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Abstract 

The overall aim of the project was to investigate the role of the cell membrane as a 

barrier and/or target for drug action and relate this to the development of strategies for 

overcoming multiple drug resistance (IVIDR). 

The effects of doxorubicin on various bacterial strains expressing different levels of 

anionic phospholipid were compared. Giowth of wild-type Echerichia coil (E. coil) 

strait MRE600 was severely affected up to 9 hours following doxorubicin treatment 

(15gM), but resistance occurred after 9 hours. E. coil strain FIDL1 1 was resistant to 

doxorubicin (1 O0piM) over 9 hours, however, increasing the anionic lipid content showed 

little difference in sensitivity. 

The mouse mammaiy tumour cell line (EMT6-S) and MDR sub-line (EMT6-R) were 

characterised with regard to growth kinetics, susceptibility to doxorubicin and membrane 

lipid composition. The log phase doubling times (h) were found to be 21.8 (EMT6-S) 

and 25.0 (EMT6-R) and the IC 50  values for doxorubicin to be 2.2 x 10-8  M and 1.8 x 

10-6 M for EMT6-S and EMT6-R cells, respectively. No difference was observed 

between the phospholipid profiles of the two cell lines and total fatty acid composition 

was similar, however, the level of linoleic acid appeared to be higher in the resistant 

cells. 

The photocytotoxicity of the cationic dyes methylene blue (MB), toluidine blue (TBO) 

and Victoria blue BO (VBBO) against the EMT6 cell lines was compared to the cyotoxic 

effect of doxorubicin and cis-platinurn. The cytotoxic effect of VBBO was enhanced 10-

fold by illumination (7.2 J cm72) in both EMT6-S and EMT6-R cells. In order to 

overcome resistance, however, the EMT6-R cells required a 10-fold greater level of the 

dye than the parental cells to reach an IC 50  value. By contrast, doxorubicin required 

almost a 100-fold increase in concentration to overcome this resistance. 



Pre-treatment of EMT6-S and EMT6-R cells with low concentrations of VBBO resulted 

in a 2-fold increase in doxorubicin toxicity in both cell lines. Pre-treatment with MB and 

TBO resulted in a 1.4-fold and 2-fold increase in doxorubicin toxicity, respectively, in 

the sensitive cells, increasing to 2-fold and 3-fold, respectively in the resistant cells. 

Glutathione (GSH) depletion of EMT6-S and EMT6-R cells did not enhance the 

photocytotoxicity of VBBO, suggesting that the primary site of action of VBBO is at an 

intracellular site not protected by GSH or that the mechanism of action is not via the in 

situ generation of singlet oxygen. Addition of the chemosensitizer, verapamil (7gM), 

increased the efficacy of doxorubicin by 2-fold in EMT6-S cells and by 18-fold in EMT6-

R cells. By contrast, the presence of verapamil did not increase the cytotoxicity of 

YBBO in either cell line. 

A series of compounds, PVB, MVB and MOVB, based on the skeleton of VBBO was 

examined. VBBO was found to be the most effective photosensitizer. The rate of uptake 

for VBBO, MVB and PVB appeared to be very similar, whereas that of MOVB was 

slower. The uptake/dose trend was also similar four all four drugs tested and conelated 

to the levels of lipophilicity of the agents. 

Confocal microscopy studies showed all the photosensitizers to be distributed widely 

throughout the cytoplasm, with considerable accumulation of VBBO and PVB in the 

perinuclear region. Time course studies showed the intracellular distribution of VBBO in 

both cell lines to be similar, although uptake of the drug appeared slower in the resistant 

cell line. VBBO was clearly localised throughout the cytoplasm, in a punctate pattern, 

which may be consistent with the widespread distribution of mitochondria. No 

interaction with the plasma membrane was evident. By contrast, doxorubicin was found 

to localise mainly in the nucleus of the sensitive cell line, whereas no nuclear involvement 

was seen in the resistant cells. The drug was also effluxed more rapidly from EMT6-R 

cells than EMT6-S cells. Time course studies with EMT6-S cells showed that the drug 

clearly interacts with both the plasma membrane and the nucleus. These results indicate 



that the main modes of action for the two drugs differ markedly, suggesting interaction 

with both the membrane and the nucleus in the case of doxorubicin, but possibly 

mitochondrial involvement for VBBO. 
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CHAPTER ONE. 

GENERAL INTRODUCTION. 



1.1 Cancer and carcinogenesis. 

Cancer is a widespread, insidious disease which will affect one in three of the population 

during their lifetime. Consequently, research into the onset and mechanisms of this 

complex disease is intense, however, despite increased knowledge, many cancers remain 

refractory to treatmentl One definition of cancer is of a population of cells which has 

begun the pathway to maturity, but in which the processes of differentiation and 

proliferation have become uncoupled resulting in transformed cancer cells which divide 

rapidly but are not fully differentiated [1]. 

In normal cells, very precise mechanisms control growth and development of tissues and 

organs. The precursors of these cells undergo repeated cell division and become 

specialised by differentiation into a variety of cell types, for example, muscle, brain, liver 

etc. (Figure 1). In some tissues, such as the neurons in the central nervous system, there 

is little or no replacement of the differentiated cells, just a gradual decline with age. 

However, many tissues of the body are constantly renewed, with the loss of mature cells 

countered by the proliferation of less mature precursor (stem) cells. Although cells in the 

embryo are capable of proliferating, most adult cells are not and 'hold in reserve' the stem 

cells which respond to various stimuli for growth, such as tissue injury. Stem cells divide 

to produce two daughter cells, one remaining as a stem cell whilst the other has the 

potential to be differentiated into a specific cell type. During the process of 

differentiation the cells reach a stage where they are said to be "committed " and can no 

longer revert to any other cell type in the body [1]. It is at this stage where a specific 

genetic sequence within the cell's DNA becomes activated in response to a wide variety 

of signals from the cellular environment, such as circulating hormones and growth 

factors. When a gene is 'switched on', the encoded protein is synthesised by the cell, 

however, mutations in the gene can alter the amount of protein produced and/or the 

function of the protein within the cell. Stem cells express genes whose protein products 

drive cells through repeated divisions, that is, the genes of cellular proliferation [1]. 

During this progression from stem cells to mature, differentiated cells, genes of 
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proliferation become generally less active, whilst genes of differentiation generally 

increase their activity. Cancerous cells, however, divide rapidly and are no longer 

capable of completing their differentiation programme. This population of transformed 

cells is usually derived from the divisions of a single cell whose genes have mutated in 

some way. 

/ 
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Figure 1: Each adult cell is derived from the zygote by a series of repeated cell divisions. 
The cells become specialised into specific cell types, such as muscle, liver and brain, by 
differentiation. Stem cells divide producing two daughter cells, one of which remains as 
a stem cell, while the other has the capacity to differentiate into a specific cell type. For 
each specific tissue type cells become specialised for various functions, e.g. red blood 
cells represent a specific lineage within the blood responsible for carrying oxygen and T-
and B-lymphocytes are white blood cells involved in immune defence. (Figure adapted 
from Vile, 1990 [1]). 
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Virtually all malignant cells are now thought to be monoclonal in origin, that is, a single 

precursor cell is transformed and proliferates to form a clone [2]. However, although all 

the cells in the tumour share features of the original mutated cell, as the tumour 

develops, cells modi1' their properties leading to a heterogeneous population. Tumours 

may be classified into three main groups : benign, in-situ and filly developed or 

malignant tumours [3]. Benign or non-malignant tumours usually develop a fibrous 

membrane of connective tissue around the tumour which prevents it from spreading [4]. 

These tumours increase in size and may cause damage by obstruction or local pressure, 

but in theft benign state do not invade surrounding tissues. They have the potential to 

become malignant, however, a large proportion do not progress to this state. In situ 

tumours usually develop in the epithelium, and their constituent cells are 

morphologically similar to cancer cells, but, as their name suggests, these tumours do not 

encroach on surrounding tissues. Malignant tumours, however, invade and destroy local 

tissue eventually metastasising to other parts of the body. In contrast to benign tumours, 

they do not have a fibrous barrier and the edges are not well-defined [3,4,5]. Cancer 

eventually kills through damage caused by the expanding number of malignant cells 

which progressively occupy vital parts of the body. 

Metastasis occurs when cancer cells spread from the site of origin (the primaiy tumour) 

to other parts of the body (secondaiy tumours) [4]. During local invasion of tissue, 

tumour cells can enter the lymphatics and be carried to the regional lymph nodes. Some 

malignant cells are destroyed, but others continue to grow and may enter the 

bloodstream where they are carried around the body. Various proteases, including serine 

proteases, such as plasmin, thiol proteases, such as the cathepsins and metalloproteases, 

such as type IV collagenase, which normally fUnction in tissue repair mechanisms, have 

been implicated in the invasion process [6]. In normal tissue, the activity of these 

proteases is kept under tight control by various protease inhibitors. Tumour cells also 

stimulate the production of new blood vessels (angiogenesis) by secreting tumour 

angiogenesis fhctor (TAF) in order to increase the supply of nutrients to the growing 
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tumour [3,6]. A feature of these new blood vessels is that they are weak and allow the 

passage of malignant cells, thus promoting metastasis. 

In order for metastasis to take place, several criteria must be fulfilled [6]: 

[1] invasion of surrounding normal tissue, followed by infiltration into blood vessels and 

lymphatic channels; 

[2] release of malignant cells into the circulation; 

[3] survival of the malignant cells within the circulation; 

[4] arrest of the cells in capillary beds; 

[5] penetration of the lymphatic or blood vessel walls by the cells, culminating in the 

growth of secondary tumours at distant sites from the primary neoplasm. 

The malignant cells adhere to the endothelium of the normal surrounding tissues inducing 

retraction and exposure of the underlying extracellular matrix. Part of this matrix 

comprises the basement membrane, which encloses the blood vessels, muscle cells and 

nervous system. The lymph vessels and other tissue cells are enclosed by the interstitial 

stroma, another part of the extracellular matrix, situated adjacent to the basement 

membrane. The mechanism of invasion by malignant cells has been elucidated by the 

work of Liotta [4] who maintain that it is an active process involving three main steps 

[I] adhesion of the tumour cells to the basement membrane - mediated by specific 

receptors on the surface of the tumour cell; 

[2] activation of lyric enzymes which ftrnction to cleave or unravel molecules in the 

basement membrane; 

[3] the protrusion of pseudopodia from the tumour cells into the damaged tissue, 

followed by migration of the entire tumour cell. 



These studies also showed that a group of enzymes termed metalloproteases, which 

cleave protein molecules, were intimately involved in the invasion process. Various 

metalloproteases exist, each with highly specific protein targets. They are produced in an 

inactive form where a tenninal cysteine residue is folded and interacts with the metal ion 

within the active site of the enzyme. When activated, however, the conformation of the 

enzyme changes, and the cysteine residue is cleaved, allowing the enzymes to act upon 

their targets. Inhibitory enzymes are also produced, termed tissue inhibitors of 

metalloproteins (TIMPs). Various TIMPs are produced in normal tissues, such as 

cartilage and bone, but are also produced by tumour tissue. Thus cell invasion can be 

inhibited by TIMPs, sometimes referred to as metastasis suppressor proteins, and only 

proceeds if the balance is in thvour of promoting factors. Mother protein associated with 

suppression of metastasis is nm23 (nonmetastatic 23) [4]. Studies in primary breast 

cancers found that low levels of this protein were strongly associated with aggressive 

metastasis and poor survival, whereas high levels of the protein produced the opposite 

effect. Similar effects have also been seen in other cancers. 

A pioneering treatment which specifically targets blood vessels supplying tumours will 

begin clinical trials shortly [7]. Tumours in mice and guinea pigs have been successfully 

treated with drugs which cause clots to occur in the small blood vessels supplying 

tumours. These drugs are specific for the tumour cells since they are linked to an 

antibody which binds to a specific antigen on the surface of the neoplastic blood vessels, 

not expressed by normal blood vessels. Vascular endothelial growth fhctor (VEGF) is 

secreted by tumour cells to aid in angiogenesis, and forms a complex on the surfice of 

the blood vessel cells which may be targeted by this class of drugs. This factor is 

normally only expressed in embryos for the formation of new blood vessels, and is also 

found in wound healing. The drugs also contain a component which induces clot 

formation in the blood vessels thus blocking nourishment to the tumour. 

Tumours are graded according to their state of differentiation, and there appears to be 

some correlation between the tumour grade and rate of growth [3]. Low grade tumours 
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(Grade 1) are the most differentiated and slow growing, whereas the higher grade 

tumours (Grades ifi and IV) are much more aggressive. Many tumours, however, are 

difficult to classif' since the cell population is heterogeneous and there may be areas of 

more than one tumour grade present. The type of tumour aflécts prognosis, for example, 

approximately 80% of patients with Grade I breast tumours will be alive and well five 

years or more post-treatment, compared with only about 20% presenting with Grade IV 

tumours [3]. 

Carcinogenesis can be described as a multi-stage process, whereby cancer develops in 

discrete stages resulting from changes in regulatory genes [3,8&9] (Figure 2). Genotoxic 

agents, such as U.V. light and certain chemicals are thought to be the main causes of 

these changes, although recent evidence suggests that there are also instances of non-

genotoxic carcinogenesis [10]. These will be discussed later. Genotoxic carcinogens are 

mutagens, but all mutagens are not necessarily carcinogens [10]. Thus, in the former 

case, a chemical may be Ames' Test positive (a test for mutagens and carcinogens) [11] 

but may not cause cancer. The effects of many genotoxic carcinogens appear to be 

overcome by the body?s defence rnechaxiisms at low doses, but above a certain threshold 

permanent genetic change (initiation) takes place. 

The first stage, or initiation stage, in carcinogenesis occurs when a brief and irreversible 

reaction takes place between the carcinogen and the genetic material of the target tissue 

[3,9]. The cell now has the potential to develop and progress to tumourigenesis, but 

initiated cells remain latent until acted upon by promoters. Carcinogens can be classified 

into two groups, complete and incomplete [3]. Complete carcinogens, for example, 

polycycic aromatic hydrocarbons and nitrosamines, can act as both promoters and 

initiators, whereas incomplete carcinogens require subsequent exposure of initiated cells 

to promoting agents which are not, themselves, carcinogenic [3]. These promoting 

agents, such as phorbol esters, hormones, high fIt diets and the recently identified 

teleocidin and aplysiatoxin classes, induce the transformed cells to divide and form 

tumours. It has been found that most promoting agents act in a similar manner, in that 
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they bind to a specific receptor molecule, protein kinase C, thereby activating 

intracellular signalling mechanisms [3]. Promoting effects can be prevented in some 

instances by anti-promoters such as antioxidants and growth inhibiting factors [3,12]. A 

variety of different mechanisms may contribute to each of these sequential changes, such 

as the mutation of a gene which normally controls cellular growth and proliferation. 

NORMAL 
CELL 

1ST MUTATION 
Cell appears to be normal, but is predisposed 

to excessive proliferation 

2ND MUTATION- 
Cell still appears normal, but begins 

to increase proliferation 

3RD MUTATION 
Cell undergoes rapid proliferation and 
structural changes occur 

4TH MUTATION 
Cell grows uncontrollably and 
has an abnormal appearance 

Figure 2 Schematic diagram showing the onset of carcinogenesis from a normal cell 
(light brown). In the first stage daughter cell (pink) undergoes a cancer promoting 
mutation which is irreversible and heritable. At a future point one of the descendent cells 
(red) acquires a second mutation and a later descendent (green) acquires a third, and so 
on. These further mutations eventually result in malignant cell formation (purple). 
(Figure adapted from Cavanee & White, 1995 [131). 



1.1.1 Non-Genotoxic Carcinogenesis. 

As discussed earlier, the most popular theory of carcinogenesis involves the two steps of 

initiation and promotion, however, it has also been shown that several drugs and 

environmental toxins which are carcinogenic in animal model systems are not mutagenic 

when tested in vitro [lO]. This may pose serious implications for the screening of new 

chemicals and drugs. These agents are termed non-genotoxic carcinogens since they do 

not directly affect cellular DNA [14,15]. As mentioned previously, the balance of growth 

factors, hormones and cell cycle control factors is essential to normal cell development, 

therefore the effect of these non-genotoxic agents on the secretion of regulatory 

substances may subsequently lead to carcinogenesis. Many hormones and chemicals, 

such as growth hormones, sulfonamides and phenobarbitone [10], are used to some 

extent in animal husbandry which may subsequently enter the food chain, with potentially 

serious consequences for the consumer. 

1.2 Genetics of Cancer. 

Three main types of cellular gene have now been identified as being involved in the 

various stages of carcinogenesis, oncogenes, which are positive growth regulators, 

tumour suppressor genes (sometimes referred to as anti-oncogenes), which normally 

control cellular proliferation and a group of genes which are active in DNA repair 

mechanisms [8,9]. Some tumours may express a combination of mutated genes from all 

three classes. In normal circumstances the life-cycle of the cell is tightly controlled with a 

balance between the proto-oncogenes, which promote growth, and the tumour 

suppressor genes which have an inhibitory effect. Proto-oncogenes code for growth 

factors, hormone and growth factor receptors, signal transducing proteins, regulatory 

kinases, proteins that control these kinases and transcription factors which are intimately 

involved in controlling levels of gene expression (Table 1). This is a very complex area 

of research, since many different growth fhctors have now been identified which are 



widely distributed in the body and perform many different functions. Many of these 

factors act in conjunction with others, and their functions can differ depending on the 

specific conditions. 

Table 1 Cellular role of some proto-oncogenes 181. 

ROLE ONCOGENE HOMOLOGY 

Proto-oncogene coding for: 

Growth Factors SIS Sub-unit of Platelet-Derived Growth 

Factor (PGDF) 

Growth Factor Receptors 

(or functional homologues)  

ERBB Epidermal Growth Factor (EGFR) 

FAIlS Colony Stimulating Factor 1 (CSF1R) 

Signal Transducers ABL  

MOS  

RAF  

£45  

SRC  

Nuclear oncogenes JL1N 

MYB  

MYC  

1.2.1 The Cell Cycle 

The cell cycle is composed of four stages, G 1 , 5, G2  and M [2] taking, on average for a 

somatic cell, 12 to 24 hours to complete (Figure 3). The first stage, G 1  (gap 1), allows 

the cell to increase in size, accumulate nutrients and synthesise enzymes and proteins in 

preparation for DNA replication. The DNA is replicated in the next phase of the cycle, 
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the S (synthesis) stage. At this point the chromosomes are duplicated within the cell. 

The cell then goes through another gap phase (02)  in order to prepare for cell division. 

This division takes place in the final phase of the cell cycle, the M (mitosis) stage. The 

enlarged parent cell now divides in half, yielding two daughter cells, each containing a 

hill complement of chromosomes. The cells can enter a resting phase following M phase, 

called G, where they may remain quiescent for hours, days or years [2,16]. Cell surface 

receptors intereact with a variety of signals from growth factors, hormones etc. to 

determine whether the cell persists in cycling mode or enters the resting phase. There are 

various checkpoints within the cell cycle which determine whether or not the cell will 

continue through to cell division [3]; in particular there is a restriction point near the end 

of G 1  before the cell enters the S phase, and another checkpoint at 0 21M. The cell cycle 

may also be blocked at specific phases by certain chemotherapeutic agents [3] (Table 2). 

Beginning of i 

M 
point 

I, 

Figure 3 Diagrammatic representation of the four stages of the cell cycle. 
In the 1st stage (G 1 ) the cell increases in size and prepares to replicate its DNA. The replication 
occurs in the 2nd stage (S) where the chromosomes are duplicated. In the 3rd stage (02),  the cell 
prepares to divide. Mitosis then occurs in the 4th stage (M). Two identical daughter cells are 
produced which may enter G and go through the cycle again, or may enter the G stage. An 
important control point, the restriction point occurs near the end of G,  where the cell decides 
whether to commit itself to completing the cycle. 
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Table 2 Chemotherapeutic agents specific for the cell cycle. (Adapted from Franks 
& Teich [3]). 

DRUG SITE OF ACTION PHASE SPECIFICITY 

METHOTREXATE  

CYTOSINE ARABINOSIDE DNA SYNTHESIS S PHASE 

HYDROXYUREA  

5-FLUOROURACIL DNA, RNA & PROTEIN RELATIVELY S PHASE 

6-MERCAPTOPURINIE SYNTHESIS SPECWIC 

NITROGEN MUSTARD DNA AT ALL PHASES  

NITROSUREA OF CELL CYCLE WHOLE CYCLE 

CYCLOPHOSPHAMTDE  

VINCRISTINE 	 INHCROTUBULES I M PHASE, 01 4-> G() 

The cell cycle clock integrates messages from stimulatory and inhibitory pathways within 

the cell. Proteins termed cydlins and cyclin-dependent kinases play an essential role in 

regulation of the cell cycle [2,16]. The protein kinases are enzymes which transfer 

phosphate groups from adenosine triphosphate (ATP) to specific protein molecules, 

thereby altering the function of these proteins. At the restriction point in the late stages 

of the (}j phase, the cell decides whether or not it will complete the cycle. In order for 

the cell to progress to the S phase, a molecular switch must be activated. This occurs 

when levels of cyclin D and then cyclin E are increased and in turn activate cyclin-

dependent kinases [16]. These kinases form complexes which transfer phosphate groups 

from ATP to a protein called pRB. This protein has' a mor braking effect on the cell 

cycle which is effected by accumulating a variety of transcription factors. When pRB is 

phosphorylated, however, these proteins are released, allowing the cell cycle to progress. 
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Further fictors are then produced, such as cyclins A and B and their relevant cyclin-

dependent kinases, which serve to drive the cell cycle through to cell division. Various 

tumour suppressor gene products, such as p53, p15, p16, p21 and p27 act at a variety of 

points in the cell cycle to control inappropriate cell division [16]. The cell cycle clock is 

a highly complex system, maintaining a fine balance between stimulatory and inhibitory 

signals. Clearly, mutations in the genes encoding these proteins can have a potentially 

devastating effect on cell proliferation by disrupting the cell cycle 

1.2.2 Oncogenes. 

It has been known for many years that DNA and RNA viruses are capable of infecting 

cells and subsequently causing their transformation [9]. Although a few of these are 

human viruses, the majority are associated with animals and are not transmissable to 

humans. Much research into carcinogenesis has been based on the study of viruses, in 

particular the retroviruses [8,9]. These are RNA viruses which encode three genes, gag, 

pol and env which produce, respectively, a coreprotein, a reverse transcriptase and 

envelope glycoproteins. However, certain viral genes can also cause malignant 

transformation, and these encode a fourth type of gene, termed oncogenes. Further 

work has shown that some human tumours also contain activated oncogenes, which are 

homologous to the viral oncogenes. Research into the mechanisms employed by viral 

oncogenes has helped elucidate the mechanisms of carcinogenesis, but it must be 

emphasised that, so far, relatively few human viruses have been identified as being 

associated with cancer (Table 3). 

Various genetic changes can activate the latent tumourigenicity of oncogenes [8]. The 

main mechanisms of mutation for non-viral oncogenes have been identified as point 

mutation, amplification and chromosomal translocation, all of which have been found in 

human tumours. Point mutations in the coding sequences of oncogenes can affect the 

resultant protein products. This in turn may affect the interaction between these protein 

products and regulatory molecules. Translocation of an oncogene to another 
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chromosome may result in enhanced expression of the oncogene. Some tumours, such as 

chronic myeloid leukaemia and Burkitt's lymphoma, are known to carry a consistent 

chromosome translocation [8]. Oncogene amplification, as the name sugests, leads to 

increased copy numbers of the cellular gene, resulting in increased amounts of protein 

products. Amplification of oncogenes has been shown to correlate with advanced 

tumour progression in some cases [9], for example, amplification of the erb-B2 oncogene 

in advanced breast cancer. 

Retroviral mechanisms for the activation of viral oncogenes have been identified as 

transduction (the most efficient), promoter/enhancer insertion (the most common) and 

transactivation. Retroviral transduction of an oncogene affects the expression of the 

gene, since it is subject to control by viral promoter and enhancer sequences [8]. 

Subsequent mutations in the oncogene result in altered protein products. Similarly, 

retroviruses can insert their dominant promoter and enhancer sequences near to cellular 

oncogenes, leading to increased gene expression. Some retroviruses, such as the human 

immunodeficiency virus (HIV) and the human T-cell virus (HTLV), are thought to 

produce a transcription factor which can increase gene expression on interaction with 

specific gene regulatory sequenEes [8]. 

It should be noted that the original cellular genes, with the potential to progress to 

tumour development, are termed proto-oncogenes. When the proto-oncogenes are 

mutated, they may become carcinogenic oncogenes which in turn encode for excessive 

amounts of growth factors or other gene products such as growth factor receptors 

involved in cell signalling. 
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Table 3 : Viruses commonly associated with human cancers [8]. 

VIRUS ASSOCIATED TUMOIJRS 

DNA viruses:  

Epstein-Ban Burkitt's Lyphoma 

Nasopharyngeal cancer 

Hepatitis B Liver cancer 

Papilloma virus Benign warts 

Cervical cancer 

RNA viruses: 

Human Immunodeficiency Virus (HIV-1) Kaposi's sarcoma 

Human T-cell Leukaemia Virus (Type 1) (HTLV-1) Adult 1-cell leukaemia 

HTLV-2 Hairy cell leukaemia 

HTLV-5 Cutaneous T-cell leukaemia 

Various growth tictors may be over-produced as a result of oncogenic activity, such as 

increased platelet-derived growth thctor (PDGF) found in sarcomas and gliomas [16]. 

Receptor genes may also become oncogenic, resulting in the release of inappropriate 

signals within the cytoplasni erb-B2 receptor molecules seen in breast cancer cells are 

examples of this. Other oncogenes disrupt intracellular signalling pathways in the cell 

cytoplasm. Proteins which are encoded by normal ras genes function by transmitting 

stimulatory signals from growth thctor receptors to other protein receptors in the signal 

cascade. When these genes are mutated, however, they transmit stimulatory signals even 

in the absence of growth thctors. 

The myc family of oncogenes are normally involved in transcription events in the nucleus 

[8]. These transcription thctors are produced as a result of signals from growth fuctors 

in normal cells, however, in many types of cancer, abnormally high levels of Myc 

proteins are detected. Table 4 highlights a number of oncogenes which are now known 

to be implicated in human cancers. 
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Table 4 Representative oncogenes associated with human tumours. (Adapted 
from Weinberg [16]). 

GENE GENE PRODUCT ASSOCIATED CANCER(S) 

PDGF Platelet-derived growth flictor Glioma 

erb-B Receptor for epidermal growth 

factor 

Glioblastoma, breast 

erb-B2 (HER-2, neu) Growth factor receptor Breast, 	salivary 	gland, 	ovary, 

stomach. 

RET Growth factor receptor Thyroid 

Ki-ras Signal transducer (stimulatory) Lung, ovary, pancreas, colon 

N-ras Signal transducer (stimulatoiy) Leukaemias 

c-myc Transcription factor Leukaemias, 	breast, 	stomach, 

lung 

N-myc Transcription factor Neuroblastorna, glioblastoma 

L-myc Transcription factor Lung 

Bcl-2 Protein blocks apoptosis Follicular B lymphoma 

Rd-i (PRADJ) Cydlin Dl - stimulates cell cycle 

clock  

Breast, head, neck 

MDM2 Protein acts as an antagonist of 

p53 tumour suppressor gene 

Sarcomas and other cancers 
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1.2.3 Tumour Suppressor Genes. 

Recent research has identified tumour suppressor genes in human tumours (Table 5). A 

major breakthrough came from the investigation of retinoblastoma, a hereditary cancer 

which affects the retina, and which is associated with the loss of material from 

chromosome 13 [13]. Studies suggested that the cause was due to either the loss, or 

inhibition of expression, of a normal gene rather than the presence or enhanced 

expression of a mutated form. The presence of the gene therefore appeared necessary 

for the suppression of tumour growth and was identified as Rb-I by Friend et al. [17]. 

Recent work has identified other tumour suppressor genes, in particular the p53 gene, 

whose inactivation by mutation has been implicated in an increasing number of human 

cancers [18]. Interestingly, p53 has also been shown to act as an oncogene, where many 

mutations have been shown to occur, causing its activation and subsequent 

tumourigenesis [9]. The gene product is known to act as a transcription factor which 

binds to other genes and controls their expression. It has been found to promote 

expression of the WAFI/CIpI gene whose protein product p21 binds to cyclin-dependent 

kinases and inhibits their action [18,19]. This activity is intimately involved in the cell 

cycle and is thought to allow DNA repair mechanisms to take place. Other studies have 

shown that human papilloma virus (HPV), which is associated with over 90% of cervical 

cancer cases, produces a viral protein EP-AP which interferes with p53 activity [18]. 

Mother gene, MTSJ, whose normal expression is involved in inhibition of the cell cycle 

through its protein product plo, has recently been found to be mutated or deleted in a 

number of tumours [20]. Transforming growth factor beta (TGF-0) fUnctions to stop 

the growth of various normal cells, however, in certain cancers such as colon cancer, the 

gene encoding the receptor for TGF-13 is inactivated, thus allowing uhcontrolled growth 

[16]. Some tumour suppressor genes also act to counter the effects of growth 

stimulating products, for example, the protein product of the NE-i gene acts directly on 

a Ras protein to inhibit the release of growth-stimulating products [16]. 
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Table 5 Representative tumour suppressor genes implicated in human cancers. 
(Adapted from Weinberg [16]). 

