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Abstract 

JPEG-like Image Compression using 

Neural-network-based Block Classification and 

Adaptive Reordering of Transform Coefficients 

by 

Hanns-Juergen Grosse 

The research described in this thesis addresses aspects of coding of discrete-cosine-

transform (DCT) coefficients, that are present in a variety of transform-based digital-

image-compression schemes such as JPEG. Coefficient reordering; that directly affects 

the symbol statistics for entropy coding, and therefore the effectiveness of entropy 

coding; is investigated. Adaptive zigzag reordering, a novel versatile technique that 

achieves efficient reordering by processing variable-size rectangular sub-blocks of 

coefficients, is developed. Classification of blocks of DCT coefficients using an 

artificial neural network (ANN) prior to adaptive zigzag reordering is also considered. 

Some established digital-image-compression techniques are reviewed, and the JPEG 

standard for the DCT-based method is studied in more detail. An introduction to 

artificial neural networks is provided 

Lossless conversion of blocks of coefficients using adaptive zigzag reordering is 

investigated, and experimental results are presented. A versatile algorithm, that 

generates zigzag scan paths for sub-blocks of any dimensions using a binary decision 

tree, is developed. An implementation of the algorithm based on programmable logic 

devices (PLDs) is described demonstrating the feasibility of hardware implementations. 

Coding of the sub-block dimensions, that need to be retained in order to reconstruct a 

sub-block during decoding, based on the scan-path length is developed. 

Lossy conversion of blocks of coefficients is also considered, and experimental results 

are presented. A two-layer feedforward artificial neural network trained using an error-

backpropagation algorithm, that determines the sub-block dimensions, is described. 

Isolated nonzero coefficients of small significance are discarded in some blocks, and 

therefore smaller sub-blocks are generated. 
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Chapter 1 

Introduction 



	

1.1 	Introduction 

In this chapter the research project is outlined, and brought in context to related 

disciplines of telecommunications and computing. Section 1.2 briefly highlights some 

of the important advances of these technologies. Section 1.3 describes the aims and 

objectives of the research project, and section 1.4 provides an overview of the thesis. 

Finally section 1.5 concludes the chapter with a brief summary. 

	

1.2 	Background 

In 1837 Samuel Morse invented telegraphy, and seven years later he built the first 

telegraph line; between Washington and Baltimore, USA; which used Morse code. It 

was in 1851 that the first commercial transmissions using Morse code were established 

between England and France. In 1875 Alexander Graham Bell invented the telephone 

(A. Isaacs (ed.) 1997). 

In 1920 the introduction of the Bartlane cable picture transmission system reduced the 

delivery time for newspaper pictures between London, England and New York, USA 

from one week to three hours using digital signals on transatlantic submarine cables 

(M. D. McFarlane 1972). 

In 1948 William Shockley and co-workers invented the first transistors at Bell 

Telephone Co. 

In 1962 the first active telecommunication satellite, US Telstar 1, was launched and 

positioned into relatively low elliptical orbit (A. Isaacs (ed.) 1997). 
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In the late 1970s microcomputers became widely available. These systems, typically 

having up to 16 KB random-access memory (RAM) and a tape drive, were used to 

manipulate text and numerical data, but offered limited graphical support. In the USA 

the Advanced Research Projects Agency Network (ARPANET) was commissioned as 

an experimental network designed to support military research. ARPANET later 

became the Internet. 

In the 1980s personal computers, constantly growing more powerful, became available 

for office and home use. These systems, typically having up to 640 KB RAM, and 

floppy and hard disk drives, supported a large variety of applications, and offered from 

the late 1980s graphical user interfaces. However, because of enormous amounts of data 

involved, digital image processing was still limited to dedicated systems; see for 

example (G. Hall and T. J. Terrell 1987). 

In the 1990s tremendous improvement of processing power, and increases of RAM and 

hard disk storage are transforming personal computers into powerful general-purpose 

systems suitable for processing digital image data. Additional networking capabilities of 

office and home computers allow the exchange of data among distant computers. The 

Internet, connecting a variety of different computers around the world and growing at 

great pace, changes the way individuals work and communicate; it symbolizes the 

information technology revolution. 

With demand for transmission and storage of information rapidly growing, data 

compression in general and image compression in particular remain key technologies 

(N. Jayant et al. 1993); and, therefore, constitute important areas of research. 
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1.3 	Aims and Objectives of the Project 

The aims of the research described in this thesis were to investigate and develop 

appropriate neural-network models for digital image compression, and to develop the 

use of neural networks in hybrid schemes for image compression exploiting perceptually 

important features. 

The specific objectives were: 

• 	To review important existing image-compression techniques, 

• 	To review important existing neural-network models, 

To develop new image-compression techniques or to improve existing ones, and 

To identify prospective directions for further research. 

1.4 	Organization of the Thesis 

Chapter 2, entitled 'Digital Image Compression', places digital image compression in 

context to the human visual system and digital image processing, and focuses on some 

of the available techniques for lossless and lossy compression. 

Chapter 3, entitled 'JPEG Still Picture Compression Standard', discusses the Joint 

Photographic Experts Group (JPEG) still picture compression standard in some detail as 

this compression standard has been adapted to a new hybrid compression scheme. 

Chapter 4, entitled 'Adaptive Zigzag Reordering of Transform Coefficients', describes a 

new lossless transcoding scheme that adaptively reorders transform coefficients for 

improved coding efficiency, and includes experimental results to demonstrate the 

effectiveness of the scheme. 
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Chapter 5, entitled 'Artificial Neural Networks', introduces neural networks, and 

describes the backpropagation training algorithm in detail. 

Chapter 6, entitled 'Neural-network-based Block Classification', describes a lossy 

scheme that uses an artificial neural network to classify blocks prior to adaptive zigzag 

reordering, and includes experimental results to demonstrate the effectiveness of the 

scheme. 

Chapter 7, entitled 'Conclusions and Recommendations for Further Work', summarizes 

the contributions made by this thesis and offers recommendations for further research 

directions. 

1.5 	Summary 

Since their invention telecommunications and computing have developed at great pace. 

The demand for exchanging information continues to grow, therefore data and image 

compression remain key technologies. 

The main objective of the research described in this thesis has been to investigate the 

application of neural networks to digital image compression, particularly in hybrid 

schemes. 
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Chapter 2 

Digital Image Compression 



2.1 	Introduction 

This chapter places digital image compression in context to the human visual system and 

digital image processing, and focuses on some of the available techniques for lossless 

and lossy compression. 

Section 2.2 briefly summarizes the concept of digital image processing, introduces 

representations of digital images, and outlines a typical generic image-processing 

system. 

Section 2.3 develops the necessity for digital image compression, distinguishes between 

lossless and lossy techniques, and summarizes the objectives of digital image 

compression. It introduces the three forms of data redundancy that can be exploited, and 

outlines a general image-compression model. The section also introduces entropy as a 

measure of the complexity of an information source. 

Section 2.4 provides a very brief functional description of the human visual system, 

describes four properties as potentially being useful for digital-image-processing 

applications, and identifies two properties, spatial masking and local processing 

characteristic, as currently being most significant. 

Section 2.5 describes a number of digital-image-compression techniques. It develops 

the concept of Huffman coding in detail, focuses also on run-length coding, 

quantization, and transform coding; and enumerates some other techniques. 

Section 2.6 is concerned with image quality assessment based on subjective and 

objective measures. Finally section 2.7 concludes the chapter with a brief sununary. 
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2.2 	Digital Image Processing 

2.2.1 	Motivation for Digital Image Processing 

Digital image processing aims to gather, restore, enhance, relate, evaluate, and 

manipulate information contained in a digital image for many different purposes by 

means of computer technology; image samples are quantized to a fixed but sufficient 

number of information carrying units. Processing, storage, and transmission of digital 

representations of images offer many advantages over these operations performed on 

analogue representations: processing flexibility, easy or random access in storage, higher 

signal-to-noise ratio (SNR), possibility of error-free transmission, readiness for 

encryption and coding, and compatibility with other types of information as well as 

digital networks and computers, to name but a few. Image storage applications include 

medical imaging, image-based document management, and multimedia applications. 

Image transmission applications include broadcast television, remote sensing via 

satellites, aircraft, radar, sonar, teleconferencing, computer communications, and 

facsimile transmissions (A. K. Jain 1981). 

2.2.2 	Representation of Digital Images 

An image is a 2-1) model representing a special and limited aspect of an observed scene. 

It contains only a very small part of the original information extracted from the 

electromagnetic energy spectrum; for example x-ray, ultraviolet, visible, and infrared 

bands; mechanical forces; for example pressure and torsion; or other physical 

measures using an appropriate sensor that produces an electrical signal proportional to 

the input signal. 

n 



Since the information is processed in digital computers, this signal must be digitized in 

location, i.e. image sampling, and amplitude, i.e. level quantization. Thus the 

continuous image is digitized on a grid of square or hexagonal sampling points by 

mapping the amplitudes to a linear or non-linear quantization function (M. Sonka et al. 

1993, p.  27). The result is a raw image. 

For common systems, spatial resolutions include 256 x 256, 512 x 512, 1024 x 1024, 

360x576, and 720 x 576 picture elements (pixels); and 256-level quantization 

generates 8-bit integers ranging from 0, i.e. black, to 255, i.e. white. 

Since data processing uses algorithms, and their implementations depend on the data 

representation, the data structure holding the digitized image data must be adequate. 

There is a variety of traditional and hierarchical image-data structures that can be 

categorized into different levels of abstraction. 

A matrix A(L, M) of L rows by M columns of integer elements, each representing the 

brightness or another property of the corresponding pixel, holds the grid of pixels; and 

is the most common data structure for the direct representation of images. It can be 

defined as follows: 

ra(l,!) a(1,2) . 	a(1,M) 1 
a(2,l) a(2,2) 	a(2,M) 

A(L,M)=I 	 I 	 (2.1) 
a(1,m) . 	I 

[a(L,1) a(L,2) . 	a(L,M)j 

The matrix representation refers to the spatial domain; image data is accessible through 

the row and column indices of the associated pixels. Scanning or processing the matrix 

in left-to-right top-to-bottom order is purely a historical convention (R. J. Clarke 1995, 

p. 22); scanning in zigzag order, often employed in the frequency domain, is one 
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alternative. Many processing techniques benefit from this natural type of image-data 

structure; for example digital image processing frequently uses arithmetic and logical 

operations, filter operations often process overlapping sub-images, and compression 

techniques often work on non-overlapping sub-images. Transformation of the image 

into a different domain, for example using the fast Fourier transform (FF1') or the 

discrete cosine transform (DCT) (N. Ahmed et al. 1974), and subsequent manipulation 

in the transform domain is also used for processing and compression. Note that 

intermediate representation with more quantization levels can minimize the propagation 

of quantization errors (J. J. Rodriguez and C. C. Yang 1994). 

While a single matrix can be interpreted as a grey-scale image, a matrix in a set of 

matrices can contain information about one spectral band of a multispectral or colour 

image. Alternatively, it can represent one instant in a time sequence of images. Since 

most programming languages support matrices, i.e. 2-D arrays, the implementation of 

this type of image-data structure is straightforward. 

Other traditional image-data structures are chains, graphs, lists of object properties, and 

relational databases. Hierarchical data structures comprising of pyramids and quadtrees 

are means for more complex methods of image representation in computer vision 

(M. Sonka et al. 1993, pp. 42-55). 

2.2.3 	Digital-image-processing System 

A block diagram of a typical generic image-processing system is shown in figure 2.1. 

Sensor and digitizer, i.e. analogue-to-digital converter, accomplish image acquisition. 

Some sensors, for example charged-coupled device (CCD) cameras and scanners, 

combine sensor and digitizer. Image data is manipulated by the processor; and stored 
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temporarily in internal memory, i.e. RAM, and permanently in mass storage, for 

example hard disk or tape. A keyboard accepts user input. A visual display unit 

(VDU), i.e. cathode-ray-tube (CRT) monitor, and other output devices, i.e. printer, are 

used to visualize the processed image data. The interface provides a link to other 

computers. 

