
JPEG-like Image Compression using

Neural-network-based Block Classification and

Adaptive Reordering of Transform Coefficients

by

Hanns-Juergen Grosse

Thesis submitted to the University of Central Lancashire in

partial fulfilment of the requirements for the degree of

Doctor of Philosophy

October 1997

The work presented in this thesis was carried out in the Department of Electrical and

Electronic Engineering, University of Central Lancashire, Preston, United Kingdom,

in collaboration with the Department of Computer Science,

City University of Hong Kong, Kowloon, Hong Kong.

0 1997 by Hanns-Juergen Grosse.

Declaration

I declare that while registered with the University of Central Lancashire for the degree

of Doctor of Philosophy I have not been a registered candidate or enrolled student for

another award of the University of Central Lancashire, or any other academic or

professional institution during the research programme. No portion of the work referred

to in this thesis has been submitted in support of any application for another degree or

qualification of any other university or institution of learning.

Hanns-Juergen Grosse

Si.

Abstract

JPEG-like Image Compression using

Neural-network-based Block Classification and

Adaptive Reordering of Transform Coefficients

by

Hanns-Juergen Grosse

The research described in this thesis addresses aspects of coding of discrete-cosine-

transform (DCT) coefficients, that are present in a variety of transform-based digital-

image-compression schemes such as JPEG. Coefficient reordering; that directly affects

the symbol statistics for entropy coding, and therefore the effectiveness of entropy

coding; is investigated. Adaptive zigzag reordering, a novel versatile technique that

achieves efficient reordering by processing variable-size rectangular sub-blocks of

coefficients, is developed. Classification of blocks of DCT coefficients using an

artificial neural network (ANN) prior to adaptive zigzag reordering is also considered.

Some established digital-image-compression techniques are reviewed, and the JPEG

standard for the DCT-based method is studied in more detail. An introduction to

artificial neural networks is provided

Lossless conversion of blocks of coefficients using adaptive zigzag reordering is

investigated, and experimental results are presented. A versatile algorithm, that

generates zigzag scan paths for sub-blocks of any dimensions using a binary decision

tree, is developed. An implementation of the algorithm based on programmable logic

devices (PLDs) is described demonstrating the feasibility of hardware implementations.

Coding of the sub-block dimensions, that need to be retained in order to reconstruct a

sub-block during decoding, based on the scan-path length is developed.

Lossy conversion of blocks of coefficients is also considered, and experimental results

are presented. A two-layer feedforward artificial neural network trained using an error-

backpropagation algorithm, that determines the sub-block dimensions, is described.

Isolated nonzero coefficients of small significance are discarded in some blocks, and

therefore smaller sub-blocks are generated.

 -HI -

Table of Contents

Declaration II

Abstract III

Table of Contents IV

List of Tables XI

List of Figures XII

Acknowledgements XVI

Chapter 1 	Introduction 1

1.1 	Introduction 2

1.2 	Background 2

1.3 	Aims and Objectives of the Project 4

1.4 	Organization of the Thesis 4

1.5 	Summary 5

Chapter 2 	Digital Image Compression 6

2.1 	Introduction 7

2.2 	Digital Image Processing 8

2.2.1 	Motivation for Digital Image Processing 8

2.2.2 	Representation of Digital Images 8

2.2.3 	Digital-image-processing System 10

-Iv-

2.3 Introduction to Digital Image Compression 	 12

	

2.3.1 	Motivation for Digital Image Compression 	 12

	

2.3.2 	Objectives of Digital Image Compression 	 13

	

2.3.3 	Data Redundancy 	 15

	

2.3.4 	Digital-image-compression Model 	 16

	

2.3.5 	Entropy 	 17

2.4 Human Visual System 	 19

	

2.4.1 	Function of Human Visual System 	 19

	

2.4.2 	Relevant Properties of Human Visual System 	 21

	

2.4.3 	Significance of Human Visual System 	 23

2.5 	Digital-image-compression Techniques 24

2.5.1 Properties of Digital-image-compression Techniques 24

2.5.2 Huffman Coding 25

2.5.3 Run-length Coding 29

2.5.4 Quantization 31

2.5.5 Transform Coding 32

2.5.6 Other Techniques 37

2.6 	Image Quality Assessment 39

2.6.1 Motivation for Image Quality Assessment 39

2.6.2 Subjective Image Quality 39

2.6.3 Objective Image Quality 40

2.6.4 Human-visual-system-based Objective Image Quality 41

2.7 	Summary 43

Chapter 3 JPEG Still Picture Compression Standard 45

3.1 Introduction 46

3.2 Background 46

3.3 Outline of the JPEG Standard 49

3.3.1 	Image Components 49

3.3.2 	Interleaving Image Components 50

3.3.3 	An Example of Interleaved Image Components 51

3.3.4 	Sample Precision 52

3.3.5 	Modes of Operation 52

	

3.4 Baseline Sequential Process 	 54

3.4.1 	DCT-based Coding 	 54

3.4.2 Level Shift prior to Forward Discrete Cosine Transform 56

3.4.3 8 x 8 Forward Discrete Cosine Transform 57

3.4.4 Quantization 58

3.4.5 DC Encoding and 2-D-to-l-D Zigzag Reordering 60

3.4.6 Huffman Encoding 62

3.4.7 Huffman Decoding 65

3.4.8 1-D-to-2-D Zigzag Reordering and DC Decoding 65

3.4.9 Dequantization 66

3.4.10 8 x 8 Inverse Discrete Cosine Transform 67

3.4.11 Level Shift after Inverse Discrete Cosine Transform 67

3.5 	Remarks 67

3.6 	Summary 69

-VI-

Chapter 4 	Adaptive Zigzag Reordering of Transform Coefficients 	70

4.1 Introduction 71

4.2 Standard Zigzag Reordering 71

4.3 Adaptive Zigzag Reordering 75

4.3.1 	Motivation for Adaptive Zigzag Reordering 75

4.3.2 	Determination of Sub-blocks 75

4.3.3 	Experimental Results 79

4.4 Versatile Zigzag-reordering Algorithm 83

4.4.1 	Motivation for Versatile Zigzag-reordering Algorithm 83

4.4.2 	The Sub-block 84

4.4.3 	Parameters 85

4.4.4 	The Truth Table 87

4.4.5 	Boolean Expressions 91

4.4.6 	The Binary Decision Tree 93

4.5 Hardware Implementation of Zigzag-reordering Algorithm 96

4.5.1 	Motivation for Hardware Implementation of

Zigzag-reordering Algorithm 96

4.5.2 	The GAL16V8 Device 96

4.5.3 	The Tango-PLD Development Tool 98

4.5.4 	The Moore State Machine for

Versatile Zigzag-reordering Algorithm 98

4.5.5 	Implementation of Increments and Decrements 101

4.6 Coding of Sub-block Dimensions 103

4.6.1 	Motivation for Coding of Sub-block Dimensions 103

4.6.2 	The Sub-block Dimensions 103

4.6.3 	Sub-block Dimensions and Scan-path Length 104

4.6.4 	Entropy Coding of Sub-block Dimensions 110

4.7 Summary 111

 -VII -

Chapter 5 Artificial Neural Networks 113

5.1 Introduction 114

5.2 Introduction to Artificial Neural Networks 114

5.2.1 	Biological Neural Networks 114

5.2.2 	Foundations of Artificial Neural Networks 118

5.2.3 	Properties of Artificial Neural Networks 119

5.2.4 	Realization of Artificial Neural Networks 121

5.2.5 	Applications of Artificial Neural Networks 122

5.3 Artificial Neuron 123

5.3.1 	Structure of Artificial Neuron 123

5.3.2 	Propagation Function 124

5.3.3 	Activation Function 125

5.3.4 	Output Function 126

5.3.5 	Simplified Artificial Neuron 128

5.4 Feedforward Artificial Neural Networks 130

5.4.1 	Structure of Feedforward Artificial Neural Networks 130

5.4.2 	Forward Propagation 132

5.4.3 	Learning 132

5.4.4 	Hebb Rule 133

5.4.5 	Delta Rule 134

5.4.6 	Error-backpropagation Algorithm 135

5.4.7 	Multilayer Feedforward Artificial Neural Networks 141

5.5 Artificial Neural Networks in Digital Image Compression 147

5.6 Summary 150

MIKE

Chapter 6 Neural-network-based Block Classification 152

6.1 Introduction 153

6.2 Quantization of Transform Coefficients 153

6.3 Block Classification 154

6.3.1 	Motivation for Block Classification 154

6.3.2 	Structure of the Artificial Neural Network 156

6.3.3 	Network Inputs 157

6.3.4 	Network Outputs 159

6.3.5 	Learning 159

6.4 Experimental Results 161

6.4.1 	Implementation 161

6.4.2 	Authentic Training Pairs 161

6.4.3 	Learning 162

6.4.4 	Classification 163

6.5 Summary 169

Chapter 7 Conclusions and Recommendations for Further Work 172

7.1 Introduction 173

7.2 Summary and Conclusions 173

7.3 Recommendations for Further Work 177

Bibliography
	

180

Appendices 205

A Landsat Image Size Worked Example A 1

B Huffman Tree Design Worked Example B 1

B.1 	Introduction B 1

B.2 	Design Procedure B 1

C JPEG Example Tables C 1

C.1 	Introduction C 1

C.2 	Quantization Tables C 1

C.3 	Huffman Tables for 8-bit Precision C 2

D JPEG Baseline Sequential Process Worked Example D 1

D.1 	Introduction D 1

D.2 	Encoding Processing Steps D 1

D.3 	Decoding Processing Steps D 4

D.4 	Reconstruction Error D 8

E Images El

F Versatile Zigzag Reordering Algorithm Worked Example F 1

F. 1 	Introduction F 1

F.2 	Versatile Zigzag Reordering Algorithm F 1

G Hardware Implementation Source Files G 1

G. 1 	Introduction G 1

G.2 	Source File Stage A G 2

G.3 	Source File Stage B G 6

G.4 	Source File State Machine G 12

H Publications H 1

'Zr

List of Tables

Table 2.1 Scales for Subjective Image Quality Assessment 40

Table 3.1 Component Parameters for Example of Three-component Image 51

Table 3.2 MCUs for Interleaved Scan of all Three Components for

Example of Three-component Image 52

Table 3.3 Essential Characteristics of the Distinct Coding Processes 54

Table 3.4 Magnitude Categories for Huffman Coding 63

Table 3.5 Additional Bits for Sign and Magnitude 63

Table 3.6 Coding Symbols for Huffman Coding of AC Coefficients 64

Table 4.1 Complete Truth Table for Changes in Row and Column Indices 88

Table 4.2 Reduced Truth Table for Changes in Row and Column Indices 90

Table 4.3 Truth Table for Construction of Binary Decision Tree 93

Table 4.4 Binary Increments 101

Table 4.5 Binary Decrements 102

Table 4.6 (1 of 3) Scan-path Lengths and Sub-block Dimensions 107

Table 4.6 (2 of 3) Scan-path Lengths and Sub-block Dimensions 108

Table 4.6 (3 of 3) Scan-path Lengths and Sub-block Dimensions 109

Table A. 1 Specification for Landsat-4 and -5 MSS and TM Images A 1

Table B. 1 Symbol Distribution of 8-level Image B 1

Table B.2 Sizes of 8-level Image B 4

Table C. 1 Example of Luminance Quantization Table C I

Table C.2 Example of Chrominance Quantization Table C 1

Table C.3 Example of Luminance DC Difference Table C 2

Table C.4 Example of Chrominance DC Difference Table C 2

Table C.5 (1 of 4) Example of Luminance AC Table C 3

Table C.5 (2 of 4) Example of Luminance AC Table C 4

Table C.5 (3 of 4) Example of Luminance AC Table C 5

Table C.5 (4 of 4) Example of Luminance AC Table C 6

-XI-

List of Figures

Figure 2.1 Generic Image-processing System 11

Figure 2.2 Typical Grey-level-to-luminance Transformation 12

Figure 2.3 General Model of Image-compression System 16

Figure 2.4 Transform-coding System 33

Figure 3.1 Data Units and Regions for Example of Three-component Image 52

Figure 3.2 DCT-based Coder Processing Steps 55

Figure 3.3 8 x 8 Forward DCT 58

Figure 3.4 Quantization 59

Figure 3.5 DC Coding 60

Figure 3.6 8 x 8 Zigzag Scan Path 61

Figure 3.7 DC Encoding and 2-D-to-1-D Zigzag Reordering 61

Figure 3.8 1-D-to-2-D Zigzag Reordering and DC Decoding 65

Figure 3.9 Dequantization 66

Figure 3.10 8 x 8 Inverse DCT 67

Figure 4.1 8 x 8 Block of Quantized DCT Coefficients 72

Figure 4.2 8 x 8 Zigzag Scan Path 72

Figure 4.3 Probability Distribution of Runs of Zero Coefficients,

Standard Zigzag Reordering, Lena 512 x 512, q = 50 73

Figure 4.4 Decoded JPEG Image, Lena 512 x 512, q = 50 74

Figure 4.5 Example of 8 x 8 Block of Transform Coefficients 76

Figure 4.6 Example of Standard Zigzag Reordering 77

Figure 4.7 Example of Adaptive Zigzag Reordering 77

Figure 4.8 Probability Distribution of Runs of Zero Coefficients,

Adaptive Zigzag Reordering, Lena 512 x 512, q = 50 78

Figure 4.9 Probability Distribution of Sub-block Dimensions,

Lena512x512,q=50 79

-XII-

Figure 4.10 Entropy of Runs of Zero Coefficients versus Quality Setting,

Lena 512x512 	 80

Figure 4.11 Entropy of Runs of Zero Coefficients versus Quality Setting,

Lena 256 x256 	 81

Figure 4.12 Entropy of Runs of Zero Coefficients versus Quality Setting,

Cameraman 256 x 256 81

Figure 4.13 Entropy of Runs of Zero Coefficients versus Quality Setting,

F-16 512x512 82

Figure 4.14 Entropy Reduction for Runs of Zero Coefficients versus

Quality Setting 83

Figure 4.15 Directions of Movement 85

Figure 4.16 Decision Tree for Changes in Row and Column Indices 95

Figure 4.17 Functional Block Diagram of GAL16V8 Device 97

Figure 4.18 Block Diagram of Moore State Machine for

Versatile Zigzag-reordering Algorithm 99

Figure 4.19 Scan-path Length of 5 for (a) 5 xl, (b) 3 x 2, (c) 2 x 3,

and (d) lx 5 Sub-blocks 105

Figure 4.20 Scan-path Length of 14 for (a) 3 x 5, and (b) 4 x 5 Sub-blocks 106

Figure 5.1 Simplified Nerve Cell 115

Figure 5.2 Structure of an Artificial Neuron 123

Figure 5.3 Structure of a Simplified Artificial Neuron 128

Figure 5.4 Notation of a Simplified Artificial Neuron 129

Figure 5.5 Symbols for Functions of Artificial Neuron 129

Figure 5.6 Generic Feedforward Artificial Neural Networks 131

Figure 5.7 Structure of Error-backpropagation Algorithm 141

Figure 5.8 Single-layer Perceptron 142

Figure 5.9 Two-layer Perceptron 143

Figure 5.10 Two-layer Linear ANN 144

Figure 5.11 Two-layer Log-sigmoid ANN 145

Figure 5.12 Two-layer Log-sigmoid Linear ANN 146

IF 11t

Figure 6.1 Quantization 154

Figure 6.2 ANN for Block Classification during Learning 156

Figure 6.3 ANN for Block Classification during Forward Propagation 157

Figure 6.4 Example of 8 x 8 Block of Transform Coefficients 158

Figure 6.5 Example of 8 x 8 Block of Amplitude Classifications 158

Figure 6.6 Example of 8 x 8 Block of Normalized Amplitude Classifications 159

Figure 6.7 MSE per Training Pair versus Epochs during Initial Learning Phase 162

Figure 6.8 MSE per Training Pair versus Epochs during Further Learning Phase 163

Figure 6.9 Entropy of Runs of Zero Coefficients versus

Peak-signal-to-noise Ratio, Lena 512 x 512 164

Figure 6.10 Entropy of Runs of Zero Coefficients versus

Peak-signal-to-noise Ratio, Lena 256 x 256 165

Figure 6.11 Entropy of Runs of Zero Coefficients versus

Peak-signal-to-noise Ratio, Cameraman 256 x 256 165

Figure 6.12 Entropy of Runs of Zero Coefficients versus

Peak-signal-to-noise Ratio, F-16 512 x 512 166

Figure 6.13 Decoded JPEG Image, Lena 512 x512, q = 65 167

Figure 6.14 Decoded Block-classified Image, Lena 512 x 512, q = 85 168

Figure 6.15 Entropy of Runs of Zero Coefficients versus

Peak-signal-to-noise Ratio, Different Weight Matrices

and Bias Vectors, Lena 512 x 512 169

Figure 7.1 Zigzag Scan Path for (a) 3 x 6, and (b) 6 x 3 Sub-blocks 178

Figure 7.2 New Zigzag Scan Path for (a) 3 x 6, and (b) 6 x 3 Sub-blocks 178

Figure B. 1 8-level Image B 1

Figure B.2 a) - e) Generation of a Huffman Tree for 8-level Image B 2

Figure B.2 f) - h) Generation of a Huffman Tree for 8-level Image B 3

Figure D. 1 8 x 8 Block of Source Samples D 1

FigureD.2 8 x 8 Block of Samples to FDCT D2

Figure D.3 8 x 8 Block of DCT Coefficients D 2

Figure D.4 8 x 8 Block of Quantized DCI Coefficients D 3

Figure D.5 1-D Vector of Reordered Values D 3

Figure D.6 Encoding of Intermediate Sequence of Symbols D 3

Figure D.7 Stream of Image Data D 4

Figure D.8 Decoding of Intermediate Sequence of Symbols D 5

Figure D.9 Reconstructed 1-D Vector D 5

Figure D. 10 Reconstructed 8 x 8 Block of Quantized DCI Coefficients D 6

Figure D. 11 8 x 8 Block of Dequantized DCI Coefficients D 6

Figure D. 12 8 x 8 Block of Samples from IDCT D 7

Figure D. 13 8 x 8 Block of Reconstructed Samples D 7

Figure D.14 8 x 8 Block of Error Values D8

Figure E. 1 Original Image, Lena 512 x 512 E 1

Figure E.2 Original Image, Cameraman 256 x 256 E 2

Figure E.3 Original Image, F-16 512 x512 E 3

Figure F. 1 Decision Iree for Changes in Row and Column Indices F 1

Figure F.2 Generation of Zigzag Scan Path for 3 x 2 Sub-block F 2

IMM

Acknowledgements

Firstly I would like to thank Martin R. Varley, my Director of Studies, for his consistent

support and guidance through all stages of this research project, to which he has

generously devoted much time and effort.

Next I would like to thank Trevor J. Terrell, my Second Supervisor, for the experienced

guidance and direction he has given to the project.

I would also like to thank Phil Holifield, my Personal Tutor, for reading the first draft of

the thesis and for many helpful discussions; and Isaac Y. K. Chan for the contributions

to the publications.

I would like to thank the Department of Electrical and Electronic Engineering of the

University of Central Lancashire for sponsoring my research studentship and providing

the friendly learning environment.

Thanks are due to many members of staff for helping in various ways. I would like to

single out vicariously late David Platt, Principal Technician, who is greatly missed.

In addition, I would like to thank Playboy magazine for the kind permission to

reproduce the images of Lena Sjoobloom; and Lattice Semiconductor for the kind

permission to reproduce the functional block diagram of the GAL 16V8.

I wish to thank Bettina for her love and understanding that make me very grateful.

Finally I must thank my parents to whom I dedicate this thesis for their love, and their

continuous encouragement and support. Danke!

-XVI-

Chapter 1

Introduction

	

1.1 	Introduction

In this chapter the research project is outlined, and brought in context to related

disciplines of telecommunications and computing. Section 1.2 briefly highlights some

of the important advances of these technologies. Section 1.3 describes the aims and

objectives of the research project, and section 1.4 provides an overview of the thesis.

Finally section 1.5 concludes the chapter with a brief summary.

	

1.2 	Background

In 1837 Samuel Morse invented telegraphy, and seven years later he built the first

telegraph line; between Washington and Baltimore, USA; which used Morse code. It

was in 1851 that the first commercial transmissions using Morse code were established

between England and France. In 1875 Alexander Graham Bell invented the telephone

(A. Isaacs (ed.) 1997).

In 1920 the introduction of the Bartlane cable picture transmission system reduced the

delivery time for newspaper pictures between London, England and New York, USA

from one week to three hours using digital signals on transatlantic submarine cables

(M. D. McFarlane 1972).

In 1948 William Shockley and co-workers invented the first transistors at Bell

Telephone Co.

In 1962 the first active telecommunication satellite, US Telstar 1, was launched and

positioned into relatively low elliptical orbit (A. Isaacs (ed.) 1997).

-2-

In the late 1970s microcomputers became widely available. These systems, typically

having up to 16 KB random-access memory (RAM) and a tape drive, were used to

manipulate text and numerical data, but offered limited graphical support. In the USA

the Advanced Research Projects Agency Network (ARPANET) was commissioned as

an experimental network designed to support military research. ARPANET later

became the Internet.

In the 1980s personal computers, constantly growing more powerful, became available

for office and home use. These systems, typically having up to 640 KB RAM, and

floppy and hard disk drives, supported a large variety of applications, and offered from

the late 1980s graphical user interfaces. However, because of enormous amounts of data

involved, digital image processing was still limited to dedicated systems; see for

example (G. Hall and T. J. Terrell 1987).

In the 1990s tremendous improvement of processing power, and increases of RAM and

hard disk storage are transforming personal computers into powerful general-purpose

systems suitable for processing digital image data. Additional networking capabilities of

office and home computers allow the exchange of data among distant computers. The

Internet, connecting a variety of different computers around the world and growing at

great pace, changes the way individuals work and communicate; it symbolizes the

information technology revolution.

With demand for transmission and storage of information rapidly growing, data

compression in general and image compression in particular remain key technologies

(N. Jayant et al. 1993); and, therefore, constitute important areas of research.

-3-

1.3 	Aims and Objectives of the Project

The aims of the research described in this thesis were to investigate and develop

appropriate neural-network models for digital image compression, and to develop the

use of neural networks in hybrid schemes for image compression exploiting perceptually

important features.

The specific objectives were:

• 	To review important existing image-compression techniques,

• 	To review important existing neural-network models,

To develop new image-compression techniques or to improve existing ones, and

To identify prospective directions for further research.

1.4 	Organization of the Thesis

Chapter 2, entitled 'Digital Image Compression', places digital image compression in

context to the human visual system and digital image processing, and focuses on some

of the available techniques for lossless and lossy compression.

Chapter 3, entitled 'JPEG Still Picture Compression Standard', discusses the Joint

Photographic Experts Group (JPEG) still picture compression standard in some detail as

this compression standard has been adapted to a new hybrid compression scheme.

Chapter 4, entitled 'Adaptive Zigzag Reordering of Transform Coefficients', describes a

new lossless transcoding scheme that adaptively reorders transform coefficients for

improved coding efficiency, and includes experimental results to demonstrate the

effectiveness of the scheme.

-4-

Chapter 5, entitled 'Artificial Neural Networks', introduces neural networks, and

describes the backpropagation training algorithm in detail.

Chapter 6, entitled 'Neural-network-based Block Classification', describes a lossy

scheme that uses an artificial neural network to classify blocks prior to adaptive zigzag

reordering, and includes experimental results to demonstrate the effectiveness of the

scheme.

Chapter 7, entitled 'Conclusions and Recommendations for Further Work', summarizes

the contributions made by this thesis and offers recommendations for further research

directions.

1.5 	Summary

Since their invention telecommunications and computing have developed at great pace.

The demand for exchanging information continues to grow, therefore data and image

compression remain key technologies.

The main objective of the research described in this thesis has been to investigate the

application of neural networks to digital image compression, particularly in hybrid

schemes.

-5-

Chapter 2

Digital Image Compression

2.1 	Introduction

This chapter places digital image compression in context to the human visual system and

digital image processing, and focuses on some of the available techniques for lossless

and lossy compression.

Section 2.2 briefly summarizes the concept of digital image processing, introduces

representations of digital images, and outlines a typical generic image-processing

system.

Section 2.3 develops the necessity for digital image compression, distinguishes between

lossless and lossy techniques, and summarizes the objectives of digital image

compression. It introduces the three forms of data redundancy that can be exploited, and

outlines a general image-compression model. The section also introduces entropy as a

measure of the complexity of an information source.

Section 2.4 provides a very brief functional description of the human visual system,

describes four properties as potentially being useful for digital-image-processing

applications, and identifies two properties, spatial masking and local processing

characteristic, as currently being most significant.

Section 2.5 describes a number of digital-image-compression techniques. It develops

the concept of Huffman coding in detail, focuses also on run-length coding,

quantization, and transform coding; and enumerates some other techniques.

Section 2.6 is concerned with image quality assessment based on subjective and

objective measures. Finally section 2.7 concludes the chapter with a brief sununary.

-7-

2.2 	Digital Image Processing

2.2.1 	Motivation for Digital Image Processing

Digital image processing aims to gather, restore, enhance, relate, evaluate, and

manipulate information contained in a digital image for many different purposes by

means of computer technology; image samples are quantized to a fixed but sufficient

number of information carrying units. Processing, storage, and transmission of digital

representations of images offer many advantages over these operations performed on

analogue representations: processing flexibility, easy or random access in storage, higher

signal-to-noise ratio (SNR), possibility of error-free transmission, readiness for

encryption and coding, and compatibility with other types of information as well as

digital networks and computers, to name but a few. Image storage applications include

medical imaging, image-based document management, and multimedia applications.

Image transmission applications include broadcast television, remote sensing via

satellites, aircraft, radar, sonar, teleconferencing, computer communications, and

facsimile transmissions (A. K. Jain 1981).

2.2.2 	Representation of Digital Images

An image is a 2-1) model representing a special and limited aspect of an observed scene.

It contains only a very small part of the original information extracted from the

electromagnetic energy spectrum; for example x-ray, ultraviolet, visible, and infrared

bands; mechanical forces; for example pressure and torsion; or other physical

measures using an appropriate sensor that produces an electrical signal proportional to

the input signal.

n

Since the information is processed in digital computers, this signal must be digitized in

location, i.e. image sampling, and amplitude, i.e. level quantization. Thus the

continuous image is digitized on a grid of square or hexagonal sampling points by

mapping the amplitudes to a linear or non-linear quantization function (M. Sonka et al.

1993, p. 27). The result is a raw image.

For common systems, spatial resolutions include 256 x 256, 512 x 512, 1024 x 1024,

360x576, and 720 x 576 picture elements (pixels); and 256-level quantization

generates 8-bit integers ranging from 0, i.e. black, to 255, i.e. white.

Since data processing uses algorithms, and their implementations depend on the data

representation, the data structure holding the digitized image data must be adequate.

There is a variety of traditional and hierarchical image-data structures that can be

categorized into different levels of abstraction.

A matrix A(L, M) of L rows by M columns of integer elements, each representing the

brightness or another property of the corresponding pixel, holds the grid of pixels; and

is the most common data structure for the direct representation of images. It can be

defined as follows:

ra(l,!) a(1,2) . 	a(1,M) 1
a(2,l) a(2,2) 	a(2,M)

A(L,M)=I 	 I 	 (2.1)
a(1,m) . 	I

[a(L,1) a(L,2) . 	a(L,M)j

The matrix representation refers to the spatial domain; image data is accessible through

the row and column indices of the associated pixels. Scanning or processing the matrix

in left-to-right top-to-bottom order is purely a historical convention (R. J. Clarke 1995,

p. 22); scanning in zigzag order, often employed in the frequency domain, is one

fl

alternative. Many processing techniques benefit from this natural type of image-data

structure; for example digital image processing frequently uses arithmetic and logical

operations, filter operations often process overlapping sub-images, and compression

techniques often work on non-overlapping sub-images. Transformation of the image

into a different domain, for example using the fast Fourier transform (FF1') or the

discrete cosine transform (DCT) (N. Ahmed et al. 1974), and subsequent manipulation

in the transform domain is also used for processing and compression. Note that

intermediate representation with more quantization levels can minimize the propagation

of quantization errors (J. J. Rodriguez and C. C. Yang 1994).

While a single matrix can be interpreted as a grey-scale image, a matrix in a set of

matrices can contain information about one spectral band of a multispectral or colour

image. Alternatively, it can represent one instant in a time sequence of images. Since

most programming languages support matrices, i.e. 2-D arrays, the implementation of

this type of image-data structure is straightforward.

Other traditional image-data structures are chains, graphs, lists of object properties, and

relational databases. Hierarchical data structures comprising of pyramids and quadtrees

are means for more complex methods of image representation in computer vision

(M. Sonka et al. 1993, pp. 42-55).

2.2.3 	Digital-image-processing System

A block diagram of a typical generic image-processing system is shown in figure 2.1.

Sensor and digitizer, i.e. analogue-to-digital converter, accomplish image acquisition.

Some sensors, for example charged-coupled device (CCD) cameras and scanners,

combine sensor and digitizer. Image data is manipulated by the processor; and stored

- 10-

temporarily in internal memory, i.e. RAM, and permanently in mass storage, for

example hard disk or tape. A keyboard accepts user input. A visual display unit

(VDU), i.e. cathode-ray-tube (CRT) monitor, and other output devices, i.e. printer, are

used to visualize the processed image data. The interface provides a link to other

computers.

0
object

Figure 2.1 Generic image-processing System

The display transforms the image data representing grey-level or colour values into

luminance. Figure 2.2 depicts a typical transfer function (after S. A. Karunasekera and

N. Kingsbury 1995).

However, as the function varies from display to display a faithful representation across

computers is not achieved. The same problem applies to other input and output devices,

and is addressed by device-independent colour management; see for example (Apple

Computer 1995 and 1996).

- 11 -

100

CM

E
60

C)
U

j40

20

[*1
0 	50 	100 	150 	200 	250

Grey Level

Figure 2.2 Typical Grey-level-to-luminance Transformation

2.3 	Introduction to Digital Image Compression

2.3.1 	Motivation for Digital Image Compression

Digital representations of images usually require enormous amounts of data; for

example one image taken by Landsat's multispectral scanner (MSS) consists of about

31 MB, and one image taken by Landsat's thematic mapper (TM) consists of about

263 MB; see appendix A for details. In addition the amount of image data being

collected, processed, stored, and transmitted increases rapidly because of higher

utilization, new applications, and higher standards. A recent survey (B. Foster 1996)

indicates for video microscopy a move toward higher spatial resolution, colour imaging,

and sending images across networks. For these reasons storing and transmitting data is,

and will remain, costly.

Processing of compressed images using efficient algorithms can also reduce the number

of operations required to implement an algorithm (A. K. Jain 1981); R. S. Ledley

Eva

(1993) proposed that the processing of medical images be carried out in the compressed

[Wi,

A large variety of compression techniques has evolved over the years. Implementations

exist in software, hardware, and as mixed solutions. In general, if the digital image

reconstructed from the compressed representation is numerically identical to the original

digital image, the employed compression technique is lossless. Lossless compression

techniques relate to machine vision, and to applications where gathered information is

too valuable or legal reasons prohibit any loss of information (R. C. Gonzalez and

R. E. Woods 1992, p. 343). If the reconstructed image only approximates the original

image, the employed compression technique is lossy. While data compression must

generally be fully reversible or lossless, lossy image-compression techniques sacrifice

some information in order to achieve higher compression. Lossy techniques relate to

applications for human perception, and should, therefore, be designed to minimize a

perceptually meaningful measure of distortion, rather than more traditional and more

tractable criteria such as the mean square difference between original and reconstructed

image (N. Jayant et al. 1993).

2.3.2 	Objectives of Digital Image Compression

The main objective of digital image compression is to develop efficient digital

representations of images that minimize the number of information carrying units, the

bit rate, in order to reduce storage and transmission requirements, and ultimately to

reduce costs. The bit rate can be measured in bits element', bits pixeF' , or bits s

- 13 -

Secondary objectives include:

To minimize communication delay. The delay for encoding and decoding must

match the requirements of an application. While, for example, real-time

transmission demands short and same delay for encoding and decoding, the

encoding delay for distribution via a storage medium is less important.

•

	

	To minimize complexity. The complexity is typically measured in terms of

arithmetic capability, memory requirements, cost, and power consumption.

• 	To minimize the impact of errors on the reconstructed image.

• 	To support the exchange of compressed data among applications and across

different computer systems as communication across networks grows in

importance. This is addressed through standardization.

For lossy compression techniques an additional objective is to achieve the best image

quality - however that might be defined - possible under given constraints.

The 'perfect' digital image-compression technique does not exist; the aim is, therefore,

to minimize the bit rate in the digital representation of the image while maintaining

required levels of image quality, complexity of implementation, and communication

delay (N. Jayant et al. 1993). While, for example, a fixed bit rate in transmission results

in varying quality, a fixed quality in storage causes a varying bit rate.

- 14-

2.3.3 	Data Redundancy

Three basic forms of data redundancy can be identified and exploited: coding

redundancy, interpixel redundancy, and psychovisual redundancy. Digital image

compression aims to remove redundancy and to reduce inelevancy by exploiting one or

more types of data redundancy.

Coding redundancy is due to the fact that integer pixel values are usually represented

through natural binary codes: every codeword consists of the same number of bits

regardless of its statistical probability of occurring. Coding redundancy can be exploited

by assigning shorter codewords to more probable pixel values and longer codewords to

less probable ones.

Interpixel redundancy arises due to the fact that shapes and objects in an image extend

usually over a region of pixels; pixel values are therefore fairly similar to their

neighbours. Interpixel redundancy can be exploited by relating pixels to the adjacent

pixels; for example the difference between adjacent pixels can be calculated in various

ways and used to represent an image.

Psychovisual redundancy is due to the fact the human visual system does not respond

with equal sensitivity to all visual information. Certain information has less relative

importance than other information and can, therefore, be eliminated without

significantly impairing the perceived image quality.

As the limits of compression exploiting coding and interpixel redundancies have been

reached (M. Kunt et al. 1985), the move towards perceptual coding is natural.

- 15-

2.3.4 	Digital-image-compression Model

An image-compression system, depicted in figure 2.3, consists of encoder, channel

representing a transmission path or a storage medium, and decoder; the human eye is

generally the ultimate receiver at the end of the system. On a high functional level the

encoder block processes the original representation and feeds the encoded data into the

channel. After transmission over the channel, the encoded representation is fed to the

decoder block that generates the reconstructed representation.

input .encoler 	 decoder output

LJ 	source 	channel 	channel 	channel 	source ______
encoder 	encoder 	 decoder 	decoder

origina 	 reconstructed human
data 	 data 	receiver

Figure 2.3 General Model of Image-compression System

Both the encoder and decoder consist of two sub-blocks. While, in an attempt to

minimize the necessary bit rate for faithfully representing the input image, the source

encoder removes data redundancies; the source decoder reverses the compression

process. If an error-free system is required, it is the responsibility of the channel

encoder-decoder pair to add redundancy to the encoded representation in order to

recognize and correct any errors due to noise, distortion etc. introduced in the channel.

However, the processes of source and channel coding can sometimes be integrated to

increase efficiency of digital communication (N. Jayant et al. 1993). If the channel

between encoder and decoder is noise free, the channel encoder and decoder can be

omitted.

- 16-

23.5 	Entropy

The notion of coding is to find a new representation of an image that is smaller than the

original representation of that image. Clearly, there is a lower bound that must depend

on the image itself.

The histogram of an image represents the pixel distribution as a function of pixel value

providing information on illumination conditions; contrast; range of values; and,

maybe most importantly, probability distribution. If n, pixels have the k th of L

possible pixel values Vk in an image consisting of n pixels, then the probability of

occurrence of value V ft can be defined as

P(vk)= 5- k=[0,l,2,...,(L—l)]
	

(2.2)

The discrete function relates the count of a pixel value n. to the total number of

pixels n; probabilities range from zero, i.e. no occurrence, to one, i.e. exclusive

occurrence. The sum of the probabilities is, of course, one:

P(v) = 1
	

(2.3)

Information theory models the generation of information as a probabilistic process;

information content depends upon the probability of an event or symbol, i.e. pixel value

in terms of image compression, occurring at each instance, i.e. pixel. Unlikely events,

having low probability, carry more information than likely events, and vice versa.

Ultimately, a certain event does not carry any information.

- 17-

If the event E occurs with probability P(E), then the self-information of that event is

defined as

1
1(E)=log 	=—log P(E)

P(E)

The amount of self-information 1(E) attributed to event E is inversely related to its

probability P(E); as P(E) approaches one, 1(E) converges towards zero. The base r

of the logarithm in the above equation specifies r -ary units of information. However,

the base 2 conveniently generating binary units, i.e. bits, can be defined as

1(E) = log 2 	bits = —log 2 P(E) bits
P(E)

1
(2.5)

The entropy H, postulated by C. E. Shannon (1948a and b) as a measure of the

complexity of an information source, defines the average amount of information

conveyed per instance and can be defined as

H = —P(Ej)log r P(E)=I P(E1)I(E) 	 (2.6)

where J denotes the total number of events.

As less certainty, and thus more information, is conveyed; the entropy H increases. If

all events are equally probable, the entropy is at a maximum. The base r of the

logarithm in the above equation specifies r -ary units of information. Again, the base 2

conveniently generating binary units, i.e. bits, can be defined as

(2.4)

H = - P(E1) 109 2 P(E1) bits 	 (2.7)

Using the notation introduced in equation 2.2, the entropy of a digital image can be

defined as

H = - P(vk) log 2 P(vk) bits
	

(2.8)

Under the simplistic assumption that values of successive elements are statistically

independent, i.e. no inter-element redundancy, the zero-order entropy H represents the

lower bound: according to the noiseless coding theorem (C. E. Shannon 1948a and b), it

is possible to encode information with entropy H bits elemenF' using

H + e bits elemen(t where E is an arbitrarily small positive quantity.

Entropy coding is a well-established lossless method for reducing the bit rate of digital

images by exploiting the statistical redundancy in those images. It exploits the

nonuniform probability distribution of pixel values, generally exhibited by images, by

encoding the pixel values using variable-length codewords rather than equal-length

codewords.

2.4 	Human Visual System

2.4.1 	Function of Human Visual System

It is generally the human visual system that perceives and judges images after processing

or coding, therefore attempts should be made to incorporate knowledge about the

properties of the human visual system to digital image compression and quality

assessment. This section summarizes some important properties of the human visual

system. Further reading includes a description of the eye (R. C. Gonzalez and

R. E. Woods 1992, pp. 22-28) and the human visual system (M. Kunt et al. 1985), a

- 19-

brief functional description (D. J. Sakrison 1977), and a description of interactions

among nerve cells in the retina (F. S. Werblin 1973).

The human visual system is a complex system in which the complexity of visual

perception increases as the image information propagates through the system. Image

information in the form of light intensity or luminance; that is a function of position,

time, and wavelength or frequency; enters the human visual system. Refraction by the

cornea, intraocular fluids, and lens focuses some of this information on the retina

forming a retinal intensity image as a function of retinal position, time, and wavelength.

Receptor cells at the back of the retina sense the intensities and, through a complex

network of interconnecting cells, encode the image into neural signals to be carried by

the optic nerve to the brain (D. J. Granrath 1981). Since optic-nerve fibres can only

accurately transport signals over a range much smaller than the range of image

information, the retina must compress the very large range of intensities presented by the

outside world into a narrower range that can be handled by the optic-nerve fibres.

The human visual system is an anisotropic system: from a given sensitivity at 00, i.e.

horizontality, its sensitivity decreases to a minimum at 45° and then increases again

reaching approximately the original level at 900 rotation. In addition, its sensitivity is

frequency dependent. Compared to the sensitivity at 00, the sensitivity at 45° to

frequencies of 10 and 30 cycles deg' is reduced by 15 % and 30 % respectively

(C. F. Hall and B. L. Hall 1977). Spatial frequencies within a range of about one octave,

over a range of orientations of about 0 0 , are indistinguishable from each other

(W. B. Glenn 1993).

- 20 -

A comnon, but incomplete model of human vision incorporates a lowpass filter, a

logarithmic nonlinearity, and a multichannel highpass filter; see (M. B. Sachs et al.

1971; C. F. Hall and E. L. Hall 1977; D. J. Sakrison 1977; and N. Jayant etal. 1993).

2.4.2 	Relevant Properties of Human Visual System

It is the human eye that is generally the ultimate receiver of processed image data; see

figure 2.3; therefore the properties of the human visual system should be considered,

and suitable properties could be transferred to digital image compression.

D. R. Fuhrmann et al. (1995) identified the following four properties as potentially

being useful for digital-image-processing applications.

The human visual system responds to light in a nonlinear way. The smallest luminance

difference that a human observer can detect when an object of a certain size is displayed

at a certain background luminance level is defined as just-noticeable difference JND.

For a wide range of light intensities L the just-noticeable difference JND, or AL,

satisfies:

JND AL
= - = constant

L L
(2.9)

This is known as Weber's law, and suggests a logarithmic relationship between the

physical and 'perceived intensity of light, where the just-noticeable difference increases

with increasing intensity. T. G. Stockham (1972), for example, proposed a visual model

containing a logarithmic function and described its application to image enhancement.

However, R. J. Clarke (1995, p. 8) reported that results of coding operations within a

logarithmic/exponentiai domain had been inconclusive and argued that the conventional

-21 -

display introduces a major nonlinearity in the processing chain that overrides the effects

of the coding operations.

The human visual system performs spatial filtering. The optics of the eyeball have a

lowpass characteristic. The lateral inhibition in the retina results in a highpass

characteristic. The overall characteristic, that might be approximated by a bandpass

characteristic, is centred somewhere between 4 and 8 cycles deg'; see (J. L. Mannos

and D. J. Sakrison 1974; and R. J. Clarke 1985, p. 271, and 1995, pp. 7 and 75).

Transform-based image-compression schemes offer a framework where the bit

allocation of transform coefficients can be related to the spatial-frequency response, i.e.

sensitivity, of the human visual system. Since only coefficients of the Fourier transform

correspond directly to spatial frequency, the bit allocation must be modified for other

transforms; H. Lohscheller (1984); N. B. Nill (1985); K. N. Ngan et al. (1989); and

D. L. McLaren and D. T. Nguyen (1991) investigated the cosine transform. As the

spatial frequency perceived by the eye depends on spatial resolution and viewing

distance, the viewing conditions must be constrained. While a constant viewing distance

of, for example, five times the image height (S. A. Karunasekera and N. Kingsbury

1995), and a fixed viewing position (D. R. Fuhrmann et al. 1995) can be obeyed for

research purposes; these conditions cannot be assumed for practical applications in

digital image compression. A. M. Lund (1993), for example, investigated viewing

preferences, and found that the ratio of viewing distance to image height decreases as

image size increases.

The human visual system performs spatial masking that is highly adaptive. This refers

to the perceptibility of one signal in the presence of another in its time and frequency

vicinity, and relates to the suppression of errors or distortion as a result of high image

- 22 -

activity or contrast. The aim of perceptual coding is to shape the error caused by lossy

compression in a way so that the distortion is partially or fully masked by the signal, and

therefore invisible to the human eye. In this context, it should be noted that high-

frequency signals in visual information tend to have a short time or space support, while

low-frequency signals tend to last longer (N. Jayant et al. 1993). Distortion masking,

i.e. noise masking, has been incorporated in predictive and transform-coding techniques.

The human visual system has a small visual angle of 1 to 3°. Complex images are

viewed with a series of brief fixations and rapid eye movements (D. R. Fuhrmann et al.

1995). This leads to local rather than global processing characteristics: the human

observer tends to concentrate on those areas in which degradation is most visible and to

assess the overall quality accordingly; see for example (J. 0. Limb 1979; G. B. Legge

and J. M. Foley 1980; and F. X. J. Lukas and Z. L. Budrikis 1982).

2.4.3 	Significance of Human Visual System

As the properties of the human visual system govern the perception of visual

information, digital image compression must take advantage of these properties in order

to achieve lower bit rates by minimizing perceptually meaningful measures of distortion

rather than more traditional criteria, such as the mean squared difference between the

original and reconstructed image (N. Jayant et al. 1993). In digital image compression,

coding bits can be allocated according to the importance of the information, in terms of

the human visual system's sensitivity, that they convey. In quality assessment reliable

numerical measures would allow efficient comparison of compression schemes,

avoiding time consuming and expensive subjective tests under controlled conditions.

- 23 -

However, the human visual system and current digital-image-processing systems employ

very different mechanisms.

While the human visual system responds to luminance, digital-image-processing systems

manipulate grey-level or colour values that are transformed into luminance by the

display. Since every display exhibits its own nonlinear transfer function, the perceived

results vary from one digital-image-processing system to another.

While the human visual system responds to spatial frequency, digital-image-processing

systems assume pixels of a certain size. The actual size of a pixel depends on the

display, and the perceived spatial frequency is also a function of the viewing distance.

For practical applications spatial masking and local processing characteristic are

currently the most significant properties.

2.5 	Digital-image-compression Techniques

2.5.1 	Properties of Digital-image-compression Techniques

Techniques for digital image compression can be classified in various ways. The

criteria of accuracy distinguishes between information-lossless and information-lossy

techniques, as described in subsection 2.3.1. Compression can be carried out in spatial,

frequency, transform, 'visual', or other domains. It can exploit coding, inter-element,

and psychovisual redundancies individually or in combination. Algorithms can be

designed to adapt their parameters affecting, for example, bit allocation or quantization

levels to changes in image statistics.

- 24 -

Algorithms process elements, i.e. pixels for approaches in the spatial domain,

individually; in rectangular or square blocks; or segments of elements having similar

properties, i.e. shapes. Encoding of blocks offers potential for significantly better

performance than encoding of each element individually, since the requirement to

transmit at least some information for every element is relaxed. The disadvantage of

arbitrarily dividing an image into rectangular or square blocks is that, as the bit rate is

decreased, the block structure, that is easily perceived and irritating to the observer,

appears in the reconstructed image (R. J. Clarke 1995, p. 76). Encoding based on

shapes derived from actual image content rather than on blocks circumvents the

disadvantage and may supersede block-based encoding.