GENE GENE PRODUCT ASSOCIATED CANCER(S) 

APC Cytoplasmic protein Colon, stomach 

DPC4 Signal transduction (inhibitory) Pancreas 

NFl 

___________________  

Protein inhibits Ras protein Neurofibroma, phochromo-

cytoma, myeloid leukaemia 

NF2 Cytoplasmic protein Meningioma,ependymoma, 

schwannoma 

MTS1 p16 protein- braking component 

of cell cycle clock  

Wide range of cancers 

RB pRB 	protein 	- 	 important 

regulator of cell cycle 

Retinoblastoma, bone, bladder, 

breast, small cell lung 

p53 p53 protein - halts cell division 

and 	can 	induce 	apoptosis 	in 

abnormal cells  

Wide range of cancers 

WTI Nuclear protein Wilms' tumour 

BRCA I Cellular location unclear Breast, ovary 

BRCA2 Cellular location unclear Breast 

VIIL Cellular location unclear Kidney 

In 



1.3 Cancer Therapy 

Increased knowledge of cellular immunology and the genetic basis of cancer has widened 

the scope for treatment of this invidious disease. Genetic therapy and immunotherapy 

offer exciting new advances and hope for the future, but many of these treatments are 

still experimental and are often used as adjuncts to more conventional modalities. 

Primary cancers which have not spread from their site of origin can be successfully 

treated with surgery andlor radiotherapy, with, hopeflully, minimal damage to 

surrounding tissue. Unfortunately, most cancers are not diagnosed at this early stage and 

thus, on clinical presentation, metastasis has already taken place. In this situation, 

treatment must be applied systemically (often in conjunction with surgery and 

radiotherapy). The utopian aim of chemotherapy is to selectively target the malignant 

cells, but without damage to normal cells. In practice, this is very difficult to achieve, 

since there are close similarities between the malignant cells and normal cells. Many anti-

cancer drugs therefore produce unpleasant, toxic side-effects at therapeutic doses since 

they also affect normal cells, in particular rapidly dividing cells such as those in the gut 

mucosa, hair follicles, bone marrow and thymus. Other commonly encountered problems 

are cardiotoxicity and nephrotoxicity. Although much progress has been made, the 

overall prognosis is still very poor. 

1.3.1 Multiple Drug Resistance 

A number of factors may contribute to the failure of chemotherapy, the main ones being 

the inability of the drug to reach the cellular target, due to the lack of specificity 

mentioned above, physiological factors such as the size, distribution and localisation of 

the tumour, coupled with metabolic considerations [5] and, as a major problem, the 

development of drug resistance at a cellular level. In many cases the initial response to 

treatment is encouraging, with tumour shrinkage due to the elimination of drug sensitive 

cells, however, when relapse occurs, it is often associated with the development of drug 

resistance. Drug resistance may have many forms; it may sometimes be specific to a 
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particular drug, for example, increased production of the target enzyme dlhydrofolate 

reductase (DFWR) in methotrexate resistance [21]. Methotrexate acts by inhibiting 

DHFR, an essential enzyme involved in DNA synthesis, however, the drug must be 

present continuously in a free form to effect this inhibition [3]. Treatment with a single 

drug also frequently results in the development of cross-resistance to other, non-related 

drugs. This phenomenon is referred to as multiple drug resistance (MDR) and flnther 

chemotherapy is often ineffective. Although these drugs are chemically unrelated, many 

of them are positively charged at neutral pH and are relatively hydrophobic [22]. Some 

progress has been made using combinations of drugs and certain cancers such as 

Hodgkin's disease, large cell lymphoma, acute lymphocytic leukaemia, testicular cancer 

and early stage breast cancer [23] are now potentially curable, with others showing good 

clinical responses, for example, ovarian cancer [23]. However, many cancers stifi remain 

refractory to treatment, with MDR being a major bather to success. 

There are two distinct types of cellular resistance de novo or intrinsic resistance and 

acquired pleiotrophic resistance [24]. Many neoplasms, such as melanoma, colon and 

non-small cell cancers, are refractory to treatment, since the cells are intrinsically 

resistant to chemotherapy at the time of transformation. Acquired resistance, as the 

name implies, occurs after exposure to chemotherapeutic agents. This cellular resistance 

is often associated with a decreased intracellular concentration of the drug. Two 

theories were initially proposed for this phenomenon, either active drug efflux from the 

cell or decreased permeability of the membrane. Since the plasma membrane is the first 

line of defence of the cell, it was reasoned that this was the probable site of action. 

However, studies thus fhr have shown that the main mechanism for this decreased 

accumulation of drug is due to an energy dependent pump, P-glycoprotein (Pgp) situated 

in the plasma membrane of the cell [25], although decreased drug uptake has also been 

identified in many cell lines with a variety of drugs [26]. Recent research has highlighted 

the existence of two other proteins which are also now thought to play an important role 

in MDR the Multidrug Resistance-associated Protein (MRP) [22] and the Lung 

Resistance-related Protein (LRP) [27] which have been isolated in many multidnig 

20 



resistant tumours. Other mechanisms of drug resistance do, however, exist and will be 

discussed later. 

1.3.2 P-glycoprotein. 

Tumour cells displaying the 'classic' MDR phenotype are resistant to anthracyclines, 

Vinca alkaloids, epipodophyllotoxins, taxol and actinomycin D [26]. Cells displaying 

this phenotype have been found to overexpress a 170-180 kDa glycoprotein in their cell 

membrane, commoniy referred to as P-glycoprotein (Pgp). This protein is encoded by an 

MIDR gene in both humans and rodents [26,28]. Two MDR genes, MDRI and MDR3 

(sometimes cited as MDR2), have been isolated in humans, but only the MDRJ gene 

seems to be active in encoding Pgp mRNA of approximately 4.5 kilobases in drug 

resistant cell lines. Although the MDR3 gene is closely related, its function has not yet 

been determined. The human MDRJ gene has been localised to chromosome 7q 21. 1. 

Increased MDRI mRNA has been shown to result from gene amplification in both rodent 

and human cell lines, however, increases in MDRJ mRNA have also occurred in the 

absence of amplification, suggesting that the MDRI gene may be regulated by 

transcription and / or translation [29, 30]. 

Pgp consists of 1280 amino acids, expressed as a single polypeptide chain containing two 

homologous portions of equal length [31, 32, 33]. The two hydrophilic domains in the 

cytoplasm each contain an ATP binding site, are approximately 43% homologous and are 

located near the carboxy-terminal of Pgp [34]. Initially, it was thought that Pgp 

consisted of twelve transmembrane domains with six extracellular loops and two 

cytoplasmic ATP binding domains (Figure 4a) [25] and this has been supported by 

antibody localisation data [35]. However, an alternative model has now been proposed 

(Figure 4b) [36]. Another glycosylation site has been identified in the second half of the 

Pgp, in addition to the sites previously found in the first extracellular loop [37, 38, 39]. 

This glycosylation site links transmembrane domains 8 and 9 of the original Pgp model 

thus it is suggested that they are located extracellularly [36]. 
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Pgp has been identified as an energy-dependent drug efflux pump belonging to the 

adenosine triphosphate binding cassette (ABC) thmily of transporters [25]. It is 

homologous to the haemolysin B pump which is present in the cytoplasmic membrane of 

some bacteria [40]. Recent studies, however, have indicated that it may function as a 

ifippase [41]. Higgins & Gottesman [41] suggested that hydrophobic drugs may be 

removed from the plama membrane before they reach the cytoplasm, using the analogy 

of a 'hydrophobic vacuum cleaner' to describe the function of the transporter. This model 

helps to explain discrepancies in transport kinetics since it has been shown that drugs 

initially partition into the lipid bilayer and then interact with Pgp. Thus, the ability of the 

drug to partition into the bilayer, coupled with the lipid composition of the membrane, 

will affect the concentration of the drug available to the transporter, but will not 

necessarily correlate to the concentration of the drug being administered [36]. 

Several normal tissues also express high levels of Pgp hepatocytes, pancreas, small and 

large bowel, kidney, adrenal cortex, endothelial cells of the CNS, testis, human placenta 

and CD34+ bone marrow cells [22, 421. It has been suggested that Pgp may function in 

normal cells to excrete xenobiotics and endogenous hydrophobic compounds, such as 

steroid hormones, in order to protect these tissues from toxic compounds [43]. Many of 

the tumours which are intrinsically resistant to chemotherapy are derived from tissues 

which normally express the product of the MDRI gene. For example, carcinomas of the 

colon, kidney and adrenal cortex and hepatomas and phaeochromocytomas all express 

high levels ofMDR1 mRNA [44]. 

Pgp is highly homologous to the cystic fibrosis transmembrane conductance regulator 

protein (CFTR), which functions as an ATP-dependent cyclic adenosine monophosphate-

regulated chloride channel. It has recently been postulated that P-glycoprotein is 

associated with volume-regulated chloride channel activity [45], suggesting that it might 

not be used as a drug transporter in some of the tissues, rather that it may function as a 

chloride channel, however;  this observation is now in doubt [46]. A recent study by 

Viana et aL, [47] compared the characteristics of volume-activated chloride currents, 
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dnzg transport !lmction and levels of Pgp expression between a parental human 

leukaemia cell line (K562) and a resistant sub-line, derived by vinbiastine selection (K562 

VBL400), but found no association between Pgp expression and volume-sensitive 

chloride channels. 

coo 

(a) 

coo 

(b) 

Figure 4: Proposed topological models for P-glycoprotein (Pgp). 
The original model, based on the hydropathy profile, is represented by Figure 4a, and the 
alternative model, postulated by Zhang & Ling [37], is represented by Figure 4b. The 
red circles represent ATP-binding sites. (Adapted from Bellamy [36]). 
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1.3.3 Other Mechanisms of MDR. 

Classical MDR, or typical MDR, has been traditionally associated with the 

overexpression of Pgp mRNA, however, it has become clear that certain cell lines also 

exhibit MDR in the absence of Pgp. Some of these cell lines are cross-resistant to a 

variety of natural product chemotherapeutic agents, but not to the Vinca alkaloids and 

colchicine. Studies found them to have unaltered drug uptake, accumulation and efflux, 

but to contain an altered form of the nuclear enzyme, topoisomerase II [48, 49]. The 

enzyme has been shown either to be present in a mutated form or in decreased 

intracellular levels. This type of MDR was identified as 'atypical' MDR by Danks et aL in 

1988 [50]. Topoisomerase Ills also involved in classical MDR since it is an important 

target enzyme for many of the anti-tumour drugs exported by Pgp, and this overlap 

between classical MIDR and atypical Ml)R adds to the complexity of elucidating cellular 

resistance mechanisms. 

Non-Pgp MIDR has also been recognised, for example, cross-resistance to Vinca 

alkaloids, anthracyclines and actinomycin •C has been associated with decreased 

intracellular drug concentration, but in the absence of P-glycoprotein [51, 52]. Many 

proteins have now been identified as being overexpressed in MDR cell lines [48], but 

definitive proof of their role in MDR is so far unavailable. However, as previously 

mentioned, two proteins which have attracted the most recent attention are the 

Multidrug Resistance-associated Protein (MRP) and the Lung Resistance-related Protein 

(LRP). 

1.3.4 Mutidrug Resistance-associated Protein. 

MRP, the product of the MRP gene, has now been shown to be very important in MDR 

and has recently generated a great deal of research [53,54,55]. Cole et aL [53] 

demonstrated the overexpression of MIRP mRNA in a doxorubicin-resistant lung cancer 

cell line which displayed classical cross-resistance to anthracyclines, Vinca alkaloids and 
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epipodophyllotoxins, but did not overexpress Pgp mRNA. MRP is a 153 1-amino acid N-

glycosylated integral membrane protein, encoded by a 6.5 kilobase mRNA and has been 

localised to chromosome 16p 13.1(53]. It has been identified as a 190 kDa protein 

belonging to the large ABC transporter family, in common with Pgp [53] and has been 

located in the plasma membrane and the endoplasmic reticular membrane [56]. The 

proposed structure of the MRP protein is shown in Figure 5. 

Overexpression of the MRP gene in human cancer cells has been associated with 

increased activity of the glutathione S-conjugate carrier in isolated plasma membrane 

vesicles [57]. The function of this efliux pump is to mediate excretion of bivalent anionic 

conjugates from mammalian cells and it is also thought to be involved in the excretion of 

xenobiotib conjugates [57]. MUller et al. [57, 58] suggest that MIRP is involved with 

multidrug resistance by promoting the export of drug modification products from cells. 

Drug resistance attributed to altered glutathione (OSH) and/or GST levels within the 

cells may therefore be involved with MIRP expression. Leier et a! [54] have shown that 

MRP mediates the ATP-dependent transport of the endogenous glutathione conjugate 

leukotriene C4 (LTC(4)), and further studies have found that MRP also mediates the 

ATP-dependent transport of anionic conjugates of lipophilic compounds and glutathione 

disulfide [59]. 

MRP mRNA has been shown to be expressed at low levels in most, if not all, normal 

tissues, including peripheral blood, endocrine glands, striated muscle, lymphoreticular 

system, digestive tract, respiratory tract and urogenital tract [60]. Various human 

cancers have been studied with regard to MIRP mRNA expression, with the highest 

expression being shown in chronic lymphocytic leukaemia and prolymphocytic leukaemia 

[60,61]. MRP mRNA has also been found to be overexpressed in other cancers such as 

acute myelocytic leukaemia, squamous cell carcinoma, oesophageal and non-small cell 

lung cancers [60,62]. Association with a number of other neoplasms has also been 

noted, such as soft tissue sarcomas, melanoma, cancers of the prostate, breast, kidney, 

bladder, testis, ovary, colon and other haematological malignancies. However, MRP 
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mRNA is usually expressed at low levels in these cases [60]. A further study has shown 

that expression of the MRP gene also correlates with the amplification and 

overexpression of the N-myc oncogene in childhood neuroblastoma [63]. 
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Figure 5: Proposed topological model for the Multidnig Resistance-associated 
Protein (MRP). 
Red circles represent ATP-binding sites. (Adapted from Bellamy [36]). 

1.3.5 Lung Resistance-associated Protein. 

LRP is a 110 kDa protein which is overexpressed in many non-Pgp expressing cell lines 

and has been found to be a good predictive marker for resistance to chemotherapy in 

acute myeloid leukaemia and ovarian cancer [64,65,66]. The lrp gene has been localised 

to the short arm of chromosome 16, within the 16p 13.1-16p 11.2 chromosomal region 

[67,68]. Interestingly, two other genes which are associated with MDR, the MRP gene 

and the gene encoding protein kinase C-13,  have also been mapped to this region [66]. 

Protein kinase C is known to be implicated in MDR since it increases the activity of Pgp 

upon phosphorylation. Most of the M]I)R cell lines which overexpress the lrp gene also 

overexpress MRP [69,70], however, although these two genes are often co-upregulated 

in MDR cell lines, studies have shown that each gene can be regulated independently 

[66]. By contrast, most MDR cell lines which overexpress the MDRI gene, encoding 

Pgp, do not overexpress lrp [69]. There are, however, some exceptions, such as the 

MCF7ID40 breast cancer cell line and some 8226 myeloma sub-lines, which overexpress 
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both MDRJ and lrp genes [69,71]. A recent study of melanoma cell lines and 

melanocytic lesions, comparing Pgp, MRP and LRP overexpression, found little or no 

MRP and Pgp expression, but high expression of LRP [72]. 

LRP has been found to be highly conserved across species, suggesting a constitutive role 

in cellular function. It has been shown to be widely distributed in both normal and 

neoplastic tissue [69,73], although the distribution is varied. Normal tissues which are 

exposed to xenobiotics, metabolically active tissue and macrophages typically display 

high levels of LRP [73], suggesting a protective role for LRP against xenobiotic agents. 

A similar pattern of distribution has been noted for other proteins associated with MDR, 

such as MRP and Pgp [74]. Other normal tissue shows a more variable distribution of 

LRP [73] and neoplastic tissue also shows varied expression of LRP, which appears to 

correlate with the susceptibility of the tumour to chemotherapy. Tumours which are 

refractory to chemotherapy, for example, renal, pancreatic and colon cancers, are usually 

LRP positive, whereas those which are highly chemosensitive, such as leukaemias, germ 

cell tumours and neuroblastoma, rarely express the protein [73]. 

A cDNA coding for the lrp gene has been isolated from a human fibrosarcoma cell line 

(HT1080IDR4) [67] and comparative sequence analysis has demonstrated that LRP 

shares 57% amino acid homology with that of the major vault protein of Dicytostelium 

discoidewn [75] and 87.7% amino acid homology with that of Rattus norvegicus [76]. 

LRP has subsequently been identified as the major human vault protein (MYP) and is 

described as 'the most abundant component of the previously described multisubunit 

particles termed vaults' [77,78]. 

Vaults are ribonucleoprotein particles and were first identified in 1986 as contaminant 

particles of clathrin-coated vesicle preparations derived from rat liver [77,78]. Animal 

studies have shown vaults to be most widely distributed in epithelial cells and in 

macrophages, which correspond to LRP distribution in human tissue [79]. Most vaults 

are present in the cytoplasm and the majority of cells contain thousands of vaults [73], 

27 



however, to date, their functions are not filly understood. They are novel cellular 

organdIes widely distributed and highly conserved among various eukaryotic cells, 

suggesting that they are involved in fundamental cellular processes [57]. Studies using 

electron microscopy have shown vault proteins to be barrel-like structures 

(approximately 57 x 32 nm), with a molecular mass of around I3MDa (Figure 6), and as 

such are the largest ribonucleoprotein particles reported to date [79]. The barrel 

structure is symmetrical, comprising two identical cup-like halves, each of which opens 

up into a flower-like arrangement with eight petals arranged around a central ring. 

Approximately 5% of the vaults are nuclear-associated and localise to the nuclear pore 

complexes (NPC) [80] possibly constituting the central plug of the NPC [81 ] They are 

thought to be the transporter units of the NPC and it has been suggested that they may 

play a role in MDR by mediating the bidirectional transport of various substrates 

between the cytoplasm and the nucleus thereby regulating cytotoxic drug levels [78]. A 

different intracellular distribution of certain chemotherapeutic agents, such as 

daunorubicin, is exhibited by some MDR cell lines in comparison to their parental cell 

lines [81] and this has been suggested to be linked to the function of vaults. Gervasoni el 

al. [81] have shown MDR cells to distribute daunorubicin into the perinuclear region 

initially, then subsequently to redistribute the drug away from the nucleus into the 

cytoplasm. Conversely, the same authors showed that the parental cells localised 

daunorubicin in a diffuse nuclear and cytoplasmic pattern. Reduced nuclear 

accumulation of daunorubicin has also been reported in the MDR cell line 2R120 which 

overexpresses !rp [82]. It has not yet been established to which structures daunorubicin 

localises in the perinuclear and cytoplasmic regions of MDR cells, but it has been 

postulated that vaults may be such structures [73]. Izquierdo el al. [66] hypothesised 

that vaults may play a role in MDR by regulating both the cytoplasmic redistribution and 

the nucleocytoplasmic transport of drugs. 
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Figure 6 : Proposed model of a vault structure. 1661 
The intact vault particle is a barrel-like structure, represented here in end-on, oblique and 
side views (a), (b) & (c), respectively. The vault has 2-fold symmetry and each half can 
be opened up into a flower-like structure, containing eight 'petals' surrounding a central 
ring [79], represented by (d ) & (e). 

1.3.6 Glutathione and glutathione S-transferases. 

Studies of mutant cells exhibiting the MDR phenotype have also shown that there may be 

several other mechanisms involved in MDR. Many biochemical changes have been 

associated with these cells, such as altered metabolic enzymes and proteins as well as 

lipids and enzymes involved in membrane fluidity and signal transduction [3,831. 

Cilutathione-S-transferases (GSTs) are important Phase II metabolic enzymes which have 

been implicated in M1)R [84]. This group of enzymes catalyse the conjugation of 

reduced glutathione (gamma-L-glutamyl-L-cysteinylglycine) to a variety of molecules 

prior to their excretion. Several GST isozymes have been described and are classified as 

alpha (cx). mu (j.t) and pi (it) [60]. Mannervik et at [85] have recently described the 

subunits of these classes as follows : a class GST subunits as GSTAI-I and GSTA2-2; .s 

class GST subunits as GSTMIa-la, GSTM1b-lb, GSTM2-2 and GSTM 3-3; and it GST 
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subunits as GSTP1-1. Various studies have correlated increased cellular GST levels with 

resistance [84,86-89], however, other studies have found conflicting evidence [90,91].. 

Overexpression of the a class of GSTs has been associated with increased resistance to 

alkylating agents used in cancer chemotherapy [92]. The it class of GSTs has 

consistently been found to be elevated in human cancer tissue and MDR cell lines, and is 

also used as a tumour tissue marker in some cases [92]. Singb et aL [93] demonstrated 

that many chemotherapeutic agents are substrates for GSTs, such as cyclophosphamide, 

nitrogen mustard, meiphalan, chiorambudil, VP-16, 6-thiopurine, mitomycin C and 

mitoxantrine, however, these are not traditionally associated with NOR. A recent 

review of the role of glutathione and glutathione-related enzymes in Ml)R by Moscow 

and Dixon [91] casts doubt upon the role of GST-conjugation in MDR. They found 

scant biochemical evidence to support the conjugation of MDR drugs prior to theft 

excretion, and, in particular, that no evidence of OSH conjugates of doxorubicin, 

vincristine, etoposide or actinomycin D has been documented. The only exception 

appears to be the effect of microsomal GST, a membrane bound enzyme, which has been 

shown to be involved in the metabolism of mitoxantrone [94]. 

Glutathione also binds strongly to hydrophobic compounds, thus playing a protective 

role in the cells by binding toxic substances, and thereby preventing theft interaction with 

specific cellular targets. It has been suggested that GSTs may exert their effect in MDR 

by binding anti-tumour agents to glutathione and transporting them to the Pgp pump for 

export [95], however, Moscow and Dixon again report that there is no evidence to 

support this with regard to MDR drugs and their metabolites [91]. Similarly, Black etal. 

[96] found no evidence that GSTP1-1 and GSTA1-1 could bind doxorubicin. Organic 

peroxides are produced as metabolites of certain anti-cancer agents and it has been 

suggested that the intrinsic peroxidase activity of certain GST classes, in particular the 

the a GSTs, may be protective in these cases. However, the it GSTs, which are most 

frequently elevated in MDR tissue, have very little intrinsic peroxidase activity [97]. The 

recently identified involvement of MRP may shed new light upon the role of GSH and 

GSTs in MINt 
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1.3.7 Circumvention of MDR. 

A large number of agents have been found to circumvent multi-drug resistance, with 

varying success (Table 6). The main mechanism by which these agents exert their effect 

is via competitive inhibition of the hydrophobic binding of drugs to Pgp, thereby 

increasing the intracellular accumulation of the agent [98]. Two drugs frequently used 

are verapamil [99] and cyclosporin A [100]. There are, however, limitations, and 

although many of these agents are effective in vitro, severe toxic side effects, such as 

cardiotoxicity, often ensue in vivo [23]. A recent interesting finding by Clynes et aL 

[83] shows that salicylate can reverse M])R in a variety of cell lines. Other reversal 

strategies include the modification of the Ml)R1 gene or its mRNA [101]. Clearly, 

identifring and/or synthesising agents which can circumvent MDR at safe therapeutic 

doses is an important objective for cancer research. 

Table 6: Reversing agents of classical MDR. (Adapted from Lehnert, 1994 [98]). 

CLASSIFICATION DRUG 

Calcium channel blockers Verapamil; 	bepridil; 	nifedipine; 	diltiazem 	flunarizine; 

nitredipine; nimodipine. 

Calmodulin inhibitors Trifluoperazine; thioridazine; chiorpromazine; clomipramine. 

Lysomotropic agents Quinine; quinidine; chioroguine; guinacrine. 

Steroids Progesterone. 

Anti-oestrogens Tamoxiièn; toremifene. 

Cyclic peptide antibiotics Cyclosporin A. 

Miscellaneous Dipyridamole; 	amiodarone; 	cefoperazone; 	cefriatraxone; 

erythromycin reserpine; tween 80; amphotericin B. 
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1.4 Photodynamic Therapy. 

1.4.1 Brief History of Photodynamic Therapy. 

Photodynamic therapy (PDT) exerts its cytotoxic action via the combination of a 

photosensitizer, light of a suitable wavelength and molecular oxygen [102]. PDT is not a 

new concept, indeed, one of the earliest recorded uses was the treatment of skin 

disorders with psoralens extracted from weeds growing in the river Nile in ancient Egypt 

[103]. The first observation of the photodynamic effect was seen by Raab in 1900 [104] 

who demonstrated the cytotoxic action of light, in the presence of oxygen, in 

paramoecium which had previously been sensitized by acridine orange. Similarly, von 

Tappeiner and Jesionek (1903) [105] treated skin cancer with topically applied eosin 

exposed to sunlight. Although much research was carried out in the intervening years 

into the mechanisms of action of PDT, little progress was made with clinical treatment 

due to problems with poor light absorption and ineffective light delivery. 

A resurgence of interest in PDT occurred in the 1960s and 1970s due to the 

development of haematoporphyrin derivatives and more sophisticated laser light delivery 

systems. Haematoporphyrin, a derivative of the naturally occurring protoporphyrin IX, 

was found to be a very effective photosensitizer, but it did not accumulate in tumour 

tissue and was therefore not a good candidate for PDT [106]. In 1960, Lipson and 

Baldes [cited in 107] developed some haematoporphyrin derivatives (HpDs) which were 

also very good photosensitizers and had the added advantage of selective tumour 

localisation. In the early 1970s the first experimental treatments on animal tumours were 

carried out [108,109]. Further porphyrin analogues such as the chlorins [110] and the 

phthalocyanines [111], the so-called second generation photosensitizers, were developed 

and an improved Photoflin has been in clinical use for skin disorders, including 

neoplasms, for some time [104,112]. The mechanism of action of psoralen, a natural 

product common in leguminous plants, was also elucidated in the 1970s, when it was 

found to insert into cellular DNA on exposure to UV light, causing cross-linking, thus 
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interfering with cell division [112]. Psoralen and its derivatives, in particular 

8-methoxypsoralen [106], have been long established in the treatment of psoriasis. There 

are, however, some drawbacks in the long term use of psoralen, not least its effect on the 

DNA of healthy cells, which may result in potentially serious side effects, including skin 

cancer. 

1.4.2 Mechanism of Action of PDT. 

Cell killing in PDT is known to occur via two pathways [113]: redox reactions between 

the photoexcited sensitizer and biomolecules (Type I) or in situ generation of cytotoxic 

singlet oxygen by the photosensitizer (Type II) (Fig.7). The photosensitizer, in its ground 

state, absorbs a photon on exposure to light and assumes an excited singlet state which is 

very unstable and his a very short haiflife. At this stage, the photosensitizer may decay 

back to the original ground state emitting fluorescence and resulting in no photodynamic 

effect. Alternatively, the excited photosensitizer may cross over to the triplet excited 

state which confers much more stability to the molecule and increases its half-life by 

approximately 10 fold. In Type I reactions, the excited triplet photosensitizer may react 

with a biomolecule by electron or hydrogen transfer, which produces radical forms of 

the substrate. These radicals react directly with molecular oxygen, producing various 

free radicals such as hydroxyl ions, hydrogen peroxide and superoxide. Type II reactions 

are thought to be more common, and in this case the excited triplet state interacts with 

ground state oxygen, and the transfer of energy which ensues generates singlet oxygen, a 

highly reactive species. The two reactions may occur simultaneously, and the ratio 

between the two processes is highly influenced by the photosensitizer and the 

environment. 

Most of the studies into actual sites of action and drug localisation have been carried out 

on the porphyrin-based drugs, but the initial target site is still not clear since the toxic 

compounds interact efficiently with many cellular sites. Cellular membranes are known to 

be damaged by lipid peroxidation, and protein cross-linking, and the photooxidation of 
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unsaturated fatty acids also occurs [102]. Moan et aL [114] showed that porphyrins bind 

to the plasma membrane, and some light-induced alterations to the membrane, such as 

K+ leakage or inhibition of certain membrane transport systems have been reported in 

cultured cells [115]. Mitochondria are particularly vulnerable targets for PDT damage, 

since porphyrin and other photosensitizers have been shown to localise there 

preferentially. Various sites of mitochondrial photodamage, such as membrane 

disruption, changes in membrane potential and damage to the cristae have been observed 

[116]. Nuclear damage is not thought to be a primary target in porphyrin-induced PDT 

damage, although there have been some reports of DNA damage, particularly to the 

guanine base [117]. HpD has been shown to convert guanine into 8-hydroxyguanine. 

DNA polymerases and DNA ligases may also be inhibited as a result of 

photosensitization, although this mechanism has not yet been fully elucidated [116]. 

