 	HOOC-(CH 2)4-COOH 

Pimelic acid 	HOOC-(C112)5-COOJ-1 

2-Oxoadipic acid 	HOOC-CO-(C112)3-COOH 

3-Oxoadipic acid 	HOOC-CH2-CO-(CH 2)2-CQOH 

3-Methyladipic acid FIOOC-CH2-C}l(CH3)-(CH2)2-COOH 

The experimental method was exactly the same as described in Chapter 2 for the earlier 

experiments. The enzyme used in these later experiments was Chirazyme L-2 lyo from 

Roche Diagnostics. This is commercial purity Candida antarctica lipase B that has had 

lyoprotectant and inert diluent added. The actual structure and activity of the enzyme is 

exactly the same as the Candida antarctica lipase B from Novo which was used in the 

earlier work (see Chapter 9). The activity per milligram of the 100% Candida antarctica 
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lipase is approximately 3.0 times that of the Chirazyme L-2 lyo. The rate of reaction at 

60°C, of the above acids in 1,6-hexanediol was determined. 

The results for succinic acid in 1 ,6-hexanediol are given in Table 3.25. The Enzfitter 

program was used to analyse these data and to plot the best fit curve as shown in Figure 

3.15. The Analysis of Variance gave an R-squared (correlation coefficient) of 0.990. 

HZOmlc,omol miii.l mg.1 
Succhic acid In 1S4iexanedioi 0.600 

05 

0.400 

0.300 

/7 
 

0.200 

0.100 

0.0 I 	I 	I 	 I 	I 	I 

0.0 	0.100 	0.200 	0.300 	0.400 	0.5 0.600 0.700 	01800 

tsucciaic acid) mol dm.3 

Figure 3.15 The reaction of succinic acid with I .6-hexanediol. 
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Table 3.25 	Reaction of succinic acid in 1,6-hexaned lot at 60°C. 

[succinic acid] 
mot dm 3  

Enzyme 
mg 

Water loss 

mm 4  
Rate of reaction 

jig mm 1  mg '  

01 0.537 1.0 0.098 

0.1 0.871 1.6 0.1 

0.1 0.411 0.7 0.99 

0.1 0.387 0.8 0.11 

0.21 0.635 2.2 0.19 

0.21 0.523 1.9 0.2 

0.21 0.453 1.8 0.22 

0.31 0.511 2.6 0.28 

0.31 0.623 3.2 0.285 

0.31 0.525 2.7 0.29 

0.4 0.566 3.3 0.32 

0.4 0.6 3.8 0.35 

0.4 0.342 2.0 0.33 

0.6 0.382 3.2 0.46 

0.6 0.287 2.2 0.43 

0.6 0.193 1.7 -. 	0.49 

0.8 0.438 3.9 0.49 

0.8 0.32 3.0 0.52 

0.8 0.419 4.0 0.53 

tCorrection fhctor for loss of I ,6-hexanediol 2 jig mm 4 . 

The reactions were repeated with glutaric acid in I ,6-hexanediol and the results shown in 

Table 3.26. 

94 



Table 3.26 	The reaction of glutaric acid in 1,6-hexanediol at 60°C. 

[glutaric acid] 
mol dm 3  

Enzyme 
mg 

Water los? 
.tg mind  

Rate of reaction 
lig miff1  mg' 

0.11 0.499 2.7 0.30 

0.11 0.742 3.2 0.24 

0.11 0.215 1.0 0.26 

0.2 0.368 2.8 0.42 

0.2 0.419 2.9 0.38 

0.2 0.59 4.3 0.40 

0.3 0.418 4.3 0.57 

0.3 0.446 4.3 0.54 

0.3 0.423 4.2 0.55 

0.41 0.558 6.3 0.63 

0.41 0.246 2.7 0.60 

0.41 0.245 3.0 0.68 

0.61 0.428 5.7 0.74 

0.61 0.507 5.9 0.65 

0.61 0.331 4.7 0.79 

0.8 0.405 .. 	6.2 0.85 

0.8 0.570 8.4 0.82 

0.8 0.468 6.7 0.80 

1.0 0.291 4.7 0.90 

1.0 0.821 12.4 0.84 

1.0 0.400 6.0 0.83 

tconection factor for loss of 1,6-hexanediol 2.tg miii'. 
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The Enzfitter program was used to analyse these data and to plot the best fit curve as 

shown in Figure 3.16. The Analysis of Variance gave an R-squared of 0.978. 

H20 nilcromol mfl-I mg-I 
Glutadc acid In 16-hexanodlol 

0.900 4 

0.800 .i 
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4 

0_Boo 

0.6 / 
0.400 

0.300 

0.200 
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I 	I 	 I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 	I 

0.0 0.100 0200 	0200 	0.400 	0.6 	0.600 	OJOO 	0200 	0.900 	1.0 

[glutarlc .cld] mol dm4 

Figure 3.16 The reaction of glutaric acid with 1.6-hexanediol. 

The results for the reaction of adipic acid in 1,6-hexanediol are given in Tables 3.27 and 

3.28. 
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Table 3.27 	The reaction of 0.4 M adipic acid with 1,6-hexanediol at 60°C. 

Exp. 1 Exp. 2 Exp. 3 

Time 
mins 

Wt. loss 
pg mg' 
enzyme 

Wt. loss 
ACF.t 
pg mg' 
enzyme 

Wt. loss 
pg mg 
enzyme 

Wt. loss 
ACF.* 
pg mg' 
enzyme 

Wt. toss 
pg mg' 
enzyme 

Wt. loss 
ACF.t 
pg mg 
enzyme 

0 0.0 0.0 0.0 0.0 0.0 0.0 

2 0.0 0.0 0.0 0.0 6.0 2.0 

4 17.0 9.0 53.0 45.0 40.0 32.0 

6 85.0 73.0 78.0 66.0 69.0 57.0 

8 112.0 96.0 111.0 95.0 95.0 79.0 

10 145.0 125.0 138.0 118.0 119.0 99.0 

12 162.0 138.0 162.0 138.0 140.0 116.0 

14 186.0 158.0 184.0 156.0 166.0 138.0 

16 208.0 176.0 204.0 172.0 181.0 149.0 

20 241.0 201.0 251.0 211.0 r224 0 184.0 

*ACF: After correction factor for loss of 1,6-hexanediol 2 pg min. 

In experiment I the reaction was slow to start and the maximum rate was taken from 6-12 

minutes. In experiments 2 and 3 the rate was measured between 4-10 minutes. The 

maximum rates obtained, after correcting for the amount of enzyme added, were:- 

Experiment 1 	0.60 psmol mm 4  mg'. 

Experiment 2 	0.68 pmol mm 1  mg'. 

Experiment 3 	0.62 pmol miff' mg' 

In all cases the rate plot (e.g. Figure 3.17) was inspected to see if there were any 
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anomalies, the problems usually occurred in the first 4 minutes because of the slight 

variations in the time to get the reactants to 60°C. Therefore, the rate was taken from 4-

10 minutes unless there was an observed problem. In several experiments the Michaelis 

Menten plots were drawn using rates taken at 2-6 minutes, 2-8 minutes, 4-10 minutes and 

4-12 minutes. The plots were then prepared using the curve fitting program of the 

Enzfitter software and the correlation coefficient obtained. By far the best correlation 

was obtained when using the rate measured between 4-10 minutes. 

0) 
P 

•1 isø 	- •Exp.l 
•Exp.2 

- 5 10 	15 	20 25 

minutes 

Figure 3.17 Weight loss with time per mg of enzyme for the reaction of 0.4M adipic 

acid with 1,6-hexanediol at 60°C. 

The reaction of 0.8 M adipic acid with I ,6-hexanediol at 60°C is shown in Table 3.28. 

The rate was measured between 4-10 minutes and the maximum rates obtained were:- 

Experiment 1 	0.85 gmol mm 4  mg* 

Experiment 2 	0.84 rimol mm1 mt'. 

Experiment 3 	0.86 i.xmol miW' mg'. 
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Table 3.28 	The reaction of 0.8 M adipic acid with 1.6-hexanediol at 60°C. 

Exp. I Exp. 2 Exp. 3 

Time 
mins 

Wt. Loss 
pg mg 4  
enzyme 

Wt. Loss 
ACF.t 
pg mg' 
enzyme 

Wt. Loss 
pg mg4  
enzyme 

Wt. Loss 
ACF.t 
pg mg 1  
enzyme 

Wt. Loss 
pg mg 

Wt. Loss 
ACF.* 

pg mg 1  
enzyme 

0 0.0 0.0 0.0 0.0 0.0 0.0 

2 24.0 20.0 25.0 21.0 48.0 44.0 

4 92.0 84.0 52.0 44.0 71.0 63.0 

6 121.0 109.0 98.0 86.0 92.0 80.0 

8 170.0 154.0 127.0 111.0 144.0 129.0 

10 196.0 176.0 155.0 135.0 176.0 156.0 

12 223.0 199.0 180.0 156.0 200.0 176.0 

14 260.0 232.0 201.0 173.0 230.0 202.0 

16 318.0 286.0 224.0 192.0 259.0 227.0 

20 346.0 1 	306.0 258.0 218.0 307.0 267.0 

'ACF: After correction factor for loss of 1 ,6-hexanediol 2pg min. 
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Figure 3.18 Weight loss with time per mg of enzyme for the reaction of 0.8 M adipic 

acid with 1 .6-hexanediol at 60°C. 
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Table 3.29 	Reaction of adipic acid in 1,6-hexanediol at 60°C. 

[adipic acid] 
mol dm 3  

Enzyme 
mg 

Water loss 
ig mm 1  

Rate of reaction 
jig miii' mg' 

0.1 0.462 2.0 0.24 

0.1 0.721 3.31 0.25 

0.1 0.708 3.30 0.26 

0.2 0.317 2.17 0.38 

0.2 0.674 5.0 0.41 

0.2 0.512 4.00 0.43 

0.4 0.825 8.9 0.60 

0.4 0.536 6.0 0.62 

0.4 0.550 6.6 0.68 

0.6 0.491 6.7 0.76 

0.6 0.346 5.0 0.80 

0.6 0.559 7.3 0.72 

0.8 0.377 6.1 0.9 

0.8 0.613 9.4 0.85 

0.8 0.667 10.3 0.86 

1.14 0.425 8.2 1.07 

1.14 0.540 9.4 0.97 

1.14 0.365 6.5 0.98 

1.14 0.558 10.5 1.05 

Correction factor for loss of 1,6-hexanediol 2 jig min* 

The Enzfitter best fit curve for these data is shown in Figure 3.19. The Analysis of 

Variance gave an R-squared of 0.987. 
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Figure 3.19 The rate of reaction of adipic acid and 1.6-hexanediol. 

The results for the reaction of pimelic acid and 1,6-hcxanediol are shown in Table 3.30. 
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Table 3.30 	The reaction of pimelic acid and 1,6-hexanediol at 60°C. 

[pimelic acid] 
mol dm 3  

Enzyme 
mg 

Water los? 
jig mm 4  

Rate of reaction 
jig mind  mg' 

0.1 0.492 1.8 0.2 

0.1 0.438 1.5 0.19 

0.1 0.311 1.1 0.19 

0.1 0.582 2.1 0.2 

0.225 0.483 3.5 0.4 

0.225 0.472 3.0 0.35 

0.225 0.294 1.6 0.3 

0.44 0.298 2.7 0.51 

0.44 0.569 5.2 0.51 

0.44 0.401 3.7 0.51 

0.65 0.357 5.0 0.78 

0.65 0.405 4.6 0.63 

0.65 0.264 3.1 0.65 

0.65 0.310 4.0 0.72 

0.85 0.629 9.3 0.82 

0.85 0.262 3.8 0.81 

0.85 0.231 3.3 0.8 

1.0 0.706 10.8 0.85 

1.0 0.537 8.0 0.83 

1.0 0.578 8.7 0.84 

*Coaection  factor for loss of 1,6-hexanediol 2 jig mm 4 . 

The Enzfitter program was used to analyse the data and to plot the best fit curve shown in 

Figure 3.20. The Analysis of Variance gave R-squared as 0.98 1. 
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Figure 3.20 The rate of reaction of pimelic acid and 1.6-hexanediot. 

Because of the cost and difficulty in obtaining 2-oxoadipic acid it was not possible to 

determine the reaction rate over a range of substrate concentrations. Therefore, the rate of 

reaction with 1 ,6-hexanediol was determined at a concentration of 0.4 M of acid in diol. 

The results obtained from the reaction of 2-oxoadipic acid and I ,6-hexanediol are given 

in Table 3.31. 

Table 3.31 	Reaction of 2-oxoadipic acid with I .6-hexanediol. 

[2-oxoAA] 
mol dm4  

Enzyme 
mg 

Water losst 
l.Lg mind  

Rate of reaction 
.zmo1 miff1  mg' 

0.8 0.372 2.2 0.33 

0.8 0.349 2.3 0.36 

0.8 0.217 1.3 0.34 

tCorrection factor for loss of 1,6-hexanediol 2 gg min* 
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The average rate of 0.34 j.xmol miii' mg' was surprisingly low compared to un-

substituted adipic acid. In view of the findings of the molecular modelling exercise, it 

seemed possible that the 2-oxoadipic acid was acting as an inhibitor for the enzyme. It 

was thought that if the carboxyl group in the I-position acylatcd the serine of the active 

site then the hydrogen bonding of the 2-oxo carbonyl to the threonine 40 could well 

stabilise the complex to the extent that the second stage of the reaction would not occur 

In order to test this theory samples were prepared of nted adipic and 2-oxoadipic acids. 

A 0.4M solution of aclipic acid was prepared in which 15%'V of the adipic acid had been 

replaced by 2-oxoadipic acid and a second 0.4M solution prepared in which I %"/ of the 

adipic acid had been replaced by 2-oxoadipic acid. The results of these reactions with 

1,6-hexanediol are given in Table 3.32. 

Table 3.32 	Reaction of adiyic/2-oxoadinie acids with I ,6-hexanediol. 

[diacid] 
mol dm 3  

Enzyme 
mg 

Water losst 
jig mm 1  

Rate of reaction 
jimol miii' mg1  

0.4 M AA 0.850 8.5 0.55 

0.4M AA+15%2oAA 0.499 4.0 0.45 

0.4M AA+l% 2oAA 0.379 3.3 0.48 

tCorrection factor for loss of 1,6-hexanediol 2 jig mm 1 . 

The above results can be explained by assuntg that the I -carboxyl of the 2-oxoadipic 

acid is either un-reactive towards the serine of the lipase or the reaction is so slow that it 

cannot be measured by our method. The rate of reaction of 0.34 j.tmol mm 4  mg4  would 

then be correct, if the carboxyl concentration was assumed to be half of that quoted 

because of the 2-oxoadipic acid having only one reactive carboxyl group. 
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The results with the blends of adipic and 2-oxoadipic acids should only be taken as an 

indication of the rates as they were the result of only one experiment at each 

concentration. The reduction in rate, if meaningful, could be explained by the un-reactive 

carboxyl group occupying the active site unproductively, thus reducing the observed rate 

of reaction. 

The results obtained from the reaction of 3-oxoadipic acid and 1 ,6-hexanediol are given 

in Table 3.33. The Enzfitter program was used to analyse the data and fit the curve 

shown in Figure 3.21. The Analysis of Variance gave R-squared as 0.978. 

Figure 3.21 The rate of reaction of 3-oxoadipic acid with 1.6-hexanediol. 
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Table 3.33 	The reaction of 3-oxoadipic acid and 1,6-hexanediol at 60°C. 

[3-oxoAA] 
mol dm 3  

Enzyme 
mg 

Water losst 

p.g mm 1  
Rate of reaction 

smoI mm 4  mg' 

0.1 0.585 2.0 0.19 

0.1 0.488 1.6 0.18 

0.1 0.302 0.9 0.16 

0.2 0.614 3.3 0.3 

0.2 0.528 2.9 0.31 

0.3 0.311 2.2 0.39 

0.3 0.398 2.9 0.4 

0.3 0.352 2.7 0.42 

0.4 0.355 3.4 0.53 

0.4 0.491 4.9 0.55 

0.4 0.417 3.7 0.49 

0.6 0.762 8.2 0.6 

0.6 0.516 6.5 0.7 

0.6 0.332 3.8 0.64 

0.8 0.408 5.0 0.68 

0.8 0.606 8.6 0.79 

1.0 0.228 3.4 0.83 

1.0 0.259 3.7 0.79 

1.0 0.207 3.0 0.81 

tCorrection factor for loss of 1,6-hexanediol 2 .tg mm 4 . 

The results of the reaction of 3-methyladipic acid are given in Table 3.34. 
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Table 3.34 	The reaction of 3-methyladipic acid and 1,6-hexanediol at 60°C. 

[3-MeAA] 
mol dm 3  

Enzyme 
mg 

Water Los? 
pg min' 

Rate of reaction 
pmol miii1  mg' 

0.1 0.231 0.8 0.19 

0.1 0.506 1.8 0.2 

0.1 0.381 1.5 0.22 

0.2 0.337 2.0 0.33 

0.2 0.644 3.5 0.3 

0.2 0.412 3.0 0.4 

0.2 0.362 2.5 0.38 

0.4 0.551 5.8 0.58 

0.4 0.358 3.7 0.58 

0.4 0.596 6.0 0.56 

0.6 0.411 5.5 0.74 

0.6 0.266 3.4 0.7 

0.6 0.345 5.0 0.8 

0.8 0.383 5.9 0.85 

0.8 0.362 6.0 0.92 

0.8 0.403 6.5 0.9 

1.03 0.181 3.3 1.02 

1.03 0.276 4.3 0.87 

1.03 0.259 4.5 0.97 

1.03 0.252 4.0 0.88 

tCorrection factor for loss of I ,6-hexanediol 2 pg min'. 

The Enzfitter program was used to analyse the data and to give the fitted curve shown in 

Figure 3.22. The Analysis of Variance gave R-squared as 0.98. 
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Figure 3.22 The rate of reaction of 3-methyl adipic acid with 1.6-hexanediol. 

The Enzfitter program was used to determine the Michaelis-Menten constants V. and 

K. for each of the above series of experiments and the results are shown in Table 3.35. 

Table 3.35 	Michaelis-Menten constants of diacids in 1.6-hexanediol. 

Substrate Vma.x 

imoI mind  mg 
K. 

mol dm 
V. 95% 

confidence limits 

Succinic acid 1.15 0.96 0.97-1.33 

Glutaric acid 1.2 0.38 1.09-1.3 

Adipic acid 1.47 0.53 1.34-1.58 

Pimelic acid 1.48 0.76 1.25-1.71 

In order to understand better the observed diflèrences in reaction rates the substrate 

molecules were modelled and energy minimised and their various molecular parameters 
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calculated (for details of molecular modelling see Chapter 7). These included the overall 

dimensions of the molecules, the molecular volume, dipole moment, topological 

symmetry, spatial density and flexibility. All parameters were compared to the specificity 

constant Vp..jK m  in order to see if there was any correlation that might explain the 

differences between the substrates. All the parameters increased as expected with the 

chain length of the molecule, but no relationship could be seen to the specificity constant. 

Afler minimisation the final total energy of the molecule was measured and when this 

was compared with the specificity constant there appeared the possibility of a 

relationship, in that glutaric and adipic acids had the lowest final energy. 

The calculated partition coefficients C logP were calculated using the tables of Hansch 

and Leo.' ° ' These together with the pK a  of the various acids are shown in Table 3.36. 

Table 3.36 	Molecular parameters of substrates compared to specificity constant. 

Substrate V/K C logP Length A Pi - pKa2 Energy 
kcals mol' 

Succinic acid 1.19 -0.88 5.23 5.52-4.24 15.43 

Glutaric acid 3.12 -0.22 6.80 5.27-4.33 14.38 

Adipic acid 2.75 0.44 7.74 5.13-4.49 15.07 

Pimelic acid 1.95 1.10 9.14 5.07-4.43 17.11 

It is not possible to say with any certainty why the enzyme has the highest affinity for the 

particular substrates, glutaric and adipic acids. However, when modelling adipate 

polyesters being formed in the active site it has been observed that a hydrogen bond is 

formed between the carbonyl of the ester group at the other end of the acid substrate and a 

threonine residue in the active site. The presence of such a hydrogen bond would 
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obviously depend on the distance between the two carbonyls of the diacid, too close or 

too far apart then no hydrogen bond can form. The x-axis (length) of succinic acid is 

5.23A and that of pimelic acid is 9.14A. Glutaric and adipic acids lie between with 

lengths of 6.8A and 7.7A respectively. 

TheMichaelis-Menten constants for the substituted adipic acids are shown in Table 3.37. 

Table 3.37 	The reaction of substituted adipic acids with I ,6-hexanediol. 

Substrate Vn,ax 
jmo1 min' mg 1  

Km 
mol dm 3  

Vmax  95% 
Confidence limits 

Adipic acid 1.47 0.53 1.34-1.58 

3-Oxoadipic acid 1.31 0.6 1.08-1.53 

3-Methyladipic acid 1.60 0.69 1.38-1.82 

The specificity constant was calculated and compared to the molecular parameters and 

physical properties, as shown in Table 3.38. 

Table 3.38 	Molecular parameters of substituted adipic acids. 

Substrate Vrmx/Km  C logP plCai - pKa2 Total energy 
kcals moL' 

Adipic acid 2.75 0.44 5.13-4.39 15.05 

2-Oxo AA - -2.12 4.61-2.53 16.00 

3-Oxo AA 2.18 -2.12 4.73-3.13 	. 21.08 

3-Methyl AA 2.32 3.29 4.85-4.66 20.75 

One possible reason for the lack of activity of the 2-oxoadipic acid is the extremely low 

pKa  of the carboxyl group with a pKa of 2.53. This is far below the pKa of the aspartic 

110 



acid of the catalytic triad and as such would inhibit the protonation of that acid; in effect 

stalling the catalytic mechanism of the enzyme. However, the 3-oxoadipic acid also has a 

pKa  below that of the aspartic acid with no apparent major effect on the activity of the 

enzyme. Therefore, the three substrates, 2-oxoadipic acid, 3-oxoadipic acid and 

3-methyladipic acid were modelled and compared with adipic acid. The models of the 

four substrates were energy minimised using MM3 and the molecular dimensions 

determined. 

Table 3.39 	Moledular dimensions of some substrates for Candida antarctica lipase B. 

2-Oxoadipic acid Molecular weight 160.13 

Dimensions x 7.786A 

y 3.437A 

z 1.211A 

3-Oxoadipic acid Molecular weight 160.13 

Dimensions x 7.265A 

y 2.896A 

z 2.579A 

3-Methyladipic acid Molecular weight 160.17 

Dimensions x 8.2864. 

y 2.772A 

z 1.961A 

Adipic acid Molecular weight 146.14 

Dimensions x 7.5204. 

y 3.1004. 

z 2.0034. 



On examination of these properties it is not obvious that any single property can be 

related to the reactivity with Candida antarctica lipase B, although the total energy of the 

molecule appears to be inversely related to the reactivity. The surface space filled models 

are shown in Figure 3.23. 

Figure 3.23 Substituted adipic acid substrates modelled in Sculpt. From top to bottom: 

2-oxoadipic acid. 3-oxoadipic acid. 3-methyladipic acid and adipic acid. 

The models are space filled surface models to show the relative size and shape of the 

substrates. It can be seen that only the 3-methyladipic acid is noticeably bulkier than the 

others, however the enzyme still accepts this substrate readily. This observation together 

with the model of the macrolactone discussed later (see Figure 4.15) confirms that 

Candida antarctica lipase B is relatively unselective as to the acylating substrates that it 

will accept. However, the fhct remains that carbonyl substitution in the 2-position gave a 
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dramatic reduction in reactivity; therefore, it was decided to look at the possibility of 

electrostatic interactions in the active site which might disrupt the reaction mechanism. 

A model of 2-oxoadipic acid was drawn in lSISDraw, converted to 3D and then copied 

into a model of Candida antarctica lipase B (Itca) in Sculpt (Figure 3.24). The substrate 

molecule was then docked manually and the whole assembly of protein and ligand 

minimised using both electrostatic and van der Waals forces. During the minimisation 

process the conformation of the enzyme pocket changes, initially the His 224 is aligned 

close to the Ser 105 and the carbonyl in the 2-position on the 2-oxoadipic acid is directed 

towards the His 224. However, on prolonged minimisation the His 224 moves away and 

the 2-oxo carbonyl moves round to hydrogen bond to the Thr 40 at a distance of 3.IA. If 

this were an accurate simulation of the active site, then such a strong hydrogen bond 

would undoubtedly interfere with the stability of the tetrahedral intermediate. 

Figure 3.24 2-Oxoadipic acid docked in Candida antarctica lipase B. 
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In the above model the electrostatic and van der Waais interactions have been hidden so 

that the hydrogen bond may be seen clearly, however, in Figure 3.25, the 3-oxoadipic 

acid is shown with all interactions visible. It is obvious that the 3-carbonyl of the 

3-oxoadipic acid points away, ("South West") from the Thr 40 and there are no 

interactions between this carbonyl and any part of the enzyme. 

Figure 3.25 3-Oxoadipic acid docked into Candida antarctica lipase B. 

The exercise was repeated with the 3-methyladipic acid and as with the 3-oxoadipic acid, 

there were no obvious interactions (see Figure 3.26). 
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Figure 3.26 3-Methyl4pic acid docked into Candida antarctica lipase B. 

The 3-methyl group is pointing towards the observer and has no van der Waals or 

electrostatic interactions with residues within the active site other than those due to the 

acylation of the Ser 105. The slight observed difference in the rate of reaction between 

this substrate and adipic acid is probably due to small diflèrences in desolvation and 

difibsion as a result of the methyl substituent. 

Therefore, the lack of activity of the 2-oxoadipic acid appears to be due to the unfavour-

able hydrogen bonding of the 2-carbonyl in the active site. 

3.4 	Transesterification reaction kinetics. 

The transesterification kinetics became more important as a result of the 

transesterification studies in Chapter 4 and the Isothermal Titration calorimetry described 

in Chapter 5; a comparison of the rates of transesterification with the rates of 

115 



esterification being particularly relevant. The obvious ester to consider for the study of 

transesterification reactions relevant to the polyesteriflcation process was dimethyl 

adipate. However, the vapour pressure of this ester at 50°-60°C is such that the weight 

losses due to evaporation were too large compared to the weight losses from the 

esterification reaction to give any meaningfiul results. Also, in the large scale process the 

transesterification reaction occurs simultaneously with the esterification reaction because 

both ester and carboxyl groups are always present, at least until the final stages of the 

polyesterification process. 

In order to overcome both of the above problems the monoethyl ester of adipic acid 

(MEAA) was chosen as the substrate to be studied. The vapour pressure of the MEAA is 

such that the volatility at 60°C only requires a correction factor of I ltg jft  in the TGA. 

The ethanol, if produced, is sufficiently volatile for its weight loss to be measured by the 

TGA. The presence of both visceral ester and terminal carboxyl groups in the MEAA, 

simulates the polyester oligomers in the polyesterification process. The enzyme having 

the choice of acylation by either group as they are present in equal concentrations in the 

substrate. 

The monoethyl ester of adipic acid (MEAA) was dried over P205 and solutions in 

1 ,6-hexanediol were prepared. These were pre-dried in the standard drying cycle up to 

110°C in the TGA, cooled to approximately 40°C and the enzyme added. The results are 

given in Table 3.40. 
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Table 3.40 	Reaction of monoethyl adipate and I ,6-hexanedio!. 