Research work has produced a large variety of compression techniques. The following

subsections describe those techniques, that are relevant to this thesis.

2.5.2 	HufTman Coding

Huffman coding, a well-known entropy-coding technique, reduces coding redundancy

by constructing a variable-length code that assigns the shortest possible codewords to the

most probable events, or symbols, using integer numbers of code symbols, for example

bits for binary codes. lluffman coding is lossless and codes elements individually, i.e.

one at a time. Fluffman coding is optimal: it uses the variable-length code that achieves

the minimum amount of redundancy possible when coding individual elements, i.e. for a

particular set of symbols and their probabilities, no other integer code can be found that

will give better coding performance than Huffman coding. It is a very popular

technique used in many different schemes.

- 25 -

There are two basic restrictions imposed on the codewords:

• 	No two codewords consist of identical arrangements of code symbols.

• 	The code symbols are constructed in such a way that no additional indication is

necessary to specify where a codeword begins and ends once the starting sequence

of codewords is known.

For producing the minimum-redundancy variable-length code D. A. Huffman (1952)

devised a method that builds up a tree by repetitively combining the least probable

nodes, i.e. symbols and compound symbols, to a new node, i.e. compound symbol, with

the summed probability until there is only one free node, i.e. the root node. Note that the

probability of occurrence is proportional to the frequency of occurrence; see

equation 2.2. Although r -ary trees can be built, binary trees are more popular. In non-

adaptive schemes after the tree has been built and the code has been produced, encoding

or decoding is simply accomplished by replacing original codewords with the Huffman

codewords or vice versa. Storage and transmission of the code reduces efficiency.

A tree is a collection of nodes, that can contain information, and links, each connecting

two nodes, that has certain properties. A path is a list of consecutive nodes that can be

traversed via their links. The nodes directly succeeding a particular node are children of

that node. In an ordered tree the order of the children is defined by some criteria.

A node with at least one child is an internal node; a node without children is an external

node. Internal nodes of a r -ary tree must have r children. The node directly preceding

a particular node is the parent of that node, and the nodes also belonging to that parent

are siblings. The one node without a parent is the root node. In a tree there exist exactly

one path between the root node and every node, and exactly one path between any two

nodes. The number of links from a node to the root node is the level, that can be used to

group nodes with the same distance from the root node. The internal path length is the

sum of levels of all internal nodes. The external path length is the sum of levels of all

external nodes. The path length is the sum of internal and external path length. In a

binary tree every internal node has a left child and a right child, each of which can either

be an internal or external node. Conventionally but arbitrarily, left children are

identified by 0, and right children are identified by 1. Tracing the path from the root

node to a particular external node generates a unique string of Os and is; see

(R. Sedgewick 1992, chapters 4 and 22).

After generating the symbol distribution, the tree for a binary Huffman code can be built

with the following steps (M. Nelson 1992, pp. 34-35); note that probability or

frequency of occurrence is represented through a weight:

• 	Locate the two nodes with the lowest weights in the list of free nodes. Note that

nodes with identical weights are equally suitable in term of coding gain, but may

change the height, i.e. maximum level, of the tree if internal and external nodes

have identical weights.

• 	Create a parent node for these two nodes, and assign a weight equal to the summed

weights of the two child nodes to it. To generate an ordered tree, that is necessary

for adaptive Huffman coding, ensure that the weight of the left child is less than or

equal to the weight of the right child.

• 	Add the parent node to and remove the two child nodes from the list of free nodes.

• 	Associate the left child node with 0, and the right child node with 1.

• 	Repeat above steps until only one free node is left. The free node is the root node

of the tree.

- 27 -

Appendix B contains a worked example in which a lluffman tree is designed for an

8-level image of size 8 x 8.

The generation of the Huffman code can be equally described as a series of source

reductions where the least probable source symbols are combined to form a new

compound symbol with the summed probability that replaces the symbols from which it

has been derived; see (R. C. Gonzalez and R. E. Woods 1992, pp. 343-345).

Huffman codes are instantaneous uniquely decodable block codes. They are called

block codes, because each event is mapped to a codeword with a fixed sequence of code

symbols, for example bits. They are instantaneous, because each codeword in a string of

code symbols can be decoded without referencing succeeding events. They are uniquely

decodable, because any string of code symbols can decoded in only one way without

need for separation of the codewords (R. C. Gonzalez and R. E. Woods 1992, p. 345);

see also (M. Nelson 1992, chapter 3; and R. J. Clarke 1995, appendix 1).

Non-adaptive Huffman schemes require two passes over the source symbols causing a

delay: during the first pass the frequencies of occurrence of the events are collected, then

the Huffman tree is constructed and stored or transmitted, and during the second pass

the data is encoded. In adaptive Huffman schemes, the encoder and decoder start with

identical initial trees, use the same algorithm to modify their trees and, therefore, stay

synchronized. They require one pass, and are often more efficient than non-adaptive

schemes; see (J. S. Vitter 1987).

Since codewords have to be an integer number of code symbols long, Huffman coding

may have to assign either more or less code symbols to an event than theoretically

necessary resulting in reduced efficiency; see equation 2.5. In general, Huffman coding

Win

cannot reduce coding redundancy of data representing only two events, regardless of the

probability distribution, since codewords require at least one code symbol.

2.5.3 	Run-length Coding

Run-length coding exploits inter-element redundancy by representing a string of

consecutive identical elements using a coding pair consisting of run length, that specifies

the number of consecutive identical elements, and symbol, that specifies the value of the

elements. Run-length coding is lossless. Although spatial-domain image data exhibits

interpixel redundancy, strings of identical elements are rather short, especially in

detailed natural images; however mn-length coding can be utilized for l-D and 2-D

schemes in various ways. 2-D mn-length coding processes a scan line in context with

transitions in the previous scan line.

Run-length coding of binary images, that have only black and white pixels, is employed

in facsimile (fax) coding. Strings of Os and Is in each scan line, i.e. row, are coded from

left to right. The value, 0 or 1, of the first string of each row is either specified, or the

value of the first string is conventionally assumed to be 0. As the string values alternate

between 0 and 1, an initial run length of zero indicates in the latter scheme that the row

actually starts with a black string. Additional entropy coding, for example Huffman

coding, can be used to reduce the coding redundancy of the run lengths. The run lengths

of black and white can be coded separately using two entropy coders that are specifically

tailored to the individual statistics; see (R. C. Gonzalez and R. E. Woods 1992, p. 354).

Naturally, rn-bit images can be decomposed into m 1-bit bit planes that can be coded

using mn-length coding for binary images. In order to reduce the effect of small grey-

level variations, that can result in a very different bit pattern, an intermediate

- 29 -

representation of the image by an m -bit Gray code ensures that adjacent grey levels vary

in only one bit plane; see (R. C. Gonzalez and R. B. Woods 1992, p. 350).

Assuming that in 8-bit images run lengths greater than 32, and pixel values greater than

or equal to 224 would normally be rare; M. A. Sid-Ahmed (1995, p.400) described an

algorithm that uses, dependent on the context, an 8-bit symbol with its three most

significant bits set to 1 not as pixel value but as repeat count in the range [0,31]

preceding the pixel value. Generally, run lengths greater than 1, and less than or equal to

32 are coded through pairs consisting of repeat count and pixel value. Single pixels with

values greater than or equal to 224 are coded through pairs consisting of a repeat count

that is equal to zero, i.e. 111000002, and the pixel value. However, single pixels with

values less than 224 can simply be coded through the abbreviated 'pair' consisting only

of the pixel value. Run lengths greater than 32 are coded by generating more than one

coding pair.

The concept of run-length coding can also be applied to sparse matrices, that are usually

represented through a list of nonzero elements and their indices. For example, the

nonzero elements in each row or column are coded from left to right, or from top to

bottom respectively. The distance between the preceding and current nonzero element,

i.e. the number of zero elements in between, and the value of current non-zero element

are combined to form a pair. The value of the first nonzero element is coded with

reference to the beginning of the scan line. While each index can only appear once in

every scan line, the distances can generally produce a distribution that has a lower

entropy.

- 30 -

2.5.4 	Quantization

Quantization exploits psychovisual redundancy by mapping a range of input values, for

example pixel values or coefficients, to a limited number of output values, i.e. symbols.

The range of input values, that can be continuous or discrete, is divided into a number of

regions, each of which is represented by one output value. A set of output values is also

referred to as a pulse-code-modulated (PCM) signal. As information is being lost during

the many-to-one mapping, quantization is lossy and not fully reversible. However,

during the inverse process, dequantization, each symbol is replaced with a value that

represents the associated range of input values. The range of input values can be divided

into regions in various ways.

Uniform quantization simply divides the range of input values into N equally sized

regions separated by equally spaced decision levels d0 to dN, neither taking the

probability distribution of the values into account nor trying to minimize the introduced

distortion. The quantizer represents an input value greater than d1 and less than or

equal to di,(d, , d, 1], by an output symbol of value i. The dequantizer generates a

reconstructed value r, from a symbol i using:

= d 1 + d 1+1
2

(2.10)

Nonuniform quantization refers to a range division using unequally spaced decision

levels. It is also known as optimal quantization, since this approach usually involves

optimization of a statistical measure or psychovisual measure; see (A. N. Netravali

1977). The Lloyd-Max quantizer, independently developed by S. P. Lloyd (1982) and

J. Max (1960), minimizes the mean-square quantization error by determining the best

decision and reconstruction levels taking the overall probability distribution of the input

-31-

values into account; see also (R. C. Gonzalez and R. E. Woods 1992, PP. 370-371; and

M. A. Sid-Ahmed 1995, PP. 433-450).

Adaptive quantization adjusts the quantization levels based on the local probability

distribution; see (A. N. Netravali and B. Prasada 1977). In a block-based spatial-

domain scheme each block of image data is quantized using the quantizer, from a

number of available quantizers, that introduces least distortion. The quantizers may be

scaled versions of a Lloyd-Max quantizer for unit-variance Laplacian probability

distribution, and the overhead associated with the quantizer selection is appended to

each block; see (R. C. Gonzalez and R. E. Woods 1992, PP. 37 1-374).

2.5.5 	Transform Coding

Transform coding describes a concept of a group of lossy digital-image-compression

techniques, rather than one particular scheme, that has been incorporated into standards

such as the JPEG still picture compression standard for lossy compression; see for

example (0. K. Wallace 1992). The core of any transform-based coding system, that

consists of a number of different coding stages, is a reversible, linear, 1-D or 2-D

transform; that maps image data, i.e. a set of pixels, into a set of transform coefficients

that has the same size. The purpose of this transform stage is to remove interpixel

redundancy by converting statistically dependent pixel values into a set of 'less

correlated' or 'more independent' coefficients. For most natural images a significant

number of these coefficients have small magnitudes and can be coarsely quantized, or

discarded entirely, with little image distortion (R. C. Gonzalez and R. E. Woods 1992,

p. 374).

- 32 -

Figure 2.4 depicts a typical transform-coding system. During encoding the block

selector splits the original image into blocks of pixels that are then processed by the

forward transform to produce blocks of transform-domain coefficients. The quantizer,

making transform-based coding lossy, maps each block into a set of symbols, i.e.

quantized and scaled transform coefficients, which is then entropy-coded by the symbol

encoder. The result is a continuous stream of encoded symbols. During decoding the

decoder performs the inverse sequence of steps. The symbol decoder decodes the data

stream and produces sets of symbols, each of which is mapped by the inverse quantizer

into a block of quantized transform-domain coefficients, which is then processed by the

inverse transform to produce a block of pixels. The block selector merges the blocks of

pixels into the reconstructed image. While nonadaptive transform coding does not take

local image content into account, adaptive transform coding enables one or more coding

stages to respond to local image content; see for example (A. Habibi 1977).

input 	--------------epçqdçr
	

output

block 	forward
	

symbol

	

selector I Itransforn 	 encoder

original
	

encoded
image data 	 symbols

a) Encoder

input 	- ------------- decoder output

	

symbolinverse 	inverse 	block
decoder 	quantizer ransfo 	selector

encoded 	------------------------------- reconstructed
symbols 	 image data

b) Decoder

Figure 2.4 Transform-coding System

For a transform, playing the key role in this group of image-compression techniques, an

inverse transform, that restores the data to its original form, must exist:

- 33 -

forward
transfonn

f(x,y) 	T(u,v)
invent

transfonn

(2.11)

The spatial-domain representation f(x, y), i.e. a set of pixels, can be transformed into

its transform-domain representation, i.e. a set of transform coefficients, and vice versa.

The forward transform maps an L x M block of image data into an Lx M block of

transform coefficients. Although 1-D transforms can be defined, 2-D transforms are a

natural choice for digital image processing, that is concerned with 2-D image data.

However, separable 2-D transforms are often implemented as two sets of 1-D

transforms. 'Fast' implementations reduce the number of arithmetic operations.

A variety of transforms is available; for example FF1', DCT, Discrete sine transform

(DST), Haar transform, Hadamard transform, Karhunen-Loève transform (KLT), Slant

transform, and Walsh transform; see (R. C. Gonzalez and R. E. Woods 1992, chapter 3;

and R. J. Clarke 1985). Selecting a transform for use in an image-compression scheme

requires a compromise between transform efficiency and computational complexity to

be made. The transform efficiency describes the transform's ability to decorrelate inter-

element redundancy and to pack the energy that is spread across the image into as few

transform coefficients as possible.

The 2-D FF1', a fast implementation of the 2-D discrete Fourier transform (DEl'),

carries out a 2-D spectral analysis of the image data. Only Fourier transform

coefficients correspond directly to measured spatial frequency; however, the transform

efficiency is lower than that of other transforms.

The KLT transforms image data into a set of uncorrelated coefficients; and furthermore,

for a given arbitrary number of retained transform coefficients, it minimizes the mean

- 34 -

square error between original and reconstructed image. The KLT is optimal in terms of

decorrelation and energy compaction; however, the computational complexity and the

lack of fast algorithms limit its use.

The DCT (N. Ahined et al. 1974) performs almost as well as the KLT; R. J. Clarke

(1995, p. 62) reported that extensive experiments had demonstrated conclusively that the

DCT has the best still image coding performance of all those transforms having data-

independent basis vectors, and which approaches that of the optimum, data-dependent

(KLT) transform. Although the DCT is slightly suboptimal in terms of decorrelation

and energy compaction, it can be computed efficiently using an approach similar to that

used for the Fourier transform. H. Lohscheller (1984); N. B. Nill (1985); and

D. L. McLaren and D. T. Nguyen (1991) related the cosine transform to the human

visual system. The DCI is an efficient and effective image-compression technique

(N. B. Nill 1985); many transform-based coding schemes and standards benefit from its

transform efficiency and computational efficiency.

In image compression, although transforms are defined for blocks of general

dimensions L x M, they are not applied to whole images at once, but to blocks, i.e. sub-

images, of smaller dimensions. The reasons are twofold; see (M. A. Sid-Ahmed 1995,

• 	The transform of small blocks is computationally less complex than that for the

whole image.

• 	The correlation between pixels is less between distant pixels than between

neighbouring pixels.

- 35 -

However, dependent on the chosen transform, the level of compression increases as the

block dimensions increase. The most popular block dimensions are 8 x8 and 16x 16

(R. C. Gonzalez and R. E. Woods 1992, pp. 379-380).

Compression results from the deletion of any sufficiently small transform coefficients

and the variable bit-rate quantization of the remainder in the quantizer. Note that,

usually, coefficients of large magnitude are clustered around zero frequency, that is

situated in the top left-hand corner of the coefficient block; and coefficients of smaller

magnitude are distributed towards the highest spatial frequency in both horizontal and

vertical directions, that is situated in the bottom right-hand corner of the coefficient

block (R. J. Clarke 1995, p. 64). There are two methods for selection of coefficients for

further processing: while in zonal coding each coefficient, dependent on its location

within the block, is associated with a certain number of bits; in threshold coding

coefficients exceeding some threshold are retained. Entropy coding, for example

Huffman coding (D. A. Huffman 1952) or arithmetic coding (I. H. Witten et al. 1987),

can be used subsequently to convert the remaining quantized and scaled transform

coefficients into a continuous data stream.

The main advantage of transform coding is that it processes images in a similar manner

to the human visual system (W. E. Glenn 1993). Compared to other lossy image-

compression techniques, transform coding preserves subjective image quality better, and

is less sensitive to changes in image statistics. Transform coding is less sensitive to

channel noise: if a transform coefficient is corrupted during transmission, the resulting

image distortion is spread through the sub-image (M. Sonka et al. 1993, p. 468).

However, the main disadvantage is that, as the bit rate is decreased, the block structure

becomes visible in the reconstructed image. Removing too many high-frequency

- 36 -

coefficients causes blurring of object-edge detail (R. J. Clarke 1995, pp. 86 and 162). In

addition, the transform stages present in encoder and decoder generate an increased

complexity compared to other techniques.

2.5.6 	Other Techniques

This subsection enumerates some more coding techniques and provides appropriate

references.

Arithmetic coding exploits coding redundancy by encoding the entire information as a

single floating-point number equal to or greater than 0 and less than 1, [0,1), by

modifying the number with every element added according to the rescaled probability

distribution of the elements. Arithmetic coding is lossless; it can encode elements using

fractional numbers of bits; and is, therefore, more efficient than Huffman coding, that

must assign an integer number of bits per element; see (I. H. Witten et al. 1987;

M. Nelson 1992, chapter 5; P. G. Howard and J. S. Vitter 1994; and R. J. Clarke 1995,

appendix 1).

Predictive coding exploits inter-element redundancy by predicting the value of the

present element from the values of a selection of elements that have been processed

previously. The difference between the value of the present element and the prediction

is encoded. Lossy predictive coding results from a combination of quantization and

lossless predictive coding; see (A. N. Netravali and J. 0. Limb 1980; A. K. Jain 1981;

R. C. Gonzalez and R. E. Woods 1992, chapter 6; and R. J. Clarke 1995, chapter 2).

Predictive coding is less complex than transform coding, for example; and hardware

implementations are available.

- 37 -

Dictionary-based coding substitutes a number of consecutive elements with an index to a

matching entry in a dictionary, i.e. codebook. The smaller size of the index, compared

to the size of the elements replaced, results in compression. The size of the index can be

variable to reduce coding redundancy. Static schemes using a predefined dictionary that

remains unchanged during coding can take advantage of variable-length indices,

however the dictionary has to be made available for encoding and decoding. Adaptive

schemes start coding with an empty or default dictionary and add new entries to the

dictionary during coding. J. Ziv and A. Lempel (1977 and 1978) described two adaptive

dictionary-based techniques: while LZ77 uses a window sliding over previously

processed elements as dictionary with fixed-length entries; LZ78 builds new variable-

length dictionary entries up one element at a time by adding a new element to an existing

entry when a match occurs, thus generating a potentially unlimited number of dictionary

entries; see (M. Nelson 1992, chapters 7-9). Dictionary-based coding is lossless and

more suitable for text data than spatial-domain image data, since matching a dictionary

entry requires an identical string of elements.

Vector quantization is a lossy block-based spatial-domain coding technique that

processes vectors of reordered elements. Each block is represented by an index to a

codebook entry having the best similarity. The smaller size of the index, compared to

the size of the block replaced, results in compression. Generally, blocks of image data

consist of uniform areas, or areas of similar general shape or intensity profile rather than

areas of chaotic or random structure, hence the codebook requires only a fraction of the

number of entries theoretically possible. D. L. Ruderman (1994) reviewed and

investigated the statistics of natural images, and reported invariance to scale and

hierarchical invariance in natural images. While designing the codebook, and searching

SE'

the codebook during encoding is computationally intensive, decoding comprises of a

simple look-up of the codebook entry specified by the stored or transmitted index; see

(B. Marangelli 1991; P. C. Cosman et al. 1993; C. Constantinescu and J. A. Storer

1994; and R. J. Clarke 1995, chapter 4). Vector quantization can also be applied to

transform-domain coefficients; see (C. Labit and J. P. Marescq 1986).

The review papers of A. N. Netravali and J. 0. Limb (1980); and A. K. Jam (1981), for

example, summarize the image coding techniques available at the beginning of the

1980s, that have evolved to the current techniques. Descriptions of bit-plane coding and

other techniques can be found in (R. C. Gonzalez and R. E. Woods 1992, chapter 6). In

addition to the techniques mentioned above, R. J. Clarke (1995) also described sub-band

and wavelet coding as well as segmented, block-truncation, and fractal coding; and

other techniques.

2.6 	Image Quality Assessment

2.6.1 	Motivation for Image Quality Assessment

The assessment of lossy image-compression techniques in terms of image quality is the

means of comparing their effectiveness. The objective is to assess a reconstructed image

accurately, quickly, and inexpensively.

2.6.2 	Subjective Image Quality

Subjective assessment by human observers incorporating the human visual system takes

psychovisual effects into account. It is important to establish controlled viewing

conditions, and to average the evaluations of the observers. However, subjective

- 39 -

assessment is time-consuming and expensive, tends to be biased by environmental

influences, and results tend to be difficult to compare.

A variety of procedures for psychovisual experiments has been developed; for example

D. J. Sakrison (1977) described self-setting methods, rating experiments, and forced-

choice experiments; and S. A. Karunasekera and N. Kingsbury (1995) employed timing

methods.

Perceived image quality is often measured on a five-point scale of quality known as

mean opinion score (mos) or, alternatively, on a five-point scale of impairment; see

table 2.1 (N. Jayant et al. 1993). Other scales are also in use; for example J. L. Mannos

and D. J. Sakrison (1974) employed a seven-point scale to order groups of images.

Quality
	

Impairment
excellent
	

imperceptible
good
	

perceptible but not annoying
fair 	 slightly annoying
poor 	 annoying
bad
	

very annoying

	

a) Quality Scale 	 b) Impairment Scale

Table 2.1 Scales for Subjective Image Quality Assessment

2.6.3 	Objective Image Quality

Objective assessment aims to calculate a numerical value that indicates the quality of a

reconstructed image compared to the original image.

The mean-square-error function calculates the average squared error per pixel

1 	L M 	 - 	2
MSE= 	[iQ,m)—iQ,m)] 	 (2.12)

L M 1=1 m1

n

where L and M represent the dimensions of the image; i (1, m) is the pixel value of the

original image; and I(1,in) is the pixel value of the reconstructed image. The mean-

square error avoids averaging effects of positive and negative errors and amplifies larger

errors.

The signal-to-noise ratio can be defined as

L M
i 2 (1,m)

SNR = 10 log10 	1=1 m1 	 dB 	 (2.13)

f, 	
m)— i(1,m)]2

1=1 	,,,=I

where L and M represent the dimensions of the image; i (1, in) is the pixel value of the

original image; 1(1, in) is the pixel value of the reconstructed image.

The peak-signal-to-noise ratio can be defined as

PSNR=101og10 	
L MIMAX

,. Al 	 dB 	 (2.14)
[i(i,m) - i(1,ni)]2

(=1 ,n=I

where L and M represent the dimensions of the image; i (1, in) is the pixel value of the

original image; 1(1, in) is the pixel value of the reconstructed image; and i mAx is the

maximum grey-level value, for example i, = 2 - 1 = 255 for 8-bit pixel values.

2.6.4 	Human-visual-system-based Objective Image Quality

Incorporating properties of the human visual system into objective assessment leads to

objective assessment that can model the perceived image quality more accurately.

-41-

J. 0. Limb (1979) investigated the root-mean-square error

LM

RMSE =ç/-1-- 	i(1,m)—i(1,m)r 	 (2.15)
L M

where L and M represent the dimensions of the image; i (1, m) is the pixel value of the

original image; I(l,m) is the pixel value of the reconstructed image; and

p = [1, 2, 3, 4, 6] refers to the absolute, squared, cubed, fourth, and sixth error

respectively; RAISE 1 is the average absolute value error, and RAISE2 is the root-mean-

square error. The higher the value of p, the greater is the relative emphasis given to

large errors in the image. He also used a weighting function that implements the

masking effect, and recognized the importance of local rather than global quality

assessment. F. X. J. Lukas and Z. L. Budrikis (1982) reported a similar approach for

monochrome time-variant pictures using nonlinear filters each consisting of excitation

and inhibition paths followed by different combinations of filter and mask stages. They

investigated raw, filtered, filtered temporally masked, filtered spatially masked, and

filtered spatially and temporally masked errors with p = [2, 4] for global averaging and

two maximum-error procedures; and their work confirmed that filtered and masked

error measures work better for local assessments than filtered error measures for global

assessment.

D. R. Fuhrmann et al. (1995) favoured simple pointwise distance measures, and

discouraged the use of metrics based on the spatial-frequency response, since these

measures require precise knowledge of the viewing conditions. They found the

Michelson contrast, or distortion contrast, most useful:

- 42 -

1 	L M j(1,m)-5(1,m)
DCON= (2.16)

LM

/=I ,ni j(1,m)+j(1,m)

where L and M represent the dimensions of the image, j (1, m) is the pixel luminance

of the original image, and 5(1, in) is the pixel luminance of the distorted image.

Although it is well-known, that the mean-square error is not a reliable objective

measure, see for example Q. L. Mannos and D. J. Sakrison 1974; A. Tremeau et al.

1994; and D. R. Fuhrmann et al. 1995); and despite all efforts to establish objective

measures based on the human visual system, see for example (J. 0. Limb 1979;

F. X. J. Lukas and Z. L. Budrikis 1982; and D. R. Fuhrmann et al. 1995); the mean-

square error remains very popular. This is due to the fact that the mean-square error is

easy to understand, is simple to calculate, and appears to be more 'objective' than a

formula or procedure that involves some kind of filtering and masking. However,

S. A. Karunasekera and N. Kingsbury (1995) presented several reconstructions of an

image that have an identical mean-square error and look very different, thus proving the

inappropriateness of this measure once more.

2.7 	Summary

The amount of image data being processed increases due to higher utilization, new

applications, and higher standards. The notion of digital image compression is to reduce

storage and transmission requirements. Although some types of application require

lossless compression of digital images, it is mainly the human eye that is the ultimate

receiver of image data. A variety of compression techniques; for example Huffman

coding, mn-length coding, and predictive coding; has evolved over the years. As the

-43 -

limits of these more conventional techniques have been reached; the move towards

perceptual coding, exploiting properties of the human visual system, is natural. Many

compression schemes combine different data compression techniques with good effect;

for example entropy coding of run lengths, or entropy coding of dictionary indices.

Transform coding, that is for example utilized in the JPEG still picture compression

standard for lossy compression, decorrelates image data and processes images in a

similar manner to the human visual system. Encoding of blocks, as utilized in transform

coding and vector quantization, offers potential for significantly better performance than

encoding of individual elements.

Chapter 3

JPEG Still Picture
Compression Standard

3.1 	Introduction

This chapter discusses the Joint Photographic Experts Group (JPEG) still picture

compression standard in some detail. However, as the chapter focuses on the concept of

the standard, many interesting details for implementation are necessarily omitted.

Section 3.2 briefly narrates the history of JPEG, references the international standard

generated, describes the aims and requirements of the JPEG standard, and summarizes

the selection process conducted in order to identify the most suitable compression

method.

Section 3.3 	defines 	the JPEG-compatible image; describes 	interleaved and

noninterleaved 	processing; and 	outlines sequential, progressive, 	lossless, and

hierarchical modes of operation.

Section 3.4 outlines the DCT-based coding method, and describes the processing steps

in more detail using the baseline sequential process as an example.

Section 3.5 relates the DCT-based coding method to transform coding, that is described

in chapter 2; and identifies potential difficulties. Finally section 3.6 concludes the

chapter with a brief summary.

3.2 	Background

Recognizing the need for an international standard (IS) for digital compression of

continuous-tone still images, both grey-scale and colour, in order to boost the utilization

of digital images in general-purpose computer systems; the International Organization

for Standardization (ISO) and the International Telegraph and Telephone Consultative

n

Committee (CCITF) established in 1986 the Joint Photographic Experts Group. In

November 1987 the International Electrotechnical Commission (IEC) joined with ISO to

create a new Joint Technical Committee 1 (JTC 1) in the field of infonnation

technology, under which the JPEG committee continued to operate. In 1994 and 1995

the work on 'Digital compression and coding of continuous-tone still images' resulted in

ISOIIEC 10918-1:1994 (Part 1 requirements and guidelines) and ISO/IEC

109 18-2:1995 (Part 2 compliance testing) respectively, and the identical CCITT

Recommendation T.81. ISO/JEC Draft IS (DIS) 10918-3 (Part 3 extensions) and

ISO/fEC DIS 10918-4 (Part 4 registration procedures for JPEG profile, APPn marker,

and SPIFF profile ID marker) currently await promotion to ISs. A. Léger et al. (1991)

and G. K. Wallace (1990, 1991, 1992) reported on JPEG's progress. W. B. Pennebaker

and J. L. Mitchell (1992) produced a very detailed description of the JPEG still image

data compression standard and included ISOIIEC DIS 10918-1 and ISOIIEC

DIS 10918-2.

JPEG aimed to develop a standard for digital compression of continuous-tone images

across different applications and computer systems that meets the following

requirements (U. K. Wallace 1992):

• 	To be at or near the state of art with regard to compression rate and accompanying

image fidelity, over a wide range of quality ratings. In addition, the encoder

should be parametric, so that the application or user can set the desired

quality/compression trade-off.

To be applicable to practically any kind of continuous-tone digital source image;

i.e. not to be restricted to images of certain dimensions, colour spaces, pixel aspect

- 47 -

ratios, etc.; and not to be limited to classes of imagery with restrictions on scene

content; for example complexity, range of colours, or statistical properties.

•

	

	To have traceable computational complexity to allow feasible software and

hardware implementations.

• 	To have the following modes of operation: sequential encoding, i.e. each image

component is encoded in a single left-to-right, top-to-bottom scan; progressive

encoding, i.e. the image is encoded in multiple scans; lossless encoding, i.e. the

image is encoded to guarantee exact reconstruction; and hierarchical encoding,

i.e. the image is encoded at multiple resolutions so that lower-resolution versions

may be accessed without first having to decompress the image at its full

resolution.

In order to identify the most suitable method, JPEG conducted a selection process based

on blind assessment of subjective picture quality. During a first contest in June 1987,

three of the initial 12 candidate methods were short-listed: adaptive DCT (ADCT),

differential PCM (DPCM) using binary arithmetic coding, and progressive block-

truncation coding. In January 1988 in a second contest, JPEG chose the ADCT, because

of its superior image quality, and the demonstrated feasibility in both software and

hardware implementations. The ADCT was based on 8 x 8 blocks for two reasons:

computational complexity and the availability of hardware implementations. The block

size of 16 x 16 was explored and found not to give enough improvement in compression

to justify the extra image buffering, precision of internal calculations, and complexity.

JPEG discovered later that a DCT-based lossless mode was difficult to define as a

practical standard without placing severe constraints on both encoder and decoder

implementations. As a consequence, JPEG chose a simple predictive method that is

independent from the DCT-based method to meet its requirement for a lossless mode of

operation. Hence the DCT-based method applies only to lossy modes of operation.

However, both methods employ either Huffman or arithmetic coding for entropy coding.

Since Huffman and arithmetic coders encode and decode the same set of symbols, a

transcoding process can be used to convert Huffman-coded data into arithmetic-coded

data and vice versa. Note that, for the DCT-based method, one set of Huffman tables,

i.e. codes, consists of one direct-current (DC) table and one alternating-current (AC)

table.

3.3 	Outline of the JPEG Standard

3.3.1 	Image Components

In the JPEG standard, compressed image data consists of only one image, that contains

1 !~ Nf !~ 255 image components C1 to CNJ. Note that a grey-scale image consists of

only one component, and that a colour image consists of multiple components.

Although colour images can be represented in different colour spaces, the JPEG

standard is 'colour-blind', i.e. the JPEG compression algorithm is indifferent to the kind

of information that is contained in a particular component. Each component C1 consists

of a matrix of y, rows by x columns of samples, i.e. pixels; and represents one colour-

space coordinate within a particular colour space. Components can have different

dimension in order to accommodate formats in which some components are sampled at

different rates than others. The image has overall dimensions 1 !~ Y 5 65535 rows by

1 !~ X !~ 65535 columns, where Y is the maximum of the y1 values and X is the

maximum of the x values for all components C 1 to C,,,. The relative vertical and

horizontal sampling factors of each component, V and H,, relate the dimensions of the

component, y, and x,, to the overall dimensions, Y and X; and must be integer values

in the range [1,4]. The encoded parameters are Y and X, and V and H, values for

each component C,. The decoder reconstructs the dimensions y, and x, of each

component C, using:

	

[vi

	

y,= 	 (3.1)
'max

I x.=Xx H.
max

(3.2)

where V. and H. are the maximum relative vertical and horizontal sampling factors

of all components; and [1 denotes the ceiling function, i.e. round up.

3.3.2 	Interleaving Image Components

The JPEG standard allows manipulation of the order in which the components are

coded. If an image component is not interleaved with other components, data units are

ordered in a simple left-to-right, top-to-bottom sequence. Note that the JPEG standard

defines a data unit as an 8 x 8 block of samples in the DCT-based method and as a

sample in the predictive method. If two or more components are interleaved, each

component C, is partitioned into rectangular regions of 1', x H, data units. Regions are

ordered within a component from left-to-right and top-to-bottom, and data units are

ordered within a region from left-to-right and top-to-bottom. The JPEG standard

defines a minimum coded unit (MCU) as the smallest group of interleaved data units;

the maximum number of components in an MCU is four, and the maximum number of

I

- 50 -

data units in an MCU is ten. Therefore not every combination of four components that

can be represented in noninterleaved order is allowed to be interleaved. However, the

JPEG standard allows some components to be interleaved and some to be noninterleaved

within an image. Note that for a noninterleaved scan the MCU is defined to be one data

unit.

3.3.3 	An Example of Interleaved Image Components

In the example below, an image consisting of three components CA, CB, and C that

are processed in one interleaved scan is assumed. The image is processed using the

DCT-based method, that operates on 8 x 8 blocks of samples.

Each component C, has the dimensions y, rows by x, columns, and the relative vertical

and horizontal sampling factors V1 and H, respectively; see table 3.1. The image has

the overall dimensions Y = 32 rows by X = 32 columns. The maximum relative

vertical and horizontal sampling factors are V. = 2 and H. = 2 respectively.

Component C, y, x, V, H,

CA 32 32 2 2

C8 32 16 2

Cc 16 32 1 2

Table 3.1 Component Parameters for Example of Three-component Image

Figure 3.1 visualizes the three components CA, C8 , and Cc with their data

units A 1 A 16 , B 1 ,..., B, and C..... , C8 respectively indicated through dotted lines.

Note that each region, indicated through solid lines, contains V, by H, data units. The

MCUs are coded in a sequential manner as outlined in table 3.2.

-51-

A 1 A 2 A 5 A 6

A 3 A 4 A 7 A 8

A 9 A 10 A 13 A 14

A 11 A l2 A 15 A 16

component CA

RN
RN

component C8

Cl 	C2 C3 	C4

C5 	C6 C7 	C3

component C

Figure 3.1 Data Units and Regions for Example of Three-component Image

MCU Number Data Units in MCU
1 A l A 2 A 3 A 4 B 1 B2 C, C2

2 A 5 A 6 A7 A ll B3 B4 C3 C4

3 A 9 A10 A l l A 2 B5 B6 C5 C6

4 A 13 A 4 A 5 A 16 B 7 I3 C7 C8

Table 3.2 MCUs for Interleaved Scan of all Three Components

for Example of Three-component Image

	

3.3.4 	Sample Precision

Each sample is an unsigned integer with precision P bits in the range [0,2" - I]. All

samples of each component within a frame have the same precision P. Note that a

frame consists of one or more scans. P is 8 or 12 for the DCT-based method,

dependent on the mode of operation; and is in the range [2,16] for the predictive

method.

	

3.3.5 	Modes of Operation

The JPEG standard defines four distinct modes of operation:

In the sequential DCT-based mode each group of one to four image components is

completely coded in a single left-to-right, top-to-bottom scan. Although components are

- 52 -

interleaved for scans with two to four components, each component is coded separately.

This mode minimizes coefficient storage requirements. A particular restricted form of

this mode is known as the baseline sequential process. It represents a minimum

capability that must be present in all DCT-based decoder systems. Sequential

DCT-based processes that have capabilities beyond the baseline sequential requirements

are known as extended sequential processes.

In the progressive DCT-based mode each scan, having one to four image components, is

partially coded in multiple left-to-right, top-to-bottom sequences using spectral selection

and successive approximation. In spectral selection quantized DCT coefficients are

grouped into bands of related frequencies, usually lower frequency bands are coded first.

In successive approximation quantized DCT coefficients are coded first with lower

precision, they are refined in later scans. Either procedure is used separately, or they are

mixed in flexible combinations. This mode has the highest coefficient storage

requirements.

In the sequential lossless mode one to three neighbouring samples are used to predict the

current sample. This prediction is then subtracted from the actual sample value, and the

difference is losslessly entropy-coded. The prediction equation for each scan, having

one to four components, is selected from a set of eight equations. Components are

interleaved for scans with two to four components.

The hierarchical mode provides for progressive coding with increasing spatial resolution

between progressive stages. It is similar to the progressive DCT-based mode, and useful

in environments that have multiresolution requirements. The hierarchical mode also

offers the capability of progressive transmission to a final lossless stage.

- 53 -

Table 3.3 summarizes the essential characteristics of the distinct coding processes.

Baseline Extended Lossless Hierarchical
Sequential DCT-based Processes Processes

Process Processes
Method DCT-based DCT-based predictive extended DCT-

iossy process lossy process lossless based
process processes and

lossless
processes

Frame I 	single single single multiple
Precision 8 bits per 8 or 12 bits per 2 :~ N :~ 16 (dependent on

sample per sample per bits per sample Method)
component component per component

Mode sequential sequential or sequential (dependent on
progressive Method)

Entropy Huffman Huffman or Huffman or (dependent on
Coding coding with arithmetic arithmetic Method)

2 sets of tables coding with coding with
per scan 4 sets of tables 4 DC tables

per scan per scan

Coding I 	 scans with 1, 2, 3, and 4 components
Interleaving I 	 interleaved and noninterleaved scans

Table 3.3 Essential Characteristics of the Distinct Coding Processes

3.4 	Baseline Sequential Process

3.4.1 	DCT-based Coding

Figure 3.2 depicts the DCT-based encoder and decoder identifying the key processing

steps. The compression of a single-component, i.e. grey-scale, image is assumed.

Compression of a multicomponent, i.e. colour, image can be approximately regarded as

the compression of multiple single-component images utilizing noninterleaved and

interleaved processes, since all processes operate on each component independently.

- 54 -

8 x 8 blocks 	 DCT-based encoder

source
image data

compressed
image data

a) Simplified DCI-based Encoder

DCT-based decoder

entropy 	 IDCT
decoder

compressed
image data

reconstructed
image data

b) Simplified DCT-based Decoder

Figure 3.2 DCT-based Coder Processing Steps

During encoding the samples of the component are grouped into 8 x 8 blocks; and, after

level shifting, each block is transformed by the forward DCI (FDCT) into the

corresponding 8 x 8 block of DCT coefficients. One coefficient represents the average

over the level-shifted block of samples, therefore it is referred to as the DC coefficient.

The remaining 63 coefficients are referred to as AC coefficients. Each of the

64 coefficients is then quantized, i.e. scaled and truncated, using one of

64 corresponding values from a quantization table. After quantization the

DC coefficient and the AC coefficients are prepared for entropy coding. The quantized

DC coefficient of the previous block is used to predict the quantized DC coefficient of

the current block, and the difference is encoded. The quantized DCT coefficients are

reordered into a l-D array using a fixed zigzag sequence, i.e. scan path; and zero-valued

AC coefficients are run-length coded. For further compression Huffman or arithmetic

- 55 -

coding is employed to entropy-encode the intermediate sequence of symbols, producing

a continuous stream of data. Huffman tables, i.e. codes, are either predefined or

computed specifically for a given image in an initial statistics-gathering pass prior to

Huffman-encoding. Although arithmetic coding adapts to the statistics as it encodes the

intermediate sequence of symbols, statistical conditioning tables can improve efficiency.

The same tables used during quantization and entropy-encoding are needed during

dequantization and entropy-decoding respectively.

Each processing step within the decoder performs essentially the inverse of its

counterpart within the encoder. During decoding the entropy decoder decodes the

continuous stream of data; and generates the intermediate sequence of symbols, that

reassembles the 8 x 8 block of quantized DCT coefficients. The dequantizer produces

dequantized DCT coefficients by rescaling the quantized DCI coefficients using the

conesponding values from the quantization table. The inverse DCT (IDCT) generates

an 8 x 8 block of reconstructed samples; that, after level-shifting, approximates the

original block of samples.

In the baseline sequential process, used in this section for a more detailed description of

the coder processing steps, 8-bit precision image samples transform to 11-bit precision

DCI coefficients, and entropy coding employs Huffman coding. Appendix D contains

a worked example.

3.4.2 	Level Shift prior to Forward Discrete Cosine Iransform

The source samples of a component are unsigned integers in the range [0,255].

However, in order to reduce the internal precision requirements in the DCT calculations

(W. B. Pennebaker and J. L. Mitchell 1992, p. 38), the samples are shifted to the range

- 56 -

[-128,127] by subtracting 128 from every sample. More generally, samples in the range

[o, (2 '° - 1)1 are shifted to the range [-2 P-I, (2 - i)] by subtracting 2, where P is

the precision in bits. This processing step is omitted in figure 3.2.

3.4.3 	8 x 8 Forward Discrete Cosine Transform

The purpose of the FDCT processing step is to remove inter-element redundancy by

converting statistically dependent sample values into a set of 'less correlated' or 'more

independent' coefficients. Note that the DCT is a one-to-one mapping; and it is,

therefore, in principle fully reversible, i.e. lossless.

The samples of a component are grouped into 8 x 8 blocks as defined by the JPEG

standard. Each block of samples is a 64-point discrete signal that is a function of the

two spatial dimensions y and x. As shown in figure 3.3, the FDCT is used to

transform, i.e. decompose, an 8 x 8 block of samples s into an 8 x 8 block of

DCT coefficients S that is uniquely determined by the particular 64-point input signal.

Each DCT coefficient S(v, u) represents one of 64 unique 2-D spatial frequencies.

Since coefficient 5(0,0) represents zero frequency in both directions, it is referred to as

the DC coefficient. The horizontal DCT frequency increases from left to right and the

vertical DCT frequency increases from top to bottom. The remaining 63 coefficients are

referred to as AC coefficients. Because sample values usually vary slowly from sample

to sample, the FDCT processing step concentrates most of the signal energy in the lower

spatial frequencies.

- 57 -

s(O,O) s(O,1) . 	s(0,7) 	 S(O,O) S(0,1) 	S(0,7)

s(1,0) s(1,1) . 	s(1,7) 	FDCT 	S(1,O) S(1,1) . 	S(1,7)

s(y,x) . 	 . 	. 	S(v,u)

s(7,O) s(7,1) . 	s(7,7) 	 S(7,O) S(7,1) . 	S(7,7)
samples 	 DCT coefficients

Figure 3.3 8 x 8 Forward DCT

The ideal functional definition of the FDCT is:

S(v,u) = -!C(v)C(u)s(y,x)cos (2y+1)vit cos (2x+1)un 	
(3.3)

yOnO 	 16 	16

IiIV foru,v=O
where: 	C(u), C(v)

= ii 	otherwise

Since equation 3.3 contains transcendental functions, it cannot be computed with perfect

accuracy. However, the JPEG standard specifies accuracy requirements for this and

other processing steps. The JPEG standard does not specify a unique DCI algorithm,

thus it allows innovation and customization. No single algorithm is optimal for all

implementations, and research in fast DCT algorithms is ongoing; see

(W. B. Pennebaker and J. L. Mitchell 1992, chapter 4) for a summary.

3.4.4 	Quantization

The purpose of the quantization processing step is to achieve further compression by

representing DCI coefficients with no greater precision than is necessary to achieve the

desired image quality. Note that quantization is a many-to-one mapping; and is,

therefore, fundamentally lossy.

After the FDCI is computed for a block, each of the 64 DCI coefficients is quantized

by a uniform quantizer. An 8 x 8-element quantization table Q, that is specified by the

IM

application or user, provides the quantizer step size 1 :~ Q(v, u) !~ 255 for each

DCI coefficient S(v,u); see figure 3.4. The quantization table should be appropriate

for the colour coordinate that the component represents. For best subjective quality the

quantization table should match the characteristics of the human visual system. As

examples, tables C. 1 and C.2 in appendix C provide luminance and chrominance

quantization tables respectively; see (ISO/IEC 10918-1:1994, annex K).

S(0,0) 5(0,1)

5(1,0) S(I,!)

S(v,u)

S(7,0) s(7,1)
DCT coefficients

5(0,7)

5(1,7) 	quanhization

S(7,7)

ii

Sq(0,0) Sq(0,1) . 	 Sq(0,7)

Sq(1,0) Sq(1,1) 	Sq(1,7)

Sq(v,u)

Sq(7,0) Sq(7,!) . 	 Sq(7,7)
quantized DCT coefficients

Q(0,0) Q(0,1) . 	 Q(0,7)

Q(1,0) Q(l,l) . 	 Q(1,7)

Q(v,u)

Q(7,0) Q(7,1) . 	 Q(7,7)
quantization table

Figure 3.4 Quantization

The uniform quantization is defined as division of a DCT coefficient S(v, u) by its

corresponding quantizer step size Q(v, u), followed by rounding to the nearest integer:

Sq(v,u)=roundl
(S(v,u)

I
\

(3.4)

Note that the quantized DCI coefficient Sq(v,u) is normalized by the quantizer step

size Q(v, u).

- 59 -

3.4.5 	DC Encoding and 2-D-to-1-D Zigzag Reordering

The purpose of these processing steps, that are omitted in figure 3.2, is to improve the

effectiveness of entropy coding.

Since the DC coefficients of adjacent 8 x 8 blocks are usually strongly correlated, they

are DPCM coded. The quantized DC coefficient of the previous block, DC,. 1 , is used

to predict the quantized DC coefficient of the current block, DC,; see figure 3.5.

DC. 	DC.

Figure 3.5 DC Coding

The difference, that will be entropy-encoded, is defined as:

DIFF= DC, —PRED
	

(3.5)

where PRED is either the quantized DC coefficient of the preceding block, DC,_ 1 ; or

zero, i.e. mid-range value, at the beginning of a scan.