In addition to intracellular damage, there is substantial evidence to show that porphyrin 

PDT induces vascular injury, and it has been suggested that initial sites of action may 

involve the sub-endothelial collagen matrix and endothelial cells of the microvasculature 

[102]. Reduèed blood supply to the tumour, due to vasoconstriction and cell 

aggregation results in the eventual destruction of the tumour [116]. Studies have shown 

that various cycloxygenase products, such as thromboxanes and prostaglandin E 2  are 

released following phototherapy, which induce vascular injury [118]. In addition, in 

vivo, tissues treated with PDT appear to be infiltrated by lymphocytes and plasma cells 

and various cytokines are released, suggesting an immune response. Immunosuppression 

has also been described by Jolles et aL [119]. 

34 



F SENSITISER IN T 
r I GROUND STATE [ - 

p 	1. 	STATE)J. 

I I ......?.??............. 

I 	 V 

' ISH0RT-LIVED EXCI 
SINGLET STATE 
(Highly unstable) 

+ 	I  
EXCITED TRIPLET 

STATE 
Lifetime 	(ms range) 

TYPE I MECHANISM 	TYPE ii MECHANISM 

REACTS WITH SUBSTRATE 
DR SOLVENT BY HYDROGEN 

	TRANFERS ENERGY T 

&TOM OR ELECTRON 
	 OXYGEN DIRECTLY 

FRANSFER 

RADICALS 
AND 

RADICAL IONS 

SINGLET OXYGEN - 
HIGHLY REACTIVE 
OXIDATIVE SPECIES 

iNTERACTS WITH 	INTERACTS WITH 

OXYGEN 	 BIOMOLECULE5 
F' 

[ OXYGENATED 
PRODUCTS 

Figure 7 : Mechanism of action of PDT. The photosensitizer, in its ground state, absorbs a 
photon on exposure to light and assumes an excited singlet state (highly unstable). The 
photosensitizer may decay back to the original ground state, emitting fluorescence (no 
photodynamic effect). Alternatively, the excited photosensitizer may cross over to the triplet 
excited state. In Type 1 reactions, the excited triplet photosensitizer may react with a biomolecule 
by electron or hydrogen transfer, which produces radical forms of the substrate. These radicals 
react directly with molecular oxygen, producing various free radicals such as hydroxyl ions, 
hydrogen peroxide and superoxide. Type II reactions are thought to be more common where the 
excited triplet state interacts with ground state oxygen, generating singlet oxygen (highly 
reactive). The two reactions may occur simultaneously, and the ratio between the two processes is 
influenced by the sensitizer and the environment. 
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1.4.3 Cancer Treatment Using PDT. 

Photodynamic therapy is now well-established and is gaining increasing acceptance in the 

treatment of cancer [106]. It is a novel form of treatment, with very few side-effects 

since it has low systemic toxicity when not illuminated. If the photosensitizer is 

administered systemically (as opposed to topical application), detailed studies of the 

pharmacokinetics of the drug are necessary, since the drug must be given time to localise 

at the tumour site before ifiumination. Many of the photosensitizers are taken, up or 

retained preferentially by tumour tissue, and since the spec j/Ic tumour site can be 

illuminated (with the use of fibre optics and tuneable lasers), minimal tissue damage may 

be inflicted on the surrounding tissues. The reason for the preferential accumulation of 

some photosensitizers in tumours is not clear, although it has been shown that 

haematoporphyrin derivatives have a high affinity for lipoproteins [120]. HpDs can bind 

to various lipoprotein fractions in the serum, including low density lipoproteins (LDLs). 

Interestingly, neoplastic tissues express increased numbers of LDL receptors and they are 

also highly vascularised, suggesting that these factors could be implicated in the 

increased accumulation of the drug. Although it is a relatively new treament, many types 

of cancer, including that of the bronchus, oesophagus, bladder, head and neck, skin and 

eye have been treated with PDT [120], and it may be particularly useful in cancers of the 

mouth and larym, where surgery can be extremely difficult and sometimes very 

disfiguring [121]. Much attention has been focussed on the use of PDT as an adjuvant 

treatment in cancer, particularly following tumour removal by surgery. As mentioned 

previously, one of the major obstacles to successful cancer treatment is the emergence of 

a multidrug resistant population of cells. PDT can be used alter surgery at the tumour 

site to try to eliminate microscopic traces of the malignant tumour. 

In general, most of the drugs in clinical trial at present are based on the porphyrin 

derivatives, although, for example, the phenothiazinium dye methylene blue has been 

used in oral, oesophageal and bladder cancer treatment [12 1-123]. One of the original 

drawbacks of using Photofrin was that it only absorbed light maximally at relatively low 

36 



wavelengths (around 400 nm), however, there are four additional, weaker absorption 

bands between 500 and 650nm and, in practice, illumination is usually carried out at 

around 630 nm (Figure 8). This is a critical factor in tissue penetration, since the light 

fluence decreases exponentially with distance, that is. the effective penetration depth (s) 

is inversely proportional to the effective attenuation coefficient (a), (a = 1/6 depth) 

[102]. 
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Figure 8 Typical absorption spectrum for porphyins such as Photofrmn & protoporphyrin IX (1) 
and relative penetration depth of light in bovine muscle vs. wavelength. The various absorbance 
peaks of second generation photosensitizers are indicated by the arrows (II) phthalocyanines & 
chlorins; (ill) phthalocyanines, purpurins, verdins, benzoporphyrin derivative, (IV) 
bacteriochiorin A. Depth of penetration depends on the tissue involved, ranging from 0.1 to I 
mm in highly pigmented tissue, such as liver, to I to 5 mm in lightly pigmented tissue, such as 
brain. (Diagram taken from van Hillegersberg, Kort & Wilson, 1994 [1041). 

Penetration into the tissue is hampered by light scattering and absorption by tissue 

chromophores (particularly haemoglobin and melanin). These parameters vary with 

tissue type. for example, liver is prone to poor penetration since it contains a high 
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proportion of haemoglobin, and the brain tissue is prone to light scattering. If the 

wavelength maximum is short, the effective depth of tissue penetration is very low 

(Figure 9). The development of new drugs for PDT has thus focussed on compounds 

which absorb in the longer wavelength region, since tissue penetration typically doubles 

at wavelengths between 630 and 750 an [102,124. The phthalocyanines have structural 

similarities to porphyrin, but show strong absorbance between 650 and 700 nm (Figure 

8). Similarly, some of the chiorins and the purpurins have absorbance maxima in this 

region [104]. In addition to its poor photoproperties, HpD causes prolonged skir 

photosensitization and this also has led to the search for new and improved drugs. 
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Figure 9: Schematic diagram showing the wavelength dependence of effective penetration depth 
(8eff) in soft tissues. Penetration of lightly pigmented tissue (e.g. brain) is shown by the upper 
range and of highly pigmented tissue (e.g. liver) by the lower range. The structures at 500-600 
run and 90-1000 run are oxyhaemoglobin and water absorption peaks, respectively. The 
individual data represent extremes in published results, 0 neonatal brain in vitro; • rat liver in 

vitro. (Figure and data taken from Wilson, 1989 [124]). 



One of the most promising recent advances has been the development of systemic 

treatment with 5-aminolevulinic acid (ALA) [104]. This treatment is based on the füct 

that all cells contain porphyrins as precursors of haeme, and ferrochelatase, the enzyme 

which converts protoporphyrin to haeme, is decreased in various malignant and 

regenerating tissues [104]. By contrast, another enzyme, porphobilinogen deaminase 

(PGBD), also involved in the chain of reactions in haeme synthesis, is increased in these 

cells (Figure 10). Researchers reasoned that the oral administration of ALA would 

overcome this decreased production of haeme, and would result in the selective 

localisation of the endogenous porphyrin, protoporphyrin ix, in the malignant cells 

[104]. Van Hillegersberg et al. showed, using a rat liver metastasis model, that 

protoporphyrin accumulated progressively in colon carcinoma with increased duration of 

ALA treatment, compared to protoporphyrin levels in normal liver. 

Promising results have been achieved with this drug, which has an absorbance maximum 

of 630 nm. Mother advantage of the treatment is the reduced skin photosensitivity, 

reported to be as low as 24 hours. Excellent results in the treatment of Bowen's disease, 

using the topical application of 5-ALA have also been reported [125]. 

The field of photodynamic therapy is expanding, but the requirements for a successful 

photosensitizer remain : high selectivity for malignant cells, effective photosensitizer 

activity, low dark toxicity, lack of skin photosensitization, ease of production of pure 

drugs, biochemical stability and rapid clearance from the tissues. As mentioned 

previously, most of the photosensitizers in clinical use are based on porphyrin 

derivatives, and much research into new drug development has been focussed on these 

compounds and their analogues. However, some commercial dyes are effective 

photosensitizing agents and are interesting candidates for drug development, since their 

chemistry and synthetic routes are well-known. Several examples of commercial 

photosensitizers have been investigated [126-129] but dark toxicity has often been 

shown to be a problem. 
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Figure 10: Schematic diagram of the haeme biosynthetic pathway. The first intennediate is 5-
aminolevulinic acid (ALA), an aminoketone formed by the condensation of glycine and succinyl 

coenzyme A (CoA). Two molecules of ALA combine to form porphobilinogen (PBG), a 

monopyrrole, then four molecules of PBG combine to form uroporphyrinogen (UPG) a 

tetrapyrrole. URO is converted to coproporphyrinogen (COPRO) and subsequently to 

protoporphyrin IX (PROTO). Malignant cells may have altered activities of the enzymes PBG 
deaminase and ferrochelatase compared to normal cells (Figure adapted from van Hillegersberg 

cial. [104]). 



1.4.4 Cationic Photosensitizers. 

Recent interest has been shown in various cationic photosensitizers. As early as the 

1940s, Lewis et aL (130) tested many dyes and identified a variety of cationic dyes 

including oxazine, xanthene, thiazine and acridine derivatives to be efficient biological 

stains which were selectively retained by tumour tissue. Further research has shown that 

lipophilic cationic photosensitizers such as rhodamine 123, triarylmethane derivatives, 

chalcogenapyrilium dyes and cryptocyanines preferentially accumulate in malignant cells 

in vitro and in vivo [131, 132, 133]. The high affinity of cationic dyes for tumour cells 

has been attributed mainly to the negative potential across the plasma and mitochondrial 

membranes. Tumour cells have been shown to have a high negative mitochondrial 

membrane potential, suggesting that this may indeed be the reason for selective retention 

of the dyes by malignant tissue. In general, tumour cells also have a poor oxygen supply 

and high glycolytic activity, resulting in a low intracellular pH. Certain cationic dyes 

increase in lipophilicity with decreasing pH levels [134] thus thcilitating cellular uptake in 

this environment. Interestingly, Shea a aL have shown that exposure to light appears to 

increase the intracellular retention of these agents [135]. 

Mother feature of the cationic dyes is that they usually absorb light in the near infra-red 

region of the spectrum. This is an important consideration for efficient skin penetration. 

A number of these dyes have been found to have an anti-cancer effect, even in the dark 

(136), and are also effective photosensitizers. This, coupled with their ease of 

preparation, thus promotes their potential use in photodynamic therapy. 

Commercial photosensitizers have the advantage of well established chemistries, and 

ready availability, but often the disadvantage of higher inherent toxicity. Cationic 

examples include the triarylmethane dye Victoria blue BC (VBBO) and the 

phenothiazinium photosensitizers toluidine blue (TBO) and methylene blue (MB). It has 

been suggested that the flexibility of the ring structure of triarylmethanes causes a thst 

relaxation of the singlet excited state, and thus a low degree of photosensitizing activity 
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[133]. When immobilised, however, the photosensitizing activity of these compounds is 

greatly increased; immobilisation by binding to biomolecules may endow a greater 

rigidity and concomitant increase in photosensitizing ability [137]. The Victoria blue 

series are triarylmethane dyes related to crystal violet, where one of the phenyl groups is 

replaced by naphthyL Dyes such as crystal violet have been known for over a century 

and have indeed been widely used in topical antimicrobial medicine [138]. VBBO has 

been reported to exhibit photocytotoxic effects in several mammalian cell lines, including 

human squamous cell carcinoma (FaDu) and human melanoma (NEL), though some dark 

toxicity was observed [133]. No evidence of singlet oxygen production has been found 

in vitro, however, electron paramagnetic resonance has been used to demonstrate that 

VBBO can photosensitize superoxide production [139]. 

The phenothiazinium dyes have a rigid, planar structure and are well established Type II 

photosensitizers [128]. In solution, MB and TBO are both hydrophilic (log P = -0.01 

and -0.21, respectively) [130], however, in biological systems, TBO is partially 

converted into a neutral form by deprotonation and both dyes are subject to metabolic 

reduction to the neutral species which are highly lipophilic (log P ~! +3) [140]. MB is a 

well-known vital stain and has been used extensively in the diagnosis of many diseases. It 

has also been used to a lesser extent in the field of PDT, most notably in the treatment of 

bladder, oesophageal and other cancers [121-123]. The efficacy of MB is somewhat 

limited, however, since the dye is reduced to leuco-methylene blue (LMB) by the cellular 

enzymes NADH and FADH2  [140]. LMB is a colourless compound which therefore 

will not be activated by the long wavelength employed in PDT. Mother problem is low 

p1a value of LIvID compared to that of MB, which results in a lower level of ionisation 

[140]. A high level of ionisation is necessary for DNA intercalation to take place, 

thought to be the major effect of MB photocytotoxicity. 

TBO has a similar structure to MB and is thought to exert its photocytotoxicity in a 

similar manner by DNA intercalation. This agent has been used extensively in the 

treatment of oral diseases and is also a selective stain for the diagnosis of oral cancer. In 
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addition, many studies have been carried out recently into the use of TBO as a 

photodynamic anti-microbial agent, particularly against oral pathogens [141]. 

1.5Mm of the study 

The overall aim of the project is to investigate resistance mechanisms relevant to cancer 

chemotherapy and relate this to the development of strategies for overcoming MDR. A 

significant area of investigation is the role of the cell membrane as a barrier and/or target 

for drug action This may include the search for agents which are not susceptible to 

M[)R or adjuvants used in conjunction with cytotoxic drugs to enhance their activity 

against NOR cells. 
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CHAPTER TWO. 

DEVELOPMENT OF A PROKARYOTIC MODEL FOR 
STUDYING ANTHRACYCLINE-MEMIBRANE 

INTERACTIONS. 
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2.1 Abstract. 

Growth of wild-type E.coli strain MRE600 was severely affected up to 9 hours 

following treatment with the anthracycline doxorubicin (15 i.LM), however, alter 9 hours 

the cells became resistant. The onset of resistance coincided with some changes in the 

relative proportions of total saturated, monounsaturated and cyclopropane fatty acids, 

which would be predicted to affect membrane dynamics. 

Growth of S. aureus strain 6571 was severely affected after 3 hours' incubation with 

doxorubicin (~! 1O.xM) and further inhibited between 3 hours and 9 hours. Re-growth 

occurred between 9 & 24 hours, as had been previously noted with MRE600, however, 

S. aureus was found to be more sensitive to doxorubicin. 

The anionic lipid content in E. coli strain HDLI 1 is under lac control and synthesis can 

be induced by incubation with the lac inducer IPTG. }JDL 11, with low levels of anionic 

phospholipid, was unaffected by doxorubicin (100j.tM) over 9 hours, with only slight 

inhibition of growth seen over 24 hours. When the anionic lipid content of HDLI 1 was 

increased, there was a slight increase in the efficacy of doxorubicin, providing fUrther 

evidence for a membrane based step in doxorubicin action. 
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2.2 Introduction. 

Anthracycline antil,iotics are potent cytotoxic drugs, widely used as anti-cancer agents. 

One of the most effective and best characterised of these is doxorubicin (adriamycin), 

however, problems such as multiple drug resistance (MDR) and cardiotoxicity are 

associated with its use [142]. The mode of action of doxorubicin is very complex and 

has not been fully elucidated. Several mechanisms have been proposed, the most popular 

being its effect on cellular DNA via interaction with nucleic acids and nuclear 

components, such as topoisomerase II [143], however, studies have shown that 

doxorubicin can be strongly cytotoxic without entering the cell [144]. Recent 

investigations have indicated that this cytotoxicity may be directly related to plasma 

membrane composition [145] and doxorubicin has been shown to bind strongly to 

anionic phospholipids in model synthetic membranes, inducing disordering of acyl chains 

[146]. Although much information has been gained by the use of synthetic model 

membrane systems, very little is known about the interactions of anthracydlines with 

biological membranes in vivo: Unfortunately, as yet, a mammalian model system does not 

exist in which the phospholipid content of the plasma membrane can be easily 

manipulated. Recent genetic advances have, however, produced an excellent model 

plasma membrane system which is derived from Escherichia coil (E. coil) [146, 147]. 

The predominant membrane phospholipid of wild-type E. coil is 

phosphatidylethanolamine (PE) (75% w/w), which is zwitterionic, and the remainder 

comprises phosphatidylglycerol (PG) (15-20% w/w) and cardiolipin (CL) (5-10% w/w), 

which are both anionic [148]. Mutant strains of E. coli have been developed in which the 

phospho lipid content can be altered. E. coil strain HDL1 1 is such a mutant in which the 

pgsA gene encoding phosphatidylglycerolphosphate synthetase has been placed under the 

control of a iac promoter [147]. If the bacteria are incubated in the presence of varying 

levels of the iac inducer isopropyl 3-thiogalactopyranoside (IPTG), it is possible to 

control the level of pgsA expression, which in turn controls the level of PG and CL 

production. In the absence of IPTG, phosphatidylglycerolphosphate synthetase is still 
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produced at a low, basal level, maintaining the viability of the strain, given the additional 

presence of an lpp2 deletion [149]. The level of anionic phospholipids in the inner 

membrane of HDL1 1, under normal growth conditions, is 2% w/w PG and 3% w/w CL, 

based on total phospholipid, but incubated in the presence of 60 1xM IPTG, the content 

of PG and CL may be increased to wild-type levels of 28% w/w of the total [146]. 

The aim of this study was to develop a prokaryotic model system to investigate 

anthncycline-membrane interactions which could subsequently be related to a eukaxyotic 

model system. 
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2.3 Materials and Methods. 

2.3.1 Chemicals 

Doxorubicin was a gift from Farmitalia Carlo Erba Ltd., St. Albans, U.K. and isopropyl-

-thiogalactopyranoside (IPTG) was purchased from Sigma Poole, U.K. 

2.3.2 Bacterial strains and growth conditions. 

Escherichla coil strain MIRE600 and Escherichia coil strain HDL 11 ( pgsA: :/wn, 

(lacOP-pgsA ), iacZ', lacY:: Tn9, lpp2, zdg : Tn 10) [150] and Staphylococcus aureus 

strain 6571 were grown at 37°C in Nutrient broth (Lab M, Bury, U.K.) in the absence 

and presence of doxorubicin and IPTG. Prior to the experiment, E. co/i strain I-IDL 11 

was checked for resistance to chloramphenicol and kanamycin. 

2.3.3 Effect of doxorubicin on growth of bacteria. 

Preliminary growth experiments were carried out using E. coil MRE600 and HDL1 1 in 

the presence and absence of 5-100 pM doxorubicin. Overnight cultures were inoculated 

into nutrient agar (1:200 dilution), protected from light to prevent deterioration of the 

drug, and incubated at 37°C in an orbital incubator. Growth was monitored by 

measuring optical density at 660 rim (OD 0) at time zero and after 3 hours, 6 hours, 9 

hours and 24 hours. Subsequent experiments were performed, as described, on E. coil 

strains MRE600 and HDL1 I and S. aureus strain 6571, but using doxorubicin in the 

range 0-15 pM. Growth kinetics of both HDL 11 and MIRE600 were also monitored in 

the absence and presence of 30 pM and 60 pM IPTG, in addition to doxorubicin. In 

this instance, the stock cultures were grown overnight, prior to inoculation, in the 

presence of IPTG. 
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2.3.4 Analysis of membrane. 

Total lipids were extracted according to the method of Bligh & Dyer [151] and fatty acid 

methyl esters were prepared and analysed by gas liquid chromatography according to the 

method of Rolph & Goad [152]. Induction of pgsA by IPTG was confirmed by 14C 

acetate labelling of phospholipids which were resolved via TLC and quantified by 

scintillation counting (F. Harris, UCLAN, personal communication). 

2.4 Results. 

2.4.1 Effect of doxorubicin on E. coli strain MRE600. 

Initial experiments showed doxorubicin (5-100 jiM) to inhibit growth of MRE600 in a 

concentration-dependent manner with almost 100% inhibition achieved by 100 jiM 

doxorubicin (Figure 11). However, although 15 . 50 jiM doxorubicin severely affected 

growth between 3 and 9 hours, rapid growth ensued between 9 and 24 hours. 

Subsequent experiments used a range of 5-15 jiM doxorubicin to allow investigation of 

this phenomenon. MIRE600 cells previously grown over 24 hours in the presence of 15 

jiM doxorubicin and then sub-cultured into medium containing varying concentrations 

(5-15 jiM) of doxorubicin showed complete resistance to the drug (Figurel2). This 

indicated the induction of a resistance mechanism by the bacteria, rather than 

spontaneous breakdown of the drug over time. 

Addition of 30 jiM IPTG or 60 MM IPTG to MRE600 cells in the presence of 5-15 jiM 

doxorubicin showed very similar results to the controls (Figures 13a-c), thus it was 

concluded that the presence of IPTG had not affected the efficacy of doxorubicin. 
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Figure 11: Typical growth curve for E.coli (strain MRE600I grown at 37'C over 24 

hours, in the absence of doxorubicin (.) or in the presence of 5 pM ( • ), 10 pM ('), 

15 pM C • J. 25 pM I * 1, 50 pM C • I or 100 pM I - I doxorubicin. Each point represents 

moan ± SD In21. 
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Figure 12: Typical growth curve for E.co!i (strain MRESOO) grown at 37t over 

24 hours, in the absence of doxorubicin (.) or in the presence of5 pM (0 I, 
10 pM ( s ), or 15 pM (.1 previously grown for 24 hours in the presence of 

15 pM doxorubicin. Each point represents mean ± SEM (rt=4). 
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Figure 13.: Typtcal growth curve for E.coli strain MRE6001 grown at 37'C over 24 

hours, in the absence of dotorubicin I. 1 or in the presence ot5 pM dosorubicin (. I. 
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Figure lab: Typical growth curve for E.coli(ttrein MRE600} grown is 37'C over 24 

hours, in the presence of 30MM IPTO and in the absence of dosorubicin (•) or in 

the presence of 5 pM dosorubicin (ci, 10 pm dotorubicln C' I and 15 pM dotorsibicin 

* I. Each point represents mean ± SEM (n-el least 4). 
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Figure 13c: Typical growth curve for E.coli(strain MRE600) grown at 37'C over 24 

hourt, in the presence of 10pM 1PTG and in the absence of doxorubicin el or in 

the presence of 5 MM dosorubicin I.), ID pm doterubicin I • I and 15 pM dotorubicin 

I • 1.Each potnt represents mean ± SEM (n-4). 
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2.4.2 Total fatty acid composition of MRE600 cells in the presence and 

absence doxorubicin. 

Following 6 hours' doxorubicin treatment of MRE600 cells, some changes in the relative 

proportions of total saturated, monounsaturated and cyclopropane fatty acids were noted 

(Table 7). Whilst small, these changes altered the ratio of monounsaturates : saturates 

from 1:1 to 1:1.3, which would be expected to have some effect on membrane dynamics. 

In addition, there was a reduction in cyclopropane content. However, alter 24 hours, the 

relative proportions of the fatty acids in the treated cells again resembled the controls. 

This effect at 6 hours may possibly be due to the effect of doxorubicin interacting with 

the membrane lipids, rather than a resistance mechanism per Se. 

Table 7: Total fatty acid composition of MRE600 cells in the absence and 
presence of doxorubicin. Each value represents the mean ± SEM. 

	

%w/w 	 %w/w 	 %w/w 
SAMPLE 	SATURATES 	MONOUNSATURATES CYCLOPROPA]NES 

MRE600 

Ohr(n3) 
	

26.9 ± 1.5 
	

52.4 ± 2.1 	 16.9 ± 1.9 

6 hr (n=5) 
	

37.8 ± 0.6 
	

37.8 ± 1.9 	 17.5 ±1.2 

24 hr (n=4) 
	

37.2 ± 2.6 
	

25.7 ± 5.3 	 30.5 ± 5.9 

MRE600 +15 sM dox. 

0hr(ir3) 	26.9± 1.5 
	

52.4 ± 2.1 	 16.9 ± 1.9 

6hr(n=5) 
	

43.7 ± 2.5 
	

34.0±1.1 	 11.1±3.2 

24 hr (n=4) 	41.3 ± 4.5 	 25.4 ± 2.4 	 25.6 ± 1.7 
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2.4.3 Effect of doxorubicjn on E. coli strain HDL1 1 cells in the absence and 

presence of IPTG. 

All experiments were initially carried out using 5-100 .tM doxorubicin, however, since 

no significant enhancement of effect was seen using concentrations above 15 jiM (Figure 

14), subsequent experiments were performed using 5-15 j.tM doxorubicin. 
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Figure 14: Typical growth curve for E.coli(strain HDL1 1) grown at 37'C 

over 24 hours, in the absence of doxorubicin (.) and in the presence of 

5 pM (.). 10 pM (A),  15 pM (e), 25 pM (*), 50 pM (.) or 100 pM 
(a) doxorubicin. Each point represents mean ± SD (n2). 

1-LDLI I grown in the absence and presence of doxorubicin (5-15 jiM) showed a very 

different growth pattern to that of MRE600 grown under the same conditions, in that the 

drug exerted very little inhibitory effect (Figure isa). Addition of 30 jiM IPTG to 

HDLI I cells in the presence of 5-15 jiM doxorubicin did not appear to enhance the 

effect of doxorubicin significantly (Figure 1 Sb). Addition of 60 jiM IPTG improved the 

growth rate of HDL ii cells and growth between 9 and 24 hours was inhibited by S-IS 

1.tM doxorubicin in a concentration dependent manner (Figure 15c). However, the level 

of inhibition was much lower than that observed with MRE600 and was not greatly 

increased by addition of 100 jiM doxorubicin (Figure 16), implying that this phenotype is 

inherently less susceptible to the agent. 
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Figure I 5b:Typical growth curve for E.cofi strain HDL Ii in the presence 

of 30 pM IPTG and in the absence of doxorubicin 101. or the presence 

of 5 pM doxorubicin I • I. 10 pM doxorubicin ( A) or IS pM doxorubicin 

* I. Each point represents mean ± SEM (nt6). 
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Figure 1 Sc: Typical growth curve for E.cofi(str.in HDI Ii) in the presence 
of 60 pM IPTG and in the absence of doxorubicin (ci or the presence 

of 5 pM sI, 10 pM Ni or 15 pM I * I doxorubicin. Each point represents 
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Figure 16:Typical growth curve for E.coIi (strain HDL1 1) in the presence 
of6OpM IPTO and in the absence of doxorubicin (.) or in the presence 

of 5 pM C.). 10 pM (a)  15 pM C.). 25 pM I - ). 50 MM (.) or 100 
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2.4.4 Effect of doxorubicin on S. aureus cells. 

Growth of S. aureus strain 6571 was severely inhibited afler 3 hours' incubition with 

doxorubicin (~!I 0 pM) and further inhibited between 3 hours and 9 hours (Figure 17). 

Re-growth occurred between 9 & 24 hours, as had been previously noted with MRE600, 

however, S. aureus was found to be more sensitive to doxorubicin. 
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Figure IT: Typical growth curve for S.aureus (strain 67,11) grown at 37t 

over 24 hours in the absence of doxorubicin (•) and in the presence of 

5 pM doxorubicin (.J, 10 pM doxorubicin (a) and 15 pM doxorubicin 

•). Each point represents mean * SEM (n6). 
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2.5 Discussion. 

Many previous studies have indicated that the binding of doxorubicin to plasma 

membranes is intimately involved with anionic phospholipids [146,153]. By using intact 

cells from bacterial strains in which levels of anionic phospholipids can be manipulated, it 

was hoped to develop a prokaryotic model to substantiate these findings. In contrast to 

previous studies [146] intact E. coil MRE600 cells were found to be susceptible to 

doxorubicin at relatively low concentrations (5-15 1sM). The mutant E. coil strain 

HDL1 1, with very low anionic phospholipid content, was not affected by doxorubicin, 

even at a concentration of 100 1.xM. However, induction of phosphatidylglycerol (PG) 

synthesis by the lac inducer IPTO (F. Harris, UCLAN, personal communication), led to 

a limited increase in susceptibility of FIDL 11 cells, thus it was not possible to provide 

strong evidence that doxorubicin acts via interaction with anionic phospholipids. 

S. aureus, a Gram positive organism with no outer membrane and expressing a high 

percentage of anionic phospholipid in the membrane [154], predictably, showed greater 

sensitivity to doxorubicin. 