[MEAA] 
moE dm 3  

Enzyme 
mg 

Water loss* 

p.g min 1  
Rate of reaction 
pimol 	mg' 

0.1 0.521 4.2 0.45 

0.1 0.221 1.8 0.44 

0.1 0.288 2.2 0.43 

0.1 0.568 3.5 0.34 

0.2 0.483 6.3 0.73 

0.3 0.318 4.8 0.83 

0.3 0.814 14.7 1.00 

0.3 0.491 7.5 0.85 

0.4 0.388 7.0 1.00 

0.4 0.234 5.3 1.26 

0.4 0.281 6.0 1.18 

0.5 0.456 11.5 1.40 

0.5 0.694 13.7 1.10 

0.5 0.431 9.5 1.22 

0.5 0.522 11.7 1.25 

0.7 0.426 11.7 1.53 

0.7 0.424 10.2 1.34 

0.7 0.412 10.5 1.41 

1.0 0.438 14.3 1.81 

1.0 0.491 14.8 1.67 

1.0 0.316 11.0 1.93 

1.22 0.293 10.0 1.90 

1.22 0.656 24.8 2.10 

1.22 0.524 17.9 1.90 

tcoection factor for loss of 1,6-hexanediol 2 jig nün'. 
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The results were analysed using the Enzfitter program and the best fit curve is shown in 

Figure 3.27. The Analysis of Variance gave R-squared as 0.9. 
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Figure 3.27 The rate of reaction of MEAA with 1,6-hexanediol. 

It is obvious from these results that the MEAA substrate is significantly more reactive 

than any of the previous acid substrates. In several earlier experiments the reactions had 

been left in the TGA for several hours and the total weight loss measured. When this was 

done for adipic acid and I ,6-hexanediol the estimated yield was between 70-85% of 

theoretical. This procedure was repeated using the monoethyl adipate ester with 

1 ,4-butanediol. 

22.726mg of 0.8 M MEAA in I ,4-butanediol were heated to °c in the TGA with 0.796 
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mg of Chirazyme L-2 for 200 minutes. The total weight loss due to volatiles was 1.777 

mg, after deducting the correction factor of 0.750 mg; the weight loss due to reaction 

products was 1.027 mg. If one assumes complete reaction of the acid carboxyl group the 

theoretical loss of water would be 0.327 mg. Therefore, it is obvious that a substantial 

amount of ethanol has been removed as the product of the transesterification reaction. 

The theoretical amount of ethanol produced, assuming complete reaction would be 0.836 

mg giving a total weight loss of 1 .163 mg. 

A similar procedure was applied to 1,6-hexanediol. 21.855 mg of 0.8 M MEAA in 

I ,6-hexanediol was heated to 50°C in the TGA together with 0.780 mg of Chirazyme for 

180 ntutes. The total loss of volatiles was 1.039 mg, which, less the correction factor of 

180 pg, gives a total weight loss of reaction products of 0.859 mg. In both cases it is 

apparent that substantial amounts of ethanol from the transesterification reaction have 

been evolved. If the amount of water produced by the carboxyl groups of 0.8 M adipic 

acid in 1 ,6-hexanediol is deducted from the rate of weight loss from the MEAA at the 

same concentration then it is estimated that the difference in the reactivity is 3:1 between 

the ester carbonyl and the acid carbonyl. These results confirm the results found in both 

the transesterification studies and the isothermal titration calorimetry that the 

transesterification reaction is significantly faster than the esterification reaction. This 

observation is understandable if one considers the chemistry of the carboxyl group. The 

diagram below shows the nucleophilic attack of the serine OH on an ester carbonyl. 

SerOcR'& OR' 	 R 	
/\ 

Ser 	
0 

+ R'—O 
R 0 

OR' 	
"Ser 	

H 

When a nucleophile such as the serine OH attacks the carbonyl of a carboxylic acid 
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derivative such as an ester, the tetrahedral intermediate expels one of the substituents as a 

leaving group, leading to a net nucleophilic acyl substitution. The ease by which the 

leaving group can be removed controls the rate of reaction. In descending order, acid 

chlorides are the most reactive then anhydrides, esters, amides and then acids." The 

reason that the carboxylic acids are so much slower reacting than the esters is that the 

actual reaction mechanism is different. The nucleophile acts as a base and converts the 

acid to the corresponding carboxylate ion. 

RAOH c :oer 	

RO 

The carboxylate ion is un-reactive to the nucleophuic attack because it is carrying a 

negative charge already. Therefore the reaction of adipic acid under essentially neutral 

conditions is predominantly an acid-base reaction rather than a nucleophilic attack on the 

carbonyL" 2  In order to carry out a nucleophilic attack on the carbonyl carbon of the acid 

it is necessary to have acid conditions in order to suppress the formation of the 

carboxylate ion in order that the 01-F leaving group can leave as H20. The plC 3  of adipic 

acid of 4.3 is such that only the presence of strong acid, which suppresses the formation 

of the carboxylate ion, can catalyse the nucleophilic reactiQn. 

3.5 	Effect of temperature on the activity of Candida antarctica lipase B. 

The effect of temperature on the reaction was studied for a number of reasons: 

I. 	If the enzymatic synthesis could be accelerated by carrying out the reaction at 

a temperature higher than 60°C, then the batch time would be shortened; 
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thereby favouring the economics of the process. 

If the process could be carried out at higher temperatures then the viscosity of 

the reactants would decrease, higher molecular weight polymers could then be 

synthesised as the higher viscosity of the higher molecular weight polyesters 

would not be rate limiting. 

Determination of the effect of temperature on reaction rate would allow the 

calculation of the activation energy of the rate controlling step. The logical 

system on which to base the rate/temperature studies was the adipic acid - 1,6-

hexanediol system. However, it soon became apparent that there were 

fundamental difficulties in carrying out this reaction at higher temperatures. 

The melting point of the adipic acid solutions in 1 ,6-hexanediol is approximately 50°C. 

Either because of the proximity to the melting point or the reaction rate being very slow at 

50°C, no reaction was observed below 55°C. Furthermore, the onset of the reaction 

below 58°C was variable so that no reliable results could be obtained below 60°C. At 

temperatures higher than 60°C the volatility of the I ,6-hcxanediol became a problem. 

The correction factor at 60°C was 21tg mm 1 ; this became 41ig miii' at 70°C, 10.5 pg 

at 80°C and 20.5 pg miii' at 90°C. The typical weight losses per minute due to the 

loss of water formed in the reaction were between 5-10mg miii'; therefore, such large 

correction factors would render the results unreliable. It was necessary to look at relevant 

alternative systems where the volatility of the substrates would not be a problem. The 

reaction of monoethyl adipic acid (MEAA) ester with I ,6-hexanediol was studied, while 

the problems associated with the volatility of the diol still applied, the freezing point of 

the solutions was approximately 40°C. Also the reactivity of the ester was such that 
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rneaningfiul weight losses could be observed. Therefore the opportunity arose to look at 

the rate of reaction at lower temperatures. The reaction of a 0.4 M solution of MEAA in 

1,6-hexanediol was carried out at 50°C, 55°C and 60°C. The results are in Table 3.36. 

Table 3.36 	The reaction of MEAA and 1,6-hexanediol between 50°-60°C. 

Temp. 
CC 

Enzyme 
mg 100% protein 

Weight loss 
j.tg mind  

Rate of reaction 
Mmol mind  mg' 

50 0.293 12.4 2.35 

50 0.298 12.5 2.33 

50 0.174 7.6 2.42 

55 0.140 6.5 2.58 

55 0.187 8.7 2.58 

55 0.134 6.5 2.69 

60 0.106 5.8 3.04 

60 0.271 14.0 2.87 

60 0.163 8.3 2.83 

9Jorrection tàctors for loss of I ,6-hexanediol at 50°C 0.tg miii', at 55°C 1 ltg miii' and 
at 60°C 2 gg mhi'. 

These results were plotted as an Arrhenius Plot as shown in Table 3.37 and Figure 3.28. 

The Arrhenius equation governs the effect of temperature on the rate of a reaction as 

shown in Equation 1. 

- Eu 

K = A e RI  
Equation I 

K is the rate constant, A is the pre-exponential frequency factor, E. is the activation 

energy, R is the Gas Constant and T is the temperature in K. 
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The equation may be re-ai-ranged to Equations 2 and 3. Equation 3 is the equation for a 

straight line plot, therefore, the activation energy Ea can be calculated from the slope of 

the graph as shown in Equation 4. 

Ea  
1nK=1nA--- 	 Equation2 

RT 

1nK=1nA—x' 	 Equation3 
R T 

Slope = —Ea 
 R 	

Equation 4 

Ea = R x Slope 

Table 3.37 	Calculation of Activation Energy by Arrhenius plot. 

Temp. 
°C 

'IT K x 10 Rate 
jimol mm' mg' 

Rate constant 
K 

in K 

50 3.10 2.37 14.8 2.69 

55 3.05 2.62 16.4 2.8 

60 3.00 2.91 18.2 2.91 

A rrhenius plot of M BA A + I ,6-hexanediol 

2.8  

2.98 	3 	3.02 	3.04 	3.06 	3.08 	3.1 	3.12 

'I K x iO 

Figure 3.28 Arrhenius plot for MEAA + 1,6-hexanediol. 
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The slope of the plot was 0.22 x 10 3  K. Therefore, the activation energy is 18.3 U moL'. 

The only diol that does not have an appreciable weight loss at elevated temperature is the 

650 molecular weight polytetramethylene ether diol (PTMEG 650). Therefore, the rate of 

reaction of a 0.4 M solution of adipic acid in PTMEG 650 was determined at 60°C, 70°C 

and 80°C. Because of the earlier observation of declining rates above 80°C only the first 

10 minutes of the reaction were considered. The results are given in Table 3.38. 

Table 3.38 	Reaction of adipic acid and PTMEG 650 between 60 0-80 0C. 

Temp 
°C 

Enzyme 
mg 100% protein 

Weight loss* 
l.Lg miii' 

Rate of reaction 
Rmol miii' mg' 

60 0.212 8.1 2.13 

60 0.054 2.1 2.22 

60 0.139 5.8 2.28 

70 0.139 7.1 2.82 

70 0.117 5.3 2.70 

70 0.155 7.2 2.79 

80 0.078 8.3 3.72 

80 0.182 10.5 3.30 

80 0.108 8.3 4.29 

*No correction factor required for weight loss of PTMEG 650. 

The results were converted for an Arrhenius plot as shown in Table 3.39. 
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Table 3.39 	Calculation of Activation energy by Arrhenius plot. 

Temp fr K x io Rate 

jimol miii '  mg 

Rate constant 
K 

In K 

60 3.0 2.2 13.7 2.6 

70 2.9 2.8 17.5 2.9 

80 2.8 3.8 23.8 3.2 

The slope of the plot of the above data (Figure 3.29) was 3.0 x 10 3K, giving an activation 

energy of 24.9kJ mol* 

Arrhenius plot of AA + PTMEG 
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Figure 3.29 Arrhenius plot of adipic acid and PTMEG 650. 

Therefore the activation energy of the acylation of the enzyme by adipic acid is measured 

as 24.9kJ mot', whereas that of the acylation by the monoester is 18.3kJ mot 1 . The 

measurement of the activation energy of the monoester reaction undoubtedly contains a 

contribution from the acylation of some of the enzyme by the monocarboxylic acid end 

group, therefore, it is possible to say that the activation energy for the ester acylation 

reaction is less than I 8.3kJ mof'. This explains the observations reported in the rate 
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studies (Chapter 3.6) and the results of the isothermal titration calorimetry (Chapter 5) 

that the enzyme is more readily acylated by the ester carbonyl. Because the activation 

energy of the transesterification reaction appears to be significantly less than that of the 

acid acylation reaction, the ester acylation will be the preferred reaction. 

The activity of the enzyme at high temperatures was of interest for two reasons. It was 

important to know the upper limits of useful activity in the process for the reasons 

explained previously. However, it is necessary that any enzyme remaining in the 

polyester at the end of the process be deactivated. Traces of residual enzyme would lead 

to hydrolysis of the product at room temperature, which would cause deterioration of the 

product in service. 

In order to probe the temperature denaturation of the enzyme, the activity was determined 

after heating to temperatures significantly higher than used previously. In order to 

overcome the problems of diol volatility, the system studied was a 0.8 M solution of 

adipic acid in PTMEG 650. Because of the relevance to the manufacturing process the 

enzyme used in these experiments was the Candida antarctica lipase B supported on 

acrylic beads and sold as Novozyme 435. The results obtained are shown in Table 3.40. 

It is apparent that the enzyme retains some activity at these elevated temperatures and that 

1300- 140°C appears to be the point at which activity is lost. However, these are initial 

rates, no attempt was made to determine how long the enzyme remained active at these 

temperatures, or if it could be recycled and remain active after exposure to these 

temperatures. 
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Table 3.40 	The reaction of adipic acid with PTMEG 650 at elevated temperatures. 

Enzyme 
mg 

Temp 
C 

Weight losst 

pg mm 1  
Rate of reaction 
pmol mm 1  mg' 

2.152 110 15.0 0.39 

1.892 110 17.0 0.50 

1.702 110 18 0.59 

1.914 120 28.0 0.81 

2.073 120 26.5 0.71 

3.322 130 20.9 0.35 

1.989 130 10.7 0.3 

2.411 140 4.3 0.10 

1.884 140 0 0 

tNo correction factor required for weight loss of PTMEG 650. 
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4 	The study of transesterification reactions. 

Lipase catalysed transesterification reactions in organic media with monoesters have been 

used to separate racemic mixtures of alcohols and carboxylic acids or to select a specific 

ester or alcohol group within a molecule as substrate. 3  

Our earlier work had shown that transesterification takes place in the presence of certain 

s?l'ents, but not in the solvent free system! 6  Our further work on the reaction kinetics of 

the monoethylester of adipic acid (MEAA) in I ,6-hexanediol (Section 3.4) had shown a 

3:1 difference in reactivity of the ester group compared to the carboxyl group. This 

preference of the enzyme for the ester carbonyl had also been confirmed by the 

determination of the enthaipy of reaction for the acylation of the enzyme by the acid and 

ester using isothermal titration calorimetry (Chapter 5). 

Therefore, the original question of why the enzyme appears to catalyse the 

transesteriflcation of polyesters in some circumstances and not in others became more 

interesting, because one would expect it to catalyse transesterification in all 

circumstances. 

In all our earlier work, the esterification and any transesterification reactions leading to 

the formation of the polyester would be taking place simultaneously, with the final 

composition containing the products of both reactions. Therefore, a method was 

developed whereby the transesterification reaction could be studied independently. 

A high molecular weight polyhexane adipate polyester was synthesised using Novozyme 

435 as the catalyst. When the polyester had reached a molecular weight of 36000 as 

measured by GPC we stopped the reaction and measured the acid number and hydroxyl 

number by titration. The bound enzyme was filtered otT and the residual enzyme 
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deactivated by heating the polyester at 200°C for 15 minutes. This polyester became the 

standard for all our transesteriflcation experiments and had a M. of 17500, a M of 37000 

and Dispersity 1.9. The acid number was measured as 2mg KOI-I g' and the hydsoxyl 

number was 13mg KOH g'. The molecular weights for this and all subsequent 

transesterification experiments were determined by using a Waters HPLC with a model 

5 10 pump, model 410 refractive index detector and the Waters 717 autosampler. The 

column was packed with Polymer Labs. I 0o(JA polystyrene copolymer packing and the 

eluent used was THF stabilised with 250ppm of butylated hydroxytoluene (BHT) at a 

flow rate of I ml mlii'. The sample concentration for all experiments was 0.5wt%/vol 

with an injection volume of 'lOp!. The data was analysed using the Millennium 32 GPC 

software. The GPC for this material is shown in Figure 4.1. 

GPC 38 Poly hexanc adipate 
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fjure 4.1 	GPC of high molecular weight polyester control. 

At the beginning we had suspected that it was the enzyme that changed conformation in 

the presence of the toluene solvent. However, we had shown by CD spectroscopy that it 
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was unlikely that there was any major change in the geometry of the active site (Chapter 

6). Therefore, the possibility remained that solvent molecules were being absorbed onto 

the hydrophobic regions in or around the active site. It was considered that even one or 

two bulky solvent molecules such as toluene absorbed in a critical area could easily affect 

the rate at which the substrate could difihise into the pocket of the enzyme. Therefore, a 

standard transesterification experiment was developed, 2 g of the high molecular weight 

polyester plus 8 cm 3  of solvent, 0.1 g of 1,6-hexanediol and 0.1 g of Novozyme 435 were 

added to a stirred cell reactor and heated at 60°C for 24 hours. The reaction was then 

stopped by filtering off the bound enzyme and cooling rapidly to 20°C. In order to 

simulate the conditions that existed in the earlier syntheses, the solvents chosen were: 

toluene, I ,4-butanediol, polytetramethylene ether glycol 650 (PTMEG 650) and dioxane. 

The GPC's obtained are shown in Figures 4.2 to 4.5. 
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Figure 4.2 	GPC of polyester transesterifled in toluene. 
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GPC 40/2 I ,4-butanediol 
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Figure 4.3 	GPC of polyester transesterified in 1 .4-butanediol. 

The high molecular weight polyester has a retention time of 7 minutes, the peaks for the 

1 ,6-hexanediol and 1 ,4-butanediol are clearly visible. 
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Figure 4.4 	Polyester after transesterilication in PTMIEG 650. 

The high molecular weight polyester has a retention time of 7 minutes, the large peak at 

10 minutes is the PTMEG 650. 
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GPC40/3 Dioxane 
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Figure 4.5 	Polyester after transesterification in dioxane. 

The comparison of the weight average (Mw) and number average (M e) molecular weight 

distributions is shown in the Table 4.1. 

Table 4.1 	Effect of solvent on the transesterification of polyester. 

Solvent M, Mn Dispersity Comment 

PTMEG 650 36000 32000 1.1 Unchanged 

I ,4-butanediol 26000 - - 2 phases 

Toluene 5800 2898 2.0 

Dioxane 1369 742 1.8 -. 

The hythoxyl of the added diol is involved in the transesterification reaction causing 

scission of the high molecular weight polyester. However, it appears from these results 

that the amount of transesterification is independent of hydroxyl concentration. The 

greatest breakdown of the high molecular weight polyester occurred with toluene and 

dioxane and not with I ,4-butanediol or PTMEG 650, which have much higher 
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concentrations of hydroxyls. This appears to contradict the conclusion of Kumar and 

Gross,' 14  who proposed that there is slower transesterification in higher molecular weight 

polycaprolactones because the higher the molecular weight, the fewer terminal hydroxyls 

there are to take part in the transesterification reaction. 

It had been found by Harifey 115  that the addition of as little as 6%"tv of toluene to the 

reaction medium gave the same result as when the reaction was carried out in toluene as 

the reaction solvent. The possibility that toluene was being absorbed from the medium on 

to the hydrophobic areas of the protein, thereby affecting the mechanism of the reaction, 

was considered. Therefore, the effect of low concentrations of toluene in 1 ,4-butanediol 

on the degree of transesteriflcation was determined. The results are shown in Table 4.2. 

Table 4.2 	Effect of toluene concentration on transesterification. 

Principal 
solvent 

[Toluene] mM M M Dispersity 

1,4-BD 0.11 (0.001%) 26328 14088 1.9 

1.1 (0.01%) 28232 19232 1.5 

67(0.625%) 27060 16892 1.6 

200 (1.87%) 27708 17836 1.6 

The differences between these results are not considered to be significant. It appears that 

small additions of solvent do not afiëct the degree of transesterification. It is unlikely, 

therefore, that absorption of solvent into the hydrophobic areas of the enzyme takes place, 

as it would be expected that the hydrophobic attraction of the lipase would extract toluene 

from such a polar medium as I ,4-butanediol, even at these low concentrations. 
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The effect of the shape of the solvent molecule was then investigated. The standard 

transesterification experiment was carried out with a number of solvents of different 

shapes and hydrophobicity. The resuits are as shown in Table 4.3. 

Table 4.3 	Effect of solvent configuration on transesterification. 

Solvent M Dispersity C logP 

Toluene control 5800 2900 2.0 2.7 

n-Butylbenzene 5196 2796 1.9 4.0 

iso-Butylbenzene 5901 3025 2.0 4.0 

tert-Butylbenzene 5864 2909 2.0 4.1 

4-Chlorotoluene 5877 2945 2.0 3.3 

Hexane 17581 8540 2.0 3.8 

Figure 4.6 shows the GPC trace for the polyester obtained after 24 hours in 

iso-butylbenzene. The GPC profiles for all the experiments listed in Table 4.3 are 

essentially the same for all the aromatic solvents. 
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Figure 4.6 	Transesteriuication of polyester in iso-butylbenzene. 
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It is evident from these results that the degree of transesterification as measured by chain 

scission is not affected by the geometry of the solvent molecule. The differences seen in 

the experiments with the aromatic solvents are not considered significant; the only 

significant difference being between the aromatic solvents and the aliphatic hexane. It 

does not appear, however that the hydrophobicity as measured by C logP is the cause of 

the difference; there is significant transesterification at a C logP of -0.4 in dioxane and 

also at C logP of 4.1 in tert-butylbenzene. The conclusion to be drawn from these results 

is that transesterification takes place in any solvent. The only two media in which it does 

not appear to occur are I ,4-butanediol and polytetramethylene ether glycol. Both of these 

are very poor solvents for the high molec aJar weight polyester. 

In order to elucidate the mechanism of the transesterification reaction we repeated the 

experiments with toluene and I ,4-butanediol using 1,1 ',2,2',3,3',4,4'-octadeutero- 1,4-

butanediol in place of the I ,6-hexanediol, as the transesterification agent. A 1% solution 

of d8-1,4-butanediol in 1,4-butanediol was prepared and the 2H NMR spectrum obtained 

(Figure 4.7). 

Figure 4.7 	2H-NMR spectrum of deuterated 1,4-butanediol. 
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The two peaks of the deuterated diol were 84.11 ppm, corresponding to the 1,1'- and 4,4'-

deuteriums and 82.14 ppm, corresponding to the 2,2- and 3,3'-deuteriums. The signal to 

noise ratio was 150:1, therefore we were confident that using this concentration we would 

be able to see whether transesteriflcation had taken place, by looking for the insertion of 

the deuterated I ,4-butanediol into the polyester. 

A larger scale version of the above reaction was carried out in a cell reactor with stirring 

at 60°C. Samples were taken at 2 hours, 5 hours and 21 hours and the 2H NMR spectra 

obtained. No difkrence could be seen in any of the spectra, thus indicating that in the 

I ,4-butanediol medium no transesterification had taken place. This experiment was 

repeated after adding a further V2 volume of toluene and stirring continued at 60°C for 24 

hours. When the stirring was discontinued, we realised that the sample was not 

homogenous and so a few drops of THF were added to act as co-solvent. A 'H-NMIR 

spectrum with excellent signal to noise ratio (2000 scans) was obtained. After 24 hours, 

there was a small but distinct peak at 6 4.68 ppm due to the increased chemical shift 

when one end of the diol is incorporated into an ester group. After 48 hours there was a 

large, distinct peak at 64.68 ppm and the peak at 82.12 ppm was starting to split, with a 

pronounced shoulder at 62.21 ppm, as a result of the d 8-I,4-butanediol now forming a 

significant part of the ester groups. This indicated that the d 8- I ,4-butanediol had been 

incorporated into the polyester and that transesterification had occurred (see Figure 4.8). 

In order to maximise the visibility of the deuterated diol in the polyester, the experimental 

method was changed. A I 0%"/so!ution of the d 8-1 ,4-butanediol in I ,4-butanediol was 

added to 5 g of the polyester, 4m] of toluene and 0.1 g of Novozyme 435. The mixture 

was stirred in a cell reactor at 60°C for 24 hours. Filtering off the Novozyme stopped the 
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reaction and the residual toluene and I ,4-butanediol were stripped off using a Kugelrohr 

evaporator. 
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Figure 4.8 	2H-NMR spectrum of polyester + 2H I ,4-butanediol + toluene. 

From the 2H-NMR spectrum it could be seen that both of the deuterium resonances had 

split and the new peaks had moved downfield. The O-C 2F12 peak had moved in its 

entirety to 6 4.68 ppm, leaving only a small peak at 6 4.12 ppm. The C 2H2-C2H2 peak 

had also moved downfield to 6 2.21ppm, which proved that there had been significant 

incorporation of the deuterated diol into the polyester (see Figure 4.9). 
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Figure 4.9 	2H-NMR 	spectrum of polyester + 21-{r1,4-butanediol + toluene. 

This improved method was then used to repeat the earlier experiment with no added 

solvent. A sample taken after 24 hours, showed a very small peak at 5 4.68 ppm in the 2}J 

NMIR spectrum, which had moved downfield from 54.11 ppm, indicating that a small 

amount of deuterated diol had been incorporated into the polyester. After 48 hours a 

somewhat larger peak was observed at 5 4.68 ppm, which indicated that 

transesterification does take place in I ,4-butanediol, but that it is very slow (see Figure 

4.10). 
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Figure 4.10 2H NMR spectrum of polyester + 2 Hz- 1 ,4-butanediol after 48 hours. 
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The conclusion from these experiments seemed to be that the reason for the lack of 

transesterification in the absence of solvent is the insolubility of the high molecular 

weight polyester in I ,4-butanediol or PTMEG 650. Only when the polyester is dissolved 

in solvent is it available to the enzyme and transesterification takes place. It might be that 

as the polyester reaches a critical molecular weight it starts to drop out of solution in the 

diol, thus limiting reaction. In order to confirm this point we repeated the above 

experiment using a polyhexane adipate polyester of 2000 Daltons. The sample taken at 

24 hours showed that the HO-C2 H2 peak at 6 4.11 ppm had split equally with the COO-

C2 H2 peak at 64.68 ppm. Similarly, the diol C 2 1-12-C 2 H2 peak at 62.21 ppm had also split 

equally with the polyester C 2H2-C2H2 peak at 6 2.12 ppm. This showed that after 24 

hours, significant transesterification had taken place and after 48 hours even more 

transesterification was found (see Figures 4.11 and 4.12). 
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Figure 4.11 	Transesteriflcation of 2000 Dalton polyester with 2 1-Ix- I .4-butanediol after 

24hrs. 
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Figure 4.12 Transesterification of 2000 Dalton polyester with 2H- 1 .4-butanediol after 

48hrs. 

The polyester with the lowest and most uniform molecular weight is the simple oligomer 

BAD. In order to see if this also was susceptible to transesterification, a sample of DAB 

was prepared. starting from AB synthesised by the method of Harffey.' 6  AB (piepared by 

Harffey), was reacted with a two fold molar excess of I ,4-butanediol using Novozyme as 

catalyst. After 24 hours 'H NMR spectroscopy showed that 100% conversion to BAB 

had taken place. The enzyme and solvent were removed and 10% deuterated diol and 

Novozvme 435 were added and the mixture heated at 60°C for 24 hours. 2 H NMR 

spectroscopy on the purified sample showed a very small, deuterated ester peak at 8 4.68 

ppm, this indicated that some but not very much transesterification had occurred. 

Samples from the three experiments above were put through the GPC to see if we could 

determine the effect of the transesterification on the polyester. Most interestingly, the 

GPC of the high molecular weight polyester showed that the peak molecular weight, M.  