Each 2-D block of quantized DCT coefficients is rearranged into an l-D vector,

ZZ(O,.. .,63), utilizing the 8 x 8 zigzag scan path shown in figure 3.6. ZZ(Q) denotes

the DC difference value DIFF, that replaces the quantized DC coefficient Sq(O,O).

n

0— 1 5— 6 14-15 27-28

2 4 7 13 16 26 29 42

3 	8 12 17 25 30 41 43

9 11 18 24 31 40 44 53

10 19 23 32 39 45 52 54

20 22 33 38 46 51 55
/

60

21 34 37 47 50 56 59 61

35-36 48-49 57-58 62-63

Figure 3.6 8 x 8 Zigzag Scan Path

Zigzag reordering helps to facilitate entropy coding by placing low-frequency

coefficients, that are more likely to be nonzero, before high-frequency coefficients. The

probability of coefficients being zero becomes an approximately monotonic increasing

function of the index (W. B. Pennebaker and J. L. Mitchell 1992, p. 173). The

DC encoding and 2-D-to-l-D zigzag reordering is shown in figure 3.7.

Sq(0,0) Sq(0,1) . 	Sq(0,7)

Sq(1,0) Sq(1,1) . 	Sq(1,7)

Sq(v,u)

Sq(7,0) Sq(7,l) . 	Sq(7,7)
quantized DCT coefficients

4, zigzag reordering

[DIFF Sq(0,1) Sq(1,0) Sq(2,0) Sq(l,l) ... Sq(7,6) Sq(7,7)]

vector

Figure 3.7 DC Encoding and 2-D-to-l-D Zigzag Reordering

-61 -

3.4.6 	Huffman Encoding

The purpose of the entropy-encoding processing step is to achieve additional

compression by losslessly encoding the quantized and reordered DCT coefficients, i.e.

by exploiting coding redundancy due to their statistical characteristics. After converting

the vector into an intermediate sequence of symbols, this sequence is converted into a

continuous stream of data. The baseline sequential process implements Huffman

coding.

Each vector of quantized and reordered coefficients is converted into an intermediate

sequence of symbols treating the DC difference value and the AC coefficients similarly

but separately. The Huffman-encoding process segments the DC difference value and

each nonzero AC coefficient into a set of approximately logarithmically increasing

magnitude categories as shown in table 3.4. Note that only DC difference categories 0

to B and AC categories 1 to A are available in the baseline sequential process as

indicated by the dotted line. Each category is a symbol and will be assigned a Huffman

codeword. However, except for categories 0 and 10 the categories do not fully describe

the values to be coded. Therefore, immediately following each codeword for a

category 1 :5 K :~ F, an additional K bits are appended to identify the sign and fully

specify the magnitude of the value to be coded. For a positive value the K least-

significant bits (LSB5) of the value are appended; for a negative value the K LSBs of

the value minus one are appended. Table 3.5 outlines the additional bit sequences. Note

that leading bits equal to one identify positive values, and leading bits equal to zero

identify negative values.

- 62 -

Range DC Difference
Category

(hexadecimal)

AC Category

(hexadecimal)
0 0 n/a

-1,1 1 1
-3,-2,2,3 2 2

-7 4,4.....7 3 3
-15 8,8.....15 4 4

-31-16,16,...,31 5 5
-63 32,32,.. .,63 6 6

-127 64,64.....127 7 7
-255 128,128..... 255 8 8
-511-256,256.....511 9 9

-1023 512,512,...,1023 A A
-2047 1024,1024,.. .,2047 B B
-4095 2048,2048.....4095 C C
-8191-4096,4096,...,8191 D D

-16383 8192,8192,.. .,16383 E E
-32767 16384,16384,.. .,32767 F F

32768 10 n/a
n/a: not applicable

Table 3.4 Magnitude Categories for Huffman Coding

Range Category
(hexadecimal)

Additional Bits
(binary)

0 0 n/a
-1,1 1 0,1

-3,-2,2,3 2 00,01,10,11
7 3 000,...,011,100.....111

-15 8,8.....15 4 0000.....011l,1000,...,l1l1
-31-16,16,...,31 5 00000.....01111,10000.....11111

32768 10 n/a
n/a: not applicable

Table 3.5 Additional Bits for Sign and Magnitude

Using an appropriate DC table, the DC difference value of a vector is encoded through a

codeword representing the DC difference category, and additional bits that may be

required. As examples, table C.3 and C.4 in appendix C provide luminance and

chrominance DC difference tables respectively; see (ISO/IEC 10918-1:1994, annex K).

- 63 -

Before the nonzero AC coefficients of a vector are encoded in a similar manner,

consecutive zero AC coefficients are aggregated into runs of zeros. Each run of zeros in

the range [0,15] is combined with the magnitude category of the nonzero AC coefficient

that terminates the run of zeros to give a compound symbol as shown in table 3.6. Note

that only AC categories 0 to A are available in the baseline sequential process as

indicated by the dotted line. An extension symbol, referred to as zero run length (ZRL),

codes a run of 16 zeros. Therefore, runs of zeros longer than 15 are represented through

up to three extension symbols preceding a terminating compound symbol. A special

symbol, referred to as end-of-block (EOB), is used to terminate a vector when all

remaining AC coefficients are zero. However, for the condition that the last coefficient

in a vector is nonzero, the EOB symbol is not generated.

Zero
Run 0 1 2 3 4

AC Category (hexadecimal)
5 	6 	7 	8 	9 	A B C D E F

0 EOBO1 02 03 04 05 06 07 08 09OAOBOCODOEOF
1 n/a 11 12 13 14 15 1617 18191A113 1C1D1E1F
2 n/a 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F
3 n/a 31 32 33 34 35 3637 38393A313 3C3D3E3F
4 nJa4142434445464748494A4B4C4D4E4F
S n/a 51 52 53 54 55 56 57 58 59 SA SB SC SD SE SF
6 n/a 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F
7 n/a 71 72 73 74 75 7677 78 797A7B7C7D7E7F
8 n/a 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F
9 n/a 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F
10 n/a A1A2A3A4A5A6A7A8A9AAABACADAEAF
11 n/a 131B2B3B4B5B6B7B8B9BA1313 BCBDBEBF
12 n/a C1C2C3C4C5C6C7C8C9CACBCCCDCECF
13 n/a D1D2D3D4D5 D6D7D8D9DADBDCDDDEDF
14 n/a E1E2E3E4ESE6E7E8E9EAEBECEDEEEF
15 ZRL Fl P2 P3 P4 P5 F6 Fl F8 P9 FA PB PC PD FE PP

n/a: not applicable

Table 3.6 Coding Symbols for Huffman Coding of AC Coefficients

Using an appropriate AC table, each nonzero AC coefficient of a vector is encoded

through zero to three extension symbols; one compound symbol, representing the run of

n

remaining zero AC coefficients and the AC category; and additional bits. As an

example, table C.5 in appendix C provides a luminance AC table; see (ISO/IEC

10918-1:1994, annex K).

The JPEG-compatible image data stream to be transmitted or stored consists of entropy-

coded data segments, that contain the entropy-coded image data; and marker segments,

that contain parameters, e. g. headers and tables.

	

3.4.7 	Huffman Decoding

The entropy decoder decodes each vector of quantized and reordered DCT coefficients

from the entropy-coded image data using the appropriate tables. Since each Huffman-

coded category exactly defines the number of additional bits appended to each category,

the stream of data is uniquely decodable.

	

3.4.8 	1-D-to-2-D Zigzag Reordering and DC Decoding

Each 1-D vector is rearranged back into a 2-D block of quantized DCT coefficients

utilizing the 8 x 8 zigzag scan path shown in figure 3.6. The 1-D-to-2 D zigzag

reordering and DC decoding is shown in figure 3.8.

[DIFF Sq(0,1) Sq(1,0) Sq(2,0) Sq(1,1) ... Sq(7,6) Sq(7,7)]

vector

J zigzag reordering

Sq(0,0) Sq(0,1) . 	Sq(0,7)

Sq(1,0) Sq(l,1) . 	Sq(l,7)

Sq(v,u)

Sq(7,0) Sq(7,1) . 	Sq(7,7)
quantized DCT coefficients

Figure 3.8 1-D-to-2-D Zigzag Reordering and DC Decoding

- 65 -

The quantized DC coefficient Sq(O,O) replaces the DC difference value DIFF. The

quantized DC coefficient of the current block, DC,, is obtained by adding the difference

value to the prediction value:

DC, = PRED + DIFF
	

(3.6)

where PRED is either the quantized DC coefficient of the preceding block, DC, 1 , or

zero at the beginning of a scan.

3.4.9 	Dequantization

As shown in figure 3.9, the dequantization processing step is used to denormalize, i.e.

rescale, each 8 x 8 block of quantized DCI coefficients, 5q' into an 8 x 8 block of

dequantized DCI coefficients, R.

Sq(O,O) Sq(O,l) . 	Sq(0,7) 	 R(O,O) R(0,1) . 	R(O,7)

Sq(l,O) Sq(1,1) . 	Sq(1,7) 	dequantization 	R(l,O) R(l,l) . 	R(1,7)

Sq(v,u) . 	 . 	. 	R(v,u)

Sq(7,O) Sq(7,l) . 	Sq(7,7) 	 R(7,O) R(7,1) . 	R(7,7)
quantized DCT coefficients 	 dequantized DCT coefficients

ii
Q(O,O) Q(0 11) . 	Q(0,7)

Q(1,0) Q(1,1) . 	Q(1,7)

Q(v,u)

Q(7,O) Q(7,l) . 	Q(7,7)
quantizat ion table

Figure 3.9 Dequantization

The dequantization, that removes the normalization, is defined as multiplication of a

quantized DCI coefficient Sq(v,u) by its corresponding quantizer step size Q(v,u):

R(v,u) = Sq(v,u) Q(v,u)
	

(3.7)

n

3.4.10 	8 x 8 Inverse Discrete Cosine Transform

As shown in figure 3.10, the IDCT processing step is used to transform, i.e. compose,

each 8 x 8 block of dequantized DCT coefficients, R, into an 8 x 8 block of

reconstructed samples, r.

R(0,0) R(O,l) . 	R(0,7)

R(1,0) R(1,l) . 	R(l,7)

R(v,u)

R(7,0) R(7,1) . 	R(7,7)
dequantized DCT coefficients

r (0,0) r (0,1) . 	r (0,7)
IDCT 	r(l,0) r(l,1) . 	r(1,7)

r(y,x)

r(7,0) r(7,l) . 	r(7,7)
reconstructed samples

Figure 3.10 8 x 8 Inverse DCT

The ideal functional definition of the OCT is:

(2x + 1)uit
r(y, x) = I ± C(v) 	C(u) R(v, u)cos (2y + 1)vm cos 	 (3.8)

16 	16

where: C(u), C(v)
=

for u, V = 0
otherwise

3.4.11
	

Level Shift after Inverse Discrete Cosine Transform

The samples are shifted from the range [-128,127] back to the original range [0,255] by

adding 128 to every sample.

3.5 	Remarks

The JPEG standard provides a complex framework and caters for a wide range of

different applications. It does boost the utilization of digital images in general-purpose

computer systems, and the exchange of compressed data among applications and across

computer systems. However, the DCT-based lossy method is most popular. It, being a

- 67 -

transform-based coding technique, shares the advantages and disadvantages described in

subsections 2.5.1 and 2.5.5, namely the introduction of blocking artefacts as the bit rate

is decreased (R. J. Clarke 1995, pp. 86 and 162; and W. B. Pennebaker and

J. L. Mitchell 1992, p. 38).

The JPEG standard provides examples of quantization tables (ISO/IC 10918-1:1994,

annex K), but does not specify default quantization tables. The application or user must

provide quantization tables tailored to particular image characteristics, display devices,

and viewing conditions (ISOIIEC 10918-1:1994, section 3.3). Although quantization

values of individual DCT coefficients should be at the threshold of visibility, little is

known about visibility thresholds when two or more DCT coefficients are nonzero, i.e.

when masking occurs (W. B. Pennebaker and J. L. Mitchell 1992, pp. 36-38).

Therefore, the difficult part of the problem is left to the application or user (M. A. Sid-

Ahmed 1995, p. 478). Furthermore, only one of the up to four available quantization

tables is globally used for all blocks of an image component within a frame discounting

local changes in block content, i.e. complexity. A. B. Watson (1993a and b) developed a

design procedure that generates an image-dependent perceptually optimum quantization

table, however the quantization table cannot be changed within a component. To

enhance the JPEG encoder, N. Jayant et al. (1993) outlined a perceptual preprocessor

that uses prequantization to eliminate, i.e. set to zero, each DCT coefficient that is less

than its corresponding visual threshold prior to the normal quantization processing step;

thus maintaining JPEG-compatible image data streams and supporting any JPEG

decoder. Although the JPEG standard employs quantization tables, each DCT

coefficient is independently processed using a scalar quantization; this process is

n

inferior to vector quantization (R. J. Clarke 1995, p. 91). 	R. J. Clarke (1995

pp. 121-124) described the combination of transform coding and vector quantization.

3.6 	Summary

JPEG, established in 1986, generated an international standard for digital compression

of continuous-tone still images with the aim to boost the utilization of digital images in

general-purpose computer systems. The JPEG standard defines sequential, progressive,

lossless, and hierarchical modes of operation. While the lossy modes of operation utilize

a DCT-based method; the lossless mode of operation is based on a predictive method.

However, both methods employ either Huffman or arithmetic coding for entropy coding.

A particular restricted form of the DCT-based sequential mode is known as the baseline

sequential process. It represents a minimum capability that must be present in all

DCT-based decoder systems.

For the baseline sequential encoding process each component of an input image is

divided into 8 x 8 blocks, each of which is then transformed using the FDCT. The

DCI coefficients are quantized using a user-specifiable quantization table. The

quantized DCT coefficients are zigzag reordered and losslessly entropy-encoded using

Huffman coding. Each processing step within the decoder performs essentially the

inverse of its counterpart within the encoder.

The application or user must provide the quantization tables. The JPEG standard

utilizes only one quantization table for an image component.

Chapter 4

Adaptive Zigzag Reordering of
Transform Coefficients

	

4.1 	Introduction

This chapter describes adaptive zigzag reordering for blocks of transform coefficients in

JPEG-like image-compression schemes. Efficient reordering is achieved using variable-

size rectangular sub-blocks. If the generated sub-blocks include all nonzero coefficients,

the conversion is fully reversible, i.e. lossless. The zigzag scan paths are generated using

a binary decision tree.

Section 4.2 discusses standard zigzag reordering of transform coefficients, used in the

DCT-based method of the JPEG standard and introduced in chapter 3, in more detail.

Section 4.3 describes adaptive zigzag reordering, and draws a comparison with standard

zigzag reordering using experimental results.

Section 4.4 develops a versatile zigzag-reordering algorithm that employs a binary

decision tree.

Section 4.5 focuses on a hardware implementation of the zigzag-reordering algorithm

that uses two GAL16V8 devices.

Section 4.6 addresses coding of the sub-block dimensions. Finally section 4.7 concludes

the chapter with a brief summary.

	

4.2 	Standard Zigzag Reordering

A generic 8 x 8 block of quantized transform coefficients, used in the DCT-based

method of the JPEG standard, is shown in figure 4.1. Coefficient Sq(O,O) represents

zero frequency in horizontal and vertical directions. The horizontal DCT frequency

-71-

increases from left to right, and the vertical DCT frequency increases from top to

bottom; see subsection 3.4.3.

Sq(O,O) Sq(0,1) . 	Sq(O,7)

Sq(1,0) Sq(1,1) . 	Sq(l,7)

Sq(v,u)

Sq(7,O) Sq(7,l) . 	Sq(7,7)

Figure 4.1 8 x 8 Block of Quantized DCT Coefficients

Reordering along a fixed 8 x 8 zigzag scan path, depicted in figure 4.2, approximately

arranges the coefficients from low to high DCI frequencies (W. B. Pennebaker and

J. L. Mitchell 1992, p. 34); see subsection 3.4.5.

Figure 4.2 8 x 8 Zigzag Scan Path

Since low-frequency coefficients are more likely to be nonzero than high-frequency

coefficients, the zigzag-reordered coefficients exhibit an approximately monotonic

increasing probability of being zero; see (W. B. Pennebaker and J. L. Mitchell 1992,

p. 173).

- 72 -

The entropy-coding processing step generates an intermediate sequence of symbols.

While each nonzero coefficient is variable-length coded; each run of zero coefficients,

i.e. zero run, is run-length coded; see subsection 3.4.6. Zigzag reordering is an

important processing step; since it affects the zero runs, and therefore changes the

statistics of the symbols used during entropy coding.

As an example, figure 4.3 depicts in a logarithmic scale the probability distribution of

the zero runs preceding the last nonzero coefficient for standard 8 x 8 zigzag reordering,

and image Lena with a spatial resolution of 512 x 512 pixels for quality setting q = 50.

The probability of occurrence decreases as the length of zero run increases. Note that

the use of extension symbols, coding zero runs longer than 15, is not taken into account.

However, zero runs of lengths 16, 17, 19, 20, 21, and above 22 do not occur.

1

0.1

0.01

i
' 	0.001
0.4

0.0001

0.00001

0 	2 	4 	6 	8 	10 12 	14 	16 	18 20 22

Length of Zero Run

Figure 4.3 Probability Distribution of Runs of Zero Coefficients,

Standard Zigzag Reordering, Lena 512 x 512, q = 50

- 73 -

Note that a corresponding entropy for the zero runs of 1.63 bits has been calculated

using equation 2.7. Figure 4.4 shows the image Lena with a spatial resolution of

512 x 512 pixels for quality setting q = 50. Subsection 4.3.3 provides details on the

experimentation.

Reproduced by Special Permission of Playboy magazine.
© 1972 by Playboy.

Figure 4.4 Decoded JPEG Image, Lena 512 x 512, q = 50

- 74 -

4.3 	Adaptive Zigzag Reordering

4.3.1 	Motivation for Adaptive Zigzag Reordering

The JPEG standard for the DCT-based method defines one fixed 8 x 8 zigzag scan path

for coefficient reordering that is used for every block of DCT coefficients regardless of

specific block content. Although this processing step approximately arranges the

coefficients in order of increasing DCT frequency, and increasing probability of being

zero; it does not directly address the symbol statistics for entropy coding.

Adaptive zigzag reordering processes an L x M sub-block that is yielded from the

L. x M. block of coefficients, where L. = 8 and M. = 8 for the DCT-based

method of the JPEG standard. This sub-block is not necessarily square, but is

rectangular with the dimensions 1 :5 L :5 L. rows and 1 !~ M !~ M. columns. Note

that the sub-block is defined to include the DC coefficient. By taking the specific block

content into account, adaptive zigzag reordering reduces the entropy of the symbols, and

thus improves efficiency of entropy coding.

4.3.2 	Determination of Sub-blocks

For transcoding, i.e. lossless conversion of a block of coefficients, the sub-block must

contain all nonzero coefficients. Hence the smallest possible rectangle to include all

nonzero coefficients is identified. The coefficients within the sub-block are then zigzag-

reordered using a zigzag scan path that is appropriate for the dimensions of the sub-

block. Since sub-blocks generally have different dimensions, reordering is no longer a

straightforward task; section 4.4 describes a zigzag-reordering algorithm based on a

binary decision tree. The dimensions of the sub-block need to be retained in order to

- 75 -

traverse the zigzag scan path correctly during decoding; section 4.6 addresses coding of

the sub-block dimensions.

As an example, figure 4.5 depicts an 8 x 8 block of transform coefficients with the

corresponding 4 x 5 sub-block indicated by the dotted line.

—26 —3 —6 2 20 0 0

1 —2 —4 0 00 0 0

—3 1 5 —1 —10 0 0

74 1 2 —1 0:0 0 0

00000000

00000000

00000000

00000000

Figure 4.5 Example of 8 x 8 Block of Transform Coefficients

Standard zigzag reordering of the block using the fixed 8 x 8 zigzag scan path is shown

in figure 4.6. The nonzero coefficients are indicated by black dots. There are twelve

zero runs of length zero, two zero runs of one, one zero run of two, and one zero run of

five.

FOO

0 0

 o 0

 o 0

 0 0

 0 0

 0 0

 0 0

0 0 0 0 0 0 0 0

Figure 4.6 Example of Standard Zigzag Reordering

Adaptive zigzag reordering of the sub-block using the appropriate 4 x 5 zigzag scan

path is shown in figure 4.7. The nonzero coefficients are indicated by black dots. There

are 14 zero runs of length zero, and two zero runs of one.

Figure 4.7 Example of Adaptive Zigzag Reordering

Adaptive zigzag reordering reduces the length of the zero runs as well as the number of

different lengths of zero runs. However, it does not change the total number of zero

runs. It modifies the probability distribution of runs of zero coefficients so that the

entropy of the symbols is reduced and the potential effectiveness of entropy coding is

improved.

- 77 -

Following the example used in figure 4.3, figure 4.8 depicts in a logarithmic scale the

probability distribution of the zero runs preceding the last nonzero coefficient for

adaptive zigzag reordering, and image Lena with a spatial resolution of 512 x 512 pixels

for quality setting q = 50. The probability of occurrence decreases more rapidly as the

length of zero run increases. Zero runs of lengths 10, 12, and above 13 do not occur.

Note that a corresponding entropy for the zero runs of 1.15 bits has been calculated

using equation 2.7.

1

0.1 	-

-4

0.01 	-

'C

2 0.001 -

0.0001 -

0.00001 -

0 	2 	4 	6 	8 	10 	12 	14 16 	18 20 22

Length of Zero Run

Figure 4.8 Probability Distribution of Runs of Zero Coefficients,

Adaptive Zigzag Reordering, Lena 512 x 512, q = 50

Figure 4.9 depicts the probability distribution of the sub-block dimensions for image

Lena with a spatial resolution of 512 x 512 pixels for quality setting q = 50. The

probability distribution is formed along the diagonal, hence sub-blocks tend to be

approximately square. As a result of using quality setting q = 50, the probability of

occurrence decreases as the row and column dimensions increase.

WIN

0.10

Number of Columns

Figure 4.9 Probability Distribution of Sub-block Dimensions,

Lena 512x512, q=S0

4.3.3 	Experimental Results

Experimental results have been obtained using MATLAB (MathWorks 1994). The

transform-coefficient matrices have been generated using the Independent JPEG

Group's software (Independent JPEG Group 1996). The quality setting q controls

scaling of the quantization tables; see subsection 3.4.4. The experimental results have

been produced for quality settings in the range from 10 ('poor' quality) to 90 ('good'

quality). Appendix E contains the original images used for experimentation. Note that

processing based on 8 x 8 blocks for images with spatial resolutions of 256 x 256 and

512 x 512 pixels involves 1024 and 4096 blocks respectively.

The entropies of the runs of zero coefficients for standard and adaptive zigzag

reordering have been evaluated over the range of quality settings. Figures 4.10 and 4.11

- 79 -

compare the entropies for the image Lena with a spatial resolution of 512 x 512 and

256 x 256 pixels respectively. Figure 4.12 compares the entropies for the image

Cameraman with a spatial resolution of 256 x 256 pixels. Figure 4.13 compares the

entropies for the image F-16 with a spatial resolution of 512 x 512 pixels. For adaptive

zigzag reordering, the entropy of runs of zero coefficients is always lower than that for

standard zigzag reordering.

2.0

1.5
'C

.0

1.0
0

0.5

MKOXIA
0 	10 	20 	30 	40 	50 	60 	70 	80 	90 100

JPEG Quality Setting
fr 	Standard Zigzag Reordering 	0 	Adaptive Zigzag Reordering

Figure 4.10 Entropy of Runs of Zero Coefficients versus Quality Setting,

Lena 512x512

IM

2.0

1.5

,0

c1.0
0

C

0.5

I 	p 	I 	I 	P 	P 	II 	I 	I 	II 	P 	P 	I 	I 	P

0 	10 	20 	30 	40 	50 	60 	70 	80 	90 100

JPEG Quality Setting

-&- Standard Zigzag Reordering 	-0- Adaptive Zigzag Reordering

Figure 4.11 Entropy of Runs of Zero Coefficients versus Quality Setting,

Lena 256x256

2.0

1.5

.0

	 U _._• = =_ = = U = U = • = • =•=• = U = U .=- .-ç

1.0

C
LL

—SI

0.0 	 I 	I 	I 	 S 	 I 	I

0 	10 	20 	30 40 	50 	60 70 	80 	90 100

JPEG Quality Setting
IN 	Standard Zigzag Reordering 	-fl- Adaptive Zigzag Reordering

Figure 4.12 Entropy of Runs of Zero Coefficients versus Quality Setting,

Cameraman 256 x 256

2.0

1.5

.0

e1.0
a

0.5

0.0

0 	10 	20 	30 	40 	50 	60 	70 	80 	90 100

JPEG Quality Setting

	

-a--- Standard Zigzag Reordering 	-0- Adaptive Zigzag Reordering

Figure 4.13 Entropy of Runs of Zero Coefficients versus Quality Setting,

F-16 512x512

Figure 4.14 summarizes the percentage entropy reduction over the range of quality

settings for the four images. Adaptive zigzag reordering consistently produces a lower

entropy indicating improved efficiency for entropy coding. For higher quality settings

the number of nonzero coefficients increases, and therefore the sub-block dimensions

approach the standard 8 x 8 block dimensions more frequently. However, for the

images analysed, a significant entropy reduction of at least 15 % has been obtained for

'medium' quality settings (q = 30,35.....70).

WO

50

C
0

0

V

20
0

10

El
0 	10 	20 	30 40 	50 	60 	70 	80 	90 100

JPEG Quality Setting
-0- Lena 512x512 	-0 	Lena 256x256
-irs- Cameraman 25 6 x 25 6 	-13- F-16512x512

Figure 4.14 Entropy Reduction for Runs of Zero Coefficients versus Quality Setting

4.4 	Versatile Zigzag-reordering Algorithm

4.4.1 	Motivation for Versatile Zigzag-reordering Algorithm

Adaptive zigzag reordering reduces the entropy of the runs of zero coefficients by

traversing a scan path that is tailored to the dimensions of a rectangular sub-block in a

particular block of quantized transform coefficients. Although scan paths may be

derived and provided in advance for all required sub-block dimensions, a versatile

algorithm is more flexible and appropriate; especially when the sub-block dimensions,

and therefore the number of possible scan paths and the lengths of the scan paths,

increase. A versatile algorithm generates scan paths for sub-blocks of any dimensions.

It may determine the scan paths "on the fly", i.e. as the scan path of a particular sub-

block is being traversed. In addition, the algorithm may also be implemented in

hardware.

The coordinates of the next element in the zigzag scan path; and therefore the whole

zigzag scan path; can be determined through Boolean expressions that evaluate the

coordinates of the current element, and the dimensions of the sub-block. The versatile

zigzag-reordering algorithm described in this section is based on a binary decision tree

using a sequence of three binary tests to determine the coordinates of the next element.

4.4.2 The Sub-block

A sub-block is defined as matrix A(L, M) of L rows by M columns:

	

ra(l,l) a(1,2) . 	a(1,M) 1

	

a(2,1) a(2,2) . 	a(2,M)
A(L,M)=I 	 I 	 (4.1)

a(1,m) . 	I

	

[a(L,1) a(L,2) . 	a(L,M)j

with 1!~1!~L and 1!~m!~M.

Zigzag reordering that starts at the top left-hand position, as shown in figures 4.6

and 4.7 for two examples, utilizes four directions of movement, as shown in figure 4.15,

and no movement at the last position of a sub-block, i.e. the bottom right-hand position.

A move in the upper-right direction requires a decrement of the current row index,

indicated by 1— -; and an increment of the current column index, indicated by m + +.

A move in the right direction requires no change to the row index, indicated by 1; and

an increment of the column index. A move in the lower direction requires an increment

of the row index, and no change to the column index. A move in the lower-left direction

requires an increment of the row index, and a decrement of the column index.

n

- -, in + +

1++,ni

Figure 4.15 Directions of Movement

Certain changes in the row and column indices cannot occur at certain positions; for

example the row index cannot be decremented for positions in the first row, and the

column index cannot be incremented for positions in the last column. However, the

coordinates of the next element, indicated by (1,m), in the zigzag scan path; and

therefore the whole zigzag scan path; can be determined through Boolean expressions

evaluating the coordinates of the current element, indicated by (1, m), and the

dimensions of the sub-block, L and M.

4.4.3 	Parameters

For the versatile zigzag-reordering algorithm five parameters that correspond to binary

tests have been defined for convenience:

R1(1, in) indicates whether the current element a(!, in) is positioned in the first row

J(4.2) (1,m) 	
0 otherwise

1 for! = 1
Rl

RL(1, m) indicates whether the current element is positioned in the last row

Sm

RL(l,m) {1 forl=L
= 	 (4.3)

0 otherwise

C1(1,m) indicates whether the current element is positioned in the first column

Cl(1,m){1 form =
= 	 (4.4)

0 otherwise

CM(1, m) indicates whether the current element is positioned in the last column

CM(1,m){1 form=M = 	 (4.5)
0 otherwise

P(1, m) indicates whether the sum of row index I and column index m of the current

element is odd

P(l,m)={1 jf(1+m)isodd

0 otherwise
	 (4.6)

The five parameters can be combined and evaluated through Boolean expressions.

However, binary matrices of L rows by M columns may be used to represent the five

parameters of all elements in an L x M sub-block compactly.

In matrix Rl(L, M) all elements in the first row are one, and the remaining elements are

zero:

11.1

00.0
Rl(L,M)= 	. . 	 (4.7)

00.0

In matrix RL(L,M) all elements in the last row are one, and the remaining elements are

zero:

n

00.0

RL(L,M)=
00.0
	 (4.8)

11.1

In matrix C1(L, M) all elements in the first column are one, and the remaining elements

are zero:

10.0

10.
C1(L,M) 	

0
=

1a.0

(4.9)

In matrix CM(L, M) all elements in the last column are one, and the remaining elements

0.01

0.01
CM(L,M)= 	 (4.10)

0.01

In matrix P(L, M) all elements whose sum of row index I and column index m is odd

are one, and the remaining elements are zero:

010.

101.
P(L,M)= 0 1 0
	

(4.11)

4.4.4 	The Truth Table

The truth table, shown in table 4.1, lists all 32 possible combinations of the five binary

parameters R1(I, m), RL(I, m), Cl(1, m), CM(I, in), and P(l, in); and the corresponding

changes in the row and column indices. I and I are the row indices of the current

WO

element and the next element respectively. I + + denotes an increment of the row

index I , i. e. addition of 1; 1 denotes no change to the row index 1; and 1— - denotes

a decrement of the row index I, i. e. subtraction of 1. Changes in the column index m

are identified similarly.

Combination R1(1,m) RL(1,m) C1(l,m) CM(I,m) P(1,m) 1

0 0 0 0 0 0 1-- m++
1 0 0 0 0 1 1++ m--
2 0 0 0 1 0 l++ m
3 0 0 0 1 1 I++ m--
4 0 0 1 0 0 1-- m++
5 0 0 1 0 1 l++ m
6 0 0 1 1 0 1++ m
7 0 0 1 1 1 l++ m
8 0 1 0 0 0 1-- m++
9 0 1 0 0 1 1
10 0 1 0 1 0 1 m
11 0 1 0 1 1 1 m
12 0 1 1 0 0 i!-- m++
13 0 1 1 0 1 1
14 0 1 1 1 0 1 m
15 0 1 1 1 1 1 m
16 1 0 0 0 0 1
17 1 0 0 0 1 l++ m--
18 1 0 0 1 0 1+-i- m
19 1 0 0 1 1 1++ m--
20 1 0 1 0 0 1
21 1 0 1 0 1 1++ m
22 1 0 1 1 0 1++ m
23 1 0 1 1 1 1++ m
24 1 1 0 0 0 1
25 1 1 0 0 1 1
26 1 1 0 1 0 1
27 1 1 0 1 1 1 m
28 1 1 1 0 0 1
29 1 1 1 0 1 1
30 1 1 1 1 0 1 m
31 1 1 1 1 1 1 m

Table 4.1 Complete Truth Table for Changes in Row and Column Indices

IRS

If RL(l, m) = 1, i.e. the position of the current element is in the last row of the sub-block;

and CM(l, m) = 1, i.e. the position is in the last column of a sub-block; the position of

the current element is the last position in the sub-block, i.e. no changes in the row and

column indices are required regardless of Rl(1, m), Cl(1, m), and P(1, m); see

combinations 10, 11, 14, 15, 26, 27, 30, and 31.

If R1(1,m) = 0, i.e. the position of the current element is not in the first row of the sub-

block; CM(1,m) = 0, i.e. the position is not in the last column of a sub-block; and

P(l,m) = 0, i.e. sum of row and column indices is even; the position of the next

element is situated in the upper-right direction, i.e. the row index 1 must be

decremented and the column index m must be incremented; see combinations 0, 4, 8,

and 12. However, if Rl(l, m) = 1, i.e. the position in is the first row of the sub-block

and the row index I cannot be decremented; CM(1,m) = 0; and P(l,m) = 0; the

position of the next element is situated in the right direction, i.e. the row index I must

remain unchanged and the column index in must be incremented; see combinations 16,

20, 24, and 28.

If RL(I, m) = 0, i.e. the position of the current element is not in the last row of the sub-

block; C1(1, m) = 0, i.e. the position is not in the first column of a sub-block; and

P(I, m) = 1, i.e. sum of row and column indices is odd; the position of the next element

is situated in the lower-left direction, i.e. the row index I must be incremented and the

column index m must be decremented; see combinations 1, 3, 17, and 19. However, if

RL(1, in) = 0; C1(I, in) = 1, i.e. the position is in the first column of a sub-block and the

column index in cannot be decremented; and P(l, in) = 1; the position of the next

IM

element is situated in the lower direction, i.e. the row index I must be incremented and

the column index m must remain unchanged; see combinations 5,7, 21, and 23.

If RL(1, m) = 0, i.e. the position of the current element is not in the last row of the sub-

block; CM(1, m) = 1, i.e. the position is in the last column of a sub-block; and

P(l,m) = 0, i.e. sum of row and column indices is even; the position of the next

element is situated in the lower direction, i.e. the row index I must be incremented and

the column index m must remain unchanged; see combinations 2, 6, 18, and 22.

If RL(l, in) = 1, i.e. the position of the current element is in the last row of the sub-block;

CM(l, m) = 0, i.e. the position is not in the last column of a sub-block; and P(l, in) = 1,

i.e. sum of row and column indices is odd; the position of the next element is situated in

the right direction, i.e. the row index I must remain unchanged and the column

index m must be incremented; see combinations 9, 13, 25, and 29.

A reduced truth table uses don't cares to represent compactly combinations that are

unaffected by certain parameters; see table 4.2.

Entry R1(I,m) RL(1,m) C1(1,m) CM(I,m) P(I,m) 1

0 X 1 X 1 X I m
1 0 X X 0 0 1-- m++
2 1 X X 0 0 1
3 X 0 0 X 1 I++ m--
4 X 0 1 K 1 in
5 K 0 K 1 0 l++ m
6 K 1 K 0 1 1

K denotes don't care

Table 4.2 Reduced Truth Table for Changes in Row and Column Indices

IM

4.4.5 	Boolean Expressions

From the reduced truth table, given in table 4.2, Boolean expressions can be derived for

combined changes in the row and column indices by logically ORing table entries that

have the same effects on the row index I and the column index in respectively. Note

that the coordinates of the current element, generally indicated by (1, in), are omitted for

clarity. The following expressions, given in sum-of-products form, determine the

changes in the row and column indices:

No move is defined by

i=i 1 if (RL CM) is true
= 4

(4.12)

where 1 and l are the row indices of the current element and the next element

respectively, in and m are the column indices of the current element and the next

element respectively.

A move in the upper-right direction is defined by

i=i--- 1
m m++J if OkTCM.P)istrue (4.13)

where 1 — — refers to a decrement of the current row index, and in + + refers to an

increment of the current column index.

A move in the right direction is defined by

r=i 	1

m 	
m++J zf((R1.CM.P)+(RL.CM.P))istrue 	 (4.14)

WIE

A move in the lower direction is defined by

i =i++1

=m I (f(fT.ClP)+QiLCM.P))istrue 	 (4.15)

where I + + refers to an increment of the current row index.

A move in the lower-left direction is defined by

l+=1++
m =m—_j :f(WL.C1.P)istrue 	 (4.16)

where m - - refers to a decrement of the current column index.

However, Boolean expressions can also be derived from the reduced truth table for

independent changes in the row and column indices by logically ORing table entries that

have the same effect on the row index I or the column index m respectively. The

following expressions, given in sum-of-products form, determine the changes in the row

and column indices independently:

A decrement of the row index I is defined by

1' =1-- jf(A.i.CM.P)istrue 	 (4.17)

An increment of the row index 1 is defined by

1 =1++ zf((RLC1.P)+(NL.C1.P)+(RL.Cfrf.P))istnie 	(4.18)

A decrement of the column index m is defined by

m'=m-- zf(M.C1.P)istrue 	 (4.19)

- 92 -

An increment of the column index m is defined by

m=m++ if (çi.&Tfl+(R1.rM.P)+(RL.di.P))istrue (4.20)

The above expressions, given in sum-of-products form, may be reduced and rearranged

as required.

4.4.6 	The Binary Decision Tree

The construction of the binary decision tree is related to the reduced truth table shown in

table 4.2. The parity column, representing the parity parameter P(1, in), contains one

don't care; therefore the parity parameter P(1,m) provides more information than the

other parameters, whose columns contain more than one don't care. The truth table

depicted in table 4.3 removes this don't care by expanding entry 0 of the reduced truth

table with respect to the parity parameter. Thus the parity column contains two

separable groups: a group of four entries with P(1,m) = 0, and a group of four entries

with P(1, in) = 1.

Entry R1(l,m) RL(l,rn) C1(l,m) CM(1,m) P(1,m) r
0 X I X 1 0 1 m
1 X 1 X 1 1 1 m
2 0 X X 0 0 1--- m++
3 1 X X 0 0 1
4 X 0 0 X 1 1++ m--
5 X 0 1 X 1 1++ m
6 X 0 X 1 0 1++
7 X 1 X 0 1 1

X denotes don't care

Table 4.3 Truth Table for Construction of Binary Decision Tree

With reference to table 4.3, for the group with P(1, in) = 0; consisting of entries 0, 2, 3,

and 6; the last-column column, representing the last-column parameter CM(1, in), does

- 93 -

not contain don't cares. Thus it contains two separable groups: a group of two entries

with CM(l, m) = 0, and a group of two entries with CM(1, m) = 1.

For the group with P(1, m) = 0 and CM(1, m) = 0, consisting of entries 2 and 3, the

first-row column, representing the first-row parameter Rl(1, m), does not contain

don't cares. Thus it separates the changes in the row and column indices. For

Rl(1,m) = 0 the row index I is decremented and the column index m is incremented;

see entry 2. For R1(1,m) = 1 the row index I remains unchanged and the column

index m is incremented; see entry 3.

For the group with P(I,m) = 0 and CM(1,m) = 1, consisting of entries 0 and 6, the last-

row column, representing the last-row parameter RL(l, m), does not contain don't cares.

Thus it separates the changes in the row and column indices. For RL(l, m) = 0 the row

index I is incremented and the column index m remains unchanged; see entry 6. For

RL(l, m) = 1 both indices remain unchanged; see entry 0.

The group with P(I,m) = 1; consisting of entries 1, 4, 5, and 7; can be separated

similarly. Hence the required changes in the row and colunm indices can be determined

based on a sequence of three binary tests.

The binary decision tree is shown in figure 4.16. The root node represents the parity

parameter P(I,m), i.e. the test for the sum of row index I and column index m being

odd. Note that, following convention, left children are identified by 0, and right

children are identified by 1. The two children of the root node correspond for

P(I, m) = 0 to the last-column parameter CM(I, m) and for P(l, m) = 1 to the last-row

n

parameter RL(1, m). The two children of the node corresponding to the last-column

parameter CM(1,m) represent the two row parameters R1(1,m) and RL(1,m)

respectively, and the two children of the node corresponding to the last-row

parameter RL(1,m) represent the two column parameters C1(1,m) and CM(1,m)

respectively. On the last level, eight external nodes refer to the changes in the row and

column indices. Note that three of the changes in the row and column indices appear

twice within the eight external nodes since there are only four directions of movement,

as shown in figure 4.15, and no movement at the last position of a sub-block.

Figure 4.16 Decision Tree for Changes in Row and Column Indices

To obtain the changes in the row and column indices, and therefore the position of the

next element, a sequence of three binary tests based on the position of the current

element, indicated by (1, m), in the L x M sub-block is generated starting from the root

node. The first test always evaluates the parity parameter P(1, m); and depending on

the result of this test either the last-column parameter CM(1, m) for P(1, m) = 0, or the

last-row parameter RL(1, m) for P(1, m) = 1 is tested. The third test is conducted in a

similar manner, and finally determines the changes in the row and column indices. The

- 95 -

binary decision tree generates a valid test sequence for the position of any element in

any L x M sub-block. Appendix F contains a worked example.

4.5 	Hardware Implementation of Zigzag-reordering Algorithm

4.5.1 	Motivation for Hardware Implementation of Zigzag-reordering

Algorithm

JPEG aimed to achieve cost effective and computationally efficient implementations for

software and hardware. Therefore, it was intended to keep the system simple enough to

permit single-chip implementations (W. B. Pennebaker and J. L. Mitchell 1992, p. 305).

However, the hardware implementation of the zigzag-reordering algorithm described in

this section is based on two programmable logic devices (PLDs) and aims to

demonstrate the feasibility of the approach. Note that a PLD is an array of basic logic

element, i.e. gates, interconnected by programmable links; such as fuses for one-time

programmable PLDs, or floating gates for erasable PLDs. The implementation

constitutes a Moore state machine with binary inputs representing the dimensions of the

sub-block to be reordered. It involves two stages, each of which is mapped into a

separate GAL16V8 device; see (Lattice 1996 and 1997).

4.5.2 	The GAL16V8 Device

The GAI16V8 device is an electrically erasable 20-pin generic array logic PLD with a

user-programmable 64 x 32 AND array, a fixed 8 x 8 OR array, and an output stage

employing output logic macro-cells (OLMCs) with eight product lines, i.e. AND gate

outputs, connected to each OLMC. Figure 4.17 depicts the functional block diagram of

the GAL16V8. The device has eight dedicated inputs and eight user-configurable pins;

sm

I/CLK

"0/a

I/o/a

I/O/Q

IIOIQ

I/O/Q

I/O/Q

I/0/Q

110/0

hOE

each of which may be configured individually as input, combinational output, or

registered output within the appropriate OLMC; see (Lattice 1996 and 1997).

Registered outputs are also fed back into the AND array of the device enabling a state

machine to be implemented on a single device.

Reproduced by Special Permission of Lattice Semiconductor.
© 1996 by Lattice Semiconductor.

Figure 4.17 Functional Block Diagram of GAL 16V8 Device

- 97 -

	

4.5.3 	The Tango-PLD Development Tool

Tango-PLD is a universal development tool for designing and simulating logic systems

for PLDs. It consists of a language preprocessor, a design compiler, a logic minimizer, a

functional simulator, and a fusemap generator. It provides a C-like hardware

description language, Tango Design Language (TDL); and produces industry-standard

Joint Electronic Device Engineering Council (JEDEC) fusemap files for programming

PLDs. The functional simulator can verify a design before it is committed to hardware.

Tango-PLD supports a variety of device architectures including the GAL 16V8 device

family; see (ACCEL 1989a and b).

	

4.5.4 	The Moore State Machine for Versatile Zigzag-reordering Algorithm

The hardware implementation constitutes a Moore state machine consisting of two

stages. Each stage is mapped into a separate GAL16V8 device, and the state machine is

implemented by interconnecting the two devices as shown in figure 4.18.

The state machine has six binary inputs representing the dimensions, i.e. number of

rows L and number of columns M, of the sub-block to be reordered. While the

versatile zigzag-reordering algorithm operates on sub-blocks of any dimensions, this

particular implementation operates on sub-blocks with up to eight rows and up to eight

columns. Thus it allows all 64 sub-block dimensions from 1 x 1 to 8 x 8 to be

generated. However, the implementation is compatible with the JPEG standard, that

partitions image components into 8 x 8 blocks for the DCT-based method. Note that,

due to the 3-bit representation of the number of rows, the binary pattern 000 indicates a

sub-block containing one row, 001 indicates a sub-block containing two rows, etc. up to

n

111 indicating a sub-block containing eight rows. The number of columns in a sub-

block is represented similarly.

A reset signal, labelled RESET, is used to initialize the row and column indices, I

and m, to the binary pattern 000 corresponding to the position of the first element in the

sequence regardless of the sub-block dimensions, L and M. The generation of the

appropriate zigzag scan sequence is synchronized to a clock signal, labelled CLK. Since

stage A is purely combinational, both signals are applied only to stage B.

Moore state machine

CLK

RESET:

LI

L 	: 34 GAL16V8

HRL~

 GAL16V8

I stageA stageB
M DONE >

I >

Figure 4.18 Block Diagram of Moore State Machine for

Versatile Zigzag-reordering Algorithm

The state machine has six binary outputs that represent the row index I and the column

index m of the position of the current element in the scan path as described for the six

binary inputs.

WE

A signal, labelled DONE, is asserted to indicate completion of the zigzag scan sequence

of the current sub-block; the row and column indices, I and m, are initialized to 000 in

readiness for the zigzag scan sequence of the next sub-block.

Stage A determines, according to equations 4.2 to 4.6, the five binary parameters

Rl(I, m), RL(1, m), Cl(1, m), CM(l, m), and P(l, m) from the current values of the row

and column indices, I and m, and the current sub-block dimensions, L and M. This

stage is purely combinational and has twelve binary inputs that are processed as four

groups with three bits each, and five outputs that represent the five binary parameters.

The parity P is evaluated by XORing the least-significant bits of the row and column

indices. Note that the parity P is the same for both, row and column, indices starting

from either zero or one. In the combinational output configuration, one of the eight

product lines is used to control the tn-state input of the OLMC. Stage A utilizes 21 out

of 64 product lines, i.e. 33 %; and six of the maximum seven product lines per output

for two output signals.