Previous work by de Wolf et aL [146] on various bacterial phospholipid extracts or 

membranes, including HDL1 1, showed that doxorubicin binding was dependent upon 

anionic phospholipids. However, when using plasma membrane vesicles of FIDL1 1 in 

the absence and presence of IPTG, rather anomolous results were obtained. Not only 

was there very little difference between the two samples, but the doxorubicin binding 

was shown to be 15-30 % higher than MRE600. They concluded that the effect of 

anionic phospholipids in plasma membranes of strain HDL1 1 may be masked due to "the 

presence of other binding sites as well as unknown membrane structure effects". The 

present study showed there to be little effect of doxorubicin on intact HDL1 1 cells in the 

presence of IPTG, suggesting that the strain may be phenotypically resistant to 

doxorubicin due, for example, to cell wall structure or expression of a membrane 

extrusion pump. 
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MRE600 showed a very interesting response to doxorubicin. Although, initially, 

growth was severely affected by doxorubicin (-~> 15 pM), after 9 hours, growth 

increased rapidly, suggesting the induction of a resistance mechanism, the selection of 

a resistant sub-population or that doxorubicin had lost efficacy by this stage. MRE600 

cells previously exposed to 15 pM doxorubicin for 24 hours and then re-subcultured 

into various concentrations of doxorubicin showed total resistance to the drug over 24 

hours, thus indicating that the resumption of growth after 9 hours is primarily due to 

the development of resistance rather than reduced concentration of doxorubicin due to 

photodegeneration. Various possibilities for this resistance mechanism exist and they 

are not necessarily mutually exclusive. 

Enzyme induction, promoting the metabolic breakdown of doxorubicin was 

considered, since this is an extremely common defence mechanism utilised by bacteria 

[155]. Certainly some enzyme activity was suggested, since HPLC assay of 

doxorubicin extracted from the cultures showed significant degradation of the drug 

after 9 hours (D.Phoenix, UCLAN, personal communication). 

Doxorubicin is also known to disrupt acyl chains in the plasma membrane [156], thus 

the total fatty acid composition of the cell membranes was investigated. Treatment of 

MRE600 cells with doxorubicin over 6 hours led to some changes in the relative 

proportions of total saturated, monounsaturated and cyclopropane fatty acids which 

coincided with the onset of doxorubicin resistance. Such changes are likely to affect 

membrane fluidity and hence limit the passive uptake of doxorubicin. Effects of 

changes in membrane composition on drug uptake have been investigated by Bums et 

aL [156] who found that increasing the level of polyunsaturated acyl chains in tumour 

cells stimulated drug uptake. However, it is possible that this effect at 6 hours may be 

due to doxorubicin interacting with the membrane and affecting lipid biosynthesis, but 

that after 24 hours resistance mechanisms have been induced which may remove 

doxorubicin and overcome the initial effect. 
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Mother resistance mechanism considered was the overexpression of a membrane 

translocase protein in the plasma membrane, acting as a multidrug resistant pump 

(MDRP). MDRPs are now known to be widespread in bacteria. There appear to be 

seven distinct MDR1s in E. coli and most common bacterial MDRPs belong to the major 

facilitator thmily of membrane translocases [157] . Lewis [157] suggests that MIDRPs 

have evolved from specific translocases which have broadened theft substrate spectra, 

thus increasing the defence mechanisms of the cell against ever increasing environmental 

toxins. Doxorubicin, a natural antibiotic produced by Streptomyces peucetius, is 

normally exported by an ABC (ATP binding cassette) type pump [157]. If, as has been 

suggested, MDRPs have evolved due to a loss of specificity for theft substrate, this 

translocase also has the potential to be overexpressed and become a MDRP. In the 

eukaryotic system, multiple drug resistance (MDR) is a major problem in cancer 

chemotherapy, and in many cases is strongly associated with the overexpression of a 

170 - 180 KDa protein in the plasma membrane, known as P-glycoprotein [25]. 

P-glycoprotein is also a member of a large family of ABC translocases and is 

homologous to the bacterial haemolysin B pump [25]. The role of ABC translocases in 

bacteria is currently being investigated, since the genes which encode members of this 

superfamily have been isolated from drug-resistant micro-organisms [158]. Studies on 

microbial ABC transporters which may be involved in M[)R thus offer considerable 

scope for exploring mechanisms of resistance in the eukaryotic system. 

In summary, it appears that some strains of E. co/i are susceptible to doxorubicin, but 

that resistance can develop rapidly. There may be a role for membrane-induced changes 

in the induction of this resistance mechanism, thus implying that the membrane could 

play a part either in the uptake or activity of the anthracycline. 
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CHAPTER THREE. 

CHARACTERISATION OF THE MOUSE MAMMARY 

TUMOUR CELL LINE EMT6 WITH REGARD TO GROWTH 

KINETICS, TOXICITY OF DOXORUBICIN AND 

MEMBRANE LIPID COMPOSITION. 
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3.1 Abstract. 

The drug sensitive mouse mammary tumour cell line (EMT6-S) and a multidrug resistant 

sub-line (EMT6-R) were characterised with regard to their growth kinetics, susceptibility 

to doxorubicin and membrane lipid composition. The former two parameters both 

differed between the two cell lines. The log phase doubling times (hour) were 21.8 and 

25.0 for EMT6-S and EMT6-R cells, respectively, and the IC 50  values for doxorubicin 

were found to be 2.2 x 10 8 MinEMT6-Scellsand 1.8x 10 6 M in EMT6-R cells. The 

resistance factor (IC 50  for EMT6-R cells : IC 50  for EMT6-S cells) was found to be 82. 

Comparison of the percentage of the total fatty acid composition of the major 

phospholipids found in mammalian membranes showed there to be no significant 

difference between the two cell lines (p> 0.05) with the exception of linoleic acid (18:2), 

where the level appeared to be higher in the resistant cell membranes (p = 0.05). 

Similarly, no difference was observed between the phospholipid profiles of the two cell 

lines, using TLC. 
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3.2 Introduction. 

3.2.1 EMT6 cells 

Tumour cells displaying the MDR phenotype are resistant to a variety of unrelated drugs 

[28] and typically show decreased intracellular accumulation of the drugs [25]. The 

mouse mammaiy tumour cell line EMT6 has previously been shown to be sensitive to 

treatment with doxorubicin [5]. The resistant sub-line, EMT6-R, was developed from the 

parental line by successive exposure to increasing concentrations of the anthracycline 

antibiotic, doxorubicin [5] and is routinely maintained in the presence of 511M 

doxorubicin. Cox (1994) [5] demonstrated this sub-line to be cross-resistant to the Vinca 

alkaloid, vincristine, and colchicine, both of which are lipophilic agents, but to be 

susceptible to cis-platinum and methotrexate, both of which are hydrophilic. The 170 

kDa membrane glycoprotein known as P-glycoprotein was also found to be over-

expressed. 

3.2.2 Screening for Mycoplasma Contamination. 

Contamination of cultured cells due to bacteria, fi.ingi, yeast and mycoplasma can be a 

major problem in biological research and must be eliminated if detected. Whereas the 

former three contaminants can be detected microscopically, mycoplasma organisms pose 

a greater problem as they are smaller than bacteria, do not have a cell wall and may 

multiply inside contaminated cells [159]. Mycoplasma contamination is difficult to detect 

since it does not affect the appearance of the nutrient medium and cannot be seen under 

the light microscope. In addition, if undetected, mycoplasma can cause a variety of 

changes in cell characteristics, such as changes in metabolism, immunologic or 

biochemical properties, growth rate and morphology. it is therefore essential to screen 

continuous cell cultures regularly for mycoplasma. There are a variety of screening kits 

now available, the most recent products being based on immunofluorescence techniques. 
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Ridascreen ® is such an assay and was used routinely to screen for mycoplasma 

contamination in these studies. 

3.2.3 Lipid composition of membranes from mammalian cells. 

All membrane phospholipids are amphiphilic, that is, one end of the molecule is charged 

or polar and hydrophilic whereas the other is non-polar and hydrophobic. This is an 

integral feature of the phospholipid bilayer which constitutes biological membranes, 

where the polar head groups associate with water on the outside of the bilayer and the 

non-polar fatty acid chains are oriented to the interior of the bilayer [160]. 

Phospholipids are the most abundant class of lipid found in biological membranes and are 

based on either glycerol or sphingosine, where glycerophospholipids are the most 

important. The structure of a glycerophospholipid comprises two fatty acid chains, a 

glycerol backbone and a phosphorylated alcohol (the head group) (Figure 18). 

a 
FA11YACID 	 L 

V 
C 

E 
FA1TVACID 	R 	 __________ 	________ 

PHOSPHATE 	 ALCOHOL 

Figure 18 General structure of a glycerophospholipid. 

The fatty acids in mammalian cells possess an even number of carbon atoms, usually 

between 14 and 24 and are unbranched. Most phospholipids contain one saturated and 

one unsaturated fatty acid chain. Table 8 shows the fatty acids most commonly found in 

the phospholipids of mammalian cells. 
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TABLE 8: Fatty acids most commonly found in phospholipids of mammalian cells 

(Lockwood & Lee [160]). 

NAME 	 STRUCTURE 
	

NOTATION 

PALMITIC ACID 	CH3  (CH2) 14  COOH 
	

16:0 

STEARIC ACID 	CH3  (CH2) 16 C00H 
	

18:0 

OLEIC ACID 	 CH3  (CH2)
7 
 CH=CH (CH2) 7  COOH 
	

18:1 

LINOLEIC ACID 	C43  (CH2) 4  (CH=CHCH2) 2  (CH2) 6  COOH 
	

18:2 

ARACHIDOMC ACID 	CR, (CR7) 4  (CH=CHCH,) 4  (CR,) , COOH 
	

20:4 

The most common phospholipids found in mammalian membranes are 

phosphatidyicholine (lecithin) (PC), phosphatidylethanolamine (PE) and phosphatidyl-

serine (PS) [160] (Figure 19). The net charge carried by each class of phospholipid at a 

physiological pH varies according to the structure. Each phospholipid carries a 

phosphate group which confers a negative charge at a physiological pH, however, 

choline and ethanolamine contain amino groups which are positively charged at pH 7. 

Thus phosphatidylcholines and phosphatidylethanolamines carry no net charge and are 

zwitterions at pH 7. By contrast, serine has one positive and one negative charge at 

pH 7, therefore phosphatidylserines carry a net negative charge and are anions at 

pH7 [160]. 

Sphingolipids and glycerophospholipids are structurally very similar (Figure 19), 

however, sphingolipids have an aminoalcohol for the backbone rather than glycerol. The 

head group is the same as in PC and a sugar group may be attached giving cerebrosides. 

Complex glycolipids may contain branched chains of up to seven sugar groups. 

The third main type of lipid found in mammalian membranes is cholesterol (Figure 19) 

and is usually found in high concentrations in the outer membrane of the cells, whereas 

the organelle membranes contain very little cholesterol [160]. 
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Figure 19 Spatial representation of the chemical formulae of the major lipids found in 
biological membranes 11601. 

The relative proportions of the lipid classes vary between cell types and also between 

different membranes within the cell (Table 9). In general, zwitterionic lipids account for 

about 80% (w/w) of the total phospholipid and anionic lipids constitute about 20% 

(w/w) of the total [160J. 
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Table 9 Lipid composition of membranes from mammalian cells (expressed as 
weight percentages of total lipids) (Robinson, G.B., cited in Lockwood & Lee [160]). 

PLASMA NUCLEAR MITOCHONDRIAL 

LIPID CLASS 1  MEMBRANES MEMBRANES MEMBRANES 

PHOSPHATIDYLCHOLINE 18.5 44.0 37.5 

PHOSPHATIDYLETHANOLAM]NE 11.5 16.5 28.5 

PHOSPHATJDYLSERII4E 7.0 3.5 0 

SPHINGOMYELIN 12.0 3.0 0 

CHOLESTEROL 19.5 10.0 2.5 

Membranes also contain other lipids such as cardiolipin (CL) and phosphatidylinositol 
(PT), not listed in this table. 

3.2.4 Lipid Composition of MDR Cells. 

MDR is associated with decreased cellular accumulation of cytotoxic drugs in resistant 

cell lines compared to that of sensitive parental cell lines [25]. The main mechanism for 

this phenomenon has been attributed to the overexpression of the MD/U gene encoding 

the energy-dependent drug efflux pump [25; sections 1.3 & 1.3.1]. This protein is 

situated in the plasma membrane and serves to efflux cytotoxic agents. Changes in the 

permeability of the membrane may also be implicated in the decreased intracellular drug 

accumulation. The anthracycline-resistant sub-line of P388 murine Ieukaemia cells 

(P3 88/Adr) shows cross-resistance to other chemotherapeutic agents [161] and studies 

have shown there to be differences in the structural lipid order of sensitive and resistant 

P388 cells [161]. A further study also found differences in the triglyceride levels and 

phosphatidyicholine / sphingomyelin ratio of this cell line and it was suggested that these 

alterations may be intimately involved in the resistance mechanism of P388/Ads cells 

[162]. The main differences observed were in the phospholipid profile of the two cell 

lines and the amount of triglycerides present. This study has examined the phospholipid 
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profile and percentage of the total thtty acid composition of EMT6-S and EMT6-R cells 

in order to establish any diflérences which may be associated with the resistance 

mechanism of EMT6-R cells. 

The aim of this study was to characterise the two cell lines with regard to theft growth 

kinetics, susceptibility to doxorubicin and membrane lipid composition. The screening of 

cell lines for mycoplasma infection was also described. 



3.3 Methods and Materials. 

3.3.1 Chemicals. 

Analar chloroform, methanol and petroleum ether were obtained from Merck, 

Lutterworth, U.K. Glacial acetic acid, ANTS (8-anilino-1-naphthalenesulfonic acid) 

(0.25% in MeOH), Dragendorfs spray reagent (0.1 M potassium iodide and 0.6 mM 

bismuth subnitrate in 3.5 M acetic acid) and ninhydrin spray reagent (0.2% ninhydrin in 

ethanol) were obtained from Sigma, Poole, U.K. 

The Ridascreen®  immunofluorescence assay was a gift from Digen Ltd., Oxford, U.K. 

3.3.2 Maintenance of cell cultures. 

The drug sensitive parental cell line used in this study was the murine mammary tumour 

cell line, EMT6 [163] and was designated EMT6-S. A multidrug resistant sub-line 

(EMT6-R), previously established by successive exposure to increasing concentrations of 

doxorubicin [5], was routinely maintained in RPMT 1640 growth medium (Life 

Technologies, Paisley, U.K.) supplemented with 5 jiM doxorubicin (Farmitalia Carlo 

Erba Ltd., St. Albans, U.K.). Both cell lines were cultured in RPMI 1640 medium (Life 

Technologies) supplemented with 10% (v/v) foetal calf serum (M.B.Meldrum Ltd., 

Bourne End, U.K.), penicillin/streptomycin solution (Sigma, Poole, U.K.) at 1x10 4  units 

n-A-1  and 10 mg m?, respectively, in 0.9% NaCl and 2 mM L-glutamine (Sigma) at 

37°C, 5% CO2  : 95% air in a humidified Gallenkamp CO 2  incubator. The conthient cell 

monolayers were dissociated using 0.25% (w/v) trypsin (activity 1200 BAEE units/mg 

solid) (Sigma) in 0.5% (w/v) ethylenediaminetetraacetic acid (EDTA) (Sigma) in 

phosphate buffered saline (PBS) and resuspended at 5x10 4  and 1x105  cells per 10 ml 

medium in 25 cm2  tissue culture flasks (Falcon, Fahrenheit Laboratories, Rotherham, 

U.K.) for EMT6-S and EMT6-R cells, respectively. 
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Stock cultures were preserved in liquid nitrogen at a density of 5x10 6  cells m17 1  in RPMI 

1640 medium containing 20% (v/v) foetal calf serum and 10% (v/v) DMSO (Sigma). 

Cells were frozen at a rate of approximately 1°C miff* Frozen stocks were rapidly 

thawed by immersion of the freezing vials (Sigma) in a 37°C water bath. The cells were 

then washed with RPMI 1640 medium, centrifuged at 160 g for 5 minutes, the medium 

aspirated and replaced with fresh medium, in order to remove the DMSO. Cell lines were 

passaged at least twice prior to experimental use. All manipulations were carried out 

aseptically in a laminar air flow cabinet (Flow Gelaire BSB 4A). 

3.3.3 Mycoplasma Screening. 

Cells were routinely examined for mycoplasma infection using a commercial mycoplasma 

screening kit (Ridascreen ®) based on an immunofluorescence assay. This assay contains 

a monoclonal antibody with specificity for a broad range of Mycoplasma species 

[164,165] and by combining this reaction with a fluorochrome-labelled secondary 

antibody, it provides a very sensitive method for mycoplama detection. 

EMT6-S and EMT6-R cells were grown in antibiotic-free RPMI 1640 medium 

supplemented with 10% (vlv) foetal calf serum and 200 mM L-glutamine, under growth 

conditions previously described, and were not sub-cultured for at least two days prior to 

screening. The cell monolayer was removed by trypsinisation and the cells counted, as 

previously described. The cells were then centrifUged at 160 g for five minutes, the 

supernatant removed, and washed twice with PBS. Finally, the cells were re-suspended 

in PBS to give a cell density of approximately 1 x 106  cells mi -1 . 20 j.il of this sample 

(that is, approximately 20 000 cells) were placed into a 6-10 mm well area on a coated 

glass microscope slide and allowed to dry at 50 °C for 45 minutes. When dry, the sample 

was fixed for 60 seconds in cold, 70% (v/v) ethanol (-20 °C) and allowed to dry at room 

temperature. One drop of Fluorescein-labelled monoclonal antibody (designated Reagent 

1) was added to the fixed cell preparation, ensuring that the reagent covered the entire 

well, and the sample was incubated for twenty minutes at room temperature. In all 
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staining procedures, the stain was not allowed to dry out, or non-specific staining would 

have occurred. The slide was washed with PBS and this was repeated twice more for 

two minutes. One drop of Goat Anti-Mouse-Fluorescein conjugate (designated Reagent 

2) was added to the fixed cell preparation, again ensuring that the entire well area was 

covered, and was incubated for twenty minutes at room temperature. The slide was then 

washed twice in PBS for a total of two minutes and allowed to dry at room temperature. 

One drop of mounting fluid (designated Reagent 3) was placed in the centre of each well 

and a cover slip placed over the well area. Fixed specimen slides for positive and 

negative controls, provided in the kit, were stained using the same procedure as 

described above. The well areas of the sample slides were then scanned using a Leitz 

Diaplan fluorescence microscope with a filter system for Fluorescein (maximum 

excitation wavelength 490 nm, mean emission wavelength 520 nm) at x 400 

magnification and compared to the positive and negative control slides. Positive samples 

show yellow-green fluorescence on the shape of infected cells or between cells which 

appear bright red. In many cases, mycoplasmas are concentrated on a spot on the cell's 

surthce. Various mycoplasma species may be present and these may vary in shape from 

small, coccoid bodies with bright fluorescence to short filaments which may be stained 

more diffusely. 

3.3.4 Growth Kinetics. 

Cells in exponential growth phase were trypsinised and resuspended at a cell density of 

7.5 x 103  cells mF. 2 ml aliquots of this suspension were seeded into 35 mm tissue 

culture plates and incubated in a humidified atmosphere at 37°C, 5% CO2  95% air. 

At 24 hour intervals, plates were removed and the cell number determined by counting 

with an improved Neubauer haemocytometer. The medium was replaced on the 

remaining plates alter 72 hours' incubation. The growth of each cell line was calculated 

as cell number per plate, and growth curves comparing the two cell lines were plotted. 
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3.3.5 Effect of doxorubicin. 

Cells in exponential growth phase were trypsinised and resuspended at a density of 

7.5x 10 cells mP 1 . 2 ml aliquots of this suspension were seeded into 35 mm tissue 

culture plates and incubated at 3 7°C, 5% CO 2  : 95% air for 24 hours to allow cellular 

attachment. The medium was then aspirated and replaced with medium containing 

varying amounts of doxorubicin (0-10 1iM). The plates were then incubated, as 

previously described, for a further 72 hours. Cell numbers were determined by counting 

with an improved Neubauer haemocytometer and were expressed as a percentage of the 

control cell number. The concentration of doxorubicin which inhibited cell growth by 

50%, the IC 50  value, was determined for each cell line. 

3.3.6 Membrane lipid composition. 

3.3.6.1 Preparation of samples for phospholipid and fatty acid analysis. 

20 ml aliquots of EMT6-S or EMT6-R cells in RPMI medium were seeded at a cell 

density of 5 x 10 3  and I x 104 cells ml -, respectively, into 75 cm 2  tissue culture flasks 

and grown to confluence at 37°C, 5% CO2 :95% air. A representative flask from each 

cell line was trypsinised, as described previously, and the cell number m1 1  was 

determined using an improved Neubauer haemocytometer. Care was taken to ensure 

equal sample size (determined by cell numbers) in order to give a valid comparison of 

results. The sample flasks were treated as follows: the RPM! medium was aspirated and 

the cell monolayer washed three times with 4 ml PBS. The cells were then scraped 

carelblly from the flask, mixed with 2 ml distilled water and mixed well. Three samples 

were then pooled into a pre-cleaned methylating tube. The pooled samples were 

centrifuged at 160 g for 5 minutes, the supernatant aspirated and replaced with 2 ml 

distilled water. The cells were then vortex mixed and sonicated. The suspension was 

added to 2.5 ml methanol (pie-heated to 60°C) in a pre-cleaned methylating tube, heated 

for 30 minutes at 70°C, cooled and centrifuged at 160 g for ten minutes. The upper 



aqueous layer was removed and discarded and the lower phase washed three times with a 

mixture of chloroform, methanol and water in the proportions 3 48 : 47 (by volume), 

respectively. The washed layer was then split into two samples, one for fatty acid 

analysis and the other for phospholipid analysis. Each of these samples was dried under a 

stream of nitrogen to prevent oxidation. 

3.3.6.2 Preparation of Fatty Acid Methyl Esters and Analysis by Gas 
Chromatography. 

Fatty acid methyl esters (FAMEs) were prepared by transmethylation with 2.5% (v/v) 

sulfuric acid in anhydrous methanol at 70°C for 2 hours. FAMEs were extracted with 3 

x 3 ml petroleum ether and separated by gas chromatography (GC) using a Unicam 610 

gas chromatograph equipped with a megawax fused silica capillary column 

(30 m x 0.25 mm (internal diameter); film thickness 0.25 sM)) operating in cooled on-

column injection mode. The following temperature programme was used : injection at 

55°C, held for 1 minute, increasing to 205°C at a rate of 15°C mirn 1 . A mixture of 

known FAME standards was separated at the commencement of each run, and 20 xg of 

the FAME standard 15:0 was incorporated into each sample prior to transmethylation. 

The percentage fatty acid composition was determined from the GC traces by comparing 

each peak area to the peak area of the internal standard 

3.3.6.3 Analysis of Phospholipids by Thin Layer Chromatography. 

Cell samples previously prepared (see 3.3.4.1) were each re-suspended in chloroform, 

mixed well and applied to a silica gel chromatography plate ( Silica Gel 60, Merck Ltd., 

Lutterworth, U.K.) Each plate was treated with one sample extracted from EMT6-S 

cells and one sample extracted from EMT6-R cells, both applied as thin streaks 5-10 mm 

long. Single spots of commercial phospholipid standards (Lipid Products, Redhill, U.K.) 

were also applied. TLC was then performed using a running solvent of chloroform, 

methanol, glacial acetic acid and water in the following proportions: 170: 30: 20: 7 (by 
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volume), respectively. Phospholipid components were visualised by spraying the plate 

with ANS (8-anilino-1-naphthalenesulfonic acid) (0.25% (w/v) in MeOH) and examining 

under UV light. Individual phospholipids were identified by comparison to the 

commercial standards and confirmed by the use of specific stains Dragendorfs reagent 

(0.1 M potassium iodide and 0.6mM bismuth subnitrate in 3.5 M acetic acid) specific for 

PC, lyso-PC and sphingomyelin; ninhydrin (0.2% in ethanol) specific for PE, PS and 

their lyso-derivatives [166]. 

3.4 Results. 

3.4.1 Mycoplasma Screening. 

The EMT6-S and EMT6-R cell lines were found to be free from mycoplasma 

contamination when tested on a routine basis. Figure 20 (a & b) shows a representative 

selection of EMT6-R and EMT6-S cells, respectively, which have been exposed to the 

fluorescence-labelled Mycoplasma-specific monoclonal antibodies using the Ridascreen ® 

mycoplasma screening kit. Figure 20 (c & d) shows the positive and negative control 

cells, respectively. The yellow-green fluorescence around the positive control cells 

clearly shows the presence of mycoplasma infection. No fluorescence was detected in 

the negative control cells or either cell line. 
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(a) 
	

(b) 

(c) 
	

(d) 

Figure 20: Screening of EMT6-S and EMT6-R cells for mycoplasma infection using the 
Ridascreen 0  immunofluorescence assay. 
Immunofluorescence, indicating inycoplasma infection, was clearly evident around the positive control 
cells (c), however, no fluorescence was detected in the negative control cells (d), the EMT6-R cells or 
the EMT6-S cells (a & b. respectively). 
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3.4.2 Growth kinetics. 

The log phase doubling time (h) was found to be markedly longer for the drug resistant 

cell line EMT6-R than for that of the drug sensitive parent cell line EMT6-S, that is 25.0 

and 21.8, respectively (Figure 21). 

200 

0 
- 150 

LLI 
100 

—J 
—J 	so  
Ui 
0 

Li 

 

0 	 50 	 100 	150 	200 

TIME (HOURS) 

Figure 21 : Growth kinetics of the mouse mammary tumour cell lines 
EMT6—S (U) and EMT6—R ( 

s) ,  incubated at 37t in the presence of 

95% air, 5% CO2. Each point represents mean ± SEM (n=3). 
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3.4.3 Effect of doxorubicin. 

The IC50  values (defined as the concentration of drug which causes a 50% reduction in 

growth comparedto the control) for doxorubicin were found to be 2.2 x 10-8  M and 1.8 

x 10-6  M , for EMT6-S and EMT6-R cells, respectively (Figure 22). The resistance 

factor was found to be 82. 
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Figure 22 Dose survival curve for EMT6—S ( • I and EMT6—R ( a) 

cell lines challenged with doxorubicin. Each point represents mean 
± SEM (n=10). 
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3.4.4 Membrane lipid analysis. 

3.4.4.1 Fatty Acid Composition. 

The percentage ffitty acid composition was determined for the most common thtty acids 

found in the phospholipids of biological membranes. This was compared between 

EMT-S and EMT6-R cells (Table 10). No significant difference was found between the 

overall fatty acid composition of the membranes, although the level of linoleic acid in the 

resistant cells appeared to be increased (p = 0.05). 

Table 10: Comparison of the percentage of total fatty acid composition of EMT6-S 
and EMT6-R cells (commonly occurring fatty acids). 
Results are given as mean .± SEM (n=5- for EMT6-S, n=4 for EMT6-R). Statistical 
analysis by the Student's t-test (ns = not significant, s = significant at the 5% level)). 

% (w/w) 

TOTAL. FATTY ACID COMPOSITION 

FATFY ACID NOTATION EMT6-S CELLS 	EMT6-R CELLS p VALUE.. 

PALMITIC ACID 16:0 27.7 ± 2.4 	 29.3± 2.5 0.66 (ns) 

STEARIC ACID. 18:0 20.2± 1.1 	 21.1±4.0 0;82.(ns). 

OLEIC ACID 18:1 43.4± 1.2 	 52.0±53 0.13 (ns) 

LINOLEIC ACID 18:2 23 ± 0:1 	 4.3 ± 0.7 0.05 (s) 

ARACHIDONICACID 20:4 6.3 ±03 	 5.1 ± 1.5 0.40(ns) 

3.4.4.2 Phospholipid Composition. 

No difference was observed between the phospholipid profile, of the membranes of 

EMT6-S cells and EMT6-R cells as determined by one-way TLC: Very reproducible 

results were achieved (n=4). Figure 22 is a graphical representation of a typical 

separation of the phospholipids in EMT6-S and EMT6-R cells. 
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Figure 23 : Schematic representation of the separation of phospholipids in 
EMT6-S and EMT6-R cells by thin-layer chromatography. 
Phospholipids were separated using thin layer chromatography on silica gel plates using a 
rurming solvent of chloroform, methanol, glacial acetic acid and water in the following 
proportions 170 30 20 7 (by volume), respectively. Phospholipid components were 
visualised by spraying the plate with ANS (S-anilino-l-naphthalenesulfonic acid) (0.25% (w/v) in 
MeOH) and examining under UV light. Individual phospholipids were identified by comparison 
to the commercial standards and confirmed by the use of specific stains. 
Phosphatidylethanolamine (PE); phosphatidylcholine (PC); phosphatidylserine (PS); 
sphingomyelin (SPH); cardiolipin (CL) & phosphatidylinositol (P1). The three bands 
immediately below the solvent front appeared to be neutral lipids, and the band below CL was 
identified as lyso-phosphatidylcholine. 
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3.5 Discussion. 