0 
object 

Figure 2.1 Generic image-processing System 

The display transforms the image data representing grey-level or colour values into 

luminance. Figure 2.2 depicts a typical transfer function (after S. A. Karunasekera and 

N. Kingsbury 1995). 

However, as the function varies from display to display a faithful representation across 

computers is not achieved. The same problem applies to other input and output devices, 

and is addressed by device-independent colour management; see for example (Apple 

Computer 1995 and 1996). 
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Figure 2.2 Typical Grey-level-to-luminance Transformation 

2.3 	Introduction to Digital Image Compression 

2.3.1 	Motivation for Digital Image Compression 

Digital representations of images usually require enormous amounts of data; for 

example one image taken by Landsat's multispectral scanner (MSS) consists of about 

31 MB, and one image taken by Landsat's thematic mapper (TM) consists of about 

263 MB; see appendix A for details. In addition the amount of image data being 

collected, processed, stored, and transmitted increases rapidly because of higher 

utilization, new applications, and higher standards. A recent survey (B. Foster 1996) 

indicates for video microscopy a move toward higher spatial resolution, colour imaging, 

and sending images across networks. For these reasons storing and transmitting data is, 

and will remain, costly. 

Processing of compressed images using efficient algorithms can also reduce the number 

of operations required to implement an algorithm (A. K. Jain 1981); R. S. Ledley 

Eva 



(1993) proposed that the processing of medical images be carried out in the compressed 

[Wi, 

A large variety of compression techniques has evolved over the years. Implementations 

exist in software, hardware, and as mixed solutions. In general, if the digital image 

reconstructed from the compressed representation is numerically identical to the original 

digital image, the employed compression technique is lossless. Lossless compression 

techniques relate to machine vision, and to applications where gathered information is 

too valuable or legal reasons prohibit any loss of information (R. C. Gonzalez and 

R. E. Woods 1992, p.  343). If the reconstructed image only approximates the original 

image, the employed compression technique is lossy. While data compression must 

generally be fully reversible or lossless, lossy image-compression techniques sacrifice 

some information in order to achieve higher compression. Lossy techniques relate to 

applications for human perception, and should, therefore, be designed to minimize a 

perceptually meaningful measure of distortion, rather than more traditional and more 

tractable criteria such as the mean square difference between original and reconstructed 

image (N. Jayant et al. 1993). 

2.3.2 	Objectives of Digital Image Compression 

The main objective of digital image compression is to develop efficient digital 

representations of images that minimize the number of information carrying units, the 

bit rate, in order to reduce storage and transmission requirements, and ultimately to 

reduce costs. The bit rate can be measured in bits element', bits pixeF' , or bits s 
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Secondary objectives include: 

To minimize communication delay. The delay for encoding and decoding must 

match the requirements of an application. While, for example, real-time 

transmission demands short and same delay for encoding and decoding, the 

encoding delay for distribution via a storage medium is less important. 

• 

	

	To minimize complexity. The complexity is typically measured in terms of 

arithmetic capability, memory requirements, cost, and power consumption. 

• 	To minimize the impact of errors on the reconstructed image. 

• 	To support the exchange of compressed data among applications and across 

different computer systems as communication across networks grows in 

importance. This is addressed through standardization. 

For lossy compression techniques an additional objective is to achieve the best image 

quality - however that might be defined - possible under given constraints. 

The 'perfect' digital image-compression technique does not exist; the aim is, therefore, 

to minimize the bit rate in the digital representation of the image while maintaining 

required levels of image quality, complexity of implementation, and communication 

delay (N. Jayant et al. 1993). While, for example, a fixed bit rate in transmission results 

in varying quality, a fixed quality in storage causes a varying bit rate. 
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2.3.3 	Data Redundancy 

Three basic forms of data redundancy can be identified and exploited: coding 

redundancy, interpixel redundancy, and psychovisual redundancy. Digital image 

compression aims to remove redundancy and to reduce inelevancy by exploiting one or 

more types of data redundancy. 

Coding redundancy is due to the fact that integer pixel values are usually represented 

through natural binary codes: every codeword consists of the same number of bits 

regardless of its statistical probability of occurring. Coding redundancy can be exploited 

by assigning shorter codewords to more probable pixel values and longer codewords to 

less probable ones. 

Interpixel redundancy arises due to the fact that shapes and objects in an image extend 

usually over a region of pixels; pixel values are therefore fairly similar to their 

neighbours. Interpixel redundancy can be exploited by relating pixels to the adjacent 

pixels; for example the difference between adjacent pixels can be calculated in various 

ways and used to represent an image. 

Psychovisual redundancy is due to the fact the human visual system does not respond 

with equal sensitivity to all visual information. Certain information has less relative 

importance than other information and can, therefore, be eliminated without 

significantly impairing the perceived image quality. 

As the limits of compression exploiting coding and interpixel redundancies have been 

reached (M. Kunt et al. 1985), the move towards perceptual coding is natural. 
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2.3.4 	Digital-image-compression Model 

An image-compression system, depicted in figure 2.3, consists of encoder, channel 

representing a transmission path or a storage medium, and decoder; the human eye is 

generally the ultimate receiver at the end of the system. On a high functional level the 

encoder block processes the original representation and feeds the encoded data into the 

channel. After transmission over the channel, the encoded representation is fed to the 

decoder block that generates the reconstructed representation. 

input .encoler 	 decoder output 

LJ 	source 	channel 	channel 	channel 	source ______ 
encoder 	encoder 	 decoder 	decoder 

origina 	 reconstructed human 
data 	 data 	receiver 

Figure 2.3 General Model of Image-compression System 

Both the encoder and decoder consist of two sub-blocks. While, in an attempt to 

minimize the necessary bit rate for faithfully representing the input image, the source 

encoder removes data redundancies; the source decoder reverses the compression 

process. If an error-free system is required, it is the responsibility of the channel 

encoder-decoder pair to add redundancy to the encoded representation in order to 

recognize and correct any errors due to noise, distortion etc. introduced in the channel. 

However, the processes of source and channel coding can sometimes be integrated to 

increase efficiency of digital communication (N. Jayant et al. 1993). If the channel 

between encoder and decoder is noise free, the channel encoder and decoder can be 

omitted. 
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23.5 	Entropy 

The notion of coding is to find a new representation of an image that is smaller than the 

original representation of that image. Clearly, there is a lower bound that must depend 

on the image itself. 

The histogram of an image represents the pixel distribution as a function of pixel value 

providing information on illumination conditions; contrast; range of values; and, 

maybe most importantly, probability distribution. If n, pixels have the k th of L 

possible pixel values Vk  in an image consisting of n pixels, then the probability of 

occurrence of value V ft  can be defined as 

P(vk)= 5-  k=[0,l,2,...,(L—l)] 
	

(2.2) 

The discrete function relates the count of a pixel value n. to the total number of 

pixels n; probabilities range from zero, i.e. no occurrence, to one, i.e. exclusive 

occurrence. The sum of the probabilities is, of course, one: 

P(v) = 1 
	

(2.3) 

Information theory models the generation of information as a probabilistic process; 

information content depends upon the probability of an event or symbol, i.e. pixel value 

in terms of image compression, occurring at each instance, i.e. pixel. Unlikely events, 

having low probability, carry more information than likely events, and vice versa. 

Ultimately, a certain event does not carry any information. 
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If the event E occurs with probability P(E), then the self-information of that event is 

defined as 

1 
1(E)=log 	=—log P(E) 

P(E) 

The amount of self-information 1(E) attributed to event E is inversely related to its 

probability P(E); as P(E) approaches one, 1(E) converges towards zero. The base r 

of the logarithm in the above equation specifies r -ary units of information. However, 

the base 2 conveniently generating binary units, i.e. bits, can be defined as 

1(E) = log 2 	bits = —log 2  P(E) bits 
P(E) 

1  
(2.5) 

The entropy H, postulated by C. E. Shannon (1948a and b) as a measure of the 

complexity of an information source, defines the average amount of information 

conveyed per instance and can be defined as 

H = —P(Ej )log r  P(E)=I P(E1 )I(E) 	 (2.6) 

where J denotes the total number of events. 

As less certainty, and thus more information, is conveyed; the entropy H increases. If 

all events are equally probable, the entropy is at a maximum. The base r of the 

logarithm in the above equation specifies r -ary units of information. Again, the base 2 

conveniently generating binary units, i.e. bits, can be defined as 

(2.4) 

H = - P(E1) 109 2  P(E1 ) bits 	 (2.7) 



Using the notation introduced in equation 2.2, the entropy of a digital image can be 

defined as 

H = - P(vk) log 2  P(vk)  bits 
	

(2.8) 

Under the simplistic assumption that values of successive elements are statistically 

independent, i.e. no inter-element redundancy, the zero-order entropy H represents the 

lower bound: according to the noiseless coding theorem (C. E. Shannon 1948a and b), it 

is possible to encode information with entropy H bits elemenF' using 

H + e bits elemen(t where E is an arbitrarily small positive quantity. 

Entropy coding is a well-established lossless method for reducing the bit rate of digital 

images by exploiting the statistical redundancy in those images. It exploits the 

nonuniform probability distribution of pixel values, generally exhibited by images, by 

encoding the pixel values using variable-length codewords rather than equal-length 

codewords. 

2.4 	Human Visual System 

2.4.1 	Function of Human Visual System 

It is generally the human visual system that perceives and judges images after processing 

or coding, therefore attempts should be made to incorporate knowledge about the 

properties of the human visual system to digital image compression and quality 

assessment. This section summarizes some important properties of the human visual 

system. Further reading includes a description of the eye (R. C. Gonzalez and 

R. E. Woods 1992, pp. 22-28) and the human visual system (M. Kunt et al. 1985), a 
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brief functional description (D. J. Sakrison 1977), and a description of interactions 

among nerve cells in the retina (F. S. Werblin 1973). 

The human visual system is a complex system in which the complexity of visual 

perception increases as the image information propagates through the system. Image 

information in the form of light intensity or luminance; that is a function of position, 

time, and wavelength or frequency; enters the human visual system. Refraction by the 

cornea, intraocular fluids, and lens focuses some of this information on the retina 

forming a retinal intensity image as a function of retinal position, time, and wavelength. 

Receptor cells at the back of the retina sense the intensities and, through a complex 

network of interconnecting cells, encode the image into neural signals to be carried by 

the optic nerve to the brain (D. J. Granrath 1981). Since optic-nerve fibres can only 

accurately transport signals over a range much smaller than the range of image 

information, the retina must compress the very large range of intensities presented by the 

outside world into a narrower range that can be handled by the optic-nerve fibres. 

The human visual system is an anisotropic system: from a given sensitivity at 00,  i.e. 

horizontality, its sensitivity decreases to a minimum at 45° and then increases again 

reaching approximately the original level at 900  rotation. In addition, its sensitivity is 

frequency dependent. Compared to the sensitivity at 00,  the sensitivity at 45° to 

frequencies of 10 and 30 cycles deg' is reduced by 15 % and 30 % respectively 

(C. F. Hall and B. L. Hall 1977). Spatial frequencies within a range of about one octave, 

over a range of orientations of about 0 0 , are indistinguishable from each other 

(W. B. Glenn 1993). 
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A comnon, but incomplete model of human vision incorporates a lowpass filter, a 

logarithmic nonlinearity, and a multichannel highpass filter; see (M. B. Sachs et al. 

1971; C. F. Hall and E. L. Hall 1977; D. J. Sakrison 1977; and N. Jayant etal. 1993). 

2.4.2 	Relevant Properties of Human Visual System 

It is the human eye that is generally the ultimate receiver of processed image data; see 

figure 2.3; therefore the properties of the human visual system should be considered, 

and suitable properties could be transferred to digital image compression. 

D. R. Fuhrmann et al. (1995) identified the following four properties as potentially 

being useful for digital-image-processing applications. 