Stage B determines the next row and column indices from the current indices and the

five binary parameters using the clock signal to control the timing of the zigzag-scan-

sequence generation, and the reset signal to initialize the row and column indices to 000

for the first scan. Note that the implementation of the increments and decrements is

described in subsection 4.5.5. The stage has two 3-bit outputs that represent the row

index I and the column index m. The outputs are implemented as registered outputs

enabling them to be fed back internally to the AND array of the device. The stage also

generates the DONE signal. In the registered output configuration, all of the eight

- 100-

product lines are available. Stage B utilizes 42 out of 64 product lines, i.e. 66 %; and

all of the maximum eight product lines per output for two output signals.

The TDL files, describing each stage individually and the entire state machine, are

contained in appendix G. The files also include extracts from the full sets of test

vectors. Each device has been individually simulated to verify its correct operation, and

the entire state machine has also been simulated to ensure that all zigzag scan paths are

correctly generated.

4.5.5 	Implementation of Increments and Decrements

Boolean expressions denoting arithmetic increments and decrements do not fit within

the GAL 16V8 device. However; since, in practice, a row index is never decremented

from 000 or incremented from 111, don't-care states can be used for these states in order

to reduce the number of product lines per output.

Table 4.4 depicts the state table for the binary increments of the row index 1. Boolean

expressions can be derived for each bit; and don't cares can be assumed to be either

zero or one.

000 001 010 011 100 101 110 111

001 010 011 100 101 110 111 XXX

X denotes don't care

Table 4.4 Binary Increments

The least-significant bit, denoted by 10 and 10 respectively, toggles between zero and

one:

/0 . = 10
	

(4.21)

- 101 -

with the appropriate don't care assumed to be zero.

The next bit, denoted by 11 and lit respectively, is defined by XORing 10 and 11:

11' =((m.ii)+(1o.]i)) 	 (4.22)

with the appropriate don't care assumed to be zero.

The most-significant bit, denoted by 12 and 12 + respectively, is defined by:

12 = ((loll) + 12) 	 (4.23)

with the appropriate don't care assumed to be one.

Table 4.5 depicts the state table for the binary decrements of the row index 1.

Similarly, Booiean expressions can be derived for each bit; and don't cares can be

assumed to be either zero or one.

000 001 010 011 100 101 110 111

XXX 000 001 010 011 100 101 110

X denotes don't care

Table 4.5 Binary Decrements

Again, the least-significant bit toggles between zero and one:

10 = 10 	 (4.24)

with the appropriate don't care assumed to be one.

The next bit is defined by XNORing 10 and 11:

11 = ((10.11) + 	. 11)) 	 (4.25)

with the appropriate don't care assumed to be one.

- 102-

The most-significant bit is defined by:

12 = ((10•12) + (1112)) 	 (4.26)

with the appropriate don't care assumed to be zero.

The binary increments and decrements are applied to the bits of the column index

similarly. Using these tailored Boolean expressions for increments and decrements

enables stage B to be implemented on a single GAL 16V8 device.

4.6 	Coding of Sub-block Dimensions

4.6.1 	Motivation for Coding of Sub-block Dimensions

Adaptive zigzag reordering reduces the entropy of the runs of zero coefficients by

traversing a scan path that is tailored to the dimensions of a rectangular sub-block in a

particular block of quantized transform coefficients. Since the sub-blocks generally

have different dimensions depending on the specific content of the corresponding block,

the dimensions of the sub-block need to be retained in order to traverse the zigzag scan

path correctly during decoding. Therefore the sub-block dimensions themselves need to

be efficiently coded.

4.6.2 	The Sub-block Dimensions

For an image-compression scheme operating on L. x M. blocks, L. M. symbols

are required to identify directly the L.M. possible sub-block dimensions. Assuming

the worst case, i.e. that all symbols are equally probable, the maximum entropy H.

can be obtained using equation 2.7:

stile

Ht_.a = L M 	1 	
log

' 	

1 	
bits=log 2 (L,M_)bits (4.27)

, L.M. L.

For the DCT-based method within the JPEG standard operating on 8 x 8 blocks, the

maximum entropy of the sub-block dimensions is therefore:

Hm = 1092 82 bits = 6 bits
	

(4.28)

It has been found that, although the sub-block dimensions are not evenly distributed in

practice, entropy coding, such as Huffman or arithmetic coding, of the sub-block

dimensions themselves is not sufficiently efficient to produce an overall reduction in bit

rate. It has also been found that coding of the sub-block dimensions with reference to

the dimensions of the preceding sub-block, that tends to have similar complexity, does

not significantly improve efficiency.

However, the dimensions of a sub-block are correlated with the number of coefficients

within the sub-block, thus allowing more efficient coding.

4.6.3 	Sub-block Dimensions and Scan-path Length

In the JPEG standard the EOB symbol is used to terminate a vector, i.e. zigzag-

reordered block, of quantized DCT coefficients after the last nonzero coefficient.

Therefore the number of positions along a zigzag scan path of a sub-block, i.e. the scan-

path length, is known and can be evaluated; it varies between 1 and i.e. 64

for 8 x 8 blocks as defined by the JPEG standard for the DCT-based method. For any

particular L x M sub-block, the minimum scan-path length depends on L and M;

however, the maximum scan-path length is LM as longer scan paths require larger sub-

blocks. Usually, the scan-path length does not uniquely identify the sub-block

dimensions; however, it restricts the number of sub-block dimensions that are suitable

mum

to contain a particular number of positions. Figure 4.19 depicts all four possible sub-

block dimensions for the scan-path length of five. The last nonzero coefficient in each

scan path is indicated by a black dot. In the 5 x 1 and 1 x 5 sub-blocks, shown in

figure 4.19 a) and d) respectively, the last nonzero coefficient is at the fifth position; a

different scan-path length leads to different sub-block dimensions. The 3 x 2 sub-

block, depicted in figure 4.19 b) accommodates scan-path lengths of four, five, or six.

However, the 2 x 3 sub-block, shown in figure 4.19 c) accommodates scan-path lengths

of five or six; note that a 2 x 2 sub-block suffices for the scan-path length of four.

Z/O
O)O)0)O)•

(a) 	(b) 	(c) 	 (d)

Figure 4.19 Scan-path Length of 5 for (a) 5 xl, (b) 3 x 2,

(c) 2 x 3, and (d) lx 5 Sub-blocks

Figure 4.20 depicts two of nine possible sub-block dimensions for a scan-path length of

14; the seven remaining sub-block dimensions are 7x2, 5x3, 4x4, 5x4, 3x6,

2x7. and 2x8.

- 105 -

Y0O 0

(a) 	 (b)

Figure 4.20 Scan-path Length of 14 for (a) 3 x 5, and (b) 4 x 5 Sub-blocks

Table 4.6 combines the scan-path lengths in the range [1,2,.. .,64] with the sub-block

dimensions from 1 x 1 to 8 x 8, thus covering the 8 x 8 blocks defined by the JPEG

standard for the DCT-based method. Note that Length refers to the scan-path length, L

is the number of sub-block rows, M is the number of sub-block columns, and Number

refers to the number of sub-block dimensions that can accommodate a particular scan-

path length. Table 4.6 (1) contains lx 1 to 8 x 4 sub-blocks, that have scan-path

lengths in the range [1,2.....32]. Table 4.6 (2) contains scan-path lengths in the range

[1,2.....32] of lx 5 to 8 x 8 sub-blocks, and table 4.6 (3) contains scan-path lengths in

the range [33,34.....64] of lx 5 to 8 x 8 sub-blocks. The number of possible sub-block

dimensions increases with the scan-path length, reaches its maximum value of 14 for

scan-path lengths of 28 and 30, and decreases afterwards. Note that the maximum

number of symbols to uniquely identify the dimensions of a sub-block with a given

scan-path length is 14.

SEIT2

0
0

c
'I

'D
e
n

"
e
n

e
m

m
e
n

—
m

O
O

rq

I
n

t
l

t
I
N

—
e
l

k

0
0

0

M

N

<

—
e
l

e
n

 e

r
i

'C

N
 0

0

O
\

Z
 2

9

N
 0

0

C

C

 —
N

en

In
C

N

 0
0

C
\

0
 —

N

-
-
-
N

N
N

N
N

N
l
t
l
r
'
l
t
l
m

m
m

C

C

C
)

C

'9
,0

C

(ID

'C

C..,
'C

N

C

 	
C

C)
(/D

e
n

C

.- C

C)

F
-

I-

I oo

r-
oo

'o

m
o

o

oo

m
o

o

t4
0

0

-
C

o

D
o
t.-

c
-
I

- -

c-
C

'D
C

In
C

c
-
C

C
o

In

>
0

0
<

N
m

m
m

-
In

C

0

U
,

C

0

E U

0

.9
.0

C
')

U
,

-
t

C

-C

9..
U

rID

C-1 0

N

'I
t

0

U
,

0

C
t

U

0

—

-9

0
)

-d

U
,

0
"

0

I-

z
9

0
0

0
0

-
0
0

e
n

D
O

N
 0

0

0
0

D
O

N

'f
lN

 >
<

k
<

N

c
n

N

N

N

tn
 o

en
'0

N
 C

'C
v

-)

m
v
,

e
n

v
i

N
 V

i

—
v
i

e
n

In
 '0

N

0
0

C

—
S

4.6.4 	Entropy Coding of Sub-block Dimensions

Assuming the worst case, i.e. that all sub-blocks contain only scan-path lengths of 28

or 30, the maximum entropy of the symbols for the sub-block dimensions is:

H. = 109 2 14 bits = 3.8 bits
	

(4.29)

Entropy coding, for example Huffman coding, can assign codewords according to the

probability distribution of the sub-block dimensions for each scan-path length

independently. However, the same codeword can be used with different scan-path

lengths, so that the most-probable symbol, i.e. sub-block, within every scan-path length

is coded with the same codeword. The scan-path length, that is known, and an

additional symbol therefore identify the dimensions of a sub-block.

Since the number of possible sub-block dimensions is one for scan-path lengths of 1

and 57 to 64, these scan-path lengths uniquely identify sub-block dimensions 1 x 1 and

8 x 8 respectively; see table 4.6. Hence, for identification of the corresponding sub-

block dimensions no additional symbol needs to be generated, stored, or transmitted.

Symbols can be represented as a stream that is only accessed when necessary, i.e. when

the scan-path length does not uniquely identify the sub-block dimensions.

It has been found that adaptive zigzag reordering as described in section 4.3 combined

with coding of sub-block dimensions as described in this section produces a lower bit

rate than standard JPEG.

-110-

The sub-block dimensions need to be retained in order to traverse the zigzag scan path

correctly during decoding. The correlation between sub-block dimensions and scan-path

length is investigated. Coding of the sub-block dimensions that takes the scan-path

length into account is developed, and further improvements are suggested.

The chapter addresses issues that affect adaptive zigzag reordering of transform

coefficients in various respects.

-112-

Chapter 5

Artificial Neural Networks

5.1 	Introduction

This chapter introduces the notion of artificial neural networks (ANN5). The subject

has attracted much attention, and research has generated a large body of knowledge,

therefore this chapter concentrates on feedforward ANNs and the error-backpropagation

algorithm, that are used in the image-compression scheme described in chapter 6.

Section 5.2 briefly describes biological neural networks, summarizes the historical

foundation of ANNs, outlines properties and realizations of ANNs, and enumerates

some areas of application.

Section 5.3 describes a single artificial neuron; develops propagation, activation, and

output functions; and introduces a simple notation.

Section 5.4 focuses on feedforward ANNs, describes forward propagation and learning,

introduces the error-backpropagation algorithm and other learning rules, and explains

multilayer feedforward ANNs.

Section 5.5 briefly outlines the application of ANNs to digital image compression.

Finally section 5.6 concludes the chapter with a brief summary.

5.2 	Introduction to Artificial Neural Networks

5.2.1 	Biological Neural Networks

The human brain is the most complicated and fascinating structure. It contains about

100 x 10 9 neurons interconnected via more than 100 x 1012 links (A. Zell 1994,

chapter 2). Each neuron is a complex biochemical processing unit. Similar to any

biological cell, the cell membrane and the contained cell body build the nerve cell that is

-114-

between 5 pm and 100 pm in size (M. Kunt et al. 1985). A main fibre called axon and a

number of fibre branches called dendrites are attached to the nerve cell. Figure 5.1

depicts a simplified neuron with the dendrites, that work as inputs to the nerve cell,

shown on the left; and the axon, that works as output from the nerve cell, shown on the

right. The junction between the axon of one neuron and the dendrite of another neuron

is called a synapse. An individual neuron can receive signals from thousands of

presynaptic neurons, and can transmit to thousands of postsynaptic neurons; it can

handle up to 200000 synapses. The information transfer from the presynaptic neuron to

the postsynaptic neuron is made electrochemically.

in

Figure 5.1 Simplified Nerve Cell

While stimulation via excitatory synapses increases the electrical potential of the cell

membrane, stimulation via inhibitory synapses decreases the potential. Once a certain

threshold is exceeded, the neuron fires: its stimulating signal, consisting of pulse trains,

propagates via axon, synapses, and dendrites to the postsynaptic neurons. Each pulse

has a magnitude of about 100 mV and a duration of about 1 ms. The repetition rate of

these pulses is proportional to the intensity of a stimulus. Thus the nerve cells

communicate through frequency modulation (FM). Synaptic connections change with

time; they can increase, decrease, or even disappear. Axons can build new connections

-115-

and attach to neurons that were previously unconnected. This process is described as

learning. Further reading includes a brief description of nerve cells (M. Kunt et al.

1985) and a comprehensive introduction to biological neurons (E. R. Kandel et al.

1991). A. Zell (1994) produced a comprehensive introduction to neural networks

including biological foundations, network architectures, network simulation, and

applications. M. T. Hagan et al. (1996) focused on the design of neural networks.

ANNs are computational models that mimic their biological counterparts. Note that the

concept of artificial neural networks can be applied to software simulations and

hardware implementations; see subsection 5.2.4. Similarly to the human brain ANNs

consist of a number of simple processing units, i. e. neurons, and a number of

interconnections, i. e. weights. Thus, two key features distinguish artificial neural

networks from conventional computational systems:

• 	Artificial neural networks are naturally massively parallel; and

• 	Artificial neural networks are adaptive, i.e. trainable.

Exact modelling of biological neural networks is not yet possible; and is, for technical

applications, often neither necessary nor desirable. For most artificial neurons the

amplitude of the output signal is proportional to the intensity of a stimulus. Thus they

communicate through amplitude modulation (AM). The learning ability of an ANN is

based on changing the ANN itself by exploiting the following approaches individually

or in combination:

• 	Building new connections,

• 	Removing existing connections,

• 	Changing weights of connections,

• 	Changing thresholds of neurons,

-116-

Changing the functions of neurons,

• 	Inserting new neurons, and

Removing existing neurons.

Changing the weights of connections is the most prominent approach, and accomplishes

building and removing connections as well. However, changing the functions that

define a neuron does not seem to correspond with biological nerve cells.

The learning strategy describes the degree of supervision during the learning period:

In supervised learning a 'teacher' provides the desired output pattern with each input

pattern. The aim is to repeatedly change the trainable weights, so that the network can

generate an approximation of the desired output for a known or new, but similar, input

pattern. It is the fastest learning strategy, but does not correspond with learning in

biological neural networks.

In reinforcement learning the network produces from each input pattern an output

pattern that is then rated by a 'teacher'. The aim is to analyse these additional hints; for

example correct and incorrect, or degree of correctness; and to repeatedly change the

trainable weights, so that the network itself finds the correct output pattern for a given

input pattern. This strategy is slower than supervised learning because of the limited

information, but corresponds much better with learning in biological neural networks.

In unsupervised learning, also known as self-organised learning, the network receives

only the input pattern and organizes similar input patterns into similar classes by

activating the same or adjacent neurons. This strategy extracts statistical features from

the input pattern, and meets learning in biological neural networks best, but is unsuitable

for some tasks.

-117-

5.2.2 	Foundations of Artificial Neural Networks

Research on artificial neural networks was stimulated in the 1940s when

W. S. McCulloch and W. Pitts (1943) published their work on networks of McCulloch-

Pitts neurons. D. 0. Hebb (1949) introduced with the Hebb rule a simple rule for

supervised learning that has been intensively used. K. Lashley (1950) recognized that

biological neural networks store knowledge distributively.

The first successful neurocomputer, Mark I Perceptron, was built by F. Rosenblatt

(1958) and co-workers. It contained a 20x20-pixel sensor and 512 servomechanical

potentiometers realizing variable weights; and could recognize simple symbols.

F. Rosenblatt (1959) described variations of the perceptron and introduced the

perceptron convergence theorem. B. Widrow and M. E. Hoff (1960) developed the

adaptive linear element (Adaline). B. Widrow founded later the first neurocomputing

company, Memitor Corporation. N. J. Nilson (1965) summarized this period.

However, the popularity of artificial neural networks decreased rapidly with growing

understanding of the limitations of the known techniques. M. Minsky and S. Papert

(1969) analysed some perceptrons, showed that these perceptrons were not suitable for

many problems, assumed the failure of bigger models, and announced this field of

research to be a dead end. Limited research continued, generating important

contributions; see for example (T. Kohonen 1972; C. von der Malsburg 1973;

P. J. Werbos 1974; S. Grossberg 1976 and 1980; J. L. McClelland and D. E. Rumelhart

1981; and J. J. Hopfield 1982).

New interest in artificial neural networks grew in the 1980s, and research was

reinforced. J. J. Hopfield had a strong influence due to an important publication

-118-

(J. J. Hopfield and D. W. Tank 1985) and his personal involvement. The error-

backpropagation algorithm, originally described by P. J. Werbos (1974), was

popularized by D. E. Rumelhart et al. (1986a and b), and demonstrated fast and efficient

learning. Nettalk, a project of T. J. Sejnowski and C. R. Rosenberg (1986), was a

feedforward ANN using a self-supervised backpropagation algorithm that learnt to read

written words aloud. From 1986 many researchers started their work in various new

areas of research and application.

J. A. Anderson and E. Rosenfeld (1988) compiled important contributions for a

comprehensive summary of the foundations of neural networks. Further reading

includes 	(J. A. Anderson et al. 1990; D. E. Rumelhart 	et al. 1986); and

J. L. McClelland et al. 1986).

R. P. Lippmann (1987) produced a widely acclaimed comprehensive review, describing

six important neural-network models for application in pattern classification, that was

selectively updated by D. R. Hush and B. G. Home (1993). B. Widrow and M. A. Lehr

(1990) reviewed feedforward ANNs; and S. I. Amari (1990) compiled mathematical

foundations of neurocomputing.

5.2.3 	Properties of Artificial Neural Networks

The distinct properties of artificial neural networks include:

• 	Learning ability: an ANN learns by example; it extracts information from the

training data without need for rules or formulae resulting in less need to determine

relevant factors a priori. The ANN can adapt more easily to new conditions, i.e.

input data, than conventional algorithms.

-119-

• 	Distributed knowledge: an ANN stores knowledge distributively in the weights of

its neurons. This architecture suits parallel processing.

Parallelism: an ANN consists of a large number of interconnected simple

processing units, i.e. neurons, operating in parallel. This structure is very suitable

for parallel processing, for example on transputer systems. However, the design

must limit the amount of communication in order to lead to a practical system.

Very large-scale integration (VLSI) circuits form an additional class of hardware:

neurochips.

• 	Fault tolerance: storing information distributively within an ANN enables better

fault tolerance for component and connection defects, if the system is

appropriately designed.

• 	Associative storage: while conventional computers use address-based storage of

information, an ANN uses content-based storage resulting in better and faster

performance for pattern-association tasks.

• 	Robustness: a correctly trained ANN is less sensitive to distortion and noise in the

input data than conventional algorithms.

Implemented representation: in an ANN information is incorporated in the

program rather than stored in an independent database. The active representation

of knowledge is shaped by adjusting parameters.

• 	Need for training: before retrieving any information, most ANNs must iteratively

adjust their parameters by repeatedly applying sufficient and relevant training data

to their inputs, and changing their variables according to a specified learning rule.

These variables are often initialized with small 'random numbers in order to avoid

saturation. Because of the distributed representation of knowledge, it is very

- 120-

difficult to preset some fundamental knowledge. Some ANNs are designed rather

than trained.

• 	Hidden knowledge: an ANN extracts information from the training data and stores

knowledge by adjusting its parameters. This internal representation is difficult to

interpret, analyse, and verify.

• 	Time consumption for learning: powerful algorithms and new concepts speed up

the training process, but this initial period remains very time consuming,

especially for large and complex networks.

5.2.4 	Realization of Artificial Neural Networks

The concept of artificial neural networks is now widely accepted and generates a variety

of products.

Packages for software simulation of artificial neural networks are available for academic

and commercial use; for example ANSim and ANSpec, Aspirin/MIGRAINES,

BrainMaker, Cortex-Pro, FAST, Galatea, GENESIS, ICSIM, LVQ-PAK and SOM-

PAK, MATLAB with Neural Network Toolbox, MONNET, MUME, Nestor

Development System, NeuFuz 4, Neural Shell, NeuralWorks Professional 11/Plus,

Neuralyst, NeuroForecaster, NeuroGraph, NEURO-Compiler, NeuroSolutions v2.0,

NEUROtools, SENN++, PDP simulators (J. L. McClelland and D. E. Rumelhart 1988),

PlaNet, Pygmalion, Rochester Connectionist Simulator, SESAME, SNNS, UCLA-

SFINX, VieNet2, and Xenon.

Hardware solutions include multiple-instruction multiple-data (MIMD) and single-

instruction multiple-data (SIMD) parallel-processing systems, co-processor boards for

workstations and personal computers, neurocomputers built from standard or special

spit

components, digital and analogue neurocomputing VLSI circuits, and optical

neurocomputing systems.

5.2.5 	Applications of Artificial Neural Networks

In industry and research artificial neural networks have been successfully applied in

very different applications including (H. B. Demuth and M. Beale 1994, pp. 1/8 and

1/9):

Aerospace: aircraft autopilot, flight path simulation, aircraft control systems,

aircraft component simulation, and aircraft component fault detection.

•

	

	Automotive: automobile automatic guidance system, and warranty activity

analysis.

Banking: cheque and document reading, and credit application evaluation.

•

	

	Electronics: code sequence prediction, integrated-circuit chip layout, process

control, chip failure analysis, and nonlinear modelling.

• 	Medical: breast cancer cell analysis, electroencephalogram (EEG) and

electrocardiogram (ECG) analysis, prosthesis design, optimization of transplant

times, and hospital quality improvement. A. S. Miller et al. (1992) reviewed the

applications of ANNs to medical imaging and signal processing.

• 	Robotics: trajectory control, forklift robot, manipulator controllers, and vision

systems.

• 	Speech: speech recognition, speech compression, vowel classification, and text-to-

speech synthesis.

- 122-

bI

5.3 	Artificial Neuron

5.3.1 	Structure of Artificial Neuron

An artificial neuron is a basic processing unit and the building block for ANNs. Its

purpose is to generate an output value dependent on the input values and its previous

activations. Figure 5.2 shows the general structure of an artificial neuron with

R inputs. The neuron consists of weight vector w, that modifies the R -element input

vector p; scalar bias b, that can be used as an offset; propagation function that

generates the net input n from input vector p, weight vector w and bias b; activation

function f0,. that calculates the activation c of the neuron from the net input n and

previous activations; and finally output function that determines the scalar

output a of the neuron. Note that the weights in vector w and the bias b are adjustable

parameters. A weight of zero removes the connection between the output of some

neuron and the input of a neuron; and the output of a neuron can be fed back to its input

for direct feedback. The propagation, activation, and output functions determine the

characteristics of the neuron. The following subsections outline some of the available

functions. N. Hoffmann (1993, chapter 2) produced a more detailed summary.

neuron
WI 	 ___

Figure 5.2 Structure of an Artificial Neuron

- 123 -

5.3.2 	Propagation Function

The propagation function f generates the net input n, a scalar, that represents the

effective input to the neuron by evaluating the R -element input column vector p, the

T-element weight row vector w, and scalar bias b

7r fpro (P, wJ) 	 (5.1)

where p
= 	

2) and w = [w(1) w(2) ... w(T)] with R !~ T.

p(R)

Although many functions are suitable as a propagation function, most neurons use a sum

of weighted inputs to generate the net input n as defined in equation 5.2.

n= (w(j)p(j))+b= wp+b
	

(5.2)

Each element of the input vector, p(j), is multiplied by the corresponding element of the

weight vector, w(j); and the products are summed. This is the dot product of the row

vector w and the column vector p. The scalar bias b is regarded as a weight element

connected to a constant input of one. Higher-order neurons, for which T> R, have

additional weights that scale the products of two or more input elements.

The propagation function of radial-basis neurons, for example, calculates the vector

distance between weight vector w and input vector p that is multiplied by bias b

b
	

(5.3)

- 124-

5.3.3 	Activation Function

The activation function fact calculates the current activation c(t), a scalar, by evaluating

the net input it , previous activations c(t - 1), c(t - 2),..., and other parameters

c(t) = fact (n, c(t - 1), c(t - 2),...)
	

(5.4)

The linear activation function implements an activation that rises as the net input n

increases discounting previous activations

c(t) = k n
	

(5.5)

where k is the slope. The parameter k = 1 gives the identity function. The bias b of

the propagation function fprn can be used to account for any offset.

Other functions; for example for brain state in the box (BSB), and distributed memory

and amnesia (DMA) networks; model the activation in more detail. The net input n

accumulates over time, and a decay term moves the activation back towards a steady

state.

The Hopfield activation function evaluates the sign of the net input n; and for a net

input it equal to zero, the activation remains unchanged

m 	forncO

c(t)= c(t— i) forn=O
	

(5.6)

1 	forn>O

where, dependent on the model, m = —i or m = 0.

- 125 -

5.3.4 	Output Function

The output function f determines the scalar output a of the neuron that depends on

the activation c. Output functions are usually monotonically increasing functions of the

activation C; and may contain additional threshold, limit, or slope parameters

(5.7)

In some networks, i.e. competitive networks, the output of a neuron depends on its

activation as well as on the activation of other neurons. Some ANNs require neurons

with a differentiable output function.

The linear output function implements an output that rises as the activation increases

a = k (c—i))
	

(5.8)

where t is a threshold that shifts the function out off the origin and k is the slope.

0 = 0 and k = 1 gives the identity function.

The hard limit output function outputs minimum value m for activations less than

threshold i) and maximum value M for activations greater than or equal to

RI7Tfl r.L]

Im forccO

IM forc~!O
(5.9)

where m < M.

- 126-

The saturating linear output function is a linear function within a range of input values,

[-1,1], and a hard limit function outside that range. The general function is:

in
	

for (c—t)c—1

a= k(c—t) for-1!~ (c—i3)!~1
	

(5.10)

M
	

for (c-13)>1

where I =
M—m

2k

The general log-sigmoid output function, that is differentiable, maps the input

range (—oo,-l-oo) into the output range (in, M):

a = in +
M—m 	

(5.11)

1+e 	hi-rn

where k is the slope, t is the threshold, in is the minimum value, and M is the

maximum value.

The parameters k = 1/4, 0 = 0, in = 0, and M = 1 give a log-sigmoid output function

that maps the input range (—oo,+oo) into the output range (0,1)

1

1 + e_C
(5.12)

The parameters k = 1, i3 = 0, in = — 1 , and M = I give the hyperbolic tangent sigmoid

output function.

If the neuron uses the linear activation function from equation 5.5, bias b of the

propagation function fpm accounts for threshold 0 in the output functions.

The output function of radial-basis neurons is not monotonic

a = 	 (5.13)

- 127-

hi

The radial-basis neuron works as a detector that outputs one whenever the input

vector p is identical to weight vector w.

5.3.5 	Simplified Artificial Neuron

For many types of neuron either the activation or the output function is the identity

function, hence both functions can be combined to a single transfer function f,,.

Figure 5.3 shows the structure of a simplified artificial neuron.

neuron

Figure 5.3 Structure of a Simplified Artificial Neuron

ANNs are usually arranged in layers each of which consists of identical neurons.

H. B. Demuth and M. Beale (1994, chapter 2) devised a notation that can be easily

extended from a single neuron, as shown in figure 5.4, to layers and networks.

Dimensions are in row x column notation. Note that R is the number of inputs and

weights, thus the number of weights is limited to the number of inputs.

input 	 neuron

(Thr

lx1

Figure 5.4 Notation of a Simplified Artificial Neuron

The propagation function fpro and the transfer function f_ can be visualized by the

appropriate symbols, some of which are shown in figure 5.5.

ED®
weighted 	vector

sum 	distance

a) Propagation Functions

H H
linear 	hard 	saturating 	log 	radial

limit 	linear 	sigmoid 	basis

b) Transfer Functions

Figure 5.5 Symbols for Functions of Artificial Neuron

- 129-

5.4 	Feedforward Artificial Neural Networks

5.4.1 	Structure of Feedforward Artificial Neural Networks

Hardware complexity and software performance limit the size of practical ANNs

currently to up to about 10 x io artificial neurons and 100 x io connections.

Artificial neurons can be interconnected to any kind of structure, however ANNs are

usually arranged in layers each of which consisting of identical neurons.

Figure 5.6 depicts the layer diagrams of generic feedforward ANNs with one and two

layers of trainable neurons. In feedforward ANNs each layer only receives inputs from

preceding layers, i.e. there are no feedback connections. The one-layer ANN has

R inputs and S neurons, hence weight matrix W consists of S x R elements. The

two-layer ANN has R inputs, 51 and 52 neurons in layer 1 and 2 respectively, an

Si x R -elements weight matrix Wl, and an S2 x Si -element weight matrix W2. The

output of every neuron in layer 1 feeds into the input of every neuron in layer 2. The

number of layers may be increased to extend the ANN. Note that the layer that

generates the network output is referred to as the output layer, the remaining layers are

referred to as hidden layers.

- 130-

input neuron layer

(Th(_ _
a

Y Rxl Sx 1 I pI "
f.

sxi

H SxR
l b

Sxl

a) Feedforward ANN with One Layer

input neuron layer 1 neuron layer 2

II 	a2
w1

I s1xR ui n2 	S2x1
__

Rxl

pI __

 TS2
Sixi

f,ranj

S2x11 H bi

çXl
Slj 	

2)<l 	
52j

b) Feedforward ANN with Two Layers

Figure 5.6 Generic Feedforward Artificial Neural Networks

An ANN usually functions in either of two modes of operation. During learning the

ANN adapts its structure and parameters to match a set of training data according to a

specified learning strategy and learning rule. Note that most ANNs adapt their

parameters, i.e. weights and biases, rather than their structure. During forward

propagation, or recall, the ANN accepts input data and generates output data, however

the weights and biases remain unchanged.

- 131 -

	

5.4.2 	Forward Propagation

During forward propagation input data, i.e. an R -element input vector p, are presented

to the inputs of the neurons in layer 1; see figure 5.6 b). Using the appropriate

propagation function and transfer function, the Si -element output vector of layer 1, al,

is calculated and is presented to the inputs of the neurons in layer 2. The output vector

of layer 2, a2, is determined similarly. For ANNs with more layers this process can be

extended accordingly. Assuming that the input vector p remains unchanged, and that

the transfer function does not utilize previous output values; recalculation of the

network produces identical values.

	

5.4.3 	Learning

During learning the network is modified so that the ANN adapts to its task. Although

modifications to the structure of the network; for example number and type of neurons,

and number of layers; are possible, most ANINs change their parameters in order to

adapt. During a learning step the weights, that resemble synapses in biological neural

networks, are adjusted

W(t) = 	—1) + LsW
	

(5.14)

where the changes to the weights, AW, are defined by a learning rule. Note that the bias

can be regarded as a weight element connected to a constant input of one. Learning

usually requires many learning steps.

When the required output, i.e. target, to a given input is known; supervised learning can

be utilized to minimize the difference between the output, actually generated from the

input, and the target. The input vector p and the corresponding target vector t build a

training pair. The training set is a collection of training pairs, and can be represented by

- 132-

input matrix P and target matrix T. One application of the whole training set is

referred to as an epoch.

Compared to weight adjustments per learning step based on individual training pairs;

batch training, that produces one weight adjustment per epoch based on the complete

training set, improves learning of an ANN; see (H. B. Demuth and M. Beale 1994,

p. 5/7).

5.4.4 	Hebb Rule

D. 0. Hebb (1949) postulated that if two neurons were concurrently active, the weight

of the corresponding connection would increase, hence the weight adjustment AW(i,j)

can be defined as

txW(i,j)= Ir a(i) p(i)
	

(5.15)

where a(i) is the output of neuron i ; p(j) is the j th input to neuron i , i.e. the output

of neuron j; and Ir is the learning rate.

The learning rate controls the size of the weight changes during learning. For supervised

learning the target t(i) replaces the output a(i)

LSW(i,j) = Ir t(i) p(j)
	

(5.16)

However, as targets are only available for neurons in the last layer, equation 5.16 can

only be applied to neurons in single-layer networks and neurons in output layers. Note

that the difference between target and output is not taken into account. Weights can be

initially set to zero. The order of applying the training pairs or increasing the number of

epochs do not improve learning:

- 133-

AW(i,j)= k Elr T(i,q) P(j,q) 	 (5.17)

where k is a scaling factor that can account for the number of epochs, Q is the number

of training pairs in the training set, T is the target matrix, and P is the input matrix.

5.4.5 	Delta Rule

The delta rule, also referred to as Widrow-Hoff rule, evaluates the difference between

target and output to calculate the weight adjustment eXW(i,j)

AW(i,j) = Ir (t(i) - a(i)) p(j)
	

(5.18)

where t(i) is the target for neuron i ; a(i) is the output of neuron i ; p(j) is the j th

input to neuron i, i.e. the output of neuron j; and Ir is the learning rate. For

t(i)> a(i) the weight adjustment IXW(i,j) is positive, for t(i) .c a(i) the weight

adjustment is negative, and for t(i) = a(i) the weight adjustment is zero. However the

weight can only be changed when input p(j) contributes to the output, i.e. p(i) # 0.

The delta rule can be applied to neurons in single-layer networks.

Neurons in a perceptron network have a hard limit transfer function, and usually output

either 0 or 1. Therefore the targets can only be 0 or 1. With a learning rate Ir = 1,

equation 5.18 resembles the perceptron learning rule: for (1(i) - a(i)) = 1 the weight

adjustment AW(i, j) is p(j), for (t(i) - a(i)) = —1 the weight adjustment is —p(j), and

for (t(i) - a(i)) = 0 the weight adjustment is zero.

For batch training equation 5.18 can be extended to include the complete training set

eXW(i,j) = Ir I (T(i, q)— A(i,q)) PQ,q) (5.19)

where Q is the number of training pairs in the training set, T is the target matrix, A is

the output matrix, and P is the input matrix.

5.4.6 	Error-backpropagation Algorithm

The error-backpropagation algorithm was described by P. J. Werbos (1974), and

popularized by D. E. Rumelhart et al. (1986a and b). It can be applied to neurons with

nonlinear, but monotonous differentiable transfer function in multilayer networks.

Weights are initially set to 'random' values. The aim of the error-backpropagation

algorithn is to find the weights of the ANN that minimize a cost function for a given

training set. Since there are no targets for calculating weight adjustments in hidden

layers, the algorithm first uses the input to generate the output of the ANN, updates the

neurons in the output layer, and then works backwards.

The algorithm uses a gradient-descent technique to minimize the cost function E of the

output layer out that is the squared difference between target and output. The q th pair

of the training set contributes to the cost function

Sc-

E(q)=. 	(T(i,q)—A 0 (i,q)) 2 (5.20)

where Sc—, is the number of neurons in the output layer, T is the target matrix, and A 014,

is the output matrix of the ANN. Note that the scaling factor 1/2 does not compromise

the minimization.

- 135-

The cost function E of the error-backpropagation algorithm is the sum of the individual

contributions

Q S0,

E = 	E(q)= -- 	(T(i,q)— A 0 (i,q)) 2 	 (5.21)
q=} 1=1

where Q is the number of training pairs in the training set.

The gradient-descent technique employed by the error-backpropagation algorithm uses

the partial derivative of the error function E with respect to weight W(i,j) in layer /

to obtain a weight adjustment A W, (i,j) that is opposite to the gradient

zXW,(z,j)= —Ir
aE 	

(5.22)
aw, (ti)

where Ir is the learning rate. Hence the error E decreases as learning progresses.

Using the sum of weighted inputs as the propagation function, the net input N, (i, q) of

neuron i in layer I for training pair q is

N,(i,q)= X(W,(i,j) J(i,q))
	

(5.23)
it!

where R, is the number of inputs to layer 1, 14 is the weight matrix, and I- is the input

matrix of layer 1 containing neuron i. Note that the input matrix I is identical to the

output matrix A,_, of the preceding layer 1-1. With reference to equation 5.2, the bias

is regarded as a weight element connected to a constant input of one.

The partial derivative of the net input N, (i, q) with respect to weight W, (i, J) is

aN,(i,q)a 	R1

aw,Q,j) 	
J('j,q) 	 (5.24)

- 136-

Expanding equation 5.22 using equation 5.21 gives

Ls W1(i,j)=—lr 	
a 	 ' aE() aN1 (i,q)

(5.25)
aN,(i,q) aw1 (i,j)

which can be simplified using the partial derivative from equation 5.24

aE() 	 Q
AW,(i,j)= —Ir P1 (j,q)= Ir 	S,(i,q) P,(j,q) 	(5.26)

q=I aN (i, q) ,

where
dE(q) -- aE(q) dA,(i,q) 	

(5.27)
5,(q)= ThN,(i,q) - aA,(i,q) aN1 (i,q)

Equation 5.27 defines the error signal that, after applying the chain rule, contains the

first derivative of the transfer function

aA,(i,q)a
 DNI aN,(i,q) - 	i, q) fnfj(Nt0_1',mM t (N,(i,q)) 	 (5.28)

For a neuron in the output layer out the remaining partial derivative from equation 5.27

gives after differentiating equation 5.20

- aE(q) --a 	lsow

aA0 (i, q) - aA01 (i, q) 	
(TQ, q) - A 0 , (i, q)) 2

- aE(q)

a40
 (i, q) = (T(i, q) - 	(i, q)) (5.29)

Combining equations 5.28 and 5.29 with equation 5.27, and arranging gives the error

signal for a neuron in the output layer out

6 0ji, q) = f 	(N 04, (i, q)) (T(i, q) - A 004, (i, q)) 	 (5.30)

- 137-

For batch training the weight adjustment in the output layer out is obtained by inserting

equation 5.30 into equation 5.26

LW (i,j) = Ir 	(N0 (i,q)) (T(i,q)— A0 (i,q)) P (j,q) 	(5.31)

For a neuron in a hidden layer I the derivative of the individual cost function E(q) is

not readily available and must be derived from the succeeding layer I + 1 by applying

the chain rule to the remaining partial derivative from equation 5.27

aE(q) 	S"' 	aE(q) aN,+, (h,q) 	
(5.32)

aA'(i, q) = aN1 (h,) dA,(i,q)

where the summation accounts for the S,, 1 terms 	(h,q).

For layer I + 1 the error signal is defined as for layer I in equation 5.27

aE(q)
(5.33)

- dN, 1 (h,q)

As in equation 5.23 using the sum of weighted inputs as propagation function, the net

input N,, 1 (h, q) of neuron h in layer i + i for training pair q is

N11 (h, q) = 	(nc' (h, i) 1 + (i, q))
	

(5.34)

where R, 1 is the number of inputs, 	is the weight matrix, and P, is the input

matrix of layer 1 + 1 containing neuron h.

The partial derivative of the net input N, 1 (h, q) with respect to input P (i, q) is

dN, 1 (1, q) - 	 a ,(l4',(h,i) F 1 (i,q)) = 	 (5.35)
aF 1 (i,q) -

Note that the output of layer I , A, (i, q), is identical to the input of layer I + 1, P, (i, q).

Combining equations 5.33 and 5.35 with equation 5.32, and arranging produces

weighted error signal of layer I + 1

aE(q) 	'+'
= 18 1+1 (h,q) W 1 (h,i)

A'(i , q) 11=1

(5.36)

Combining equations 5.28 and 5.36 with equation 5.27, and arranging gives the error

signal for a neuron in the layer I

St . '

S ,(i,q) = 1 trails! (N, (i,q)) 	W1+1 (h,i) 8 1 . 4 (h,q) 	 (5.37)
h1

For batch training the weight adjustment in layer I is obtained by inserting

equations 5.37 into equation 5.26

Q 	 St.

AW (i, J) = Ir 	f',,5, (N, (i, q)) I W, +1 (h, i) S 1., (h, q) P (i q) 	(5.38)
ql 	 h=I

For neurons with a log-sigmoid transfer function equation 5.12 can be differentiated as

follows

1(x) = 	
1

= (i +e')
	

(5.39)

	

1 	 1 	1_l
f' (x) = —1 (i +e') 2 (_e_x) =

	

1

1 +e 1 1 +e' ex
	

+e_x
 =

1+e' 1+ex

1 	(1+e_x 	1
_X 	

'\
I=f(x)(1—fx)) 	 (5.40) 1+ e (..l+e_X 	l+e')

Since the transfer function determines the output of a neuron from its net input

A,(i,q) = f,_.,,,31 (N, (i,q))
	

(5.41)

- 139-

the first derivative of the log-sigmoid transfer function can be expressed as

firms1 (N, (i, q)) = A, (i, q) (i - A, (i, q)) (5.42)

For batch training the weight adjustment for neurons in the output layer out with a log-

sigmoid transfer function is

Q
Aw,,, (i,j) = Ir I A 0 ,, (i, q) (i - A 0 , (i, q)) (T(i, q)— A 0,,, (i, q)) P (1, q) (5.43)

q=I

For batch training the weight adjustment for neurons in layer I with a log-sigmoid

transfer function is

Q 	 s,+ I

s&sW,(i,j)= Ir 	A,(i,q)(1 —A,(i,q)) 	W, 1 (hi) 5, 1 (h,q) 1(i,q) 	(5.44)
ql 	 h=l

For neurons with a linear transfer function equation 5.8 can be differentiated as follows

f(x) = k(x—t3) 	 (5.45)

f(x)=k 	 (5.46)

For batch training the weight adjustment for neurons in a single-layer network with a

linear transfer function is

AW(i,j) = Ir Ek (T(i,q)— A(i,q)) P(j,q)
	

(5.47)

where k is a constant that can be summed and aggregated with the learning rate ir to

resemble equation 5.19, the delta rule for batch training. Note that the error-

backpropagation algorithm is referred to as the generalized delta rule.

Figure 5.7 depicts the structure of error-backpropagation algorithm for batch training.

The weight matrices are initialized with 'random' numbers. The range can be derived

- 140-

for each weight from the expected minimum and maximum values of the corresponding

input. Learning progresses until the error decreases below a specified value or the

maximum number of epochs is reached. During forward propagation the input matrix of

the training set is presented to the input of the ANN. The outputs of all layers for all

training pairs are calculated and stored. The error signals of the output layer for all

training pairs are calculated from the output matrix of the ANN and the target matrix of

the training set. Starting from the last hidden layer, the error signals of each hidden

layer are calculated from the error signals of the succeeding layer. When all error

signals are available, the weight matrices are updated.

initialize weights
while learnina not finished

present input matrix of training set to network
obtain output matrices of all layers
calculate error signals of output layer; equation 5.30
select last hidden layer
for all hidden layers

calculate error signals of hidden layer; equation 5.37
select preceding hidden layer
hits; equation 5.26

Figure 5.7 Structure of Error-backpropagation Algorithm

The backpropagation algorithm has been improved using momentum and adaptive

learning rate, and the Levenberg-Marquardt optimization is an alternative technique to

gradient descent; see (H. B. Demuth and M. Beale 1994, pp. 5/3 1-5/34).

5.4.7 	Multilayer Feedforward Artificial Neural Networks

Single-layer ANNs have proved to be useful in a range of applications. They thap

similar input vectors to similar output vectors. The single-layer perceptron, first devised

by F. Rosenblatt (1959), is suited for simple classification problems. Figure 5.8 shows a

- 141 -

single-layer perceptron having S neurons with a hard-limit transfer function that

generates either 0 for net inputs less than zero or 1 otherwise. Note that bias b accounts

for the threshold. The perceptron is trained on examples of correct behaviour using the

perceptron learning rule.

input 	hard-limit neuron layer

(Th (

Sxl 	
sJ

Figure 5.8 Single-layer Perceptron

F. Rosenblatt proved that, if the input vectors are linearly separable into a number of

classes, the perceptron learning rule converges in finite time and positions decision

hyperplanes between the classes. However, if the input vectors are not linearly

separable, learning will never reach a stage where all vectors are properly classified.

The mapping of similar input vectors to similar output vectors restricts the usefulness of

single-layer ANNs. For many practical problems very similar input vectors require very

different output vectors. M. Minsky and S. Papert (1969) reported, with great negative

effect on the popularity of neural networks, that these ANNs were not suitable for many

problems including the exclusive-OR (XOR) problem. Note that the delta rule

converges for linearly separable and linearly inseparable input vectors, but may or may

not produce separating hyperplanes (R. C. Gonzalez and R. E. Woods 1992,

pp. 602-603).

- 142-

A two-layer ANN is the simplest form of a multilayer ANN. Assuming that each layer

consists of identical neurons, a variety of networks can be created from a selection of

neuron types, that are outlined in section 5.3. In principle, different types can be used

for different layers or even different neurons in the same layer; however the common

approach is to use the same type throughout the ANN (R. C. Gonzalez and R. E. Woods

1992, p. 605). While the number of neurons in the output layer is determined, for

example, by the number of pattern classes; the number of neurons in the hidden layers

determines the learning capacity of the ANN.