As discussed previously, a number of phenotypic changes have been demonstrated by 

MDR cells [5]. The basic growth characteristics of these cell lines, compared to the 

parental cell lines, must be established prior to any studies undertaken, so that these 

parameters may be taken into account in the design of experiments. The log phase 

doubling time and IC50  values with respect to EMT6-S and EMT6-R cell lines were 

indeed found to be different, in good agreement with values previously established by 

Cox [5]. In addition, since insidious infections of continuous cell cultures, such as 

mycoplasma, can also affect cellular characteristics and functions, routine monitoring of 

cell cultures must be undertaken to prevent contamination and consequential erroneous 

results. The immunofluorescence assay, Ridascreen®, proved to be a convenient, reliable 

screening tool. Both cell lines were found to be free from contamination. 

Decreased drug accumulation in M1)R cells has been linked to alterations in lipid profiles 

in some studies, however, no difference was observed in the phospholipid profiles of 

EMT6-S and EMT6-R cells. Comparison of the percentage of the total fatty acid 

composition showed there to be no significant difference between the two cell lines (p> 

0.05) with the exception of linoleic acid (18:2), where the level appeared to be higher in 

the resistant cell membranes (p = 0.05). Ramu et at [161] identified differences in the 

structural lipid order in P388 and P388/Adr cells. No significant differences in the free 

cholesterol or total phospholipid content were found although alterations were shown in 

the composition of the phospholipids [162]. The content of PE and CL was unchanged, 

however, the PC / sphingomyelin ratio of P388/Adr cells was significantly lower than 

that of the sensitive, parental line. They suggest that this altered ratio is associated with 

higher plasma membrane structural order which affects membrane permeability and may 

lead to lower intracellular drug accumulation. It may be argued that the alteration in 

linoleic acid content in EMT6-R cells would be predicted to increase membrane fluidity, 

however, Cox [5] found there to be no significant difference in fluidity of the membranes 

of EMT6-S and EMT6-R cells at any temperatures tested, using the fluorescent probe 
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1 -(4-trimethylainmonium phenyl)-6-phenyl- 1,3 ,5-hexatriene (TMA-DPH) to determine 

the fluorescence anisotropy. 
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CHAPTER FOUR 

CELL KILLING BY CATIONIC PHOTOSENSITIZERS IN A 
MUILTIDRUG RESISTANT CELL LINE. 



4.1 Abstract 

Methylene blue (MB) and toluidine blue (itO) are known bioactive photosensitizers. 

Victoria blue BO (YBBO) may also fall into this category, but chemical tests have failed 

to detect the generation of singlet oxygen in this study. The ability of these three dyes to 

induce a photocytotoxic response in a murine mammary tumour cell line (EMT6-S) and 

a multidrug resistant sub-line (EMT6-R) was investigated and theft ability to overcome 

multidrug resistance was compared to that of the conventional chemotherapeutic agents 

doxorubicin and cis-platinunt The cytotoxic effect of VBBO was found to be enhanced 

10-fold by illuniination (7.2 J cn7 2) in both the sensitive and resistant cell lines. In order 

to overcome resistance, however, the EMT6-R cells required a 10-fold greater level of 

the dye than the parental cells to reach an IC 50  value. VBBO was thus susceptible to 

MDR, but to a considerably lesser extent than the conventional agent doxorubicin which 

required almost a 100-fold increase in concentration to overcome resistance. VBBO also 

has the ability to act as a photosensitizer whereas illumination (7.2 J cnr 2) had no 

apparent effect on the activity of doxorubicin and cis-platin. Both itO and MB showed 

limited light activation (2-fold) in both the sensitive and resistant cell lines and it 

appeared that the main cytotoxic response was due to the dark toxicity of the agents. 

This dark toxicity seemed to overcome MDR, possibly implying that these agents were 

able to avoid exclusion by P-glycoprotein (Pgp). 

Pre-treatment of EMT6-S and EMT6-R cells with low concentrations of VBBO, MB or 

itO, (equivalent to 1/8th IC 50  value for each photosensitizer), prior to exposure to 

doxorubicin, enhanced the cytotoxicity of doxorubicin in all cases. Pre-treatment with 

VBBO resulted in a two-fold increase in doxorubicin toxicity in both cell lines, 

suggesting that the action of VBBO is independent of the Pgp drug efilux pump which is 

overexpressed in the resistant cell line. Pre-treatment with MB, however, increased 

doxorubicin toxicity in EMT6-R cells two-fold, but had less eflëct on the sensitive cell 

line (increase x 1.4). This suggests a different mechanism of action to that of YBBO, 

which may involve interaction with Pgp. Ike-treatment with TBO resulted in an increase 
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in toxicity of almost two-fold in EMT6-S cells, but this was increased to three-fold in the 

resistant cell line, again suggesting possible interaction with Pgp. 



4.2 Introduction 

Multidrug resistance is a major obstacle to the successfW treatment of cancer. 

Pleiotrophic MDR occurs when treatment with a single cytotoxic agent results in the 

development of cross-resistance to other structurally non-related drugs and is associated 

with a decreased intracellular accumulation of the drug [26]. Photodynamic therapy 

(PDT) has been used increasingly in neoplastic disease and offers considerable scope for 

the circumvention of MDR. PDT requires the combination of a photosensitizing drug, 

light of the correct wavelength and molecular oxygen to exert its effect [102]. The 

generally accepted routes by which cell death is initiated in PDT are free radical 

formation by biomolecules (Type I) and chemical reactions involving the cytotoxin 

singlet oxygen (Type II) [113 ; section 1.4.2]. 

A wide range of photosensitizing drugs is available including porphyrin-based drugs and 

their analogues, such as chiorins, and larger aromatic systems such as the 

phthalocyanines [110,111]. Clinical application of commercial photosensitizers has also 

been investigated, since these compounds have the advantage of well established 

chemistries and ready availability, however higher inherent toxicity has often proved 

problematic. Cationic examples of this commercial class are the triarylmethane dye 

Victoria Blue BC (VBBO) and the phenothiazinium photosensitizers toluidine blue 

(TBO) and methylene blue (MB) (Figure 24). 

The Victoria blue series consists of triarylmethane dyes related to crystal violet, where 

one of the phenyl groups is replaced by l-naphthyl. It has been suggested that the 

flexibility of the ring structure of triarylmethanes causes a ifist relaxation of the singlet 

excited state, resulting in a low degree of photosensitizing activity [133]. When 

immobilised, however, the photosensitizing activity of these compounds is greatly 

increased. This is thought to occur when binding of the structure to biomo lecules 

endows greater structural rigidity [137]. The phenothiazinium dyes have a rigid, planar 

structure and are well established Type H photosensitizers [128]. Conversely Victoria 
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blue BO shows no evidence for the formation of singlet oxygen in solution, but has 

previously been shown to have some photosensitizing activity in several mammalian cell 

lines, including human squamous cell carcinoma (FaDu) and human melanoma (NEL) 

[133, 167]. MB has been used as a vital stain for over a century and is used as a 

diagnostic agent in many diseases, and as a tumour marker. It has been used to a lesser 

extent in the field of PDT, most notably in the treatment of bladder, oesophageal and 

other cancers [121-123], however, its efficacy is limited by reduction to leuco-methylene 

blue (140) in biological systems (see section 1.4.4). MB is thought to exert its 

photocytotoxic effects by DNA intercalation. TBO is similar in structure to MB (Figure 

24) and is used as a selective stain for oral cancer and is also used in oral disease as an 

antibacterial agent [141]. 

The cellular localisation of the photosensitizers used in this study, VBBO, MB and TBO 

has been investigated previously [132,168,169]. The phenothiazine derivatives MB and 

TBO are highly hydrophilic in nature and as such are membrane interactive [170]. In 

solution, both cations are hydrophilic (log P = -0.1 (MB), -0.21 (TBO)) (Figure24), 

however, both dyes are subject to metabolic reduction in biological systems producing 

neutral species, and TBO is partially converted to a neutral form by deprotonation [140]. 

By contrast, VBBO is highly lipophilic (log P = +3.5) (Figure 24). The much higher 

lipophilicity of VBBO, compared to MB and TBO, suggests that it is able to diffuse 

through the plasma membrane and to reach the cell interior. VBBO is known to be 

specific for mitochondria [132,167] and on photoirradiation is reported to act by 

selective inhibition of mitochondrial Respiratory Complex I, whereas the dark toxicity is 

accounted for by uncoupling of oxidative phosphorylation [132]. TBO has been found 

to localise in the cytoplasm of HeLa cells [128] and also in the mitochondria of an 

epidermoid cancer cell line [168]. By contrast, MB has been shown to localise in 

lysosomes [169], however, Yu et al. [171] reported that photoinactivation by MB is a 

multistage process with synchronous involvement of the cell membrane, cytoplasm and 

nucleus. 
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Figure 24: Victoria blue, toluidine blue 0 and metbylene blue: structures and 
physicochemical properties. 



As mentioned above, PDT is being used increasingly in the treatment of many neoplasms 

and offers the potential for overcoming drug resistance. Multiple drug resistance to 

anthracyclines and other chemotherapeutic agents is commonly attributed to increased 

expression of the 170 - 180 kDa membrane protein, P-glycoprotein, which is thought 

to act either as a drug efflux pump [25] or as a ifippase [40] to reduce the intracellular 

concentration of the drug. Studies have shown, however, that P-glycoprotein is not 

always involved, but rather that MDR is multiffictorial and may involve many other 

biochemical changes and protein alterations [83,172]. 

Doxorubicin is an anthracycline antibiotic widely used in cancer chemotherapy (Figure 

25). It has a complex mechanism of action and many theories regarding this have been 

postulated. Recent work [143] seems to indicate that doxorubicin acts initially at the 

membrane, increasing phosphatidylinositol turnover, which in turn disrupts cellular 

signalling mechanisms [173]. Following membrane perturbation, doxorubicin binds to 

the DNA by intercalation and affects DNA / RNA synthesis via altered topoisomerase II 

activity [174]. Studies have also shown that the anthraquinone nucleus of anthracyclines 

is reversibly converted to a free radical semiquinone forming superoxide and hydroxyl 

radicals [175], which may lead to damage by methods such as lipid peroxidation. 
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Figure 25 : Structure of doxorubicin. 



cis-Dian'rt.hiedichloroplatinum (II) (cis-platinum) [Figure 26] has broad anti-neoplastic 

activity and is used in the treatment of various cancers, such as epithelial, testicular, head 

and neck, bladder, small-cell lung and ovarian cancers [176]. It is an inorganic water-

soluble, platinum-containing complex which appears to enter cells by diffUsion. The 

platinum complexes can react with DNA to form both intrastrand and interstrand cross-

links [176]. 

Cl 	 NH3 

/ fl \ 
Cl 	 NH3  

Figure 26 Structure of (cis-Platinum). 

The aim of this study was to compare the activity of the cationic photosensitizers 

VBBO, MB and TBO to that of the more conventional chemotherapeutic agents 

doxorubicin and cis-platinum against a mouse mammary tumour cell line, EMT6. The 

parental cell line (EMT6-S) is sensitive to treatment with doxorubicin, but the sub-line 

(EMT6-R) is resistant to doxorubicin, over-expresses Pgp in the cell membrane, and 

shows cross-resistance to other non-related chemotherapeutic agents [5]. Confocal 

microscopy was also employed to compare the localisation of VBBO, MB and TBO in 

both EMT6-S and EMT6-R cell lines. 



4.3 Materials and Methods 

4.3.1 Chemicals 

Methylene blue, toluidine blue, Victoria blue BO, and 1 -octanol were purchased from 

Aldrich Chemicals (Gillingham, UK) and were used without further purification. cis-

Platinum (cis-diamminedichloroplatinum (II)), MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-

diphenyl-2H-tetrazoliurn bromide), DMSO (dimethyl sulfoxide) and verapamil were 

obtained from Sigma, Poole, U.K. and doxorubicin was a gifi from Farmitalia CarloErba 

Ltd., St. Albans, U.K. 

4.3.2 Cell Culture 

The murine mammary tumour cell line (EMT6) was originally obtained from Zeneca 

Pharmaceuticals, Macclesfield, Cheshire, U.K. Cultures were routinely maintained at 

37°C, 5% CO2  95% air in RPMJ 1640 culture medium (Life Technologies, Paisley, 

U.K.), supplemented with 10% (v/v) foetal calf serum (M.B.Meldrum Ltd., Boume End, 

U.K.), 200 mM glutaniine (Sigma, Poole, U.K.) and penicillin/streptomycin solution at 

lx104  units m17 1  and 10 mg m1 1 , respectively, in 0.9% NaCl (Sigma). Trypsin (activity 

1200 BAEE units/mg solid) was obtained from Sigma. 

4.3.3 Phototoxicity Dark Toxicity Experiments 

Light from a source of variable wavelength, with maximum emission in the 

600-700 nm region and a fluence of 4 mW cnr 2 , was used to illuminate the cells which 

had been exposed to the various dyes. The light dose was measured with a Skye SKP 

200 light meter (Skye Instruments Ltd.). The temperature of the system was monitored 

constantly during irradiation but no heating effect was observed. 
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4.3.5 Localisation Studies Using Scanning Laser Confocal Microscopy 

2 ml aliquots of EMT6-S or EMT6-R cells were seeded at a cell density of lxlCø cells 

n* 1  into 35 mm petri dishes (Falcon, Fahrenheit Laboratories, Rotherham, U.K.) in 

RPMI 1640 medium, supplemented with 10% (vlv) foetal calf serum, 200 mM L-

glutamine and penicillin/streptomycin solution at 1x10 4  units m17 1  and 10 mg ml, 

respectively, as previously described. A sterile quartz coverslip (suprasil, 0.5 mm 

diameter x 0.2 mm thick, Heraeus Silica & Metals Ltd., Byfleet, U.K) was placed into 

each petri dish and the cells were allowed to attach for three days (EMT6-S cells) or 

four days (EMT6-R cells) whilst incubating at 37°C, 5% CO2  : 95% air. The medium 

was aspirated and replaced with medium containing VBBO, MB or TBO, and incubated 

for three hours, as previously described. Concentrations of drugs added were as 

follows: for EMT6-S cells, 5.0 MM VBBO, 25 MM MB and 10 MM TBO; for EMT6-R 

cells, 5.0 gM VBBO, 35 MM MB and 15 p.tM TBO. Following 3 hours' incubation, the 

cells were examined with a scanning laser confocal fluorescence microscope using a 

helium / neon laser at 633 nm. Untreated cells were also examined, under the same 

conditions, for autofluorescence, however, none was observed. 

cii 



4.4 Results 

4.4.1 Phototoxicity: Dark toxicity 

Exposure of EMT6-S and EMT6-R cells to light alone (7.2 J cur 2) did not produce 

cytotoxicity (p> 0.05) (Figure 27). However, VBBO, MB and TBO were all found to 

exert a photocytotoxic effect when exposed to light (7.2 J cur 2) (Figures 28 & 29). 

Statistical analysis was caned out using the Student's t-test. 
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Figure 27 : Effect of light (7.2 J cm 2) on EMT6-S (sensitive) and EMT6-R 
(resistant) cells. 
Cell viability was evaluated using the MiT assay [177]. MTI' is a yellow tetrazolium 
dye which is reduced to purple formazan crystals by live cells. The crystals are 
solubilised in DMSO and the absorbance read spectrophotometrically at 540 nm. Each 
point represents mean ± SEM (n ~! 11). 
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All the photosensitizers were found to have some effect in reducing drug resistance in 

the EMT6-R cell line, in the order VBBO > TBO> MB (Figures 28b & 29b) when 

exposed to light (7.2 J cm-2), however, VBBO and TBO were the most effective in the 

dark (Figures 28a & 29a). VBBO was more effective (both in the light and the dark) 

than cis-platinum. The resistant cell line (EMT6-R) required almost 100-fold more 

doxorubicin than the sensitive cell line to obtain the IC 50  (Table 11). By contrast, this 

resistance was overcome by cis-platinum (Table 11). Illumination of VBBO (7.2 J cu7 2) 

resulted in a 10-fold decrease in the IC 50  value (Table 11), which clearly indicates that 

VBBO is able to induce a photocytotoxic response and that it is able to kill Ml)R cells. 

EMT6-S cells line showed a similar response. The IC 50  of VBBO for the resistant cell 

line, however, was 10-fold greater than for the sensitive cell line (Table 11), suggesting 

that efflux of the drug by the resistant cells may have led to the higher requirement for 

effective cytotoxicity. In the case of MB and TBO, both the resistant and sensitive cells 

showed approximately a 2-fold increase in susceptibility to the agent when illuminated 

(7.2 J cm-2), but, interestingly, the levels required to overcome the resistant cell line 

were similar to those required for the sensitive cell line (Table 11). This suggests that 

there is some degree of photoactivity, but that MB and TBO are toxic in their own right 

and may be able to circumvent the effect of P-glycoprotein. 
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Figure 28 	Comparison of % cytotoxicity elicited by VBBO, MB, TBO, 
doxorubicin & cis-platinum against EMT6-S cells. 
Cells (1000 / well in 96 well plates) were allowed to attach for 48 hours Drugs (200 l 

at 0 - 0.625 pM in RPMT 1640) were added to the cells and incubated for 3 hours. The 
cells were then rinsed with RPMT 1640 and exposed to light (7.2 J cm -2) (b) or kept dark 
(a), prior to growing on for 3 days at 37°C, 5% CO 2  95% air. Cytotoxicity was 
measured using the MTT assay. Each point represents mean ± SEM (n 2! 6). 
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Figure 29 	Comparison of % cytotoxicity elicited by VBBO, MB, TBO, 
doxorubicin & dc-platinum against EMT6-R cells. 
Cells (1000/ well in 96 well plates) were allowed to attach for 48 hours Drugs (200 pu 
at 0 - 0.625 p.tM in RPMT I MO) were added to the cells and incubated for 3 hours. The 
cells were then rinsed with RPM! 1640 and exposed to light (7.2 J cnr2) (b) or kept dark 
(a), prior to growing on for 3 days at 37°C, 5% CO 2  95% air. Cytotoxicity was 
measured using the MU assay. Each point represents mean ± SEM (n 2: 6). 
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Table 11 IC50  values for photosensitizers, doxorubicin and dc-platinum. 
The light enhancement factor is the ratio of light dark IC50  values. The light:dark 
differential is not constant, but varies at difibrent concentrations, and for this reason has 
been standardised, using the IC 50  values, to give the LEF. 

DRUG DARK 

ICc0 (pM) 

LIGHT 

ICq (pM) 

UGHT ENHANCEMENT 

FACFOR (LEF) 

SENSITIVE CELLS  

VBBO 1.25 0.12 10.4 

MB 36.0 17.5 2.1 

TBO 16.0 9.0 1.8 

Doxorubicin 0.25 0.26 1.0 

dc-Platinum 3.6 3.6 1.0 

RESISTANT CELLS  

VBBO 8.5 1.0 8.5 

MB 72.0 26.0 2.8 

TBO 30.0 13.0 23 

Doxorubicin 20.0 19.0 1.0 

dc-Platinum 3.7 3.8 1.0 
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4.4.2 Localisation Studies Using Confocal Scanning Laser fluorescence 
Microscopy. 

The brightness of the images varied considerably and in some instances the colour map 

was stretched. The greyscale value range (gsv) which was processed for each set of 

images has therefore been included in the text for comparison. Three hours' incubation 

with VBBO (5.0 pM) showed a similar localisation pattern in both EMT6-S and EMT6-

R cells (Figures 30 & 31). However, the intensity of the dye in the sensitive cells (0-143 

gsv) was greater than that seen in the resistant cells (0-23 5 gsv), indicating that the 

uptake may be slower in the resistant cell line. In both cell lines the dye was shown to 

localise throughout the cytoplasm of the cells, but little fluorescence was noted in the 

nucleus. 

Figures 31(e) and (f) show the same cell which has been scanned twice by the confocal 

laser beam. The cell appears less defined with the second scan (Figure 3 1(0),  which may 

be due to a heating effect by the laser. This effect was not noted, however, when single 

cells were subjected to a series of scans, following localisation of VBBO over time (see 

section 7.4.1). 

Three hours' incubation of EMT6-S and EMT6-R cells with MB at concentrations of 

25 1iM and 35 1iM, respectively, showed very interesting results. Similar distribution of 

the drug was noted in both cell lines (Figures 32 & 33, gsv 0-65 & 0-120, respectively). 

The dye appeared to be localised within the cell cytoplasm (Figures 32(a), 33(a), (c) & 

(e) although one of the cells appeared to show some nuclear infiltration (Figure33(c)). 

The punctate distribution of the dye in the cytoplasm, shown especially in Figures 32(a) 

and 33(c), suggesed that the dyes may be localised within vesicles and subsequent 

scanning with the laser beam appeared to cause vesicle lysis (Figures 32(b), 33(b), (d) & 

(1)). 



Three hours' incubation of EMT6-S and EMT6-R cells with ThO at concentrations of 

10 RM and 15 gM, (Figures 34 & 35, respectively), again showed similar localisation 

patterns and similar levels of uptake in both EMT6-S and EMT6-R cell lines (gsv 0-40 

& 0-78, respectively). The drug appeared to localise throughout the cytoplasm, but not 

in the nucleus. 
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(b) 

(c) 
	

(d) 

(e) 

Figure 30: Intracellular distribution of VBBO (5 RM) in EMT6-S cells following 3 
hours' incubation, shown by confocal fluorescence microscopy. Figures (a-e) show 
different cells following a single scan with the laser beam. * Scale of fluorescence 
intensity (red-255, maximum; black-0, minimum). 



(c) 
	 (d) 

(e) 
	

(f) 

Figure 31: Intracellular distribution of YBBO (5 pM) in EMT6-R cells following 3 
hours' incubation, shown by confocal fluorescence microscopy. Figures (a-e) show 
different cells following a single scan with the laser beam. Figure (I) shows the 
same cell as (e) following a second scan. * Scale of fluorescence intensity (red-255, 
maximum; hlack-O, minimum). 



(a) 

* 

0 

Figure 32 Intracellular distribution of MB (25 MM) in EMT6-S cells following 3 
hours' incubation, shown by confocal fluorescence microscopy. Figures (a & b) 

show the same two cells following a single scan (a) and a second scan (b) with the 
laser beam. * Scale of fluorescence intensity (red-255, maximum; black-O, 
minimum). 
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(b) 
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(1) 

Figure 33 Intracellular distribution of MB (35 pM) in EMT6-R cells following 3 

hours' incubation, shown by confocal fluorescence microscopy. Figures (a, C & e) 

show three different cells following one scan with the laser beam, and figures (b, d 

& 9 show the same cells, respectively, following a second scan. * Scale of 

fluorescence intensity (red-255, maximum; black-O, minimum). 
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(a) 
	

(b) 

(c) 

Figure 34 Intracellular distribution of TBO (10 RM) in EMT6-S cells following 3 
hours' incubation, shown by confocal fluorescence microscopy. Figures (a - c) show 
three different cells cells following a single scan with the laser beam. * Scale of 
fluorescence intensity (red-255, maximum; black-O, minimum). 
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(a) 
	

(b) 

* 

(c) 

Figure 35 Intracellular distribution of TBO (15 gM) in EMT6-R cells following 3 
hours' incubation, shown by confocal fluorescence microscopy. Figures (a - c) show 
the three different cells cells following a single scan with the laser beam. * Scale of 
fluorescence intensity (red-255, maximum; black-0, minimum). 
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4.4.3 Effect of pretreatment of EMT6-S and EMT6-R cells with YBBO, MB 
or TBO on the cytotoxicity of doxorubicin. 

Pre-treatment of EMT6-S and EMT6-R cells with VBBO, prior to treatment with 

doxorubicin, increased the efficacy of doxorubicin in each cell line by approximately 

two-fold (Figures 36a & b) using a concentration of approximately 1/8th of the VBBO 

IC50  value for each cell line. Since the cytotoxicity exerted by VBBO alone at this 

concentration is less than 10%, this is clearly a synergistic effect. A similar effect was 

seen in EMT6-R cells when pre-treated with MB at a concentration equivalent to 1/8th 

of the IC 50  value for MB (Figure 37b), however, a lesser effect was seen in the sensitive 

cell line (Figure 37a), the pre-treatment inducing an increase in doxorubicin cytotoxicity 

of only 1.4. Pre-treatment of EMT6-S cells with TBO at a concentration of 1/8th the 

IC50  value for TBO increased the efficacy of doxorubicin by a factor of 1.8 (Figure 38a). 

This was increased to a factor of 3.0 in the resistant cell line (Figure 38b). 
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Figure 36: Effect of pre-treatment with YBBO on IC50 values for doxorubicin, 
with respect to EMT6-S and EMT6-R cells. 
Cells (1000/well in 96 well plates) were allowed to attach for 48 hours. A single 

concentration of VBBO (200 p1 at 1.25, 2.5, 5.0 or 10 pM for EMT6-R cells and 0.125, 

0.25, 0.5 or 1.0 i.tM for EMT6-S cells) was added to each well and incubated for 3 
hours. The cells were then rinsed with RPM! prior to the addition of doxorubicin (0 - 

20.0 piM for EMT6-R cells and 0 - 2.0 pM for EMT6-S cells). Error bars represent 

SEMs (n ~! 4 for EMT6-S; n ~: 4 for EMT6-R). 
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Figure 37: Effect of pre-treatment with MR on IC SO  values for doxorubicin, with 
respect to EMT6-S and EMT6-R cells. 
Cells (1000/well in 96 well plates) were allowed to attach for 48 hours. A single 
concentration of MB (200 .sl at 8.75, 17.5, 35.0 or 70 1iM for EMT6-R cells and 6.25, 
12.5, 25.0 or 50.0 j.xM for EMT6-S cells) was added to each well and incubated for 3 
hours. The cells were then rinsed with RPM! prior to the addition of doxorubicin (0 — 

20.0 jiM for EMT6-R cells and 0 - 2.0 gM for EMT6-S cells). Error bars represent 
SEMs (n ?! 5 for EMT6-S; n ~t 4 for EMT6-R). 
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Figure 38: Effect of pre-treatment with TBO on IC 50  values for doxorubicin, with 
respect to EMT6-S and EMT6-R cells. 
Cells (1000/well in 96 well plates) were allowed to attach for 48 hours. A single 
concentration of MB (200 Id at 3.75, 7.5, 15.0 or 30 jiM for EMT6-R cells and 2.5, 5.0, 
10.0 or 20.0 jiM for EMT6-S cells) was added to each well and incubated for 3 hours. 
The cells were then rinsed with RPMI prior to the addition of doxorubicin (0 -20.0 jiM 
for EMT6-R cells and 0 - 2.0 jiM for EMT6-S cells). Error bars represent SEMs ((n ~! 5 
for EMT6-S; n 2: 3 for EMT6-R). 
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4.5 Discussion. 

Each of the dyes tested was found to exert a photocytotoxic effect on EMT6-S and 

EMT6-R cells. The light enhancement fhctor (LEF), which is the ratio of IC 50  values 

achieved in the light dark, has been calculated for comparison of these effects. It 

should be noted that the light dark differential is not constant, but varies at different 

concentrations, and for this reason has been standardised, using IC 50  values, to calculate 

the LEF. VBBO was clearly the most effective photosensitizer (LEF approximately 10-

fold in both cell lines), at much lower concentrations than MB or TBO. The latter two 

dyes were moderately photocytotoxic, showing approximately a 2-fold LEF in both cell 

lines. No photocytotoxic effect was noted with either cis-platinum or doxorubicin. 

VBBO has been shown to exert higher photocytotoxicity in EMT6-S and EMT6-R cells 

than either MB or TBO, following three hours' incubation, which could be due to 

differences in uptake and/or subcellular localisation of the drugs. YBBO is highly 

lipophi]ic compared to MB and TBO (Table 11), suggesting that it is susceptible to 

uptake by passive diffusion, facilitating entry into the cell interior. MB and TBO are 

both hydrophilic, however, as previously discussed, in biological systems, neutral species 

are also formed which are much more lipophilic. 

Previous studies have shown that YBBO binds specifically to mitochondria [132] due to 

the affinity of the positively charged cation for the negatively charged mitochodrial 

membrane. Since mitochondria in tumour cells have a higher potential gradient than 

normal cells, carcinoma mitochondria take up higher concentrations of cationic dyes and 

retain them longer than normal cells [178]. These positively charged dyes may also bind 

to the negatively charged phospholipid, cardiolipin, which is abundant in the 

mitochondrial membrane. Cafiete et aL [128] observed that 1130 localised in the 

cytoplasm of HeLa cells, mainly at the perinuclear level, following more than three 

hours' incubation. Another study [168] has also described the mitochondrial localisation 



of TBO in an epidermoid carcinoma cell line. By contrast, MB has been shown to 

localise in lysosomes [169]. Several phenothiazinium dyes have been shown to 

accumulate in lysosomes due to the pH gradient, in contrast to cyanine cationic dyes, 

which fivour mitochondrial localisation due to the potential gradient [179,180,181]. 

Phenothiazinium dyes can diffuse across the membrane when they are uncharged and 

unprotonated, however, in the low pH environment of lysosomes they become 

protonated and trapped in the vesicle [182]. This process depends on the pH gradient of 

the subcellular compartment and the ability of the dye to undergo protonation-

deprotonation [183]. 