36000. had declined very little but a number of low molecular weight oligomers had 

appeared (Figure 4.13). 
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Figure 4.13 	Transesterification of polyester with deuterated I ,4-butanedioL 

This result shows that the scission is not taking place at random along the polyester 

backbone, but that it rather takes place at the ester groups near to the end of the polymer 

chain. This is unlikely to be due to any property of the enzyme because each ester group 

and its environs are identical and any could fit into the pocket of the enzyme. It is more 

likely to be a property of the polyester. It is possible that it forms a tight coil in these 

media and it is only the ends of the chain that are available to the enzyme. It was thought 

that if a non-reactive solvent similar to 1 ,4-butanediol could be found, one that would 

dissolve the monomeric substrates, but not the higher molecular weight polymers, then it 

may be possible to drive the reaction to give even higher molecular weight polymers. 

The standard transesteriflcation experiment was repeated using solvents that were 

substantially more polar than the previous solvents in order to investigate if the 

transesterification only occurs in non-polar media. Propylene carbonate, triethylene 

glycol methyl ether (Triglyme) and tetraethylene glycol methyl ether (Tetraglyme) were 

chosen as the added solvents. In all cases, extensive transesterification took place and the 
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molecular weight fell to around 3000 as measured by GPC. There did not appear to be 

any significant difference in the rate of transesterification between any of these solvents 

irrespective of their polarity. It would appear that the transesterification reaction takes 

place in any solvent in which the higher molecular weight polyester is soluble. 

From these results, it appears that the rate of transesterification reaction, measured by the 

rate of insertion of 2H3- I ,4-butanediol into the polyester is ten times faster in toluene than 

in I ,4-butanediol. The rates of insertion into the high molecular weight polyester and the 

2000 molecular weight polyester appear to be approximately the same, however the 

results of the transesterification are quite different. In the case of the high molecular 

weight polyester there is nominal reduction in the molecular weight as the chain scission 

only occurs at the ends of the molecule. In the 2000 Dalton polyester the chain scission 

occurs at random along the chain with the result that there is a significant reduction in 

molecular weight. 

The transesterification of the oligomer DAB appears to be quite rapid, however BAB 

cannot polymerise in the presence of excess diol, therefore the deuterated diol can only 

react at one of its two hydroxyls and this is reflected in the relatively large size of the 

peak shifted downfield. 

One of the main problems that are encountered in the commercial production of 

polyesters is the formation of macrolactones during the process (e.g. Figure 4.14) during 

the process. 
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Figure 4.14 Macrolactone of adipic acid and diethylene glycol. 

The mechanism of formation and the problems associated with the macrolactone are 

discussed in our earlier paper." 6  It was thought that if the kinetics of the ring opening 

reaction could be altered, by using the enzyme under specific conditions, then the ring 

opening may be favoured, but not the ring formation. This would be a way of using 

enzymatic transesterification to remove the macrolactone from the linear polyester. It 

was first necessary to show that CaIB would catalyse the ring opening of the 

macrolactone. We had shown that the highest equilibrium content of macrolactone 

produced is during the polyesteriflcation of diethylene glycol with adipic acid and is 

typically approximately I .0-1 .1 %"/w) 16 

The DEG/AA macrolactone was heated with Novozyme 435 at 60°C under nitrogen. 

After 3 days the reaction was stopped, the enzyme filtered off and a sample analysed by 

GPC, which showed that the macrolactone had been opened and convened to oligomeric 

polyester of M. 905 and Mnof  293. The experiment was repeated with toluene added to 

the reactants. After 3 days GPC showed that the macrolactone had been converted to 

polyester. However, there was no significant difference between the products of the two 

reactions (see TabIe4.4). 

Table 4.4 	The formation of polyesters by the ring opening of a macrolactone. 
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System Molecular weight Molecular weight Dispersity 
M 

Macrolactone 118 - - 

Macrolactone 
905 293 3.0 + enzyme 

Macrolactone 
811 296 2.7 + enzyme + toluene 

The enzyme activity was somewhat surprising in view of the size and shape of the 

substrate molecule. Therefore, we modelled the macrolactone substrate into the active 

site of the enzyme and found that the macrolactone fitted quite nicely into the pocket of 

the active site (see Figure 4.15). In order to explore the feasibility of removing the 

macrolactone from the polyester by enzymatic transesterification a series of experiments 

were carried out using a 2000 Dalton DEG/AA polyester, which had a hydroxyl number 

of 55 and an acid number of 1.4mg KOFI 1g. 
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Figure 4.15 C. antarctica lipase B with macrolactone docked in the active site. 

The polyester was stined in a cell reactor with Novozyme 435 and 5%"I  of toluene under 

nitrogen at 60°C. After 24 hours, a sample was taken and any residual enzyme filtered 

from the sample. After 72 hours the reaction was stopped, the enzyme filtered off and a 

final sample taken. The samples of the starting material and the 24 hour and 72 hour 

samples were analysed by Gas Chromatography in order to determine the macrolactone 

content. The results are shown in Table 4.5. 

Table 4.5 	Macrolactone content alter transesterification 

Sample Macrolactone content % 

Control. Starting material 1.1 

After 24 hours 0.86 

After 72 hours 0.29 
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This was a most encouraging result, as the lowest macrolactone content that can be 

achieved by high temperature and high vacuum stripping in a wiped film evaporator is 

0.3%.1 17  Therefore, a series of experiments were carried out to determine the optimum 

conditions for the conversion of the macrolactone to polyester (see Table 4.6). 

Table 4.6 	Reduction of macrolactone by transesterification. 

Reactants Time, hours Temp. °C Macrotactone % 

Polyester + N435 72 60 1.0 

Polyester + N435 + toluene 24 70 0.95 

72 It 0.98 

Polyester + N435 + hexane 24 60 0.99 

72 11 1.00 

Polyester + N435+ 4-chlorotoluene 24 60 1.1 

1. 72 11 0.97 

Polyester + N435 + n-butylbenzene 24 60 0.99 

1. 72 11 0.89 

Polyester + N435 + iso-butylbenzene 24 60 1.06 

72 60 1.17 

The differences between these results are not considered significant; therefore, it is 

obvious that there is no detectable reduction in the macrolactone content for any of the 

above conditions. The initial experiment was repeated twice and on both occasions no 

reduction in macrolactone was observed. There is no explanation for the initial result. It 

is unlikely to be analytical error as the reduction was seen in both samples and the 

observed reduction was in direct relation to the length of time of the reaction. 



5 	Isothermal Titration Calorimetry 

The technique known as isothermal titration calorimetry has only been developed in the 

last 10 years! 18  It is an ultra-sensitive form of calorimetry, which has resulted from 

advances in so lid-state physics. Using this technique it has become possible to measure 

the evolution of heat by a chemical or physical process with a sensitivity of I o 9  calories. 

This new technique has opened up many possible fields of research in biochemistry, in 

particular studies of the thermodynamics of protein-ligand binding, protein-lipid binding 

and the binding of drugs to receptor sites. 9  

When binding reactions such as these take place a very small amount of heat is absorbed 

or generated. Measurement of this heat with such a sensitive instrument enables one to 

make very accurate measurements of binding constants (K a), reaction stoichiometry (n), 

enthalpy of formation (AH) and change in entropy during the reaction (AS). 

The principle of the method is that a dilute solution of the ligand is titrated into a cell 

containing a solution of the protein at a constant temperature, because the cell is stirred it 

is also possible to use a dispersion of finely divided protein rather than a solution. 

Alongside the reaction cell is an identical reference cell that contains the neat reaction 

medium. The major problem in using the isothermal titration calorimeter to follow and 

determine the thermodynamics of the esterification reaction is that as far as could be 

ascertained ITC had not been used for non-aqueous enzymology. Of the 200 references 

in the literature, not one described its use with a non-aqueous system. 

Microcal the designers of the instrument were consulted and it was their opinion that the 

instrument would work with the enzymatic esterification in organic solvent. 
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When the work started the procedure recommended by Microcal was followed. The 

reference cell contained water while the reaction cell contained toluene. It was found that 

the difibrence in the heat capacity of the two solvents gave substantial problems in 

obtaining a steady baseline. Instead of getting a steady baseline after a matter of a few 

minutes it took 40 minutes for a useflul baseline to be attained. The water in the reference 

cell was replaced with toluene after which a steady baseline was obtained after 10 

minutes. 

A small amount, typically 2-5 j.xl of ligand solution is injected into the reaction cell held at 

a constant temperature. As the ligand reacts with the protein, heat is released or absorbed. 

The instrument measures the amount of energy required to keep the reference cell and the 

reaction cell at the same temperature. As the protein in the reaction cell becomes 

saturated with ligand the heat signal diminishes until only the background heat of dilution 

is seen. When the heat is plotted against the molar ratio of ligand to protein in the cell a 

complete binding isotherm for the interaction is obtained. The software used by the 

instrument measures all the experimental parameters including binding affinity, binding 

stoichiometry, enthalpy and entropy of binding. The ITC isotherms are analysed using a 

non-linear least squares method to determine the best fit. 

We wished to determine the enthalpy of formation of the acyl-enzyme, using (i) adipic 

acid dissolved in toluene, (ii) decanoic acid and (iii) the monoethylester of adipic acid as 

the acylating agents. Subsequently, we wished to determine the enthalpy of formation of 

the ester, by reaction of adipic acid in I ,4-butanediol. 

From these measurements it was hoped that we would be able to construct a 

thermodynamic profile of the reactions. 



At the commencement of an ITC experiment it is first necessary to determine the heat of 

dilution of the ligand as it is injected into the reaction medium. This exotherm or 

endotherm is then added to or deducted from the heat of reaction of the system being 

studied. Therefore, when 2 gl injections of 4.2mM adipic acid solution in toluene were 

injected into toluene a very large endotherm of approximately 20 kcals mor' was 

observed, far greater than would be expected from the heat of dilution, which should be 

approximately 1-2 kcals mor'. After some consideration, it was realised that the 

cndotherm was due to the dissociation of the adipic acid dimer as it was injected into the 

toluene (see Figure 5.1). 
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Figure 5.1 	Isothermal titration calorimetry of the dissociation of adipic acid dimer. 
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The problem of hydrogen bonding between adipic acid and hydroxyl groups had been 

encountered in our NIR studies described in Chapter 2. The formation of dimers by intra 

molecular hydrogen bonding in carboxylic acids is well known' 2012 ' Adipic acid having 

two carboxyl groups, forms a particularly stable cyclic dimer, the stability arising from 

the fact that it requires the simultaneous breaking of four hydrogen bonds for the dimer to 

dissociate into two monomeric adipic acid molecules. 122  The enthalpy of formation of 

adipic acid dimer and other dicarboxylic acid dimers has been determined by measuring 

the difference in the heat of formation in the gaseous and solid phases. In the temperature 

range 50°-150°C the enthalpy of formation of a monocarboxylic acid dimer was found to 

be 7.5 kcals mor'.' 23  Adipic acid with its four hydrogen bonds forms a cyclic dimer (see 

Sculpt model in Figure 5.2) with an enthalpy of formation of at least 15 kcal mor 1
. 124  

Figure 5.2 	Sculpt model of adipic acid dimer showing hydrogen bonds in blue. 

In Chapter 2 in the work on the development of MR methods it had been shown that the 

addition of chloroform disrupts the hydrogen bonding between the carbonyl of the 
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carboxylic acid and the hydrogen of the hydroxyl groups. It was proposed that this was 

due to the formation of a hydrogen bond between the carbonyl and the hydrogen of the 

chloroform. This mechanism would be equally applicable to the hydrogen bonding 

responsible for the formation of the adipic acid dimer. This proposal engendered much 

debate as to whether or not the hydrogen of chloroform can form a true hydrogen bond. 

It was thought that H bonds could not form from a C-H bond and that effects seen with 

chloroform were simply the effects of a polar solvent. The general definition of a specific 

H bond interaction would require a frequency shift of the C-H stretch and in chloroform; 

this is ambiguous, particularly with an oxygen atom of an ether or ester carbonyL 

However, with pyridine and triethylamine there is a distinct frequency shift of the C-H 

stretch of 36 and 80 cm 1  respectively) 25  

Many authors have published work that confirms the existence of H bonds between 

chloroform and various reagents. Early work which determined the equilibrium constant 

and vapour pressures of acetone-CHCI3 mixtures, suggested the presence of H 

bonds.' 26,' 27  Using both IR spectroscopy and NMR; Lord,' 28  Huggins 129  and Huggins 

and Pimentel,' 3°  looked at CDCI3 in solvents such as ethers, esters and acetone, 

measuring the C-D stretch. It appears that the frequency shift is only seen with the 

strongest bases or that much smaller shifts occur with weaker bonds. The increase in 

intensity (v5) with H bonds is more sensitive than the frequency shift and this shows H 

bonding to occur with chloroform. 

Moelwyn-Hughes and Sherman measured the enthalpy of formation of the H bond in 1:1 

CHO3/acetone as +4.1 kcals mor'.' 3 ' 
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Staveley, a al., 132  used measurements of heat capacity, volume change and 

compressibility to confirm the existence of H bonding between CHCI3 and acetone, while 

Searles used the heat of solution and infrared spectra, to show H bonding between esters 

and lactones with chloroform.' 33  

In "The Hydrogen Bond" by Pimentel and McClellan 134  on page 218 in a discussion of H 

bonding in carboxylic acid dimers it states, "The equilibrium constant K has not been 

determined with great accuracy because of solvent effects, for example the equilibrium 

constant for acid/acid dimer in chloroform is only I / 10 what it is in carbon tetrachioride". 

Vinogradov' 35  reports that the equilibrium constant for benzoic acid/dimer is: 230 x io 

in carbon tetrachloride, 8.9 x 10 3  in benzene and 7.2 x 103 in chloroform. These results 

would appear to confirm that chloroform can indeed disrupt the hydrogen bonding of 

carboxvlic acid dimers. 

Boobyer looked specifically at acid dimer-chloroform systems and developed the pulsed 

charge cloud model.' 36 ' 37  In an acid dimer the OH bond vibration pulses the lone pair 

and gives an induced dipole moment for the OH mode of the dimer. An oxygen sp 2  

hybrid orbitai is co-linear with the O-H --- O axis and is favourable for maximum 

interaction between the OH bond and the lone pair and forms a dipole which brings them 

much closer together. This causes a big increase in the intensity of the v(OH) band in the 

dirtier. 

CDCI3 and acetone form a 2:1 complex D bonded together, although the v(CD) does not 

shift, its intensity increases by a factor of 8.7. The electronic state of the CD bond is 

unchanged: the C-D moment induces a moment in the polarisable lone pair of the 

carbonyl that pulses with the C-D vibration thereby increasing the dipole moment of the 
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complex. Therefore, there is a significant increase in the intensity of the v(CD). Several 

other authors using differing techniques have proved the existence of the chloroform-

carbonyl hydrogen bond.t3Sl39MO  The three chlorine atoms enhance the acidity of the 

chloroform which then acts as a proton donor enabling the C-FI --- O hydrogen bond to 

form.' 4 ' 

The results from our isothermal titration calorimetry experiments offered the opportunity 

to determine the enthalpy of formation of the adipic acid dimer by a novel route and also 

to confirm the ability of chloroform to disrupt formation of the acid dimer. The previous 

experiment was repeated. A 5 mM solution of adipic acid in toluene was injected into 

toluene over a series of 2 uI injections. A pronounced endotherm was observed and the 

enthalpy of dissociation measured as 22.0 kcals mof'. The experiment was repeated 

using a 20 mM solution of deeanoic acid in toluene. A smaller endotherm was observed 

(see Figure 5.3). 
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Figure 5.3 	ITC of decanoic acid into toluene. 
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The enthalpy of dissociation was calculated to be 10.2 kcals mot'. This value, which is 

equivalent to 5 kcals mot' per hydrogen bond is reasonably close to the values reported 

in the literature) 32  It must be remembered, however, that these were determined from the 

difference of the enthalpy of formation of the acid in the vapour phase and the enthalpy of 

formation in the solid phase and not in solution as in our case. 

Then a 5 mM solution of the monoethylester of adipic acid was injected into toluene in 10 

2j.tl injections, the enthalpy of the dissociation was measured as 11.0 kcals mot'. 

A 5 mM solution of adipic acid was prepared in toluene and 10 mM of chloroform added. 

This solution was injected into toluene containing 10 mM chloroform in the cell. The 

enthalpy of dissociation was measured as 1.34 kcals mot h  (see Figure 5.4). 
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Figure 5.4 	Isothermal calorimetry of the dissociation of adipic acid in the presence of 

chloroform. 

154 



It is proposed that the reduction in enthalpy is due to the adipic acid dimer being replaced 

by the adipic acid chloroform complex. Because there is no diflèrence in the chloroform 

concentration between the solution in the cell and the injected solution there is no drive 

for this complex to dissociate. The lower enthalpy of dissociation of decanoic acid and 

the monoethyl ester of adipic acid are consistent with the hydrogen bond formation of the 

monocarboxylic acids. 

With a more complete understanding of the problems caused by the presence of the adipic 

acid dimer, the experiments to investigate the thennodyriamic parameters of the 

enzymatic esterification were carried out. A 4.2 mM solution of adipic acid in toluene 

was injected into toluene containing a 0.15 mM dispersion of Chirazyme lyophilised 

Candida antarctica lipase B, in a series of 2 pil injections. The reaction was carried out at 

50°C, with an interval of 2 minutes between each of the injections. As before, the 

significant endotherm was observed (see Figure 5.5) afler each of the initial injections, 

this decreased and the exotherm due to the acylation of the enzyme became visible. 
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Figure 5.5 	Isothermal Calorimetry of adipic acid binding to Chirazyme. 
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After 31 injections the enzyme had become saturated (flilly acylated) and the run stopped. 

The control was deducted from the measurements and a very good fit observed. The 

enthalpy of formation of the acyl-enzyme was found to be -21.79±1.8 kcals mor'. The 

entropy of formation (AS) was calculated to be -42.13 cals o(1  mof'. 

This experiment was repeated using 1 ,4-butanediol as the solvent. A 8.4 mM solution of 

adipic acid in 1 ,4-butanediol was injected into a 0.6mM dispersion of Chirazyme in 

I ,4-butanediol. The initial profile was the same, however, in this experiment the enzyme 

could never become saturated, as the I ,4-butanediol is the second substrate in the 

reaction. Therefore on injection of the acid into the I ,4-butanediol and Chirazyme the 

reaction goes through to the final stage, which is the synthesis of AB and BAB. In this 

experiment it is not possible to determine anything to do with the binding, however it is 

possible to determine the overall enthalpy of formation of the diol-acid ester AR. This 

was measured as -4.52 kcals mof'. Therefore the thermodynamic profile of the complete 

reaction is as shown in Figure 5.6 
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Figure 5.6 	Thermodynamic reaction profile of adipic acid + I .4-butanediol. 
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This experiment was repeated using the monoethyl ester of adipic acid as the acylating 

agent (see Figure 5.7). A 4.2 mM solution of monoethyl ester of adipic acid in toluene 

was injected into a 0.15 mM dispersion of Chirazyme in toluene at 50°C. After 60 x 2iI 

injections the enzyme was fully saturated and the run stopped. The software again gave a 

very good fit to the data. The enthalpy of formation was measured as 5.8±0.1 kcals mor'. 

The entropy of formation AS was calculated to be -42.42 cals 

Time (miri) 

	

0 	33 67 100 133 167 200 

x 2.1 flsa 42iiM 
WS snfl S O.gC 

.r\ 
I Os Me? PCI I 
Iii 	1.7 	iColtis 
1k 	2.iIcs 	03S4E. I 

-cc 

	

0.0 	0.5 	1.0 	1.5 	2.0 	2.5 

McMar Ratio 

Figure 5.7 	Isothermal calorimetry of MEAA binding to Chirazyme. 

The conclusions from these experiments are quite interesting. The entropy of formation 

is, as expected, the same for esterification and transesteriflcation, as the acyl-enzyme 

product is the same in both cases. The enthalpies of formation are quite diflèrent, 

however, the AR from the reaction of the monoethyl ester of adipic acid (MEAA) with 

the enzyme being significantly less than the Al-! from the reaction of the acid with the 

I 
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enzyme. This is considered to be due to the fact that the enzyme is being acylated by the 

ester carbonyl rather than the acid carbonyl. In the case of the MIEAA substrate both 

groups are equally available to the enzyme, however, the ester carbonyl is far more 

reactive to the nucleophilic attack of the serine than the carbonyl of the acid. This 

observation confirms the results of the rate studies (Section 3.4), which indicate that the 

rate of reaction of the ester carbonyl with the enzyme is about three times the rate of 

reaction of the acid carbonyl. As the knowledge of the extent of dimerisation in adipic 

acid evolved there was a concern that if, as seems likely, the enzyme was not readily 

acylated by the dimer then the dissociation of the dimer may be a rate controlling factor in 

the enzymatic esterification. However, when the injections of adipic acid in toluene were 

made, into toluene, the endotherm of the dissociation was practically instantaneous. 

Although this does not prove that the dissociation rate does not control the enzymatic 

esterilication rate it does offer a degree of reassurance. 
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6 	The relationship of Structure and Function in lipases. 

While lipases are ubiquitous enzymes, present in microbes, plants and higher animals, 

they have great structural diversity.' 42  Certain structural elements are common to all, but 

they have large diflèrenees in the homology between groups and between individual 

lipases within these groups! 43  They are frequently divided into microbial and 

mammalian lipases, however, the homology overlaps and as a whole they are best divided 

into four groups. 

(a) Pancreatic lipases 

(b) Acetyl cholinesterase 

Cholesterol esterase 

Candida rugosa lipase 

Geotrichum candidum lipase 

(c) Rhizomucor miehei lipase 

Humicola lanuginosa lipase 

(d) Fusarium solani cutinase 

Pseudomonas lipase 

Candida antarctica lipase B 

pdb code 

e.g. Human pancreatic lipase 	lhpl 

lace 

lmah 

1 cr1 

I thg 

3tgl 

I tib 

Icus 

I esc 

I tca 

Although there is little homology in common between the groups, they are structurally 

and functionally very similar, there are certain elements that run like a thread through all 

of them. 

The lipase structure is made up of predominantly parallel 13-strands surrounded by 

a-helices, in which there is an element termed the a-13 hydrolase fold!" Between the 

159 



eponymous a-helix and 13-sheet there is a tight hairpin turn of structure Gly-x-Ser-x-Gly 

common to ali.W  It is this serine that is the nucleophile of the active site. In lipases, the 

nucleophile is always a serine, it forms the core of the catalytic triad similar to that found 

in proteases. 20  The triad of residues is, unlike the proteases, always found in the order 

Ser-Asp-His in the enzyme molecular sequence. 

For example: 

Candida antarctica lipase B Sen 05-Asp I 87-I-1is224 

Human pancreatic lipase 	Sen 53-Aspi 77-l-1is264 

Rhizomucor miehei lipase 	Sen 53-Asp203-11is257 

Cutinase 	 Sen 20-Aspi 75-Hisl 88 

In the case of Candida antarctica lipase B, the serine is found between the helix a4 and 

the strand [34. 

It was shown in 1990 by Winkler,' 46  and Brady and Brzozowski, 20  that most lipases have 

a loop of the peptide chain that normally covers the active site, this is termed the lid. The 

lid opens only when the enzyme is activated interfacially at an oil-water interface. This is 

probably the most significant difference between the lipases and the proteases. Not only 

do proteases not need interfacial activation they are readily unfolded on absorption on to a 

hydrophobic surface.' 47  In the case of Rhizomucor miehei lipase the lid is an amphiphilic 

peptide loop, which rearranges on exposure to an interface (see Figure 6.1). Once open 

the lid remains in the open position, held in place by a sophisticated lock mechanism 

made up of an arginine residue, which hydrogen bonds to the backbone to keep the lid 

open. 148 
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(a) 
	

(b) 

Figure 6.1 	Sculpt models ofi (a) Rhizomucor miehei lipase in the closed configuration, 

from ydb ifie 3tl. (b) Rhizomucor miehei lipase in the oven configuration, 

from file 4tgl: the active site is clearly exposed: shown containing a 

substrate, diethyl phosphonate DEP in the active site. The hydrophobic 

regions are shown in blue. 

When the lid of the lipase is in the open position, several residues form the oxyanion hole. 

These residues stabilise the tetrahedral intermediate of the acyl enzyme by hydrogen 

bonding.' 49  Carter and Wells, 52  first identified ihis mechanism in proteases and it was 

shown subsequently by Brady and Brzozowski 20  that the same mechanism applied to 

lipases. 

When the lid of the lipase opens the surrounding area becomes significantly more 

hydrophobic," °  this is seen quite clearly in Figure 6.1. 

When the detailed structure of Candida antarctica lipase B was studied it was found to 

have more in common with cutinase and some of the microbial esterases than the 
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expected fi.ingal lipases. Candida antarctica lipase B like cutinase, does not require 

interfacial activation in order to be active, nor has it been possible to crystallise the 

enzyme in a closed form. Uppenberg,' °9  found that the short helix a5 in Candida 

antarctica lipase B is highly disordered and that it may well be a putative lid, however, in 

common with all lipases this region contains two hydrogen bond donors Glu 106 and Thr 

40, which form part of the oxyanion hole of the active site. This structure is common to 

all lipases, the actual residues may vary, but there are always two hydrogen bond donors 

in the same position, the residues on each side of the proton donor have no side chains, 

which could interfere with the formation of the hydrogen bonds! 5°  

Figure 6.2 	Candida antarctica lipase B showing active site and hydrophobic regions 

in blue. 

it is thought that the purpose of the lid is to protect the enzyme from agglomeration 

caused by the hydrophobic attraction between these large hydrophobic areas of the 

enzyme. 
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The shape and the size of the actives sites diflèr from lipase to lipase and this plays a 

major rote in determining the activity of the enzyme and its affinity for different 

substrates! 5 ' In the case of Candida antarctica lipase B, the pocket seen in Figure 6.2 is 

bA long x 4A wide x 12A deep. The base of the pocket is hydrophilic with residues Asp 

134, Ser 105, Thr 40 and Glu 157, it is fairtynarrow up to C7 fromthe Ser 105 above that 

the pocket is smooth and hydrophobic with residues Val 154, Iso 285, Leu 144 and Val 

149. 

The pocket shown in the model of R. miehei lipase from pdb file 4tgl in Figure 6.1 b is a 

hydrophobic crevice, of size 18A tong, 4.5-6A wide and bA deep, whereas in C. rugosa 

lipase, the pocket is in the form of a tunnel some 22A long. 

All tipases will accept C4-C 16  fatty acid esters, 0  but their activity varies according to the 

geometry of the active site. R. miehei with its very long hydrophobic crevice has great 

affinity, measured by its specificity constant K/K 111, for long chain C 16-C, 8  fatty acid 

esters. Whereas Candida antarctica lipase B has a much shallower pocket with only a 

small hydrophobic area on the wall and so prefers shorter chain fatty acid esters! 52  

Rangheard demonstrated that the specificity constant depends more on the fatty acid 

substrate than either the sotvent or the alcohol substrate.' 53  While Kirk showed that it is 

the fatty acid side of the active site that is the primary determinant of the enzyme's 

affinity for specific chain length substrates.' 52  

One of the important features of Candida antarctica lipase B is that it is highly 

stereospecific for secondary alcohots 109 and Orrenius, et aL, 154 have shown that it is the 

geometry of the pocket on the alcohol binding side that controls the stereospeciflcity. In 

essence, the geometry affects the binding and stability of the alcohot-acyl enzyme 

tetrahedral intermediates because of the ease with which the oxyanion residues can 
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hydrogen bond to the diflèrent intermediates. The resulting difibrences in the reaction 

rates of the enantiomers will give significant enantiomeric excess, which may be used to 

synthesize and isolate a specific enantiomer. 