The human visual system responds to light in a nonlinear way. The smallest luminance 

difference that a human observer can detect when an object of a certain size is displayed 

at a certain background luminance level is defined as just-noticeable difference JND. 

For a wide range of light intensities L the just-noticeable difference JND, or AL, 

satisfies: 

JND AL 
= - = constant 

L L 
(2.9) 

This is known as Weber's law, and suggests a logarithmic relationship between the 

physical and 'perceived intensity of light, where the just-noticeable difference increases 

with increasing intensity. T. G. Stockham (1972), for example, proposed a visual model 

containing a logarithmic function and described its application to image enhancement. 

However, R. J. Clarke (1995, p.  8) reported that results of coding operations within a 

logarithmic/exponentiai domain had been inconclusive and argued that the conventional 
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display introduces a major nonlinearity in the processing chain that overrides the effects 

of the coding operations. 

The human visual system performs spatial filtering. The optics of the eyeball have a 

lowpass characteristic. The lateral inhibition in the retina results in a highpass 

characteristic. The overall characteristic, that might be approximated by a bandpass 

characteristic, is centred somewhere between 4 and 8 cycles deg'; see (J. L. Mannos 

and D. J. Sakrison 1974; and R. J. Clarke 1985, p.  271, and 1995, pp.  7 and 75). 

Transform-based image-compression schemes offer a framework where the bit 

allocation of transform coefficients can be related to the spatial-frequency response, i.e. 

sensitivity, of the human visual system. Since only coefficients of the Fourier transform 

correspond directly to spatial frequency, the bit allocation must be modified for other 

transforms; H. Lohscheller (1984); N. B. Nill (1985); K. N. Ngan et al. (1989); and 

D. L. McLaren and D. T. Nguyen (1991) investigated the cosine transform. As the 

spatial frequency perceived by the eye depends on spatial resolution and viewing 

distance, the viewing conditions must be constrained. While a constant viewing distance 

of, for example, five times the image height (S. A. Karunasekera and N. Kingsbury 

1995), and a fixed viewing position (D. R. Fuhrmann et al. 1995) can be obeyed for 

research purposes; these conditions cannot be assumed for practical applications in 

digital image compression. A. M. Lund (1993), for example, investigated viewing 

preferences, and found that the ratio of viewing distance to image height decreases as 

image size increases. 

The human visual system performs spatial masking that is highly adaptive. This refers 

to the perceptibility of one signal in the presence of another in its time and frequency 

vicinity, and relates to the suppression of errors or distortion as a result of high image 
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activity or contrast. The aim of perceptual coding is to shape the error caused by lossy 

compression in a way so that the distortion is partially or fully masked by the signal, and 

therefore invisible to the human eye. In this context, it should be noted that high-

frequency signals in visual information tend to have a short time or space support, while 

low-frequency signals tend to last longer (N. Jayant et al. 1993). Distortion masking, 

i.e. noise masking, has been incorporated in predictive and transform-coding techniques. 

The human visual system has a small visual angle of 1 to 3°. Complex images are 

viewed with a series of brief fixations and rapid eye movements (D. R. Fuhrmann et al. 

1995). This leads to local rather than global processing characteristics: the human 

observer tends to concentrate on those areas in which degradation is most visible and to 

assess the overall quality accordingly; see for example (J. 0. Limb 1979; G. B. Legge 

and J. M. Foley 1980; and F. X. J. Lukas and Z. L. Budrikis 1982). 

2.4.3 	Significance of Human Visual System 

As the properties of the human visual system govern the perception of visual 

information, digital image compression must take advantage of these properties in order 

to achieve lower bit rates by minimizing perceptually meaningful measures of distortion 

rather than more traditional criteria, such as the mean squared difference between the 

original and reconstructed image (N. Jayant et al. 1993). In digital image compression, 

coding bits can be allocated according to the importance of the information, in terms of 

the human visual system's sensitivity, that they convey. In quality assessment reliable 

numerical measures would allow efficient comparison of compression schemes, 

avoiding time consuming and expensive subjective tests under controlled conditions. 
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However, the human visual system and current digital-image-processing systems employ 

very different mechanisms. 

While the human visual system responds to luminance, digital-image-processing systems 

manipulate grey-level or colour values that are transformed into luminance by the 

display. Since every display exhibits its own nonlinear transfer function, the perceived 

results vary from one digital-image-processing system to another. 

While the human visual system responds to spatial frequency, digital-image-processing 

systems assume pixels of a certain size. The actual size of a pixel depends on the 

display, and the perceived spatial frequency is also a function of the viewing distance. 

For practical applications spatial masking and local processing characteristic are 

currently the most significant properties. 

2.5 	Digital-image-compression Techniques 

2.5.1 	Properties of Digital-image-compression Techniques 

Techniques for digital image compression can be classified in various ways. The 

criteria of accuracy distinguishes between information-lossless and information-lossy 

techniques, as described in subsection 2.3.1. Compression can be carried out in spatial, 

frequency, transform, 'visual', or other domains. It can exploit coding, inter-element, 

and psychovisual redundancies individually or in combination. Algorithms can be 

designed to adapt their parameters affecting, for example, bit allocation or quantization 

levels to changes in image statistics. 
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Algorithms process elements, i.e. pixels for approaches in the spatial domain, 

individually; in rectangular or square blocks; or segments of elements having similar 

properties, i.e. shapes. Encoding of blocks offers potential for significantly better 

performance than encoding of each element individually, since the requirement to 

transmit at least some information for every element is relaxed. The disadvantage of 

arbitrarily dividing an image into rectangular or square blocks is that, as the bit rate is 

decreased, the block structure, that is easily perceived and irritating to the observer, 

appears in the reconstructed image (R. J. Clarke 1995, p.  76). Encoding based on 

shapes derived from actual image content rather than on blocks circumvents the 

disadvantage and may supersede block-based encoding. 

Research work has produced a large variety of compression techniques. The following 

subsections describe those techniques, that are relevant to this thesis. 

2.5.2 	HufTman Coding 

Huffman coding, a well-known entropy-coding technique, reduces coding redundancy 

by constructing a variable-length code that assigns the shortest possible codewords to the 

most probable events, or symbols, using integer numbers of code symbols, for example 

bits for binary codes. lluffman coding is lossless and codes elements individually, i.e. 

one at a time. Fluffman coding is optimal: it uses the variable-length code that achieves 

the minimum amount of redundancy possible when coding individual elements, i.e. for a 

particular set of symbols and their probabilities, no other integer code can be found that 

will give better coding performance than Huffman coding. It is a very popular 

technique used in many different schemes. 
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There are two basic restrictions imposed on the codewords: 

• 	No two codewords consist of identical arrangements of code symbols. 

• 	The code symbols are constructed in such a way that no additional indication is 

necessary to specify where a codeword begins and ends once the starting sequence 

of codewords is known. 

For producing the minimum-redundancy variable-length code D. A. Huffman (1952) 

devised a method that builds up a tree by repetitively combining the least probable 

nodes, i.e. symbols and compound symbols, to a new node, i.e. compound symbol, with 

the summed probability until there is only one free node, i.e. the root node. Note that the 

probability of occurrence is proportional to the frequency of occurrence; see 

equation 2.2. Although r -ary trees can be built, binary trees are more popular. In non-

adaptive schemes after the tree has been built and the code has been produced, encoding 

or decoding is simply accomplished by replacing original codewords with the Huffman 

codewords or vice versa. Storage and transmission of the code reduces efficiency. 

A tree is a collection of nodes, that can contain information, and links, each connecting 

two nodes, that has certain properties. A path is a list of consecutive nodes that can be 

traversed via their links. The nodes directly succeeding a particular node are children of 

that node. In an ordered tree the order of the children is defined by some criteria. 

A node with at least one child is an internal node; a node without children is an external 

node. Internal nodes of a r -ary tree must have r children. The node directly preceding 

a particular node is the parent of that node, and the nodes also belonging to that parent 

are siblings. The one node without a parent is the root node. In a tree there exist exactly 

one path between the root node and every node, and exactly one path between any two 

nodes. The number of links from a node to the root node is the level, that can be used to 



group nodes with the same distance from the root node. The internal path length is the 

sum of levels of all internal nodes. The external path length is the sum of levels of all 

external nodes. The path length is the sum of internal and external path length. In a 

binary tree every internal node has a left child and a right child, each of which can either 

be an internal or external node. Conventionally but arbitrarily, left children are 

identified by 0, and right children are identified by 1. Tracing the path from the root 

node to a particular external node generates a unique string of Os and is; see 

(R. Sedgewick 1992, chapters 4 and 22). 

After generating the symbol distribution, the tree for a binary Huffman code can be built 

with the following steps (M. Nelson 1992, pp.  34-35); note that probability or 

frequency of occurrence is represented through a weight: 

• 	Locate the two nodes with the lowest weights in the list of free nodes. Note that 

nodes with identical weights are equally suitable in term of coding gain, but may 

change the height, i.e. maximum level, of the tree if internal and external nodes 

have identical weights. 

• 	Create a parent node for these two nodes, and assign a weight equal to the summed 

weights of the two child nodes to it. To generate an ordered tree, that is necessary 

for adaptive Huffman coding, ensure that the weight of the left child is less than or 

equal to the weight of the right child. 

• 	Add the parent node to and remove the two child nodes from the list of free nodes. 

• 	Associate the left child node with 0, and the right child node with 1. 

• 	Repeat above steps until only one free node is left. The free node is the root node 

of the tree. 
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Appendix B contains a worked example in which a lluffman tree is designed for an 

8-level image of size 8 x 8. 

The generation of the Huffman code can be equally described as a series of source 

reductions where the least probable source symbols are combined to form a new 

compound symbol with the summed probability that replaces the symbols from which it 

has been derived; see (R. C. Gonzalez and R. E. Woods 1992, pp.  343-345). 

Huffman codes are instantaneous uniquely decodable block codes. They are called 

block codes, because each event is mapped to a codeword with a fixed sequence of code 

symbols, for example bits. They are instantaneous, because each codeword in a string of 

code symbols can be decoded without referencing succeeding events. They are uniquely 

decodable, because any string of code symbols can decoded in only one way without 

need for separation of the codewords (R. C. Gonzalez and R. E. Woods 1992, p.  345); 

see also (M. Nelson 1992, chapter 3; and R. J. Clarke 1995, appendix 1). 

Non-adaptive Huffman schemes require two passes over the source symbols causing a 

delay: during the first pass the frequencies of occurrence of the events are collected, then 

the Huffman tree is constructed and stored or transmitted, and during the second pass 

the data is encoded. In adaptive Huffman schemes, the encoder and decoder start with 

identical initial trees, use the same algorithm to modify their trees and, therefore, stay 

synchronized. They require one pass, and are often more efficient than non-adaptive 

schemes; see (J. S. Vitter 1987). 

Since codewords have to be an integer number of code symbols long, Huffman coding 

may have to assign either more or less code symbols to an event than theoretically 

necessary resulting in reduced efficiency; see equation 2.5. In general, Huffman coding 
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cannot reduce coding redundancy of data representing only two events, regardless of the 

probability distribution, since codewords require at least one code symbol. 

2.5.3 	Run-length Coding 

Run-length coding exploits inter-element redundancy by representing a string of 

consecutive identical elements using a coding pair consisting of run length, that specifies 

the number of consecutive identical elements, and symbol, that specifies the value of the 

elements. Run-length coding is lossless. Although spatial-domain image data exhibits 

interpixel redundancy, strings of identical elements are rather short, especially in 

detailed natural images; however mn-length coding can be utilized for l-D and 2-D 

schemes in various ways. 2-D mn-length coding processes a scan line in context with 

transitions in the previous scan line. 