The localisation of the photosensitizers in this study, using confocal microscopy, support 

the above findings. Both VBBO and TBO showed widespread accumulation throughout 

the cytoplasm, which could be consistent with mitochondrial distribution. Considerably 

more VBBO appeared to be accumulated in both cell lines than either MB or TBO, 

following three hours' incubation, which suggests that the uptake of VBBO into the cell 

interior was more efficient than the other photosensitizers. This may be expected due to 

the differences in lipophilicity of the agents. Some studies have shown that MDR may 

be associated with differences in membrane potential of certain cell lines [184]. Impaired 

accumulation of a cationic cyanine dye was noted in an adriamycin-resistant Friend 

Ieukaemia cell line, and it was suggested that a decreased membrane potential was 

associated with MDR in this cell line [184]. Further studies should be carried out to 

establish any differences in membrane potential between EMT6-S and EMT6-R cells. 

The results for MB were very interesting. The punctate pattern of distribution within the 

cytoplasm (Figures 32(a) and 33(b)) could suggest sequestration into vesicles, following 

three hours' incubation, which may be consistent with lysosomal localisation. Prior to 

incorporation into the lysosomes, it is suggested that the dye may be taken into the cells 

via pinocytosis, forming small vesicles. Most endocytotic vesicles eventually fuse with 

primary lysosomes and ultimately become secondary lysosomes which digest the 
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macromolecular contents [185]. Interestingly, subsequent scanning of both EMT6-S and 

EMT6-R cells containing MB resulted in what appeared to be lysis of the vesicles, with a 

resultant flood of MB inside the cell. It is not clear whether the vesicles were lysosomes 

or simply pinocytotic vesicles formed prior to their thsing with primary lysosomes. This 

phenomenon did not occur with the subsequent scanning of either VBBO or TBO, 

indicating a different subcellular localisation of MB. 

Canéte et aL [128] compared the uptake kinetics of MB and TBO in HeLa cells and 

found that MB displayed rapid penetration kinetics at short incubation times (less than 

six hours), reaching saturation after approximately six hours of treatment. TBO 

displayed slower kinetics at these incubation times, but its uptake appeared to equate to 

that of MB following twelve hours' incubation. In addition, no significant diflérence in 

- cytotoxicity displayed by MB and TBO was seen at incubation times of less than three 

hours, but MB was found to be more effective when incubated for more than three 

hours. It has been shown that short incubation periods with a photosensitizer, followed 

by irradiation, lead to primary damage in the plasma membrane, whereas extended 

incubation periods of twenty four hours induce increased damage to cytoplasmic 

organelles and enzymes [186,187]. MB is thought to exert its photocytotoxic effects via 

DNA intercalation, however, this study did not show any nuclear localisation of the 

agent. This may be due to the relatively short incubation time of three hours and studies 

using increased incubation times should be carried out to investigate this thither. 

All the photosensitizers were found to have some effect in overcoming drug resistance in 

the EMT6-R cell line when exposed to light (7.2 J cm 2) in the order VBBO>TBO>MB, 

however, in the dark VBBO and TBO were the most effective. S-Platinum was found 

to be equally effective against EMT6-S and EMT6-R cells, whereas both VBBO and 

doxorubicin required increased drug concentration levels to overcome the resistance. 

However, VBBO only required approximately a 10-fold increase in concentration, in 

contrast to doxorubicin which required almost a 100-fold increase. These results show 
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that VBBO is partially able to overcome MDR in EM76-R cells, suggesting that this 

partial response may be due to the drug being effluxed by Pgp or, alternatively, VBBO 

may be interacting in some way with Pgp. TBO and MB both showed some effect in 

reducing Mi)R in EMT6-R cells, but interestingly, the drug concentration levels required 

to overcome the resistance were similar (less than 2-fold) to those required for the 

sensitive cell line. This suggests that TBO and MB are toxic in their own right and may 

be able to circumvent efflux via Pgp. 

Doxorubicin is a known substrate for Pgp whose cytotoxicity can be modified by certain 

chemosensitizers, such as verapamil [188,189]. This agent binds to Pgp, preventing the 

efflux of cytotoxic agents, with a resultant increase in intracellular drug concentration 

and concomitant increase in cytotoxicity [189]. In order to investigate the interaction of 

VBBO, MB or TBO with Pgp, the effects of pre-treatment of EMT6-S and EMT6-R 

cells with each of the photosensitizers, on the cytotoxicity of doxorubicin against these 

cell lines, were examined. 

Pre-treatment of EMT6-S and EMT6-R cells with low concentrations of VBBO, MB or 

TBO, (equivalent to 1/8th IC 50  value for each photosensitizer), prior to exposure to 

doxorubicin, enhanced the cytotoxicity of doxorubicin in all cases. Pre-treatment with 

VBBO resulted in a two-fold increase in doxorubicin toxicity in both cell lines. Since the 

cytotoxicity exerted by VBBO alone at this concentration is less than 10%, this is clearly 

a synergistic effect. Pgp is known to be overexpressed in the EMT6-R cell line [5], 

however, doxorubicin cytotoxicity was increased in both cell lines, suggesting that this 

mechanism was independent of Pgp efflux. Studies have shown doxorubicin to localise in 

mitochondria and to have a 'multisite effect on the respiratory chain' [153]. Cardiolipin 

(CL) is an anionic phospholipid specific to the inner mitochondrial membrane and has 

been shown to be intimately involved in mitochondrial enzyme activity [153]. 

Doxorubicin is known to have strong affinity for CL [145,146], which would explain the 

toxic effect shown in mitochondria. Since VBBO has also been found to localise in 
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rnitochondria, we hypothesise that the synergistic effect demonstrated by the combined 

use of VBBO and doxorubicin may be largely attributed to mitochondrial damage and 

disruption of the respiratory chaia. 

Pre-treatment with MB increased doxorubicin toxicity in EMT6-R cells two-fold, but 

had less effect on the sensitive cell line (increase x 1.4). This suggests a different 

mechanism of action to that of VBBO, which may involve interaction with Pgp. Pre-

treatment with TBO resulted in an increase in toxicity of almost two-fold in EMT6-S 

cells, but this was increased to three-fold in the resistant cell line, again suggesting 

possible interaction with Pgp. 
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CHAPTER FIVE 

THE EFFECT OF YERAPAMIL AND BUTHIONINE 
SULFOXIMINIE ON THE CYTOTOXJCITY OF 

YBBO IN EMT6 CELLS. 
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5.1 Absfract 

VBBO is thought to exert its photocytotoxic effects via free radical generation. 

Glutathione (GSH) and related enzymes are associated with the protection of normal 

tissues against free-radical damage and have also been implicated in MINt Investigations 

were carried out into the effect of GSH depletion in EMT6-S and EMT6-R cells on 

VBBO photocytotoxicity. Buthionine suifoxin,ine (BSO), a potent inhibitor of y-

glutamyl cysteine synthetase, inhibited GSH levels in both EMT6-S and EMT6-R cell 

lines in a concentration-dependent manner, although some toxicity was observed at all 

concentrations tested. BSO at a concentration of 10 riM was used for subsequent 

experiments. The total GSH content for EMT6-R cells was found to be higher than that 

of EMT6-S cells, 21.84 ± 2.54 jig (mg protein) 4  and 18.79 ± 2.7 jig (mg protein)1 , 

respectively, however, this was not found to be a significant dfflèrence (> 0.05). GSH 

depletion of EMT6-S and EMT6-R cells did not enhance the photocytotoxic effect of 

VBBO, suggesting that the primary site of action of VBBO is at an intracellular sitenot 

protected by OSH or that the mechanism of action is not via the in situ generation of 

singlet oxygen. 

Verapamil is a potent inhibitor of Pgp and its presence was shown to increase the 

efficacy of doxorubicin by two-fold in the the sensitive cells indicating that some Pgp is 

present in this cell line. The eighteen-fold increase in doxorubicin efficacy seen in the 

resistant cell line clearly supports the overexpression of Pgp in the EMT6-R cell line, 

compared to that of the parental cell line. By contrast, the presence of verapamil did not 

increase the cytotoxicity of VBBO in either cell line. 

The enhanced cytotoxic effect of doxorubicin shown against EMT6-R cells with the 

addition of verapamil suggests that the primary mode of action of the chemosensitizer in 

this cell line, which is known to overexpress Pgp, is via inhibition of Pgp. Since the 

addition of verapamil did not enhance the cytotoxicty of VBBO, this suggests that 
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VBBO is not efiluxed by Pgp, further supporting the hypothesis that VBBO acts at a 

specific site within the cell. 
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5.2 Introduction 

Pleiotrophic or acquired multiple drug resistance (MDR) in cancer chemotherapy has 

proved to be a highiy complex phenomenon which is responsible for the thilure of many 

cancer treatments. A vast amount of research has been performed in recent years to try 

to elucidate mechanisms of action of MDR. Some of these mechanisms are now well-

characterised, such as the so-called 'classical' Ml)R involving decreased intracellular drug 

accummulation due to the overexpression of P-glycoprotein (Pgp), a membrane-bound 

ATP-dependent drug efflux pump [26]. However, many examples of'atypical' and 'non- 
/ 

Pgp' MDR have also been encountered [51,52]. Glutathione (GSH) and glutathione-S-

transferases (GSTs) have been implicated in MDR, although there is much conflicting 

evidence as to their exact role [91]. Many proteins have also been found to be involved 

in MIDR, and the recently identified multidrug resistance-associated protein (MIRP) has 

been shown to be important, particularly with respect to its function as an efflux  pump 

for conjugates of glutathione [57]. 

GSH and associated enzymes have been shown to be important in normal tissues for 

protection against free radical damage [58,91]. Since increased GSH levels have also 

been associated with MDL several studies have investigated the depletion of GSH in 

drug resistant cell lines (reviewed by Moscow & Dixon [91]). Buthionine sulfoximine 

(BSO), a potent inhibitor of y-glutamyl cysteine synthetase, has been shown to increase 

the cytotoxicity of a variety of. chemotherapeutic agents [190-193]. Anthracycline 

antibiotics, such as doxorubicin, are known to generate free radical intermediates when 

metabolised, leading to toxic cellular effects [194] and since GSH depletion by the 

addition of BSO can increase the cytotoxicity of anthracydlines [190-194], it has been 

suggested that this enhancement may be due a reduction in the protective effect of GSH. 

VBBO is also thought to exert its photocytotoxic effects via free radical generation, 

therefore the effects of GSH depletion in EMT6-S and EMT6-R cells, by the addition of 

BSO, were investigated in this study. 
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MDR may be also modified by the addition of various hydrophobic agents, referred to as 

chemosensitizers or resistance modifiers [188,195-196]. Many chemosensitizers 

potentiate the cytotoxicity of a variety of chemotherapeutic agents by inhibiting the Pgp 

efilux pump, resulting in an increase in the intracellullar concentration of the agents 

[189]. Seven main categories of resistance modifier have been described (i) calcium 

channel blockers; (ii) calmodulin antagonists; (iii) noncytotoxic anthracycline and Vinca 

alkaloid analogues; (iv) steroids and hormone antagonists; (v) cyclosporins; (vi) 

dipyridamole; and (vii) miscellaneous hydrophobic, cationic compounds [189]. All of 

these agents are highly lipophilic and many are heterocydic and positively charged, 

however, they share only broad structural similarities. 

Veraparnil, a calcium channel blocker, has been shown to be a potent inhibitor of Pgp, 

reversing resistance to various chemotherapeutic agents such as vincristine and 

doxorubicin [197,198). The potentiation of the cytotoxicity of the agents by verapamil is 

also associated with the inhibition of Pgp. However, the chemosensitizing action of 

verapamil varies between cell lines and some cross-resistance is refractory to modulation 

[189]. Various theories have been postulated, such as the possthility that mutations in 

the MDRJ gene [199] or post-translational modifications of Pgp [200] may alter the 

aflinity of agents to the drug binding site(s). Similarly, Pgp may express multiple binding 

sites. 

VBBO has been shown partially to overcome the resistance shown by EMT6-R cells [see 

Chapter 4], however, higher concentrations of the drug, compared to those used against 

the parental line, are necessary to achieve this reversal. This suggests that some VBBO 

may be effluxed from the cells via Pgp. Similarly, it has been shown that pre-treatment 

of EMT6-S and EMT6-R cells by VBBO, prior to treatment with doxorubicin, enhances 

the cytotoxicity of doxorubicin [see chapter 4]. One explanation of this result may be 

that VBB() interferes with the transport of doxorubicin across the cell membrane, 

leading to increased intracellular accumulation of doxorubicin. In order to investigate 

whether VBBO is a substrate of Pgp, the effects of verapamil on the cytotoxicity of 
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VBBO and doxorubicin against EMT6-S and EMT6-R cells were compared in this 

study. 

5.3 Materials and Methods. 

5.3.1 Chemicals. 

Victoria blue BO (VBBO), and 1-octanol were purchased from Aldrich Chemicals 

(Gillingham, UK) and were used without fUrther purification. MIT (3-[4,5-

dimethylthiazol-2-yl]-2,5-diphenyl-2H-tetrazolium bromide), DMSO(dimethyl sulfoxide), 

verapamil, BSO (buthionine sulfoxiniine), sodium phosphate, sodium-EDTA 

(ethylenediaminetetraacetic acid), DTNB (5 ,5'-dithiobis-(2-nitrobenzoic acid)), NADPH 

and glutathione reductase (type ifi from Saccharomyces cerevisiae) were obtained from 

Sigma, Poole, U.K. Doxorubicin was a gift from Farmitalia Carlo Erba Ltd., St. Albans, 

U.K 

5.3.2 Cell Culture 

The murine mammary tumour cell line (EMT6) was originally obtained from Zeneca 

Pharmaceuticals, Macclesfield, Cheshire. Cultures were routinely maintained at 37°C, 

5% CO2  95% air in RPMI 1640 culture medium (Life Technologies, Paisley, U.K.), 

upplemented with 10% (v/v) foetal calf serum (M.B.Meldrum Ltd., Bourne End, U.K.), 

200 mM glutamine (Sigma) and penicillin/streptomycin solution at lx10 4  units md- I and 

10 mg m1, respectively, in 0.9% NaCl (Sigma). Trypsin (activity 1200 BAEE units/mg 

solid) was obtained from Sigma. 
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5.3.3 Effect of BSO on glutathione levels in EMT6-S and EMT6-R cells. 

4 ml aliquots of each cell line were seeded into 60 mm petri dishes at a cell density of 

8 x 104  cells mF4  in RPMII 1640 and incubated at 37°C, 5% CO 2  95% air. The 

EMT6-S cells were grown on for three days and the EMT6-R cells for four days, to 

ensure each cell line was in logarithmic phase. The medium was then removed from the 

petri dishes and replaced with 4 ml of either RPMI 1640 (controls) or RPMT containing 

various concentrations of BSO (10, 100 or 1000 1iM). The cells were incubated for five 

hours in the absence or presence of BSO. The medium was then aspirated and the cells 

washed twice with 4 ml ice-cold PBS (4°C). The cells were lysed by the addition of 0.5 

ml 0.6% (w/v) 5-sulfosalicylic acid (5-SA) left on ice for 40 minutes, in the dark, shaking 

occasionally to ensure all the cells were covered by the acid. The supematant was then 

removed and used to estimate the amount of glutathione present using a modified version 

of the Tietze recycling assay, according to the method of Eady et aL [201]. In this assay, 

OSII is sequentially oxidised to glutathione disulphide (GSSG) by 5,5-dithiobis-(2-

nitrobenzoic acid) (DTNB) and reduced by NADPII in the presence of glutathione 

reductase. The rate of formation of 2-nitro-5-thiobenzoic acid (TNB) may be followed 

spectrophotometrically and the GSH levels determined by reference to a standard curve. 

A stock buffer of 143 mM sodium phosphate and 6.3 mM sodium-EDTA (pH 7.5) was 

made in distilled water and used to prepare solutions of 0.3 mM NADPH, 6 mM DTNB 

and 50 units mF4  0511 reductase. Standards of known GSH content were prepared by 

serial dilution in 0.6% (w/v) 5-SA and the GS11 content in the samples was determined 

by reference to a standard curve. For each assay, a final tube was made up containing 

700 .s1 NADPH solution, 100 j.tl cell extract (or OSH standard) and 100 i.tl distified 

water. Each tube was incubated at 30°C for ten minutes before being transferred to a 

cuvette containing 10 .il OSH reductase. The rate of absorbance at 412 nm was 

measured spectrophotometrically (Phanriacia Novaspec II linked to a Kipp & Zonen 

chart recorder). After removing the 5-SA extract, the cell monolayer was scraped from 

the petri dish and dissolved in 4 ml Tris (2 M) / EDTA (0.1 M) buffer prior to protein 
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estimation via the standard Bradford assay [202]. The amount of glutathione in each cell 

line was then expressed as gg GSH (mg protein'. 

5.3.4 Effect of glutathione depletion on the cytotoxicity exerted by VEBO 
against EMT6-S and EMT6-R cells. 

96 well microtitre plates were seeded with 1000 cells per well (in 200 j.tl RPMI 1640) 

and incubated at 37°C, 5% CO2  : 95% air for 2 days. The medium was aspirated prior to 

the addition of 200 j.il of varying concentrations of BSO (10, 100 or 100 jiM) and the 

cells were incubated, under the same conditions as previously described, for five hours. 

The medium was then aspirated and the cells rinsed twice with RPMI 1640 prior to the 

addition of varying concentrations of VBBO ( 0-2 pM for EMT6-S cells; 0-20 p.M for 

EM1'6-R cells). The cells were incubated for a further three hours, rinsed twice with 

200 p1 RPMI and illuminated at 7.2 J cm- ' or kept dark. The cells were then grown on 

for three days at 37°C, 5% CO2  : 95% air. A proportion of cells was left untreated on 

each plate as a control. All drug dilutions were made using RPMI 1640 mediumS 

Cytotoxicity was measured using the MTT assay as previously described in Chapter 4, 

section 4.3.3. 

5.3.5 Effect of verapamil on the cytotoxicity exerted by doxorubicin or 
VBBO against EMT6-S and EMT6-R cells. 

96 well microtitre plates were seeded with 1000 cells per well (in 200 p.1 RPMI 1640) 

and incubated at 37°C, 5% CO2  95% air for 2 days. The medium was aspirated and 

200 p.1 VIBBO or doxorubicin were added, in varying concentrations, in the absence and 

presence of verapamil (7 jiM). The cells were then incubated, as previously described, 

for 3 hours. The medium containing the drug was aspirated and the cells rinsed with 

200 p.1 RPM1 1640, before replacing with a further 200 p.1 RPMI 1640. The cells were 

then grown on for 3 days at 37°C, 5% CO2 : 95% air. A proportion of cells was left 

untreated on each plate as a control. All drug dilutions were made using RPMI 1640 

medium. Cytotoxicity was measured using the Mn assay as previously described. 
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5.4 Results. 

5.4.1 Effect of BSO on glutathione levels in EMT6-S and EMT6-R cells. 

The total GSI-I content for EMT6-R cells was found to be higher than that of EMT6-S 

cells, 21.84 ± 2.54 ig (mg prote in)d and 18.79 ± 2.7 jig (mg protein) - I, respectively, 

however, this was not found to be a significant difference (p> 0.05) (Students t-test). 

BSO inhibited GSI-1 levels in both EMT6-S and EMT6-R cell lines in a concentration-

dependent manner (Figure 39), however, some toxicity was observed at all 

concentrations tested. BSO at a concentration of 10 pM was used for subsequent 

experiments. 
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Figure 39 : Effect of Buthionine Sulfoximine (BSO) on glutathione levels in 

EMT6-S and EMT6-R cells 
Cells (4 x 10 in 60 mm petri dishes) were grown for 3 days (sensitive cells) or 4 days (resistant 

cells) at 37°C, 5% CO2  : 95% air. The cells were then incubated for 5 hours in the presence of 

BSO (10-I0 pM). All drug dilutions were made using RPMI 1640 medium. The protein 

content was determined using the standard Bradford assay [202] and OSH levels were calculated 

using a modification of the Tietze assay [201]. Each point represents mean ± SEM (n ~! 5). 
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5.4.2 Effect of glutathione depletion on the cytotoxicity exerted by YBBO 

against EMT6-S and EMT6-R cells. 

On first examination, VBBO photocytotoxicity appeared to be enhanced when EMT6-S 

and EMT6-R cells were exposed to 10 RM BSO (Figures 40(a & b), 40(c & d), 

respectively), however, the combined effect was lower than the additive effect of the two 

agents, which are toxic in their own right. It was thus concluded that GSI-I depletion of 

EMT6-S and EMT6-R cells did not enhance the photocytotoxic effect of YBBO. 
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Figure 40: Effect of glutathione depletion in EMT6-S and EMT6-R cells on the 
photocytotoxicity of YBBO. 

Cells (1000 I well in 96 well plates) were allowed to attach for 48 hours. The medium was 

aspirated, 200 ptl BSO (10 tM) added and the cells incubated for 5 hours. The cells were then 

rinsed with RPMI medium and exposed to varying concentrations of YBBO for 3 hours. The 

VBBO was aspirated, the cells rinsed and exposed to light (7.2 J cm 2) (Figures c & d) or kept 

dark (Figures a & b), prior to growing on for 3 days at 37°C, 5% CO 2 : 95% air. 'Combined' data 

refers to that of agents used in conjunction with each other, and 'addititve' data refers to the 

addition of data obtained from separate treatment with each agent. Each point represents mean ± 

SEM (n ~! 7). 
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5.4.3 Effect of verapamil on the cytotoxicity exerted by doxorubicin or 
YBBO against EMT6-S and EMT6-R cells. 

The combined treatment of VBBO and verapamil (7 pM) on EMT6-S and EMT6-R cells 

did not enhance VBBO cytotoxicity in either cell line in the dark (figures 41a & b). By 

contrast, the IC 50  value of doxorubicin for EMT6-S cells decreased by two-fold and for 

EMT6-R cells by eighteen-fold (Figures 41c & d). This suggests that VBBO does not act 

as a substrate for Pgp since, if this was the case, veraparnil would have increased the 

dark toxicity of VBBO. 
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Figure 41: Effect of verapamilon cytotoxicity exerted by YBBO ordoxorubicin 
against EMT6-S cells (a & c, respectively) and EMT6-R cells (b & d, respectively). 
Cells (1000 I well in 96 well plates) were allowed to attach for 48 hours. The medium was 
aspirated and VBBO or doxorubicin (200 p1 of varying concentrations) was added to the cells, in 
the absence or presence of verapamil (7 pM), and incubated for 3 hours. The cells were rinsed 
with 200 p1 RPMI 1640, the medium replaced and the cells grown on for 3 days at 37°C, 5% 
CO2 : 95% air. Each point represents mean ± SEM (n 2: 4). 
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5.5 Discussion. 

The total content of GSH present in the EMT6-R cell line was found to be higher than 

that of the EMT6-S cell line (21.84 ± 2.54 pg (mg protein) -1  and 18.79 ± 2.7 pg (mg 

protein) - ', respectively), although this was not found to be significant (p > 0.05). This 

agrees with the findings of Cox [5], although a significantly higher level of GST activity 

in the resistant cell line was reported, compared to that of the sensitive cells (P < 0.05). 

The elevated GST activity indicates an increase in GSH turnover which may be 

associated with increased export of GSH conjugates [203]. It was postulated that the 

actual amount of USE observed in the EMT6 cells represents a basal level of 

unconjugated GSH which may reflect a balance between the production of GSH and the 

excretion of conjugated metabolites [5]. Other studies have also failed to demonstrate a 

difference in basal levels of GSH between sensitive and resistant cell lines (204, 205), 

however, there are reports of some resistant cell lines which do show higher levels of 

USH than their sensitive, parental cell lines [190,206,207]. Interestingly, in all these 

studies, depletion of GSH levels by BSO enhanced the cytotoxicity of a variety of 

chemotherapeutic agents. 

Initially, it appeared that the photocytotoxicity of VBBO was enhanced by the addition 

of 10 pM BSO, particularly in the case of EMT6-S cells (Figures 40(a-d)). However, 

since BSO and VBBO are both toxic in their own right, the additive effect of the toxicity 

of the separate use of these two agents must be considered and compared to the effect 

exerted by BSO combined with VBBO. In each case, the additive effect of the agents' 

toxicity was greater than their combined effect (Figure 40(a-d)), and it was thus 

concluded that GSH depletion of EMT6-S and EMT6-R cells did not enhance the 

photocytotoxic effect of VBBO. 

Although many studies have shown that OSH depletion leads to increased cytotoxicity of 

various chemotherapeutic agents [190-193], Moscow and Dixon [91] have reviewed the 

-- 	tffects of OSH depletion on anthracycline cytotoxicity in many cell lines, and found 
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wide variability in results. They suggested that these discrepancies may be due to 

variations in intrinsic biological properties of different cell lines, or indeed to different 

methodologies employed. In addition, it was suggested that in cases where BSO appears 

to be effective in increasing cytotoxicity of an agent, the mechanism by which this occurs 

is not clear. Possible mechanisms include direct inhibition of the glutathione-redox cycle, 

other effects of glutathione depletion or toxic effects of BSO. The present study 

indicates that some toxicity was exerted by BSO against EMT6 cells, even at the lowest 

concentration used (10 1.sM), following five hours' exposure to the drug. Future studies 

could investigate the effects of lower concentrations of BSO on the viability of EMT6-S 

and EMT6-R cells and on levels of glutathione depletion achieved. Lee et aL [192] found 

that BSO induced GSH depletion occurred in FIEp3 cells in a concentration-dependent 

manner from 0.1-1.0 mM BSO, before levelling off. It was also shown that the level of 

GSH depletion by 1mM BSO was linear for approximately three hours, followed by first 

order kinetics for up to 6 hours, and then slowed significantly [192]. Interestingly, 

cytotoxicity induced by BSO occurred with exposure times exceeding six hours, but was 

not encountered with lower exposure times. Dethlefon et at [208] also reported that 

BSO was cytotoxic to the mouse mammary carcinoma 66 cell line when exposed for 

forty eight hours to 0.05 mM BSO. This cytotoxicity was not evident, however, 

following twenty four hours' exposure. Prolonged exposure to BSO, producing 

extended USH depletion, was associated with a G 1  and 02/M block in the cell cycle 

leading to a delay in cell-cycle progression and cell death in the murine 66 cells [208]. 

It has also been suggested that depletion of GSH levels may affect membrane 

permeability. Lutzky et aL [209] reported that BSO increased the uptake and retention 

of daunorubicin in an anthracycline-resistant sub-line of the HL60 human myelogenous 

leukaemia cell line. Crescimanno et at, however, showed that doxorubicin cytotoxicity 

in both the wild-type Friend leukaemia cell line and a resistant sub-line was significantly 

increased with the addition of BSO, but that accumulation and retention of doxorubicin 

was unaltered [194]. Their study concluded that the status of GSH and GSH-related 
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enzymes plays an important role in the resistance of Friend leukaemia cells to 

doxo rub icin. 

There is clearly controversy surrounding the role of OSH and OSH-related enzymes in 

MDR, however, on balance, there does appear to be evidence to support the protective 

fimction of GSH against free-radical damage. Since depletion of GSH levels in EMT6-S 

and EMT6-R cells was not found to enhance the cytotoxicity of VBBO, this suggests 

that the primary site of action of VBBO is at an intracellular site not protected by GSH 

or that the mechanism of action is not via the in situ generation of singlet oxygen (Type 

II pathway) but may occur via a direct redox reaction between the photoexcited 

sensitizer and biomolecules (Type I pathway) (see section 1.4.2). VBBO is highly 

lipophilic (log P = +3.5) and positively charged. It has been shown to localise 

preferentially in the mitochondria of malignant cells on the inside of the membrane, which 

is negatively charged [132]. Modica-Napolitano et al. [132] have shown the dark 

toxicity of VBBO to involve uncoupling of oxidative phosphorylation. By contrast, 

photoirradiation appears to alter the mechanism of mitochondrial toxicity exerted by 

VBBO, by producing specific inhibition of Respiratory Complex I. In this respect, 

VBBO appears to exert a more speqflc effect on cells than many other cationic 

photosensitizers. 

Verapamil is a potent inhibitor of Pgp [189] and its presence was shown to increase the 

efficacy of doxorubicin, a known substrate for the transporter [189] (Figures 40c & d). 

A two-fold increase in the efficacy of doxorubicin was noted in the sensitive cells 

indicating that some Pgp is present in this cell line, however, the eighteen-fold increase in 

doxorubicin efficacy seen in the resistant cell line clearly supports the overexpression of 

Pgp in the EMT6-R cell line compared to the parental cell line [5]. By contrast, the 

presence of verapamil did not increase the cytotoxicity of VBBO in either cell line in the 

dark (Figures 40a & b) implying that VBBO is not effluxed by Pgp. 
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Verapamil has clearly been shown to exert its action by binding to Pgp and affecting drug 

efflux [189], however, Drori et aL [210] postulate that chemosensitizers also affect 

membrane permeability. Chemosensitizers are usually positively charged, hydrophobic 

compounds which would therefore be likely to interact with membrane lipids. Ramu et 

aL [211] showed that treatment with veraparnil, dipyridamole and tamoxifen increased 

phosphatidyicholine synthesis in MDR cells, but not in the sensitive parental cell lines. 