The enantioselectivity of a lipase changes in different solvents, the changes being 

explained by the different desolvation properties of the enantiomers in the different 

solvents. 95  However, Luque, Tao Ke and Klibanov have shown that differences in 

desolvation energies can not affect the enantioselectivity and that it is changes in the 

conformation of the enzyme that cause the enantioselectivity to change.' 55  

It can be seen that not only is the structure of the enzyme key to the activity of the 

enzyme, but that the properties of the enzyme may change if the conformation of the 

enzyme changes. 

When we started work on the enzymatic synthesis of polyesters from simple aliphatic 

diacids and diols, our initial work, which proved the feasibility of the polymerisation of 

adipic acid and I ,4-butanediol, used the lipase from Rhizomucor miehei in di-iso-propyl 

ether) 3  This was changed subsequently, to using the immobilised lipase B from Candida 

antarctica (Novozyme 435TM),  which was found to be a superior catalyst both in terms of 

activity and recyclability. In addition, it was found to be possible to synthesise polyesters 

using this enzyme without the need for a solvent.' 4  The polyesters produced using this 

system were found to have physical properties such as molecular weight distribution, 

crystallinity and melt viscosity, which were significantly different from their analogues 

produced by conventional high temperature polymerisation) 5  It was thought that the 

observed differences in physical characteristics might well be due to differences in the 

actual polymerisation reaction mechanism. 
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It was shown subsequently by Harifey that the polymerisation mechanism was indeed 

different and that it proceeded via the key intermediate AR, in a step growth 

as opposed to the random condensation of the two monomers. It was also 

shown by a combination of gel permeation chromatography and Maldi-Tof Mass 

Spectrometry that at no stage of the reaction is any diacid terminated oligomer (ABA) 

observed. These observations may be explained if one assumes that interesterification 

(i.e. transesteriflcation with itself) does not occur within the polyester. It was thought that 

there might be a structural component of the enzyme that prevents the entry of AR to the 

active site once it has been acylated by the adipic acid. In the course of that work, it was 

found that the mechanism of polymerisation also varied depending on whether or not it 

was carried out in solvent. In toluene, transesterification was found to occur and as a 

result, the polymers formed had a broad molecular weight distribution and were of limited 

molecular weight compared to the polyesters produced in the solvent free system. 

It was decided therefore to take a detailed look at the reaction kinetics and to determine 

rates of reaction of the intermediates and related substrates in different media in order to 

explain some of the observations. We have seen diflèrences in activity depending on the 

individual substrates in various media, but have found that some compounds that are 

closely related to the substrates are not at all acceptable to the enzyme as substrates. 

We decided to look at the secondary structure of the enzyme in the different media to see 

if there were any changes that might help to explain the different behaviour of the 

enzyme. It was known from our kinetic work that the concentration of the acid substrate 

has a significant effect on the activity of the enzyme (see Chapter 3). Paktar has shown 

that the optimum pH is 7.0 with a rapid fall in activity below pH 6.0 and above pH 8.0,86 

this is usually explained by the effect of the pH on the ionisation state of the aspartate 
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residue in the catalytic triad. We have also observed a permanent fall in enzyme activity 

after exposure of the enzyme to low pH, which affects the recyclability of the enzyme. 

Because of the known effect of pH of the medium on the hydrogen bonding within the 

protein, we decided to see if any observable changes in the secondary structure could be 

linked to the pH of the medium by the determination of secondary structure in a range of 

aqueous buffers. Once we had sufficient information on the structure of the enzyme in its 

native form in aqueous butler we would then look at the secondary structure of the C. 

antarctica lipase B in 3 or 4 solvents of differing polarity. In particular, solvents in which 

the enzyme produces differing polymers, to see if any correlation could be found between 

structure and thnction and to examine also the acylated form of the enzyme in the same 

solvents and then to compare the structures. 

Fortunately, the principal structure of the Candida antarctica lipase B enzyme has been 

explored by a number of workers, notably Uppenberg, et aL 7' Cygler, et aL 96  and PIeS, 

a aL 58  Therefore, there was a published foundation on which we could base our studies 

of the secondary structure of the enzyme. 

The use of circular dichroism (CD) spectroscopy for the determination of protein 

secondary structure is quite common;' 56  it is however used mainly with aqueous systems, 

but not very much with other solvents. There are a number of problems that are specific 

to CD spectroscopy in organic solvents; firstly, it is difficult to obtain true solutions of 

protein in organic solvents and secondly most solvents have a significant absorbance in 

the IJV region. 
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Figure 6.3 	A typical CD spectrum of a protein showing the CD absorbance of the 

different structural elements. 

The UV absorbances of the relevant solvents in a 1 cm cell are collected in Table 6.1. 

Table 6.1 	UV absorbance of solvents at various wavelengths. 87  

Wavelength, nm Absorbance compared to water 

Hexane 195 1.0 

225 0.05 

250 0.01 

Toluene 200 >1.0 

250 >1.0 

1,4-butanediol 215 >1.0 

225 05 

250 0.04 

Water 190 0.01 

250 0.01 
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At an absorbance of 1.0, 90% of the light is absorbed by the solvent, which means that 

that solvent cannot be used for normal UV spectroscopy because of the inherent errors 

caused by the loss of light in the medium. 

It is quite obvious that the UV absorbance of the solvents and substrates would make it 

difficult if not impossible to obtain meaningful CD spectra unless we used an extremely 

intense source of UV light, particularly as we were looking for relatively small changes in 

the protein structure. In solvents of such high UV absorbance, it became obvious that we 

needed the power that can only be obtained from synchrotron radiation light. 

When looking at the acylated enzyme, we anticipated that the changes in the secondary 

structure in the region of the binding site might be small compared to the overall 

secondary structure of the enzyme. Therefore, we needed the increased precision of an 

extended wavelength CD, which one gets from a synchrotron radiation source (SRS). 

This has a typical range of 165-270 nm compared to 190-270 not obtainable from a 

conventional CD spectrometer. 

We wanted to use the pure C. antarctica protein for this work, but because of the 

preparative difficulties, this was only available in small quantities as a gift from Novo. 

Therefore, a high photon flux would be needed to give a large signal to noise ratio, which 

is necessary for accurate measurements on the small samples. In order to overcome all 

these problems we needed the enormous photon flux that one can only obtain from an SRS 

such as the one at Daresbury. 

The scale and principle of the Daresbury instrument is shown in Figure 6.4. The electron 

beam is generated in the 100,000 MeV linear accelerator and accelerated to 600,000 MeV 

in the smaller synchrotron. In the main ring, the electron beam is accelerated to 2 0eV 

168 



and this then acts as a storage ring, the beam having a useflul life of approximately 8 

hours. The electromagnetic radiation, mainly X-ray and ultra violet, is taken off the 

circulating beam through the side ports, which can be seen in the diagram. 

Figure 6.4 	The Daresbury synchrotron. 

In order to gain experience with the necessary techniques and to develop confidence in 

the use of the fitting programs, we first measured the CD spectrum for a-chymotrypsin in 

pH 5.0 KAc buffer and in hexane. The protein was partitioned from the buffer solution 

into hexane using the method of Dordick,' 57  whereby the ion pair is formed between 

Aerosol UT and the enzyme, which then becomes much more hydrophobic and thus 

soluble in the organic phase. 

The CD spectrum and the secondary structure of ct—chymotrypsin has been studied 

extensively by a number of workers and the spectrum is used as a standard in Curtis 

Johnson's CDSSTR program 158 so that it gave us the chance to check our methodology. 



For this work, we used a conventional Jasco CD spectrometer to obtain the CD spectrum 

from 180-270 rim. The results obtained using CDSSTR to determine the secondary 

structure are shown in Table 62 

Table 6.2 	Secondary structure of a-chymotrypsin. 

Structure KAc Buffer 
pH 5.0 

Hexane CDSSTR 
Standard 

a-helix 8% 7% 8% 

B-strand 38% 34% 35% 

Turns 11% 16% 15% 

Other 43% 43% 42% 

These results, which compared well with the published results, gave us confidence in the 

methodology chosen to investigate the structure of Candida antarctica lipase B. 

Figure 6.5 shows the secondary structure of the enzyme derived by using the Sculpt 

modelling program from the Brookhaven pdb co-ordinates for the file I tca. 

It is obvious from this that the enzyme has a fairly extensive a-helix content compared to 

the a-chymotrypsin structure given in Table 6.2. 

We measured the CD spectra of the pure C. antarctica protein (ex Novo) in a number of 

aqueous buflërs ranging from a pH of 4.0 to 9.0, using the synchrotron radiation source at 

Daresbury. The spectrum obtained is shown in Figure 6.6. 
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Figure 6.5 	The secondary structure of Candida antarctica lipase B. Sculpt model 

based on pdb file itca. 

pH 5.0 shown in red, pH 4.0 shown in blue and pH 9.2 shown in black 
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For these spectra we chose to use the SELCON fitting program developed by Sreerama 

and Woody,' 59  rather than CDSSTR because the standards in the latter were obtained 

using conventional CD (190-270 nm) whereas the standards used by Sreerama were all 

obtained using SRS light (165-270 nm). 

The results are given in Table 6.3 and compared to the prediction of secondary structure 

given by the DSSP/STRIDE algorithm from the E.M.B.L. The DSSP algorithm is a 

"knowledge based" program, which uses the Brookhaven pdb co-ordinates and assigns 

each amino acid residue to its most likely form of secondary structure.' 6°  

Table 6.3 	Structure of C. antarctica lipase B in differing pH buffers. 

Structure PO4 Buffer 
pH 4.2 

KAc Buffer 
p1-I 5.0 

PO4 Buffer 
pH 6.0 

Cacod Buffer 
pH 7.0 #" 

PO4 Buffer 
pH 9.0 

DSSP 

a-Helix 32% 38% 37% 38% 30% 37% 

B-Strand 21% 20% 22% 20% 25% 18% 

Turns 15% 14% 11% 18% 15% 26% 

Other 31% 28% 30% 24% 30% 19% 

ft This result was obtained using conventional CD with Chirazyme TM  

There is some loss of helix at the extremes of pH, but the remaining structure does not 

appear to ciwige over the pH range studied. While the main loss of activity at the 

extremes of pH is undoubtedly due to the effect of the pH on the ionisation of key 

residues, i.e. the Asp 187 and His 224 of the triad, the permanent loss of activity that 

occurs after exposure to extremes of pH may be explained by this loss of helix. CD 

studies on the enzyme creatine kinase also found that there was minimal change in the 

secondary structure between pH 6-9, with little loss of activity, after exposure to this range 
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of pH. 16 ' Below pH 4.8 and above pH 9.6 there was significant loss of a-helix and of 

the toss in activity 80% was irreversible. 

Because most of our kinetic studies have been done using the unsupported commercial 

enzyme Chirazyme", and the supply of the pure enzyme is limited, we repeated the 

CD spectra in KAc pH 5.0 buffer using commercial Chirazyme. No significant 

difference was seen between the structures of the two enzymes, however the spectrum 

obtained using Chirazyme was noisier, due probably to the presence of extraneous 

protein and the lyoprotectant used in its preparation. The spectra obtained are shown 

in Figure 6.7. 

ttiep, 4: 
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p 250- 	270 
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t n8 	tn<r cr . 

Black - Chirazyme, magenta - pure Candida antarctica lipase B 

Figure 6.7 	The CD spectra for Chirazyme and pure Candida antarctica lipase B in 

buffer. 

Then using the method of Dordick,' 57  we transferred the protein from solution in pH 

5.0 KAc buffer to hexane and to toluene. It is not possible to use exactly the same 

method with the 1,4-butanediol because of the miscibility of water and the diol. 

Therefore, instead 
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of partitioning the protein from the aqueous phase to the organic phase, we used the 

minimum amount of aqueous buffer necessazy to solubilise the protein and added this to 

the diol. The spectra are shown in Figure 6.8. 

CaIB in solvent 

10 I  8 ___ 

nm 

Blue - Cam/ida antarctica base B in nH 5.0 aqueous buffer as a control, red - Cam/ida 

antarctica lipase B in 1 ,4-butanedioj, magenta - hexane. black - toluene. 

Figure 6.8 	The CD spectra of Candida antarctica lipase B in different media. 

The results calculated from the spectra are shown in Table 6.4 with the structure in pH 5.0 

buflèr for comparison. 

Table 6.4 	Structure of C. antarctica lipase B in solvents 

Structure Hexane Toluene 1,4-Butanediol pH 5.0 Buffer 

a-Helix 35% 8% 11% 37% 

B-Strand 30% 31% 36% 18% 

Turns 15% 32% 14% 26% 

Other 20% 29% 36% 19% 
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It must be remembered that the reported structures are based on a fitting program that uses 

50 reference spectra from a wide diversity of protein structures. We have seen with 

a-chymotrypsin, which is one of the standards, a very close correlation between our CD 

spectra and the published results, whereas C. antarctica lipase B does not have any 

proteins of close homology among the reference spectra. Therefore, when comparing 

spectra obtained in solvent compared to reference spectra obtained in aqueous buffers a 

similar degree of accuracy cannot be expected. The measurement of the distinct circular 

dichroism of the a-helix at 190 nm gives a reasonable confidence in the amount of a-helix 

quoted, however other structures are not so easy to determine. All spectra were fitted to a 

correlation R2  of 0.95 (RMS 0.4) or better, nevertheless the structures other than a-helix 

should be taken as a guide only. 

A number of authors have reported that when the secondary structures of enzymes in 

solvent are determined by CD spectroscopy there does not appear to be much difference 

between the structure in solvent and the native form in aqueous buffer.' 62  While one 

might expect the protein to unfold in most solvents because of the hydrophobic inner, the 

stability of the protein may be increased in hydrophobic solvents because of the reduced 

mobility of the protein chain in the absence of water. 163  This certainly appears to be the 

case with a-chyrnotrypsin, as may be seen from the results in Table 6.3. It also appears to 

be true for Candida antarctica lipase B when partitioned from buflér into hexane as 

shown in Table 6.4. While this structure was obtained by SRS CD, the result was 

confirmed subsequently by conventional CD. 

The structure obtained for the enzyme in toluene (Table 6.4), therefore, is somewhat 

surprising, particularly as the enzyme is still active in both solvents. Because of the 



unique problems of trying to obtain CD spectra in toluene, which is absorbing up to 99% 

of the light at certain wavelengths, the sample has to be in the beam for a very long time. 

The normal procedure used with the aqueous samples and the other solvents, is to take 

three scans each of 20 minutes duration. In the toluene experiment, we took 60 x  20 

minute scans in order to obtain the toluene background and a further 60 x  20 minute scans 

for the enzyme in toluene. The latter experiment was then repeated using 55 scans. It is 

possible that the protein lost some a-helix for reasons other than the effect of the solvent 

alone. Although there was no appreciable drill in the spectrum over the 20 hours it was in 

the instrument and the temperature was kept constant at 25°C, the protein might still have 

been affected by the beam. This is almost certainly the first time that a protein structure 

has been determined in toluene and it could well be the last because it is not easy to justify 

3 days of synchrotron time for one experiment. 

The spectrum in toluene needs to be interpreted with care, the SELCON program and for 

that matter any similar program, bases the a-helix content on the CD absorbance at 

I 9Onm. If for some reason the CD spectrum in toluene had shifted to the blue, as it 

appears from the spectrum, then the protein has not actually lost a-helix content. This 

interpretation would be more consistent with the function of the enzyme in toluene. The 

loss of helix structure in the I ,4-butanediol is also surprising because of the excellent 

activity of the enzyme in this medium, which is of course also the substrate for the 

acylated enzyme. 

We then decided to investigate the structure of the enzyme after it had been acylated by 

the substrate to see if there were any observable changes in the secondary structure. The 

enzyme was transferred from buffer to dimethyl adipate, which acts as both solvent and 

176 



substrate. The CD spectrum obtained when the enzyme is in dimethyl adipate is most 

interesting (see Figure 6.9). We were unable to obtain a meaningful CD spectrum because 

we observed an enormous induced circular dichroism, some 10 times larger than we 

would expect from the protein alone. 

Acylated C.antarctica lipaseB 

60- 

20 	19 10 	0 	2 0 	2J 2U020 

-40- 

nm 

Red - acylated enzyme, magenta - un-acylated enzyme in hexane. 

Figure6.9 	CDspectrafor Candidaantarctica lipaseBafteracylationwithdimethyl 

adipate. 

The large induced circular dichroism was not expected though it can be explained because 

of the binding of the substrate to the enzyme. 

Very little has been published on the phenomenon of induced circular dichroism (lCD). In 

all published cases of lCD occurrence, it has been observed that the ligand must be bound 

to or very close to an a-helix. The length of the helix being important, there appears to be 

an optimum length of helix for lCD, too long or too short and the lCD declines!M The 
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magnitude of the lCD is also directly proportional to the amount of binding in the 

sample.' 65  Finally, the observation of the lCD in our experiment appears to confirm that 

the acyl substrate is bound to the enzyme in a fixed conformation; otherwise, the lCD 

would not be seen. We have seen a similar effect with Candida antarctica lipase B 

(Chirazyme), which has been acylated by vinyl butyrate, using a conventional CD 

spectrometer, however the spectrum obtained was very noisy and would be difficult to use 

quantitatively. The power of the SRS would appear to be essential for this work. 

The use of lCD to investigate the binding of substrates to an enzyme seems to be worthy 

of further study, both in terms of the extent and geometry of the binding. 

6.1 	Conclusions. 

It would appear that the secondary structure of Candida antarctica lipase B in aqueous 

buffer at pH 5.0-7.0 is very close to the natural structure determined by X-ray 

crystallography. The Selectric point, p1, for the enzyme is 6.0. 166  At the extremes of pH 

4.0 and 9.2 there are significant differences in the a-helix content. In solvents, we see 

some very interesting effects. In hexane there appears to be little difference in the 

secondary structure of either a-chymotrypsin or Candida antarctica lipase B to that 

obtained in aqueous buffer. This confirms the work of Yennawar who also found that 

ci-chymotrypsin did not change structure when dissolved in hexane. 167  The result in 

toluene is an enigma and is most likely to be due to the problems of obtaining a CD 

spectrum in such a strong absorber of UV light. The physical properties of toluene are 

not that different to hexane yet there is a very large difference apparently in the degree of 

unfolding that is caused. All the experiments were very noisy because of the very low 
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levels of light passing through the sample, however, when we averaged the spectra from 

the first ten scans and compared this to the average of the last ten scans, no significant 

difièrence was seen. Therefore, it is highly unlikely that the sample has deteriorated over 

time due to the effect of radiation or heat. It can be seen from the spectrum that the 

principal peak has moved to a shorter wavelength than the typical helix peak absorbance. 

The SELCON program only assigns helix to the CD absorbance at 190 nm, therefore if 

for whatever reason the helix absorbance has been shified then the SELCON will give an 

erroneous result. The results in I ,4-butanediol are more surprising. Diols such as 

pentanediol are used in protein folding experiments, where they are added to the aqueous 

medium to enhance the formation of the correct protein structure. It seems strange that 

when they are used as the total medium they cause the unfolding of ct-helix. 

When one examines the secondary structure of Candida antarctica lipase B, shown in 

Figure 6.10 it may be seen that there are several large helices away from the active site of 

the enzyme. Long helices in proteins may be metastable; therefore, it is possible that the 

unfolding can occur away from the active site without changing the structure of the site 

and affecting the activity of the enzyme. 
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7 	Molecular modelling. 

In order to understand better, the processes taking place within the enzyme active site and 

the interaction between the enzyme and various substrates we decided to look at the use 

of molecular modelling programs for this purpose. We looked at a number of programs 

such as Hyperchem, Spartan and Gaussian 98. All programs give models that are as 

geometrically accurate as the input knowledge and are capable of manipulation. In order 

to obtain a good model the whole structure must go through an optimisation process 

called energy minimisation. Where the programs differ is the level of sophistication used 

in the quantum mechanics (QM) or molecular mechanics (MM) calculations used to 

determine the conformational energies used in the minimisation process. 

The calculation of molecular energies using QM involves solving approximations to 

Schrodinger's equation in order to determine electron density, energy and other 

properties. When used on large molecules such as proteins QM modelling requires a 

great deal of computing power. 

The principle of MM treats the molecule as a series of balls and springs and the energies 

are determined using Hooke's law. Each atom is moved slightly and a new structure 

generated in which the energy is lowered, the process is repeated until the whole 

molecule is in its lowest energy state when the structure is said to be minimised. While 

this is still an extremely complex task for a protein molecule, nevertheless MM modelling 

is a simpler method than QM modelling and requires a lot less computing power. 

One program seemed to be ideal for the modelling of proteins; this was the Sculpt 

program from Molecular Dynamics in the USA. It had a number of features that made it 

ideal for our purposes. It was written specifically for the modelling of proteins and 
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accepted pdb X-ray diffiaction crystallography files readily from the Brookhaven 

database, with which to create the model. Also it accepted small molecules such as 

ligands, which if modelled in JSlSDraw and converted to 3D, could be pasted into Sculpt. 

Sculpt allows manipulation of the molecule in real time using MM force field 

calculations, embodying van der Waals or electrostatic interactions or both. It has good 

ligand docking facilities; a ligand may be docked into the flexible receptor molecule and 

the effect of the docking on the enzyme observed readily. The program runs a local 

energy minimiser so that covalent bond lengths, bond angles and single value dihedrals 

may be constrained to their original values. Potential energies are used to model explicit 

hydrogen bonds, variable dihedrals, electrostatic and van der Waals interactions. The 

latter are modelled using a modified Lennard-Jones function between atoms within 6A. 

Electrostatic interactions are modelled using a Coulomb model with a distance depending 

on dielectric up to bA of each other. 

Before starting the modelling of the protein, if there is more than one pdb file, it is 

necessary to decide which of the pdb files to use. In the case of the Candida antarctica 

lipase B there are seven files, each determined by different authors under slightly 

different conditions and resolutions. Therefore, we ran the Sequence Finder 168  program 

from Swissprot in order to check the homology of the seven proteins listed under Candida 

antarctica lipase B. Sequence Finder detected no difference in the homology of the the 

seven files, therefore we selected pdb file 1 lbs.' °9  This file was copied and pasted into 

Sculpt and several models created. Fortunately, one of these was seen fairly early, by A. 

Svendsen of Novo, who spotted an anomaly in the structure. It was discovered that if the 

grammar of the pdb co-ordinates is not perfect, Sculpt sees a break in the peptide chain 

and only models the first part of the protein. Therefore, we changed to pdb file I tca, 97  

which gave a complete model of the protein, all subsequent work was done using the co- 
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ordinates for Itca, which had been obtained at the higher resolution of 1 .55A 

compared to the 2.2A resolution of 1 lbs. 

A study was carried out of the overall structure of Candida antarctica lipase B and 

this compared to other lipases such as Rhizomucor miehei in both the closed pdb 3tgl 

and open pdb 4tgl configurations '(see Figure 6.1 in Chapter 6). 

Other lipases studied included Candida rugosa lipase and Geotrichum candidum 

lipase shown in Figures 7.1 and 7.2. 

Figure 7.1 	Candida rugosa lipase modelled from pdb file I cr1." 

The hydrophobic surfaces are shown in blue, the tunnel shaped entrance to the active 

site is clearly visible in the centre of the model. 
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Figure 7.2 	Geotrichum candidum lipase modelled from pdb file lthg.' 7 ' showing 

hydrophobic surfices in blue. 

The model of Geotrichuin candidum lipase is the closed form so that the active site is not 

visible. It is obvious that in the closed form there is substantially less hydrophobic 

surface than any of the other lipases studied. This protein is one of the largest lipase 

molecules for which the structure has been determined, it consists of 544 amino acids in a 

single peptide chain folded into one domain, this is one of the largest ever proteins 

observed. 

Geotrichum candidum is unusual in that the lid over the active site is made up of two 

helices rather than the usual single helix, these are made from residues proline 66 to 

alanine 76 and serine 294 to phenylalanine 310. These may be seen clearly, over the 

active site in Figure 7.3. 
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Figure 7.3 	Secondary structure of (eotrichum candidum showing hdices of the lid. 

The catalytic triad of this ilpase is diflèrent to that of Candida antarctica in that the 

aspartate component is replaced by glutamate. 

The discussion on the secondary structure of the ilpases and the impact of diflërences in 

secondary structure on the function of the enzyme is to be found in Chapter 6. 

The modelling of the enzymes was then extended to cover the details of the active sites of 

the various lipases and to compare these with the active sites of common proteases. 

The active site of Candida rugosa with the catalytic triad of glutamate 341, histidine 449 

and serine 209 is shown in Figure 7.4. 
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Figure 7.4 	The active site of Candida rugosa liyase. 

It should be noted that the C. rugosa follows the standard lipase consensus with the serine 

of the active site in the pentapeptide Gly-X-Ser-X-Gly this is situated on the tight turn 

between the 13  sheet and the a helix, the a-13 hydrolase fold. 

It is interesting to compare the typical lipase active site with the active site of 

y-chymotiypsin a typical protease, this was modelled using pdb file Igind 167  (see Figure 

7.5). 
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Figure 7.5 	The active site of y-ch%motrvosin from pdb file I gmd. 

Although the catalytic triad looks superficially like that of the C. rugosa lipase, there are 

several important differences. The three residues of the triad do not have the same order 

as the lipase sequence, i.e. serine, aspartate, histidine. The hydrolase fold is missing, 

there is no a-helix in the environ of the Ser 195 although the n-sheet is in place. Thirdly 

on close inspection it is obvious that the orientation of the three residues is quite different 

to that in lipases, in particular, that of the histidine, although the proximity to the aspartate 

and serine residues is such that the catalytic mechanism is still the same. 

The active site of Candida antarctica is shown in the Figure 7.6. 
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Figure 7.6 	Active site of Candida antarctica from pdb file Itca. 

The triad is made up of Ser 105, Asp 187 and His 224. The serine 105 can be seen at the 

end of the short helix in the ioop to the [5-sheet forming the a—[5 hydrolase fold. C. 

antarctica lipase B is unusual that the lipase consensus Gly-X-Ser-X-Gly is changed to 

Thr-X-Ser-X-Gly, the orientation of the residues however is that of the typical lipase. 

The Sculpt modelling facility was then used to investigate the interaction of various 

substrates with the enzyme. 

The acylated enzyme was modelled with adipic acid; the diol substrates used included 

1 ,4-butanediol, I ,6-hexanediol and a,o—polytetramethylene ether glycol 650. 
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In Figure 7.7, C. antarctica lipase B is shown with the substrate AB (adipic acid + 1,4-

butanediol) bound to the Ser 105 in the active site. 

Figure 7.7 	The active site of Candida antarctica lipase B containing the substrate AB. 