Run-length coding of binary images, that have only black and white pixels, is employed 

in facsimile (fax) coding. Strings of Os and Is in each scan line, i.e. row, are coded from 

left to right. The value, 0 or 1, of the first string of each row is either specified, or the 

value of the first string is conventionally assumed to be 0. As the string values alternate 

between 0 and 1, an initial run length of zero indicates in the latter scheme that the row 

actually starts with a black string. Additional entropy coding, for example Huffman 

coding, can be used to reduce the coding redundancy of the run lengths. The run lengths 

of black and white can be coded separately using two entropy coders that are specifically 

tailored to the individual statistics; see (R. C. Gonzalez and R. E. Woods 1992, p.  354). 

Naturally, rn-bit images can be decomposed into m 1-bit bit planes that can be coded 

using mn-length coding for binary images. In order to reduce the effect of small grey- 

level variations, that can result in a very different bit pattern, an intermediate 
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representation of the image by an m -bit Gray code ensures that adjacent grey levels vary 

in only one bit plane; see (R. C. Gonzalez and R. B. Woods 1992, p.  350). 

Assuming that in 8-bit images run lengths greater than 32, and pixel values greater than 

or equal to 224 would normally be rare; M. A. Sid-Ahmed (1995, p.400) described an 

algorithm that uses, dependent on the context, an 8-bit symbol with its three most 

significant bits set to 1 not as pixel value but as repeat count in the range [0,31] 

preceding the pixel value. Generally, run lengths greater than 1, and less than or equal to 

32 are coded through pairs consisting of repeat count and pixel value. Single pixels with 

values greater than or equal to 224 are coded through pairs consisting of a repeat count 

that is equal to zero, i.e. 111000002, and the pixel value. However, single pixels with 

values less than 224 can simply be coded through the abbreviated 'pair' consisting only 

of the pixel value. Run lengths greater than 32 are coded by generating more than one 

coding pair. 

The concept of run-length coding can also be applied to sparse matrices, that are usually 

represented through a list of nonzero elements and their indices. For example, the 

nonzero elements in each row or column are coded from left to right, or from top to 

bottom respectively. The distance between the preceding and current nonzero element, 

i.e. the number of zero elements in between, and the value of current non-zero element 

are combined to form a pair. The value of the first nonzero element is coded with 

reference to the beginning of the scan line. While each index can only appear once in 

every scan line, the distances can generally produce a distribution that has a lower 

entropy. 
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2.5.4 	Quantization 

Quantization exploits psychovisual redundancy by mapping a range of input values, for 

example pixel values or coefficients, to a limited number of output values, i.e. symbols. 

The range of input values, that can be continuous or discrete, is divided into a number of 

regions, each of which is represented by one output value. A set of output values is also 

referred to as a pulse-code-modulated (PCM) signal. As information is being lost during 

the many-to-one mapping, quantization is lossy and not fully reversible. However, 

during the inverse process, dequantization, each symbol is replaced with a value that 

represents the associated range of input values. The range of input values can be divided 

into regions in various ways. 

Uniform quantization simply divides the range of input values into N equally sized 

regions separated by equally spaced decision levels d0  to dN,  neither taking the 

probability distribution of the values into account nor trying to minimize the introduced 

distortion. The quantizer represents an input value greater than d1  and less than or 

equal to di,(d, , d, 1 ], by an output symbol of value i. The dequantizer generates a 

reconstructed value r, from a symbol i using: 

= d 1  + d 1+1  
2 

(2.10) 

Nonuniform quantization refers to a range division using unequally spaced decision 

levels. It is also known as optimal quantization, since this approach usually involves 

optimization of a statistical measure or psychovisual measure; see (A. N. Netravali 

1977). The Lloyd-Max quantizer, independently developed by S. P. Lloyd (1982) and 

J. Max (1960), minimizes the mean-square quantization error by determining the best 

decision and reconstruction levels taking the overall probability distribution of the input 
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values into account; see also (R. C. Gonzalez and R. E. Woods 1992, PP. 370-371; and 

M. A. Sid-Ahmed 1995, PP.  433-450). 

Adaptive quantization adjusts the quantization levels based on the local probability 

distribution; see (A. N. Netravali and B. Prasada 1977). In a block-based spatial-

domain scheme each block of image data is quantized using the quantizer, from a 

number of available quantizers, that introduces least distortion. The quantizers may be 

scaled versions of a Lloyd-Max quantizer for unit-variance Laplacian probability 

distribution, and the overhead associated with the quantizer selection is appended to 

each block; see (R. C. Gonzalez and R. E. Woods 1992, PP.  37 1-374). 

2.5.5 	Transform Coding 

Transform coding describes a concept of a group of lossy digital-image-compression 

techniques, rather than one particular scheme, that has been incorporated into standards 

such as the JPEG still picture compression standard for lossy compression; see for 

example (0. K. Wallace 1992). The core of any transform-based coding system, that 

consists of a number of different coding stages, is a reversible, linear, 1-D or 2-D 

transform; that maps image data, i.e. a set of pixels, into a set of transform coefficients 

that has the same size. The purpose of this transform stage is to remove interpixel 

redundancy by converting statistically dependent pixel values into a set of 'less 

correlated' or 'more independent' coefficients. For most natural images a significant 

number of these coefficients have small magnitudes and can be coarsely quantized, or 

discarded entirely, with little image distortion (R. C. Gonzalez and R. E. Woods 1992, 

p. 374). 
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Figure 2.4 depicts a typical transform-coding system. During encoding the block 

selector splits the original image into blocks of pixels that are then processed by the 

forward transform to produce blocks of transform-domain coefficients. The quantizer, 

making transform-based coding lossy, maps each block into a set of symbols, i.e. 

quantized and scaled transform coefficients, which is then entropy-coded by the symbol 

encoder. The result is a continuous stream of encoded symbols. During decoding the 

decoder performs the inverse sequence of steps. The symbol decoder decodes the data 

stream and produces sets of symbols, each of which is mapped by the inverse quantizer 

into a block of quantized transform-domain coefficients, which is then processed by the 

inverse transform to produce a block of pixels. The block selector merges the blocks of 

pixels into the reconstructed image. While nonadaptive transform coding does not take 

local image content into account, adaptive transform coding enables one or more coding 

stages to respond to local image content; see for example (A. Habibi 1977). 

input 	--------------epçqdçr 
	

output 

block 	forward 
	

symbol 

	

selector I Itransforn 	 encoder 

original 
	

encoded 
image data 	 symbols 

a) Encoder 

input 	- ------------- decoder output 

	

symbolinverse 	inverse 	block 
decoder 	quantizer ransfo 	selector 

encoded 	------------------------------- reconstructed 
symbols 	 image data 

b) Decoder 

Figure 2.4 Transform-coding System 

For a transform, playing the key role in this group of image-compression techniques, an 

inverse transform, that restores the data to its original form, must exist: 
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forward 
transfonn 

f(x,y) 	T(u,v) 
invent 

transfonn 

(2.11) 

The spatial-domain representation f(x, y), i.e. a set of pixels, can be transformed into 

its transform-domain representation, i.e. a set of transform coefficients, and vice versa. 

The forward transform maps an L x M block of image data into an Lx M block of 

transform coefficients. Although 1-D transforms can be defined, 2-D transforms are a 

natural choice for digital image processing, that is concerned with 2-D image data. 

However, separable 2-D transforms are often implemented as two sets of 1-D 

transforms. 'Fast' implementations reduce the number of arithmetic operations. 

A variety of transforms is available; for example FF1', DCT, Discrete sine transform 

(DST), Haar transform, Hadamard transform, Karhunen-Loève transform (KLT), Slant 

transform, and Walsh transform; see (R. C. Gonzalez and R. E. Woods 1992, chapter 3; 

and R. J. Clarke 1985). Selecting a transform for use in an image-compression scheme 

requires a compromise between transform efficiency and computational complexity to 

be made. The transform efficiency describes the transform's ability to decorrelate inter-

element redundancy and to pack the energy that is spread across the image into as few 

transform coefficients as possible. 

The 2-D FF1', a fast implementation of the 2-D discrete Fourier transform (DEl'), 

carries out a 2-D spectral analysis of the image data. Only Fourier transform 

coefficients correspond directly to measured spatial frequency; however, the transform 

efficiency is lower than that of other transforms. 

The KLT transforms image data into a set of uncorrelated coefficients; and furthermore, 

for a given arbitrary number of retained transform coefficients, it minimizes the mean 
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square error between original and reconstructed image. The KLT is optimal in terms of 

decorrelation and energy compaction; however, the computational complexity and the 

lack of fast algorithms limit its use. 

The DCT (N. Ahined et al. 1974) performs almost as well as the KLT; R. J. Clarke 

(1995, p.  62) reported that extensive experiments had demonstrated conclusively that the 

DCT has the best still image coding performance of all those transforms having data-

independent basis vectors, and which approaches that of the optimum, data-dependent 

(KLT) transform. Although the DCT is slightly suboptimal in terms of decorrelation 

and energy compaction, it can be computed efficiently using an approach similar to that 

used for the Fourier transform. H. Lohscheller (1984); N. B. Nill (1985); and 

D. L. McLaren and D. T. Nguyen (1991) related the cosine transform to the human 

visual system. The DCI is an efficient and effective image-compression technique 

(N. B. Nill 1985); many transform-based coding schemes and standards benefit from its 

transform efficiency and computational efficiency. 

In image compression, although transforms are defined for blocks of general 

dimensions L x M, they are not applied to whole images at once, but to blocks, i.e. sub- 

images, of smaller dimensions. The reasons are twofold; see (M. A. Sid-Ahmed 1995, 

• 	The transform of small blocks is computationally less complex than that for the 

whole image. 

• 	The correlation between pixels is less between distant pixels than between 

neighbouring pixels. 
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However, dependent on the chosen transform, the level of compression increases as the 

block dimensions increase. The most popular block dimensions are 8 x8 and 16x 16 

(R. C. Gonzalez and R. E. Woods 1992, pp.  379-380). 

Compression results from the deletion of any sufficiently small transform coefficients 

and the variable bit-rate quantization of the remainder in the quantizer. Note that, 

usually, coefficients of large magnitude are clustered around zero frequency, that is 

situated in the top left-hand corner of the coefficient block; and coefficients of smaller 

magnitude are distributed towards the highest spatial frequency in both horizontal and 

vertical directions, that is situated in the bottom right-hand corner of the coefficient 

block (R. J. Clarke 1995, p.  64). There are two methods for selection of coefficients for 

further processing: while in zonal coding each coefficient, dependent on its location 

within the block, is associated with a certain number of bits; in threshold coding 

coefficients exceeding some threshold are retained. Entropy coding, for example 

Huffman coding (D. A. Huffman 1952) or arithmetic coding (I. H. Witten et al. 1987), 

can be used subsequently to convert the remaining quantized and scaled transform 

coefficients into a continuous data stream. 

The main advantage of transform coding is that it processes images in a similar manner 

to the human visual system (W. E. Glenn 1993). Compared to other lossy image-

compression techniques, transform coding preserves subjective image quality better, and 

is less sensitive to changes in image statistics. Transform coding is less sensitive to 

channel noise: if a transform coefficient is corrupted during transmission, the resulting 

image distortion is spread through the sub-image (M. Sonka et al. 1993, p.  468). 

However, the main disadvantage is that, as the bit rate is decreased, the block structure 

becomes visible in the reconstructed image. Removing too many high-frequency 
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coefficients causes blurring of object-edge detail (R. J. Clarke 1995, pp.  86 and 162). In 

addition, the transform stages present in encoder and decoder generate an increased 

complexity compared to other techniques. 

2.5.6 	Other Techniques 

This subsection enumerates some more coding techniques and provides appropriate 

references. 

Arithmetic coding exploits coding redundancy by encoding the entire information as a 

single floating-point number equal to or greater than 0 and less than 1, [0,1), by 

modifying the number with every element added according to the rescaled probability 

distribution of the elements. Arithmetic coding is lossless; it can encode elements using 

fractional numbers of bits; and is, therefore, more efficient than Huffman coding, that 

must assign an integer number of bits per element; see (I. H. Witten et al. 1987; 

M. Nelson 1992, chapter 5; P. G. Howard and J. S. Vitter 1994; and R. J. Clarke 1995, 

appendix 1). 