Drori et aL [210], however, have shown that chemosensitizers potentiate the cytotoxicity 

of chemotherapeutic agents not only in resistant cell lines, but also in wild-type cells 

which do not express Pgp. It was postulated that the majority of chemosensitizers alter 

membrane fluidity, thereby increasing membrane permeability, which in turn results in the 

intracellular accumulation of various hydrophobic chemotherapeutic agents [210]. Other 

studies have also found verapamil to alter the subcellular distribution of doxorubicin 

within drug resistant cell lines [212,213]. 

Verapamil was shown to potentiate the cytotoxicity of doxorubicin two-fold in 

EMT6-S cells. Cox [5] also found that that addition of verapamil to EMT6-S and 

EMT6-R resulted in an increased accumulation of doxorubicin in both cell lines, albeit to 

a greater extent in the resistant cell line. This suggests that either a small amount of Pgp 

is present in the EMT6-S cell membranes and/or that verapamil also binds to the anionic 

phospholipids in the membrane thus affecting the fluidity of the membrane. The 

enhanced cytotoxic effect of doxorubicin shown in EMT6-R with the addition of 

verapamil, however, suggests that the primary mode of action of the chemosensitizer in 

this cell line, which is known to overexpress Pgp [5], is via inhibition of Pgp. Since the 

addition of verapamil did not enhance the cytotoxicty of VBBO, this suggests that 

VBBO is not effluxed by Pgp, further supporting our hypothesis that VBBO acts at a 

specific site within the cell. 
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CHAPTER SIX 

UPTAKE AND CELL-KILLING ACTIVITIES OF A SERIES 
OF VICTORIA BLUE DER1VATWES IN A MOUSE 

MAMIIVIARY TUMOUR CELL LINE 



6.1 Abstract 

The triarylmethane dye Victoria blue BO (VBBO) is a known photosensitizer which has 

been shown to induce a cytotoxic response in vivo. A range of novel VBBO derivatives, 

with varying physicochemical properties, has been compared to VBBO, with respect 

both to dark toxicity and phototoxicity, on a mouse mammary tumour cell line, EMT6-

S. Cells were incubated with varying concentrations (0-5.0 .tM) of the dyes and either 

exposed to light (7.2 J cm7 2) or kept dark. Increased light dose (14.4 & 28.8 J cm -2) 

had little effect on the activity of VBBO but did lead to an increase in the 

photocytotoxicities of the dimethylamino and morpholino derivatives, MYB and MOVB, 

respectively. 

In respect of uptake, VBBO, PYB, and MYB showed very similar behaviour, all 

showing increased uptake over time. However, alter two hours the rates of VBBO and 

PVB appeared to equilibrate, whereas that of MYB was stifi increasing. By contrast 

MOVB exhibited a much slower rate of uptake, showing little increase over three hours. 

It was observed that all the photosensitizers exhibited a similar trend of uptake with 

respect to concentration. In addition, the rate of uptake could be correlated with the 

lipophilicity of the agents, the most lipophilic being the most efficient. 

Confocal microscopy studies showed that all the photosensitizers appeared to be 

distributed widely throughout the cytoplasm with considerable concentration of the dye 

in the perinuclear region shown by VBBO and PVB. There appeared to be very little 

localisation in the nucleus for VBBO and MYB, although slight fluorescence was noted. 

More evidence of nuclear infiltration was demonstrated with PVB and MOVB. 

The chemical changes employed were shown to alter the uptake of the photosensitizers 

and the resulting light dark toxicity diflèrentials. 
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6.2 Introduction. 

Photodynamic therapy (PDT) is now welt-established and is gaining increasing 

acceptance in the treatment of neoplastic disorders [106]. Problems associated with first 

generation porphyrin photosensitizers, such as poor light absorption in the 'therapeutic 

window' (600-750 nm) and prolonged skin photosensitization [214], have ted to the 

search for new and improved drugs. The requirements for a successful photosensitizing 

drug remain: high selectivity for malignant cells, high photosensitizing activity, low dark 

toxicity, lack of skin photosensitization, ease of production of pure drug and biochemical 

stability. 

Much recent progress in drug development has been based on porphyrin derivatives and 

their analogues, e.g. chlorins and phthalocyanines [110-111,215]. However, 

photosensitizers based on commercial dyes are also of interest because of their familiar 

and well-established chemistries and synthetic routes. Several examples of commercial 

photosenzitisers have been examined for photocytotoxicity : acridines [126]; 

phenoxa.zines [127]; phenothiazines [128] and xanthines [129]. In most cases, although 

photocytotoxicity has been demonstrated, there has been concomitant dark toxicity. 

Few workers have thus far attempted to eradicate the latter by the synthesis of 

specifically designed photosensitizers based on commercial dyes. 

One class of compounds which has received scant attention in this area is the cationic 

triarylmethane series. Studies have suggested that the flexibility of the ring structure of 

triarylmethanes causes a fast relaxation of the singlet excited electronic state, and thus a 

low degree of photosensitizing activity [133]. However, immobilisation of the 

compounds, which may occur when binding of the structure to biomolecules endows 

greater structural rigidity, greatly increases the photosensitizing ability. [137]. The 

Victoria blue series consists of triarylmethane dyes related to crystal violet, where one of 

the phenyl groups is replaced by 1-naphthyl. Victoria blue BO (VBBO) and Victoria 

blue R (VBR) (Figure 42) have been reported to exhibit photocytotoxic effects in several 
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mammalian cell lines, including human squamous cell carcinoma (FaDu) and human 

melanoma (MEL), though some dark toxicity was observed [133]. The phenylamino 

analogue, Victoria blue B, (VBB) (Figure 42) has also shown antitumour activity in 

animal systems [216]. 

A series of compounds based on the skeleton of VBBO has been synthesised in the 

Department of Chemistry, UCLAN, possessing different structural features and hence 

varying physicochemical properties. Figure 43 shows Hyperchem representations of the 

naphthyl residues in the Victoria blue derivatives used in this study, showing proximities 

of the amine side chain protons to the naphthylperi-proton (H-8). The aim of the study 

was to examine known and new photosensitizers for the effect of such physicochemical 

change upon the photodynamic selectivity, that is, high tumour cell uptake plus a high 

ratio of light to dark toxicity. Investigations were carried out on the photocytotoxicity / 

dark toxicity of three compounds having different naphthyl substitution and of one 

compound having a rigidified triarylmethane structure compared to VBBO, on the 

murine mammary tumour cell line, EMT6-S. Since the main differences in structure 

occur at the 4-position of the naphthyl moiety, the different substituted amino groups 

were used for compound indication (Figure 42). Thus the Victoria blue analogue having 

a pyrrolidine group in the 4-naphthyl position was denoted as PYB; the 4-

dimethylamino- analogue as MVB and the 4-morpholino- analogue as MOVB. In 

FVB, the two substituted phenyl rings were replaced by the planar 3,6-

bis(dimethylamino)fluoren-9-yl moiety in an effort to increase the coplanarity and the 

concomitant sensitizing efficiency of the system. 
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R RI  
?aax(nm)

a 
logemax 

C 

IogP pKa 

VBBO NHC2H5 N(C2H5)2 612 4.58 3.5 11.0 

VBR NHC2H5 N(CH3)2 612 4.48 1.5 9.5 

VBB NHC6H5 N(CH3) 2  612 4.55 2.8 7.7 

MVB N(CH3) 2  N(C2H5)2 622 4.36 2.3 8.5 

MOVB 
N 	0 
\/ 

N(CH3) 2  622 4.37 0.9 8.1 

PVB N(CH3) 2  624 4.39 1.8 8.4 

awavelength of maximum absorption and blogarithm of the extinction coefficient 
measured in aqueous buffer, pH 7.3; 'logarithm of the partition coefficient between 
water and 1-octanol and logarithm of the equilibrium constant measured 
spectrophotometrically in aqueous buffer. 

Figure 42 Structures and physico-chemical data for Victoria blue derivatives. 
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(a) 
	

(b) 

(c) 
	

(d) 

Figure 43: Hyperchem representations of the naphthyl residues in the 
Victoria blue derivatives employed in this work, showing the proximities of 
the amine side chain protons to the naphthylperi-proton (11-8): (a)YBBO, 
(b) PVB, (c) MYB, (d) MO YB 
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6.3 Materials and Methods 

6.3.1 Chemicals 

VBBO, VBR and VBB were purchased from Aldrich Chemicals (Poole, U.K.) and were 

used without flirther purification. The synthesis of new photosensitizers followed an 

established procedure [217]. Elemental analyses for the new photosensitizers were 

correct and purity was confirmed by high performance liquid chromatography and high 

field 1 H nmr. 1-Octanol was purchased from Merck, Lutterworth, U.K. and was used 

without further purification. Both the partition coefficients of the photosensitizers in a 

pH 7.3 phosphate buffered saline/1-octanol system [218] and theft pK a  values [219] 

were determined spectrophotometrically using aFlewlett Packard 8452A diode array 

spectrophotometer. Absorption spectra are given in Figure 42. This work was 

performed by the Chemistry Department, UCLAN. 

6.3.2 Cell Culture 

The murine mammary tumour cell line (EMT6-S) was originally obtained from Zeneca 

Pharmaceuticals, Macclesfield, Cheshire. Cultures were routinely maintained at 37°C, 

5% CO2  : 95% air in RPMI 1640 culture medium (Life Technologies, Paisley, U.K.), 

supplemented with 10% (v/v) foetal calf serum (M.B.Meldrum Ltd., Bone End, U.K), 

200 mM glutamine (Sigma, Poole, U.K.) and peniciuin/streptomycin solution at 1x10 4  

units ml 1  and 10 mg m1 1 , respectively, in 0.9% MaCi (Sigma). Trypsin (activity 1200 

BAEE units/mg solid), Mn (3-[4,5-dimethylthiazol-2-yl]-2,5-4henyl-2H-tetrazolium 

bromide) and DM50 (dimethyl sulphoxide) were obtained from Sigma. 



6.3.3 Characterisation of drug uptake 

6.3.3.1 Absorbance Spectra 

Spectral measurements on a range of dye dilutions (0-5 gM in methanol) were carried 

out using a Hewlett Packard 8452A diode array spectrophotometer, to check adherence 

to the Beer-Lambert law. The wavelength of maximum absorption in the visible region 

for each dye was then used for the spectrophotometric analysis of the dyes in the uptake 

experiment. FVB exhibited no absorption in the visible region due to rapid hydrolysis in 

PBS. 

6.3.3.2 Drug Uptake 

10 ml aliquots of EMT6-S cells were seeded into 75 cm2  flasks at a cell density of 8x1 04 

cells mi-1 , in RPMJ 1640 medium, supplemented with 10% (v/v) foetal calf serum, 

200 mM L-glutamine and penicillin/streptomycin, as previously described. The cells 

were then incubated at 37°C, 5% CO 2  95% air and grown to confluence. The medium 

was aspirated and replaced with varying concentrations of each dye (0-0.625 p.xM) and 

the cells incubated for a fl.irther 0.5, 1, 2, or 3 hours under the same conditions as 

previously described. Following incubation, the medium was aspirated from each flask 

and the cell monolayer removed by the addition of lml 0.25% (w/v) trypsin and 0.5% 

(w/v) EDTA (in Dulbecco's PBS). The cells were resuspended in 10 ml RPMI to 

neutralise the action of the trypsin and counted using an improved Neubauer 

haemocytometer. The cell suspension was centrifuged at 160 g for 5 minutes and the 

supematant removed. The cell pellet was then rinsed twice by resuspension in PBS 

followed by centrifligation at 160 g for 5 minutes. The supematant was aspirated and 

the cells resuspended in 1 ml methanol for 30 minutes. The cell suspension was then 

centrifuged at 160 g for 30 minutes. The supematant was removed and the absorbance 

determined spectrophotometrically. The experiments were performed three times, in 
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duplicate. Specific uptake for each dye was established from a calibration curve and 

expressed in picomoles (106 cells)' 

6.3.4 Phototoxicity: dark toxicity experiment 

The method was carried out as described in section 4.3.3. 

6.3.5 Effect of variable illumination 

96 well microtitre plates were set up as previously described (section 4.3.3). The cells 

were exposed to the various drug concentrations as before. However, in this series of 

experiments, the plates were illuminated for 30 minutes, 1 hour, 2 hours or kept in the 

dark. The photocytotoxicity dark toxicity ratio effected by each drug was then 

established using the MTF assay, as previously described. 

6.3.6 Localisation Studies Using Confocal Microscopy. 

2 ml aliquots of EMT6-S and EMT6-R cells were seeded at a cell density of 1x10 4  cells 

mF' into 35 mm petri dishes (Falcon, Fahrenheit Laboratories, Rotherham, U.K) in 

RPMI 1640 medium, supplemented with 10% (vfv) foetal calf serum, 200 mM L-

glutamine and penicillin / streptomycin, as previously described. A sterile quartz 

coverslip (suprasil, 0.5 nmi diameter x 0.2 mm thick, Heraeus Silica & Metals Ltd., 

Byfleet, U.K) was placed into each petri dish and the cells were allowed to attach for 

three days (EMT6-S cells) or four days (EMT6-R cells) whilst incubating at 37°C, 5% 

CO2  95% air. The medium was aspirated and replaced with medium containing a 5 gM 

concentration of VBBO, PVB, MVB or MOYB, and incubated for three hours, under 

conditions previously described. Following 3 hours' incubation, the cells were examined 

with a scanning laser confocal fluorescence microscope using a helium / neon laser at 

633 nm. Untreated cells were also examined for autofluorescence, but none was found. 
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6.4 Results 

6.4.1 Absorbance Spectra 

With the exception of FVB, all the dyes absorbed maximally in the red wavelength 

region (Figure 42). The absorption spectrum of FVB showed no absorption in the visthie 

region due to the spontaneous hydrolysis of this compound in PBS, thus an acceptable 

standard curve, and hence uptake values, could not be obtained. Log P values and pKa 

values for all the Victoria blue photosensitizers dealt with in this work appear in Figure 

42. 

6.4.2 Drug Uptake 

The initial uptake of VBBO, MVB and PVB over one hour was found to be very similar 

(Figure 44), with that of VBBO and MYB equilibrating after approximately two hours. 

The uptake of PVB between one and two hours appeared to be slightly lower than 

VBBO and MYB, but then increased between two and three hours, reaching a similar 

level to VBBO and PVB alter three hours. MOVB showed a much lower rate of uptake 

than the other three dyes, increasing slowly over three hours (Figi.ire 44). Control 

experiments showed there to be no artithetual binding of the dye to the plastic petri 

dishes. 

VBBO, PVB, MYB and MOVB all showed a good correlation between drug 

concentration and cellular uptake after three hour's incubation (Figure 45). The uptake / 

dose trend was similar for all four drugs tested, and followed the order of efficacy 

VBBO> PVB > MVB> MOVB. This corresponded to the lipophilicity of the agents, 

with VBBO being the most lipophilic. At very low concentrations (C  0.156 jiM), the 

uptake of MYB appeared to be lower than that of the other three drugs. 
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Figure 44 : Uptake curves of Victoria blue derivatives by EMT6 cells: 
VBBO I.). PVB 101, MVB (s),  MOVB (.). Dyes (at 0.625 MM in PPMI 
1640) were added to the cells, and cellular dye concentrations were 
determined at different time intervals after incubation at 37C. 5% CO 2  
95% air. Each point represents mean ± SEM (n3). 

Concentration of dye (pM) 

Figure 45 : Uptake curves for Victoria blue derivatives. VBBO (S ),PVB C 
MVB ( a),  MOVB C. hDyes (0.156-5.0 pM) in RPMI 1640 were added to the cells 
and incubated for 3 hours at 37C •  5% CO2  : 95% air. Cellular retention of the 
dye at each concentration was calculated. 
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6.4.3 Mean cytotoxicity following 3 hours' incubation 

VBBO gave the greatest differential between light and dark cytotoxicity at all 

concentrations, with the optimum differential seen between 0.156 gM and 0.312 jiM 

(Figure 46(a)). The results for the Victoria blue derivatives indicated that they all gave a 

lower photocytotoxic response than VBBO thus decreasing the light/dark differential 

(Figures 46 (b), (c) & (d)). 
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Figure 46 % cytotoxicity on EMT6-S cells elicited by Victoria blue derivatives 
following illumination (a) YBBO; (b) PYB; (c) MVB; (d) MOYB. 
Cells (1000 / well in 96 well plates) were allowed to attach for 48 hours. Drugs (200 jil 
at 0 - 0.625 1M in RPMI 1640) were added to the cells and incubated for 3 hours. The 
cells were then rinsed with RPMI and exposed to light (7.2 J cm7 2), prior to growing on 
for 3 days at 37°C, 5% CO2 : 95% air. 
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The IC50  values for the light and dark toxicities of each compound are shown in Table 

12. The light enhancement factor (LEF) is the ratio of light dark IC50 values. The 

light: dark toxicity ratio is not constant, but varies with differing concentrations and for 

this reason has been standardised using the IC50 values. The light dose used was 7.2 J 

cm-2 . 

Table 12 IC50 values / Light Enhancement Factor for Victoria Blue derivatives. 

The light enhancement factor (LEF) is the ratio of light: dark IC50 values. 

Drug IC50 (gM) / Dark IC50 (gM) / Light LEF 

VBBO 1.19 0.12 9.9 

PVB 3.37 1.26 2.7 

MVB 2.35 1.24 1.9 

MOYB 2.22 1.79 1.2 

6.4.4 Effect of variable illumination 

Increasing the light dose above 7.2 J cm -2  produced no enhancement in the cytotoxicity 

induced by 0.625 psM VBBO. By contrast, cytotoxicity induced by PVB increased 

following ftirther illumination, although this was not a linear response (Figure 47). The 

greatest change in the photocytotoxic response produced by PVB was seen when the 

light dose was increased to 14.4 J cm-2, with a further, smaller increase seen at 

28.8 J cm-2 . This shows that PVB is inherently a better photosensitizer than MVB and 

MOVB. PVB was less effective overall compared to VBBO at equimolar doses. 

Similarly, the cytotoxicity induced by MVB was enhanced when the light dose was 

increased to 14.4 J cm-2 , but illumination at 28.8 J cm-2  gave no further increase. MVB 

was also less effective overall compared to VBBO. MOVB was not appreciably 

phototoxic at physiological concentrations, and increased light dose did not enhance this. 

FVB was found to hydrolyse rapidly in medium and hence was ineffective as a 

photosensitizer with visible light. 
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Figure 47 Effects of variable light dose on the % cytotoxicity elicited by Victoria 
blue derivatives against EMT6-S cells. 
Cells (1000 I well in 96 well plates) were allowed to attach for 48 hours. Drugs (200 Al at a 
concentration of 0.625 RM in RPMI 1640) were added to the cells and incubated for 3 hours. 
The cells were then rinsed with RPMI and exposed to various light doses (7.2 - 28.8 J cm 2), 
prior to growing on for 3 days at 37°C, 5% CO2 : 95% air. Each point represents mean ± SEM 
(n~!:4). 

6.4.5 Localisation Studies Using Confocal Microscopy. 

Figures 48 (a & b) show two different cells treated with 5 MM VBBO. The dye 

appeared to be distributed widely throughout the cytoplasm in a punctate pattern, which 

may be consistent with the distribution of mitochondria. There appeared to be very little 

fluorescence in the nucleus. Figures 48 (c & d), (e & 0 and (g & h) show different cells 

incubated for three hours with PVB, MVB and MOVB, respectively, all at a 

concentration of 5 MM. They all showed a similar intracellular localisation to VBBO in 

that the dyes were distributed widely throughout the cytoplasm, however, figures 48 (c) 

(PVB) and 48(g) (MOVB) suggested some nuclear infiltration. 
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(d) 

(e) 
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(g) 	 (h) 
Figure 48: Intracellular distrIbution of(a) & (b) VBBO, (c) & (d) PVB, (e) & (1) 
MVB & (g) & (h) MOVB, all at a conceittration of S I LM, in EMT6-S cells 
following 3 hours' Incubation, shown by confocal microscopy. Figures (a) - (h) 
show different cells following a single scan with the laser beam. ' Scale of 
fluorescence intensity (red-255, maximum;black-O, minimum). 
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6.5 Discussion 

The compounds under discussion can exist in several forms in aqueous media (Figure 

49). Triarylmethane dyes are well known to react with water to give non-planar, neutral 

carbinol compounds (Figure 49(b)) [219]. This situation is fUrther complicated for the 

Victoria blue series in that it is also possible for a secondary amino group attached to the 

naphthyl residue to become deprotonated, again giving a neutral compound - the 

Homolka Base (Figure 49(c)). Only the ionised (blue) species (Figure 49(a)) is 

photo active but the neutral forms are expected to exert some influence on 

pharmacological activity. 

01-f 

(C,H5 )2 N 

(c) 

Figure 49: Interaction of VBBO with water. 
The dervatives investigated can exist in several forms in aqueous media giving non-planar neutral 
carbinol compounds (b). In the Victoria blue series, the secondary amine group can also be 
deprotonated forming the Homolka base (a neutral compound) (c). Only the ionised (blue) series 
(a) is photoactive, but the neutral forms are expected to exert some influence on pharmacological 
activity. 
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It is possible to relate the uptake trends of the photosensitizers to their respective log P 

and pKa  values. Thus a highly lipophilic species such as VBBO exhibited a high level of 

uptake and was retained inside the cell, probably in the mitochondria [167]. As the 

lipophilicity of the series decreases it may be that uptake becomes increasingly difficult, 

or that the more hydrophilic members were removed more efficiently from the cell by an 

effiux mechanism. This is supported by the thct that all the drugs showed a similar trend 

in theft uptake / dose profiles, in the order of efficacy VBBO > PVB > MVB > MOVB, 

which correlated with their levels of lipophilicity. 

On consideration of the rates of uptake, VBBO, PYB, and MYB showed very similar 

behaviour (Figure 44), all showing increased uptake over time. After two hours, the 

rates of YBBO and MVB appeared to equilibrate, whereas that of PVB was still 

increasing. By contrast MOVB exhibited a much slower rate of uptake, increasing 

slowly over three hours. This may suggest a more rapid uptake-efflux mechanism, 

presumably facilitated by the more hydrophilic nature of MOVB. 

Victoria blue BO exhibits significant dark toxicity indicating interaction with a sensitive 

target site. Indeed, VBBO is known to localise in mitochondria and also has a similar 

log P / pKa  profile to that of the sulfur analogue of Nile blue [210] which may indicate 

lysosomal activity. A lack of organelle specificity would explain the lower dark 

toxicities and lower phototoxicities of the Victoria blue derivatives compared to that of 

VBBO. Confocal microscopy studies showed that VBBO appeared to be distributed 

widely throughout the cytoplasm (Figure 48), which may be consistent with the 

distribution of niitochondria. Considerable concentration of the dye in the perinuclear 

region is also shown (Figure 48(a)), also supporting this hypothesis. There appeared to 

be very little localisation in the nucleus, although slight fluorescence was evident. PVB, 

MVB and MOVB also showed widespread cytoplasmic distribution (Figures 48(c & d), 

(e & , (g, & h), respectively), however, there was more evidence of nuclear infiltration 

in PYB and MOVB. 
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Both VBBO and PVB exhibited considerable phototoxicity in the EMT6-S tumour cell 

line, whereas neither MVB nor MOVB was effective in this respect. Triarylmethyl 

cations such as VBBO are non-planar, minimising steric repulsions within the molecule 

by adopting a propeller-like shape. This lack of coplanarity of the aromatic rings 

accounts for the absence of photosensitizing activity in chemical tests. It has been stated 

that the cellular photosensitizing activity of the Victoria blue series is due to enforced 

molecular coplanarity by interaction with biomolecules [136]. To explain the different 

phototoxicities observed it is therefore necessary to look more closely at the molecular 

structures involved. For efficient photosensitizing activity it is necessary for there to be 

efficient interaction between the lone pair of electrons on the amino nitrogens and the 

remainder of the molecule. 

MVB and MOVB both have a lack of coplanarity between the amine group attached to 

the naphthyl residue because of repulsion between the hydrogens of the amino group and 

the peri hydrogen naphthyl ring of (H-8). This lack of coplanarity is well known to 

decrease photosensitizing ability in other systems [221]. It is expected that PVB will 

suffer to a lesser extent from this repulsion because of the small size of the pyrrolidinyl 

ring. Thus a degree of coplanarity will exist with a concomitant increase in 

photosensitizing ability compared to MVB and MOVB. VBBO shows the highest 

photosensitizing ability of the series which may occur because the N-ethyl group is able 

to adopt a configuration which minimises the repulsions mentioned above, that is, a high 

degree of coplanarity exists between the amine and naphthyl moieties. The greater 

photosensitizing efficacy of PYB compared to MYB and MOVB was demonstrated by 

the larger increases in cytotoxicity seen with PVB on increasing the light dose (Figure 

47). 

As mentioned previously, VBBO is much more phototoxic than VBR. If the above 

argument is followed, it would be expected that VBR, having the same aminonaphthyl 

moiety as VBBO (dimethylaminophenyl rather than diethylaminophenyl moieties) would 

exhibit a similar degree of phototoxicity. That this is not the case may indicate that the 
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intracellular localisation of VBR is quite different, that is, that it exerts its 

photosensitizing effect at sites which are less likely to lead to cell death. 

It must be emphasised that no photosensitizing activity for these componds using 

standard in vitro chemical tests, that is, singlet oxygen generation efficiency via 

quenching with 1,3-diphenylisobenzofiiran, was demonstrated in this study. Such 

activity is only apparent from biological testing. 

The importance of a secondary amino group in a series of cationic photosensitizers has 

been reported previously for Nile Blue and its congeners [221]. Nile Blue is a planar 

molecule, whereas there is a lack of coplanarity between the naphthyl moiety and the 

remainder of the molecule in the Victoria Blue series. Here, the presence of the 

secondary amino group in 4-position of the naphthalene ring appears to be of even 

greater significance as regards photosensitizing ability. The presence of a tertiary amino 

group, unless small, in this position inhibits efficient photosensitizing activity due to a 

lack of coplanarity between the amino group itself and the naphthyl residue. However, 

as with the majority of drugs, this single fictor does not govern drug efficacy. Although 

photosensitizing ability is obviously important, it is the combination of this with other 

physicochemical properties which dictates activity. The present work has shown that, in 

common with other types of photosensitizer, Victoria blue derivatives have specific 

cellular sites of action. Photosensitizing ability becomes important only once these sites 

are reached and the cellular/organelle uptake and kinetics involved are governed by 

factors such as log P and plC8 . 

146 



CHAPTER SEVEN 

INTRACELLULAR LOCALISATION STUDIES OF 
DOXORUBICIN AND VICTORIA BLUE BO IN EMT6-S AND 

EMT6-R CELLS USING CONFOCAL MICROSCOPY 
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7.1 Abstract 

The subceflular localisation of doxorubicin and YBBO in EMT6-S and EMT6-R cells 

was studied, using confocal micoscopy, in order to investigate their sites of action. In 

cells which had been treated with doxorubicin (10 iM) for ninety minutes, prior to 

recovery for forty minutes in drug-free medium, the pattern of distribution differed 

between EMT6-S cells and EMT6-R cells. Doxorubicin was found to localise mainly in 

the nucleus of the sensitive cell line, whereas no nuclear involvement was seen in the 

resistant cells. The drug was also effluxed more rapidly from EMT6-R cells than EMT6-

S cells. A study following the accumulation of doxorubicin at various time intervals over 

one hour in EMT6-S cells showed that the drug clearly interacts with both the plasma 

membrane and the nucleus. 

In contrast to doxorubicin, the intracellular distribution of VBBO in both cell lines was 

similar, although uptake of the drug appeared slower in the resistant cell line. The 

pattern of localisation of VBBO was found to be markedly different to that of 

doxorubicin in EMT6 cells. VBBO was clearly localised throughout the cytoplasm, in a 

punctate pattern, which may be consistent with the widespread distribution of 

mitochondria. A more apical pattern of accumulation was noted in the EMT6-R cell line. 

No interaction with the plasma membrane was evident. These results indicate that the 

main modes of action for the two drugs differ markedly, suggesting interaction with both 

the membrane and the nucleus in the case of doxorubicin, but possibly mitochondrial 

involvement for YBBO. 
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7.2 Introduction 

The subcellulax localisation of the triarylmethane dyes VBBO, PVB, MVB and MOVB 

and the phenothiazinium dyes MB and TBO in EMT6 cells have been studied by 

confocal microscopy in order to investigate their sites of action (chapters four and six). 

The intracellular distribution of doxorubicin is also of interest due to its widespread use 

in the treatment of cancer [176] and to extensive studies into its mode of action. The 

mechanisms by which doxorubicin exerts its cytotoxicity have proved to be very complex 

and severaJ theories have been proposed. Doxorubicin is known to act mainly by 

intercalation with DNA and interaction with nucleic acids and nuclear components, such 

as DNA topoisomerase H [143,222]. In addition, doxorubicin has been shown to be 

cytotoxic without entering the cell [144] and this cytotoxicity does not necessarily 

correlate with DNA damage or inhibition of DNA synthesis [144]. Recent studies have 

shown that the mechanism of action may be directly related to drug-membrane 

interactions and particularly to drug lipid-interactions (145,146, section 2.1). 