A two-layer ANN having Si neurons with a hard-limit transfer function in the hidden

layer and 52 neurons with a hard-limit transfer function in the output layer is shown in

figure 5.9. Neurons in the hidden layer, i.e. layer 1, cannot be trained using the

perceptron learning rule or delta rule, since targets are not available. A hidden layer

with 'random' weights may be used to pre-process the input vectors so that they may

become linearly separable (H. B. Demuth and M. Beale 1994, pp. 3/2 1-3/22).

input 	hard-limit neuron layer 1 	 hard-limit neuron layer 2

cm (\ (

a2

tS2

w1
 Rxl I

r 	(__ n2

 I ° ' S1xR 	 n1

hi
	

Slxl 	 S2xl

R 	Slxl 	 Si 	S2xl 	 S2

Figure 5.9 Two-layer Perceptron

Figure 5.10 shows a two-layer ANN having Si neurons with a linear transfer function

in the hidden layer and S2 neurons with a linear transfer function in the output layer.

- 143 -

input 	linear neuron layer 1 	 linear neuron layer 2

>SIxRI TS2Ipnl
/ 	

n2
Rxl 	

_

 _

H
	 S2xl1/

R 	Six! 	 Si 	S2x1 	 82

a

Figure 5.10 Two-layer Linear ANN

Using equations 5.2 and 5.5, the output vector a, of linear layer I can be expressed as

a1 = k,(W,p, +b,)

where k, is the slope of the transfer function, W, is the weight matrix of layer I , p, is

the input vector to layer I , and b, is the bias vector.

Hence the output vector of layer ! is

a1 =k(W1 p1 +b1)=k1 (Wp+b) 	 (5.49)

Similarly, the output vector of layer 2 is

a2 k 2 (Wp 2 +b2)=k2 (W2 a1 +b2) 	 (5.50)

Combining equations 5.49 and 5.50 gives

a2 = k 2 (W2 k 1 (4çp+b1)+b2)= k 1 k 2 W1 W2 p+Wb, 	 (5.51)
k i

The output vector of a single-layer linear ANN is

a = ksingit (iV jngje p + b51 ,) 	 (5.52)

For the parameters k jgge = k1 k2,
Wingie

= Wj VF, and
kcingze = W2 b + 	both ANNs

k i

produce identical output vectors for the same input vectors. Hence, a multilayer linear

ANN is not more powerful than a single-layer linear ANN (H. B. Demuth and M. Beale

1994, p.4)31).

A two-layer ANN having Si neurons with a log-sigmoid transfer function in the hidden

layer and S2 neurons with a log-sigmoid transfer function in the output layer is shown

in figure 5.11. The ANN can be trained, using an appropriate training set, to generate

reasonable output vectors for new, i.e. previously unseen, input vectors. Note that the

output of this ANN is restricted to the range (0,1), since the log-sigmoid transfer

function uses equation 5.12.

input 	log-sigmoid neuron layer 1

(Th(

nSlx J
Sixi

bl

R 	Slxl 	 Si

log-sigmoid neuron layer 2

a! 	 al
W2

Sl f

S2x1

b2

S2xl 	 S2

Figure 5.11 Two-layer Log-sigmoid ANN

Since the linear function is differentiable and monotonically increasing, neurons with

this type of transfer function can be employed, for example in conjunction with neurons

having log-sigmoid transfer function, in the output layer of multilayer feedforward

ANNs that are trained using the error-backpropagation algorithm. This enables the

ANN to output any value, rather than only values from a relatively small range generated

mule

by a sigmoid function. Figure 5.12 depicts a two-layer ANN having Si neurons with a

log-sigmoid transfer function in the hidden layer and S2 neurons with a linear transfer

function in the output layer.

Although this subsection refers to two-layer feedforward ANNs, the number of layers

may be increased to extend an ANN. Multilayer nonlinear ANNs, that are trained using

the error-backpropagation algorithm, can be applied to linearly separable and linearly

inseparable problems. As nonlinear ANNs may have more than one local error

minimum; the error-backpropagation algorithm, employing a gradient-descent

technique, may not always, dependent on the initial weights, find the global error

minimum. The number of hidden neurons has great effect on the performance of the

ANN. If the number of hidden neurons is too small, the ANN may not be able to learn

the information contained in the training set. If the number of hidden neurons is too

large, the ANN may not be able to generate a reasonable output vector for a new input

vector.

input 	log-sigmoid neuron layer 1 	 linear neuron layer 2

(Th

nbl 	

nS2x 	

I a2 I
I
	

Slxl

	'292

I

 nJ(

	 S2xl/i

R 	S1xl 	 Si 	S2x1 	 52

Figure 5.12 Two-layer Log-sigmoid Linear ANN

- 146-

5.5 	Artificial Neural Networks in Digital Image Compression

Over recent years numerous approaches have been proposed for employing ANNs in

digital image processing in general and digital image compression in particular. This

section outlines some of those techniques.

In predictive coding, multilayer feedforward ANNs can, unlike conventional predictors,

take advantage of nonlinear inter-element redundancies. In addition neural-network-

based predictors are less sensitive to noise than conventional predictors; see for example

(Z. He and H. Li 1990).

In direct block-based application of ANNs to digital image compression each block of

pixels extracted from the original image is interpreted as an input vector to a multilayer

feedforward ANN. The number of neurons in the output layer is identical to the number

of network inputs. The targets of the training set are identical to the corresponding

inputs. To achieve compression, the number of neurons in the hidden layer is smaller

than the number of network inputs; and the output precision of the neurons in the

hidden layer, that represent the encoded block, may be smaller than that of the network

inputs and neurons in the output layer. G. W. Cottrell et al. (1989) used a feedforward

ANN using error backpropagation. G. L. Sicuranza et al. (1990) reported similar work;

they introduced activity functions to classify each block, and to select one of four or six

ANNs for adaptive encoding (S. Marsi et al. 1991). D. Cai et al. (1992) utilized two

DCT-based activity functions to classify each block and to select one of four linear

ANNs of identical structure for encoding. D. Cai and M. Zhou (1992) employed a

statistical activity function to classify each block and to select one of two ANNs with

different ratios of network inputs and neurons in the hidden layer. F. Arduini et al.

- 147 -

(1992) used the intensity and direction of spatial activity to split an image into variable-

size blocks that are encoded by ANNs with appropriate number of network inputs and

neurons in the output layers, and varying ratios of network inputs and neurons in the

hidden layer. S. Carrato and S. Marsi (1992) proposed a parallel structure of ANNs

with different ratios of network inputs and neurons in the hidden layer. Each block is

concurrently processed by every ANN and the highest compression ratio to meet the

predefined SNR is chosen, thus implementing feedback.

In vector quantization, ANNs cluster vectors from the training set into representative

regions using competitive, i. e. unsupervised, learning. The weight vector of a neuron

resembles the codeword. To overcome unequal utilization of the neurons, the Kohonen

self-organizing feature map (KSOFM) defines a neighbourhood around the neuron that

wins during a learning step and updates that neighbourhood. Thus adjacent neurons

respond to similar input vectors. One or more ANNs are employed to efficiently design

the codebook. S. P. Luttrell (1989) employed neural-network-based vector quantization

for the compression of synthetic aperture (SAR) images. C. C. Lu and Y. H. Shin

(1992) designed separate codebooks for edge and background blocks. M. R. Carbonara

et al. (1992) designed equiprobable codebooks using frequency-sensitive competitive

learning. H. Lui and D. Y. Y. Yun (1992) compared different approaches and proposed

the near-optimal learning algorithm for achieving real-time vector quantization.

S. Panchanathan et al. (1992) suggested a combination of the error-backpropagation

algorithm and KSOFM for vector quantization.

Block truncation coding converts each block of pixels extracted from the original image

into mean, variance, and a binary pattern indicating whether each pixel lies above or

below the mean; see (R. J. Clarke 1995, pp. 175-177). G. Qiu et al. (1991) used a

EM

Hopfield network to obtain the binary pattern, and included a classification based on

block detail to implement adaptive compression (G. Qiu et al. 1993a); see also

(H. B. Mitchell and M. Dorfan 1992).

L. 0. Chua and T. Lin (1988) used a Hopfield network that receives spatial-domain

image data and outputs binary codes to perform transform coding thus combining

transform, quantization, and binary coding. H. Niemann and J. K. Wu (1993) used a

two-layer feedforward linear ANN within their adaptive image-coding scheme to obtain

the Karhunen-Loève transform.

Other neural-network-based digital-image-processing techniques may be exploited for

digital image compression. R. A. Hutchinson and J. W. Welsh (1989), and

C. Nightingale and R. A. Hutchinson (1990) considered ANNs for feature location.

C. C. Klimasauskas (1990) used an ANN for edge detection. G. Qiu et al. (1993b)

employed several multilayer feedforward ANNs for edge pattern learning for digital

image compression. J. A. Parikh et al. (1990) reported on edge and line detection, and

texture analysis using ANNs. H. Niemann and J. K. Wu (1993) devised an adaptive

image coding scheme that uses neural-network-based texture classification to select a

dedicated coding scheme. Image segmentation has attracted considerable attention;

N. R. Pal and S. K. Pal (1993) included ANN-based approaches in their review of

segmentation techniques. M. Mattavelli et al. (1995) built on earlier work (B. Macq

et al. 1994) and applied ANNs to human-visual-system-based image restoration. The

decoded image that is affected by coding noise is decomposed into perceptual channel

components and processed pixel by pixel. Hence the number of network inputs is, in

contrast to other approaches, governed only by the number of perceptual channel

components.

- 149-

N. P. WaJker et al. (1994) described the compression of single and multiple, i.e. moving

or 3-D, images using multilayer feedforward ANNs and KSOFMs. S. G. Romaniuk

(1994) suggested automatic construction of ANNs for lossless image compression,

instead of training ANNs of predetermined architecture. R. J. Clarke (1995, p. 224)

pointed out that ANNs can be employed in any overall scheme that incorporates a stage

of optimization, for example of prediction coefficients, codebooks, and transform

coefficients.

5.6 	Summary

Artificial neural networks; consisting of a large number of simple processing elements,

i.e. neurons; are computational systems that are massively parallel and adaptive, i.e.

trainable. During learning the structure and the parameters of the ANN can be modified

so that it adapts to its task. ANNs are usually arranged in layers each of which consists

of identical neurons. A simplified neuron consists of a propagation function; that

generates the net input from inputs, weights, and bias; and transfer function; that

determines the output of the neuron from the net input. A number of propagation and

transfer functions have been defined. Different strategies, for example supervised and

unsupervised learning, are available for learning. For supervised learning the training

set contains, in addition to the input set, a target set that represents the desired outputs.

ANNs can be simulated in software and implemented in hardware.

The error-backpropagation algorithm uses a gradient-descent technique to minimize the

cost function E that may have more than one local error minimum. Dependent on the

initial weights the error-backpropagation algorithm may not always find the global error

minimum. However, it is capable of training multilayer feedforward networks

- 150-

consisting of neurons with differentiable and monotonically increasing transfer

functions.

- 151 -

Chapter 6

Neural-network-based
Block Classification

	

6.1 	Introduction

This chapter describes classification of blocks of transform coefficients in a JPEG-like

image-compression scheme. The classification determines, using an artificial neural

network (ANN), the dimensions of a sub-block to be encoded. The classification

processing step precedes adaptive zigzag reordering, described in chapter 4, in the

encoder. Since the generated sub-block does not necessarily include all nonzero

coefficients, the conversion of a block of coefficients is, in some cases, lossy.

Section 6.2 focuses on quantization of transform coefficients, used in the DCT-based

method of the JPEG standard as introduced in chapter 3.

Section 6.3 describes neural-network-based determination of sub-block dimensions.

Section 6.4 compares zigzag reordering with neural-network-based classification with

standard as well as adaptive zigzag reordering using experimental results. Finally

section 6.5 concludes the chapter with a brief summary.

	

6.2 	Quantization of Transform Coefficients

The quantization processing step employed in the DCT-based method of the JPEG

standard is shown in figure 6.1. Each coefficient S(v, u) in the 8 x 8 block of transform

coefficients represents a DCI frequency; see subsection 3.4.3.

The quantization step sizes Q(v,u) are contained in a quantization table, and can be set

individually for each DCT coefficient. Although only coefficients of the Fourier

transform correspond directly to spatial frequency, visual thresholds can be determined

for the DCT coefficients; see (H. Lohscheller 1984; and N. B. Nill 1985). For

- 153 -

quantization step sizes below corresponding visual thresholds, the human visual system

should not be able to detect any difference between the reconstructed blocks of samples

using unquantized and dequantized DCT coefficients (W. B. Pennebaker and

J. L. Mitchell 1992, p. 35).

5(0,0) 5(0,1) . 	5(0,7) 	 Sq(0,0) Sq(0,1) . 	Sq(0,7)

50,0) 5(1,1) . 	5(1,7) 	quantization 	Sq(1,0) Sq(1,1) . 	Sq(l,7)

S(v,u) . 	 . 	. 	Sq(v,u)

5(7,0) 5(7,1) . 	5(7,7) 	 Sq(7,0) Sq(7,l) . 	Sq(7,7)
DCT coefficients 	 quantized DCT coefficients

[I
Q(0,0) Q(0,1) . 	Q(0,7)

Q(1 10) Q(1 11) . 	Q(1,7)

Q(v,u)

Q(7,0) Q(7,1) . 	Q(7,7)
quantization table

Figure 6.1 Quantization

While the transform processing steps cannot be computed with perfect accuracy, it is the

quantization processing step in the DCT-based method of the JPEG standard that is

specifically designed to achieve compression at the expense of accuracy. It corresponds

to spatial filtering in the human visual system; see subsection 2.4.2.

6.3 	Block Classification

6.3.1 	Motivation for Block Classification

The JPEG standard for the DCT-based method accommodates up to four

8 x 8 quantization tables for processing images with up to 255 components. However,

since a quantization table must be globally used for all blocks of an image component,

-154-

local changes in block content cannot be taken into account. Hence spatial masking

cannot be exploited.

Block classification assesses a block of transform coefficients, and generates the

dimensions of a sub-block to be retained. Since the classification processing step

processes each block individually; it takes block content, i.e. the contribution of every

coefficient, into account.

Adaptive zigzag reordering, described in chapter 4, performs lossless conversion;

however isolated nonzero coefficients in a block of transform coefficients diminish the

effectiveness of this processing step, since retaining isolated nonzero coefficients also

requires that a large number of otherwise unnecessary zero coefficients are included in a

sub-block. However, if the contribution of an isolated coefficient to reconstruction is

found to be expendable, a significantly smaller sub-block may be retained. Note that the

additional reconstruction error is limited to the corresponding block of samples. Hence

the classification processing step assists, during encoding, the succeeding adaptive-

zigzag-reordering processing step. Although isolated nonzero coefficients could be

individually removed, the decision to sacrifice an isolated coefficient should take the

contributions of all transform coefficients in a block into account.

The classification processing step is required in the encoder in order to generate the sub-

block dimensions for adaptive zigzag reordering. The classification processing step

employs a two-layer ANN that is trained using an error-backpropagation algorithm; see

subsections 5.4.6 and 5.4.7. This additional processing step increases the workload of

the encoder. However, the classification processing step is not required in the decoder.

- 155-

6.3.2 	Structure of the Artificial Neural Network

The classification processing step employs a feedforward ANN with 64 inputs and

64 outputs. The ANN consists of two trainable layers, i.e. hidden layer and output layer.

Figure 6.2 depicts the ANN during learning; the neurons in both layers have log-

sigmoid transfer functions; see equation 5.12. The hidden layer consists of

256 neurons. This number has been determined experimentally, and is a compromise

between classification performance and network complexity.

input 	 hidden layer 	 output layer

 >256

6

1 64xl

	

 Wl 	
11_2561

a! 	 I a2

	

64x1 I
256x64

H hi 	

256x1

-- 	H

64 	256x1 	 256 	Mx! 	 64

Figure 6.2 ANN for Block Classification during Learning

Figure 6.3 depicts the ANN during forward propagation, i.e. block classification; since

the error-backpropagation algorithm is not being applied, the output layer produces valid

and most appropriate i-in-64 codes using the competitive transfer function that

transforms the net-input vector of a layer of neurons so that the neuron receiving the

greatest net input has an output of one and all other neurons have outputs of zero; see

(II. B. Demuth and M. Beale 1994, pp. 13/17-13/18).

- 156-

input 	 hidden layer 	 output layer

	

 T64x256

pI256x64

ni
	 n2

c64Tl

I a2
wl

64x1 I

bi 	 256x11 	Mxli

64 	256x1 	 256 	64x1 	 64

Figure 6.3 ANN for Block Classification during Forward Propagation

6.3.3 	Network Inputs

Since every coefficient is to be taken into account, the number of inputs is determined

by the block dimensions. A 64-element input vector is required for 8 x 8 blocks as

defined by the JPEG standard for the DCT-based method.

The coefficients are not directly presented to the ANN. Note that 8-bit precision image

samples transform to 11-bit precision DCT coefficients in the range [-1023,1023]. In

order to homogenize network inputs, amplitudes of the DCT coefficients are classified

according to their magnitude categories in JPEG; see table 3.4; and the classifications

are normalized, i.e. divided by the maximum value within each block. The network

inputs therefore receive input vectors representing blocks of normalized amplitude

classifications, each of which is in the range [0,1].

As an example, figure 6.4 depicts an 8 x 8 block of transform coefficients. Note that

the block requires a 5 x 6 sub-block for lossless conversion; however, discarding the

coefficient of value one at position (5,6) would generate a smaller 4 x 5 sub-block that

could be zigzag-reordered more efficiently.

- 157-

-26 —3 —6 2 2 0 0 0

1 —2 —4 0 0 0 0 0

—3 1 5 —1 —1 0 0 0

—4 1 2 —1 0 0 0 0

00000100

00000000

00000000

0 0000000

Figure 6.4 Example of 8 x 8 Block of Transform Coefficients

The corresponding 8 x 8 block of amplitude classifications is shown in figure 6.5. Note

that the classifications are unsigned, and that larger magnitudes are de-emphasized due

to the approximately logarithmically increasing magnitude categories.

5 2 3 2 2 0 0 0

12300000

21311000

31210000

00000100

00000000

00000000

00000000

Figure 6.5 Example of 8 x 8 Block of Amplitude Classifications

Figure 6.6 depicts the resulting 8 x 8 block of normalized amplitude classifications that

builds a 64-element input vector.

1.0 0.4 0.6 0.4 0.4 0.0 0.0 0.0
0.2 0.4 0.6 0.0 0.0 0.0 0.0 0.0
0.4 0.2 0.6 0.2 0.2 0.0 0.0 0.0
0.6 0.2 0.4 0.2 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Figure 6.6 Example of 8 x 8 Block of Normalized Amplitude Classifications

	

6.3.4 	Network Outputs

A 64-element output vector is required to identify directly all 64 possible sub-block

dimensions using a simple 1-in-64 binary code; i.e. the vector has a one in the position

of the sub-block dimensions that it represents, and zeros elsewhere. This code, although

requiring 64 neurons, allows competitive selection of one output neuron, and has found

to be more reliable than other codes; for example a 6-bit natural binary code that would

require only six output neurons. However, note that the number of outputs could be

reduced when the number of sub-block dimensions is limited; or when the sub-block

dimensions, i.e. number of rows and number of columns, are coded separately. The log-

sigmoid transfer function, employed during learning, is differentiable and monotonicaily

increasing. Its output range is restricted to the range (0,1); and is, therefore,

appropriate for learning to output binary values (H. B. Demuth and M. Beak 1994,

p. 11/42).

	

6.3.5 	Learning

Before the ANN is employed in forward propagation for classification of blocks of

transform coefficients, i.e. to determine the dimensions of sub-blocks, its weights are

- 159-

adjusted during learning to suit the classification task. The ANN is trained using the

error-backpropagation algorithm described in subsection 5.4.6. The weight matrices and

bias vectors are initialized with 'random' numbers. Learning is carried out in two

phases each of which uses batch training.

During the initial learning phase the ANN is trained on 64 idealized training pairs that

correspond to the 64 possible sub-block dimensions. For each input vector in the

training set, all elements that belong to a sub-block are set to one, and the elements that

are outside the sub-block are set to zero. The corresponding target vectors contain the

1 -in-64 codes that identify the appropriate sub-block dimensions. Note that the input

vectors and the output vectors form input matrix and target matrix respectively. The

initial learning phase adjusts the weights and biases towards the classification task using

a smaller training set.

During the further learning phase the input matrix contains, in addition to the

64 idealized input vectors, 580 input vectors that have been derived from the images

shown in appendix B; the target matrix consists of the appropriate code vectors. The

580 additional input vectors represent ten selected examples for each of 58 sub-block

dimensions. However, for six of the 64 possible sub-block dimensions; namely 5 x 1,

6x1, 7x1, 8x1, 8x2, and lx7; suitableexamples havenotbeen derived fromthe

images. The generation of the authentic training pairs is described in subsection 6.4.2.

The small number of idealized training pairs supports the ability of the ANN to classify

ideal input vectors and input vectors that correspond to sub-block dimensions for which

training pairs have not been available.

- 160-

6.4 	Experimental Results

6.4.1 	Implementation

The neural network has been implemented, and experimental results have been obtained

using MATLAB (MathWorks 1994) and its Neural Networks Toolbox (H. B. Demuth

and M. Beale 1994). The transform-coefficient matrices have been generated using the

Independent JPEG Group's software (Independent JPEG Group 1996). The quality

setting q controls scaling of the quantization tables; see subsection 3.4.4. The

experimental results have been produced for quality settings in the range from 10 ('poor'

quality) to 90 ('good' quality). Appendix E contains the original images used for

experimentation.

6.4.2 	Authentic Training Pairs

The authentic training pairs have been generated by subjective classification of the

8 x 8 blocks of normalized amplitude classifications. The blocks have been studied, and

the sub-block dimensions have been chosen so that most of the nonzero normalized

amplitude classifications are contained in the sub-block, and only some of the smaller

normalized amplitude classifications are excluded. The sub-block dimensions of the

block of normalized amplitude classifications shown in figure 6.6, for example, would

be 4x 5. Blocks of normalized amplitude classifications that have been difficult to

classify have been excluded from classification. The input matrix of the training set has

been built from a selection of classified blocks, and the target matrix has been generated

from the 1-in-64 codes of the corresponding sub-block dimensions.

- 161 -

The image Lena with a spatial resolution of 256 x 256 pixels has been used with quality

settings q = 75 and q = 90, and the image Cameraman has been used with quality

setting q = 90 to produce 3072 blocks of normalized amplitude classifications. From

these blocks 229 blocks have not been classified, and 580 blocks have been selected to

give 10 examples for each of 58 sub-block dimensions found in the images.

6.4.3 	Learning

The initial learning phase has lasted for 5000 epochs, and the learning rate has been set

to 0.01. Figure 6.7 depicts the mean-square error (MSE) per training pair over the

course of the initial learning phase. Note that the MSE per pair allows direct

comparisons of learning using training sets with different numbers of training pairs.

The initial error caused through the intialization with 'random' numbers has been found

to be about 16. During approximately the first 2800 epochs the MSE per pair decreases

from 1 to 0.1. After 5000 epochs the MSE per pair reaches about 0.024.

10

0.01

0 	1000 	2000 	3000 	4000 	5000

Epochs

Figure 6.7 MSE per Training Pair versus Epochs during Initial Learning Phase

- 162-

The further learning phase has lasted for 30000 epochs, and the learning rate has been

set to 0.01. Figure 6.8 depicts the MSE per pair over the course of the further learning

phase. The initial error of about 0.9 is caused through the additional training pairs.

After 10000, 20000, and 30000 epochs the MSE per pair reaches about 0.085, 0.07 1,

and 0.065 respectively.

10

41
LU
Cd)

[11*11
0 	 10000 	 20000 	 30000

Epochs

Figure 6.8 MSE per Training Pair versus Epochs during Further Learning Phase

6.4.4 	Classification

The entropies of the runs of zero coefficients for zigzag reordering with neural-network-

based classification, standard zigzag reordering, and adaptive zigzag reordering have

been evaluated over the given range of quality settings and are presented versus the

peak-signal-to-noise ratio (PSNR). The ANN used for block classification employs the

weight matrices and bias vectors that have been obtained after 30000 epochs.

Figures 6.9 and 6.10 depict the entropies for the image Lena with a spatial resolution of

512 x 512 pixels and 256 x 256 pixels respectively. Note that the PSNR generally

- 163 -

increases with increasing quality selling q. Figures 6.11 and 6.12 depict the entropies

for the images Cameraman with a spatial resolution of 256 x 256 pixels, and F-16 with

a spatial resolution of 512 x 512 pixels respectively. Note that, for a given quality

setting and therefore the same PSNR, adaptive zigzag reordering featuring lossless

conversion always produces a lower entropy of the runs of zero coefficients than

standard zigzag reordering. However, zigzag reordering with neural-network-based

classification featuring lossy conversion produces even lower entropies. These

particular weight matrices and bias vectors lead to entropies below 1 bit.

2.0

1.5

4-è

-o

1.0
0

LL

0.5

—WI
24 	26 	28 	30 	32 	34 	36 	38 	40 42 	44

PSNR, dB
-Lx--- Standard Zigzag Reordering 	-U- Adaptive Zigzag Reordering

)< 	Zigzag Reordering with Classification, 30000 Epochs

Figure 6.9 Entropy of Runs of Zero Coefficients versus Peak-signal-to-noise Ratio,

Lena 512x512

IF

2.0

1.5
'do
4...

.0

LO

LU

0.5

-! 	 I 	 I I 	 I 	 I 	 I 	 p

24 	26 	28 	30 32 	34 	36 	38 	40 	42 	44

PSNR, dB
fr— Standard Zigzag Reordering 	—0— Adaptive Zigzag Reordering
)(Zigzag Reordering with Classification, 30000 Epochs

Figure 6.10 Entropy of Runs of Zero Coefficients versus Peak-signal-to-noise Ratio,

Lena 256x256

2.0

1.5
i5iL. :• :.• =•-._ _-

.0

1.0

LU

fi
u.Lj

n
 I

I
 I 	 I 	 I 	 I 	 I 	 I 	 I

24 	26 28 	30 	32 	34 	36 	38 	40 	42 	44

PSNR, dB
—ó-- Standard Zigzag Reordering 	tJ 	Adaptive Zigzag Reordering

)< 	Zigzag Reordering with Classification, 30000 Epochs

Figure 6.11 Entropy of Runs of Zero Coefficients versus Peak-signal-to-noise Ratio,

Cameraman 256 x 256

- 165 -

1.5
en
4-a

.0

Q. 1.0
0

-IJ

—WI

24 	26 	28 	30 	32 	34 	36 	38 	40 	42 	44

PSNR, dB

-ó-- Standard Zigzag Reordering 	—0— Adaptive Zigzag Reordering
)(Zigzag Reordering with Classification, 30000 Epochs

Figure 6.12 Entropy of Runs of Zero Coefficients versus Peak-signal-to-noise Ratio,

F-16 512 x512

Since some coefficients are discarded through the classification processing step, zigzag

reordering with neural-network-based classification requires a higher quality setting in

order to achieve the same PSNR as standard zigzag reordering. For a given PSNR the

subjective image qualities of zigzag reordering with neural-network-based classification

and standard zigzag reordering are similar. As an example, figure 6.13 and figure 6.14

depict the image Lena with a spatial resolution of 512 x 512 pixels for standard zigzag

reordering and quality setting q = 65; and zigzag reordering with neural-network-based

classification and setting q = 85 respectively. Note that the corresponding PSNRs are

36.81 dB and 36.77dB respectively.

-166-

•1

y2' 	oSff

•

/

IS

(id
-'

4 	 jr

/1

Reproduced by Special Permission of Playboy magazine.
© 1972 by Playboy.

Figure 6.14 Decoded Block-classified Image, Lena 512 x 512, q = 85

It has been found that the block classification produces similar results with ANNs

employing weight matrices and bias vectors that have been obtained after 10000, 20000,

and 30000 epochs. As a typical example, figure 6.15 shows the entropies of the runs of

zero coefficients for image Lena with a spatial resolution of 512 x 512 pixels using

zigzag reordering with neural-network-based classification for weight matrices and bias

vectors obtained after 10000, 20000, and 30000 learning epochs. Although the MSE per

pair reduces during learning from 0.085 after 10000 epochs to 0.065 after 30000 epochs,

n

the entropies are only slightly reduced for quality settings in the range [10,45], and

show little difference for quality settings in the range [50,90].

-o

0.
C

0.7
LL

LI

24 	26 	28 	30 	32 	34 	36 	38 	40 42 	44

PSNR,dB
-* 	Zigzag Reordering with Classification, 10000 Epochs
-G- Zigzag Reordering with Classification, 20000 Epochs

>(Zigzag Reordering with Classification, 30000 Epochs

Figure 6.15 Entropy of Runs of Zero Coefficients versus Peak-signal-to-noise Ratio,

Different Weight Matrices and Bias Vectors, Lena 512 x 512

6.5 	Summary

Block classification assesses a block of transform coefficients, and generates the

dimensions of a sub-block to be retained; it takes block content, i.e. the contribution of

every coefficient, into account. Therefore, if the contribution of an isolated coefficient

to reconstruction is found to be expendable, a significantly smaller sub-block may be

retained.

- 169-

The classification processing step is only required in the encoder in order to determine

the sub-block dimensions for adaptive zigzag reordering. The additional processing step

increases the workload of the encoder.

The classification processing step employs a feedforward ANN with 64 inputs and

64 outputs. A 64-element input vector is required for 8 x 8 blocks as defined by the

JPEG standard for the DCT-based method. In order to homogenize network inputs, the

coefficients are represented through their normalized amplitude classifications.

A 64-element output vector is required to identify directly all 64 possible sub-block

dimensions using a simple 1-in-64 binary code. The ANN consists of two trainable

layers, i.e. hidden layer and output layer, and is trained using an error-backpropagation

algorithm. During learning the neurons in both layers have log-sigmoid transfer

functions. During forward propagation, the transfer function in the output layer is

replaced with the competitive transfer function.

Learning is carried out in two phases each of which uses batch training. During the

initial learning phase the ANN is trained for 5000 epochs on 64 idealized training pairs

that correspond to the 64 possible sub-block dimensions. During the further learning

phase the ANN is trained for 30000 epochs on the 64 idealized and 580 input authentic

training pairs. For six of the 64 possible sub-block dimensions suitable examples have

not been derived from the images.

The authentic training pairs have been generated by subjective classification of the

8 x 8 blocks of normalized amplitude classifications from three images. The input

matrix of the training set has been built from a selection of classified blocks, and the

target matrix has been generated from the 1-in-64 codes of the corresponding sub-block

dimensions.

Zigzag reordering with neural-network-based classification featuring lossy conversion

produces lower entropies than standard zigzag reordering and adaptive zigzag

reordering. Since some coefficients are discarded through the classification processing

step, a higher quality setting is required in order to achieve the same PSNR as produced

by standard zigzag reordering and adaptive zigzag reordering.

These particular weight matrices and bias vectors lead to entropies below 1 bit.

Although the MSE per pair reduces during learning from 0.085 after 10000 epochs to

0.065 after 30000 epochs, the entropies are only slightly reduced for quality settings in

the range [10,45], and show little difference for quality settings in the range [50,90].

- 171 -

Chapter 7

Conclusions and
Recommendations for

Further Work

	

7.1 	Introduction

This chapter draws conclusions and provides recommendations for further work.

Section 7.2 summarizes the contributions to knowledge described in this thesis.

Section 7.3 offers recommendations for further research directions with respect to the

contributions made.

	

7.2 	Summary and Conclusions

Digital image compression, dating back to the late 1940s, exploits different forms of

data redundancy; namely coding, interpixel, and psychovisual redundancy; in order to

reduce storage and transmission requirements in digital image processing. If the

reconstructed image is numerically identical to the original image, the employed

compression technique is lossless. If the reconstructed image approximates the original

image, the employed compression technique is lossy. A large variety of compression

techniques; for example Huffman coding, mn-length coding, predictive coding,

transform coding, and vector quantization; has evolved over the years. The main

advantage of transform coding is that it processes images in a similar maimer to the

human visual system.

The JPEG standard for the DCT-based method, that was aimed to boost the utilization

of digital images in general-purpose computer systems, is now a well-established lossy

technique that combines transform coding, quantization, run-length coding, and entropy

coding. It is the combination of several processing steps that makes this technique

superior to those techniques that address only a single redundancy.

- 173 -

Since the amount of image data being collected, processed, stored, and transmitted

increases rapidly due to higher utilization, new applications, and higher standards,

digital image compression remains a key technology. As the limits of techniques

exploiting coding and interpixel redundancies have been reached, the move towards

perceptual coding exploiting psychovisual redundancy, i.e. properties of the human

visual system, is natural in attempting to reduce bit rates.

Work on artificial neural networks also dates back to the 1940s. Compared to

conventional computational systems; artificial neural networks, consisting of a number

of simple processing units, are massively parallel and adaptive. ANNs have the ability

to learn by example. A variety of network architectures, for example feedforward

networks and Kohonen self-organizing feature maps, has been developed; and feasible

applications begin to emerge. The multilayer feedforward ANN trained using the error-

backpropagation algorithm has attracted most interest.

The work presented in this thesis addresses aspects of coding of coefficients that are

present, for example, in the JPEG standard for the DCT-based method. The statistics

for entropy coding after coefficient reordering are analysed, and adaptive zigzag

reordering, a novel versatile technique that achieves efficient reordering by processing

variable-size rectangular sub-blocks of coefficients, is developed. Classification of

blocks of DCT coefficients using a two-layer feedforward ANN prior to adaptive zigzag

reordering is investigated.

The main original contributions to knowledge described within this thesis are:

An analysis of the entropies of runs of zero coefficients for coefficient reordering

along fixed and adaptive zigzag scan paths for images with different spatial

- 174-

resolutions and JPEG quality settings that establishes the benefits of addressing

the symbol statistics for entropy coding rather than assuming a model with

increasingly probable zero coefficients. Such an analysis has not previously been

published.

The development of Boolean expressions and a binary decision tree to implement a

versatile zigzag-reordering algorithm; that determines the scan paths 'on the fly',

and removes the necessity to derive and provide scan paths for all required sub-

block dimensions in advance. The versatile algorithm for adaptive zigzag

reordering has been presented as a paper at an international symposium; see

(H. J. Grosse et al. 1997c) in appendix H.

• 	The development of a hardware implementation of the versatile zigzag-reordering

algorithm to investigate and to demonstrate the feasibility of such an

implementation. The hardware implementation of the versatile zigzag-reordering

algorithm has been presented as a paper at an international conference; see

(H. J. Grosse et al. 1997b) in appendix H.

The development of a coding scheme that takes the scan-path length into account

to provide efficient coding of the sub-block dimensions, that need to be retained in

order to traverse the zigzag scan path correctly during decoding. Such a scheme

has not previously been published.

The development of classification of blocks of transform coefficients, using a

two-layer feedforward ANN, to discard expendable nonzero transform

coefficients, and to determine the sub-block dimensions prior to adaptive zigzag

reordering. The block classification using an ANN prior to adaptive zigzag

reordering has been presented as a paper at a colloquium; see (H. J. Grosse et al.

1997a) in appendix H.

- 175 -

Note that the entropy-coding processing steps in the JPEG standard for the DCT-based

method utilize an intermediate sequence of symbols. Since each run of zero coefficients

is combined with the magnitude category of the succeeding nonzero coefficient to form

a symbol, the reduction in entropy of runs of zero coefficients that has been achieved

through adaptive zigzag reordering can be only partially exploited. In addition, the

standard specifies a maximum length of codewords of 16 bits, that can limit the

effectiveness of the Fluffman coding. However, for lossless conversion using adaptive

zigzag reordering and coding of sub-block dimensions, an overall reduction in bit rate of

3 % to 4 % has been achieved for the four grey-scale images with all quality settings

used during informal tests. Note that two streams have been stored separately; and only

one codebook has been derived from a range of images and quality settings, and used for

coding of sub-block dimensions.

Zigzag reordering with neural-network-based classification further reduces the entropy

of runs of the zero coefficients. However, since some coefficients are discarded through

the classification processing step; naturally a higher quality setting, i.e. finer

quantization of coefficients, is required in order to achieve the same objective image

quality.

The JPEG standard for the DCT-based method provides a framework for digital

compression of continuous-tone still images that provides flexibility, for example four

modes of operation and user-specifiable quantization tables; but does not support

adaptation to content changes within the image or its components. Although

enhancements, for example image-dependent perceptually optimum quantization tables

and perceptual prequantization, that maintain JPEG-compatible image data streams were

suggested, the standard is inherently non-adaptive.

- 176 -

The work presented in this thesis takes a new approach, and supports an adaptive

framework. For lossless conversion, zigzag-reordered sub-blocks must contain all

nonzero coefficients; however, if coefficients are found to be expendable, smaller sub-

blocks may be retained. It has been shown that adaptive zigzag reordering represents the

retained coefficients more compactly. The block classification processing step allows

different strategies to be implemented for the determination of the sub-block

dimensions.

7.3 	Reconunendations for Further Work

Naturally, digital image processing moves towards higher spatial resolution and colour

imaging. Although the total amount of image data increases rapidly, this development

leads to lower bit rates; since increasing the number of pixels for a given image size

increases the interpixel redundancy, and chrominance can be coded more efficiently

than luminance; compare for example tables C. 1 and C.2 in appendix C. In addition,

the relative overhead per pixel caused by an overhead of fixed size, for example the

quantization tables in the JPEG standard for the DCT-based method, decreases as the

number of pixels increases. It is therefore suggested that further work in general

encompasses colour images of increased spatial resolution.

Adaptive zigzag reordering employs the versatile zigzag-reordering algorithm to

generate a zigzag scan path that is tailored to the dimensions of a sub-block. However,

the ratio between the row dimension and column dimension is not currently taken into

account; see for example figure 7.1. Note that the direction of movement at the first

position is always to the right as long as the number of columns is greater than one.

- 177-

(a) (b)

Figure 7.1 Zigzag Scan Path for (a) 3 x 6, and (b) 6 x 3 Sub-blocks

The effect of different reordering algorithms on the entropy of the runs of zero

coefficients could be investigated. As an example, figure 7.2 depicts two zigzag scan

paths where the direction of movement at the first position, and hence the complete scan

path, is influenced by the larger dimension.

/Z
(a)
	

(b)

Figure 7.2 New Zigzag Scan Path for (a) 3 x 6, and (b) 6 x 3 Sub-blocks

Coding of the sub-block dimensions is based on the scan-path length. One set of

14 codewords is used for all scan-path lengths. Codewords are separately allocated for

every scan-path length. The codebook design could be investigated with regard to the

- 178-

distribution of the sub-block dimensions; see figure 4.9. Since, the distribution of the

sub-block dimensions depends on the JPEG quality setting, this additional parameter

could also be taken into account.

The JPEG standard requires synchronous operation, i.e. encoding and shortly delayed

decoding at comparable speeds, and thus similar encoder and decoder complexity; but

permits nonsynchronous mode of encoding if significant performance advantages are

feasible. Note that, due to the variety of computer systems, encoders and decoders of

similar complexity may operate at very different speeds. Although synchronous

operation is an important feature of a general-purpose digital-image-compression

scheme, an increasing number of applications relates to non-real-time one-to-many

distribution of digital images via, for example, CD (compact disc) and the Internet

where significant performance advantages may justify an increased encoder complexity.

In recommending further work, a more detailed study into the design of encoders could

be undertaken using adaptive zigzag reordering in the underlying framework.

In particular, the classification processing step, that determines the dimensions of a sub-

block to be encoded, could be investigated in more detail. Additional training sets,

taking subjective image quality into account, could be produced for different quality

settings. Modifications to the ANN; including preprocessing, structure, and learning;

could be investigated in more detail.

- 179-

Bibliography

Hbk and Pbk denote hardback and paperback respectively.

ACCEL. 1989a. Tango-PU): reference manual. San Diego, California, USA. ACCEL

Technologies, Inc. 1989.

ACCEL. 1989b. Tango: evaluation guide featuring Tango-PU). San Diego, California,

USA. ACCEL Technologies, Inc. 1989.

AHMED, N., NATARAJAN, T., and RAO, K. R. 1974. Discrete cosine transform.

IEEE transactions on computers. New York, New York, USA. The Institute

of Electrical and Electronic Engineers, Inc. Jan. 1974. vol. C-23, no. 1.

ISSN 0018-9340. pp. 90-93.

AMARI, Shun-Ichi. 1990. Mathematical foundations of neurocomputing. Proceedings

of the IEEE. vol. 78, no. 9, Sep. 1990. pp. 1443-1463.

ANDERSON, James A., and ROSENFELD, Edward (eds). 1988. Neurocomputing:

foundations of research. London, UK. Cambridge, Massachusetts, USA.

The MIT Press. Jan. 1988. ISBN 0-262-01097-6.

ANDERSON, James A., PELIONISZ, A., and ROSENFELD, Edward (eds). 1990.

Neurocomputing 2: directions of research. London, UK. Cambridge,

Massachusetts, USA. The MIT Press. Apr. 1990. ISBN 0-262-51048-0.

Apple Computer. 1995. All about ColorSync 2.0. Cupertino, California, USA. Apple

Computer, Inc. May 1995.

Apple Computer. 1996. How to create color profiles for ColorSync 2.0. Cupertino,

California, USA. Apple Computer, Inc. 1996.

ARDUINI, Fabio, FIORAVANTI, Stefano, and GIUSTO, Daniele D. 1992. Adaptive

image coding using multilayer neural networks. In: IEEE. 1992.

ICASSP-92: 1992 IEEE international conference on acoustics, speech, and

signal processing. New York, New York, USA. The Institute of Electrical

and Electronic Engineers, Inc. Mar. 1992. vol. 2 of 5. Pbk

ISBN 0-7803-0532-9. pp. 38 1-384. Hbk ISBN 0-7803-0533-7. Microfiche

ISBN 0-7803-0534-5. 1992 IEEE international conference on acoustics,

speech, and signal processing in San Francisco, California, USA,

23-26 Mar. 1992.

CAl, Defu, and ZHOU, Ming. 1992. Adaptive image compression based on

backpropagation neural networks. In: CHEN, Su-Shing (ed.). 1992.

CM, Dejun, WANG, Wei, and WAN, Faguan. 1992. An unsupervised-neural-network

algorithm for image compression. In: CHEN, Su-Shing (ed.). 1992.

pp. 720-725.

CARBONARA, Matthew R., FOWLER, James E., and AHALT, Stanley C. 1992.

Compression of digital video data using artificial neural network differential

vector quantization. In: ROGERS, Steven K. (ed.). 1992. Pt 1 of 2.

pp. 422-433.

CARRATO, S., and MARS!, Stefano. 1992. Parallel structure based on neural networks

for image compression. Electronics letters. ASH, Eric A., and

CLARMCOATS, Peter J. B. (eds). Stevenage, UK. The Institution of

Electrical Engineers. 04 Jun. 1992. vol. 28, no. 12. ISSN 0013-5194.

pp. 1152-1153.

- 181 -

CHEN, Su-Shing (ed.). 1992. Neural and stochastic methods in image and signal

processing. Bellingham, Washington, USA. The International Society of

Photo-Opticaj Instrumentation Engineers. Jul. 1992. vol. 1766.

ISBN 0-8194-0939-1. Conference on neural and stochastic methods in

image and signal processing in San Diego, California, USA,

20-23 Jul. 1992.

CHTJA, L. 0., and LIN, T. 1988. A neural-network approach to transform image coding.

International journal of circuit theory and applications. SCANLAN, J. 0.

(ed.). Chichester, UK. John Wiley & Sons Ltd. Jul. 1988. vol. 16, no. 3.

ISSN 0098-9886. pp. 3 17-324.

CLARKE, Roger J. 1985. Transform coding of images. London, UK. San Diego,

California, USA. 	Academic Press and 	Harcourt 	Brace 	Jovanovich,

Publishers. Nov. 1985. Pbk ISBN 0-12-175731-5. 	Hbk

ISBN 0-12-175730-7.

CLARKE, Roger J. 1995. Digital compression of still images and video. London, UK.

San Diego, California, USA. Academic Press and Harcourt Brace &

Company, Publishers. 1995. Hbk ISBN 0-12-175720-X.

CONSTANTINESCU, Comel, and STORER, James A. 1994. Improved techniques for

single-pass adaptive vector quantization. Proceedings of the IEEE. vol. 82,

no. 6, Jun. 1994. pp. 933-939.

COSMAN, Pamela C., OEFILER, Karen L., RISKIN, Eve A., and GRAY, Robert M.

1993. Using vector quantization for image processing. Proceedings of the

IEEE. New York, New York, USA. The Institute of Electrical and

Electronic Engineers, Inc. Sep. 1993. vol. 81, no. 9. ISSN 0018-9219.

pp. 1326-1341.

- 182-

COTFRELL, Garrison W., MUNRO, Paul, and ZIPSER, David. 1989. Image

compression by backpropagation: an example of extensional programming.

In: SHARKEY, N. B. (ed.). 1989. Models of cognition: a review of

cognitive science. Norwood, New Jersey, USA. Ablex Publishing

Corporation. Dec. 1989. ISBN 0-89391-528-9. pp. 208-240.

DEMUTH, Howard B., and BEALE, Mark. 1994. Neural network toolbox user's guide.

Natick, Massachusetts, USA. The MathWorks, Inc. Jan. 1994.

FOSTER, Barbara. 1996. Video microscopy: where Advanced Imaging readers say we

stand now. Advanced imaging. MAZOR, Barry (ed.). Melville, New York,

USA. Advanced Imaging, a division of PTN Publishing Co. Sep. 1996.

vol. 11, no.9. ISSN 1042-0711. pp. 58, 60, and 62.

FUHRMANN, Daniel R., BARO, John A., and COX, Jerome R. 1995. Experimental

evaluation of psychophysical distortion metrics for JPEG-encoded images.

Journal of electronic imaging. DOUGHERTY, Edward R. (ed.).

Bellingham, Washington, USA. Springfield, Virginia, USA. The

International Society for Optical Engineering. The Society for Imaging

Science and Technology. Oct. 1995. vol. 4, no. 4. ISSN 1017-9909.

pp. 397-406.

GLENN, William E. 1993. Digital image compression based on visual perception and

scene properties. SMPTE journaL vol. 102, no. 5, May 1993. pp. 392-397.

133rd SMPTE technical conference in Los Angeles, California, USA,

27 Oct. 1991.

GONZALEZ, Rafael C., and WOODS, Richard E. 1992. Digital image processing.