Although the above shows the substrate in the active site, it is not particularly informative 

so it is necessary to model the binding of the substrate into the isolated structure of the 

pocket. In Figure 7.8 we have attempted to produce a cross section of the active site 

showing the hydrophobic entrance to the site that is formed by the residues Leu 144, Tie 

285, Val 149 and Ala 281. Other hydrophobic residues such as Ala 282 and Leu 278 

have been omitted for the sake of clarity. At the bottom of the pocket where the substrate 

is bound to the Ser 105 there is a strongly hydrophilic region made up of His 224, Asp 

134 and Asp 187 together with Thr 40 and Thr 138 and GIn 157. All of these residues 

play some part in the catalytic process either in the catalytic triad or the stabilisation of 

the tetrahedral intermediates by the formation of hydrogen bonds in the oxyanion hole. 
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Figure 7.8 	The key residues of the active site of Candida antarctica lipase B. 

It is tempting to try to use modelling to explain some of the effects, seen in the kinetic 

studies; therefore various substrates were docked into the site to see if there were any 

observable effects. In the Figure 7.9, the substrate acetylvaleric acid has been docked on 

to the serine 105 and is in the process of nthimisation using both electrostatics and van 

der Waals forces. The electrostatic attraction between the acetyl carbonyl and the 

hydrogen of the peptide bond of Asp 134 may be seen. The red umbrellas are the regions 

where the computation is being carried out. 
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Figure 7.9 Energy mininiisation of acetylvaleric acid docked in C. antarctica lipase B. 

The size of the substrates involved and the apparent ease with which they are accepted by 

the enzyme is quite surprising. Figure 7.10 shows the A13 4  oligomer docked into the 

active site with a molecule of I ,4-butanediol entering on the alcohol side to form B(AB) 4 . 

Figure 7.10 The oligomer B(ABg docked into Candida antarctica lipase B. 



The apparent problem of how an extremely long polyester such as a 5000 Dalton or 

higher polymer molecule can find and enter the active site seemed quite perplexing. We 

developed the theory that maybe the polymer never leaves the enzyme surface, but in fact 

creeps over surface while the growing end, whether it is acyl or hydroxyl terminated, 

remains close to the active site. In order to see if this could be modelled we looked at a 

2000 Dalton oligomer of adipic acid and 1,4-butanediol bound to the enzyme and 

minimised to see what configuration was adopted. This is shown in Figure 7.11. 

Figure 7.11 High molecular weight polyester on the surface of Candida antarctica 

lipase B. 

After many hours of minimisation it appears that the polyester chain wraps itself around 

the enzyme as a result of the formation of many hydrogen bonds (shown in light blue) 

with polar residues on the surface. There seems to be an understandable preference for a 
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vague line of hydrophilic residues shown in red, on the sur&ce of the enzyme. This 

mechanism, if correct, is similar to that of RNA synthetase where the growing RNA is 

bound to the enzyme some distance from the active site. 37  The latter mechanism was 

proven by site directed mutations, which removed key polar residues with the result, that 

the rate of assembly of the RNA was reduced dramatically. A similar technique could be 

used to prove our hypothesis if the resources were available. If the surihce of the enzyme 

were made substantially less polar without aflëcting the active site then the esters could 

be synthesised, but the rate of polymerisation should decline rapidly as the molecular 

weight builds. This mechanism would also explain the observation reported in Chapter 4, 

that on transesterification of high molecular weight polyesters, it is the near terminal ester 

groups, which are attacked first. 

Other modelling was carried out to confirm that the enzyme would accept certain unusual 

substrates, in particular the macrolactone of adipic acid and diethylene glycol was of 

interest because of the problems it causes in commercial polyesters." 6  This molecule is a 

13 membered ring, which would seem to be a difficult substrate for a lipase (see Figure 

4.15 in Chapter 4). In this model the macrolactone can be seen in the active site bound to 

the Ser 105. The molecule appears to fit into the site quite nicely and as would be 

expected from the model the enzyme was found to catalyse the ring opening of this 

lactone very effectively. 
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8 	Evaluation of proteases as esterification catalysts. 

There have been several references describing the use of proteases as catalysts for 

esterification reactions. Park used subtilisin from Bacillus lichen{formis to synthesize 

sucrose adipate from divinyl adipate and sucrose, 172  while Akkara and Bruno claimed the 

use of protease BPN to catalyse the synthesis of polyesters.' 73  

The possibility of being able to use a protease as catalyst in the enzymatic 

polyesterification process has several attractions. There is a wide choice of available 

proteases; many of these are commercially available in quantity and at a lower price than 

Candida antarctica lipase B. Although many of the available proteases have an alkaline 

optimum pH there are some that have an optimum in acid conditions. 

Therefore, it was decided to evaluate a range of commercially available proteases. The 

enzymes chosen for evaluation were:- 

Protease N from B. subtilis, subtilisin Carlsberg, y—chymotrypsin and papain. The latter 

was chosen because it has a pH optimum of 4.8 and interestingly, it is the only protease or 

lipase where the nucleophile of the catalytic triad is not the hydroxyl of a serine or 

threonine residue, but the SH group of a cysteine residue. 

The substrate chosen for the evaluation of these enzymes was O.4M adipic acid in 

I .6-hexanediol. The results are summarised in the Table 8.1. 
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Table 8.1 	Activity of yroteases as esterification catalysts. 

Enzyme Enzyme 
mg 

Weight loss 
.tg miii' 

Rate of reaction 
j.tmol miii' mg4  

Subtilisin Carlberg 0.717 - No reaction 

1. 0.373 - No reaction 

y-chymotrypsin 2.502 - No reaction 

Papain 1.533 1.7 0.06 

1. 2.452 2.2 0.05 

Protease N 0.532 - No reaction 

The possible activity of papain in this system is interesting because of its optimum pH of 

4.8. In the polyesterifcation of a strong carboxylic acid such as adipic acid the low 

optimum pH could be a distinct advantage. In view of the slight activity observed with 

papain, it was decided to investigate the performance of the enzyme in larger scale 

experiments. 

Adipic acid was heated in I ,6-hexanediol to 100°C for 2 hours to maximise the solvation 

of the acid in the diol. The reactants were then cooled to 60°C and the papain added, the 

reaction was maintained at this temperature and a pressure of 200mmHg for 48 hours. 

Samples were taken after 24 and 48 hours for analysis by gel permeation 

chromatography. In both cases a small amount of AB was seen, but no higher oligomers 

were present. 

The experiment was then repeated using a much larger quantity of enzyme, the 

temperature and pressure were maintained at 60°C and 200mmFIg for 5 days. Samples 
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were taken after 24 hours and 5 days and analysed by gel permeation chromatography. 

Once again only a small amount of AB was observed. 

Because the enzyme had the ability to catalyse the formation of AR, but no higher 

oligomers, it was considered that irrespective of its pH optimum it might be being 

deactivated by the reaction conditions. Either the acidity of the medium, or possibly the 2 

phase system, which suits lipases but not proteases, may be deactivating the enzyme. 

Therefore, the reaction was repeated using dimethyl adipate in place of the adipic acid. 

I ,6-Hexanediol was dissolved in dimethyl adipate at 60°C and 1gm of papain added. The 

reaction was maintained at 60°C and a pressure of 200mmHg. After 24 hours the clear 

solution contained a considerable amount of a white precipitate, which was found to be 

adipic acid. The reaction conditions were maintained for 3 days. Analysis of the final 

mixture by gel permeation chromatography showed the presence of adipic acid, 

I .6-hexanediol and the dimer AB. 

The conclusions reached after these experiments were, papain can catalyse the hydrolysis 

of dimethyl adipate to adipic acid and can to an extent catalyse the formation of AB, 

however, it cannot catalyse the esterification of AR or the formation of any higher 

oligomers. At this stage the work with proteases was abandoned. 
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9 	Enzymatic synthesis of novel polyesters. 

The majority of enzymatic syntheses reported in the literature that use lipases, are either 

concerned with the synthesis of polyesters or the synthesis of stereospecific esters where 

the enantioselectivity of the enzyme steers the reaction product to a particular isomer. 

Apart from the synthesis of sugar esters and the work of Harifey with epoxide esters, the 

low temperature aspect of enzymatic synthesis has not been exploited to fill advantage. 

Polyester based polyurethanes are well known and used for applications such as surface 

coatings, textile coatings, adhesives and elastomers. These materials are manufactured 

from hydroxy terminated polyester resins made by the high temperature condensation of a 

diacid and diol, followed by ftirther reaction with a di-isocyanate to produce a 

polyurethane polymer. To date the only practical synthesis of polyurethane polymers has 

involved the use of di-isocyanates, these are prepared by the phosgenation of the 

corresponding diamine. The production of the toxic isocyanate involves the use of an 

even more toxic reactant. Understandably the production of di-isocyanates is limited to 

only a few companies in the world who are capable of operating the process safely and 

limited to a select group of diamines. Perforce these limitations mean that most di-

isocyanates are expensive. 

While there have been many attempts to synthesise di-isocyanates by an alternative route 

to phosgenation, or to synthesise polyurethanes by a non-isocyanate route, none of these 

has ever been successful commercially. 

With the advent of the enzymatic synthesis of polyesters an alternative route was 

considered which reversed the conventional process. In the conventional process the 

addition of the isocyanate must occur afier the esterification reaction because the 
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carbamate group is heat labile, it starts to decompose at 150°C, well below the 

esterification temperature. 

Instead of creating the urethane polymer alter the synthesis of the polyester, the low 

temperature enzymatic synthesis presents the opportunity to synthesise the urethane 

component first and then and then build the polymer by polyesteriflcation. 

9.1 	Synthesis of bis-carbamate esters. 

It was known from the work of Delaby,' 74  in the 1950's that the carbamate group could be 

synthesised by the ring opening addition of a cyclic carbonate such as ethylene carbonate 

with a primary amine; the product of this reaction being a bis-hydroxyethyl carbamate. 
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Scheme 4 

These reaction products had been used to form polymers by further reacting the bis-

carbamates with methylol melamine to form cross-linked polyether polymers containing 

urethane groups. The resulting polymer had some of the properties of a polyurethane, but 

the need for high temperature stoving meant that some degradation took place. 

The use of the enzymatic low temperature synthesis presented the possibility that the 

polyurethanes could be synthesised without the use of di-isocyanates, such a process 
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would allow the use of readily available diamines that were not available as the 

corresponding di-isocyanate. This idea led to two possible applications, firstly to 

synthesise polymers that were analogues of existing polymers, but without the use of a 

di-isocyanate, secondly to synthesise polyurethanes where the requisite diamine was 

available but the di-isocyanate was not available. For example, ethylene diamine is 

readily available, but ethylene di-isocyanate is not available because of its volatility and 

extreme toxicity. 

In the first objective the work concentrated on the use of aliphatic diamines because the 

aliphatic di-isocyanates are much more expensive than their aromatic counterparts. 

The method of Delaby,' 75  for the synthesis of bis-carbamates involved carrying out the 

reaction in ice, this is not practical for large scale syntheses, therefore we developed an 

alternative synthesis whereby the amine was added slowly to the carbonate and the 

reaction followed by controlling the exotherm. 

The Delaby synthesis using ethylene carbonate and hexamethylene diamine was repeated 

using the new method. The product, bis-hydroxyethyl hexamethylene carbamate, had a 

melting point of 94°C compared to the 93°C quoted by Delaby. 175  The product was 

analysed by (3PC and 'H NMR spectroscopy and found to be pure. The yield was 70% of 

theoretical. 

Some of this bis-carbamate was dissolved in I ,4-butanediol at 90°C under nitrogen, 

cooled to 60°C and reacted with adipic acid using Novozyme 435 as catalyst. The 

resulting polyester containing bis-hydroxyethyl hexamethylene carbamate groups was 

analysed by gel permeation chromatography. It was found to have a molecular weight of 

9350 Daltons compared to the polystyrene standard and a dispersity of 1.75. 
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This polyurethane ester was the analogue of a polybutane adipate polyester that had been 

partially chain extended with hexamethylene di-isocyanate and which could be further 

chain extended by the addition of hexarnethylene di-isocyanate or any other di-

isocyanate. 

The method was then extended to synthesise a urethane polyester for which no equivalent 

isocyanate is available. Using ethylene diamine instead of hexamethylene diamine 

bis-hydroxyethyl ethane carbamate, identical to a carbaniate based on ethylene 

di-isocyanate, was prepared. The m.p. of the white crystalline compound was 93°C. The 

yield was 60% of theoretical; the losses mainly due to the slight solubility of the product 

in cold ethanol. Chromatography showed that we had a single product free from starting 

materials. 

A I ,4-butanediol adipic acid co-polyester was synthesised using this bis-carbamate as part 

of the diol component. After 48hrs the reaction was stopped and the resulting polyester 

analysed by GPC. The molecular weight was found to be 4500 Daltons, compared to the 

polystyrene standard, with a dispersity of 2.4. 

This polyester was found to be extremely water soluble, which is explainable by the 

preponderance of ethane groups in the polymer. Such a water soluble polymer could well 

have applications in water soluble polyurethane coatings or adhesives. 

One of the major problems associated with the commercialisation of a novel process 

using novel intermediates is the need for costly toxicological testing of the compounds. 

The EINECS regulations are relaxed if the novel compound does not leave the reactor and 

if the final product is a high molecular weight polymer. A fl.irther problem associated 

with the above process is the need for recrystallisation from hot ethanol and drying. 
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Therefore an alternative process was considered. One of the major reasons for the 

purification process was the need to use toluene as an inert diluent during the reaction. 

The desired physical properties of the finished polyurethane polyester meant that the 

bis-carbamate was unlikely to be used as the sole diol component of the polyester; this 

was the reason for the incorporation of the I ,4-butanediol component in the second stage 

of the esterification process. Therefore, as I ,4-butanediol could not react with either the 

ethylene carbonate or the diamine reactants, the toluene was replaced with I ,4-butanediol. 

The reaction of ethylene carbonate and hexamethylene diamine was repeated replacing 

the added toluene with I ,4-butanediol. Upon completion of the reaction the product is a 

clear solution at 60°C, which rapidly crystallises on cooling to a white waxy solid. Gel 

permeation chromatography and IR spectroscopy showed that the reaction had gone to 

completion and there were no starting materials remaining. 

To this reaction product was added Novozyme 435 and the requisite amount of adipic 

acid to give a polyester with a molecular weight of 1500 daltons. After heating under 

reduced pressure for 48 hours the reaction was stopped and the resulting polyester 

analysed. The molecular weight by GPC was 2200 M, 4640 M. with a dispersity of 2.1. 

The acid number was found to be 0.7mg KOFI g' and the hydroxyl number 78mg KOH 

g'; this end group analysis gave a molecular weight of 1488 Daltons. There is no reason 

why this principle of using a diol from the second stage esterification as the diluent in the 

formation of the bis-carbamate cannot be extended to the synthesis of any bis-carbamate. 

The procedure was repeated using propylene carbonate and isophorone diamine. 
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(IPC analysis showed that the reaction had gone to completion and there were no 

reactants remaining. This bis-carbamate was converted to polyester with the addition of 

I ,4-butanedioi and adipic acid at 60°C and reduced pressure using Novozyme 435 as 

catalyst. After 48 hours the reaction was stopped and the product analysed. The 

molecular weight was determined by gel permeation chromatography, using a I 000A 

colunm compared to a polystyrene standard. The molecular weight M w  was 6000 and the 

dispersity 2.14. The acid number was determined by titration as 2.0mg KOH g 4 . 

The a,o-polytetramethylene ether diol is used extensively in the manufacture of high 

performance polyurethane elastomers and coatings. There is no similar di-isocyanate 

available, however, the related diamine is available by the reaction of the diol with 

acrylonitrile and hydrogenation to give the bis-(3-aminopropyl) polytetramethylene ether 

of molecular weight 350. The bis-carbamate of this diamine was synthesised using the 

reaction in Scheme 6. 
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The product was a reddish viscous liquid. NMR analysis showed that all the ethylene 

carbonate had reacted, however there was a trace of un-reacted amine remaining. 

Because of the substantial polyether backbone of the diamine it was not thought 

necessary to add any I ,4-butanediol to the bis-carbamate in order to form a useftil 

urethane ester. Therefore adipic acid was added and Novozyme 435 after heating at 60°C 

under reduced pressure for 48 hours the final polymer had a molecular weight of 6500 by 

GPC and an acid number of 5.0mg KOH g'. The combination of the cster groups and the 

ether backbone gave a polymer that was not soluble in any of the common solvents. It 

was thought that this material would make an excellent intermediate in the manufacture 

of solvent resistance coatings. 

The above reaction was extended to the related polyoxypropyleneamine, Jeffamine D230. 

The amine was added to the ethylene carbonate as before, however the exotherm was 

substantially less than with any of the previous amines. After all the amine had been 

added the reaction was maintained at 80°C overnight. TLC and 'H NMR spectroscopy 

indicated that the reaction had gone to completion with only a trace of residual amine 

remaining. This bis-carbamate was also converted to polyester in the same manner as the 
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others, the finished polyester was a brown viscous liquid the molecular weight was 6500 

daltons by GPC and the acid number was 2mg KOH g* 

This series of compounds is novel and the reaction principle is capable of being extended 

to use any diamine and cyclic carbonate to give a novel bis-carbamate on which to base 

an enzymatic urethane ester. A patent has been filed on this reaction and the resulting 

compounds. 

9.2 	Synthesis ofOxazolidine esters. 

One of the best examples of the utility of enzymatic synthesis in catalysing reactions that 

cannot be accomplished by any other route is the synthesis of substituted oxazolidine 

diesters. An oxazolidine ring is formed by the condensation of an alkanolamine with an 

aldehyde, as in the reaction scheme in Scheme 7. 
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Scheme 7 	Synthesis of an oxazolidine. 

The oxazolidine ring is extremely water sensitive, the oxazolidine rapidly reverting back 

to the allcanolan-iine and aldehyde in the presence of water. This reaction is used to 

produce high performance moisture curing polyurethane coatings.' 76  

Traditionally, moisture curing coatings have been made from urethane pre-polymers 

containing free isocyanate end groups.' 77  When atmospheric moisture is absorbed into 
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the coating it reacts with the isocyanate to form carbon dioxide and an amine, which then 

reacts with further isocyanate to form a high molecular weight polymer. There are two 

problems with this process. Firstly, the carbon dioxide produced forms bubbles in the 

coating, which has a deleterious effect on physical properties, secondly the rate of 

reaction of the water and the isocyanate is the rate controlling factor, particularly if the 

isocyanate is an aliphatic compound. In areas of low atmospheric humidity, this can be a 

major problem. 

The substituted oxazolidine made from diethanolamine and iso-butyraldehyde is used in 

moisture curing coatings in order to give a rapid rate of reaction with the atmospheric 

moisture) 76  The oxazolidine is reacted with hexainethylene di-isocyanate as shown in 

Scheme 8. 
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Scheme 8 	Reaction of oxazolidine and di-isocyanate. 

This diurethane is used as an additive in moisture curing coatings containing an excess of 

free isocyanate groups in the form of a prepolymer. When a molecule of atmospheric 
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water is absorbed into the coating it reacts rapidly with the oxazolidine ring which, when 

opened, forms two reactive sites, the secondary amine and the primary hydroxyl (see 

Scheme 9) with which the isocyanate reacts rapidly. This mechanism forms an efficient 

and fast method for the moisture curing of coatings.' 76  
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Scheme 9 	Mechanism of the oxazolidinc curing reaction. 

In the past, the only oxazolidine cross-linker to be used is the one based on the diurethane 

formed with the hydroxyethyl oxazolidine and hexamethylene di-isocyanate, not only is 

this isocyanate expensive, but it is also extremely toxic. 

The diester based on the hydroxyethyl oxazolidine and adipic acid, though similar in 

structure to the diurethane, could not be synthesised because of the rapid rate of reaction 

either with the water from the esterification or the alcohol from a transesterification 

reaction, at the oxazolidine ring. 
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The advent of the low temperature, enzymatic esterification process offered the 

opportunity to manipulate the various reaction rates so that the ester might be formed 

keeping the oxazolidine ring intact. 

It was decided to use the dimethyl ester of adipic acid, rather than the adipic acid itself for 

the esterification. The reaction rate studies (see Section 3.5) had shown clearly that the 

enzyme preferred the acylation by the diester; therefore, transesterification would be 

much faster than the esterification reaction. It was considered that the rate of attack on 

the oxazolidine ring by methanol would be slower than the rate of attack by water. The 

rate of reaction of the ring opening not being accelerated by the enzyme, whereas the rate 

of the transesterification would be increased significantly, particularly at the low 

temperature of the enzymatic csterification. 
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Scheme 10 	The enzymatic esterification of hydroxvethvl oxazolidine. 
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Analysis by 'H NMR spectroscopy and GPC showed that there had been complete 
I'  

esterification of the hydroxyethyl oxazolidine with no discernible opening of the 

oxazolidine ring. A sample was submitted to Baxenden Chemicals Ltd. who confirmed 

that the oxazolidine diester did in fact moisture cure urethane coatings. 
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10 	Characterisation of enzymatic polyesters. 

The polyesters formed by the polycondensation of diacids and diols are usually 

characterised by the determination of the number of acid and hydroxyl end groups. Both 

values are important in the subsequent reactions of the polyester. The hydroxyl value is 

important because it quantifies the stoichiometry of the polyester for the subsequent 

reaction with a di-isocyanate to give polyester polyurethane. The acid value is also 

important because the terminal carboxyl group may react with an isocyanate other than to 

form a urethane polymer. These other reactions usually cause a decrease in the desired 

physical properties of the polymer. Acid terminated polyesters may be synthesised, but 

not for use with di-isocyanates, the secondary potymerisation involves functionality other 

than isocyanate in the co-monomer. 

From knowledge of the end group analysis of a polyester, it is possible to determine the 

number average molecular weight M, but not the weight average molecular weight M.  

and no information on the molecular weight distribution may be determined. There are 

several methods of determining the accurate molecular weights and distribution such as 

by ultra-centriThgation, vapour pressure osmometry, which determines M and light 

scattering, which determines M. All such methods are time consuming and involve 

specialised instrumentation. However, no information is determined about the molecular 

weight distribution. The ratio of MW/MU gives the Dispersity Index which is an indication 

of molecular weight distribution, the theoretical minimum of MW/MU is I, the larger the 

Dispersity Index the broader the molecular weight distribution. 

The most common method used for the determination of molecular weight and molecular 

weight distribution of polymers is Size Exclusion Chromatography otherwise known as 

Gel Permeation Chromatography (GPC). The principle used in GPC is that the 
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chromatographic retention time in the column is related to the hydrodynamic volume of 

the polymer molecule. The higher the molecular weight the smaller the elution volume, 

the peaks of the higher molecular weight material appear first. 

Gel Permeation chromatography gives an accurate and reproducible characterisation of 

the molecular weight distribution. The actual molecular weights Mnand M. are 

determined by comparison to a known standard, usually polystyrene. Gel Permeation 

chromatography does not give an absolute molecular weight because factors other than 

size may affect the retention time in the column. However, as a comparative tool to 

determine the relative molecular weights and relative molecular weight distribution of 

similar polymers such as polyesters it is an excellent method.' 78  

The determinations of acid value and hydroxyl value are carried out by acid-base titration. 

The carboxyl groups are titrated and the acid value expressed as mg KOH g' of polyester. 

The hydroxyl groups are determined by back titration, after the acylation of all reactive 

groups using acetic aithydride. Details of both methods are given in Appendices I and 2. 

While the determination of the acid value is easy the method for the determination of the 

hydroxyl value is tcdious and time consuming. In the past spectroscopic methods have 

not given the desired accuracy. Early work with NIR to determine hydroxyl content 

involved the acquisition of spectra at temperatures of over 160°C. At this temperature the 

reactants continue to react so it can only be done in line, which is not always practical. 

Also the analysis of finished polyesters at such temperatures is not very easy. 

Therefore, we decided to develop MR methods for the measurement of hydroxyl and 

carboxyl functionality that would be suitable for use with low temperature production 
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processes, below the temperatwe at which the hydroxyls and carboxyls react, and for the 

characterisation of finished polyesters, under modest laboratory conditions 

Since most spectroscopic methods are secondary techniques the inaccuracies of the 

chemically determined values are perforce carried over to the spectroscopic calibration 

curves, the spectroscopic method cannot therefore be more accurate than the chemical 

method. However, as the existing chemical method is the minimum acceptable standard 

it was necessary to determine the reasons for any additional inaccuracies in the NIR 

method and to overcome them. 

It was decided therefore, to try to develop methods for the determination of the hydroxyl 

number and acid number of the polyester, using these parameters to follow the course of 

the polyester polymerisation and to characterise the finished polyesters. 

As the determination of hydroxyl number is the more time consuming by the 

conventional titrimetric method, it was decided to concentrate on the development of a 

method for this determination first. Heikka, et al.,'79  have published work on the 

determination of acid value and hydroxyl value using NIR spectroscopy and non-linear 

partial least squares regression analysis. However, their method was not applicable to our 

system because of the high temperatures which they used and the accuracy of the results 

obtained were insufficient for either our purposes or for industrial use. 

A range of polyesters of known hydroxyl number was examined, looking specifically at 

the absorbance of the hydroxyl combination band at 2060-2070 nm and the I hydroxyl 

overtone at 1430 nm. The whole spectrum was screened for regions of maximum 

separation and the OH combination region around 1925 nm was chosen for further study. 

Not surprisingly, differences in the backbone of the polyester were found to affect the 
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absorbance in these regions.' 8°  In particular a clear difference was seen between 

polyesters based on aliphatic acids and those based on aromatic acids such as phthalic and 

isophthalic. A significant proportion of fatty acid in the polyester also affected the 

absorbance in the regions studied. Most surprisingly, however, it was found that the type 

of diol used in the polyester had a dramatic effect on the absorbance in the regions that 

had been thought specific to the hydroxyl group. Even changing from I ,6-hexanediol to 

I ,4-butanediol or diethylene glycol gave major changes in the NIR spectra. It was 

thought that these differences may be due to the extremely strong absorbance of the C-H 

bonds in the NIR and that both bending and stretching absorbances of these bonds have 

many overtones. Therefore, apparently small differences in methylene content can give 

large differences in their NIR spectra. While it may have been possible to develop an 

overall method for the determination of the hydroxyl number of polyesters in general, the 

accuracy would not have been what was required. In order to get the desired accuracy 

and reproducibility it was found necessary to prepare specific calibration curves for each 

type of polyester, viz. polyhexane adipate, polybutane adipate, polyDEG adipate and 

p0 lyhexane phthalate/adipate. 

Some hundred or so diflèrent examples of these four types of polyester were examined. 

The acid and hydroxyl numbers had been obtained previously by the classical titrimetric 

methods (see Appendices I and 2 for details). 

Correlation of the measured hydroxyl number with the absorbance throughout the 

spectrum, followed by manipulation of the data using the Mattson Quiekquant software to 

maximise the correlation., made us decide to concentrate on the hydroxyl combination 

band at 2040 nm. In order to avoid inaccuracies caused by slight changes in the 

wavelength of the peak, peak absorbance in the range 2028-2050 nm was selected. It was 
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also found that für greater correlation could be obtained if the net absorbance between the 

peak and a base-point was used, which after inspection was selected as the absorbance at 

2500 nm. 

In common with usual NIR practice, the use of internal reference peaks was examined. 

Several peaks within the spectrum were assessed as reference, however no benefit was 

obtained, so it was decided that an internal reference was not necessary. 

Using the method described in Section 12.3 the hydroxyl number of the polyhexane 

adipates was determined. The results of which are shown in Table 10.1 and Figure 10.1. 

A 0.997 correlation between the net absorbance and the hydroxyl number was obtained. 