Phospholipids are extremely important in transmembrane signalling. Most attention has 

been focussed on the role of phosphatidylinositols (in particular, phosphatidylinositol his-

phosphate (PIP 2)) in this process [223], however, there is growing evidence that 

phosphatidylcholine, sphingomyelin and their metabolites are also important mediators of 

signal transduction [224]. Tritton et aL [143] postulate that doxorubicin exerts its 

cytotoxicity by interacting with, and damaging the functions of, both the plasma 

membrane and nuclear DNA. They argue that, for cytotoxicity to occur, the activation 

of the protein kinase C (PKC) pathway, following membrane perturbation, is crucial for 

signal transduction between the cell surface and the nucleus. Figure 50 shows the 

proposed scheme by which doxorubicin cytotoxicity may occur. 
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Figure 50: Schematic diagram showing proposed mechanism of doxorubicin 
cytotoxicity. 
Doxorubicin interacts with both the cell nucleus and nuclear DNA thereby damaging 
their fImctions. In order for cytotoxicity to occur, membrane perturbation and the 
subsequent activation of the PKC pathway is necessary for signal tranduction to take 
place between the cell surface and the nucleus. PL - phospholipid; DG - diacyiglycerol; 
PKC - protein kinase C. (Adapted from Tritton [143]). 

Doxorubicin has been shown to interact with other subcellular targets, such as the 

cytoskeleton [225] and studies using cultured tumour cells displaying MDR 

characteristics have also demonstrated alterations in intracellular drug accumulation and 

distribution [81,82,226], further adding to the complexity of the drug's action. 

Ml)R appears to be multifactorial with many different mechanisms contributing to the 

MDR phenotype. In addition to the mechanisms discussed in previous chapters, another 

important phenomenon associated with Ml)R is an altered subcellular drug distribution 

[82]. Various fluorescence studies have demonstrated that the development of MDR is 

associated with a relative shift of doxorubicin or daunorubicin fluorescence from the 

nucleus to the cytoplasm [81,82,227,228]. Schuurhuis et aL, [228] argue that this 
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phenomenon may make an important contribution to the resistance displayed against 

anthracyclines by MDR cells. 

The aim of this study was to examine the intracellular localisation of doxorubicin and 

VBBO by conlocal microscopy, over time, in EMT6 cells and to compare their 

subcellular distribution. 

7.3 Materials and Methods 

7.3.1 Localisation Studies Using Scanning Laser Confocal Microscopy 

7.3.1.1 Time course studies 

2 ml aliquots of EMT6-S and EMT6-R cells were seeded at a cell density of 1x10 4  cells 

mF' into 35 mm petri dishes (Falcon, Fahrenheit Laboratories, Rotherham, U.K.) in 

RPMI 1640 medium, supplemented with 10% (v/v) foetal calf serum, 200 mM L-

glutamine (Sigma, Poole, U.K.) penicillin/streptomycin solution at 1x10 4  units ml and 

10 mg m1 1 , respectively, in 0.9% NaCl (Sigma). A sterile quartz coverslip (suprasil, 0.5 

mm diameter x 0.2 mm thick, Heraeus Silica & Metals Ltd., Byfleet, U.K) was placed 

into each petri dish and the cells were allowed to attach for three days (EMT6-S cells) or 

four days (EMT6-R cells) whilst incubating at 37°C, 5% CO2  95% air. A coverslip with 

attached EMT6-S cells was placed in a flow cell which was adapted for use with the 

confocal microscope by fixing to a microscope slide. RPMI 1640 medium was added to 

the cells by the use of an attached syringe and the cells were examined for 

autofluorescence. The medium was then replaced with RPMI 1640 medium containing 

10 jiM doxorubicin and images were taken using a scanning laser confocal fluorescent 

microscope at various intervals over the period of one hour. The microscope was fitted 

with an argon ion laser at 488 nm. This procedure was repeated for both EMT6-S and 

EMT6-R cells using YBBO at a concentration of 5 1xM, but using a helium neon laser at 
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633 nm. Unfortunately, due to time constraints, no time course images of EMT6-R cells 

in the presence of doxorubicin were obtained. 

7.3.1.2 Intracellular localisation of doxorubicin in treated EMT6-S and 
EMT6-R cells, following recovery in drug-free medium 

The cells were grown as previously described in 7.2.1.1, however, in this study EMT6-S 

and EMT6-R cells were initially treated with doxorubicin for 1.5 hours, followed by 

incubation in drug-free medium. 

The medium was aspirated from the petri dishes and replaced with medium containing 

doxorubicin (10 riM), and the cells incubated for 1.5 hours, under conditions previously 

described. The cells were rinsed with RPMJ 1640 medium and incubated for a further 

forty minutes. The cells were then examined with a scanning laser confocal fluorescence 

microscope fitted with an argon ion laser at 488 rim. 

7.4 Results 

7.4.1 Time course studies 

Doxorubicin was taken up rapidly by EMT6-S cells and could be seen in the plasma 

membrane and nucleus after only two minutes (Figure 51(a)). Localisation in the plasma 

membrane and nucleus increased with time up to ten minutes, however, very little drug 

was seen in the cytoplasm. There also appeared to be apical concentration of 

doxorubicin in the plasma membrane of the cell (Figures 51 (a - g). Figures 51 (c & 

d) show considerable accumulation in the plasma membrane, but subsequent images 

show this concentration to diminish (Figures 51 (e - h). The nuclear accumulation 

appeared to be slightly reduced alter fifteen minutes (Figure 5 1(e)), and continued to 

diminish over forty minutes (Figure 51(h)). 
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Figure 51 : Intracellular distribution of doxorubicin (10 liM) in EMT6.S cells 
shown by confocal microscopy. A single cell was imaged at various time intervals 
(indicated below each figure) following the addition of doxorubicin. * Scale of 
fluorescence intensity (red-255, maximum; black-0, minimum). 
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By contrast, localisation of VBBO in EMT6-S cells was markedly diflërent to that of 

doxorubicin. Once again, the drug was taken up rapidly by the cells and could clearly 

be seen after four minutes (Figure 52 (a)). The concentration of drug in the cell 

increased marginally over the next eleven minutes (Figures 52 (b - c)) and remained 

constant until sixty minutes when a slight decrease was noted (Figures 52 (d - g)). 

VBBO was clearly localised throughout the cytoplasm, in a punctate pattern which 

may be consistent with the widespread distribution of mitochondria. Some diffUse 

fluorescence was evident in the nuclear region after eight minutes (Figure 52 (b)), 

however, this did not appear to increase over time (Figures 52 (b - g)). Interestingly, 

no interaction with the plasma membrane was shown. 

Uptake of VBBO by the resistant cells appeared to be slower than in the sensitive cells 

(Figures 53 (a-h)) with an increase in accumulation of the drug seen over forty minutes 

(Figures 53 (a - 0). The concentration did not appear to change between forty and 

sixty minutes (Figures 53 (f & g)). VBBO was again seen to be localised throughout 

the cytoplasm, however, there did appear to be an apical concentration of the drug in 

these cells, which may indicate localisation within the Golgi apparatus or mitochondria. 

Weak, diffi.ise fluorescence appeared in the nuclear region after eight minutes (Figure 

53 (b)) increasing somewhat over twenty five minutes (Figures 53(b - e), however, the 

math area of localisation was the cytoplasm. In common with EMT6-S cells no 

interaction with the plania membrane was seen. 
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Figure 52: Intracellular distribution of YBBO (5 MM) in EMT6-S cells, shown by 
confocal fluorescence microscopy. A single cell was imaged at various time 
intervals (indicated below each figure) following the addition of VBBO. * Scale 
of fluorescence intensity (red-255, maximum; black-O, minimum). 

* 
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Figure 53: Intracellular distribution of VBBO (5 itM) in EMT6-R cells, shown by confocal 
fluorescence microscopy. A single cell was imaged at various time intervals (indicated below 
each figure) following the addition of VBBO. * Scale of fluorescence intensity (red-255, 
maximum; black-O, minimum). 
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7.4.2 Intracellular localisation of doxorubicin in treated EMT6-S and 
EMT6-R cells, following recovery in drug-free medium 

Nuclear localisation of doxorubicin in the EMT6-S cell line was clearly visthie forty 

minutes after rinsing the cells with RPMI 1640 (Figures 54 (a - 0) and some cytoplasmic 

distribution was also seen (Figures 54 (b - e)). No evidence of localisation in the plasma 

membrane was noted. EMT6-R cells showed very little fluorescence at all, in fact the 

intensity was increased x 10 to image the cells compared to that used with EMT6-S cells. 

Weak fluorescence was seen in the cytoplasm, in a punctate pattern (Figures 55 (a - 0) 

but no nuclear accumulation was noted. 
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Figure 54: Intracellular distribution of doxorubicin in EMT6-S cells following 
exposure to 10 MM doxorubicin for 2 hours, prior to rinsing with RPMI 1640 
medium. Cells were imaged by confocal fluorescence microscopy 40 minutes 
after rinsing. Figures (a-U  show different cells following a single scan with the 
laser beam. * Scale of fluorescence intensity (red-255, maximum; black-0, 
minimum). 
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Figure 55 Intracellular distribution of doxorubicin in EMT6-R cells following 
exposure to 10 i.tM doxorubicin for 2 hours, prior to rinsing with RPMI 1640 
medium. Cells were imaged by confocal microscopy 40 minutes after rinsing. 
Figures (a-f) show different cells following a single scan with the laser beam. 
* Scale of fluorescence intensity (red-255, maximum; black-U, minimum). 
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7.5 Discussion 

Doxorubicin was rapidly taken up by EMT6-S cells, with the drug clearly localising in 

the plania membrane and nucleus after only two minutes (Figure 51(a)). The drug 

continued to accumulate in the plasma membrane and nucleus for up to ten minutes, 

however, very little fluorescence was noted in the cytoplasm. This supports the 

mechanism of action put forward by Tritton et aL [143] who propose that perturbation 

of the membrane induces subsequent signal transduction via diacyiglycerol and protein 

kinase C, leading to interaction with the nucleus. There also appeared to be apical 

concentration of doxorubicin in the plasma membrane (Figures 51 (a - g)). Considerable 

accumulation of doxorubicin in the plasma membrane was evident up to ten minutes, 

although after this time the localisation changed. The nuclear accumulation did not 

appear to increase, therefore it must be assumed that the doxorubicin diffused out of the 

cell into the surrounding medium. Less nuclear accumulation was seen after fifteen 

minutes and very little fluorescence was noted in the plasma membrane or cytoplasm. 

Meschini et aL [229] studied the intracellular localisation of doxorubicin in M14 human 

melanoma cells and in MCF-7 human breast cancer cells (both sensitive and resistant cell 

lines). Following one hours treatment with 1 .tg ml - I doxorubicin, they found that the 

drug was localised in the nuclei of the parental cell lines with only weak cytoplasmic 

fluorescence seen in some cells. This is in good agreement with the findings of the 

present study. They also examined cells which had previously been exposed to 

doxorubicin but were then allowed to recover for seventy one hours in a drug-free 

medium. Complete efflux of doxorubicin from the nucleus was shown, with occasional 

fluorescent vesicular structures localised to perinuclear regions in the cytoplasm. Other 

workers [213,230,231] have suggested that doxorubicin difihises across the membrane 

and binds to anionic vesicles which are transported back to the cell surface via 

microtubules. Studies by Meschini et aL [229] support this hypothesis, and they suggest 

that the accumulation of doxorubicin in the perinuclear region may indicate binding to 

pre-lysosomes and the Golgi apparatus since these organelles are associated with the 
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transport of secretory vesicles to the cell surface [81,232]. Since the present study only 

examined cells one hour alter recovery in drug-free medium, realistic comparisons can 

not be made. Further studies should be performed to examine the effects of longer 

recovery periods on the intracellular localisation of doxorubicin in EMT6-S and EMT6-

R cells. 

MDR is often associated with decreased intracellular drug accumulation [25,26], 

frequently due to the overexpression of the energy-dependent drug efflux pump, Pgp, in 

the plasma membrane of resistant cells (see section 1.3.1). EMT6-R cells have 

previously been shown to efflux doxorubicin via the Pgp pump [5], thus comparison of 

the intracellular distribution of doxorubicin in EMT6-S and EMT6-R cells is highly 

relevant. Several workers have shown that MDR can be associated with altered 

intracellular drug accumulation and localisation [226,233,234]. Schuurhuis et aL [82] 

have suggested that, in addition to drug efflux, Pgp may be involved in the relocalisation 

of drugs by pumping them into other cellular organelles away from their cytotoxic 

targets. 

Unfortunately, due to time constraints, a time course following doxorubicin 

accumulation in EMT6-R cells was not performed. EMT6-R cells were, however, 

examined following ninety minutes' treatment with doxorubicin prior to forty minutes' 

recovery time in drug-free medium. The drug appeared to have been effluxed efficiently 

by the cells, since very little fluorescence was seen (Figures 55 (a - e)). Indeed, the 

intensity of the images had to be increased x 10, compared to that used for EMT6-S 

cells, in order to visualise the localisation of the drug. Weak fluorescence was observed 

in the cytoplasm of the cells, in a punctate pattern (Figures 55 (a - e), but no nuclear 

accumulation was observed. Meschini et aL [229] also found a lack of nuclear 

accumulation in MCF-7 DX (resistant) cells, however, there was extensive cytoplasmic 

localisation. A direct comparison with theft study cannot be made, since the distribution 

of doxorubicin in recovered EMT6-R cells was not investigated. 
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A clear difference was seen in intracellular doxorubicin accumulation between EMT6-S 

and EMT6-R cells. It would be beneficial to study the distribution of doxorubicin in 

EMT6-R cells over time, in the presence of doxorubicin, to confinu the lack of nuclear 

accumulation which is evident in the recovered EMT6-R cells. Other studies have also 

found distinct differences between localisation of doxorubicin in a variety of sensitive 

and resistant cell lines [81,226,229]. Meschini et aL [229] also examined the effect of 

the resistance modifier, verapamil, on the subcellular distribution of doxorubicin in 

MCF-7 DX cells. The intracellular concentration of the drug was increased and it 

appeared to localise in a specific area close to the nucleus. This supports a recent study 

by Rutherford and Willingham [235] who identified the accumulation of anthracycline 

molecules in the zrans-Golgi system of resistant cells which were also treated with 

verapamil. 

Doxorubicin is also known to localise in mitochondria and to exert some cytotoxicity via 

damage to the electron transfer chain in mitochondria [153,236]. Mitochondria are 

known to localise preferentially in the perinuclear region of many cultured cells [229], 

therefore, the distribution of doxorubicin in this area could be attributed to mitochondrial 

binding. it is surprising, however, if this were the case, that cytoplasmic localisation is 

not evident in EMT6-S cells when in contact with doxorubicin. 

The intracellular distribution of VBBO was found to be markedly different to that of 

doxorubicin. VBBO was taken up extremely rapidly, with intense fluorescence evident 

after only four minutes, increasing only marginally up to fifteen minutes. The 

concentration of the drug appeared to be constant up to sixty minutes when a slight 

decrease was noted. YBBO was clearly distributed widely throughout the cytoplasm, in 

a punctate pattern, which may be consistent with the distribution of mitochondria. Very 

little evidence of nuclear localisation was seen. In contrast to doxorubicin, no interaction 

between VBBO and the plasma membrane was demonstrated. 

The resistant cell line initially appeared to show slower uptake of VBBO than the 

parental line, with a more gradual increase in cellular accumulation. Equilibration was 
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seen at forty minutes, compared to fifteen minutes in EMT6-S cells. Although similar 

distribution of the drug was seen throughout the cytoplasm in EMT6-R cells to that of 

EMT6-S cells, there appeared to be an apical concentration of doxorubicin in the 

resistant line. Very little nuclear association was observed and no interaction with the 

plasma membrane. 

This study suggests that the intracellular localisation of VBBO may be consistent with 

mitochondrial distribution in EMT6 cells, in agreement with other workers who have 

previously shown localisation of the dye in the mitochondria of tumour cells [132,167]. 

Interestingly, little difference was found between the intracellular distribution of VBBO 

in EMT6-S and EMT6-R cells, in contrast to that of doxorubicin. This is reflected in the 

results obtained in a previous study (Chapter 4) which showed that EM176-R cells 

required almost 100-fold more doxorubicin to overcome the resistance compared to 

EMT6-S cells, whereas only a 10-fold increase in concentration was required for VBBO. 

Previous studies have also shown that VBBO does not appear to be effluxed by, or 

interact with, Pgp (Chapter 5), which is supported by the lack of membrane localisation 

shown by VBBO in EMT6 cells. 

These results indicate that the main modes of action for the two drugs, VBBO and 

doxorubicin, differ markedly, suggesting interaction with both the membrane and the 

nucleus in the case of doxorubicin, but of possible mitochondrial involvement for VBBO. 
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CHAPTER EIGHT 

CLOSING DISCUSSION 
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8.1 Closing Discussion and Future Studies 

The development of a prokaryotic model to investigate anthracycline-membrane 

interactions which could subsequently be related to the eukaryotic system has several 

potential advantages to researchers. Bacterial systems are relatively inexpensive to use 

and rapid results may be obtained, thus providing an effective screening model. 

Synthetic membrane systems are available, however, a bacterial model provides an in 

vivo comparison. The development of the E.coli plasma membrane system, using the 

mutant strain HDL 11 in which the membrane phospholipid content can be manipulated, 

appeared to be an ideal vehicle for such a model. Ultimately, of course, a eukaryotic 

model in which the phospholipid content could be manipulated, perhaps based on a yeast 

system, would give a more realistic representation of interactions occurring in 

mammalian tumour cells. 

Unfortunately, the attempts to develop a prokaryotic model system for studying 

anthracycline-membrane interactions which could be related to eukaryotic cells did not 

prove to be entirely successful, since induction of phosphatidylglycerol synthesis in the 

Hl)L 11 strain did not markedly increase the cytotoxic effects of doxorubicin. However, 

the suggestion that the wild-type MRE600 cells appear to develop a resistance 

mechanism to counteract the effects of doxorubicin is very interesting, since it may 

involve efflux mechanisms similar to those employed by eukaryotic cells displaying the 

MDR phenotype. This offers great potential for future research, but is beyond the scope 

of this study. 

Eukaryotic cells in vivo have been employed by many researchers to investigate drug 

interactions and mechcrnisms related to cancer chemotherapy, thus the next logical step in 

the study was to characterise a suitable mammalian cell line. The mouse mammary 

tumour cell line, EMT6, has been used widely in such investigations and was chosen to 

investigate membrane-based effects relating to MDL Comparisons were made between 

the drug-sensitive parental cell line, EMT6-S and the drug-resistant sub-line, EMT6-lt 
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Some studies have indicated differences in the structural order of lipids and alterations in 

the lipid content of certain cell lines compared to their drug-resistant sub-lines [161,162]. 

Comparison of the percentage of the total fhtty acid composition showed there to be no 

significant difference between the two EMT6 cell lines (p> 0.05) with the exception of 

linoleic acid (18:2), where the level appeared to be higher in the resistant cell membranes 

(p = 0.05) and no difference was detected in the the phospholipid profile. It must be 

emphasised, however, that this was a preliminary investigation. Since no apparent 

differences were demonstrated, further investigations were not pursued, due to time 

constraints. Future studies may be employed to perform more specific techniques. 

To probe potential changes in membrane composition upon the onset of MDR, the 

EMT6 cell lines were characterised with respect to a range of cytotoxic agents having 

varying log P values and hence potentially variable levels of membrane interaction and/or 

cellular localisation. Photodynamic therapy is relatively new in the field of cancer 

chemotherapy, but offers great potential for eradication of MDR cells, in particular as an 

adjunct to surgery or for the treatment of inoperable cancers. To this end, the agents 

investigated were based on cationic commercial dyes with photosensitizing potential, and 

their cytotoxicity was compared to that of the more conventional anti-cancer drugs, 

doxorubicin and cis-platinum. 

YBBO was found to be the most effective photosensitizer against EMT6-S and EMT6-R 

cells (LEF approximately 10-fold in both cell lines), at much lower concentrations than 

MB or TBO. The latter two dyes were moderately photocytotoxic (LEF approximately 

2-fold in both cell lines), but no photocytotoxicity was noted for doxorubicin or cis-

platinum. The higher photocytotoxicity exerted by VBBO than either MB or TBO may 

be due to differences in their subcellular localisation. M previously discussed, VBBO is 

highly lipophilic compared to MB and TBO, which may fucilitate cellular uptake. The 

present studies, using confocal microscopy, suggest that more VBBO was accumulated 

within both EMT6-S and EMT6-R cells following three hours' incubation than either MB 

or TBO. This may be explained by the differing lipophilicity of the agents. Future 
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studies should be carried out to compare the specific uptake of each of the agents. 

Similarly, longer incubation periods could be investigated since other studies have 

suggested that increased incubation times lead to more effective cytotoxicity exerted by 

MB and TBO [128, 186, 187]. 

VBBO and TBO have been shown in previous studies to localise in the mitochondria 

[128, 132, 168], whereas MB has shown a different distribution, suggested to be 

lysosomal [169]. The results of this study appear to support these findings. Both VBBO 

and TBO showed widespread accumulation throughout the cytoplasm which may be 

consistent with the distribution of mitochondria. By contrast, MB appeared to localise in 

a punctate pattern throughout the cytoplasm, suggesting that the dye may be sequestered 

into vesicles such as lysosomes. 

cis-Platinum was effective at equimolar concentrations in both EMT6-S and EMT6-R 

cells, and was therefore not susceptible to MDR in this cell line. By contrast, doxorubicin 

required almost a 100-fold increase in concentration in order to reach the IC 50  level in 

EMT6-R cells compared to that of the parental cells. The results for the photosensitizers 

were very interesting. VBBO was shown to be partially effective at overcoming MDR, 

requiring approximately a 10-fold increase in concentration for the EMT6-R cells, 

compared to the sensitive cells. Doxorubicin is known to be pumped out of the resistant 

cells via the membrane-bound drug efflux pump, Pgp [26]. The resulting decrease in 

intracellular doxorubicin thus renders the agent less effective. Since VBBO was shown 

to be only partially effective against EMT6-R cells, it was postulated that some of the 

drug may be effluxed via Pgp. 

The phenothiazinium dyes, MB and TBO, were moderately photocytotoxic, but 

interestingly, the main cytotoxic effect appeared to be due to the dark toxicity of the 

agents. Both the dyes showed some effect in overcoming NOR, however, the drug 

concentration levels required were similar (less than 2-fold) to those required to reach 
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the IC50  value in the sensitive cells. This suggests that MB and TBO are toxic in theft 

own right and may be able to circumvent efflux via Pgp. 

In order to investigate possible interaction of the photosensitizers with Pgp, the effects of 

pre-treatment with each of the agents, prior to exposure to doxorubicin, were studied. 

Since doxorubicin is a known substrate for Pgp, any interaction of the photosensitizers 

with Pgp would be expected to increase the cytotoxicity of doxorubicin due to the 

increased cellular accumulation of the drug. The resistant cell line has previously been 

shown to overexpress Pgp compared to the parental cell line [5], therefore a greater 

increase in doxorubicin toxicity would be expected in the resistant cells, following pre-

treatment with the agents. Pre-treatment with the dyes led to increased doxorubicin 

cytotoxicity in all cases. Since very low concentrations of the dyes were used 

(equivalent to 1/8th of the IC 50  values for each agent) accounting for less than 10% 

toxicity alone, it was reasoned that a synergistic effect had occurred. 

PreLtreatment with VBBO induced a similar increase in doxorubicin cytotoxicity in both 

cell lines which suggests that this result was independent of Pgp efflux. Time course 

studies following the uptake of VBBO in both EMT6-S and EMT6-R cells showed 

VBBO to be rapidly accumulated in the cytoplasm, but no localisation in the membrane. 

VBBO has been shown to localise in the mitochondria of various cells and it is suggested 

that this is the main site of cytotoxic action [132]. Doxorubicin is also known to bind to 

mitochondria and to exert toxic effects upon the respiratory chain [153]. We 

hypothesise that the synergistic effect demonstrated by the combined treatment of VBBO 

and doxorubicin may be largely attributed to mitochondrial damage and disruption of the 

respiratory chain. 

Pre-treatment of EMT6 cells with MB induced a 2-fold increase in doxorubicin 

cytotoxicity in the resistant cell line, but only a 1.4-fold increase in the sensitive cells, 

suggesting a different mechanism of action to that of VBBO, which may involve 

interaction with Pgp. Similarly, pre-treatment with TBO induced an increase in almost 
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2-fold in EMT6-S cells, but this was increased to 3-fold in the resistant cells. This again 

suggests a different mode of action to VBBO, possibly involving interaction with Pgp. 

VBBO was found to be the most effective photosensitizer against EMT6-S and EMT6-R 

cells in this study. Further investigations into its mode of action were therefore pursued. 

Pre-treatment of the EMT6 cell lines with VBBO suggested that the dye was not acting 

as a substrate for Pgp. This was confirmed by the use of the chemosensitizer, verapamil. 

Verapamil is a potent inhibitor of Pgp and has been shown to increase the cytotoxicity 

of doxorubicin by binding to Pgp. This leads to increased cellular accumulation with a 

concomitant increase in cytotoxicity. The combined treatment of verapamil and 

doxorubicin resulted in a 2-fold increase in doxorubicin cytotoxicity in the sensitive cell 

line but an 18-fold increase in the resistant cell line. This result clearly supports the 

overexpression of Pgp in the EMT6-R cells compared to that in the parental cells. By 

contrast, the presence of verapamil did not enhance the cytotoxicity of VBBO in either 

cell line. 

VBBO is thought to exert its photocytotoxic effects via free radical generation. 

Glutathione and related enzymes are known to be protective of free radical damage in 

normal tissues [58, 911 thus it was reasoned that depletion of GSH may lead to increased 

cytotoxicity of VBBO. GSH levels were depleted in both cell lines by the addition of 

BSO, however, the photocytotoxicity of VBBO was not found to be increased. This 

suggests that VBBO may be acting at an intracellular site not protected by GSH or that 

the mechanism of action is not via the in situ generation of singlet oxygen. 

PDT shows great potential for the treatment of cancer, however, there are many 

drawbacks associated with drugs currently available. Consequently, there is a constant 

search for new and improved drugs. To this end, we examined a series of compounds 

based on the skeleton of VBBO, possessing different structural features and hence 

varying physicochemical properties. The chemical changes employed were shown to 

alter uptake of the photosensitizers and resulting light : dark toxicity diflèrentials. 

169 



Unfortunately, none of the compounds proved to be as effective as VBBO against 

EMT6-S cells. The rate of uptake for VBBO, MYB and PVB appeared to be very 

similar, whereas that of MOVB was slower. The uptake/dose trend was also similar for 

all four drugs tested and correlated to the levels of lipophilicity of the agents, VBBO 

being the most lipophilic. 

Confocal microscopy studies showed similar localisation of the derivatives to that of 

VBBO, that is, throughout the cytoplasm of the EMT6-S cells, although PVB and 

MOVB showed more evidence of nuclear infiltration. It would be usefUl to perform time 

course studies, using confocal microscopy, on each of the derivatives to compare the 

pattern and rate of uptake to that of VBBO. This study suggests that, in common with 

other types of photosensitiser, VBBO derivatives have specific sites of action. 

Photosensitizing ability becomes important only once these sites are reached and the 

cellular/organelle uptake and kinetics are governed by such thctors as log P and pKa. 

Studies following the accumulation of VBBO at various time intervals over one hour in 

both EMT6-S cells and EMT6-R cells showed similar localisation of the drug in both cell 

lines, although uptake appeared to be slower in the resistant cells. VBBO was localised 

throughout the cytoplasm in a punctate pattern which may correlate with the distribution 

of mitochondria, however, there was little evidence of nuclear involvement. Similarly, no 

interaction with the plasma membrane was noted. By contrast, a time course study 

following the accumulation of doxorubicin in EMT6-S cells over one hour found the 

intracellular distribution of doxorubicin to be quite different to that of VBBO. There 

was clear evidence of interaction with both the plasma membrane and the nucleus. This 

supports the theory by Tritton et aL that doxorubicin exerts its action by interacting with, 

and damaging the functions of, both the plasma membrane and nuclear DNA [143]. In 

cells which had been treated with doxorubicin (10 jiM) for ninety minutes, prior to 

recovery in drug-free medium for forty minutes, doxorubicin was found to localise 

mainly in the nucleus of the sensitive cells, whereas no nuclear involvement was seen in 

the resistant cells. The drug also appeared to have been efiluxed more rapidly from the 
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resistant cells than the sensitive cells. These results indicate that the main modes of 

action for the two drugs differ considerably, suggesting interaction with both the 

membrane and the nucleus in the case of doxorubicin whereas VBBO appears to act at a 

specific site within the cell. 
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