3rd ed. Wokingham, UK. Reading, Massachusetts, USA. Addison-Wesley

- 183 -

Publishing Co. Jun. 1992. 	Hbk ISBN 0-201-50803-6. 	2nd ed.

ISBN 0-201-11026-1.

GRANRATH, Douglas J. 1981. The role of human visual models in image processing.

Proceedings of the IEEE. New York, New York, USA. The Institute of

Electrical and Electronic Engineers, Inc. May 1981. vol. 69, no. 5.

ISSN 0018-9219. pp. 552-561.

Stephen. 1976. Adaptive pattern classification and universal recoding: I.

parallel development and coding of neural feature detectors. Biological

cybernetics. Berlin, Germany. Springer-Verlag. 1976. vol. 23.

ISSN 0340-1200. pp. 121-134. Also in: ANDERSON, J. A., and

ROSENFELD, E. (eds). 1988. pp. 245-258.

GROSSBERG, Stephen. 1980. How does a brain build a cognitive code?. Psychological

review. ESTES, William K. (ed.). Washington, District of Columbia, USA.

American Psychological Association, Inc. Jan. 1980. vol. 87, no. 1.

ISSN 0033-295X. pp. 1-5 1. Also in: ANDERSON, J. A., and

ROSENFELD, B. (eds). 1988. pp. 349-400.

HABIBI, Ali. 1977. Survey of adaptive image-coding techniques. IEEE transactions on

communications. vol. COM-25, no. 11, Nov. 1977. pp. 1275-1284.

HAGAN, Martin T., DEMUTH, Howard B., and BEALE, Mark. 1996. Neural network

design. BARTER, Bill (ed.). Boston, Massachussetts, USA. London, UK.

PWS Publishing Company, a division of International Thomson Publishing,

Inc. 1996. Hbk ISBN 0-534-94332-2.

HALL, Charles F., and HALL, Ernest L. 1977. A nonlinear model for the spatial

characteristics of the human visual system. IEEE transactions on systems,

man, and cybernetics. SAGE, Andrew P. (ed.). New York, New York, USA.

NESE

The Institute of Electrical and Electronic Engineers, Inc. Mar. 1977.

vol. SMC-7, no. 3. ISSN 0018-9472. pp. 161-170.

HALL, Graham, and TERRELL, Trevor James. 1987. Low-cost microprocessor-based

image-processing system. Microprocessors and microsystems. Guildford,

UK. Butterworth Science Ltd for Butterworth & Co. (Publishers) Ltd.

Dec. 1987. vol. 11, no. 10. ISSN 0141-933 1. pp. 534-540.

HE, Zhenya, and LI, Haibo. 1990. Nonlinear predictive image coding with a neural

network. In: IEEE. 1990. ICASSP-90: 1992 IEEE international conference

on acoustics, speech, and signal processing. New York, New York, USA.

The Institute of Electrical and Electronic Engineers, Inc. Apr. 1990. vol. 2

of 5. pp. 1009-1012. 1990 IEEE international conference on acoustics,

speech, and signal processing in Albuquerque, New Mexico, USA,

03-06 Apr. 1990.

HEBB, Donald 0. 1949. The organization of behaviour. New York, New York, USA.

John Wiley & Sons, Inc. 1949. pp. xi-xix, and 60-78 also in: ANDERSON,

J. A., and ROSENFELD, E. (eds). 1988. pp. 45-56.

HOFFMANN, Norbert. 	1993. 	Kleines Handbuch neuronale Netze:

anwendungsorientiertes Wissen zum Lernen and Nachschlagen. Wiesbaden,

Germany. Vieweg Publishing. 1993. Hbk ISBN 3-528-05239-2.

HOPFIELD, John J. 1982. Neural networks and physical systems with emergent

collective computational abilities. Proceedings of the National Academy of

Sciences of the United States of America. Washington, District of Columbia,

USA. National Academy of Sciences of the United States of America.

Apr. 1982. vol. 79, no. 8. ISSN 0027-8424. pp. 2554-2558. Also in:

ANDERSON, J. A., and ROSENFELD, E. (eds). 1988. pp. 460-464.

- 185-

HOPFIELD, John J., and TANK, David W. 1985. Neural computation of decisions in

optimization problems. Biological cybernetics. Berlin, Germany. Springer-

Verlag. 1985. vol. 52, no. 3. ISSN 0340-1200. pp. 141-152.

HOWARD, Paul G., and V1'IlER, Jeffrey Scott. 1994. Arithmetic coding for data

compression. Proceedings of the IEEE. vol. 82, no. 6, Jun. 1994.

pp. 857-865.

HUFFMAN, David A. 1952. A method for the construction of minimum-redundancy

codes. Proceedings of the IRE. GOLDSMITH, Alfred N. (ed.). New York,

New York, USA. The Institute of Radio Engineers, Inc. Sep. 1952. vol. 40,

no.9. pp. 1098-1101.

HUSH, Don R., and HORNE, Bill G. 1993. Progress in supervised neural networks.

IEEE signal processing magazine. WAKEFIELD, Greg H. (ed.). New York,

New York, USA. The Institute of Electrical and Electronic Engineers, Inc.

Jan. 1993. vol. 10, no. 1. ISSN 1053-5888. pp. 8-39.

HUTCHINSON, Robert A., and WELSH, W. J. 1989. Comparison of neural networks

and conventional techniques for feature location in facial images. In: lEE.

1989. First fEE international conference on artificial neural networks.

London, UK. The Institution of Electrical Engineers. Oct. 1989. vol. 313.

ISBN 0-85296-388-2. pp. 201-205. First lEE international conference on

artificial neural networks in London, UK, 16-18 Oct. 1989.

WEE. 1994. ICASSP-94: 1994 IEEE international conference on acoustics, speech,

and signal processing. New York, New York, USA. The Institute of

Electrical and Electronic Engineers, Inc. Apr. 1994. vols 1-6. Pbk

ISBN 0-7803-1775-0. Hbk ISBN 0-7803-1776-9. Microfiche

ISBN 0-7803-1777-7. 1994 WEE international conference on acoustics,

n

speech, and signal processing in Adelaide, South Australia, Australia,

19-22 Apr. 1994.

IEEE transactions on communications. vol. COM-25, no. 11, Nov. 1977, monthly. New

York, New York, USA. The Institute of Electrical and Electronic Engineers,

Inc. ISSN 0090-6778.

IEEE transactions on consumer electronics. LUPLOW, Wayne C. (ed.). vol. 38, no. 1,

Feb. 1992, quarterly. New York, New York, USA. The Institute of Electrical

and Electronic Engineers, Inc. ISSN 0098-3063.

Independent JPEG Group. 1996. The Independent JPEG Group's software: C source

code, release 6a. [Online] Available ftp://ftp. simtel.net/pub/simtelnet/

msdos/graphics/jpegsr6a.zip. 07 Feb. 1996.

ISAACS, Alan (ed.). 1997. The Macmillan encyclopedia. 1997 edition. London, UK.

Macmillan Reference Books: a division of Macmillan Publishers Ltd. 1997.

Hbk ISBN 0-333-66296-2.

ISOIIEC 10918-1: 1994. Digital compression and coding of continuous-tone still

images, part 1: requirements and guidelines. Geneva, Switzerland.

International Organization for Standardization. 15 Feb. 1994.

ISOIIEC 10918-2:1995. Digital compression and coding of continuous-tone still

images, part 2: compliance testing. Geneva, Switzerland. International

Organization for Standardization. 1995.

ISOIIEC DIS 109 18-3. Digital compression and coding of continuous-tone still images,

part 3: extensions. Geneva, Switzerland. International Organization for

Standardization.

ISOIIEC DIS 109 18-4. Digital compression and coding of continuous-tone still images,

part 4: registration procedures for JPEG profile, APPn marker, and SPIFF

- 187-

profile ID marker. Geneva, Switzerland. International Organization for

Standardization.

JAIN, Anil K. 1981. Image data compression: a review. Proceedings of the IEEE. New

York, New York, USA. The Institute of Electrical and Electronic Engineers,

Inc. Mar. 1981. vol. 69, no. 3. ISSN 0018-9219. pp. 349-391.

JAYANT, Nikil, JOHNSTON, James D., and SAFRANEK, Robert J. 1993. Signal

compression based on models of human perception. Proceedings of the

IEEE. FAIR, Richard B. (ed.). Oct. 1993. vol. 81, no. 10. ISSN 0018-9219.

pp. 1385-1422.

KANDEL, Eric R., SCHWARTZ, J. H., and JESSELL, Thomas M. 1991. Principles of

neural science. 3rd ed. Appleton & Lange. 1991, Mar. 1993.

FRI :JtIi:Ms5IiItt1

KARUNASEKERA, Shanika A., and KINGSBURY, Nick G. 1995. A distortion

measure for blocking artifacts in images based on human visual sensitivity.

GIROD, Bernd (ed.). IEEE transactions on image processing. MUNSON,

D. C. (ed.). New York, New York, USA. The Institute of Electrical and

Electronic Engineers, Inc. Jun. 1995. vol.4, no. 6. ISSN 1057-7 149.

pp. 7 13-724.

KLIMASAUSKAS, Casimir C. 1990. Neural networks and image processing: finding

edges only a human eye can see. Dr. Dobb's journal. Redwood City,

California, USA. M&T Publishing, Inc. Apr. 1990. vol. 15, no.4.

ISSN 1044-789X. pp. 77-82, and 114-116.

KOHONEN, Teuvo. 1972. Correlation matrix memories. IEEE transactions on

computers. New York, New York, USA. The Institute of Electrical and

Electronic Engineers, Inc. Apr. 1972. vol. C-21, no. 4. ISSN 0018-9340.

Imm

pp. 353-359. Also in: ANDERSON, J. A., and ROSENFELD, E. (eds).

1988. pp. 174-180.

KUNT, Murat, IKONOMOPOULOS, Athanassios, and KOCHER, Michel. 1985.

Second-generation image-coding techniques. Proceedings of the IEEE.

MEDITCH, J. S. (ed.). New York, New York, USA. The Institute of

Electrical and Electronic Engineers, Inc. Apr. 1985. vol. 73, no. 4.

ISSN 00 18-92 19. pp. 549-574.

LABIT, C., and MARESCQ, J. P. 1986. Image coding by vector quantization in a

transformed domain. In: KUNT, Murat, and HUANG, T. S. (eds). 1986.

Image coding [1985]. Bellingham, Washington, USA. The International

Society of Photo-Optical Instrumentation Engineers. 1986. vol. 594.

ISBN 0-89252-629-7. pp. 106-110. Conference on image coding in Cannes,

France, 04-06 Dec. 1985.

LASHLEY, Karl S. 1950. In search of the engram. Society of Experimental Biology

symposium, no. 4: psychological mechanisms in animal behaviour.

Cambridge, UK. Cambridge University Press. 1950. pp. 454455, 468-473,

and 477480. Also in: ANDERSON, J. A., and ROSENFELD, E. (eds).

1988. pp. 59-64.

Lattice. 1996. Lattice data book Lattice. 1996. Lattice ISP Encyclopedia CD-ROM.

Hiliboro, Oregon, USA. Lattice Semiconductor Corporation. 1996.

Lattice. 1997. GAL16V8. [Online] Available http://www.latticesemi.com/cgi-

binllattice_list_files. Jan. 1997.

LEDLEY, Robert S. 1993. The processing of medical images in compressed format. In:

ACHARYA, Raj S., and GOLDGOF, Dmitry B. (eds). 1993. Biomedical

image processing and biomedical visualization. Bellingham, Washington,

EM

USA. The International Society of Photo-Optical Instrumentation Engineers.

Feb. 1993. vol. 1905, Pt 1 of 2. ISBN 0-8194-1138-8. pp. 677-687.

Conference on biomedical image processing and biomedical visualization in

San Jose, California, USA, 01-04 Feb. 1993.

LEGER, Alain, OMACI-II, Takao, and WALLACE, Gregory K. 1991. JPEG still picture

compression algorithm. Optical engineering. Bellingham, Washington,

USA. The International Society of Photo-Optical Instrumentation Engineers.

Jul. 1991. vol. 30, no. 7. ISSN 009 1-3286. Pp. 947-954.

LEGGE, Gordon E., and FOLEY, John M. 1980. Contrast masking in human vision.

Journal of the Optical Society of America. GOODMAN, Joseph W. (ed.).

New York, New York, USA. American Institute of Physics, Inc. for Optical

Society of America. Dec. 1980. vol. 70, no. 12. ISSN 0030-394 1.

pp. 1458-1471.

LIMB, John 0. 1979. Distortion criteria of the human viewer. IEEE transactions on

systems, man, and cybernetics. New York, New York, USA. The Institute of

Electrical and Electronic Engineers, Inc. Dec. 1979. vol. SMC-9, no. 12.

ISSN 00 18-9472. pp. 778-793.

LIPPMANN, Richard P. 1987. An introduction to computing with neural nets. IEEE

ASSP magazine. EYFER, Delores M. (ed.). New York, New York, USA.

The Institute of Electrical and Electronic Engineers, Inc. Apr. 1987. vol. 4,

no. 2. ISSN 0740-7467. pp. 4-22.

LIU, Hui, and YUN, David Y. Y. 1992. Competitive learning algorithms for image

coding. In: ROGERS, Steven K. (ed.). 1992. Pt I of 2. pp. 408417.

LLOYD, Stuart P. 1982. Least squares quantization in PCM. IEEE transactions on

infonnation theory. GRAY, Robert M. (ed.). New York, New York, USA.

-190-

The Institute of Electrical and Electronic Engineers, Inc. Mar. 1982.

vol. IT-28, no. 2. ISSN 0018-9448. pp. 129-137.

LOHSCHIELLER, Herbert. 1984. A subjectively adapted image communication system.

IEEE transactions on communications. LIMB, John 0. (ed.). New York,

New York, USA. The Institute of Electrical and Electronic Engineers, Inc.

Dec. 1984. vol. COM-32, no. 12. ISSN 0090-6778. pp. 13 16-1322.

LU, Cheng Chang, and SHIN, Yong Ho. 1992. A neural-network-based image

compression system. IEEE transactions on consumer electronics. vol. 38,

no. 1, Feb. 1992. pp. 25-29.

LUKAS, Frank X. J., and BUDRIKIS, Zigmantas L. 1982. Picture-quality prediction

based on a visual model. IEEE transactions on communications. New York,

New York, USA. The Institute of Electrical and Electronic Engineers, Inc.

Jul. 1982. vol. COM-30, no. 7. ISSN 0090-6778. pp. 1679-1692.

LUND, Arnold M. 1993. The influence of video image size and resolution on viewing-

distance preferences. SMPTE journaL vol. 102, no. 5, May 1993.

pp.406415.

LUTTRELL, S. P. 1989. Image compression using a multilayer neural network. Patter

recognition letters. BACKER, E., and GELSEMA, E. S. (eds). Amsterdam,

The Netherlands. Elsevier Science Publishers B.V. for International

Association for Pattern Recognition. Jul. 1989. vol. 10, no. 1.

ISSN 0 167-8655. pp. 1-7.

MACQ, Benoit, MATFAVELLI, M., VAN CALSTER, 0., VAN DER PLANCKE, E.,

COMES, S., and LI, W. 1994. Image visual quality restoration by

cancellation of the unmasked noise. In: WEE. 1994. vol. 5 of 6. pp. 53-56.

- 191 -

MALSBURG, Christoph von der. 1973. Self-organization of orientation sensitive cells

in the striate cortex. Kybernetik. 1973. vol. 14. ISSN 0023-5946. pp. 85-100.

Also in: ANDERSON, J. A., and ROSENFELD, E. (eds). 1988.

pp. 212-228.

MANNOS, James L., and SAKRISON, David J. 1974. The effects of a visual fidelity

criterion on the encoding of images. IEEE transactions on information

theory. New York, New York, USA. The Institute of Electrical and

Electronic Engineers, Inc. Jul. 1974. vol. IT-20, no. 4. ISSN 0018-9448.

pp. 525-536.

MARANGELLI, B. 1991. A vector quantizer with minimum visible distortion. iEEE

transactions on signal processing. WHEELER, Pierce (ed.). New York,

New York, USA. The Institute of Electrical and Electronic Engineers, Inc.

Dec. 1991. vol. 39, no. 12. ISSN 1053-587X. pp. 2718-2721.

MARSI, Stefano, RAMPOM, Giovanni, and SICURANZA, Giovanni, L. 1991.

Improved neural structures for image compression. In: IEEE. 1991.

ICASSP-91: 1991 international conference on acoustics, speech, and signal

processing. New York, New York, USA. The Institute of Electrical and

Electronic Engineers, Inc. May 1991. vol. 4 of 5. Pbk ISBN 0-7803-0003-3.

pp. 2821-2824. Hbk ISBN 0-7803-0004-I. Microfiche

ISBN 0-7803-0005-X. 1991 IEEE international conference on acoustics,

speech, and signal processing in Toronto, Ontario, Canada,

14-17 May 1991.

MATHER, Paul M. 1987. Computer processing of remotely sensed images: an

introduction. Chichester, UK. John Wiley & Sons Ltd for Paul M. Mather.

- 192-

1987, 	Dec. 1989, 	1994. 	Pbk 	ISBN 0-471-92653-1. 	Hbk

ISBN 0-471-90648-4.

MathWorks. 1994. MATLAB version 4.2. Natick, Massachusetts, USA. The

MathWorks, Inc. Oct. 1994.

MAFFAVELLI, M., BRUYNDONCKX, 0., COMES, S., and MACQ, Benoit. 1995.

Post-processing of coded images by neural-network cancellation of

unmasked noise. Neural processing letters. BLAYO, François, and

VERLEYSEN, Michel (eds). Brussels, Belgium. D facto publications s.a.

for Neurosciences et Sciences de l'Ingénieur Association. Mar. 1995. vol. 2,

no. 2. ISSN 1370-462 1. pp. 18-22.

MAX, Joel. 1960. Quantizing for minimum distortion. IRE transactions on infonnation

theory. ZADEH, Lotfi A. (ed.). New York, New York, USA. The Institute

of Radio Engineers, Inc. Mar. 1960. vol. IT-6, no. 1. Pp. 7-12.

MCCLELLAND, James L., and RUMELHART, David E. 1981. An interactive

activation model of context effects in letter perception, Pt 1: an account of

basic findings. Psychological review. Washington, District of Columbia,

USA. American Psychological Association, Inc. Sep. 1981. vol. 88, no. 9.

ISSN 0033-295X. pp. 375-407. Also in: ANDERSON, J. A., and

ROSENFELD, E. (eds). 1988. Pp. 404-436.

MCCLELLAND, James L., and RUMELHART, David E. 1988. Explorations in

parallel distributed processing: a handbook of models, programs, and

exercises. London, UK. Cambridge, Massachusetts, USA. The MIT Press.

Apr. 1988. Pbk ISBN 0-262-63 1 13-X.

MCCLELLAND, James L., RUMELHART, David E., and the PDP Research Group.

1986. Parallel distributed processing: explorations in the microstructure of

- 193-

cognition, vol. 2: psychological and biological models. London, UK.

Cambridge, Massachusetts, USA. The MIT Press for Massachusetts Institute

of Technology. 1986. vol. 2 of 2. Pbk ISBN 0-262-63110-5. Hbk

ISBN 0-262-13218-4. volsl-2 Pbk ISBN 0-262-63112-1. vols 1-2 Hbk

16IMW&bISL3P±&IJ

MCCULLOCH, Warren S., and PInS, Walter. 1943. A logical calculus of the ideas

immanent in nervous activity. Bulletin of mathematical biophysics. 1943.

vol.5. PP. 115-133. Also in: ANDERSON, J. A., and ROSENFELD, E.

(eds). 1988. PP. 18-28.

MCFARLANE, Maynard D. 1972. Digital pictures fifty years ago. Proceedings of the

IEEE. vol. 60, no. 7, Jul. 1972. pp. 768-770.

MCLAREN, David L., and NGUYEN, D. Thong. 1991. Removal of subjective

redundancy from DCT-coded images. lEE proceedings I: communications,

speech and vision. AMIR-ALIKHANI, H., and LODGE, N. K. (eds).

Stevenage, UK. The Institution of Electrical Engineers. Oct. 1991. vol. 138,

Pt I, no. 5. ISSN 0956-3776. pp. 345-350.

MILLER, Ade S., BLOFF, B. H., and HAMES, T. K. 1992. Review of neural-network

applications in medical imaging and signal processing. Medical & biological

engineering & computing. Stevenage, UK. Peter Peregrinus Ltd for

Federation for Medical and Biological Engineering. Sep. 1992. vol. 30,

no.5. ISSN 0140-0118. pp. 449-464.

MINSKY, Marvin, and PAPERT, Seymour. 1969. Perceptrons: an introduction to

computational geometry. London, UK. Cambridge, Massachusetts, USA.

The MiT Press. 1969. 1988. 2nd ed. ISBN 0-262-63111-3. pp. 1-20, and 73

also in: ANDERSON, J. A., and ROSENFELD, E. (eds). 1988. pp. 161-170.

- 194-

MITCI-IELL, H. B., and DORFAN, M. 1992. Block-truncation coding using Hopfield

neural network. Electronics letters. ASH, Eric A., and CLARMCOATS,

Peter J. B. (eds). Stevenage, UK. The Institution of Electrical Engineers.

05 Nov. 1992. vol. 28, no. 23. ISSN 0013-5194. pp. 2144-2145.

NELSON, Mark. 1992. The data compression book New York, New York, USA. M&T

Publishing, Inc. 1992. Pbk ISBN 1-55851-216-0.

NETRAVALI, Arun N. 1977. On quantizers for DPCM coding of picture signals. IEEE

transactions on information theory. New York, New York, USA. The

Institute of Electrical and Electronic Engineers, Inc. May 1977. vol. IT-23,

no. 3. ISSN 0018-9448. pp. 360-370.

NETRAVALI, Arun N., and LIMB, John 0. 1980. Picture coding: a review.

Proceedings of the IEEE. FREITAG, Harlow (ed.). New York, New York,

USA. The Institute of Electrical and Electronic Engineers, Inc. Mar. 1980.

vol. 68, no. 3. ISSN 0018-92 19. pp. 366-407.

NETRAVALI, Arun N., and PRASADA, Birendra. 1977. Adaptive quantization of

picture signals using spatial masking. Proceedings of the IEEE. WADE,

Glen (ed.). New York, New York, USA. The Institute of Electrical and

Electronic Engineers, Inc. Apr. 1977. vol. 65, no. 4. ISSN 0018-9219.

pp. 536-548.

Network: computation in neural systems. AMI1', D. J. (ed.). vol. 5, no. 4, Nov. 1994,

quarterly. Bristol, UK. Institute of Physics Publishing. ISSN 0954-898X.

NUAN, King N., LEONG, Kin S., and SINGH, H. 1989. Adaptive cosine transform

coding of images in perceptual domain. IEEE transactions on acoustics,

speech, and signal processing. WHEELER, Pierce (ed.). New York, New

- 195 -

York, USA. The Institute of Electrical and Electronic Engineers, Inc.

Nov. 1989. vol. 37, no. 11. ISSN 0096-35 18. pp. 1743-1750.

NIEMANN, Heinrich, and WU, Jian-Kang. 1993. Neural-network adaptive image

coding. IEEE transactions on neural networks. MARKS, Robert J. (ed.).

New York, New York, USA. The Institute of Electrical and Electronic

Engineers, Inc. Jul. 1993. vol. 4, no. 4. ISSN 1045-9227. pp. 6 15-627.

NIGHTINGALE, Charles, and HUTCHINSON, Robert A. 1990. Artificial neural nets

and their application to image processing. British Telecom technology

journal. London, UK. Chapman & Hall for British Telecommunications plc.

Jul. 1990. vol. 8, no. 3. ISSN 0265-0193. pp. 81-93.

NILL, Norman B. 1985. A visual-model-weighted cosine transform for image

compression and quality assessment. IEEE transactions on communications.

LESH, J. R. (ed.). New York, New York, USA. The Institute of Electrical

and Electronic Engineers, Inc. Jun. 1985. vol. COM-33, no. 6.

ISSN 0090-6778. pp. 55 1-557.

NILSON, Nils J. 1965. Learning machines: foundations of trainable pattern

classification systems. New York, New York, USA. McGraw-Hill. 1965.

PAL, Nikhil R., and PAL, Sankar K. 1993. A review on image-segmentation techniques.

Pattern recognition. Tarrytown, New York, USA. Pergamon Press, Inc. for

Pattern Recognition Society. Sep. 1993. vol. 26, no. 9. ISSN 003 1-3203.

pp. 1277-1294.

PANCHANATHAN, S., YEAP T. H., and PILACHE, B. 1992. A neural network for

image compression. In: ROGERS, Steven K. (ed.). 1992. Pt 1 of 2.

pp. 376-385.

PARIKH, Jo Ann, DAPONTE, John S., DAMODARAN, Meledath, and SHERMAN,

Porter. 1990. Application of neural networks to pattern-recognition

problems in remote-sensing and medical imagery. In: ROGERS, Steven K.

(ed.). 1990. Applications of art Eficial neural networks. Bellingham,

Washington, USA. The International Society of Photo-Optical

Instrumentation Engineers. Apr. 1990. vol. 1294. ISBN 0-8194-0345-8.

pp. 146-160. First conference on applications of artificial neural networks in

Orlando, Florida, USA, 18-20 Apr. 1990.

PENNEBAKER, William B., and MITCHELL, Joan L. 1992. JPEG still image data

compression standard. London, UK. New York, New York, USA. Van

Nostrand Reinhold. Dec. 1992. Hbk ISBN 0-442-01272-1.

Proceedings of the IEEE. ROWE, Joseph E. (ed.). vol. 60, no. 7, Jul. 1972, monthly.

New York, New York, USA. The Institute of Electrical and Electronic

Engineers, Inc. ISSN 00 18-9219.

Proceedings of the IEEE. SCHELL, A. C. (ed.). vol. 78, no. 9, Sep. 1990, monthly. New

York, New York, USA. The Institute of Electrical and Electronic Engineers,

Inc. ISSN 0018-9219.

Proceedings of the IEEE. WATSON, George F. (ed.). vol. 82, no. 6, Jun. 1994,

monthly. New York, New York, USA. The Institute of Electrical and

Electronic Engineers, Inc. ISSN 0018-92 19.

QIU, Guoping, VARLEY, Martin Roy, and TERRELL, Trevor James. 1991. Improved

block-truncation coding using Hopfield neural network. Electronics letters.

ASH, Eric A., and CLARRICOATS, Peter J. B. (eds). Stevenage, UK. The

Institution of Electrical Engineers. 10 Oct. 1991. vol. 27, no. 21.

ISSN 0013-5 194. pp. 1924-1926.

- 197 -

QIU, Guoping, VARLEY, Martin Roy, and TERRELL, Trevor James. 1993a. Variable

bit-rate block-truncation coding for image compression using Hopfield

neural networks. In: lEE. 1993. Third international conference on art(ficial

neural networks. London, UK. The Institution of Electrical Engineers.

May 1993. vol. 372. ISBN 0-85296-573-7. pp. 233-239. Third international

conference on artificial neural networks in Brighton, UK, 25-27 May 1993.

QIU, Guoping, VARLEY, Martin Roy, and TERRELL, Trevor James. 1993b. Image

compression by edge-pattern learning using multilayer preceptrons.

Electronics letters. ASH, Eric A., and CLARRICOATS, Peter J. B. (eds).

Stevenage, UK. The Institution of Electrical Engineers. 01 Apr. 1993.

vol. 29, no.7. ISSN 00 13-5 194. pp. 601-603.

RODRIGUEZ, Jeffrey J., and YANG, Christopher C. 1994. Effects of luminance

quantization error on color image processing. SEZAN, M. Ibrahim (ed.).

IEEE transactions on image processing. MUNSON, D. C. (ed.). New York,

New York, USA. The Institute of Electrical and Electronic Engineers, Inc.

11 Nov. 1994. vol. 3, no. 6. ISSN 1057-7 149. pp. 850-854.

ROGERS, Steven K. (ed.). 1992. Applications of artificial neural networks IlL

Bellingham, Washington, USA. The International Society of Photo-Optical

Instrumentation Engineers. Apr. 1992. vol. 1709, pts 1-2.

ISBN 0-8194-0874-3. Third annual international conference on applications

of artificial neural networks in Orlando, Florida, USA, 2 1-24 Apr. 1992.

ROMANIUK, Steve G. 1994. Theoretical results for applying neural networks to

lossless image compression. Network: computation in neural systems. vol. 5,

no. 4, Nov. 1994. pp. 583-597.

mum

ROSENBLATI', Frank. 1958. The perceptron: a probabilistic model for information

storage and organization in the brain. Psychological review. Washington,

District of Columbia, USA. American Psychological Association, Inc. 1958.

vol. 65. ISSN 0033-295X. pp. 386-408. Also in: ANDERSON, J. A., and

ROSENFELD, E. (eds). 1988. pp. 92-114.

ROSENBLATF, Frank. 1959. Principles of neurodynamics: perceptrons and the theory

of brain mechanisms. New York, New York, USA. Spartan Books. 1959.

RUDERMAN, Daniel L. 1994. The statistics of natural images. Network: computation

in neural systems. vol. 5, no.4, Nov. 1994. pp. 5 17-548.

RUMELHART, David E., HINTON, Geoffrey E., and WILLIAMS, Ronald J. 1986a.

Learning internal representations by error propagation. In: RUMELHART,

David E., MCCLELLAND, James L., and the PDP Research Group. 1986.

pp. 318-362. Also in: ANDERSON, J. A., and ROSENFELD, E. (eds).

1988. pp. 696-700.

RUMELHART, David E., HINTON, Geoffrey E., and WILLIAMS, Ronald J. 1986b.

Learning representations by back-propagating errors. Nature. MADDOX,

John (ed.). London, UK. Macmillan Magazines Ltd. 09 Oct. 1986. vol. 323,

no. 6088. ISSN 0028-0836. pp. 533-536. Also in: ANDERSON, J. A., and

ROSENFELD, E. (eds). 1988. pp. 675-695.

RUMELHART, David E., MCCLELLAND, James L., and the PDP Research Group.

1986. Parallel distributed processing: explorations in the microstructure of

cognition, vol. 1: foundations. London, UK. Cambridge, Massachusetts,

USA. The MIT Press for Massachusetts Institute of Technology. Sep. 1986.

vol. 1 of 2. Pbk ISBN 0-262-68053-X. Hbk ISBN 0-262-18120-7. volsl-2

Pbk ISBN 0-262-63112-1. vols 1-2 Hbk ISBN 0-262-18123-1.

- 199-

SACHS, Murray B., NACHMIAS, Jacob, and ROBSON, John G. 1971. Spatial-

frequency channels in human vision. Journal of the Optical Society of

America. MACADAM, David L. (ed.). New York, New York, USA.

American Institute of Physics, Inc. for Optical Society of America.

Sep. 1971. vol. 61, no.9. ISSN 0030-3941. pp. 1176-1186.

SAKRJSON, David J. 1977. On the role of the observer and a distortion measure in

image transmission. IEEE transactions on coninunications. vol. COM-25,

no. 11, Nov. 1977. pp. 1251-1267.

SEDGEWICK, Robert. 1992. Algorithmen in C. Translated from English [Algorithms

in C, 1990, ISBN 0-201-51425-7]. Bonn, Germany. Munich, Germany.

Paris, France. Addison-Wesley. 1992. Pbk ISBN 3-89319-669-2.

SEJNOWSKI, Tenence J., and ROSENBERG, Charles R. 1986. Nettalk: a parallel

network that learns to read aloud, technical report JHU/EECS-86101.

Baltimore, Maryland, USA. Department of Electrical Engineering and

Computer Science, John Hopkins University. 1986. Also in: ANDERSON,

J. A., and ROSENFELD, E. (eds). 1988. pp. 663-672.

SHANNON, Claude E. 1948a. A mathematical theory of communication [1/2]. The Bell

system technical journal. KING, R. W., and PERRINE, J. 0. (eds). New

York, New York, USA. American Telephone and Telegraph Company.

Jul. 1948. vol. XXVII, no. 3. pp. 379-423.

SHANNON, Claude E. 1948b. A mathematical theory of communication [2/2]. The Bell

system technical journal. KING, R. W., and PERRINE, J. 0. (eds). New

York, New York, USA. American Telephone and Telegraph Company.

Oct. 1948. vol. XXVII, no. 4. pp. 623-656.

- 200 -

SICURANZA, Giovanni L., RAMPONI, Giovanni, and MAR51, Stefano. 1990.

Artificial neural networks for image compression. Electronics letters. ASH,

Eric A., and CLARRICOATS, Peter J. B. (eds). Stevenage, UK. The

Institution of Electrical Engineers. 29 Mar. 1990. vol. 26, no. 7.

ISSN 0013-5 194. pp.477-479.

SID-AHMED, Maher A. 1995. Image processing: theory, algorithms, and

architectures. International ed. New York, New York, USA. McGraw-Hill,

Inc. 1995. Hbk ISBN 0-07-057240-2.

SMPTE journal. FRIEDMAN, Jeffrey (ed.). vol. 102, no. 5, May 1993, monthly. White

Plains, New York, USA. Society of Motion Picture and Television

Engineers, Inc. ISSN 0036-1682.

SONKA, Milan, HLAVAC, Vaclav, and BOYLE, Roger. 1993. Image processing,

analysis and machine vision. London, UK. Chapman & Hall for Milan

Sonka, Vaclav Hlavac, and Roger Boyle. 1993. Pbk ISBN 0-412-45570-6.

STOCKHAM, Thomas G. 1972. Image processing in the context of a visual model.

Proceedings of the IEEE. vol. 60, no. 7, Jul. 1972. pp. 828-842.

TREMEAU, A., CALONNIER, M., and LAGET, B. 1994. Color quantization error in

terms of perceived image quality. In: IEEE. 1994. vol. 5 of 6. pp. 93-96.

VInIER, Jeffrey Scott. 1987. Design and analysis of dynamic Huffman codes. Journal

of the Association for Computing Machinery. ROSENKRANTZ, Daniel J.

(ed.). New York, New York, USA. Association for Computing Machinery,

Inc. Oct. 1987. vol. 34, no. 4. ISSN 0004-5411. pp. 825-845.

WALKER, N. P., EGLEN, S. J., and LAWRENCE, B. A. 1994. Image compression

using neural networks. GEC journal of research. WALKDEN, A. J. (ed.).

IVIIIE

Chelmsford, UK. The General Electric Company plc. 1994. vol. 11, no. 2.

ISSN 0264-9 187. pp. 66-75

WALLACE, Gregory K. 1990. Overview of the JPEG (ISO/CCITT) still image

compression standard. In: PENNINGTON, K. S., and MOORHEAD, R. J.

(eds). 1990. Image processing algorithms and techniques. Bellingham,

Washington, USA. The International Society of Photo-Optical

Instrumentation Engineers. Feb. 1990. vol. 1244. ISBN 0-8194-0291-5.

pp. 220-233. Conference on image processing algorithms and techniques in

Santa Clara, California, USA, 12-14 Feb. 1990.

WALLACE, Gregory K. 1991. The JPEG still picture compression standard.

Communications of the ACM. MAURER, James (ed.). New York, New

York, USA. Association for Computing Machinery, Inc. Apr. 1991. vol. 34,

no. 4. ISSN 000 1-0782. pp. 30-44.

WALLACE, Gregory K. 1992. The JPEG still picture compression standard. IEEE

transactions on consumer electronics. vol. 38, no. 1, Feb. 1992. pp. xviii-

xxxiv.

WATSON, Andrew B. 1993a. DCT quantization matrices visually optimized for

individual images. In: ALLEBACH, Jan P., and ROGOWITZ, Bernice E.

(eds). 1993. Human vision, visual processing, and digital display IV.

Bellingham, Washington, USA. The International Society of Photo-Optical

Instrumentation Engineers. Feb. 1993. vol. 1913. ISBN 0-8194-1 146-9.

pp. 202-2 16. Fourth conference on human vision, visual processing, and

digital display in San Jose, California, USA, 01-04 Feb. 1993.

WATSON, Andrew B. 1993b. Visually optimal DCT quantization matrices for

individual images. In: IEEE. 1993. Data compression conference 1993.

- 202 -

STORER, James A., and COHN, Martin (eds). Los Alamitos, USA. IEEE

Computer Society Press for the Institute of Electrical and Electronic

Engineers, Inc. Mar. 1993. Hbk ISBN 0-8186-3392-1. pp. 178-187.

Microfiche ISBN 0-8186-3391-3. Third data compression conference in

Snowbird, Utah, USA, 30 Mar. - 02 Apr. 1993.

WERBLIN, Frank S. 1973. The control of sensitivity in the retina. Scientific american.

FLANAGAN, Dennis (ed). New York, New York, USA. Scientific

American. Jan. 1973. vol. 228, no. 1. ISSN 0036-8733. pp. 70-79.

WERBOS, Paul J. 1974. Beyond regression: new tools for prediction and analysis in

the behavioral science, PhD thesis in applied mathematics. Cambridge,

Massachusetts, USA. Harvard University. 1974.

WIDROW, Bernard, and HOFF, Marcian E. 1960. Adaptive switching circuits. IRE

WESCON convention record. New York, New York, USA. Institute of

Radio Engineers. Aug. 1960. Pt 4. pp. 96-104. Also in: ANDERSON, J. A.,

and ROSENFELD, E. (eds). 1988. pp. 126-134.

WIDROW, Bernard, and LEHR, Michael A. 1990. 30 years of adaptive neural

networks: perceptron, madaline, and backpropagation. Proceedings of the

IEEE. vol. 78, no. 9, Sep. 1990. pp. 1415-1442.

WITT'EN, Ian H., NEAL, Radford M., and CLEARY, John G. 1987. Arithmetic coding

for data compression. Communications of the ACM. DENNING, Peter J.

(ed.). New York, New York, USA. Association for Computing Machinery,

Inc. Jun. 1987. vol. 30, no. 6. ISSN 000 1-0782. Pp. 520-540.

ZELL, Andreas. 1994. Simulation Neuronaler Netze. Bonn, Germnay. Munich,

Germany. Paris, France. Addison-Wesley. 1994. Hbk ISBN 3-89319-554-8.

- 203 -

ZIV, Jacob, and LEMPEL, Abraham. 1977. A universal algorithm for sequential data

compression. IEEE transactions on information theory. New York, New

York, USA. The Institute of Electrical and Electronic Engineers, Inc.

May 1977. vol. IT-23, no. 3. ISSN 0018-9448. pp. 337-343.

ZIV, Jacob, and LEMPEL, Abraham. 1978. Compression of individual sequences via

variable-rate coding. IEEE transactions on infonnation theory. New York,

New York, USA. The Institute of Electrical and Electronic Engineers, Inc.

Sep. 1978. vol. 11-24, no. 5. ISSN 0018-9448. pp. 530-536.

n

Appendices

A 	Landsat Image Size Worked Example

Landsat-4 and Landsat-5 carried two sensor types producing images of similar structure.

The general equation for calculating the size of an image, S, is

S=LM>R1 	 (A.!)

where L is the number of horizontal pixels, i.e. number of pixels per scan line; M is

the number of vertical pixels, i.e. number of scan lines; R is the resolution of spectral

band 1; and I is the number of spectral bands.

For identical resolution R of all spectral bands, equation A. 1 reduces to:

S=LMRJ
	

(A.2)

Table A. 1 summarizes the specification for Landsat-4 and -5 MSS and TM images; see

(P. M. Mather 1987, p. 84).

MSS TM
Pixels per Scan Line 3600 6900

Scan Lines 2286 5700
Band Resolution 6 bits 8 bits
Number of Bands 4 7

Table A. 1 Specification for Landsat-4 and -5 MSS and TM Images

The size of an MSS image is therefore

5MSSrrth = 3600 x 2286 x 6 x 4 bits = 23.5 MB 	 (A.3)

 -Al -

However, since storage locations of computer memory are usually organized in multiples

of bytes, the realistic size of an MSS image file is

SUSS = 3600 x 2286 x 8 x 4 bits = 31.4 MB 	 (A.4)

The size of a TM image is

SM = 6900 x 5700 x 8 x 7 bits = 262.6 MB 	 (A.5)

-A2-

B 	Huffman Tree Design Worked Example

Wi 	Introduction

This appendix provides a worked example of the design of a Huffman tree for an 8-level

image of size 8 x 8.

B.2 	Design Procedure

Figure B.1 depicts an 8-level image of size 8 x 8. Table B. 1 presents the frequency of

occurrence for every symbol.

H H G G G B OG

H G C C C B G G

G C C C C C G E

GF F F F F E E

G F F F F F E E

G F F D F F G D

G F F D F F G D

A A A A A A A A

Figure B.1 8-level Image

Symbol A B C D E F G H
Frequencyof
Occurrence

8 2 8 4 5 18 16 3

Table B.l Symbol Distribution of 8-level Image

Figure B.2 depicts the generation of an appropriate Huffman tree. Using the compound

node with a weight of 5 rather than symbol E with a weight of 5 for generating the

second parent node introduces an additional level; see figure B.2 c).

flu

MMM M MMOMF
a) Symbols Arranged in Increasing Frequency of Occurrence

5 	CD 	(T6~ rT8—)

U 2 M3
b) First Parent Node Generated

M CD (D 	106 M11
4) (5

2) (3

c) Second Parent Node Generated

13 (0 n
M (I R ~ LF

2) (3

d) Third Parent Node Generated

A13 106 11 n
in

2) (3

e) Fourth Parent Node Generated

Figure B.2 a) - e) Generation of a Huffman Tree for 8-level Image

8 	(9) 	(1S'\ (16

11292811.
2) (3
B) L.F

f) Fifth Parent Node Generated

5) (8
E) 'LA

1
G

g) Sixth Parent Node Generated

h) Seventh Parent Node Generated

Figure B.2 fl - h) Generation of a Huffman Tree for 8-level Image

Sn

Using symbol E instead would move symbols B, E, and H on the same level with

symbol D as swapping the two nodes with a weight of 5 suggests; see figure B.2 h).

Tracing the path from the root node to a particular symbol generates a unique string

of Os and is associated with that symbol. Table B.2 provides the Huffman codewords

that can be used to encode and decode the 8-level example image. In addition, the

frequency of occurrence of every symbol has been multiplied with the length of the

codeword of the symbol, and the image size has been calculated. The same information

is provided for a 3-bit natural binary code. For comparison the self-information has

been calculated using equation 2.5, and a zero-order entropy of 2.67 bits elemenL' has

been estimated using equation 2.7. In this example, the Huffman tree generates

codewords with the number of bits equal to self-information for symbols A, B, C, D,

and G; note that their probabilities of occurrence are integer powers of (1/2). While

symbol E is undercoded, symbols F and H are overcoded. However, the size of the

Huffman-coded image approaches with 172 bits the lower bound of 170.6 bits.

Symbol A B C D E F G H
Frequencyof
Occurrence

8 2 8 4 5 18 16 3

Natural Code (binary) 000 001 010 011 100 101 110 lii
NumberofBits 24 6 24 12 15 54 48 9

Image Size in Bits 192 _ ____ ____
Huffman Code (binary) 001 10110 100 1010 000 11 01 10111

NumberofBits 24 10 24 16 15 36 32 15
Image Size in Bits 172 ______
Self-information 3.00 5.00 3.00 4.00 3.68 1.83 2.00 4.42
Number of Bits 24.00 10.00 1 24.00 16.00 18.39 32.94 32.00 1 	13.25

Lower Bound in Bits 170.6

Table B.2 Sizes of 8-level Image

C 	JPEG Example Tables

C.1 	Introduction

This appendix provides examples of quantization and Huffman tables; see (ISOIIEC

10918-1:1994, annex K).