Table 10.1 	Net absorbance of polyhexane adipate polyesters at 2040-2000 nm. 

Hydroxyl No .* Absorbance Hydroxyl No.* Absorbance 

140 0.338 114 0.287 

138 0.335 111 0.278 

114 0.285 55 0.147 

40 0.105 61 0.156 

108 0.275 38 0.095 

76 0.198 31 0.080 

106 0.272 Correlation 0.997 

*mgKoHg 

A range of samples of polyhexane adipate/phthalate polyesters, that is polyesters derived 

from phthalic anhydride as well as adipic acid were studied. The calibration curve in 

Figure 10.1 was used, however there was only a poor correlation with the hydroxyl 

number. 
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Figure 10.1 	Net absorbance of polyhexane adipate polyesters. 

It was found necessary to prepare a calibration based only on the mixed adipate/phthalate 

polyesters. The results of the polyesters containing both adipic acid and phthalic 

anhydride are shown in Table 10.2 and Figure 10.2, a 0.998 correlation between the 

absorbance and the hydroxyl number of the polyesters was found. 

Table 10.2 	Net absorbance of polyhexane adipate/phthalates at 2040-2000 nm. 

Hydroxyl No.t Absorbance Hydroxyl No.t Absorbance 

72.0 0.1971 94.0 0.2262 

73.0 0.1983 108.0 0.2430 

75.0 0.2007 111.0 0.2496 

80.0 0.2089 114.0 0.2460 

94.0 0.2259 114.0 0.2479 

94.0 0.2261 

94.0 0.2271 Correlation 0.994 

* mg KOH g' 
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Figure 10.2 Net absorbance of polyhexane adipate/phthalate polyesters. 

This method was then used for a range of polyDEG adipates, the results for which are 

shown in Table 10.3 and Figure 10.3. A range of polybutane adipates was also analysed 

using this method, the results for which are collected in Table 10.4 and Figure 10.4. The 

correlation between the hydroxyl number and the net absorbance for these polyesters was 

0.998 and 0.997 respectively. 

Table 10.3 	Net absorbance of polyDEG adipates at 2040-2000 nm. 

Hydroxyl No.t Absorbance Hydroxyl No.t Absorbance 

62.9 0.245 45.6 0.180 

56 0.220 41.9 0.170 

78.2 0.300 222.6 0.750 

71.4 0.270 75.6 0.280 

68.2 0.260 Correlation 0.998 

mg KUM 
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Figure 10.3 Net absorbance of polyDEG adipates. 

Table 10.4 	Absorbance of polybutane adipates at 2040-2000 nm. 

Hydroxyt No .t Absorbance Hydroxyl No.t Absorbance 

26.0 0.0814 51.8 0.1486 

26.0 0.0794 110.0 0.2830 

40.0 0.1161 118.0 0.3054 

40.4 0.1211 

49.8 0.1425 Correlation 0.997 

* mg KOH g' 
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Figure 10.4 Net absorbance of polybutane adipate polyesters. 
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Up to this point, calibration curves between the MR absorbance and the hydroxyl number 

as measured by the method given in Appendix 2 had been prepared. Since the hydroxyl 

0-H combination band was being studied it seemed logical to look for a correlation 

between absorbance and the difference in hydroxyl number and acid number, this would 

eliminate any consideration of the carboxyl 0-H bond. To our surprise, we found that the 

correlation of 0.998 for the absorbance to hydroxyl number, i.e. total 0-H, decreased to 

0.98 for the correlation between absorbance and hydroxyl 0-H alone. This observation 

led to the conclusion that the carboxyl 0-H bond is absorbing in the same region of the 

spectrum as the hydroxyl 0-H bond. This contribution is almost certainly due to the 

hydrogen bonding between the carboxyl 0-H and the carbonyls of the ester and acid 

groups. In practical terms, however, it does mean that the calibration for the hydroxyl 

number is influenced to some extent by the acid value. Therefore, polyesters of similar 

hydroxyl number, but very different acid value, may show differences in their NIR 

spectra. 

We then attempted to develop a similar simple method for the determination of the acid 

number. The polyesters of adipic acid and diethylene glycol were used for the 

calibrations because we had a number of samples for which the acid numbers had been 

determined previously. As with the method for hydroxyl determination, the whole NIR 

spectrum was scanned for regions of maximum separation and for an absorbance that 

increased with increasing acid number of the polyester. The one area of the spectrum that 

seemed to be worthy of further investigation was the carboxylic acid 0-H combination 

band at 1898-1900 rim (-5265 cm 1 ). After much searching, it was discovered that if the 

net absorbance of the peak at 1928 nm was measured relative to the baseline between 

1895-1980 nm, a correlation of 0.865 was obtained. This was not good enough for 

industrial quality control purposes, so the method of Brush, 180  was tried which used the 
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derivatives of the spectrum in the region of 1898 nm. The best correlation was found to 

be only 0.625, by using the 2m1  derivative at 1904 run. It was then realised that Brush had 

measured the absorbance at 260°C, whereas our measurements were made at 60°C, which 

would allow far greater intermolecular hydrogen bonding. In an attempt to overcome the 

effects of hydrogen bonding it was decided to re-run all the above spectra at 100°C. The 

samples were preheated in the oven at 100°C for 30 minutes before being transferred to 

the Pehier cell where they were allowed to stabilise at 100°C for 2 minutes before starting 

the scan. As may be seen from the spectra (Figure 10.5) there was a dramatic increase in 

absorbance of the carbonyl overtone at 1904 rim (7000 cm'), this effect was common to 

all of the polyesters examined. There appeared to be little difference in any other region 

of the spectrum, certain peaks had shifted slightly or increased in height, but nothing of 

any significance. Due to the major change that occurred in the region of the carbonyl 

overtone, we were optimistic that the change was due to the removal of the carboxyl 

hydrogen bonding. However, when the method that had been used at 60°C was used at 

100°C, no reasonable correlation was found. Alter examining all the regions of the 

spectrum, still no correlation between net absorption and acid value was found. Using the 

spectra taken at 100°C, the method for the determination of hydroxyl number was 

rechecked, i.e. using the net absorbance at 4900 cm to the base-point at 5000 cm. It 

was found that a 0.998 correlation was still obtained, which demonstrates that our method 

is not particularly sensitive to variation in temperature. This fact could be important 

when it is used in a chemical plant environment. 
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Figure 10.5 Near Infrared spectra of polyester at 60°C and 100°C. 

Because of the lack of success in finding a direct relationship between a single peak 

absorbance and acid value it was decided to look at different regions of the spectra 

obtained at 60°C using non-linear partial least squares analysis. The software known as 

PLS Quant by Mattson was used for the analysis. The regions examined initially were 

those recommended by Mattson for the determination of hydroxyl number in surfactants 

and polyols. For surfactants with hydroxyl numbers between 85-250, they used the bands 

between 1980-2120 rim. Resolving to the 8 0'  dimension, they obtained a correlation of 

0.999 between hydroxyl number and absorbance. Similarly, for poiyols with hydroxyl 

numbers between 75-300 they obtained a 0.999 correlation, using the bands between 

1110-1430 nm and resolving to the 6th dimension. However, none of the samples tested 

by Mattson were polyesters and none contained carboxyl groups as well as hydroxyls. 

When these methods were tried, only a poor correlation of approximately 0.60 was 

obtained between absorbance and hydroxyl number. It was considered that this is almost 

certainly due to the extensive hydrogen bonding in the polyester systems at 60°C. 
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The specific regions of interest, 1925±50 nm and 2040-2080 nm were studied further. 

These are the most relevant overtone and combination bands, no correlation whatsoever 

was found with the acid value. The whole spectrum was examined, using the 2' and 311 

overtone regions as likely regions, however none gave any correlation with acid value, 

despite the computing power of the software. It was found that when the combined OH 

number and acid value of the polyesters was compared with both the OH and carboxyl 

overtones and the combination bands between 1850-2080 nm plus the hydroxyl overtone 

band at 1430-1540 nm, a correlation started to appear. The mathematics involved taking 

the PLS to the 8th  dimension and each measurement was cross-validated up to 23 times. 

The results obtained are shown in Table 10.5. 

Table 10.5 	Correlation of acid value and hydroxyl number to absorbance using PLS 

Poly- 
ester 

Acid value Hydroxyl value 

Atpe Actual*  Method 
1 

Method 
2 

Method 
3 

Actual*  Method 
I 

Method 
2 

Method 
3 

60 23.3 22.9 23.2 22.5 78.8 78.7 78.6 78.8 

71 0.3 0.23 0.24 0.23 222.6 222.6 222.6 222.6 

74 16.2 16.0 16.0 16.1 78.2 78.4 78.5 78.4 

58 19.8 20.6 20.8 19.9 75.6 76.0 77.2 76.0 

59 1.96 1.71 1.74 1.96 57.3 56.3 55.5 56.4 

64 1.7 1.6 1.8 1.9 52.1 55.6 54.5 55.7 

* mg KOH g t  

Method I 	Used bands 1850-2080 nn plus 1430-1560 nm. PLS 8 th  dimension 

Method 2 	Used bands 1850-2060 rim plus 1430-1540 nm. PLS 8 0'  dimension 

Method 3 	Used bands 1850-2080 nm plus 1430-1540 nm. PLS gth  dimension 
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As may be seen, all three methods give reasonable results for the hydroxyl number with 

methods I and 3 being slightly better than method 2, whereas methods 2 and 3 give 

slightly better results for acid value. Therefore, method 3 was adopted as the preferred 

method. In order to explore the effect of the reduced hydrogen bonding at 100°C, the 

spectra were re-examined using the PLS Quant method 3 technique. The correlation was 

as good as that at 60°C, but not appreciably better. However, there was no correlation 

between the spectra of unknowns taken at 60°C and the spectra of standards taken at 

100°C. 

When the method for the determination of hydroxyl number was developed it had been 

found that the absorbance differences between the pure adipate polyesters and the mixed 

adipate/phthalate polyesters detracted from the accuracy of the method, if the calibration 

was based on both types. However, on re-examination of the data using the non-linear 

PLS software a good correlation was obtained giving good results for both the acid value 

and the hydroxyl number as shown in the Table 10.6. 

Table 10.6 	Acid value and hydroxyl number of polyhexane adipates. 

Polyester Acid value. mg  KOH g' Hydroxyl number, mg KOH g' 

Titration NIR Determined Titration NIR Determined 

atpe43 0.1 0.07 114 117 

atpe43/1 0.1 0.3 114 117 

atpe48 10 9.5 140 137 

The method of disrupting the hydroxyl-carboxyl hydrogen bonding by the addition of 

chloroform reported in Chapter 2 was used on the polyesters to see if it also improved the 

accuracy of the results. Small amounts of chloroform were added to polyesters to see if 
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any obvious differences could be seen. No observable diflërence in the spectra on 

addition of 0.5-5.0%"/ of CFICI3 to polyhexane adipate polyesters was seen. However, it 

is only when looking at the correlation between absorbance and substrate concentration, 

that subtle diftèrences in the sensitivity of the method can be seen. The calibration of the 

absorbance of the polybutane adipate polyesters against concentration was then repeated 

after the addition of approximately 1% of chloroform. The correlation improved from 

0.997 to 0.999. This increase was expected to be small because these were commercial 

polyesters and the acid numbers were all below 1%, so there was only a small hydroxyl 

concentration to be freed from association with the carbonyl groups of the acid ends. 

The correlation between acid number and the absorbance at the hydroxyl overtone region 

was then studied after the addition of CHCI3. An excellent inverse correlation between 

the acid number and absorbance at 2028-2050 nm was noted. This confirmed the above 

point that the method is able to detect the additional hydroxyl groups that have been freed 

from association with carbonyl groups. However, this is not a satisfactory method for the 

routine measurement of the actual acid number of the polyester, as it depends on the 

relative amount of hydroxyl in the polyester and requires the measurement of the 

absorbance both before and after the addition of chloroform. 

A similar increase in the correlation between the absorbance at 2028-2050 tim and 

hyciroxyl number, from 0.997 to 0.999, was observed with a series of polyhexane adipate 

polyesters using the same technique. The net absorbance, at the carbonyl overtone at 

1937 rim to a base-point at 1886 rim, gave a poor correlation of 0.80 to the acid number. 

However, as these were all commercial polyesters with very low acid numbers the 

correlation was not expected to be very good, as the titrimetric method does not have the 

accuracy to give a better correlation. 
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The NW method was then used to determine the acid value and hydroxyl value of 

polyhexane adipate polyesters produced by the enzymatic process. The calibration graph 

shown in Figure 10.1 for the polyhexane adipates was used, however the values obtained 

for the hydroxyl number and acid value of polyesters prepared by the enzymatic process 

gave a very poor correlation with the actual values determined titrimetrically. Therefore 

the PLS method 3 for determining the hydroxyl and acid values of the hexane adipate 

polyesters was used on the esters prepared by enzymatic synthesis. However, no 

satisfactory correlation was found using this method. It was considered that the poor 

correlation was almost certainly due to the fact that the calibration curve had been 

developed using conventional Lewis acid catalysed polyesters as standards. An 

alternative calibration, using seven enzymatic esters as standards gave a very satisfactory 

correlation with unknowns, as shown in Table 10.7. 

Table 10.7 	Acid and hydroxyl values of enzymatic polyesters. 

Polyester Acid value, mg KOH g' Hydroxyl value, mg KOFI g' 

Actual Predicted Actual Predicted 

Polybutane adipate 2.0 2.0 31.0 39.0 

1. 3.75 2.5 36.0 34.0 

Polyhexane adipate 0.89 1.0 21.0 19.0 

1.54 1.0 14.0 16.0 

Near Infrared spectroscopy is extremely sensitive to differences between standards and 

the samples being analysed. It does not, however, shine any light on what the diflërences 

between the samples may be. In the case of the enzymatic polyesters the difference could 

be due to the unique character of the enzymatic esters, or to the fact that they were of 

much higher molecular weight and thus much lower hydroxyl number than the standards 
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used to prepare the calibration curve. The lower hydroxyl numbers being outside of the 

lower end of the linear calibration for method 3. 

Polyesters prepared by the enzymatic process had been examined using Maldi-Tof 

spectrometiy.' 7  It was considered that one of the reasons for the different properties of 

the enzymatic polyesters was the near absence of carboxyl groups on the ends of the 

higher molecular weight polyesters. It was decided to look at the enzymatic polyesters 

using 13C NMR spectroscopy and to compare the spectra with similar polyesters prepared 

by the conventional process in an effort to confirm this hypothesis. 

A preliminary examination of the 13C NMR spectra of polyhexane adipate polyesters 

prepared by the conventional process and enzymatic process showed little difference. 

Therefore, it was decided to obtain an extended Fourier Transform by using 90,000 scans 

with a relaxation time of 1.0 second for each polyester over a 2 day period. The 13C 

spectra obtained are shown in Figures 10.6 and 10.7. 

7 1W 

090 lU 'O 	0 150 140 130 O ia 00 '00 90 •0 70 90 50 40 70 fl 10 	0 	• 

Figure 10.6 13C NFvLR spectrum of conventional Dolyhexane adipate. 
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Figure 10.7 13 C NMR snectrum of enzymatic polyhexane adipate 

A superficial examination of these spectra shows no difference, however a close 

examination of the region near the peak at 8 173 ppm reveals a small peak just down field 

of the main peak in the spectrum of the conventional polyester, which is absent in the 

spectrum of the enzymatic polyester. This region of the two spectra is expanded in 

Figures 10.8 and 10.9. 

176.0 	173. 	i75.0 	174.1. 	 7L 	23. 	 7?.5 	72.3 	n;e. 

Figure 10.8 Expansion of the 13C NMR spectrum of conventional polyhexane adipate. 
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The large cropped peak is the main carbonyl shift at 8 173.7 ppm immediately downfield 

is the much smaller, but nevertheless distinct peak with a shift at 8 175.4 ppm. This peak 

is due to the shift of the carbonyl carbon in a terminal carboxyl group. When the 

spectrum of the enzymatic polyester was examined in detail the small peak at 6 175.4 

ppm could not be seen, therefore the accumulation was extended to 178,000 scans. 

However, even after this length of time the shift due to the carbonyl group of the terminal 

carboxyl could not be seen (see Figure 10.9). 

U 	ITh.b 	175€ 	1J4.t 	:,c. 	tH.t, 	 1I:.1 	 twa. 

Figure 10.9 Expansion of the 13C NMR spectrum of enzymatic polvhexane adinate. 

Exanimtion of the expanded spectrum shows the absence of the shift due to the carbonyl 

in a terminal carboxyl group. Therefore the conclusion is that the essential diflirence 

between the polyesters made by the conventional and enzymatic processes is the virtual 

absence of terminal acid groups in the enzymatic esters. it is proposed that the effect is 

due to the lack of transesterification in the high molecular weight enzymatic polyesters. 

The differences between enzymatic and conventional polyesters of the same chemical 

composition have been exploited commercially. However, the reasons for the difibrence 
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in physical properties between enzymatic and conventional polyesters has been studied, 

but not explained) 8 ' In an effort to understand the differences and to relate these to 

composition, the crystallisation of two polyhexane adipate and two polyhexane 

dodecandioate polyesters were studied using a hot stage microscope. The results are 

shown in Table 10.8. 

Table 10.8 	Hot stage microscopy of enzymatic and conventional polyesters. 

Polyester OH Value 
mg KOH g' 

Cooling rate 
0C 

Melting point 
°C 

Crystallisation 
Temperature 

PHA Enz. 12.0 0.1 63.0 54.0 

PFIAConv. 12.0 0.1 62.0 55.0 

PHA Enz. 12.0 0.5 59.0 48.0 

PHA Cony. 12.0 0.5 59.0 48.0 

PHA Enz. 30.0 2.0 56.5 46.7 

PHA Cony. 30.0 2.0 57.7 47.0 

PUDD Enz. 30.0 2.0 74.5 64.5 

PHDD Cony. 30.0 2.0 717 63.7 

As may be seen from these results, the actual differences in melting point and 

crystallisation temperature between the enzymatic and conventional polyesters are 

negligible. However, the video recordings of the crystal]isation process show significant 

differences in the crystallisation process for each polyester. A summary of the results is 

given in Table 10.9. 
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Table 10.9 	Crystallisation of enzymatic and conventional polyhexane adipate (PHA) 

and polyhexane dodecandioate (PIIDD) polyesters. 

Polyester OH valueS  Cooling rate Observation 

PHA Enz 12.0 0.1 Small sausage shaped crystals form, quickly 
and regularly. 

PHA Cony 12.0 0.1 Large irregular sausage shapes form over a 
longer period. 

PHA Enz 12.0 0.5 Very even small crystals formed evenly. 

PHA Cony 12.0 0.5 Much slower forming bead like crystals. 

PHA Enz 30.0 2.0 Small sausage shape crystals form very 
evenly over the stage with time. 

PHA Cony 30.0 2.0 Large sausage shapes form erratically and 
merge to form star like clusters. 

PHDD Enz 30.0 2.0 Very even distribution and growth of masses 
of small sphaerulites. 

PHDD Cony 30.0 2.0 Long needle like crystals form and grow 
quickly to form star like clusters. 

* mg KOH g' 

In an effort to identif' the cause of the observed differences in crystallisation behaviour, 

the concentration of nucleating sites was estimated over a 10 x 10cm square marked on 

the TV screen. It is difficult to be precise, but there is a clear indication that there are 

more nucleating sites in the enzymatic polyesters. This would explain the consistent 

observation that the crystallisation of the enzymatic polyesters is more regular and starts 

with many more small crystals than the conventional polyester. 

Why the enzymatic ester should have more nucleating sites is diflicult to explain. The 

narrower molecular weight distribution of the enzymatic polyesters may be the 

explanation. The 13C NMR spectrum has shown that the polyester has virtually no acid 
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terminated chains, yet the material has an acid value. This leads to the conclusion that the 

residual acid is present as monomer or low molecular weight oligomers. These materials 

may be insoluble in the high molecular weight polyester and thus act as nucleating agents. 

A more mundane explanation may be that conventional polyesters are made using dibutyl 

tin dilaurate as catalyst and this is soluble in the polyester. However the Candida 

antarctica lipase B protein is not soluble in the polyester and this may be acting as a 

nucleating agent. 
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11 	Conclusions 

Both Near Infrared spectroscopy and Thermogravimetric analysis have been shown to 

have utility in following the lipase catalysed synthesis of polyesters. From the results of 

the determination of the reaction kinetics with different acyl substrates it appears that 

there is a direct relationship between the C logP of the acyl substrate and the reaction rate, 

however this appears to be more an effect of chain length than polarity of the substrate. 

The optimum chain length of the dicarboxylic acid used in the synthesis of the polyesters 

includes both CS and C6, i.e. the glutaric and adipic acids. The longer and shorter chain 

fatty acids being much slower to react. As stated by other authors, 58  the acyl binding site 

is not that selective as to the form of the acylating substrate, however, it has been found 

that substitution in the 2-position appears to interfere with the hydrogen bonding that 

stabilises the tetrahedral intermediate: the I -carboxyl group of 2-oxoadipic acid being 

quite un-reactive in the acylation of the enzyme. 

The polarity, as measured by C logP, of the reaction medium, i.e. the diol in all solvent 

free syntheses, has a significant effect on the reaction rate. The more polar diols such as 

polytetramethylene ether glycol and polyethyleneglycol giving significant increases in 

reaction rate compared to the more hydrophobic diols. It is hypothesised that this is due 

to the more effective desolvation of the water product of the acylation step and the more 

rapid mass transport of the water from the active site by the more hydrophilic medium. 

It has been shown both by kinetic and calorimetric techniques that, in accordance with 

theory, the carbonyl of an ester is more susceptible to the nucleophilic attack of the serine 

of the catalytic triad. This is the reason why the polyester is susceptible to 

transesterification with both monomeric diol and with itself. It has been shown by studies 

using both Gel Permeation Chromatography and 2H Nuclear Magnetic Resonance 
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spectroscopy that the only media in which the developing polyester is not transesterified 

are those in which it is not very soluble, in particular the diols used in the syntheses. The 

observation that it is only the ester groups near to the ends of the polyester chain that are 

susceptible to transesterification when dispersed in the diol medium, leads to the 

conclusion that the viscera] ester carbonyls are not available to the enzyme. This is 

probably due to the polyester molecule having a coiled conformation in the diol whereas 

in solution it is not coiled and any ester group is available for transesterification. 

The secondary structure of Candida antarctica lipase B in aqueous buffer at pH 5.0-7.0 is 

very close to the natural structure determined by X-ray crystallography. However, at the 

extremes of pH 4.0 and 9.2 there are significant diflèrences in the a-helix content. The 

observed reduction in activity at the extremes of pH is undoubtedly due to the inhibition 

of the ionisation of the key residues of the catalytic triad; histidine, with a plC, of 6.0 and 

aspartic acid with a pK a  of 3.5. The extremes of pH will also affect the formation of the 

hydrogen bonds stabilising the tetrahedral intermediates. The loss of activity therefore 

would be expected to disappear once the enzyme returned to its optimum pH of 7.0. 

However, some loss of activity is permanent, this can be seen when one recycles the 

bound enzyme; it is never as active alter the initial reaction with adipic acid. This 

permanent loss of activity is almost certainly due to the loss of helix seen at the extremes 

of pH. The short helix aS forms part of the oxyanion hole, if any part of this unfolds, or 

changes in any way, the (ilu 106 and Thr 40 residues will not be in the correct position to 

form the hydrogen bonds with the tetrahedral intermediate. The Ser 105 of the active site 

has been shown by the induced circular dichroism effects to be very close to the helix, ct4. 

If the serine is close enough to the helix to give induced circular dichroism on binding, 

then it is highly likely that its position or orientation will be disturbed if that helix 

unfolds. 
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In solvents, there are some very interesting effects. In hexane there appears to be little 

difference in the secondary structure of either a-chymotrypsin or Candida antarctica 

lipase B to that obtained in aqueous buffer. This confirms the work of Yennawar who 

also found that a-chymotrypsin did not change structure when dissolved in hexane.' 67  

The low result for a-helix in toluene is an enigma and is most likely to be due to the 

problems of obtaining a CD spectrum in such a strong absorber of UV light. All the 

experiments were very noisy because of the very low levels of light passing through the 

sample, however, when the spectra from the first ten scans were averaged and compared 

to the average of the last ten scans, no significant difference was seen. Therefore, it is 

highly unlikely that the sample has deteriorated over time due either to radiation or 

temperature effects. The most likely explanation being that under these conditions, the 

usual UV absorbance of the a-helix is shifted towards the far ultra violet, thus giving an 

artificially low result for the amount of helix in the protein. 

The low a-helix results in I ,4-butanediol are more surprising. Diols such as pentanediol 

are used in protein folding experiments, where they are added to the aqueous medium to 

enhance the formation of the correct protein structure. It seems strange that when used as 

the total medium they cause the unfolding of a-helix. When one examines the secondary 

structure of Candida antarctica lipase B it may be seen that there are several large helices 

away from the active site. Longer helices tend to be meta-stable and therefore are more 

susceptible to unfolding. If the remote helices partly unfold without disturbing the 

secondary structure essential to the activity of the enzyme then there would be no 

observable difference in the behaviour of the enzyme in the differing media. 

Molecular modelling has shown that the active site of Candida Antarctica lipase B is not 

that specific to the shape of the substrate. Large substrates such as macrolactones are 
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easily accommodated into the active site. Modelling has confirmed the theory that the 

higher molecular weight polyesters remain in association with the protein molecule for a 

substantial time outside the active site; there being a significant number of hydrogen 

bonding possibilities between the ester carbonyl groups and polar residues on the surface 

of the enzyme. This may well explain the observation made in the 2H NMR studies of the 

transesterification reaction that it is the terminal and near terminal ester bonds that are 

most likely to be transesterified. 

A difference between enzymatic polyesters and the homologous esters synthesised using 

conventional catalysis has been confirmed by both Near Infrared spectroscopy and hot 

stage microscopy. Examination of the polyesters using 13C NMR spectroscopy with a 

large number of scans to give good signal to noise ratios, has proven that the enzymatic 

polyesters lack any significant carboxyl termination compared to those synthesised using 

conventional catalysis. This is probably due to the fact that we will always have an acyl 

enzyme present which will react with an alcohol or water, with very little water present 

the alcohol will be the predominant nucleophile. The alcohol will either be residual diol 

or the hydroxyl end of a polyester, whichever, the polyester chain will always be 

hydroxyl terminated. 
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12 	Experimental 

All reagents were used as supplied without fUrther purification. The proteases, subtilisin 

Carlsberg, chymotrypsin, papain and protease N were purchased from Aldrich. Candida 

antarctica lipase B was a gift from Novo A/S. Chirazyme L-2 lyo was a gift from Roche 

Diagnostics GmbH. Novozyme 435 (ex Novo A/S) was supplied by Baxenden 

Chemicals Ltd. 

The 6-carboxy- 11 -hydroxy-7-oxaundecanoic acid (AR) and the di-(4'-hydroxybutyl) 

1 ,6-hexanedioate (BAR) were synthesised by Paul Harffey at the University of Liverpool. 

All NMR spectra were obtained on a Bniker DPX250 spectrometer and coupling 

constants are in Hz. The FTIR spectra were recorded using the Mattson Infinity I FTIR 

spectrometer. Gel permeation chromatography was done using a Waters HPLC with a 

510 pump and a Waters 410 refractive index detector together with a Waters 717 

autosampler. The column used was a Polymer Labs, I 000A polystyrene copolymer 

packing. Melting points were obtained on a Gallenkamp melting point apparatus and are 

uncorrected. 