Predictive coding exploits inter-element redundancy by predicting the value of the 

present element from the values of a selection of elements that have been processed 

previously. The difference between the value of the present element and the prediction 

is encoded. Lossy predictive coding results from a combination of quantization and 

lossless predictive coding; see (A. N. Netravali and J. 0. Limb 1980; A. K. Jain 1981; 

R. C. Gonzalez and R. E. Woods 1992, chapter 6; and R. J. Clarke 1995, chapter 2). 

Predictive coding is less complex than transform coding, for example; and hardware 

implementations are available. 
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Dictionary-based coding substitutes a number of consecutive elements with an index to a 

matching entry in a dictionary, i.e. codebook. The smaller size of the index, compared 

to the size of the elements replaced, results in compression. The size of the index can be 

variable to reduce coding redundancy. Static schemes using a predefined dictionary that 

remains unchanged during coding can take advantage of variable-length indices, 

however the dictionary has to be made available for encoding and decoding. Adaptive 

schemes start coding with an empty or default dictionary and add new entries to the 

dictionary during coding. J. Ziv and A. Lempel (1977 and 1978) described two adaptive 

dictionary-based techniques: while LZ77 uses a window sliding over previously 

processed elements as dictionary with fixed-length entries; LZ78 builds new variable-

length dictionary entries up one element at a time by adding a new element to an existing 

entry when a match occurs, thus generating a potentially unlimited number of dictionary 

entries; see (M. Nelson 1992, chapters 7-9). Dictionary-based coding is lossless and 

more suitable for text data than spatial-domain image data, since matching a dictionary 

entry requires an identical string of elements. 

Vector quantization is a lossy block-based spatial-domain coding technique that 

processes vectors of reordered elements. Each block is represented by an index to a 

codebook entry having the best similarity. The smaller size of the index, compared to 

the size of the block replaced, results in compression. Generally, blocks of image data 

consist of uniform areas, or areas of similar general shape or intensity profile rather than 

areas of chaotic or random structure, hence the codebook requires only a fraction of the 

number of entries theoretically possible. D. L. Ruderman (1994) reviewed and 

investigated the statistics of natural images, and reported invariance to scale and 

hierarchical invariance in natural images. While designing the codebook, and searching 

SE' 



the codebook during encoding is computationally intensive, decoding comprises of a 

simple look-up of the codebook entry specified by the stored or transmitted index; see 

(B. Marangelli 1991; P. C. Cosman et al. 1993; C. Constantinescu and J. A. Storer 

1994; and R. J. Clarke 1995, chapter 4). Vector quantization can also be applied to 

transform-domain coefficients; see (C. Labit and J. P. Marescq 1986). 

The review papers of A. N. Netravali and J. 0. Limb (1980); and A. K. Jam (1981), for 

example, summarize the image coding techniques available at the beginning of the 

1980s, that have evolved to the current techniques. Descriptions of bit-plane coding and 

other techniques can be found in (R. C. Gonzalez and R. E. Woods 1992, chapter 6). In 

addition to the techniques mentioned above, R. J. Clarke (1995) also described sub-band 

and wavelet coding as well as segmented, block-truncation, and fractal coding; and 

other techniques. 

2.6 	Image Quality Assessment 

2.6.1 	Motivation for Image Quality Assessment 

The assessment of lossy image-compression techniques in terms of image quality is the 

means of comparing their effectiveness. The objective is to assess a reconstructed image 

accurately, quickly, and inexpensively. 

2.6.2 	Subjective Image Quality 

Subjective assessment by human observers incorporating the human visual system takes 

psychovisual effects into account. It is important to establish controlled viewing 

conditions, and to average the evaluations of the observers. However, subjective 
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assessment is time-consuming and expensive, tends to be biased by environmental 

influences, and results tend to be difficult to compare. 

A variety of procedures for psychovisual experiments has been developed; for example 

D. J. Sakrison (1977) described self-setting methods, rating experiments, and forced-

choice experiments; and S. A. Karunasekera and N. Kingsbury (1995) employed timing 

methods. 

Perceived image quality is often measured on a five-point scale of quality known as 

mean opinion score (mos) or, alternatively, on a five-point scale of impairment; see 

table 2.1 (N. Jayant et al. 1993). Other scales are also in use; for example J. L. Mannos 

and D. J. Sakrison (1974) employed a seven-point scale to order groups of images. 

Quality 
	

Impairment 
excellent 
	

imperceptible 
good 
	

perceptible but not annoying 
fair 	 slightly annoying 
poor 	 annoying 
bad 
	

very annoying 

	

a) Quality Scale 	 b) Impairment Scale 

Table 2.1 Scales for Subjective Image Quality Assessment 

2.6.3 	Objective Image Quality 

Objective assessment aims to calculate a numerical value that indicates the quality of a 

reconstructed image compared to the original image. 

The mean-square-error function calculates the average squared error per pixel 

1 	L M 	 - 	2 
MSE= 	[iQ,m)—iQ,m)] 	 (2.12) 

L M 1=1 m1 

n 



where L and M represent the dimensions of the image; i (1, m) is the pixel value of the 

original image; and I(1,in) is the pixel value of the reconstructed image. The mean- 

square error avoids averaging effects of positive and negative errors and amplifies larger 

errors. 

The signal-to-noise ratio can be defined as 

L M 
i 2 (1,m) 

SNR = 10 log10 	1=1 m1 	 dB 	 (2.13) 

f, 	
m)— i(1,m)]2 

1=1 	,,,=I 

where L and M represent the dimensions of the image; i (1, in) is the pixel value of the 

original image; 1(1, in) is the pixel value of the reconstructed image. 

The peak-signal-to-noise ratio can be defined as 

PSNR=101og10 	
L MIMAX

,. Al 	 dB 	 (2.14) 
[i(i,m) - i(1,ni )]2  

(=1 ,n=I 

where L and M represent the dimensions of the image; i (1, in) is the pixel value of the 

original image; 1(1, in) is the pixel value of the reconstructed image; and i mAx  is the 

maximum grey-level value, for example i, = 2 - 1 = 255 for 8-bit pixel values. 

2.6.4 	Human-visual-system-based Objective Image Quality 

Incorporating properties of the human visual system into objective assessment leads to 

objective assessment that can model the perceived image quality more accurately. 
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J. 0. Limb (1979) investigated the root-mean-square error 

LM 

RMSE =ç/-1-- 	i(1,m)—i(1,m)r 	 (2.15) 
L M 

where L and M represent the dimensions of the image; i (1, m) is the pixel value of the 

original image; I(l,m) is the pixel value of the reconstructed image; and 

p = [1, 2, 3, 4, 6] refers to the absolute, squared, cubed, fourth, and sixth error 

respectively; RAISE 1  is the average absolute value error, and RAISE2  is the root-mean- 

square error. The higher the value of p, the greater is the relative emphasis given to 

large errors in the image. He also used a weighting function that implements the 

masking effect, and recognized the importance of local rather than global quality 

assessment. F. X. J. Lukas and Z. L. Budrikis (1982) reported a similar approach for 

monochrome time-variant pictures using nonlinear filters each consisting of excitation 

and inhibition paths followed by different combinations of filter and mask stages. They 

investigated raw, filtered, filtered temporally masked, filtered spatially masked, and 

filtered spatially and temporally masked errors with p = [2, 4] for global averaging and 

two maximum-error procedures; and their work confirmed that filtered and masked 

error measures work better for local assessments than filtered error measures for global 

assessment. 

D. R. Fuhrmann et al. (1995) favoured simple pointwise distance measures, and 

discouraged the use of metrics based on the spatial-frequency response, since these 

measures require precise knowledge of the viewing conditions. They found the 

Michelson contrast, or distortion contrast, most useful: 
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1 	L M j(1,m)-5(1,m) 
DCON= (2.16) 

LM 
 

/=I ,ni j(1,m)+j(1,m) 

where L and M represent the dimensions of the image, j (1, m) is the pixel luminance 

of the original image, and 5(1, in) is the pixel luminance of the distorted image. 

Although it is well-known, that the mean-square error is not a reliable objective 

measure, see for example Q. L. Mannos and D. J. Sakrison 1974; A. Tremeau et al. 

1994; and D. R. Fuhrmann et al. 1995); and despite all efforts to establish objective 

measures based on the human visual system, see for example (J. 0. Limb 1979; 

F. X. J. Lukas and Z. L. Budrikis 1982; and D. R. Fuhrmann et al. 1995); the mean-

square error remains very popular. This is due to the fact that the mean-square error is 

easy to understand, is simple to calculate, and appears to be more 'objective' than a 

formula or procedure that involves some kind of filtering and masking. However, 

S. A. Karunasekera and N. Kingsbury (1995) presented several reconstructions of an 

image that have an identical mean-square error and look very different, thus proving the 

inappropriateness of this measure once more. 

2.7 	Summary 

The amount of image data being processed increases due to higher utilization, new 

applications, and higher standards. The notion of digital image compression is to reduce 

storage and transmission requirements. Although some types of application require 

lossless compression of digital images, it is mainly the human eye that is the ultimate 

receiver of image data. A variety of compression techniques; for example Huffman 

coding, mn-length coding, and predictive coding; has evolved over the years. As the 
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limits of these more conventional techniques have been reached; the move towards 

perceptual coding, exploiting properties of the human visual system, is natural. Many 

compression schemes combine different data compression techniques with good effect; 

for example entropy coding of run lengths, or entropy coding of dictionary indices. 

Transform coding, that is for example utilized in the JPEG still picture compression 

standard for lossy compression, decorrelates image data and processes images in a 

similar manner to the human visual system. Encoding of blocks, as utilized in transform 

coding and vector quantization, offers potential for significantly better performance than 

encoding of individual elements. 



Chapter 3 

JPEG Still Picture 
Compression Standard 



3.1 	Introduction 

This chapter discusses the Joint Photographic Experts Group (JPEG) still picture 

compression standard in some detail. However, as the chapter focuses on the concept of 

the standard, many interesting details for implementation are necessarily omitted. 

Section 3.2 briefly narrates the history of JPEG, references the international standard 

generated, describes the aims and requirements of the JPEG standard, and summarizes 

the selection process conducted in order to identify the most suitable compression 

method. 

Section 3.3 	defines 	the JPEG-compatible image; describes 	interleaved and 

noninterleaved 	processing; and 	outlines sequential, progressive, 	lossless, and 

hierarchical modes of operation. 

Section 3.4 outlines the DCT-based coding method, and describes the processing steps 

in more detail using the baseline sequential process as an example. 

Section 3.5 relates the DCT-based coding method to transform coding, that is described 

in chapter 2; and identifies potential difficulties. Finally section 3.6 concludes the 

chapter with a brief summary. 

3.2 	Background 

Recognizing the need for an international standard (IS) for digital compression of 

continuous-tone still images, both grey-scale and colour, in order to boost the utilization 

of digital images in general-purpose computer systems; the International Organization 

for Standardization (ISO) and the International Telegraph and Telephone Consultative 
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Committee (CCITF) established in 1986 the Joint Photographic Experts Group. In 

November 1987 the International Electrotechnical Commission (IEC) joined with ISO to 

create a new Joint Technical Committee 1 (JTC 1) in the field of infonnation 

technology, under which the JPEG committee continued to operate. In 1994 and 1995 

the work on 'Digital compression and coding of continuous-tone still images' resulted in 

ISOIIEC 10918-1:1994 (Part 1 requirements and guidelines) and ISO/IEC 

109 18-2:1995 (Part 2 compliance testing) respectively, and the identical CCITT 

Recommendation T.81. ISO/JEC Draft IS (DIS) 10918-3 (Part 3 extensions) and 

ISO/fEC DIS 10918-4 (Part 4 registration procedures for JPEG profile, APPn marker, 

and SPIFF profile ID marker) currently await promotion to ISs. A. Léger et al. (1991) 

and G. K. Wallace (1990, 1991, 1992) reported on JPEG's progress. W. B. Pennebaker 

and J. L. Mitchell (1992) produced a very detailed description of the JPEG still image 

data compression standard and included ISOIIEC DIS 10918-1 and ISOIIEC 

DIS 10918-2. 