C.2 	Quantization Tables

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

Table C. 1 Example of Luminance Quantization Table

17 18 24 47 99 99 99 99
18 21 26 66 99 99 99 99
24 26 56 99 99 99 99 99
47 66 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99

Table C.2 Example of Chrominance Quantization Table

 -Cl -

C.3 	Huffman Tables for 8-bit Precision

DC Difference 	Codeword
Category

(hexadecimal) 	(binary)
0 	00
1 	010
2 	011
3 	100
4 	101
5 	110
6 	1110
7 	11110
8 	111110
9 	1111110
A 	11111110
B 	111111110

Table C.3 Example of Luminance DC Difference Table

DC Difference 	Codeword
Category

(hexadecimal) 	(binary)
0 	00
1 	01
2 	10
3 	110
4 	1110
5 	11110
6 	111110
7 	1111110
8 	11111110
9 	111111110
A 	1111111110
B 	11111111110

Table C.4 Example of Chrominance DC Difference Table

-C2-

Zero Run AC Category

(hexadecimal)

Coding
Symbol

(hexadecimal)

Codeword

(binary)
o o EOB 1010
0 1 01 00
0 2 02 01
0 3 03 100
0 4 04 1011
0 5 05 11010
0 6 06 1111000
0 7 07 11111000
0 8 08 1111110110
0 9 09 1111111110000010
0 A OA 1111111110000011
1 1 11 1100
1 2 12 11011
1 3 13 1111001
1 4 14 111110110
1 5 15 11111110110
1 6 16 1111111110000100
1 7 17 1111111110000101
1 8 18 1111111110000110
1 9 19 1111111110000111
1 A 1A 1111111110001000
2 1 21 11100
2 2 22 11111001
2 3 23 1111110111
2 4 24 111111110100
2 5 25 1111111110001001
2 6 26 1111111110001010
2 7 27 1111111110001011
2 8 28 1111111110001100
2 9 29 1111111110001101
2 A 2A 1111111110001110
3 1 31 111010
3 2 32 111110111
3 3 33 111111110101
3 4 34 1111111110001111
3 5 35 1111111110010000
3 6 36 1111111110010001
3 7 37 1111111110010010
3 8 38 1111111110010011
3 9 39 1111111110010100
3 A 3A 1111111110010101

Table Ci (1 of 4) Example of Luminance AC Table

- C 3 -

Zero Run AC Category

(hexadecimal)

Coding
Symbol

(hexadecimal)

Codeword

(binary)
4 1 41 111011
4 2 42 1111111000
4 3 43 1111111110010110
4 4 44 1111111110010111
4 5 45 1111111110011000
4 6 46 1111111110011001
4 7 47 1111111110011010
4 8 48 1111111110011011
4 9 49 1111111110011100
4 A 4A 1111111110011101
5 1 51 1111010
5 2 52 11111110111
5 3 53 1111111110011110
5 4 54 1111111110011111
5 5 55 1111111110100000
5 6 56 1111111110100001
5 7 57 1111111110100010
5 8 58 1111111110100011
5 9 59 1111111110100100
S A 5A 1111111110100101
6 1 61 1111011
6 2 62 111111110110
6 3 63 1111111110100110
6 4 64 1111111110100111
6 5 65 1111111110101000
6 6 66 1111111110101001
6 7 67 1111111110101010
6 8 68 1111111110101011
6 9 69 1111111110101100
6 A 6A 1111111110101101
7 1 71 11111010
7 2 72 111111110111
7 3 73 1111111110101110
7 4 74 1111111110101111
7 5 75 1111111110110000
7 6 76 1111111110110001
7 7 77 1111111110110010
7 8 78 1111111110110011
7 9 79 1111111110110100
7 A 7A 1111111110110101

Table C.5 (2 of 4) Example of Luminance AC Table

-C4-

Zero Run AC Category

(hexadecimal)

Coding
Symbol

(hexadecimal)

Codeword

(binary)
8 1 81 111111000
8 2 82 111111111000000
8 3 83 1111111110110110
8 4 84 1111111110110111
8 5 85 1111111110111000
8 6 86 1111111110111001
8 7 87 1111111110111010
8 8 88 1111111110111011
8 9 89 1111111110111100
8 A 8A 1111111110111101
9 1 91 111111001
9 2 92 1111111110111110
9 3 93 1111111110111111
9 4 94 1111111111000000
9 5 95 1111111111000001
9 6 96 1111111111000010
9 7 97 1111111111000011
9 8 98 1111111111000100
9 9 99 1111111111000101
9 A 9A 1111111111000110
10 1 Al 111111010
10 2 A2 1111111111000111
10 3 A3 1111111111001000
10 4 A4 1111111111001001
10 5 AS 1111111111001010
10 6 A6 1111111111001011
10 7 A7 1111111111001100
10 8 A8 1111111111001101
10 9 A9 1111111111001110
10 A AA 1111111111001111
11 1 B! 1111111001
11 2 B2 1111111111010000
11 3 B3 1111111111010001
11 4 B4 1111111111010010
11 5 B5 1111111111010011
11 6 B6 1111111111010100
11 7 B7 1111111111010101
11 8 B8 1111111111010110
11 9 B9 1111111111010111
11 A BA 1111111111011000

Table C.5 (3 of 4) Example of Luminance AC Table

 -CS -

Zero Run AC Category

(hexadecimal)

Coding
Symbol

(hexadecimal)

Codeword

(binary)
12 1 Cl 1111111010
12 2 C2 1111111111011001
12 3 C3 1111111111011010
12 4 C4 1111111111011011
12 5 CS 1111111111011100
12 6 C6 1111111111011101
12 7 C7 1111111111011110
12 8 C8 1111111111011111
12 9 C9 1111111111100000
12 A CA 1111111111100001
13 1 Dl 11111111000
13 2 D2 1111111111100010
13 3 D3 1111111111100011
13 4 D4 1111111111100100
13 5 D5 1111111111100101
13 6 D6 1111111111100110
13 7 D7 1111111111100111
13 8 D8 1111111111101000
13 9 D9 1111111111101001
13 A DA 1111111111101010
14 1 El 1111111111101011
14 2 E2 1111111111101100
14 3 E3 1111111111101101
14 4 E4 1111111111101110
14 5 ES 1111111111101111
14 6 E6 1111111111110000
14 7 E7 1111111111110001
14 8 E8 1111111111110010
14 9 £9 1111111111110011
14 A BA 1111111111110100
15 0 ZRL 11111111001
15 1 Fl 1111111111110101
15 2 F2 1111111111110110
15 3 F3 1111111111110111
15 4 P4 1111111111111000
15 5 PS 1111111111111001
15 6 P6 1111111111111010
15 7 P7 1111111111111011
15 8 F8 1111111111111100
15 9 F9 1111111111111101
15 A PA lllllllllllllllO

Table C.5 (4 of 4) Example of Luminance AC Table

D 	JPEG Baseline Sequential Process Worked Example

D.1 	Introduction

This appendix provides a worked example of the coder processing steps in the baseline

sequential process. An 8 x 8 block of samples is encoded and subsequently decoded

following the processing steps described in section 3.4.

D.2 	Encoding Processing Steps

Figure D. 1 depicts an 8 x 8 block of source samples extracted from a real image; the

small variations from sample to sample indicate the predominance of low spatial

frequencies (G. K. Wallace 1992).

139 144 149 153 155 155 155 155

144 151 153 156 159 156 156 156

150 155 160 163 158 156 156 156

159 161 162 160 160 159 159 159

159 160 161 162 162 155 155 155

161 161 161 161 160 157 157 157

162 162 161 163 162 157 157 157

162 162 161 161 163 158 158 158

Figure D. 1 8 x 8 Block of Source Samples

 -Dl -

Figure D.2 depicts the 8 x 8 block of samples level-shifted to the range [-128,127].

11 16 21 25 27 27 27 27
16 23 25 28 31 28 28 28
22 27 32 35 30 28 28 28
31 33 34 32 32 31 31 31
31 32 33 34 34 27 27 27
33 33 33 33 32 29 29 29
34 34 33 35 34 29 29 29
34 34 33 33 35 30 30 30

Figure D.2 8 x 8 Block of Samples to FDCT

Figure D.3 depicts the 8 x 8 block of DCT coefficients to one decimal place generated

by the FDCT. Except for a few of the lower frequency coefficients the amplitudes are

quite small.

235.6 	-1.0 -12.1 -5.2 	2.1 -1.7 -2.7 	1.3
-22.6 -17.5 -6.2 -3.2 -2.9 -0.1 0.4 -1.2
-10.9 -9.3 -1.6 	1.5 	0.2 -0.9 -0.6 -0.1

-7.1 -1.9 0.2 1.5 0.9 -0.1 0.0 0.3
-0.6 -0.8 1.5 1.6 -0.1 -0.7 0.6 1.3

1.8 -0.2 1.6 -0.3 -.0.8 1.5 1.0 -1.0
-1.3 -0.4 -0.3 -1.5 -0.5 1.7 1.1 -0.8
-2.6 1.6 -3.8 -1.8 1.9 1.2 -0.6 -0.4

Figure D.3 8 x 8 Block of DCT Coefficients

- D 2 -

Figure D.4 depicts the 8 x 8 block of quantized DCT coefficients processed using the

luminance quantization table given in table C. 1.

15 0 —1 0 0 0 0 0

—2 —1 0 0 0 0 0 0

—1 —1 0 0 0 0 0 0

00000000

00000000

00000000

00000000

00000000

Figure D.4 8 x 8 Block of Quantized DCI Coefficients

Assuming that the quantized DC coefficient of the preceding block is 12, equation 3.5

generates the difference DIFF = +3. Figure D.5 depicts the 1-D vector reordered using

the 8 x 8 zigzag scan path shown in figure 3.6.

[3 0 —2 —1 —1 —1 0 0 —1 0 0 ... 0]

Figure D.5 1-D Vector of Reordered Values

Figure D.6 shows the intermediate sequence of symbols: one coding pair represents the

DC difference category and the DC difference value itself followed by coding pairs each

of which consists of zero run, AC category, and nonzero AC coefficient itself; and

terminates with LOB.

[(2)(3) (1,2)(-2) (0,1)(-1) (0,1)(—) (0,1)(-1) (2,1)(-1) LOB]

Figure D.6 Encoding of Intermediate Sequence of Symbols

- D 3 -

Since it has been assumed that the source samples originate from a luminance

component, the DC difference category and the AC categories are Huffman-encoded

using tables C.3 and C.5 respectively. The additional bits for the DC difference value

and the nonzero AC coefficients are generated using table 3.5. Figure D.7 shows the

entropy-encoded stream of image data. Note that the spaces are solely for readability.

Omitting any required parameters, such as quantization tables and Huffman tables; the

8 x 8 block of 8-bit source samples, totalling 512 bits, has been reduced to 31 bits.

[oIl ii 11011 01 00 0 00 0 00 0 11100 0 1010]

Figure D.7 Stream of Image Data

D.3 	Decoding Processing Steps

Figure D.8 illustrates the entropy decoding starting with the uniformly spaced stream of

image data in figure D.8 a). Since the first symbol to be decoded represents the

DC difference category, table C.3 is used to decode the first symbol in the bit sequence:

011 codes DC difference category 2; see figure D.8 b). This category requires two

additional bits: 11 codes 3 as table 3.5 reveals; see figure D.8 c).

Since the next symbol represents either zero run and AC category or ZRL or EOB,

table C.5 is used to decode the next symbol in the bit sequence: 11011 codes a zero run

of one and AC category 2; see figure D.8 d). This category requires two additional bits:

01 codes -2 as table 3.5 reveals; see figure D.8 e). These steps are repeated until the

EOB is encountered; see figure D.8 I) - k).

[0 1111110 1 101000000000 111000 1010]
a) Stream of Image Data

[(2)111101 1O10000000001l10001O 10]

b) Decoding of DC Difference Category

[(2)(3) 110110100000000011 i000ioio]

c) Decoding of DC Difference Value

[(2)(3) (1,2)01000000000111000lO10]

d) Decoding of First AC Category

[(2)(3) (1,2)(-2) 00000000011 i000ioio]

e) Decoding of First AC Amplitude

[(2)(3) (1,2)(-2) (0,1)(-1) 0000001110001010]

f) Decoding of Second Nonzero AC Coefficient

[(2)(3) (1,2)(-2) (0,1)(-1) (0,1)(-1) 0001110001010]

g) Decoding of Third Nonzero AC Coefficient

[(2)(3) (1,2)(-2) (0,1)(-1) (0 '1)(—l) (0,1)(-1) 11 100010101
h) Decoding of Fourth Nonzero AC Coefficient

[(2)(3) (1,2)(-2) (0,1)(-1) (0,1)(-1) (0 ' 1)(-1) (2,1)(-1) 10 1 01
j) Decoding of Fifth Nonzero AC Coefficient

[(2)(3) (1,2)(-2) (0,1)(-1) (0,1)(-1) (0,1)(-1) (2,1)(-1) EOB]

k) Decoding of EOB

Figure D.8 Decoding of Intermediate Sequence of Symbols

Evaluating the zero runs and appending an appropriate number of zeros reconstructs the

1-D vector as shown in figure D.9.

[3 0 —2 —1 —1 —1 0 0 —1 0 0 	0]

Figure D.9 Reconstructed 1-D Vector

- D 5 -

Assuming that the quantized DC coefficient of the preceding block has been

reconstructed as 12, the DC coefficient of the current block becomes 15. Figure D.l0

depicts the 2-D block of quantized coefficients reordered back using the 8 x 8 zigzag

scan path shown in figure 3.6.

15 0 —1 0 0 0 0 0

—2 —1 0 0 0 0 0 0

—1 —1 0 0 0 0 0 0

00000000

00000000

00000000

00000000

00000000

Figure D. 10 Reconstructed 8 x 8 Block of Quantized DCT Coefficients

Figure D.1 1 depicts the 8 x 8 block of dequantized DCT coefficients processed using

the luminance quantization table given in table C.!.

240 0-1000000

—24-12 000000

—14-13 000000

0 0 000000

0 0 000000

0 0 000000

0 0 000000

0 0 000000

Figure D. 11 8 x 8 Block of Dequantized DCT Coefficients

Figure D. 12 depicts the 8 x 8 block of samples generated by the IDCT.

16 18 21 24 26 28 28 28
20 22 24 26 28 28 28 28
27 28 29 30 30 29 28 27
32 33 33 34 33 31 29 27

35 35 36 35 34 32 30 28
35 36 36 36 34 32 30 29
32 33 34 34 34 33 31 30
30 31 33 33 34 33 31 30

Figure D. 12 8 x 8 Block of Samples from DCI

Figure D. 13 depicts the 8 x 8 block of reconstructed samples level-shifted back to the

original range [0,255].

144 146 149 152 154 156 156 156
148 150 152 154 156 156 156 156
155 156 157 158 158 157 156 155
160 161 161 162 161 159 157 155
163 163 164 163 162 160 158 156
163 164 164 164 162 160 158 157
160 161 162 162 162 161 159 158
158 159 161 161 162 161 159 158

Figure D. 13 8 x 8 Block of Reconstructed Samples

D.4 	Reconstruction Error

Figure D. 14 shows the 8 x 8 block of source samples minus reconstructed samples,

s - r. A mean-square error of 5.2 has been calculated using equation 2.12.

—5 —2 0 	1 	1 —1 —1 —1
—4 1123000

—5 —1 3 5 0 —1 0 1

—1 0 1 —2 —1 0 2 4

—4 —3 —3 —1 0 —5 —3 —1

—2 —3 —3 —3 —2 —3 —1 0

2 1 —1 1 0 —4 —2 —1

4 3 0 0 1 —3 —1 0

Figure D. 14 8 x 8 Block of Error Values

E 	Images

Experimentation has been carried out on four 8-bit grey-scale images. The image Lena,

depicted in figure E. 1, shows head and shoulder of a woman in an indoor scene; it has a

spatial resolution of 512 x 512 pixels. A version of the image with a spatial resolution

of 256 x 256 pixels has also been used.

Reproduced by Special Permission of Playboy magazine.
© 1972 by Playboy.

Figure E. 1 Original Image, Lena 512 x 512

 -El -

s 	•'Ir

ft
r

iii 	;: 	Ø11"

The image F-16, depicted in figure E.3, shows an aeroplane in a midair scene; it has a

spatial resolution of 512 x 512 pixels.

FigureE.3 Original Image, F-16 512x512

- E 3 -

F 	Versatile Zigzag Reordering Algorithm Worked Example

Fl 	Introduction

This appendix provides a worked example for the versatile zigzag reordering algorithm.

The scan path of a 3 x 2 sub-block is traversed using the binary decision tree described

in subsection 4.4.6 and repeated in figure F. 1 for convenience.

Figure F.! Decision Tree for Changes in Row and Column Indices

F.2 	Versatile Zigzag Reordering Algorithm

Figure Fl depicts stages during the generation of the scan path for a sub-block with

L = 3 rows and M = 2 columns. The current position in the scan path is indicated by a

black dot.

 -Fl -

	

• 0 	o>•

	

o o 	0 0 	70

	

o a 	o 0 	0 0
(a) 	 (b) 	 (c)

F 0
(d) 	 (e) 	 (f)

Figure F.2 Generation of Zigzag Scan Path for 3 x 2 Sub-block

The first position is given by (1 = 1, in = 1) since the scan path starts at the top left-hand

position; see figure F.2 a). Determining the direction of movement at the first position

begins with testing the parity parameter P(1, m):

	

P(1=1,m=1)=O 	 (F.!)

since (1 + in) = (1 + 1) = 2 which is even.

The second test evaluates therefore the last-column parameter CM(1, in):

CM(1=l,m=l)=O 	 (Fl)

since (in # M).

The third test evaluates therefore the first-row parameter R1(1, m):

	

R1(1=1,m=1)=1 	 (R3)

since (1 = L).

- F 2 -

The position of the next element is situated in the right direction, i.e. the row index I

must remain unchanged and the column index in must be incremented; see

figure F.2 b).

The second position is therefore given by (1 = 1, m = 2). Determining the direction of

movement at this position begins with testing the parity parameter P(1, m):

P(1=l,i'n=2)=1 	 (P.4)

since (1 + m) = (1 + 2) = 3 which is odd.

The second test evaluates therefore the last-row parameter RL(I, in):

RL(I=1,in=2)=O 	 (P5)

since (I # L).

The third test evaluates therefore the first-column parameter C1(l,m):

C1(1=1,m=1)=O 	 (P.6)

since (in # 1).

The position of the next element is situated in the lower-left direction, i.e. the row

index I must be incremented and the column index in must be decremented; see

figure P.2 c).

-P3 -

The third position is therefore given by (1 = 2, m = 1). Determining the direction of

movement at this position evaluates the test sequence:

P(l=2,m=1)=1 	 (P.7)

since (1 + ,n) = (2 + 1) = 3 which is odd.

RL(1=2,m=1)=O 	 (R8)

since (l# L).

Cl(1=2,m=1)=1 	 (F.9)

since (m = 1).

The position of the next element is situated in the lower direction, i.e. the row index I

must be incremented and the column index m must remain unchanged; see

figure P.2 d).

The fourth position is therefore given by (1 = 3,m = 1). Determining the direction of

movement at this position evaluates the test sequence:

P(l=3,m=1)=O 	 (P.10)

since (1 + m) = (3 + 1) = 4 which is even.

CM(l = 3,m = 1) = 0 	 (F.!!)

since (in # M).

-174-

R1(1=3,m=1)=O
	

(F.12)

since (1#1).

The position of the next element is situated in the upper-right direction, i.e. the row

index I must be decremented and the column index m must be incremented; see

figure F.2 e).

The fifth position is therefore given by (I = 2, m = 2). Determining the direction of

movement at this position evaluates the test sequence:

P(1=2,m=2)=O 	 (P.13)

since (I + m) = (2 + 2) = 4 which is even.

CM(I=2,m=2)=1 	 (P.14)

since (m = M).

RL(I=2,m=2)=O 	 (P.15)

since (I # L).

The position of the sixth element is situated in the lower direction, i.e. the row index I

must be incremented and the column index ,n must remain unchanged; see

figure P.2 .

-P5-

The sixth position is therefore given by (1 = 3, m = 2). The full scan of the 3 x 2 sub-

block is complete. Determining the direction of movement at this position evaluates the

test sequence:

P(1=3,m=2)=1 	 (F.16)

since (1 + m) = (3 + 2) = 5 which is odd.

RL(1=3,m=2)=1 	
I

(F.17)

since (1=L).

CM(1=3,m=2)=1 	 (F.18)

since (m = M).

The position remains unchanged, i.e. the row index I and the column index m must

remain unchanged.

-F6-

G 	Hardware Implementation Source Files

G.1 	Introduction

This appendix contains the source files for the hardware implementation of the zigzag-

reordering algorithm described in section 4.5. The files in sections G.2 and G.3 specify

stage A and stage B respectively. The file in section G.4 combines the stages and

simulates the state machine. Note that full sets of test vectors covering all 64 possible

sub-block dimensions have been derived; however, the sections G.2 to 0.4 include only

abbreviated sets covering sub-block dimensions that are mentioned in chapter 4.

-Gi-

G.2 	Source File Stage A

/*********DEpJTMENT*0F*ELECTRICAL*D*ELECTRONIC*ENGINEERING*********
* *
* File : 	stage_a.tdl 	 *
* *
* Description : file contains first, combinational stage of Moore 	*
* state machine for versatile zigzag-reordering 	*
* algorithm, and simulates the stage for given 	*
* sub-block dimensions 	 *
* *
* Author : Hanns-Juergen Grosse 	 *
* *
* Copyright 1996-1997 by Hanns-Juergen Grosse. All rights reserved. *
* *
* Inputs : 	(3 bits per input) 	 *
* external: 	 *
* 112. .0 	(rows in sub-block) 	 *
* mm2. .0 	(columns in sub-block) 	 *
* from stage_b: 	 *
* 12. .0 	(current row index) 	 *
* m2. .0 	(current column index) 	 *
* *
* Outputs : 	(1 bit per output) 	 *
* p 	(parity parameter) 	 *
* ri 	(first-row parameter) 	 *
* rl 	(last-row parameter) 	 *
* ci 	(first-column parameter) 	 *
* cm 	(last-column parameter) 	 *
* *
* Note row and column indices range from 000 to 111 	*
* *

stage_a(in 112..0,
mm2. .0,
12..0,
m2..0;

out p,
ri,
ri,
ci,
cm)

group 11[112..0);
group mm[mm2..0];
group 1[12. .0];
group m[m2. .0];

/ output enable */
p.oe = 1;
ri.oe = 1;
rl.oe = 1;
ci.oe = 1;
cm.oe = 1;

/ rows in sub-block /
/* columns in sub-block */
/ current row index /
/ current column index */

/ parity parameter /
1* first-row parameter *1

1* last-row parameter /
1* first-column parameter *1

/* last-column parameter /

-02-

p = 10 A mO; / parity parameter 	/

if (0 	== 1) /* first-row parameter 	/

rl = 1;

if (11 == 1) / last-row parameter 	/

rl = 1;

if (0 	== m) /* first-column parameter 	/

ci = 1;

if (mm == m) /* last-column parameter 	/

cm = 1;

/ write JEDEC file */
putpart ("glGvB", "stage_a",

112, 111, 110, mm2, mml, mm0, 12, 11, 10, GND,
rl, rl, m2, ml, mO, 	p, cl, cm, VCC);

/* simulate stage_a /
test(ll, mm, 1, m => p, rl, rl, ci, cm)
{ 	tracef("%d %d %d %d 	%d %d %d %d %d",

11, mm, 1, m, p, ri, rl, cl, cm);

1*

* test vectors for 5x1, 3x2, 2x3, lx5, 3x5, 4x5,
* and SxS zigzag scan paths
*

* Note:
* row and column indices range from 000 to ill, therefore
* the scan paths are defined as 4x0, 2xi, lx2, 0x4, 2x4, 3x4, and 7x7
*

*1

row x column path */
/ Sxl path */

(4, 0, 0, 0=> 0, 1, 0, 1, 1);
(4, 0, i, 0=> 1, 0, 0, 1, 1);
(4, 0, 2, 0=> 0, 0, 0, 1, 1);
(4, 0, 3, 0=> 1, 0, 0, 1, 1);
(4, 0, 4, 0=> 0, 0, 1, 1, 1);

1* 3x2 path /

(2, 1, 0, 0=> 0, 1, 0, 1, 0);
(2, 1, 0, 1=> 1, 1, 0, 0, 1);
(2, 1, 1, 0 => 1, 0, 0, 1, 0);
(2, 1, 2, 0 => 0, 0, 1, 1, 0);
(2, 1, 1, 1 a 0, 0, 0, 0, 1);
(2, 1, 2, 1 => 1, 0, 1, 0, 1);

1* 2x3 path */

(i, 2, 0, 0=> 0, 1, 0, 1, 0);
(i, 2, 0, 1 => i, 1, 0, 0, 0);
(i, 2, 1, 0=> 1, 0, 1, 1, 0);
(i, 2, i, 1=> 0, 0, 1, 0, 0);
(1, 2, 0, 2 a 0, 1, 0, 0, 1);
(1, 2, 1, 2 a 1, 0, 1, 0, 1);

scar

1* lxS path */

(0, 4, 0, 0 => 0, 1, 1, 1, 0);
(0, 4, 0, 1>1, 1, 1, 0, 0);
(0, 4, 0, 2 => 0, 1, 1, 0, 0);
(0, 4, 0, 3 => 1, 1, 1, 0, 0);
(0, 4, 0, 4=> 0, 1, 1, 0, 1);

/ 3x5 path */

(2, 4, 0, 0 => 0, 1, 0, 1, 0);
(2, 4, 0, 1 => 1, 1, 0, 0, 0);
(2, 4, 1, 0 => 1, 0, 0, 1, 0);
(2, 4, 2, 0 => 0, 0, 1, 1, 0);
(2, 4, 1, 1 => 0, 0, 0, 0, 0);
(2, 4, 0, 2 => 0, 1, 0, 0, 0);
(2, 4, 0, 3 => 1, 1, 0, 0, 0);
(2, 4, 1, 2 => 1, 0, 0, 0, 0);
(2, 4, 2, 1=> 1, 0, 1, 0, 0);
(2, 4, 2, 2 => 0, 0, 1, 0, 0);
(2, 4, 1, 3 => 0, O r 0, 0, 0);
(2, 4, O r 4 => 0, 1, 0, 0, 1);
(2, 4, 1, 4 => 1, 0, 0, 0, 1);
(2, 4, 2, 3 => 1, 0, 1, 0, 0);
(2, 4, 2, 4=> 0, 0, 1, 0, 1);

1* 4x5 path /

(3, 4, 0, 0=> 0, 1, 0, 1, 0);
(3, 4, 0, 1=> 1, 1, 0, 0, 0);
(3, 4, 1, 0 => 1, 0, 0, 1, 0);
(3, 4, 2, 0 => 0, 0, O r 1, 0);
(3, 4, 1, 1 => 0, 0, 0, 0, 0);
(3, 4, 0, 2 => 0, 1, 0, 0, 0);
(3, 4, 0, 3 => 1, 1, 0, 0, 0);
(3, 4, 1, 2 => 1, 0, 0, 0, 0);
(3, 4, 2, 1=> 1, 0, 0, 0, 0);
(3, 4, 3, 0=> 1, 0, 1, 1, 0);
(3, 4, 3, 1=> 0, 0, 1, 0, 0);
(3, 4, 2, 2 => 0, 0, 0, 0, 0);
(3, 4, 1, 3 => 0, 0, 0, 0, 0);
(3, 4, 0, 4 => 0, 1, 0, 0, 1);
(3, 4, 1, 4 => 1, 0, 0, 0, 1);
(3, 4, 2, 3 => 1, 0, 0, 0, 0);
(3, 4, 3, 2 => 1, 0, 1, 0, 0);
(3, 4, 3, 3 => 0, 0, 1, 0, 0);
(3, 4, 2, 4 => 0, 0, 0, 0, 1);
(3, 4, 3, 4 => 1, 0, 1, 0, 1);

/ 8x8 path */

(7, 7, 0, 0 => 0, 1, 0, 1, 0);
(7, 7, 0, 1 => 1, 1, 0, 0, 0);
(7, 7, 1, 0 a 1, 0, 0, 1, 0);
(7, 7, 2, 0 a 0, 0, 0, 1, 0);
(7, 7, 1, 1 a 0, 0, 0, 0, 0);
(7, 7, 0, 2 a 0, 1, 0, 0, 0);
(7, 7, 0, 3 a 1, 1, 0, 0, 0);
(7, 7, 1, 2 a 1, 0, 0, 0, 0);
(7, 7, 2, 1=> 1, 0, 0, 0, 0);
(7, 7, 3, 0=> 1, 0, 0, 1, 0);
(7, 7, 4, 0=> 0, 0, 0, 1, 0);
(7, 7, 3, 1 => 0, 0, 0, 0, 0);

-G4-

(7, 7, 2, 2 => 0, 0, 0, 0, 0);
(7, 7, 1, 3 => 0, 0, 0, 0, 0);
(7, 7, 0, 4>0, 1, 0, 0, 0);
(7, 7, 0, 5 => 1, 1, 0, 0, 0);
(7, 7, 1, 4 => 1, 0, 0, 0, 0);
(7, 7, 2, 3 => 1, 0, 0, 0, 0);
(7, 7, 3, 2 a 1, 0, 0, 0, 0);
(7, 7, 4, 1=> 1, 0, 0, 0, 0);
(7, 7, 5, 0 a 1, 0, 0, 1, 0);
(7, 7, 6, 0=> 0, 0, 0, 1, 0);
(7, 7, 5, 1 a 0, 0, 0, 0, 0);
(7, 7, 4, 2 => 0, 0, 0, 0, 0);
(7, 7, 3, 3 a 0, 0, 0, 0, 0);
(7, 7, 2, 4 => 0, 0, 0, 0, 0);
(7, 7, 1, 5 a 0, 0, 0, 0, 0);
(7, 7, 0, 6=> 0, 1, 0, 0, 0);
(7, 7, 0, 7 a 1, 1, 0, 0, 1);
(7, 7, 1, 6 a 1, 0, 0, 0, 0);
(7, 7, 2, 5 => 1, 0, 0, 0, 0);
(7, 7, 3, 4 => 1, 0, 0, 0, 0);
(7, 7, 4, 3 a 1, 0, 0, 0, 0);
(7, 7, 5, 2 => 1, 0, 0, 0, 0);
(7, 7, 6, 1=> 1, 0, 0, 0, 0);
(7, 7, 7, 0=> 1, 0, 1, 1, 0);
(7, 7, 7, 1=> 0, 0, 1, 0, 0);
(7, 7, 6, 2 a 0, 0, 0, 0, 0);
(7, 7, 5, 3 => 0, 0, 0, 0, 0);
(7, 7, 4, 4 => 0, 0, 0, 0, 0);
(7, 7, 3, 5 => 0, 0, 0, 0, 0);
(7, 7, 2, 6 a 0, 0, 0, 0, 0);
(7, 7, 1, 7 a 0, 0, 0, 0, 1);
(7, 7, 2, 7 a 1, 0, 0, 0, 1);
(7, 7, 3, 6=> 1, 0, 0, 0, 0);
(7, 7, 4, 5a 1, 0, 0, 0, 0);
(7, 7, 5, 4a 1, 0, 0, 0, 0);
(7, 7, 6, 3a 1, 0, 0, 0, 0);
(7, 7, 7, 2=> 1, 0, 1, 0, 0);
(7, 7, 7, 3 a 0, 0, 1, 0, 0);
(7, 7, 6, 4a 0, 0, 0, 0, 0);
(7, 7, 5, Sa 0, 0, 0, 0, 0);
(7, 7, 4, 6 a 0, 0, 0, 0, 0);
(7, 7, 3, 7 a 0, 0, 0, 0, 1);
(7, 7, 4, 7 a 1, 0, 0, 0, 1);
(7, 7, 5, 6 a 1, 0, 0, 0, 0);
(7, 7, 6, 5 a 1, 0, 0, 0, 0);
(7, 7, 7, 4 => 1, 0, 1, 0, 0);
(7, 7, 7, 5 a 0, 0, 1, 0, 0);
(7, 7, 6, 6 a 0, 0, 0, 0, 0);
(7, 7, 5, 7 => 0, 0, 0, 0, 1);
(7, 7, 6, 7 a 1, 0, 0, 0, 1);
(7, 7, 7, 6 => 1, 0, 1, 0, 0);
(7, 7, 7, 7=> 0, 0, 1, 0, 1);

1 	/* end of test /

1 	/* end of stage_a *1

-G5-

G.3 	Source File Stage B

/*********DEpAflTMENT*OF*ELECTRICAL*JD*gLECpRONIC*ENGINEERING*********
* *
* File 	: stage_b.tdl 	 *
* *
* Description : file contains second, sequential stage of Moore 	*
* state machine for versatile zigzag-reordering 	*
* algorithm, and simulates the stage for given 	*
* sub-block dimensions 	 *
* *
* Author 	: Hanns-Juergen Grosse 	 *
* *
* Copyright 1996-1997 by Hanns-Juergen Grosse. All rights reserved. *
* *
* Inputs 	: (1 bit per input) 	 *
* from stage_a: 	 *
* p 	(parity parameter) 	 *
* rl 	(first-row parameter) 	 *
* rl 	(last-row parameter) 	 *
* ci 	(first-column parameter) 	 *
* cm 	(last-column parameter) 	 *
* external: 	 *
* clk 	(clock signal) 	 *
* oe 	(output enable, to be connected to OND) 	*
* reset 	(reset signal) 	 *
* *
* Outputs 	: (3 bits per output) 	 *
* 12. .0 	(current row index) 	 *
* m2. .0 	(current column index) 	 *
* (1 bit per input) 	 *
* done 	(scan-complete signal) 	 *
* *
* Note 	: row and column indices range from 000 to 111 	*
* *
****** ****** *** * * 	 *** ************* */

stage_b(in 	p. / 	parity parameter 	/

rl, /* first-row parameter 	/

rl, /* last-row parameter 	/

ci, /* first-column parameter 	/

cm, 1* last-column parameter 	/

clk, /* clock signal */
oe, / 	output enable */
reset; 	1* reset signal *1

reg 	12..0, /* current row index */
m2. .0; / 	current column index 	/

out done) 	/* scan-complete signal */

group 1[12..0];
group m[m2..0];

/* clock signal */
l.ck = clk;
m.ck = clk;

-06-

/ output enable /
l.oe = Joe;
m.oe = Joe;
done.oe = 1;

7* synchronous clear */
l.clr = reset;
m.clr = reset;

/* overall decision tree /
it (r1 & cm)

7* force back to start, ready for next sub-block /
done = 1;
1 = 0;
m = 0;

else
done = 0;
if (1 == p)
{ 	if (1 == ri)

/ row unchanged /
1 = 1;

/ increment column */
mO = !m0;
ml = mU ^ ml;
m2 = (mO & ml) I m2;

else
/ increment row I
10 = !10;
11 = 10 All ;

12 = (10 & 11) I 12;

if (1 == ci)
7* column unchanged *7
m = m;

I else
/ decrement column */
mO = !mO;
ml = nO ! ml;
m2 = (mO & m2) I (ml & m2);

7* end if (cl) */
7* end if (r1) */

I else
(if (1 == cm)

/ increment row /
10 = !lO;
11 = 10 A 11;
12 = (10 & 11) 1 12;

/* column unchanged */
m = m;

I else
/ increment col /
mU = !mO;
ml = mU ml;
m2 = (mO & ml) I m2;

-G7-

if (1 == ri)
1* row unchanged */
1 = 1;

else
/* decrement row /
10 = !10;
11 = 10 A 11;
12 = (10 & 12) I (11 & 12);

/* end if (ri) *1

/* end if (cm) */
/ end if (p) *1

/* end if (rl & cm) */

/ write JEDEC file */
putpart("glGvS", "stage_b",

	

cik, cm, ci, 	p, reset, 	, ri, 	ri, GND,
oe, 	12, 	11, 	10, 	m2, ml, mO, _, done, VCC);

/* simulate stage_b */
test(clk, p, rl, ri, ci, cm => 1, in, done)

tracef("%w %d %d %d %d %d 	%d %d %w",
cik, p, ri, rl, ci, cm, 1, m, done);

1*

* test vectors for 5xl, 3x2, 2x3, 1x5, 3x5, 4x5,
* and 8x8 zigzag scan paths
*
• Note:
• row and column indices range from 000 to 111, therefore
• the scan paths are defined as 4x0, 2xi, 1x2, 0x4, 2x4, 3x4, and 7x7
*
* indices automatically reset to first position
*
*1

oe = 0;
reset = 1;
/ reset to first position /
(\C, 0, 0, 0, 0, 0 => 0, 0, 0);
reset = 0;

/ 	row x column path *1
/ 	5x1 path */
(\C, 0, 1, 0, 1, la 1, 0, 0);
(\C, 1, 0, 0, 1, 1 => 2, 0, 0);
(\C, 0, 0, 0, 1, 1 => 3, 0, 0);
(\C, 1, 0, 0, 1, 1 a 4, 0, 0);
(\C, 0, 0, 1, 1, 1 => 0, 0, 1);

/ 	3x2 path 	/

(\C, 0, 1, 0, 1, 0 a 0, 1, 0);
(\C, 1, 1, 0, 0, 1 => 1, 0, 0);
(\C, 1, 0, 0, 1, 0 => 2, 0, 0);
(\C, 0, 0, 1, 1, 0=> 1, 1, 0);
(\C, 0, 0, 0, 0, 1=> 2, 1, 0);
(\C, 1, 0, 1, 0, 1=> 0, 0, 1);

SM

1* 2x3 path /

(\C, 0, 1, 0, 1, 0 > 0, 1, 0);
(\C, 1, 1, 0, 0, 01, 0, 0);
(\C, 1, 0, 1, 1, 0 => 1, 1, 0);
(\C, 0, 0, 1, 0, 0 => 0, 2, 0);
(\C, 0, 1, 0, 0, 1 => 1, 2, 0);
(\C, 1, 0, 1, 0, 1 => 0, 0, 1);

/ 	1x5 path *1
(\C, 0, 1, 1, 1, 0 => 0, 1, 0);
(\C, 1 1 1, 1, 0, 0 => 0, 2, 0);
(\C, 0, 1, 1, 0, 0 => 	0, 3, 0);
(\C, 1 1 1, 1, 0, 0 => 	0, 4, 0);
(\C, 0, 1, 1, 0, 1 => 0, 0, 1);

/ 3x5 path /

(\C, 0, 1, 0, 1, 0 => 0, 1, 0);
(\C, 1, 1, 0, 0, 0 => 1, 0, 0);
(\C, 1, 0, 0, 1, 0 => 2, 0, 0);
(\C, 0, 0, 1, 1, 0 => 1, 1, 0);
(\C, 0, 0, 0, 0, 0 => 0, 2, 0);
(\C, 0, 1, 0, 0, 0 => 0, 3, 0);
(\C, 1, 1, 0, 0, 0 => 1, 2, 0);
(\C, 1, 0, 0, 0, 0=> 2, 1, 0);
(\C, 1, 0, 1, 0, 0 => 2, 2, 0);
(\C, 0, 0, 1, 0, 0 => 1, 3, 0);
(\C, 0, 0, 0, 0, 0 => 0, 4, 0);
('\C, 0, 1, 0, 0, 1 => 1, 4, 0);
(\C, 1, 0, 0, 0, 1 => 2, 3, 0);
(\C, 1, 0, 1, 0, 0 => 2, 4, 0);
(\C, 0, 0, 1, 0, 1 => 0, 0, 1);

/ 4x5 path /

(\C, 0, 1, 0, 1, 0 => 0, 1, 0);
(\C, 1, 1, 0, 0, 0 => 1, 0, 0);
(\C, 1, 0, 0, 1, 0 => 2, 0, 0);
(\C, 0, 0, 0, 1, 0 => 1, 1, 0);
(\C, 0, 0, 0, 0, 0=> 0, 2, 0);
(\C, 0, 1, 0, 0, 0 => 0, 3, 0);
(\C, 1, 1, 0, 0, 0 => 1, 2, 0);
(\C, 1, 0, 0, 0, 0 => 2, 1, 0);
(\C, 1, 0, 0, 0, 0 => 3, 0, 0);
(\C, 1, 0, 1, 1, 0 => 3, 1, 0);
(\C, 0, 0, 1, 0, 0=> 2, 2, 0);
(\C, 0, 0, 0, 0, 0 => 1, 3, 0);
(\C, 0, 0, 0, 0, 0 => 0, 4, 0);
(\C, 0, 1, 0, 0, 1 => 1, 4, 0);
(\C, 1, 0, 0, 0, 1 => 2, 3, 0);
(\C, 1, 0, 0, 0, 0 => 3, 2, 0);
(\C, 1, 0, 1, 0, 0 => 3, 3, 0);
(\C, 0, 0, 1, 0, 0 => 2, 4, 0);
(\C, 0, 0, 0, 0, 1 => 3, 4,
(\C, 1, 0, 1, 0, 1=> 0, 0, 1);

-G9-

/ 	8x8 path */

(\C, 0, 1, 0, 1, 0 => 0, 1, 0);
(\C, 1, 1, 0, 0, 0 a 1, 0, 0);
(\C, 1, 0, 0, 1, 0 => 2, 0, 0);
(\C, 0, 0, 0, 1, 0 => 1, 1, 0);

(\C, 0, 0, 0, 0, 0 a 0, 2, 0);
(\C, 0, 1, O r 0, 0 => 0, 3, 0);
(\C, 1, 1, 0, 0, 0 => 1, 2, 0);
(\C, 1, 0, 0, 0, 0 => 2, 1, 0);
(\C, 1, 0, O r 0, 0 => 3, 0, 0);
(\C, 1, 0, 0, 1, 0 => 4, 0, 0);
(\C, 0, 0, 0, 1, 0 => 3, 1, 0);

(\C, 0, 0, 0, 0, 0 => 2, 2, 0);
(\C, O r 0, 0, 0, 0 => 1, 3, 0);
(\C, 0, 0, O r 0, 0 a 0, 4, 0);
(\C, 0, 1, 0, O r Oa 0, 5, 0);

(\C, 1, 1, 0, O r 0 a 1, 4, 0);
(\C, 1, 0, 0, 0, 0 => 2, 3, 0);
(\C, 1, 0, 0, 0, 0 => 3, 2, 0);
(\C, 1, 0, 0, 0, 0 a 4, 1, 0);
(\C, 1, 0, 0, 0, 0 => 5, 0, 0);
(\C, 1, 0, 0, 1, 0 a 6, 0, 0);
(\C, 0, 0, 0, 1, 0> 5, 1, 0);
(\C, 0, 0, 0, 0, 0=> 4, 2, 0);

(\C, 0, 0, 0, 0, 0 a 3, 3, 0);
(\C, 0, 0, 0, 0, 0 a 2, 4, 0);
(\C, 0, 0, 0, 0, 0 a 1, 5, 0);

(\C, 0, 0, 0, 0, 0 a 0, 6, 0);
(\C, 0, 1, 0, 0, 0 a O r 7, 0);

(\C, 1, 1, 0, 0, 1 a 1, 6, 0);
(\C, 1, 0, 0, 0, 0 a 2, 5, 0);
(\C, 1, O r 0, 0, 0=> 3, 4, 0);
(\C, 1, O r 0, 0, 0=> 4, 3, 0);

(\C, 1, 0, 0, 0, 0 => 5, 2, 0);
(\C, 1, 0, 0, 0, 0 a 6, 1, 0);
(\C, 1, 0, 0, 0, 0 => 7, 0, 0);
(\C, 1, O r 1, 1, 0 a 7, 1, 0);
(\C, 0, 0, 1, 0, 0=> 6, 2, 0);
(\C, 0, O r 0, 0, 0=> 5, 3, 0);
(\C, 0, 0, 0, 0, 0=> 4, 4, 0);
(\C, 0, Or 0, 0, 0 a 3, 5, 0);
(\C, 0, 0, 0, 0, 0 a 2, 6, 0);
(\C, 0, 0, 0, 0, 0=> 1, 7, 0);
(\C, 0, 0, 0, 0, 1=> 2, 7, 0);
(\C, 1, 0, 0, 0, 1 => 3, 6, 0);
(\C, 1, 0, 0, 0, 0 a 4, 5, 0);
(\C, 1, 0, 0, O r 0 a 5, 4, 0);
(\C, 1, 0, 0, 0, 0 a 6, 3, 0);
(\C, 1, 0, O r 0, 0 a 7, 2, 0);
(\C, 1, 0, 1, 0, 0 a 7, 3, 0);
(\C, 0, 0, 1, 0, 0 a 6, 4, 0);
(\C, 0, 0, 0, O r 0 a 5, 5, 0);
(\C, 0, 0, 0, 0, 0 a 4, 6, 0);

(\C, 0, 0, 0, 0, 0 a 3, 7, 0);
(\C, 0, 0, 0, 0, 1 a 4, 7, 0);
(\C, 1, 0, 0, 0, 1 a 5, 6, 0);
(\C, 1, O r 0, 0, 0 a 6, 5, 0);
(\C, 1, 0, 0, 0, 0 a 7, 4, 0);

(\C, 1, 0, 1, 0, 0 => 7, 5, 0);

'no'

(\C, 0, 0, 1, 0,
(\C, 0, 0 1 0, 0,
(\C, 0, 0, 0, 0,
(\C, 1 1 0, 0, 0,
(\C, 1, 0, 1, 0,
(\C, 0, 0, 1, 0,

1 	/* end of test /

/* end of stage_b /

0 => 6, 6, 0);
05, 7, 0);
1=> 6, 7, 0);
1=> 7, 6, 0);
0>7, 7, 0);
1=> 0, 0, 1);

-Gil-

G.4 	Source File State Machine

/*********DEpARTMENT*OF*ELECTRICAL*JD*ELECTRoNIC*ENGINEERINQ*********
* *
* File moore.tdl 	 *
* *
* Description file reads the JEDEC fusemaps from stage_a.jed and 	*
* stage_b.jed, and simulates the Moore state machine 	*
* for the given sub-block dimensions 	 *
* *
* Author Hanns-Juergen Grosse 	 *
* *
* Copyright 1996-1997 by Hanns-Juergen Grosse. All rights reserved. *
* *
* Inputs (3 bits per input) 	 *
* 112. .0 	(rows in sub-block) 	 *
* mm2. .0 	(columns in sub-block) 	 *
* (1 bit per input) 	 *
* clk 	(clock signal) 	 *
* oe 	(output enable, to be connected to GND) 	*
*
*

reset 	(reset signal) 	 *
*

* Outputs (3 bits per output) 	 *
* 12. .0 	(current row index) 	 *
* m2. .0 	(current column index) 	 *
* (1 bit per input) 	 *
* done 	(scan-complete signal) 	 *
* *
* Note row and column indices start range from 000 to 111 	*
* *

moore(net 112..0, /* rows in sub-block 	/

mm2. .0, /* columns in sub-block */
clk, /* clock signal */
oe, 1* output enable */
reset, / 	reset signal */
12..0, /* current row index 	/

m2. .0, /* current column index */
done, /* scan-complete signal */
p, / 	parity parameter *1

ri, /* first-row parameter *1

rl, /* last-row parameter 	/

cl, /* first-column parameter *1

cm) /* last-column parameter 	/

group 11[112..0J;
group mm[mm2..0];
group 1(12..0J;
group m[m2..0];

/* read JEDEC files /
getpart("gl6v8", "stage_a 11 ,

112, 111, 110, mm2, rnml, mm0, 12, 11, 10, GND,
-, rl, ri, m2, ml, mO, 	p, ci, cm, VCC);

-G12-

getpart ("glGvS', rlstagebfl,

	

clk, cm, ci, 	p. reset, -, -, rl, 	rl, GND,
oe, 	12, 	11, 	10, 	m2, ml, nO, -, done, VCC);

/* simulate state machine /
test(clk, 11, mm => 1, m, done)
C 	tracef("%w %d %d 	%d %d %w",

clk, 11, mm, 1, m, done);

1*

* test vectors for 5x1, 3x2, 2x3, lxS, 3x5, 4x5,
* and 8x8 zigzag scan paths
*

* Note:
* row and column indices range from 000 to 111, therefore
* the scan paths are defined as 4x0, 2x1, 1x2, 0x4, 2x4, 3x4, and 7x7
*

* indices automatically reset to first position
*

*1

oe = 0;
reset = 1;
I reset to first position /
(\C, 7, 7 => 0, 0, 7);
reset = 0;

/ 	row x column path 	/
/ 	5x1 path I

(\C, 4, 0 => 1, 0, 0);
(\C, 4, 0 => 2, 0, 0);
(\C, 4, 0 => 3, 0, 0);
(\C, 4, 0 => 4, 0, 1);
(\C, 4, 0=> 0, 0, 0);

/ 	3x2 path */

(\C, 2, 1 => 0, 1, 0);
(\C, 2, 1=> 1, 0, 0);
(\C, 2, 1=> 2, 0, 0);
(\C, 2, 1> 1, 1, 0);
(\C, 2, 1=> 2, 1, 1);
(\C, 2, 1 => 0, 0, 0);

/ 	2x3 path /

(\C, 1, 2 => 0, 1, 0);
(\C, 1, 2=> 1, 0, 0);
(\C, 1, 2=> 1, 1, 0);
(\C, 1, 2=> 0, 2, 0);
(\C, 1, 2 => 1, 2, 1);
(\C, 1, 2 => 0, 0, 0);

/ 	1x5 path */

(\C, 0, 4 => 0, 1, 0);
(\C, 0, 4 => 0, 2, 0);
(\C, 0, 4> 0, 3, 0);
(\C, 0, 4=> 0, 4, 1);
(\C, 0, 4>0, 0, 0);

-013-

/ 	3x5 path /

(\C, 2, 4 => 0, 1, 0);

(\C, 2, 4 => 1, 0, 0);

(\C, 2, 4>2, 0, 0);

(\C, 2, 4 => 1, 1, 0);

(\C, 2, 4 => 0, 2, 0);

(\C, 2, 4 => 0, 3, 0);

(\C, 2, 4 => 1, 2, 0);

(\C, 2, 4 => 2, 1, 0);

(\C, 2, 4> 2, 2, 0);

(\C, 2, 4> 1, 3, 0);

(\C, 2, 4 => 0, 4, 0);

(\C, 2, 4> 1, 4, 0);

(\C, 2, 4 a 2, 3, 0);

(\C, 2, 4=> 2, 4, 1);

(\C, 2, 4 a 0, 0, 0);

1* 4x5 path */

(\C, 3, 4 a 0, 1, 0);

(\C, 3, 4 a 1, 0, 0);

(\C, 3, 4 a 2, 0, 0);

(\C, 3, 4> 1, 1, 0);

(\C, 3, 4 a 0, 2, 0);

(\C, 3, 4a 0, 3, 0);

(\C, 3, 4 => 1, 2, 0);

(\C, 3, 4 a 2, 1, 0);
(\C, 3, 4 a 3, 0, 0);

(\C, 3, 4>3, 1, 0);

(\C, 3, 4 => 2, 2, 0);

(\C, 3, 4a 1, 3, 0);

(\C, 3, 4a 0, 4, 0);

(\C, 3, 4a 1, 4, 0);

(\C, 3, 4> 2, 3, 0);

(\C, 3, 4a 3, 2, 0);
(\C, 3, 4 a 3, 3, 0);

(\C, 3, 4a 2, 4, 0);

(\C, 3, 4=> 3, 4, 1);

(\C, 3, 4 a 0, 0, 0);

/ 	8x8 path */

(\C, 7, 7 a 0, 1, 0);

(\C, 7, 7 a 1, 0, 0);

(\C, 7, 7 a 2, 0, 0);

(\C, 7, 7 a 1, 1, 0);

(\C, 7, 7 a 0, 2, 0);

(\C, 7, 7 a 0, 3, 0);

(\C, 7, 7 a 1, 2, 0);

(\C, 7, 7 a 2, 1, 0);
(\C, 7, 7 a 3, 0, 0);

(\C, 7, 7 a 4, 0, 0);

(\C, 7, 7a 3, 1, 0);
(\C, 7, 7 a 2, 2, 0);

(\C, 7, 7 a 1, 3, 0);

(\C, 7, 7 a 0, 4, 0);

(\C, 7, 7 a 0, 5, 0);

(\C, 7, 7 a 1, 4, 0);

(\C, 7, 7 a 2, 3, 0);

(\C, 7, 7 a 3, 2, 0);

(\C, 7, 7 a 4, 1, 0);

-G14-

(\C, 7, 7 => 5, 0, 0);
(\C, 7, 7 => 6, 0, 0);
(\C, 7, 7 => 5, 1, 0);
(\C, 7, 7 => 4, 2, 0);
(\C, 7, 7 => 3, 3, 0);
(\C, 7, 7 => 2, 4, 0);
(\C, 7, 7 => 1, 5, 0);
(\C, 7, 7 => 0, 6, 0);
(\C, 7, 7 => 0, 7, 0);
(\C, 7, 7 => 1, 6, 0);
(\C, 7, 7 => 2, 5, 0);
(\C, 7, 7 => 3, 4, 0);
(\C, 7, 7 => 4, 3, 0);
(\C, 7, 7 => 5, 2, 0);
(\C, 7, 7 => 6, 1, 0);
(\C, 7, 7 => 7, 0, 0);
(\C, 7, 7 => 7, 1, 0);
(\C, 7, 7 => 6, 2, 0);
(\C, 7, 7 => 5, 3, 0);
(\C, 7, 7 => 4, 4, 0);
(\C, 7, 7 => 3, 5, 0);
(\C, 7, 7 => 2, 6, 0);
(\C, 7, 7 => 1, 7, 0);
(\C, 7, 7 => 2, 7, 0);
(\C, 7, 7 => 3, 6, 0);
(\C, 7, 7 => 4, 5, 0);
(\C, 7, 7 => 5, 4, 0);
(\C, 7, 7 => 6, 3, 0);
(\C, 7, 7 => 7, 2, 0);
(\C, 7, 7 => 7, 3, 0);
(\C, 7, 7 => 6, 4, 0);
(\C, 7, 7 => 5, 5, 0);
(\C, 7, 7 => 4, 6, 0);
(\C, 7, 7 => 3, 7, 0);
(\C, 7, 7 => 4, 7, 0);
(\C, 7, 7a 5, 6, 0);
(\C, 7, 7=> 6, 5, 0);
(\C, 7, 7=> 7, 4, 0);
(\C, 7, 7=> 7, 5, 0);
(\C, 7, 7 => 6, 6, 0);
(\C, 7, 7 => 5, 7, 0);
(\C, 7, 7 => 6, 7, 0);
(\C, 7, 7 => 7, 6, 0);
(\C, 7, 7 => 7, 7, 1);
(\C, 7, 7 => 0, 0, 0);

/ 	end of test /

) / 	end of moore /

-G15-

H 	Publications

GROSSE, Hanns-Juergen, VARLEY, Martin Roy, TERRELL, Trevor James, and

CHAN, Yiu Keung. 1997a. Sub-block classification using a neural network

for adaptive zigzag reordering in JPEG-like image compression scheme. In:

TEE. 1997/133. Neural and fuzzy systems: design, hardware and

applications. London, UK. The Institution of Electrical Engineers.