11.1 Thermogravimetric analysis (1GM. 

TGA measurements were made on the Shimadzu TA 50, which has a sensitivity of ± I lig 

and is capable of controlling the reaction pan at ±1°C in the temperature range relevant to 

the enzyme studies. The water of reaction is removed by a constant flow of SOniI min 1  of 

dry nitrogen over the sample. The surface area to volume ration was kept constant by 

ensuring that the sample in the pan was between 20-251il. 
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It was found that the raw materials contained varying amounts of water; therefore, they 

were dried and stored under anhydrous conditions. The adipic acid was stored in a 

desiccator over phosphorus pentoxide; the diols I ,4-butanediol and I ,6-hexanediol were 

heated to 100°C for 24 hours and then stored in a sealed container over molecular sieves 

at 45°C. It was found subsequently that certain materials such as acid solutions in 

I ,4-butanediol, AR and BAR were quite hygroscopic; therefore, a further drying cycle 

was carried out in the instrument under a flow of dry nitrogen. A solution of the acid in 

diol was prepared at an accurately known concentration and approximately 251.tl was 

placed in the sample pan and weighed accurately. 

After the sample had been weighed into the TGA pan the instrument was closed and the 

sample heated to 110°C for l5n -mn under a flow of SOmI miii' dry nitrogen. The sample 

was then cooled under nitrogen and when the temperature was below 40°C, the enzyme 

was added. In all cases except the variable temperature studies, the reactions were carried 

out at 60°C. The standard heating rate for all experiments was 20°C mm 1  to 50°C, 7°C 

miii' to 58°C and finally 1°C miii' to 60°C 

This procedure was followed for all experiments except for the studies on levulinic and 

acetylvaleric acids as these were found to be too volatile and too much substrate was lost. 

These acids were therefore dried over phosphorous pentoxide only. 

In all experiments the points shown are the results of single observations, that is n1. 

12.2 Eiyme Dreparation. 

The enzyme needs to be at constant water content in order to maintain a steady state of 

hydration of the enzyme throughout all the experiments, with a minimum of excess water. 

In order to condition the enzyme it was stored over a saturated solution of lithium 
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chloride in a desiccator for 48 hours. A saturated solution of lithium chloride has a 

thermodynamic water activity Wa of 0.113, which gives a relative humidity in the head 

space of 11.3 %. Unlike other lipases, Candida antarctica lipase B is not supposed to be 

that sensitive to variations in the water content of the substrates, however for the TGA 

experiments we required a constant water content. After storage over the saturated 

solution of lithium chloride, the enzyme was kept in a sealed container at 4°C. 

12.3 Near Inifa Red Analysis. 

Spectra were recorded on the Mattson Infinity I dual NIRIFTIR instrument. The 

instrument was fitted with a Peltier cell to heat the sample rapidly and to maintain the 

6mm cuvette at a temperature of ±0.5°C. 

Most polyesters of the type studied were liquid at room temperature or melted between 

40°-55°C; therefore, we chose to carry out all the measurements at 60°C. The NIR 

spectrum of any material is extremely temperature dependent; therefore, the temperatures 

of the samples in the cuvettes were maintained at 60°±0.5°C. As many of the samples 

were very viscous at 60°C, it was quite difficult to get the samples into the cuvette 

without incorporating air into the specimen. The best method for liquid polymers was to 

heat the polymer and cuvette to 100°C, fill the cuvette and maintain at this temperature 

for 15min to allow the sample to degas. Solid polymers were put into the cuvette as 

solids and then stored at 100°C for 15 minutes to allow the air to come out of the sample. 

In both cases, the cuvettes were cooled to approximately 60°C before putting into the 

Peltier cell and then left for Snt to stabilise at 60°C before taking the spectrum. 
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12.4 Circular dichroism spectroscopy 

All conventional circular dichroism spectra were obtained on the Jasco J715 

spectropolarimeter at Warwick University using a protein concentration of 3mg m1 4 . In 

the case of the Chirazyme, where the exact protein concentration was not known, an 

estimate was made using the UV absorbance at 280nm against a pre-prepared calibration 

graph of protein content against UV absorbance at 280nm. 

12.5 Reactions for the synthesis of novel polyesters. 

12.5.1 Synthesis of di(hydroxyethyl)hexamethylene bis-carbamate. 

WOOAN 	 NyO H 

Ethylene carbonate (0.32moles, 28.23g) was added to a flask and heated to 50°C. 

Hexamethylene diaznine (0.069moles, 8.0g) was added with stirring. An exotherm to 

85°C followed and after 40 minutes the mixture solidified. Toluene (25g) was added as 

an adjuvant and the temperature increased to 60°C. The remainder of the hexamethylene 

diamine (0.09 moles, I 0.42g) was added, producing an exotherm to 85°C. The mixture 

again solidified and hot toluene (I 5g) was added to triturate. The crystalline product was 

filtered off on cooling. The product was recrystallised twice from ethanol and dried to 

give the bis-carbamate as white crystals. (28g. 60%), m.p. 94°C. 81H  (CDCI3, 250MHz), 

ppm 1.19 (41-1, bm, -(NH-CHrCI -12-Cjjz)z), 1.60 (4H, bm, -(NH-CFI2-Cth-CH2)2), 3.26 

(4H, bm, -(NH.Cflz-CH2-CH2)2),  3.74 (4H, bm, -O-CHrCIIz-OH), 4.18 (4H, bm, -0- 
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Cjj2-C1-12-OH), 5.24 (214. bin, -(NH-CH2-CFI2-CH2)2). 513C (CDCI3, 63M1-lz), ppm 26.10 

(t, NH-CH2-CH2-CH2)2), 29.12 (t, -(NH-CI-12-C1-12-CFI2)2), 40.70 (t, -(NTI-CH2-CH2-

CH2)2), 61.76 (t, -0-CH2-CH2-OH), 66.64 (t, -0-CH2-CH2-OH), 157.30 (s, -0-CO-N-). 

12.52 Synthesis of a polyester containing di(hydroxyethyl)hexamethylene bic-

carbamate. 

The bis-carbarriate synthesised in the above reaction was used to make a polyester 

containing urethane groups. 

Dihydroxyethyl hexamethylene bis-carbamate (0.0248 moles, 7.25g) and I ,4-butanediol 

(0.252 moles, 22.72g) were placed in a flask and heated to 90°C under an atmosphere of 

nitrogen. Adipic acid (0.055moles, 8g) was added and stirred until dissolved. The 

reactants were cooled to 60°C and Novozyme 435 (0.7g) was added. The pressure was 

reduced to 400mmJ-lg after 2 hours further adipic acid (0.17 moles, 25g) were added and 

left for 16 hours. The remaining adipic acid (0.049 moles, 7.1 7g) was added and the 

pressure was reduced to lOOmmHg and left for 24 hours. A further amount of Novozyme 

435 (0.5g) was added. The reaction temperature was raised to 70°C and the pressure 

reduced to SOmmJ-lg for a further 24 hours. The reaction was stopped and the polyester 

product sampled. The molecular weight determined by GPC, M. was 9350, M 5345 and 

the dispersity 1.75. 

12.5.3 Synthesis of di(hydroxyethyl)ethane bic-carbamate. 
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Ethylene carbonate (1.21 6moles, I 07g) was added to a flask and heated to 50°C. 

Ethylene dianiine (0.604moles, 36.26g) was added via a dropping funnel such that the 

exotherm maintained the temperature at approximately 60°C. After the initial exothenn 

was observed toluene (40g) was added to reduce the viscosity. When all the ethylene 

diamine had been added the reaction was maintained at 65°C for 4 hours. The white 

crystalline bis-carbamate product was recrystallised from ethanol, washed and dried 

(86.5g, 61%), m.p. 93°C. 

SIH (CDCI3, 250M1-Iz), ppm 3.22 (4H, q if the molecule is symmetrical then this should be 

a d not q!!, 33 6.51-12, (-NH-Cth-)2), 3.82 (4H, bm, (-O-CH2-Cf2-OH)z), 4.17 (4H, t, 

8.75H2, (-O-C-CH2-OH)2), 5.28 (2H, bm, (-O-CH2-CH2-0th2), 7.35 (2H, bm, (-CO-

NH). 8 1 c (CDCI3 63MHz), ppm 40.70 (t, cth -NCO), 61.66 (t, -0-CH2-CH2-OH), 

66.68 (t, -0-C112-C1-12-OH), 157.21 (s, -C-N-cO-). 

12.5.4 Synthesis of a polyester containing di(hydroxyethyl)ethane bic-carbamate. 

Di(hydroxyethyl)ethane bis-carbamate (0.064 moles, I 5.Og) was dissolved in 

1,4-butanediol (0.25 moles, 22.5g) at 70°C and adipic acid (0.034 moles, 5g) was added 

and stirred until dissolved. Further adipic acid (0.034 moles, 5g) was added followed by 

Novozyme 435 (0.78g). The reaction was held for 22 hours at 60°C and a pressure of 

200mmHg, further portions of adipic acid (0.068 moles, lOg) and (0.11 moles, 16.5g) 

being added after 2 and 4 hours respectively. A further portion of Novozyme 435 (0.71 g) 

was added, the pressure reduced to 50mrnHg for 24 hours and then to I OmmHg for the 

final 8 hours. The product was an extremely water soluble polyester of molecular weight 

Mw  4500 and a dispersity of 2.4. 
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12.5.5 Synthesis of di(bydroxypropyl)isophorone bfr-carbamate. 

H-0 0 N3
Y 0H  

Lit 

Propylene carbonate (0.5 moles, 51 g) was heated to 50°C and isophorone diamine (0.059 

moles, I 0.Og) added under nitrogen, no exotherm being observed. The remainder of the 

isophorone diamine (0.191 moles, 32.5g) was added gradually. The reactants were heated 

to 80°C, when a slight exotherm was observed. The reaction was left overnight at 80°C. 

Analysis by NMR spectroscopy and GPC indicated that the reaction had gone to 

completion. The bis-carbamate was a straw coloured liquid (93.5g, 100%). The 'I-I NMR 

spectrum of isophorone diamine is quite complex because of the 4 chiral centres, 4 ABX 

systems and 3 AB systems in the molecule. However, the hydrogen of the primary amine 

in the starting material gives a very clear peak at a shift of ö 2.09 ppm and an AB system 

at 3 2.25 and 2.50 ppm and these peaks had completely disappeared from the 'H NMR 

spectrum of the bis-carbamate product. 

12.5.6 Synthesis of a polyester containing di(hydroxypropyl)isophorone 

bLc-ca rb a in a t e. 

Dihydroxypropylisophorone bis-carbamate (0.061 moles, 22.85g) was dissolved in 

1 ,4-butanediol (0.454 moles, 40g) at a temperature of 70°C. Adipic acid (0.21 moles, 

30.1 5g) was added and after dissolution the reactants were cooled to 60°C and Novozyme 

435 (2.5g) added. The mixture was heated at 60°C at 400mmI-lg for 4 hours, when the 

remaining adipic acid (0.296 moles, 43.66g) was added. The temperature was maintained 
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at 60°C and the pressure at 200mmHg for 24 hours. The pressure was then reduced to 

lQmmFlg for a fi.irther 24 hours. The product (ll7g, 85.5%), a pale straw coloured resin, 

was filtered and analysed by GPC. The molecular weight M. was found to be 6000 

Daltons with a dispersity of 2.14. 

12.5.7 Synthesis of bk-Ihydroxyethyl(3-carbamatopropyl)Jpolytetrahydrofuran 

0 

H_ooAN 	o_ 0T Ny0o_11 
j3-I 

0 

Ethylene carbonate (0.686 moles, 60.37g) was heated to 60°C and bis-(3-

aminopropyl)polytetrahydrofijran (0.343 moles, 120.1 g) added, an immediate exotherm to 

90°C was observed. The reaction mixture was cooled to 60°C and maintained at this 

temperature for 16 hours. The product was a reddish brown viscous liquid (180g. 99.5%). 

Analysis by 'H NMR spectroscopy showed that all the ethylene carbonate had been 

consumed with only a trace of starting amine remaining 

81,, (CDCI3, 250MHz), ppm, of bis-(3-aminopropyl)PTHF 1.61 (4H, bm, -0-CH2-CF12-

CH2-NH2), 1.64 (-16H, t, 3J 8Hz -0-{C1-12-Cf12-Cjjz-CH2-01tJ, 2.75 (411, bm,-0-CH2-

CH2-Cth-NH2), 3.42 (-1 6H, t, 3J 8Hz, -O-[Cth-CH2-CH2-Cth-0J), 3.47 (41-1, bm, 

-0-CH2-CH2-CH2-Nth). 

31 H (CDCI3, 250MHz), ppm, of the bis-carbamate 1.42 (4H, bm, -0-CH2-Cth-CH2-NH- 

CO), 1.51 (-16H, bm, -0-[CH2-Cth-042-CH2-01), 1.61 (41-1, bm, -0-CH2-CH2-CH2- 

NH), 3.45 (-16H, t, 3J 8H2, -0-[Cf12-CH2-CH2-Cth-0]0, 3.32 (41-1, q, 3 J 6.7Hz, (-Cth- 
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NH-CO-0)2), 3.79 (4H, bm, (-O-CH2-Cth-OH)2), 4.19 (4H, bin, (-O-CjfrCH2-OH)2), 

5.28 (2H, s, -CH2-CH2-OH), 5.52 (2H, bm, (-CH2-NWCO-0)2). 

12.5.8 Synthesis of a polyester containing bLs-[hydroxyethyl(3-carbamatopropyl)J-

polytetrahydrofuran units. 

ins- [Hydroxyethyl(3-carbamatopropyl)jpolytetrahydrofljran (0.153 moles, 70.32g) was 

heated to 60°C and Novozyme 435 (0.83g) added. Adipic acid (0.153 moles, 22.36g) was 

added in 4 equal amounts over a period of 4 hours. The temperature was maintained at 

60°C and the pressure at SOmmHg for 12 hours and then reduced to lOmmHg for 12 

hours. The pressure was then reduced to 2mmHg for the final 12 hours. The polyester 

formed (how can you get 87.12g. 94%) had a molecular weight by GPC of Mw 6500 

Daltons and a dispersity of 2. The acid number of the polyester was 5.0mg KOH j'. 

12.5.9 Synthesis of di(hydroxyethyl)polyoxypropylene bic-carbamate. 

Ethylene carbonate (0.466moles, 41g) was heated to 60°C and polyoxypropyleneamine 

D230 (0.233 moles, 53.6g) added in three portions over 3 hours; a slight exothenn being 

observed after each addition. The reaction was left at 80°C under nitrogen for 16 hours. 

TLC showed only a single product (94g, 99.4%). The 'H NMR spectrum was complex 

and gave no usefifl information at 250MHz, however, the primary amine shift at 2.55ppm 

was barely visible, this indicated only a trace of residual free amine. 



12.5.10 Synthesis of a polyester containing di(hydroxyethyl)polyoxypropylene Mc-

carbamate units. 

Dlhydroxyethyl polyoxypropylene bis-carbaniate (0.075 moles, 30g) and I ,4-butanediol 

(0.074 moles, 6.7g) were heated to 60°C. Novozyme 435 (0.83g) was added and adipic 

acid (0.149 moles, 21.6g) was added in three equal amounts over three hours whilst a 

pressure of I OOmmHg was applied. The pressure was maintained at I OOmmHg for a 

further 48 hours to give the product as a viscous brown resin (52g. 98%) of molecular 

weight Mw  6750 Daltons. 

12.5.11 One pot process for the synthesis of polyesters containing urethane groups. 

Ethylene carbonate (0.50 moles, 44.32g) and 1,4-butanediol (0.44 moles, 40g) were 

added to a reactor and heated to 60°C. 1 ,6-Hexamethylenediamine (0.25 moles, 29g) was 

added over 1 hour making sure the exotherm did not exceed 88°C. The reaction was 

maintained at 60°C for 16 hours. The product was a clear liquid at 60°C, but crystallises 

rapidly on cooling to a white waxy solid. GPC showed that the reaction had gone to 

completion with only the peaks of the diol and the bis-carbamate remaining; the 

composition being 64.7% W/  bis-carbamate and 35.3% W/  1,4-butanediol. A portion of 

this mixture (25g) was heated at 100°C with adipic acid (0.071 moles, 10.42g) until the 

acid had dissolved. The reactants were cooled to 60°C and Novozyme 435 (1.04g) added 

and the pressure maintained at 200mmHg. The remaining adipic acid (0.102 moles, 

14.86g) was added in three equal amounts over 5 hours, the temperature being maintained 

at 60°C and the pressure 200mmHg for a further 11 hours. The pressure was then 

reduced to 80mmHg for 8 hours and finally to 2mmllg for 24 hours. The resulting 
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polyester (43g, 97.5%) had a molecular weight M. of 9350 Daltons and a dispersity of 

1.75. 

12.5.12 Synthesis of di-I2-(2-isopropyI-1,3-oxazoIidin-3-yI)ethyl hexane-16-dioate. 

2-(2-iso-Propyl-1,3-oxazolidin-3-yI)ethanol (0.38 moles, 60g) and dimethyl adipate (0.19 

moles, 33.03g) were heated to 60°C and Novozyme 435 (2.02g) added. The reaction was 

maintained at a temperature of 60°C and a pressure of 400mmHg for 8 hours. The 

pressure was then reduced to I85mmHg for 16 hours then further reduced to lOQmmHg 

for 24 hours and finally reduced to lOmmHg for 24 hours. Evolved methanol (1 lg) was 

collected in a liquid nitrogen trap. Analysis by GCMS showed less than 0.1% of un-

reacted dimethyl adipate remained. GPC showed a single peak for the white crystalline 

product (86.2g, 99%). C11H40N206 requires C 61.66%, H 9.41%, N 6.54%, found C 

60.83%, H 9.71%, N 6.54% for the crude product without recrystallisation. &H (CDCh, 

250MHz), ppm, 0.93 (1211, bin, (-CH(Cth)2)2), 1.66 (4H, bm, -CO-CH2-C1j2-Cth-CH2-

CO-), 2.65 (4H, bm, -00-Cff-CH2-CH2-flf-00-), 3.20 (2H, bm, (-C-CH(CH3)2)2), 3.81 

(411, bm, (-CH2-C-O) 2), 3.83 (411, bin, (-N-Cth-CH2)2), 3.91 (411, bin, (-N-Cth-CH2-

0)2), 4.15 (411, bm, (-CH2-Cfl2-O-CO)2), 4.99 (2H, s, (-O-CH-N)2. 

244 



References 

I 	"Encyclopaedia of Chemical Technology", 3rd  Ed., G.R. Davis and E.S. Hill, Kirk- 

Othmer, 18, 534-535 (1982). 

2 	"Encyclopaedia of Chemical Technology", 3rd  Ed, G.R. Davis and E.S. Hill, Kirk- 

Othmer, 18, 549-563 (1982). 

"Polymer synthesis", S.R. SandIer and W. Karo, Organic Synthesis, 29, 196-200 

(1974). 

' 	"Encyclopaedia of Chemical Technology", 3 ," Ed, G.R. Davis and E.S. Hill, Kirk- 

Othmer, 23, 576-598 (1983). 

"High Performance Polymers", R.B. Seymour and U.S. Kirshenbaum, Elsevier, 

409-410 (1986). 

6 	"Encyclopaedia of Chemical Technology", 3"' Ed, G.R. Davis and E.S. Hill, Kirk- 

Othmer, 18, 535-536 (1982). 

"Polyesterification reactions of Adipic acid based Polyesters", W.L. Chang and T. 

Karalis,J. Poly. ScL, PtA, 31, 493-504 (1993). 

8 	"Synthesis of high molecular weight resins", W.H. Carothers, G.L. Dorough and 

J.A. Asvth, J. Am. Chem. Soc., 52, 3292-3297 (1930). 

' 	"Novel polyesters", J.R. Winfield and J.T. Dickson, Brit. Pat., 578,079 (1940). 

245 



"A new approach to preparative enzyme synthesis", A.M. Klibanov, G.P. Samokhin 

and l.V. Berezin, Biotech. Bioeng., 19, 1351-1361 (1977). 

It 	"Comparison of diflèrent strategies for lipase catalysed resolution of racemic acids 

and alcohols", B. Cambou and A.M. Klibanov, Biotech. Bioeng., 26, 1449-1454 

(1984). 

U 	"Biocatalytic synthesis of polymers, preparation of AA-BB polyesters by lipase 

catalysed transesterification in low polarity organic solvents", J.S. Wallace and C.J. 

Morrow, J. Poly. Sd, Pt A, 27, 3271-3284 (1989). 

"Enzymic polymerisation of an unactivated diol/diacid system", F. Binns, S.M. 

Roberts, A. Taylor and C.F. Williams, .1 Chem. Soc. Perkin Trans. 1, 899-904 

(1993). 

' 	"Enzymatic synthesis", A. Taylor and F. Binns, UK Patent 2,286,401 (1993). 

' 	"Moisture curing hot melt adhesives", A. Taylor and J. Waugh, UK Patent WO 

97140083 (1997). 

16 	"Studies of lipase-catalysed polyesterification of an unactivated diacid/diol system", 

F. Birms, P. Harffey, S.M. Roberts and A. Taylor, J. Polym. Sd., Pt A, 36, 2069- 

2080 (1998). 

"Studies leading to the large scale synthesis of polyesters using enzymes", F. Binns, 

P. Harifey, S.M. Roberts and A. Taylor, J. Chem. Soc. Perkin Trans. 1, 267 1-2676 

(1999). 

246 



is 	"How do enzymes work?", L. Pauling, C/tern. Eng. News, 24, 1375-1381 (1946). 

"Role of a buried acid group in the mechaitm of action of Chymotrypsin", D.M. 

Blow, J.J. Britkoft and B.S. Hartley, Nature, 221, 337-341 (1969). 

20 	"A serine protease triad forms the catalytic centre of a triacylglycerol lipase", L. 

Brady, A.M. Brzozowski, Z.S. Derewanda, E. Dodson, G. Dodson, J.P. 

Turkenburg, B.L. Christiansen, B. Huge-Jensen, L. Norskov and U. Menge, 

Nature, 343, 767-770 (1990). 

21 	"Comparison of experimental binding data and theoretical models in proteins 

containing sub-units", D.E. Koshland, G. Nemethy and D. Filmer, Biochern., 5, 

365-368 (1965). 

22 	"Calculations of enzymatic reactions: calculations of pKa, proton transfer reactions 

and general acid catalysis in enzymes", A.W. Warshel, Biochem., 20, 3167-3177 

(1981). 

23 	"Reaction energetics of a mutant triose phosphate isomerase in which active site 

glutamate has been changed to aspartate", R.T. Raines, E.L. Sutton, D.R. Strauss 

and J.R. Knowles, Biochern., 25, 7142-7154 (1986). 

24 	"Mechanisms of thiamine catalysed reactions", J. Crosby, R. Stone and G.E. 

Reinhard,.J. Am. Chem. Soc., 92, 2891-2900 (1970). 

25 	"Alternative view of enzyme reactions". M.J.S. Dewar and D.M. Storch, Proc. Nat. 

Acad. Sd, 82, 2225-2229 (1985). 

247 



26 	"Enzymes work by solvation substitution rather than by desolvation", A.W. 

Warshel, J. Aqvist and S. Creighton, Proc. Nat Acad. ScL, 86, 5820-5824 (1989). 

27 	"Entropic contributions to rate accelerations in enzymic and intramolecular 

reactions", M.I. Page and W.P. Jencks, Proc. Nat Acad. ScL, 68, 1678-1683 (1971). 

28 	"Importance of orientation factors in enzymatic reactions", D.R. Storm and D.E. 

Koshland, I Am. Chem. Soc., 94, 5805-5811(1972). 

29 	"Pertinent aspects of mechanism as determined with small molecules", T.C. Bruice, 

Ann. Rev. Biochem., 45, 331-373 (1976). 

30 	"Cooperativity in protein folding kinetics", K.A. Dill, K.M. Fiebig and U.S. Chan, 

Proc. Nat Acad. Sd., 90, 1942-1946 (1993). 

"Structure as basis for understanding interfacial properties of lipases", M. Cygler 

and J.D. Schrag, Meth. in EnzymoL, 284, 3-27 (1997). 

32 	"Inhibition of the pancreatic lipase by diethyl p-nitrophenyl phosphate", P. 

Desnuelle, L. Sarda and G. Ailhard, Biochim. Biophys. Ada, 37, 570-577 (1960). 

B 	"Influence of surface hydrophilic/hydrophobic balance on enzyme properties", 

M.A. Longo and D. Combes, I Biotech., 58, 2 1-32 (1997). 

N 	"Some factors in the interpretation of protein denaturation", W. Kauzmann, Adv. 

Protein Chem., 14, 1-63 (1959). 

"Relevance of dielectric constant and solvent hydrophobicity to the organic solvent 

effect in enzymology", P. Maurel, .1. BioL Chem., 253, 1677-1683 (1978). 

248 



36 	"Bindiig energy, specificity and enzymic catalysis the Circe effect", W.P. Jencks, 

Adv. EnzymoL, 43,219410 (1975). 

" 	"Dissection of the structure and activity of tyrosyl RNA synthetase by site directed 

mutagenesis", A. Fersht, Biochem., 26, 8031-8037 (1987). 

38 	"Orbital steering, entropy and rate acceleration", W.P. Jencks, Biochem. Biophys. 

Res. Comm., 57, 887-892 (1974). 

"Enzymes give strong binding to the transition state", R.A. Letter, S.T. Berkovic 

and B.G. Schultz, Science, 263, 659-666 (1991). 

40 	"Demonstration of the catalytic role of binding interactions in the enzymatic 

reaction", G.J. Narlikar and D. Herschlag, Biochem., 37, 9902-9911(1998). 

11 	"Introduction to Macromolecular Science", P. Munk, 448-450, J. Wiley, (1989). 

42 	"High resolution NMR study of the His-Asp hydrogen bond in chymotrypsin", G. 

Robillard,i. MoL BioL, 71, 507-510(1992). 

"A new concept for the mechanism of action of chymotrypsin, the role of the low 

barrier hydrogen bond", C.S. Cassidy J. Lin and P.A. Frey, Biochem., 36, 4576-

4584 (1997). 

"Protonation state dependence of hydrogen bond strengths and exchange rates in a 

serine protease catalytic triad", J.L. Markley and W.M. Westler, Biochem., 35, 

11092-11097(1996). 

249 



" 	"A low-barrier hydrogen bond in Subtilisin: 'F! and ' 5N NMR studies", C.J. 

[-lalkides, Y.Q. Wu and C.J. Murray, Biochem., 35, 15941-15948 (1996). 

46 	"The low barrier hydrogen bond in enzymatic catalysis", W.W. Cleland, P.A. Freyt, 

and J.A. Gent, .1 BioL Chem., 273, 25529-25532 (1998). 

'" 	"The nature of general base—acid catalysis in serine proteases", L. Polgar and M.L. 

Bender, Proc. Nat Acad. ScL, 64, 1335-1342 (1969). 

48 	,, 	 . . Cl 3 NMIR studies of the histidme residue in alpha-lytic protease. Implications for 

the catalytic mechanism of serine proteases", M.W. Flunkerpillar, S.H. Smailcombe, 

D.R. Whitaker and J.R. Richards, Biochem, 12, 4732-4743 (1973). 