JPEG aimed to develop a standard for digital compression of continuous-tone images 

across different applications and computer systems that meets the following 

requirements (U. K. Wallace 1992): 

• 	To be at or near the state of art with regard to compression rate and accompanying 

image fidelity, over a wide range of quality ratings. In addition, the encoder 

should be parametric, so that the application or user can set the desired 

quality/compression trade-off. 

To be applicable to practically any kind of continuous-tone digital source image; 

i.e. not to be restricted to images of certain dimensions, colour spaces, pixel aspect 
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ratios, etc.; and not to be limited to classes of imagery with restrictions on scene 

content; for example complexity, range of colours, or statistical properties. 

• 

	

	To have traceable computational complexity to allow feasible software and 

hardware implementations. 

• 	To have the following modes of operation: sequential encoding, i.e. each image 

component is encoded in a single left-to-right, top-to-bottom scan; progressive 

encoding, i.e. the image is encoded in multiple scans; lossless encoding, i.e. the 

image is encoded to guarantee exact reconstruction; and hierarchical encoding, 

i.e. the image is encoded at multiple resolutions so that lower-resolution versions 

may be accessed without first having to decompress the image at its full 

resolution. 

In order to identify the most suitable method, JPEG conducted a selection process based 

on blind assessment of subjective picture quality. During a first contest in June 1987, 

three of the initial 12 candidate methods were short-listed: adaptive DCT (ADCT), 

differential PCM (DPCM) using binary arithmetic coding, and progressive block-

truncation coding. In January 1988 in a second contest, JPEG chose the ADCT, because 

of its superior image quality, and the demonstrated feasibility in both software and 

hardware implementations. The ADCT was based on 8 x 8 blocks for two reasons: 

computational complexity and the availability of hardware implementations. The block 

size of 16 x 16 was explored and found not to give enough improvement in compression 

to justify the extra image buffering, precision of internal calculations, and complexity. 

JPEG discovered later that a DCT-based lossless mode was difficult to define as a 

practical standard without placing severe constraints on both encoder and decoder 

implementations. As a consequence, JPEG chose a simple predictive method that is 



independent from the DCT-based method to meet its requirement for a lossless mode of 

operation. Hence the DCT-based method applies only to lossy modes of operation. 

However, both methods employ either Huffman or arithmetic coding for entropy coding. 

Since Huffman and arithmetic coders encode and decode the same set of symbols, a 

transcoding process can be used to convert Huffman-coded data into arithmetic-coded 

data and vice versa. Note that, for the DCT-based method, one set of Huffman tables, 

i.e. codes, consists of one direct-current (DC) table and one alternating-current (AC) 

table. 

3.3 	Outline of the JPEG Standard 

3.3.1 	Image Components 

In the JPEG standard, compressed image data consists of only one image, that contains 

1 !~ Nf !~ 255 image components C1  to CNJ.  Note that a grey-scale image consists of 

only one component, and that a colour image consists of multiple components. 

Although colour images can be represented in different colour spaces, the JPEG 

standard is 'colour-blind', i.e. the JPEG compression algorithm is indifferent to the kind 

of information that is contained in a particular component. Each component C1  consists 

of a matrix of y, rows by x columns of samples, i.e. pixels; and represents one colour- 

space coordinate within a particular colour space. Components can have different 

dimension in order to accommodate formats in which some components are sampled at 

different rates than others. The image has overall dimensions 1 !~ Y 5 65535 rows by 

1 !~ X !~ 65535 columns, where Y is the maximum of the y1  values and X is the 

maximum of the x values for all components C 1  to C,,,. The relative vertical and 



horizontal sampling factors of each component, V and H,, relate the dimensions of the 

component, y, and x,, to the overall dimensions, Y and X; and must be integer values 

in the range [1,4]. The encoded parameters are Y and X, and V and H, values for 

each component C,. The decoder reconstructs the dimensions y, and x, of each 

component C, using: 

	

[ 	vi 

	

y,= 	 (3.1) 
'max 

I x.=Xx H.  
max 

(3.2) 

where V. and H. are the maximum relative vertical and horizontal sampling factors 

of all components; and [1 denotes the ceiling function, i.e. round up. 

3.3.2 	Interleaving Image Components 

The JPEG standard allows manipulation of the order in which the components are 

coded. If an image component is not interleaved with other components, data units are 

ordered in a simple left-to-right, top-to-bottom sequence. Note that the JPEG standard 

defines a data unit as an 8 x 8 block of samples in the DCT-based method and as a 

sample in the predictive method. If two or more components are interleaved, each 

component C, is partitioned into rectangular regions of 1', x H, data units. Regions are 

ordered within a component from left-to-right and top-to-bottom, and data units are 

ordered within a region from left-to-right and top-to-bottom. The JPEG standard 

defines a minimum coded unit (MCU) as the smallest group of interleaved data units; 

the maximum number of components in an MCU is four, and the maximum number of 

I 
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data units in an MCU is ten. Therefore not every combination of four components that 

can be represented in noninterleaved order is allowed to be interleaved. However, the 

JPEG standard allows some components to be interleaved and some to be noninterleaved 

within an image. Note that for a noninterleaved scan the MCU is defined to be one data 

unit. 

3.3.3 	An Example of Interleaved Image Components 

In the example below, an image consisting of three components CA, CB, and C that 

are processed in one interleaved scan is assumed. The image is processed using the 

DCT-based method, that operates on 8 x 8 blocks of samples. 

Each component C, has the dimensions y, rows by x, columns, and the relative vertical 

and horizontal sampling factors V1  and H, respectively; see table 3.1. The image has 

the overall dimensions Y = 32 rows by X = 32 columns. The maximum relative 

vertical and horizontal sampling factors are V. = 2 and H. = 2 respectively. 

Component C, y, x, V, H, 

CA  32 32 2 2 

C8  32 16 2 

Cc  16 32 1 2 

Table 3.1 Component Parameters for Example of Three-component Image 

Figure 3.1 visualizes the three components CA,  C8 , and Cc  with their data 

units A 1  .....A 16 , B 1 ,..., B, and C..... , C8  respectively indicated through dotted lines. 

Note that each region, indicated through solid lines, contains V, by H, data units. The 

MCUs are coded in a sequential manner as outlined in table 3.2. 
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A 1  A 2  A 5  A 6  

A 3  A 4  A 7  A 8  

A 9  A 10  A 13  A 14  

A 11  A l2  A 15  A 16  

component CA  

RN 
RN 

component C8  

Cl 	C2 C3 	C4  

C5 	C6  C7 	C3  

component C 

Figure 3.1 Data Units and Regions for Example of Three-component Image 

MCU Number Data Units in MCU 
1 A l  A 2  A 3  A 4  B 1  B2  C, C2  

2 A 5  A 6  A7 A ll  B3  B4  C3  C4  

3 A 9  A10 A l l  A 2  B5  B6  C5  C6  

4 A 13  A 4  A 5  A 16  B 7  I3 C7  C8  

Table 3.2 MCUs for Interleaved Scan of all Three Components 

for Example of Three-component Image 

	

3.3.4 	Sample Precision 

Each sample is an unsigned integer with precision P bits in the range [0,2" - I]. All 

samples of each component within a frame have the same precision P. Note that a 

frame consists of one or more scans. P is 8 or 12 for the DCT-based method, 

dependent on the mode of operation; and is in the range [2,16] for the predictive 

method. 

	

3.3.5 	Modes of Operation 

The JPEG standard defines four distinct modes of operation: 

In the sequential DCT-based mode each group of one to four image components is 

completely coded in a single left-to-right, top-to-bottom scan. Although components are 
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interleaved for scans with two to four components, each component is coded separately. 

This mode minimizes coefficient storage requirements. A particular restricted form of 

this mode is known as the baseline sequential process. It represents a minimum 

capability that must be present in all DCT-based decoder systems. Sequential 

DCT-based processes that have capabilities beyond the baseline sequential requirements 

are known as extended sequential processes. 

In the progressive DCT-based mode each scan, having one to four image components, is 

partially coded in multiple left-to-right, top-to-bottom sequences using spectral selection 

and successive approximation. In spectral selection quantized DCT coefficients are 

grouped into bands of related frequencies, usually lower frequency bands are coded first. 

In successive approximation quantized DCT coefficients are coded first with lower 

precision, they are refined in later scans. Either procedure is used separately, or they are 

mixed in flexible combinations. This mode has the highest coefficient storage 

requirements. 

In the sequential lossless mode one to three neighbouring samples are used to predict the 

current sample. This prediction is then subtracted from the actual sample value, and the 

difference is losslessly entropy-coded. The prediction equation for each scan, having 

one to four components, is selected from a set of eight equations. Components are 

interleaved for scans with two to four components. 

The hierarchical mode provides for progressive coding with increasing spatial resolution 

between progressive stages. It is similar to the progressive DCT-based mode, and useful 

in environments that have multiresolution requirements. The hierarchical mode also 

offers the capability of progressive transmission to a final lossless stage. 
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Table 3.3 summarizes the essential characteristics of the distinct coding processes. 

Baseline Extended Lossless Hierarchical 
Sequential DCT-based Processes Processes 

Process Processes 
Method DCT-based DCT-based predictive extended DCT- 

iossy process lossy process lossless based 
process processes and 

lossless 
processes 

Frame I 	single single single multiple 
Precision 8 bits per 8 or 12 bits per 2 :~ N :~ 16 (dependent on 

sample per sample per bits per sample Method) 
component component per component  

Mode sequential sequential or sequential (dependent on 
progressive  Method) 

Entropy Huffman Huffman or Huffman or (dependent on 
Coding coding with arithmetic arithmetic Method) 

2 sets of tables coding with coding with 
per scan 4 sets of tables 4 DC tables 

per scan per scan  

Coding I 	 scans with 1, 2, 3, and 4 components 
Interleaving I 	 interleaved and noninterleaved scans 

Table 3.3 Essential Characteristics of the Distinct Coding Processes 

3.4 	Baseline Sequential Process 

3.4.1 	DCT-based Coding 

Figure 3.2 depicts the DCT-based encoder and decoder identifying the key processing 

steps. The compression of a single-component, i.e. grey-scale, image is assumed. 

Compression of a multicomponent, i.e. colour, image can be approximately regarded as 

the compression of multiple single-component images utilizing noninterleaved and 

interleaved processes, since all processes operate on each component independently. 
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8 x 8 blocks 	 DCT-based encoder 

source 
image data 

compressed 
image data 

a) Simplified DCI-based Encoder 

DCT-based decoder 

entropy 	 IDCT 
decoder 

compressed 
image data 

reconstructed 
image data 

b) Simplified DCT-based Decoder 

Figure 3.2 DCT-based Coder Processing Steps 

During encoding the samples of the component are grouped into 8 x 8 blocks; and, after 

level shifting, each block is transformed by the forward DCI (FDCT) into the 

corresponding 8 x 8 block of DCT coefficients. One coefficient represents the average 

over the level-shifted block of samples, therefore it is referred to as the DC coefficient. 

The remaining 63 coefficients are referred to as AC coefficients. Each of the 

64 coefficients is then quantized, i.e. scaled and truncated, using one of 

64 corresponding values from a quantization table. After quantization the 

DC coefficient and the AC coefficients are prepared for entropy coding. The quantized 

DC coefficient of the previous block is used to predict the quantized DC coefficient of 

the current block, and the difference is encoded. The quantized DCT coefficients are 

reordered into a l-D array using a fixed zigzag sequence, i.e. scan path; and zero-valued 

AC coefficients are run-length coded. For further compression Huffman or arithmetic 
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coding is employed to entropy-encode the intermediate sequence of symbols, producing 

a continuous stream of data. Huffman tables, i.e. codes, are either predefined or 

computed specifically for a given image in an initial statistics-gathering pass prior to 

Huffman-encoding. Although arithmetic coding adapts to the statistics as it encodes the 

intermediate sequence of symbols, statistical conditioning tables can improve efficiency. 