May 1997. ISSN 0963-3308. pp. 9/1-9/4. Colloquium on neural and fuzzy

systems: design, hardware and applications in London, UK, 09 May 1997.

GROSSE, Hanns-Juergen, VARLEY, Martin Roy, TERRELL, Trevor James, and

CHAN, Yiu Keung. 1997b. Hardware implementation of versatile zigzag-

reordering algorithm for adaptive JPEG-like image compression schemes.

In: TEE. 1997. Sixth international conference on image processing and its

applications. London, UK. The Institution of Electrical Engineers.

Jul. 1997. vol. 443, Pt 1 of 2. ISBN 0-85296-692-X. pp. 184-188. Sixth

international conference on image processing and its applications in Dublin,

Ireland, 14-17 Jul. 1997.

GROSSE, Hanns-Juergen, VARLEY, Martin Roy, TERRELL, Trevor James, and

CHAN, Yiu Keung. 1997c. Adaptive zigzag-reordering algorithm for

improved coding in JPEG-like image compression schemes. In: TBM Ltd.

1997. Second international symposium on digital signal processing.

Colchester, UK. Trusty Business Machines Ltd. Jul. 1997. pp. 7-11.

Second international symposium on digital signal processing in London,

UK, 22 Jul. 1997.

-Hi-

SUB-BLOCK CLASSIFICATION USING A NEURAL NETWORK FOR ADAPTIVE ZIGZAG
REORI)ERING IN JPEG-LIKE IMAGE COMPRESSION SCHEME

H.-J. Grosse, M. R. Varley, T. J. Terrel!, and Y. K. Chan

ABSTRACT

In this paper a neural-network technique for classification of blocks of discrete cosine transform (DCT)
coefficients using a backpropagation algorithm is described. The DCT is employed in a variety of transform-
based image compression schemes. In the authors' recent JPEG-like image compression scheme, efficient
reordering of coefficients is achieved by app!ying adaptive zigzag reordering to variable-size rectangular sub-
blocks. The additional neural-network-based sub-block classification discards isolated nonzero coefficients of
small significance in some sub-blocks and therefore further reduces their sizes. Initial experimental results are
presented that demonstrate the potential of the additional neura!-network-based sub-block classification in
terms of improved coding gain.

INTRODUCTION

Many image compression schemes, such as the standard JPEG scheme [1], operate by processing small non-
overlapping image blocks (usually square N x N blocks of a fixed size, e.g. 8 pixels x 8 pixels) using a 2-D
transform such as the discrete cosine transform (DCT) [2]. Whilst the transform itself is reversib!e and
lossless, it is used to decorrelate the data so that the inter-element correlation in the transform domain is
significant!y less than that in the spatial domain. The resulting 2-D block of transform coefficients is then
processed in the transform domain; in many cases this involves discarding some of the low-value transform
coefficients to reduce the amount of data to be transmitted or stored, which causes a loss of information.

In the authors' recent JPEG-like scheme, each N x N block of quantized and thresholded transform
coefficients is modified to yield the smallest possible sub-block to include all nonzero transform coefficients to
be coded [3, 4]. As an example, Fig. 1(a) depicts an 8 x 8 block of quantized transform coefficients,

•-26 —3 —6 2 2 : 0 0 0

! —2 —4 0 o:o 0 0

—3 ! 5-1 —1:000

—4 1 2 —1 0 0

0 0 000000

00000000

0 0 000000

00000000

(a) 	 (b)

Figure ! (a) 8 x 8 Block of Transform Coefficients, and (b) Zigzag Scan Path for 4 x 5 Sub-Block

H.-J. Grosse, M. R. Varley, and T. J. Terrell are with the Department of Electrical and Electronic Engineering,
University of Central Lancashire, Preston, Lancashire, PRI 2HE, United Kingdom.

Y. K. Chan is with the Department of Computer Science, City University of Hong Kong, 83 Tat Chee Avenue,
Kowloon Tong, Kowloon, Hong Kong.

-H2-

with the corresponding 4 x 5 sub-block indicated by the dotted line. The sub-block, being adapted to the
particularities of the corresponding block, is not necessarily square, but is rectangular and extends from the top
left-hand corner with a height and a width between I and N. Its dimensions, in the above example 4 x 5,
need to be retained in order to traverse the scan path correctly using the adaptive zigzag-reordering algorithm.
The algorithm, which in itself is transparent and lossless, generates the next position in the scan path, and
therefore the whole scan path, through Boolean expressions operating on the current position and the
dimensions of the sub-block; and produces a 1 -D matrix of coefficients. Figure 1 (b) depicts the scan path for
a 4 x 5 sub-block. The l-D matrix is then converted into an intermediate symbol sequence, each symbol
representing the number of zero coefficients preceding the current nonzero coefficient, the amplitude
classification and the actual amplitude of the nonzero coefficient [1]. This facilitates entropy coding by
placing low-frequency coefficients, that are more likely to be nonzero, before high-frequency coefficients. An
end-of-block symbol (EOB) terminates the block after the last nonzero coefficient. Huffman coding [5], or
arithmetic coding [6], can be used to convert the symbols to a continuous data stream.

SUB-BLOCK DETERMINATION USING NEURAL-NETWORK CLASSIFICATION

Isolated nonzero transform coefficients in a block diminish the effectiveness of adaptive zigzag reordering,
since retaining isolated nonzero coefficients also requires that a large number of otherwise unnecessary zero
coefficients are retained. However, if the contribution to reconstruction of an isolated transform coefficient is
found to be expendable, a significantly smaller sub-block may be generated. The additional reconstruction
error introduced by discarding the isolated nonzero coefficient is limited to the corresponding block of pixels.

The decision to sacrifice an isolated transform coefficient should take into account the contributions of all
coefficients in the block in order to weight the contribution of the isolated coefficient correctly. As the
adaptive zigzag-reordering algorithm requires only the sub-block dimensions, i. e. the row and column indices
of the bottom right-hand corner, a neural-network-based classifier can be used to determine the appropriate
dimensions.

FEEDFORWARD NETWORK AND TRAINING SET COMPOSITION

A feedforward network with 64 input neurons, 256 hidden neurons, and 64 output neurons has been trained
using a backpropagation algorithm. The neurons in the two trainable layers, i. e. hidden layer and output
layer, have log-sigmoid transfer functions because their output range, being between 0.0 and 1.0, is
appropriate for learning to output binary values [7].

The input layer provides one neuron per element. In order to homogenize input values, amplitudes of the
transform coefficients are classed according to their word lengths in bits for entropy coding in JPEG [1]; and
the classifications are normalized, i. e. divided by the maximum value within the block. The input layer
therefore receives the block of normalized amplitude classifications, that range from 0.0 to 1.0. As an
example, Fig. 2 depicts an 8 x 8 block of quantized transform coefficients, the corresponding amplitude
classifications according to JPEG and the normalized input values to the network.

The number of neurons in the hidden layer has been determined experimentally and is a compromise between
performance and complexity.

The output layer uses a simple l-in-64 binary code to identify the dimensions of the 64 possible sub-block
classes. This code, although requiring 64 neurons, allows competitive selection of one output neuron and has
been found to be more reliable than other codes, for example a 6-bit natural binary code that would require
only 6 neurons.

Composition of the training set is of great importance as the performance of the network depends on the initial
training, and the large amounts of image data available must be limited to a representative collection. The
training set, that has been composed manually, consists of 64 idealized input sets and 10 examples of each of
the 58 sub-block classes that have been selected from three images. However, for 6 of the 64 possible sub-
block classes, suitable examples have not been found in the selected images. The small number of idealized
sets, with all elements within the corresponding sub-blocks set to 1.0, supports the network's ability to classify
ideal input sets and the sub-block classes for which input sets have not been available.

- H 3 -

-26 -3 -6 2 2 0 0 0

1 -2 -4 0 0 0 0 0

-3 I 5 -1 -1 0 0 0

-4 1 2 -1 0 0 0 0

0 0 00 0000

0 0 000000

0 0 000000

0 0 000000

52322000

12300000

21311000

31210000

00000000

00000000

00000000

00000000

• 1.0 0.4 0.6 0.4 0.4 0.0 0.0 0.0

0.2 0.4 0.6 0.0 0.0 0.0 0.0 0.0

0.4 0.2 0.6 0.2 0.2 0.0 0.0 0.0

0.6 0.2 0.4 0.2 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

(a) 	 (b) 	 (c)

Figure 2 (a) Block of Transform Coefficients, (b) Block of Amplitude Classifications, and
(c) Block of Normalized Amplitude Classifications

The neural network is used during compression of the image to determine the dimensions of the sub-blocks to
be retained and encoded for transmission or storage prior to adaptive zigzag reordering. However, it is not
required during reconstruction of the image.

EXPERIMENTAL RESULTS

The neural network has been implemented using MATLAB [8] and its Neural Network Toolbox [7]. For the
sub-block determination it has been found that a standard backpropagation algorithm has trained the network
better than a more sophisticated backpropagation algorithm using momentum and adaptive learning rate. The
transform coefficient matrices have been generated using the Independent JPEG Group's software [9].

Several images have been processed using the standard JPEG algorithm, the adaptive zigzag-reordering
algorithm, and the neural-network-based sub-block determination. The quality setting, q, controlling scaling

of quantization tables, ranges from 10 ('poor' quality) to 90 ('good' quality) in steps of 5. Note that, in
accordance with JPEG's EOB symbol, all results apply only to zero coefficients preceding the last nonzero
coefficient.

As an example, Fig. 3 depicts the entropy of counts of consecutive zero coefficients for a well-known image,
'Lena', having a resolution of 512 x 512 pixels. For a given quality setting, and therefore the same peak
signal-to-noise ratio (psnr), adaptive zigzag reordering always produces a lower entropy for counts of
consecutive zero coefficients than standard JPEG. The sub-block determination using this particular neural-
network classifier produces even lower entropy values, but requires a higher quality setting in order to achieve
the same psnr, since some information is discarded by the neural network. Therefore, the aim is to find an
appropriate compromise between reduction in entropy and increase in quality setting.

CONCLUDING REMARKS

It has been demonstrated that the neural-network-based sub-block classification improves the performance of
adaptive zigzag reordering employed in the authors' recent JPEG-like scheme.

Since the sub-block dimensions need to be available for reconstruction, the authors are currently investigating
efficient coding schemes for them.

In addition, since the blocks of transform coefficients represent visual information, the generation of training
sets that relate better to properties of the human visual system (HVS) is ongoing. Different neural network
architectures, for example learning vector quantization (LVQ), are also being investigated.

ACKNOWLEDGEMENT

H.-J. Grosse would like to thank the Department of Electrical and Electronic Engineering of the University of
Central Lancashire for sponsoring his research.

-H4-

•1

1.5

.0

C

0.5

['I

28 	30 	32 	34 	36 	38 	40 	42

psnr, dB

Figure 3 Entropy of Counts of Consecutive Zero Coefficients versus Peak Signal-to-Noise Ratio
—fr— Standard JPEG —0— Adaptive Zigzag Reordering

-*- Neural-Network-Based Sub-Block Determination

Wallace, G. K. 1992. The JPEG still picture compression standard. IEEE transactions on consumer
electronics. Feb 1992. vol. 38, no. 1. pp. xviii-xxxiv.

2 	Ahmed, N., Natarajan, T., and Rao, K. R. 1974. Discrete cosine transform. IEEE transactions on
computers. Jan 1974. vol. C-23, no. I. pp. 90-93.

3 	Grosse, H.-J., Varley, M. R., Terrell, T. J., and Chan, Y. K. 1997. Adaptive zigzag-reordering
algorithm for improved coding in JPEG-like image compression schemes. In: Second international
symposium on digital signal processing. Colchester, UK. Trusty Business Machines Ltd. Venue:
London, UK, 22-24 Jul 1997.

4 	Grosse, H.-J., Varley, M. R., Terrell, T. J., and Chan, Y. K. 1997. Hardware implementation of
versatile zigzag-reordering algorithm for adaptive JPEG-like image compression schemes. In: Sixth
international conference on image processing and its applications. London, UK. The Institution of
Electrical Engineers. Venue: Dublin, Ireland, 14-17 Jul 1997.

5 	Huffman, D. A. 1952. A method for the construction of minimum-redundancy codes. Proceedings of
the IRE. Sep 1952. vol. 40, no.9. pp. 1098-1101.

6 	Witten, I. H., Neal, R. M., and Cleary, J. G. 1987. Arithmetic coding for data compression.
Communications of the ACM. Jun 87. vol. 30, no. 6. pp. 520-540.

7 	Demuth, Howard B., and Beale, Mark. 1994. Neural network toolbox users guide. Natick,
Massachusetts, USA. The MathWorks, Inc. Jan 1994.

8 	MathWorks. 1994. MATLAB version 4.2. Natick, Massachusetts, USA. The MathWorks, Inc.
Oct 1994.

9 	Independent JPEG Group. The Independent JPEG Group's software: C source code, release 6a.
[Online] Available ftp://ftp.simtel.netJpub/simtelnetlmsdos/graphics/jpegsr6a.zip, 07 Feb 1996.

MIN

HARDWARE IMPLEMENTATION OF VERSATILE ZIGZAG-REORDERING ALGORITHM FOR ADAPTIVE
JPEG-LIKE IMAGE COMPRESSION SCHEMES

H.-J. Grosse', M. R. Varley', T. J. Terrell', andY. K. Chan 2

University of Central Lancashire, United Kingdom
2 City University of Hong Kong, Hong Kong

ABSTRACT

In this paper a hardware implementation of an adaptive
technique for reordering of discrete cosine
transform (DCI) coefficients, that are used in a variety
of transform-based image compression schemes such as
JPEG, is described. Efficient reordering is achieved for
variable-size rectangular sub-blocks using Boolean
operations, that determine the position of the next
coefficient to be coded. The algorithm has been
developed for implementation in hardware using
programmable logic devices (PLD5). The
implementation constitutes a Moore state machine with
binary inputs representing the number of rows and
columns in the sub-block to be reordered. Experimental
results are presented which demonstrate the potential
advantages of this new technique, in terms of a
significant reduction in entropy.

INTRODUCTION

Many image compression schemes, such as the standard
JPEG scheme [I], operate by processing small non-
overlapping image blocks (usually square N x N blocks
of a fixed size, e.g. 8 pixels x 8 pixels) using a 2-D
transform such as the discrete cosine transform
(DCT) [2]. 'Whilst the transform itself is reversible and
lossless, it is used to decorrelate the data so that the
inter-element correlation in the transform domain is
significantly less than that in the spatial domain. The
resulting 2-D block of transform coefficients is then
processed in the transform domain; in many cases this
involves discarding some of the low-value transform
coefficients to reduce the amount of data to be
transmitted or stored, which causes a loss of
information.

In the authors' new JPEG-like scheme the N x N block
of quantized and thresholded transform coefficients is
modified to yield a smaller sub-block of coefficients to
be coded. This sub-block is not necessarily square, but
is rectangular with a height and width between I and N.
Adaptive zigzag reordering, which in itself is a fully
reversible process, produces a l-D array of coefficients
which is then converted into an intermediate symbol
sequence, each symbol representing the number of zero
coefficients preceding the current nonzero coefficient,

the amplitude classification and the actual amplitude of
the nonzero coefficient. This facilitates entropy coding
by placing low-frequency coefficients, that are more
likely to be nonzero, before high-frequency coefficients.

In this paper, a version of the algorithm that has been
developed for implementation in hardware using
programmable logic devices (PLDs) is described. The
implementation constitutes a Moore state machine with
binary inputs representing the number of rows and
columns in the sub-block to be reordered. The state
machine steps through the appropriate number of states
in sequence, and generates outputs corresponding to the
row and column indices of each element in turn for a
zigzag scan path. Since the implementation employs the
parallel hardware of the PLDs, the appropriate
operations are mapped directly into Boolean operations,
implemented using logic gates, instead of nested
decisions which would be used in a software
implementation. This enables fast reordering to be
achieved prior to coefficient coding.

Experimental results are presented for four images,
which demonstrate the potential advantages of the new
adaptive scheme over the standard JPEG scheme, in
terms of a significant reduction in entropy.

DETERMINATION OF SUB-BLOCKS

The proposed algorithm is transparent and lossless, and
identifies the smallest possible rectangle to include all
nonzero transform coefficients after quantization, thus
adapting to the particularities of every block. As an
example, Fig. I depicts an 8 x 8 block of quantized

—26 —3 —6 2 20 0 0

1 —2 —4 0 00 0 0

—3 I 5 —1 —1:0 0 0

—4 I 2 —1 00 0 0

0 0 000000

0 0 000000

0 0 000000

0 0 000000

Figure 1 8 x 8 Block of Transform Coefficients

-H6-

transform coefficients, with the corresponding 4 x 5
sub-block indicated by the dotted line. Since the sub-
blocks generally have different heights and widths
depending on the specific content of the corresponding
block, the dimensions of the sub-block, in the above
example 4 x 5, need to be retained in order to traverse
the scan path correctly using the new algorithm.

VERSATILE ZIGZAG-REORDERING
ALGORITHM

A matrix, A(L, M), of L rows by M columns can be
defined as

ra(l,l) a(1,2). 	a(i,M) 1
I a(2,l) a(2,2) . 	a(2,M) I

A(L,M)=I 	 (1)

[a(L,l) a(L,2) 	a(L, M)j

with 15ISLand 15m:5M.

One of many possible scan paths involves zigzag
reordering as shown in Fig. 2 for two examples; the
elements always succeed a neighbouring element.

(a)

(b)

Figure 2 Zigzag Scan Path for (a) 3 x 5 , and
(b) 4 x 5 Matrices

The scan path depends on the dimensions, L and M , of
the matrix. As the dimensions of the matrix are often
known in advance, 8 x 8 for blocks in JPEG for
example, the matrix can easily be traversed referring to a
single scan path. However, applications that allow
matrices of different and variant dimensions need to

produce scan paths tailored to the dimensions of the
matrices being used in order to reduce complexity.

Th 	 1 + +\ e next element s positton i1 , m), and therefore the

whole scan path, is determined through Boolean
expressions operating on the current element's
position (i, in) and the dimensions of the sub-block, L

and M. For zigzag reordering five parameters have
been defined:

RI indicates whether the current element is in the first
row

II 	forl=l
R1=1 . (2)

otherwtce

RL indicates whether the current element is in the last
row

II 	forl=L
RL=1 (3)

10 	otherwise

Cl indicates whether the current element is in the first
column

II 	form=I
Cl=1 . (4)

10 	otherwise

CM indicates whether the current element is in the last
column

11 	form=M
CM=1 (5)

otherwise

P indicates whether the sum of the row index I and the
column index m is odd

jl 	zifQ+m)isodd
(6)

L0 	otherwise

For different scan paths other parameters will be
required.

The following expressions determine the changes in row
and column indices:

I' = I — I if [iiCM.P] istrue 	 (7)

m+1 if 	 (8)

[(RI. &.) + (RL . CM . p) + (ii.)] is true

I=I+l if 	 (9)

[(ii. CM 	+ 	Cl 	+ (i . j. 	is true

in =m-1 if [IL.Cl.P] istrue 	 (10)

-H7-

P(1,rn)

CM(l,rn) 	 RL(1,m)

RI(1,rn) 	RL(1,rn)

`/ \ 0/ \

Cl(Im) 	CM(1,rn)

0/ \ 0/ \

rn += rn+l 	rn+l 	rn 	rn-I 	m 	m+I

* indicates scan complete

Figure 3 Binary Decision Tree for Zigzag Reordering

The above expressions are given in sum-of-products
form, but can be rearranged as required. A binary
decision tree, as shown in Fig. 3, may be used to
combine equations (7) to (to).

HARDWARE IMPLEMENTATION USING
PROGRAMMABLE LOGIC DEVICES

As an illustration of how the versatile zigzag-reordering
algorithm can be mapped into dedicated hardware, a
Moore state machine has been implemented with six
binary inputs representing the size of the sub-block to be
reordered. Three of the binary inputs are used to specify
the number of rows: 000 represents a sub-block
containing one row, 001 represents a sub-block
containing two rows etc. up to 111 for a sub-block with
eight rows. Similarly, the number of columns is
specified. Whilst the algorithm as described above can
be applied to sub-blocks of any size, this particular
hardware implementation allows all 64 sub-block sizes
from I x I to 8 x 8. The state machine has six outputs
that represent the row and column indices, I and m, of
the current element in the scan path in 3 bits each.
A reset signal (RESET) is used to initialize the row and
column indices, 1 and rn, to zero; corresponding to the
first element in the sequence regardless of the sub-block
size L and M. The appropriate zigzag scan sequence
is then generated in synchronization to a clock signal
(CLX). After the scan is complete, i. e. when I = L and
rn = M, a signal (DONE) is asserted to indicate
completion of the scan of the current sub-block, and the
row and column indices, I and m, are automatically
returned to zero in readiness for the zigzag scan of the
next sub-block.

The hardware implementation involves two stages; each
of which is mapped into a separate GALI6V8
device (3], which is a generic array logic PLD with a

user-programmable AND array, a fixed OR array, and an
output stage employing output logic macro-cells
(OLMCs). The device has eight dedicated inputs and
eight user-configurable pins, each of which may be
configured individually as input, combinational output,
or registered output within the appropriate OLMC.
Registered outputs are also fed back into the device's
AND array enabling a state machine to be implemented
on a single device.

The two stages in this implementation are:

Stage A. 	This stage determines, according to
equations (2) to (6), P, RI, RL, Cl, and CM from
the present values of the row and column indices, /
and rn, and the sub-block size as defined by L and M.
This is a purely combinational stage with twelve inputs
(L, M, I, and rn consisting of 3 bits each) and five
outputs(P, Ri, RL, Cl,and CM).

Stage B. This stage determines the next row and

column indices, C and m , from the present indices,
I and m, and the five outputs of the preceding stage
using a clock signal (CLX) to control the timing of the
zigzag-scan-sequence generation, and a reset signal
(RESET) to initialize the row and column indices to zero
for the first scan. The outputs from stage B are the two
3-bit indices, / and rn, which are implemented as
registered outputs, enabling them to be fed back
internally to the PLD's AND array. Additionally, a
DONE signal is available from stage B to indicate that
the zigzag scan of the current L x M sub-block is
complete.

Each stage is mapped into a separate GALI6V8 PLD,
and the state machine is implemented by interconnecting
the two PLDs as shown in Fig. 4.

MEN

RESET

z.

	

I 	I

StageA 	 >1 	Stage B 	I

	

M3 	
IP ...J 	 I____

	

I 	-i 	 I 	1 	/
k!

	

1 	I 	 I 	I

	

GALI6V8 I 	I GALI6V8 I 	DONE
CLK

	

3 	 I,ij3 RL 	
IH /

	

3 	 iCM1

Figure 4 Implementation of Zigzag Scan Path using GALl 6V8 PLDs

The fusemaps for the two devices have been created
using the development tool Tango-PLD [4], that allows
specification of the functionality of each device at a high
level using the C-like Tango Design Language (TDL).
A simple TDL file has been used to implement stage A
of the state machine according to equations (2) to (6).
Stage B has been implemented using a TDL file
describing the binary decision tree shown in Fig. 3.

It has been found that the stage A implementation
requires up to six product lines per output and readily
fits within a GALI6V8 device. Since, in practice, a row
or column index is never decremented from 000 or
incremented from Ill, "don't care" states can be used
for these cases in order to reduce the number of product
lines per output. Incorporating these considerations into
the TDL description of the binary decision tree enables
the state machine of stage B to be implemented on a
single GAL 16V8 device with the eight available product
lines fully utilized for some of the registered outputs.

Each device has been individually tested to verify its
correct operation, and the entire state machine,
consisting of the two GAL 16V8 devices interconnected
as shown in Fig. 4, has also been tested to ensure that the
zigzag scan paths are correctly generated.

ENTROPY REDUCTION VIA ADAPT WE
ZIGZAG REORDERING

In the standard JPEG scheme the l-D matrix of zigzag-
reordered coefficients is represented through an
intermediate symbol sequence, each symbol representing
the number of zero coefficients preceding the current
nonzero coefficient, the amplitude classification and the

actual amplitude of the nonzero coefficient [1]. An
end-of-block symbol (EOB) terminates the block after
the last nonzero coefficient. Huffman coding [5], or
arithmetic coding [6], can be used to convert the
symbols to a continuous data stream according to the
JPEG specification.

EXPERIMENTAL RESULTS

The images 'Cameraman' and 'Lena256' (both with a
resolution of 256 x 256), and 'F-16' and 'Lena512'
(both with a resolution of 512 x 512) have been
processed using the standard and the adaptive zigzag-
reordering algorithms. The transform coefficient
matrices have been generated using the Independent
JPEG Group's software [7]. The quality setting, q,

controlling scaling of quantization tables, ranges from 10
('poor' quality) to 90 ('good' quality) in steps of 5. Note
that, in accordance with JPEG's EOB symbol, all results
apply only to zero coefficients preceding the last
nonzero coefficient.

It has been observed that in all cases the entropy of
counts of consecutive zero coefficients for adaptive
zigzag-reordered scan paths is lower than that for the
standard 8 x 8 zigzag scan path. Figure 5 summarizes
the percentage entropy reduction for the four images.
For higher quality settings the number of nonzero
coefficients increases, therefore the sub-block
dimensions approach the standard 8 x 8 block
dimensions more frequently. However, for the images
analysed using 'medium' quality settings

(q = 30 to 70), a significant entropy reduction of at

least IS % has been obtained.

-H9-

50

40

C

20

10

10 	20 	30 	40 	50 	60 	70 	80 	90 	100

JPEG quality setting

Figure 5 Entropy reduction of counts of consecutive zero coefficients versus JPEG quality setting for four images
-t Cameraman 	0— F-16 -*- Lena256 --+ Lena512

CONCLUDING REMARKS

It has been demonstrated that the zigzag-reordering 	I 	Wallace, G. K. 1992. The JPEG still picture
algorithm, consistently giving a significant reduction in 	 compression standard. IEEE transactions on
the entropy of counts of consecutive zero coefficients 	 consumer electronics. Feb 1992. vol. 38, no. I.
over a wide range of quality settings, can be 	 pp. xviii-xxxiv.
implemented in hardware. The implementation using
two GALI6V8 PLDs has been developed with the

	
2 	Ahmed, N., Natarajan, T., and Rao, K. R. 1974.

Tango-PLD development system. 	 Discrete cosine transform. IEEE transactions on
computers. Jan 1974. vol. C-23, no. I. pp. 90-93.

The versatility of the zigzag-reordering algorithm itself
also supports the use of different block sizes for 	3 	GAL data book. 1990. Lattice Semiconductor
different regions of an image, for example 4 x 4 blocks 	 Corporation. Hillsboro, Oregon, USA.
for image regions containing significant detail and
16 x 16 blocks for background regions. The latter 	4 	Tango-PLD: reference manual. 1989. ACCEL
block size would, of course, require a different hardware

	
Technologies, Inc. San Diego, California, USA.

implementation.
5 	Huffman, D. A. 1952. A method for the

Since the sub-block dimensions need to be available for 	 construction of minimum-redundancy codes.
reconstruction, the authors are currently investigating

	
Proceedings of the IRE. Sep 1952. vol.40, no.9.

efficient coding schemes for them. The algorithm is also 	 pp. 1098-I 101.
being applied in research on discarding isolated nonzero
coefficients using neural-network-based sub-block

	
6 	Witten,I. H., Neal, R. M., and Cleary, J. G. 1987.

classification to further reduce the size of some sub- 	 Arithmetic coding for data compression.
blocks. 	 Communications of the ACM. Jun 87. vol. 30,

no. 6. pp. 520-540.

ACKNOWLEDGEMENT
	

7 	Independent JPEG Group. The Independent
JPEG Group's software: C source code,
release 6a. [Online] Available

FI.-J. Grosse would like to thank the Department of
	

ftp://ftp.simtel.netlpub/simtelnetlmsdos/graphicsf
Electrical and Electronic Engineering of the University

	
jpegsr6a.zip, 07 Feb 1996

of Central Lancashire for sponsoring his research.

Adaptive Zigzag-Reordering Algorithm for Improved Coding in
JPEG-like Image Compression Schemes

H.-J. Grosse, M. R. Varley, and T. J. Terre!!
Department of Electrical and Electronic Engineering,

University of Central Lancashire,
Preston, Lancashire, PR1 2FIE, United Kingdom

Y. K. Chan
Department of Computer Science,

City University of Hong Kong,
83 Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong

Abstract

In this paper an adaptive technique for reordering of
discrete cosine transform (DCT) coefficients, that are
used in a variety of transform-based image compression
schemes such as JPEG, is described. Efficient reordering
is achieved for variable-size rectangular sub-blocks using
an innovative binary decision tree which determines the
position of the next coefficient to be coded. Experimental
results are presented which demonstrate the potential
advantages of this new technique, in terms of a significant
reduction in entropy.

1 Introduction

Many image compression schemes, such as the standard
JPEG scheme [I], operate by processing small non-
overlapping image blocks (usually square N x N blocks
of a fixed size, e.g. 8 pixels x 8 pixels) using a 2-D
transform such as the discrete cosine transform (D(7) [2].
Whilst the transform itself is reversible and lossless, it is
used to decorrelate the data so that the inter-element
correlation in the transform domain is significantly less
than that in the spatial domain. The resulting 2-13 block of
transform coefficients is then processed in the transform
domain; in many cases this involves discarding some of
the low-value transform coefficients to reduce the amount
of data to be transmitted or stored, which causes a loss of
information. The remaining coefficients are then coded,
usually in a specific order corresponding, for example, to
increasing spatial frequency. In JPEG schemes zigzag
reordering is applied to the quantized and thresholded

block of coefficients, producing a l-D array of
coefficients. This facilitates entropy coding by placing
low-frequency coefficients, that are more likely to be
nonzero, before high-frequency coefficients.

The new technique differs in that the N x N block of
transform coefficients is modified to yield a smaller sub-
block of coefficients to be coded. This sub-block is not
necessarily square, but is rectangular with a height and
width between I and N. Since the sub-blocks generally
have different heights and widths depending on the
specific content of the corresponding block, the reordering
is no longer a straightforward task. The algorithm
described in this paper produces a l-D array containing
the reordered coefficients from the variable-size sub-
block, using an appropriate zigzag scan path. This
algorithm determines the required scan path 'on the fly'
using a binary decision tree, and can be applied to
rectangular blocks of any height and width.

Experimental results are presented for four images,
which demonstrate the potential advantages, in terms of a
significant reduction in entropy, over the standard JPEG
scheme.

2 Determination of sub-blocks

The proposed algorithm is transparent and lossless, and
identifies the smallest possible rectangle to include all
nonzero transform coefficients after quantization, thus
adapting to the particularities of every block. As an
example, Fig. 1 depicts an 8 x 8 block of quantized
transform coefficients, with the corresponding 4 x 5 sub-
block indicated by the dotted line. Since the sub-blocks
generally have different heights and widths depending on

-H 11-

-26 —3 —6 2 20 0 	0

I —2 —4 0 0:0 0 	0

—3 1 5 —I —1:0 0 	0

—4 1 2 —1 00 0 0

0 0 0 0 0000

0 0 0 0 0000

0 0 000000

0 0 000000

Figure 1 8 x 8 Block of Transform Coefficients

the specific content of the corresponding block, the
dimensions of the sub-block, in the above example 4 x 5,
need to be retained in order to traverse the scan path
correctly using the new algorithm.

3 Versatile zigzag-reordering algorithm

A matrix, A(L, M), of L rows by M columns can be
defined as

I(L,l)

Q,i) a(i,2) . 	 a(1,M)

(2,i) a(2,2) 	a(2,M)
A(L,M)

= aQ, m)

 a(L,2) . 	a(L,M)j

with lf:I:~Land 15m:5M.
One of many possible scan paths involves zigzag

reordering as shown in Fig. 2 for two examples; the
elements always succeed a neighbouring element.

The next element's position in the scan path,
1+ -\

)
,m
 , and therefore the whole scan path, is

determined using binary decisions based on the current

element's position, (l,m), and the dimensions of the sub-

block, L and M. For zigzag reordering five parameters
have been defined:
RI indicates whether the current element is in the first
row

1 i forIl
(2)

otherwise

RL indicates whether the current element is in the last
row

I forl=L
RL

= j0 otherwise

Cl indicates whether the current element is in the first
column

Cl =
{l form=1
 (4)

0 otherwise

CM indicates whether the current element is in the last
column

I form=M
CM

= jo otherwise 	
(5)

P indicates whether the sum of the row index I and the
column index in is odd

II ,f (I+m) is odd
(6)

(0 otherwise

(a)

(b)

Figure 2 Zigzag Scan Path for (a) 3 x 5, and
(b) 4)< 5 Matrices

Figure 3 depicts a decision tree which may be used to find

the next element's position, (r 	with three tests

operating on the parameters defined in equations (2) - (6).
First the parity parameter P(I, m) is tested, and

depending on this result, either the last-column
parameter CM(I, m) for P(I, in) = 0, or the last-row

parameter RL(I, m) 	for 	P(I, m) = I , 	is 	tested.

Subsequent decisions are then taken as specified in the

decision tree. Note that in the case for which both
l

= I

and m = in the full scan of the Lx M sub-block is
complete.

-H 12-

P(l,m)

CM(1,m) RLfl,m)

RI(1,m) R41,m)

0/ \ .

	

CI'I,m) 	CM(4m)

	

0/ \ 	0/ \ ,

mm mm 	mm
* indicates scan complete

Figure 3 Binary Decision Tree for Zigzag Reordering

4 Entropy reduction via adaptive zigzag
reordering

In the standard JPEG scheme the l-D matrix of zigzag-
reordered coefficients is represented through an
intermediate symbol sequence, each symbol representing
the number of zero coefficients preceding the current
nonzero coefficient, the amplitude classification and the
actual amplitude of the nonzero coefficient [I]. An
end-of-block symbol (EOB) terminates the block after the
last nonzero coefficient. Huffman coding [3], or
arithmetic coding [4], can be used to convert the symbols
to a continuous data stream according to the JPEG
specification.

The new adaptive technique reduces the counts of
consecutive zero coefficients; it modifies the distribution
of the counts of consecutive zero coefficients and also
reduces the number of different counts. This results in an
overall reduction in entropy for the counts of consecutive
zero coefficients, which may be exploited to give an
increased compression ratio.

5 Experimental results

The images 'Cameraman' and 'Lena256' (both with a
resolution of 256 x 256), and 'F- 16' and 'LenaS 12' (both
with a resolution of 512 x 512) were processed using the
standard and the adaptive zigzag-reordering algorithms.
The transform coefficient matrices were generated using
the Independent JPEG Groups software [5]. The quality
setting, q, controlling scaling of quantization tables,

ranges from 10 ('poor' quality) to 90 ('good' quality) in
steps of 5. Note that, in accordance with JPEG's EOB
symbol, all results apply only to zero coefficients
preceding the last nonzero coefficient.

It was observed that in all cases the entropy for
adaptive zigzag-reordered scan paths is lower than that for
the standard 8 x 8 zigzag scan path. As an example,
Fig. 4 depicts the entropy of counts of consecutive zero
coefficients for the image 'Lena5l2'. It is clear that the
adaptive algorithm consistently produces a lower entropy,
indicating the potential for improved coding gain.
Figure 5 summarizes the percentage entropy reduction for
all four images. For higher quality settings the number of
nonzero coefficients increases, therefore the sub-block
dimensions approach the standard 8 x 8 block dimensions
more frequently. However, for the images analysed using

'medium' quality settings (q = 30 to 70), a significant

entropy reduction of at least 15% was obtained.

6 Concluding remarks

It has been demonstrated that the new zigzag-reordering
algorithm consistently gives a significant reduction in the
entropy of counts of consecutive zero coefficients over a
wide range of quality settings. The versatility of the
zigzag-reordering algorithm also supports the use of
different block sizes for different regions of an image, for
example 4 x 4 blocks for image regions containing
significant detail and 16x 16 blocks for background
regions.

A hardware implementation of the decision tree has
been developed using dedicated logic [6]. The algorithm

-H 13-

2

1.5

-o

0.

C
C)

0.5

p 	 p 	 I 	 I 	 I 	 I 	 I 	 P 	 p 	 p 	 p 	 p 	 I 	 I 	 I 	 I

0 	10 	20 	30 	40 	50 	60 	70 	80 	90

JPEG quality setting

Figure 4 Entropy of counts of consecutive zero coefficients versus JPEG quality setting for Lena5 12
-&- Standard Zigzag Reordering -0- Adaptive Zigzag Reordering

MIJ

40

tP
C
.9 30
U

t

20

C
0)

—III

	

01 	I 	 I 	 I 	 I 	 p 	 p 	 p 	 p 	 I 	 I 	 I 	 I 	 I P

	

0 	10 	20 	30 	40 	50 	60 	70 	80 	90 	100

JPEG quality setting

Figure 5 Entropy reduction of counts of consecutive zero coefficients versus JPEG quality setting for four images
-t Cameraman 4 F-16 * Lena256 + Lena512

-H 14-

is also being applied in research on discarding isolated
nonzero coefficients to generate even smaller sub-
blocks [7].

A block of size N x N yields a sub-block of one of

N 2 possible sizes, thus introducing an overhead of

2 109 2 N bits per block for a simple fixed-length code.

For N = 8, 64 symbols are necessary to uniquely identify

every possible sub-block size, generating an overhead of
6 bits per block. It was found that even after employing
additional entropy coding, such as Huffman coding [3] or
arithmetic coding [4], this size of overhead is prohibitive.
However, the sub-block size is correlated with the number

of coefficients allowing more efficient encoding. The
number of coefficients along the scan path, i. e. the scan
path length, is known and can be evaluated: it varies

between I and N 2 , and provides some information

suitable to narrow down the number of sub-block sizes

possible for a particular number of coefficients. The
authors are currently investigating improved coding

schemes for the sub-block sizes.

7 Acknowledgement

H.-J. Grosse would like to thank the Department of

Electrical and Electronic Engineering of the University of
Central Lancashire for sponsoring his research.

8 References

Wallace, G. K. 	1992. 	The JPEG still picture
compression standard, 	iEEE transactions on
consumer electronics. 	Feb 1992. 	vol. 38, no. I.
pp. xviii-xxxiv.

2 Ahmed, N., Natarajan, T., and Rao, K. R. 1974.
Discrete cosine transform. IEEE transactions on
computers. Jan 1974. vol. C-23, no. 1. pp. 90-93 .

3 Huffman, D. A. 1952. A method for the construction
of minimum-redundancy codes. Proceedings of the
IRE. Sep 1952. vol. 40, no.9. pp. 1098- ' 101 .

4 Witten, I. H., Neal, R. M., and Cleary, J. G. 1987.
Arithmetic coding for data compression.
Communications of the ACM. Jun 87. vol. 30, no.6.
pp. 520-540.

5 Independent JPEG Group. The Independent JPEG
Group's software: C source code, release 6a. [Online]
Available ftp://ftp.simtel.netipub/simtelnetlmsdos/
graphics/jpegsr6a.zip, 07 Feb 1996.

6 Grosse, H.-J., Varley, M. R., Terrell, T. J., and Chan,
Y. K. 1997. Hardware implementation of versatile
zigzag-reordering algorithm for adaptive JPEG-like
image compression schemes. In: Sixth international

conference on image processing and its applications.
London, UK. The Institution of Electrical Engineers.

Venue: Dublin, Ireland, 14-17 Jul 1997.

7 Grosse, H.-J., Varley, M. R., Terrell, T. J., and Chan,
Y. K. 1997. Sub-block classification using a neural

network for adaptive zigzag reordering in JPEG-like
image compression scheme. in: Neural and fuzzy
systems: design, hardware and applications. London,
UK. The Institution of Electrical Engineers. Venue:

London, UK, 09 May 1997.

SWRE