"Direct determination of protonation state of aspartate 102 and histidine 57 in the 

tetrahedral intermediate of the serine proteases", A.A. Kossiakoff and R. Spencer, 

Biochem., 20, 6462-6474 (1981). 

50 	"Electrostatic basis of enzyme catalysis", G. Naray-Szabo, M. Fuxreiter and A. 

Warshel, Computational Approaches to Biochemical Activity, 23 7-293 (1997). 

' 	"The catalytic role of the aspartic acid in serine proteases", C.S. Craik, S. Roczniak, 

C. Longman and W.J. Rutter, Science, 237, 909-913 (1987). 

52 	"Dissecting the catalytic triad of a serine protease", P. Carter and J.A. Wells, 

Nature, 332, 564-568 (1988). 

"Unusual 'H NMR chemical shifts support (His) C'H-OC 1-I-bond: Proposal for 

reaction driven ring flip mechanism in serine protease catalysis," E.L. Ash, J.L. 

MI] 



Sudmeier, R.M. Day, M. Vincent, E.V. Torchilin, K.C. Haddad, E.M. Bradshaw, 

D.G. Sanford and W.W. Bachovkin, P.NA.S., 97(19), 1037 1-10376 (2000). 

"(His)C epsilon H —OC <hydrogen bond in the active sites of serine hydrolases", 

Z.S. Derewanda, U. Derewanda and P.M. Kobos, J. MoL Riot, 241, 83-93 (1994). 

ExPASy Database, Swiss Institute for Bioinformatics, Geneva4 (www.expasy.ch ./). 

"Grease pit chemistry", E.D. Rubin, Nat. Struct BioL, 1, 568-572 (1994). 

" 	"A model for interfacial activation in lipases from the structure of a lipase-inhibitor 

complex", A.M. Brzozowski, U. Derewanda, Z.S. Derewanda, G.G. Dodson, D.M. 

Lawson and S.A. Paktar, Nature, 221, 491-497 (1991). 

" 	"Anatomy of lipase binding sites: the scissile fatty acid binding site", J. Pleiss, M. 

Fischer and R.D. Schmid, Chemistry and Physics of Lipids, 93, 67-80 (1998). 

" 	"A structural basis for the chiral preferences of lipases", M. Cygler, P. Grochulski, 

J.D. Schrag, F. Bouthillier and A.K. Gupta, .1. Am. Chem. Soc., 116, 3180-3186 

(1994). 

60 	"Enzymatic catalysis and dynamics in low water environments", R. Afileck, Z.F. 

Xu, V. Suzawa, D.S. Clark and J.S. Dordick, Proc. Nail. Acad. ScL, 89, 1100-1104 

(1992). 

61 	"Flexibility of enzymes suspended in organic solvents probed by time resolved 

fluorescence anisotropy. Evidence that activity and enantioselectivity are directly 

251 



related to enzyme flexibility", J. Broos, A.J.W. Visser, W. Verboom, A. van Hock 

and D.N. Reinhoudt, I. Am. C/tern. Soc., 117, 12657-12663 (1995). 

62 	"Measuring enzyme hydration in non-polar organic solvents using NMR", M.C. 

Parker, B.D. Moore and A.J. Blacker, Biotech. and Bloeng., 46, 452-458 (1995). 

63 	"Multinuclear NMR study of enzyme hydration in an organic solvent", C.S. Lee, 

M.T. Ru, M. Flaake, J. Dordick and D.S. Clark, Biotech. and Bioeng., 57, 686-693 

(1998). 

64 	"Encyclopaedia of Chemical Technology", 3rd  Ed, R.J. Weiglos, Kirk-Othmer, 18, 

420-421 (1982). 

65 	"Enzymatic catalysis in non-aqueous solvents", A. Zaks and A.M. Klibanov, .1. Blot 

Chem., 263, 3194-3201 (1993). 

66 	"Enzyme crystal structure in neat organic solvent", P.A. Fitzpatrick, A.C. 

Steinmetz, D. Ringe and A.M. Klibanov, Proc. Nat A cad. ScL, 90, 8653-8657 

(1993). 

67 	"Correlation between catalytic activity and secondary structure of Subtilisin 

dissolved in organic solvents", K. Xu, K. Griebenow and A.M. Klibanov, Biotech. 

and Bioeng., 56, 485-491 (1997). 

68 	"Mechanistic dissection of the plunge in enzymatic activity upon transition from 

water to anhydrous solvent", J.L. Schmittke, C.R. Westcott and A.M. Klibanov, I. 

Am. C/tern. Soc., 118, 3360-3365 (1996). 

252 



69 	"Thermodynamic predictions for biocatalysis in non-conventional media", P.J. 

Hailing, Enz. Microb. Tech, 16, 178-206 (1994). 

	

70 	"Enhancement of C. antarctica lipase B selectivity and activity in organic solvents", 

M.C. Parker, S.A. Brown, L. Robertson and N.J. Turner, Chem. Comm., 20, 2247-

2248 (1998). 

"Steady state kinetics", W.W. Cleland, The Enzymes, 2, 1 -M (1970). 

	

72 	"The progress of the Bi-Bi reaction", W.W. Cleland, Biochim. Biophys. Acta, 67, 

104-137 (1963). 

"Concepts in Physical Chemistry", O.U.P., P.W. Atkins, (1995). 

"Fluorescence methods for measuring reaction equilibria and kinetics", W.B. 

Dandlikar, J. Dandlikar, S.A. Levison and R.J. Kelly, Met/i. in EnzymoL, 48, 380 

415 (1978). 

"The reaction of p-nitrophenyl esters with chymotrypsin", B.S. Hartley and B.A. 

Kilby, Biochem. .1, 56, 288-291 (1954). 

	

76 	"Analysis of alcohols by NIR", L.G. Weyer, Applied Spect. Rev., 21, 1-7 (1985). 

	

' 	"Determination of hydroxyl number in polymers by infrared spectroscopy: 

comparison of near-IR and mid-IR", K.A. Bunding Lee, R.W. Chylla, and T.E. 

Janota, Applied Spect., 47(1), 94-97 (1993). 

253 



78 	"Determination of hydroxyl concentration in pre-polymers from the NIR absorption 

band of hydroxyl groups", S.F. Lau and A. Kawasaki, AnaL Chem., 54, 232-238 

(1982). 

"Shifting of OH absorption bands on NIR spectra of esters", W.G. Hansen, Applied 

Spect, 47(10), 1623-1625 (1993). 

80 	"Application of NIRA techniques for the determination of polymer end and 

functional groups", R.B. Roy and C.J. Kradjel, Polymer Sd, Pt A, 26, 1733-1742 

(1988). 

31 	"The determination of OH number in polyols using NIR spectroscopy", S. Cooke 

and J. Oelichmann, J. fur Pra/aische Chemie Zeit. 339, 746-749 (1997). 

82 	"Handbook of NIR Analysis", Marcel Dekker Inc., D.A. Bums and E.W. Ciurzak, 

(1992). 

83 	H-NMR and thermodynamic study of seW association and complex formation 

equilibria by hydrogen bonding", M. Tkadlekcova, V. Donal and M. Costas, 

Physical Chemistry. Chem. Phys., 1, 1479-1486 (1999). 

84 	"A new method to determine the a range in which itninobilised lipases display 

optimum activity in organic media", M Arroyo, J.M. Sanchez-Montero and J.V. 

Sinisterra, Biotech. Techniques, 10, 263-266 (1996). 

85 	"The Candida antarctica lipase catalysed kinetic resolution of seudenol in non- 

aqueous media of controlled water activity", C. Orrenius, T Norm, K. Hult and G. 

Carrea, Tetrahedron: Asymmetry, 6, 3023-3030 (1995). 

254 



86 	"Purification of two lipases from Candida antarctica and their inhibition by various 

inhibitors", S.A. Paktar, F. Bjorkling, M. Zyndel, M. Schulein, A. Svendsen and E. 

Gormsen, Indiani. Chem., 32B, 76-80 (1993). 

87 	Handbook of Chemistry and Physics, 76th Edn., CRC Press, (1998). 

88 	"Lipase catalysed esteriification of lactic acid", M. From, P. Adlercreutz and B. 

Mattiasson, Biotech. Lens., 19(4), 315-317 (1997). 

89 	"Lipases and esterases: a review of their sequences and structure", H.W. 

Anthonsen, F. Drablos, P. Martel, S.B. Petersen and L. Vaz, Biotech. Ann. Rev., 

315-371 (1995). 

90 	"How do lipases and esterases work: the electrostatic contribution", M.T.N. 

Petersen, P. Fojan and S.B. Petersen, J. Biotech., 85, 115-147(2001). 

91 	"Water activity and substrate concentration effects on lipase activity", E. Wehtje 

and P. Adlercreutz, Biotech. and Bioeng., 55, 798-806 (1997). 

92 	"The p11 dependence of the tryptic hydrolysis of benzoyl-L-arginine ethyl ester in 

cooled nted solvents", P. Maurel, G. Huibonhoa and P. Douzou, J. BioL Chem., 

250, 1376-1382 (1975). 

' 	"Solvent temperature perturbations of ionisable groups as a tool for the 

investigation of the active site of enzymes", P. Maurel and P. Douzou, J. BioL 

Chem., 250, 2678-2680 (1975). 

255 



" 	"How do additives affect enzyme activity and stability in non-aqueous media", 

A.O. Triantaf'llou, E. Wehtje and P. Adlercreutz, Biotech. and Bioeng., 54(1), 67-

76(1997). 

"The solvent dependence of enzyme specificity", C.R. Westcott and A.M. 

Klibanov, Biochim. Biophys. Ada, 1206, 1-9 (1994). 

	

96 	"Structure as a basis for understanding interfacial properties of lipases", M. Cygler 

and J.D. Schrag, Methods in Enzynol., 284, 3-27 (1997). 

	

' 	"The sequence and crystal structure determination of two forms of lipase B from 

Candida antarctica", J. Iippenberg, M.T. Hansen, S. Paktar and T.A. Jones, 

Structure, 2(4), 293-308 (1994). 

	

98 	Handbook of Chemistry and Physics, 47th  Edition, CRC Press, (1966). 

"Kinetics of triglyceride lipases", M. Martinelle and K. 1-lult, in: Lipases their 

structure, biochemistry and application, Eds. P. Woolley and S.B. Petersen, C.U.P., 

159-180 (1994). 

100 "Ester synthesis via acyl transfer", P. Andersch, M. Berger, J. Hermann, K. 

Laumann, and M. Lobell, Met/i. in EnzymoL , 286, 406-442 (1997). 

'°' "Substituent Constants for Correlation Analysis in Chemistry and Biology", C. 

I-Ianseh and A. Leo, Wiley, (1986). 

256 



102 "Substrate specificity and kinetics of Candida rugosa lipase in organic media", 

A.E.M. Janssen, A.M. Vaidya and P.J. Hailing, Enz. Micro!,. Tech. 18, 340-346 

(1996). 

103 "Alcohol inhibition and specificity studies of lipase B from Candida antarctica in 

organic solvents", L.F. Garcia-Alles and V. Gotor, Biotech and Bioeng., 59, 163- 

170 (1998). 

'°" "Fundamentals of Enzyme Kinetics", A. Cornish-Bowden, Portland Press, 32-34 

(1999). 

105 "Non inverted versus inverted plots in enzyme kinetics", B.H.J. Hofstce, Nature, 

184, 1296-1298 (1959). 

106 "Structure and Mechanism in Protein Science", A. Fersht, 340-341, Freeman, 

(1999). 

07 "Solvent effects on Biocatalysis in Organic Systems: Equilibrium Position and 

Rates of Lipase Catalysed Esterification", R.H. Valivety, G.A. Johnston, C.J. 

Suckling and P.J. Hailing, Biotech. and Bioeng. 38, 1137-1143 (199 1) 

08 	"Intrinsic effects of solvent polarity on enzymatic activation energies", J. Kim, D.S. 

Clark and J.S. Dordick, Biotech and Bioeng., 67, 112-116 (2000). 

109 "Crystallographic and molecular modelling studies of lipase B from Candida 

antarctica reveal a stereospecificity pocket for secondary alcohols", J. Uppenberg, 

M.T. Hansen, S. Paktar and T.A. Jones, Biochemistry, 34, 16838-1685 1 (1995). 

257 



"Structure as a basis for the chiral preferences of lipases", M. Cygler, P. 

Grochuiski, R.J. Kazlauskas, J.D. Schrag, B. Rubin, A.N. Serreqi and A.K. Gupta, 

J. Am. Chem. Soc., 116, 3180-3186 (1994). 

HI "Organic Chemistry", R.D. Raber and V.T. Raber, West Publishing, 849-851 

(1988). 

112 "Reaction mechanisms in Organic Chemistry", F. Badea and R. Badea, Abacus 

Press, 514-515 (1977). 

" 	"One step biocatalytic synthesis of linear polyesters with pendant hydroxyl groups", 

B.J. Kline, E.J. Beckman and A.J. Russell, J. Am. Chem. Soc., 120, 9475-9479 

(1998). 

114 "Candida antarctica lipase B catalysed transesterification: New synthetic routes to 

copolyesters", A. Kumar and R.A. Gross, .1. Am. Chem. Soc., 122, 11767-11770 

(2000). 

"Lipase B from Candida antarctica: Application to industrial polyester synthesis", 

P. Harffey, Ph.D. Thesis, University of Liverpool (1998). 

116 	"Isolation, synthesis and reactivity of a key macrobislactone; 1,4,7-trioxacyclo- 

tridecane-8,13-dione", F. Binns and A. Taylor, Tetrahedron, 51(47), 12929-12938 

(1995). 

117 Private Communication Baxenden Chemicals Ltd. (1998). 

258 



"Characterisation of binding interactions by isothermal titration calorimetry", M.L. 

Doyle, Curr. Opinion. Biotech., 8, 31-35 (1997). 

119 "Calorimetric methods for interpreting protein-ligand interactions", H.F. Fisher and 

N. Singh, Methods in Entymol., 259, 194-221 (1995). 

120 "The association of carboxylic acids", G. Men and E.F. Coldin, Quart. Reviews 

(London), 7, 255-278 (1953). 

121 "The infra red spectra of complex molecules", L.J. Bellamy, Chapman and Hall, 

(1980). 

122 "The crystal structure of adipic acid", J.D. Morrison and J.M. Robertson, .1 Chem. 

Soc., 987-992 (1949). 

123 	"Infrared spectra and crystallinity of a,w—dicarboxylic acids", P.J. Corish and 

W.H.T. Davison, J. Chem. Soc., 2431-2436 (1955). 

124 "Consistent Force Field studies of internal forces in Hydrogen bonded crystals. The 

C0 ... H-OH bond of carboxylic acids", A.T. Hagler, .1. Am. Chem. Soc., 101, 513 1-

5141 (1979). 

125 "CHCI3 interaction with pyridine and triethylamine", D. Allerhand and G.J.. 

Schlegel, I Am. Chem. Soc., 85, 1715-1718 (1963). 

126 "The acetone-chloroform association", M.L. McGlashan and K. Rastogi, Trans. 

Farad Soc., 54, 496-501 (1958). 

259 



127 "Strong hydrogen bonds in aqueous and aqueous-acetone solutions of dicarboxylic 

acids: Activation energies for exchange and deuterium fractionation factors", Jing 

Lin and P.A. Frey, I Am. Chem. Soc., 122, 11258-11259(2000). 

128 "CDCI3 in ethers and esters", J. Lord, J. Am. Chem. Soc., 77, 1365-1368 (1955). 

129 "The C-I) stretch and heat of solution of CDCI3 in solvents", D. Huggins, I. Chem. 

Phys., 23, 896-898 (1955). 

130 "NMR studies of chjoroform-acetone and chlorofonn-triethylamine complexes 

show hydrogen bonding", D. Huggins, .1 Chem. Phys., 23, 1244-1247 (1955). 

"Enthalpy of formation of 1:1 chloroform -acetone complex", T. Moelwyn-Hughes 

andZ. Sherman,.! Chem. Soc., 10, 101 - 111 (1936). 

132 "Thermo-mechanical properties of chloroform-acetone mixtures", L.A. Staveley, 

Trans. Farad Soc., 51, 323-343 (1955). 

"The heat of solution and Inifa-red spectra of esters and lactones in CHCI3 and 

CDCI3", S. Searles, M. Tamres and G.M. Barrow, I. Am. Chem. Soc., 75, 71-73 

(1953). 

"The Hydrogen Bond", G.C. Pimental and A. McClellan, Freeman, (1960). 

B "Hydrogen Bonding", P. Vinogradov and M. Linnell, Van Nostrand, (1971). 

136 "Infrared study of the interactions of the C-H bond", D.N. Boobyer, Spectrochim. 

Ada, 23A, 325-329 (1967). 

260 



137 "Molecular parameters and bond structure", D.N. Boobyer and M. Jones 

Spectrochim. Acta, 22, 147-152 (1966). 

"Hydrogen bonding thermodynamics measured by temperature dependant NMR 

and modelled with MOPAC", ICE. Johnson and E.L. Green, 

www.chentpaciflcu.edu:80/johnson/course/hbond.html.  

"Cross correlation in the longitudinal relaxation of heteronuclear spin systems", L. 

Mater and J. Kowalewski, C/tern. Phys. Letters, 190, 241-246 (1992). 

'° "A b initio and localised molecular orbital studies of the integrated intensities of 

infrared absorption bands of polyatomic molecules and chloroform. Complexes 

between CHCI3 and three aliphatic nitriles. The influence of hydrogen bonding on 

the C-H and C-N initared characteristics", H.P. Figeys, P. (ieerling and D. 

Berckmans, J. Chern. Soc., Farad. Trans. 11, 77, 721-740 (1981). 

Private communication, D. Chama, Centre D'Etude Fondamentales, University of 

Perpignan, (2000). 

142 "Lipases: Interfacial enzymes with attractive applications". R. Schmid and R. 

Verger, Ang. C/tern., in:. Edit., 37, 1609-1633 (1998). 

143 "Identification of conserved residues in a family of esterase and lipase sequences", 

F. Drablos and S.B. Peterson, Methods in Enryrnol., 284, 28-61 (1997). 

"The ot—p hydrolase fold", D.L. Ohs, E. Cheah, M. Cygler, B. Dijkstra, S.M. 

Franken, S.J. Remington and J.D. Schrag, Protein Eng., 5, 197-211(1992). 

261 



145 "Relationships among serine hydrolases; evidence for a common structural motif in 

triacylglycerol lipases and esterases ", Z.S.Derewenda and !jDerewenda, Biochem. 

Cell BioL, 69, 842-847 (1991). 

146 "Structure of human pancreatic lipase", F.K. Winkler, A.D. D'Arcy and W. 

Hunzikar, Nature, 351, 570-571 (1991). 

147 (a) "Effect of pH on rate of interfacial inactivation of serine proteases in aqueous-

organic systems", A.C. Ross, G. Bell and P.J. Hailing, BiotechnoL Bioeng., 67, 498- 

503 (1999). 

(b) "Diflérences between lipases and proteases at interfaces", P. HaIling Private 

Communication (2000). 

'g "On the interfacial activation of Candida antarctica lipase A and B compared to 

Humicola lanuginosa", M. Martinelle, M. Holmquist and K. Halt, Biochim. et  

Biophys. Acta, 1258, 272-276 (1995). 

149 	"Molecular modelling of enantioselectivity in lipase catalysed transesterification", 

F. HaelTher, T. Norin and K. Halt, Biophysicalf., 74, 1251-1262 (1998). 

150 "A model for interthcial activation in lipases from the structure of a flingal lipase-

inhibitor complex", A.M Brzozowski, U. Derewanda., Z.S. Derewanda, G.G. 

Dodson, D.M. Lawson, J.P. Turkenburg, F. Bjorkling, S. Paktar and L. Thim,, 

Nature, 351, 491-493 (1991). 

'' "Lipase protein engineering", A. Svendsen, Biochim. et  Biophys. Ada, 1543, 223-

238, (2000). 

262 



152 "Fatty acid specificity in lipase catalysed synthesis of glucoside esters", 0. Kirk, F. 

Bjoerkling and T.O. Larsen, Biocatalysis, 6(2), 127-134 (1992). 

' 	"Multi-competitive enzyme reactions in organic media", M.S. Rangfleard, C. 

Triantphylides and J. Baratti, Biochim. et  Biophys. Aria, 1004, 20-28 (1989). 

154 "Chiral recognition of secondary alcohol enantiomers in acyl transfer reactions 

catalysed by Candida antarctica lipase B", C. Orrenius, F. HaetTher, D. Rotticci, N. 

Ohner, T. North and K. Huh BiocataL and Biotransform., 16, 1-15 (1998). 

155 "On the role of transition state substrate desolvation", S. Luque, Tao Ke and A.M. 

Klibanov, BiocataL and Biotransform., 16, 233-248 (1998). 

"Circular and Lineas Dichroism", A. Rodger and B. Norden, O.U.P. 15-32 (1996). 

" "Mechanism of extraction of chymotrypsin into isooctane at very low 

concentrations of Aerosol 01 in the absence of reversed micelles", V.M. Paradkar 

and J.S. Dordick, Biotech Bioeng., 43, 529-540 (1994). 

58  "Information content in the circular dichroism of proteins", J.P. Hennessey and W. 

Curtis Johnson, Biochemistry, 20, 1085-1094 (1981). 

'" "SELCON secondary structure prediction", N. Sreerama and R.W. Woody, 

Biochemistry, 33, 10022-10025 (1994). 

160 "Knowledge based secondary structure assignment", D. Frishman and P. Argos, 

Proteins. Structure Function and Genetics, 23, 566-579 (1995). 

263 



161 "Effects of pH and KCI on the conformations of creatine kinase from rabbit 

muscle", C. Raimbault, F. Couthon and R. Buchet, Eur. J. Biochem., 234, 570-578 

(1995). 

162 "Aqueous like activity of a-chymotrypsin dissolved in nearly anhydrous organic 

solvent", J.S. Dordick and V.M. Paradkar, I. Am. Chem. Soc., 116, 5009-5010 

(1994). 

163 "Assessing the structural integrity of a lyophilised protein in organic solvents", U.R. 

Desai and A.M. Klibanov, I. Am. Chem. Soc., 117, 3940-3945 (1995). 

"Circular dichroism induced by helical host molecule", M. Kodaka, I. Chem. Soc., 

Faraday Trans., 93(11), 2057-2059 (1997). 

165 "DNA-ligand binding", A. Rodger and B. Norden, in: Circular and Linear 

Dichroism, Eds. OUP, 30-31(1997). 

"Private communication, S.A. Paktar, Novo AIlS 

167 "X-ray crystal structure of y-chymotrypsin in hexane", N.H. Yennawar, H.P. 

Ycnnawar and O.K. Farber, Biochemistry, 33, 7326-7336 (1994). 

168 Sequence Finder. http://www.cxpasy.org/sprotJ  

169 "Structure and molecular model refinement of Rhizomucor miehei triacylglyceride 

lipase", A.M. Brzozowski, Z.S. Derewanda, E.J. Dodson, G.G. Dodson, J.P. 

Turkenburg,Acta Crystallogr. B, 48, 307-311 (1992). 

OTIV 



170 "Insights into interfhcial activation from an open structure of Candida rugosa 

lipase", P. Grochulski, Y. Li, J.D.Schrag, F. Bouthilhier, P. Smith, D. Harrison and 

M. Cygler ,,J. BioL C/tern., 268, 12843-12848 (1993). 

171 "1.8A refined structure of the lipase from Geotrichum candidurn", J.D. Schrag and 

M. Cygler, J. MoL Blot, 230, 575-591 (1993). 

172 "Enzyme catalysed synthesis of sugar containing monomers and linear polymers", 

O.J. Park, D.Y. Kim and J.S. Dordick, Bioteck and Bioeng., 70, 208-216 (2000). 

173 "Enzyme catalysed synthesis of macromolecules in organic solvents", J.A. Akkara 

and F.F. Bruno, US Patent 5,981,240 (1999). 

" "Synthese de quelque diiodures de bis-(carbarnoylcholine) doues d'activite 

curarisante", R. Delaby, P. Chabrier and H. Najer, Mernoires Presentes a Ia Societe 

Chirnique, 1616-1622 (1956). 

"Synthese de biscarbamat des amines", R. Debby, A. Sekera, P. Chabrier et P. 

Pignaniol, BulL Soc. Chern., 20, 278-285 (1953). 

176 "bis-Oxazolidines and mixtures thereof and their use as hardeners for plastic 

precursors containing isocyanate groups", H. BIwn, J. Pedain, and K.H. Hentschel, 

US Patent 5,189,176 (1993). 

'" "Chemistry and Technology of Isocyanates", H. Ufrich, J. Wiley & Sons, (1996). 

178 "Polymer Synthesis", P. Remp and E.W. Merrill, Huther and Wepf, 29-34 (1991). 

PTOR 



179 Determination of acid value, hydroxyl value and water content in reactions between 

diacids and diols using NIR", R.I. Helkka, K.T. Immonen, Y.O. Erkki and T.O. 

Salmi, AnaL C/tim. Ada, 349, 287-294 (1997). 

ISO "The near infrared analysis of polyols", P. Brush, NIR News, 5(5), 14-15 (1994). 

'' "Structural studies of aliphatic polyester polyols suitable for use in polyurethane 

synthesis", C. Salou, M.Sc. Thesis, University of Manchester Institute of Science 

and Technology, (year). 

266 



Appendices 

Appendix I Determination of acid number of polyesters (Baxenden Method). 

Duplicate samples of 200mg polyester were weighed out into two lOOm] conical flasks. 

20m1 of Analar pyridine added from a measuring cylinder and 5m1 of water added using a 

pipette. Stirred with a magnetic stirrer for 30 minutes and titrated against 0.02M NaOH 

with phenolphthalein (1% in isopropanol) as indicator. 

Repeat using a blank. 

Calculation of Acid number = (Vs-Vb) x Mx 56.1 
w 

Where Vs is the sample titre, Vb is the blank titre, M is the molarity of the NaOH and W 

is the weight of the sample. 

Therefore the Acid number = 5.5 x (Vs-Vb) where M = 0.02 and W = 

Calculated accuracy of the test is 98.7% 

267 



Appendix 2 Determination of Hydroxvl Number of riolvesters by acetylation 

(Baxenden Method). 

Reagents used are: Pyridine in acetic anhydride. (Transfer 48m1 of Analar pyridine 

into a lOOmI screw top bottle add 2m1 of Analar acetic anhydride, shake and leave to 

stand for 2 hours). Duplicate, I g samples of polyester are weighed into two SOml conical 

flasks. 5m1 of the pyridine/acetic anhydride acetylating reagent are added by pipette. 

Fit condenser and reflux for 1 hour. Cool contents in ice for 15 minutes, wash condenser 

down with further I Omi of pyridine and leave for further 10 minutes in ice. Add 2m1 of 

water. 

Measure a blank by mixing 5m1 of the acetic anhydride pyridine reagent into conical flask 

and add 20m] pyridine plus 2m1 water. Titrate against 0.5M NaOH with phenolphthalein 

(1% in isopropanol) as indicator. 

Repeat titration with the samples. 

Calculation Hydroxyl value = (Vb-Vs) x 0.5 x 56.1 
w 

Where Vs is the average of the two sample titres, Vb is the blank titre, M is the molarity 

of the NaOH and W is the weight of the sample. 
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