The same tables used during quantization and entropy-encoding are needed during 

dequantization and entropy-decoding respectively. 

Each processing step within the decoder performs essentially the inverse of its 

counterpart within the encoder. During decoding the entropy decoder decodes the 

continuous stream of data; and generates the intermediate sequence of symbols, that 

reassembles the 8 x 8 block of quantized DCT coefficients. The dequantizer produces 

dequantized DCT coefficients by rescaling the quantized DCI coefficients using the 

conesponding values from the quantization table. The inverse DCT (IDCT) generates 

an 8 x 8 block of reconstructed samples; that, after level-shifting, approximates the 

original block of samples. 

In the baseline sequential process, used in this section for a more detailed description of 

the coder processing steps, 8-bit precision image samples transform to 11-bit precision 

DCI coefficients, and entropy coding employs Huffman coding. Appendix D contains 

a worked example. 

3.4.2 	Level Shift prior to Forward Discrete Cosine Iransform 

The source samples of a component are unsigned integers in the range [0,255]. 

However, in order to reduce the internal precision requirements in the DCT calculations 

(W. B. Pennebaker and J. L. Mitchell 1992, p.  38), the samples are shifted to the range 
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[-128,127] by subtracting 128 from every sample. More generally, samples in the range 

[o, (2 '° - 1)1 are shifted to the range [-2 P-I,  (2 - i)] by subtracting 2, where P is 

the precision in bits. This processing step is omitted in figure 3.2. 

3.4.3 	8 x 8 Forward Discrete Cosine Transform 

The purpose of the FDCT processing step is to remove inter-element redundancy by 

converting statistically dependent sample values into a set of 'less correlated' or 'more 

independent' coefficients. Note that the DCT is a one-to-one mapping; and it is, 

therefore, in principle fully reversible, i.e. lossless. 

The samples of a component are grouped into 8 x 8 blocks as defined by the JPEG 

standard. Each block of samples is a 64-point discrete signal that is a function of the 

two spatial dimensions y and x. As shown in figure 3.3, the FDCT is used to 

transform, i.e. decompose, an 8 x 8 block of samples s into an 8 x 8 block of 

DCT coefficients S that is uniquely determined by the particular 64-point input signal. 

Each DCT coefficient S(v, u) represents one of 64 unique 2-D spatial frequencies. 

Since coefficient 5(0,0) represents zero frequency in both directions, it is referred to as 

the DC coefficient. The horizontal DCT frequency increases from left to right and the 

vertical DCT frequency increases from top to bottom. The remaining 63 coefficients are 

referred to as AC coefficients. Because sample values usually vary slowly from sample 

to sample, the FDCT processing step concentrates most of the signal energy in the lower 

spatial frequencies. 

- 57 - 



s(O,O) s(O,1) . 	s(0,7) 	 S(O,O) S(0,1) 	S(0,7) 

s(1,0) s(1,1) . 	s(1,7) 	FDCT 	S(1,O) S(1,1) . 	S(1,7) 

s(y,x) . 	 . 	. 	S(v,u) 

s(7,O) s(7,1) . 	s(7,7) 	 S(7,O) S(7,1) . 	S(7,7) 
samples 	 DCT coefficients 

Figure 3.3 8 x 8 Forward DCT 

The ideal functional definition of the FDCT is: 

S(v,u) = -!C(v)C(u)s(y,x)cos (2y+1)vit cos (2x+1)un 	
(3.3) 

yOnO 	 16 	16 

IiIV foru,v=O 
where: 	C(u), C(v) 

= ii 	otherwise 

Since equation 3.3 contains transcendental functions, it cannot be computed with perfect 

accuracy. However, the JPEG standard specifies accuracy requirements for this and 

other processing steps. The JPEG standard does not specify a unique DCI algorithm, 

thus it allows innovation and customization. No single algorithm is optimal for all 

implementations, and research in fast DCT algorithms is ongoing; see 

(W. B. Pennebaker and J. L. Mitchell 1992, chapter 4) for a summary. 

3.4.4 	Quantization 

The purpose of the quantization processing step is to achieve further compression by 

representing DCI coefficients with no greater precision than is necessary to achieve the 

desired image quality. Note that quantization is a many-to-one mapping; and is, 

therefore, fundamentally lossy. 

After the FDCI is computed for a block, each of the 64 DCI coefficients is quantized 

by a uniform quantizer. An 8 x 8-element quantization table Q, that is specified by the 
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application or user, provides the quantizer step size 1 :~ Q(v, u) !~ 255 for each 

DCI coefficient S(v,u); see figure 3.4. The quantization table should be appropriate 

for the colour coordinate that the component represents. For best subjective quality the 

quantization table should match the characteristics of the human visual system. As 

examples, tables C. 1 and C.2 in appendix C provide luminance and chrominance 

quantization tables respectively; see (ISO/IEC 10918-1:1994, annex K). 

S(0,0) 5(0,1) 

5(1,0) S(I,!) 

S(v,u) 

S(7,0) s(7,1) 
DCT coefficients 

5(0,7) 

5(1,7) 	quanhization 

S(7,7) 

ii 

Sq(0,0) Sq(0,1) . 	 Sq(0,7) 

Sq(1,0) Sq(1,1) 	Sq(1,7) 

Sq(v,u) 

Sq(7,0) Sq(7,!) . 	 Sq(7,7) 
quantized DCT coefficients 

Q(0,0) Q(0,1) . 	 Q(0,7) 

Q(1,0) Q(l,l) . 	 Q(1,7) 

Q(v,u) 

Q(7,0) Q(7,1) . 	 Q(7,7) 
quantization table 

Figure 3.4 Quantization 

The uniform quantization is defined as division of a DCT coefficient S(v, u) by its 

corresponding quantizer step size Q(v, u), followed by rounding to the nearest integer: 

Sq(v,u)=roundl
(S(v,u)

I 
\ 

(3.4) 

Note that the quantized DCI coefficient Sq(v,u) is normalized by the quantizer step 

size Q(v, u). 
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3.4.5 	DC Encoding and 2-D-to-1-D Zigzag Reordering 

The purpose of these processing steps, that are omitted in figure 3.2, is to improve the 

effectiveness of entropy coding. 

Since the DC coefficients of adjacent 8 x 8 blocks are usually strongly correlated, they 

are DPCM coded. The quantized DC coefficient of the previous block, DC,. 1 , is used 

to predict the quantized DC coefficient of the current block, DC,; see figure 3.5. 

DC. 	DC. 

Figure 3.5 DC Coding 

The difference, that will be entropy-encoded, is defined as: 

DIFF= DC, —PRED 
	

(3.5) 

where PRED is either the quantized DC coefficient of the preceding block, DC,_ 1 ; or 

zero, i.e. mid-range value, at the beginning of a scan. 

Each 2-D block of quantized DCT coefficients is rearranged into an l-D vector, 

ZZ(O,.. .,63), utilizing the 8 x 8 zigzag scan path shown in figure 3.6. ZZ(Q) denotes 

the DC difference value DIFF, that replaces the quantized DC coefficient Sq(O,O). 

n 



0— 1 5— 6 14-15 27-28 

2 4 7 13 16 26 29 42 

3 	8 12 17 25 30 41 43 

9 11 18 24 31 40 44 53 

10 19 23 32 39 45 52 54 

20 22 33 38 46 51 55 
/

60 

21 34 37 47 50 56 59 61 

35-36 48-49 57-58 62-63 

Figure 3.6 8 x 8 Zigzag Scan Path 

Zigzag reordering helps to facilitate entropy coding by placing low-frequency 

coefficients, that are more likely to be nonzero, before high-frequency coefficients. The 

probability of coefficients being zero becomes an approximately monotonic increasing 

function of the index (W. B. Pennebaker and J. L. Mitchell 1992, p.  173). The 

DC encoding and 2-D-to-l-D zigzag reordering is shown in figure 3.7. 

Sq(0,0) Sq(0,1) . 	Sq(0,7) 

Sq(1,0) Sq(1,1) . 	Sq(1,7) 

Sq(v,u) 

Sq(7,0) Sq(7,l) . 	Sq(7,7) 
quantized DCT coefficients 

4, zigzag reordering 

[DIFF Sq(0,1) Sq(1,0) Sq(2,0) Sq(l,l) ... Sq(7,6) Sq(7,7)] 

vector 

Figure 3.7 DC Encoding and 2-D-to-l-D Zigzag Reordering 
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3.4.6 	Huffman Encoding 

The purpose of the entropy-encoding processing step is to achieve additional 

compression by losslessly encoding the quantized and reordered DCT coefficients, i.e. 

by exploiting coding redundancy due to their statistical characteristics. After converting 

the vector into an intermediate sequence of symbols, this sequence is converted into a 

continuous stream of data. The baseline sequential process implements Huffman 

coding. 

Each vector of quantized and reordered coefficients is converted into an intermediate 

sequence of symbols treating the DC difference value and the AC coefficients similarly 

but separately. The Huffman-encoding process segments the DC difference value and 

each nonzero AC coefficient into a set of approximately logarithmically increasing 

magnitude categories as shown in table 3.4. Note that only DC difference categories 0 

to B and AC categories 1 to A are available in the baseline sequential process as 

indicated by the dotted line. Each category is a symbol and will be assigned a Huffman 

codeword. However, except for categories 0 and 10 the categories do not fully describe 

the values to be coded. Therefore, immediately following each codeword for a 

category 1 :5 K :~ F, an additional K bits are appended to identify the sign and fully 

specify the magnitude of the value to be coded. For a positive value the K least-

significant bits (LSB5) of the value are appended; for a negative value the K LSBs of 

the value minus one are appended. Table 3.5 outlines the additional bit sequences. Note 

that leading bits equal to one identify positive values, and leading bits equal to zero 

identify negative values. 
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Range DC Difference 
Category 

(hexadecimal) 

AC Category 

(hexadecimal) 
0 0 n/a 

-1,1 1 1 
-3,-2,2,3 2 2 

-7 ...... 4,4.....7 3 3 
-15 ...... 8,8.....15 4 4 

-31 .....-16,16,...,31 5 5 
-63 ...... 32,32,.. .,63 6 6 

-127 ...... 64,64.....127 7 7 
-255 ..... . 128,128..... 255 8 8 
-511 .....-256,256.....511 9 9 

-1023 ...... 512,512,...,1023 A A 
-2047 ...... 1024,1024,.. .,2047 B B 
-4095 ...... 2048,2048.....4095 C C 
-8191 .....-4096,4096,...,8191 D D 

-16383 ...... 8192,8192,.. .,16383 E E 
-32767 ...... 16384,16384,.. .,32767 F F 

32768 10 n/a 
n/a: not applicable 

Table 3.4 Magnitude Categories for Huffman Coding 

Range Category 
(hexadecimal) 

Additional Bits 
(binary) 

0 0 n/a 
-1,1 1 0,1 

-3,-2,2,3 2 00,01,10,11 
7 3 000,...,011,100.....111 

-15 ...... 8,8.....15 4 0000.....011l,1000,...,l1l1 
-31 .....-16,16,...,31 5 00000.....01111,10000.....11111 

32768 10 n/a 
n/a: not applicable 

Table 3.5 Additional Bits for Sign and Magnitude 

Using an appropriate DC table, the DC difference value of a vector is encoded through a 

codeword representing the DC difference category, and additional bits that may be 

required. As examples, table C.3 and C.4 in appendix C provide luminance and 

chrominance DC difference tables respectively; see (ISO/IEC 10918-1:1994, annex K). 
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Before the nonzero AC coefficients of a vector are encoded in a similar manner, 

consecutive zero AC coefficients are aggregated into runs of zeros. Each run of zeros in 

the range [0,15] is combined with the magnitude category of the nonzero AC coefficient 

that terminates the run of zeros to give a compound symbol as shown in table 3.6. Note 

that only AC categories 0 to A are available in the baseline sequential process as 

indicated by the dotted line. An extension symbol, referred to as zero run length (ZRL), 

codes a run of 16 zeros. Therefore, runs of zeros longer than 15 are represented through 

up to three extension symbols preceding a terminating compound symbol. A special 

symbol, referred to as end-of-block (EOB), is used to terminate a vector when all 

remaining AC coefficients are zero. However, for the condition that the last coefficient 

in a vector is nonzero, the EOB symbol is not generated. 

Zero 
Run 0 1 2 3 4 

AC Category (hexadecimal) 
5 	6 	7 	8 	9 	A B C D E F 

0 EOBO1 02 03 04 05 06 07 08 09OAOBOCODOEOF 
1 n/a 11 12 13 14 15 1617 18191A113 1C1D1E1F 
2 n/a 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 
3 n/a 31 32 33 34 35 3637 38393A313 3C3D3E3F 
4 nJa4142434445464748494A4B4C4D4E4F 
S n/a 51 52 53 54 55 56 57 58 59 SA SB SC SD SE SF 
6 n/a 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F 
7 n/a 71 72 73 74 75 7677 78 797A7B7C7D7E7F 
8 n/a 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F 
9 n/a 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F 
10 n/a A1A2A3A4A5A6A7A8A9AAABACADAEAF 
11 n/a 131B2B3B4B5B6B7B8B9BA1313 BCBDBEBF 
12 n/a C1C2C3C4C5C6C7C8C9CACBCCCDCECF 
13 n/a D1D2D3D4D5 D6D7D8D9DADBDCDDDEDF 
14 n/a E1E2E3E4ESE6E7E8E9EAEBECEDEEEF 
15 ZRL Fl P2 P3 P4 P5 F6 Fl F8 P9 FA PB PC PD FE PP 

n/a: not applicable 

Table 3.6 Coding Symbols for Huffman Coding of AC Coefficients 

Using an appropriate AC table, each nonzero AC coefficient of a vector is encoded 

through zero to three extension symbols; one compound symbol, representing the run of 
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remaining zero AC coefficients and the AC category; and additional bits. As an 

example, table C.5 in appendix C provides a luminance AC table; see (ISO/IEC 

10918-1:1994, annex K). 

The JPEG-compatible image data stream to be transmitted or stored consists of entropy-

coded data segments, that contain the entropy-coded image data; and marker segments, 

that contain parameters, e. g. headers and tables. 

	

3.4.7 	Huffman Decoding 

The entropy decoder decodes each vector of quantized and reordered DCT coefficients 

from the entropy-coded image data using the appropriate tables. Since each Huffman-

coded category exactly defines the number of additional bits appended to each category, 

the stream of data is uniquely decodable. 

	

3.4.8 	1-D-to-2-D Zigzag Reordering and DC Decoding 

Each 1-D vector is rearranged back into a 2-D block of quantized DCT coefficients 

utilizing the 8 x 8 zigzag scan path shown in figure 3.6. The 1-D-to-2 D zigzag 

reordering and DC decoding is shown in figure 3.8. 

[DIFF Sq(0,1) Sq(1,0) Sq(2,0) Sq(1,1) ... Sq(7,6) Sq(7,7)] 

vector 

J zigzag reordering 

Sq(0,0) Sq(0,1) . 	Sq(0,7) 

Sq(1,0) Sq(l,1) . 	Sq(l,7) 

Sq(v,u) 

Sq(7,0) Sq(7,1) . 	Sq(7,7) 
quantized DCT coefficients 

Figure 3.8 1-D-to-2-D Zigzag Reordering and DC Decoding 
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The quantized DC coefficient Sq(O,O) replaces the DC difference value DIFF. The 

quantized DC coefficient of the current block, DC,, is obtained by adding the difference 

value to the prediction value: 

DC, = PRED + DIFF 
	

(3.6) 

where PRED is either the quantized DC coefficient of the preceding block, DC, 1 , or 

zero at the beginning of a scan. 

3.4.9 	Dequantization 

As shown in figure 3.9, the dequantization processing step is used to denormalize, i.e. 

rescale, each 8 x 8 block of quantized DCI coefficients, 5q'  into an 8 x 8 block of 

dequantized DCI coefficients, R. 

Sq(O,O) Sq(O,l) . 	Sq(0,7) 	 R(O,O) R(0,1) . 	R(O,7) 

Sq(l,O) Sq(1,1) . 	Sq(1,7) 	dequantization 	R(l,O) R(l,l) . 	R(1,7) 

Sq(v,u) . 	 . 	. 	R(v,u) 

Sq(7,O) Sq(7,l) . 	Sq(7,7) 	 R(7,O) R(7,1) . 	R(7,7) 
quantized DCT coefficients 	 dequantized DCT coefficients 

ii 
Q(O,O) Q(0 11) . 	Q(0,7) 

Q(1,0) Q(1,1) . 	Q(1,7) 

Q(v,u) 

Q(7,O) Q(7,l) . 	Q(7,7) 
quantizat ion table 

Figure 3.9 Dequantization 

The dequantization, that removes the normalization, is defined as multiplication of a 

quantized DCI coefficient Sq(v,u) by its corresponding quantizer step size Q(v,u): 

R(v,u) = Sq(v,u) Q(v,u) 
	

(3.7) 
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3.4.10 	8 x 8 Inverse Discrete Cosine Transform 

As shown in figure 3.10, the IDCT processing step is used to transform, i.e. compose, 

each 8 x 8 block of dequantized DCT coefficients, R, into an 8 x 8 block of 

reconstructed samples, r. 

R(0,0) R(O,l) . 	R(0,7) 

R(1,0) R(1,l) . 	R(l,7) 

R(v,u) 

R(7,0) R(7,1) . 	R(7,7) 
dequantized DCT coefficients 

r (0,0) r (0,1) . 	r (0,7) 
IDCT 	r(l,0) r(l,1) . 	r(1,7) 

r(y,x) 

r(7,0) r(7,l) . 	r(7,7) 
reconstructed samples 

Figure 3.10 8 x 8 Inverse DCT 

The ideal functional definition of the OCT is: 

(2x + 1)uit 
r(y, x) = I ± C(v) 	C(u) R(v, u)cos (2y + 1)vm cos 	 (3.8) 

16 	16 

where: C(u), C(v) 
= 

for u, V = 0 
otherwise 

3.4.11 
	

Level Shift after Inverse Discrete Cosine Transform 

The samples are shifted from the range [-128,127] back to the original range [0,255] by 

adding 128 to every sample. 

3.5 	Remarks 

The JPEG standard provides a complex framework and caters for a wide range of 

different applications. It does boost the utilization of digital images in general-purpose 

computer systems, and the exchange of compressed data among applications and across 

computer systems. However, the DCT-based lossy method is most popular. It, being a 
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transform-based coding technique, shares the advantages and disadvantages described in 

subsections 2.5.1 and 2.5.5, namely the introduction of blocking artefacts as the bit rate 

is decreased (R. J. Clarke 1995, pp.  86 and 162; and W. B. Pennebaker and 

J. L. Mitchell 1992, p.  38). 

The JPEG standard provides examples of quantization tables (ISO/IC 10918-1:1994, 

annex K), but does not specify default quantization tables. The application or user must 

provide quantization tables tailored to particular image characteristics, display devices, 

and viewing conditions (ISOIIEC 10918-1:1994, section 3.3). Although quantization 

values of individual DCT coefficients should be at the threshold of visibility, little is 

known about visibility thresholds when two or more DCT coefficients are nonzero, i.e. 

when masking occurs (W. B. Pennebaker and J. L. Mitchell 1992, pp.  36-38). 

Therefore, the difficult part of the problem is left to the application or user (M. A. Sid-

Ahmed 1995, p.  478). Furthermore, only one of the up to four available quantization 

tables is globally used for all blocks of an image component within a frame discounting 

local changes in block content, i.e. complexity. A. B. Watson (1993a and b) developed a 

design procedure that generates an image-dependent perceptually optimum quantization 

table, however the quantization table cannot be changed within a component. To 

enhance the JPEG encoder, N. Jayant et al. (1993) outlined a perceptual preprocessor 

that uses prequantization to eliminate, i.e. set to zero, each DCT coefficient that is less 

than its corresponding visual threshold prior to the normal quantization processing step; 

thus maintaining JPEG-compatible image data streams and supporting any JPEG 

decoder. Although the JPEG standard employs quantization tables, each DCT 

coefficient is independently processed using a scalar quantization; this process is 
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inferior to vector quantization (R. J. Clarke 1995, p. 91). 	R. J. Clarke (1995 

pp. 121-124) described the combination of transform coding and vector quantization. 

3.6 	Summary 

JPEG, established in 1986, generated an international standard for digital compression 

of continuous-tone still images with the aim to boost the utilization of digital images in 

general-purpose computer systems. The JPEG standard defines sequential, progressive, 

lossless, and hierarchical modes of operation. While the lossy modes of operation utilize 

a DCT-based method; the lossless mode of operation is based on a predictive method. 

However, both methods employ either Huffman or arithmetic coding for entropy coding. 

A particular restricted form of the DCT-based sequential mode is known as the baseline 

sequential process. It represents a minimum capability that must be present in all 

DCT-based decoder systems. 

For the baseline sequential encoding process each component of an input image is 

divided into 8 x 8 blocks, each of which is then transformed using the FDCT. The 

DCI coefficients are quantized using a user-specifiable quantization table. The 

quantized DCT coefficients are zigzag reordered and losslessly entropy-encoded using 

Huffman coding. Each processing step within the decoder performs essentially the 

inverse of its counterpart within the encoder. 

The application or user must provide the quantization tables. The JPEG standard 

utilizes only one quantization table for an image component. 



Chapter 4 

Adaptive Zigzag Reordering of 
Transform Coefficients 



	

4.1 	Introduction 

This chapter describes adaptive zigzag reordering for blocks of transform coefficients in 

JPEG-like image-compression schemes. Efficient reordering is achieved using variable-

size rectangular sub-blocks. If the generated sub-blocks include all nonzero coefficients, 

the conversion is fully reversible, i.e. lossless. The zigzag scan paths are generated using 

a binary decision tree. 

Section 4.2 discusses standard zigzag reordering of transform coefficients, used in the 

DCT-based method of the JPEG standard and introduced in chapter 3, in more detail. 

Section 4.3 describes adaptive zigzag reordering, and draws a comparison with standard 

zigzag reordering using experimental results. 

Section 4.4 develops a versatile zigzag-reordering algorithm that employs a binary 

decision tree. 

Section 4.5 focuses on a hardware implementation of the zigzag-reordering algorithm 

that uses two GAL16V8 devices. 

Section 4.6 addresses coding of the sub-block dimensions. Finally section 4.7 concludes 

the chapter with a brief summary. 

	

4.2 	Standard Zigzag Reordering 

A generic 8 x 8 block of quantized transform coefficients, used in the DCT-based 

method of the JPEG standard, is shown in figure 4.1. Coefficient Sq(O,O) represents 

zero frequency in horizontal and vertical directions. The horizontal DCT frequency 
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increases from left to right, and the vertical DCT frequency increases from top to 

bottom; see subsection 3.4.3. 

Sq(O,O) Sq(0,1) . 	Sq(O,7) 

Sq(1,0) Sq(1,1) . 	Sq(l,7) 

Sq(v,u) 

Sq(7,O) Sq(7,l) . 	Sq(7,7) 

Figure 4.1 8 x 8 Block of Quantized DCT Coefficients 

Reordering along a fixed 8 x 8 zigzag scan path, depicted in figure 4.2, approximately 

arranges the coefficients from low to high DCI frequencies (W. B. Pennebaker and 

J. L. Mitchell 1992, p.  34); see subsection 3.4.5. 

Figure 4.2 8 x 8 Zigzag Scan Path 

Since low-frequency coefficients are more likely to be nonzero than high-frequency 

coefficients, the zigzag-reordered coefficients exhibit an approximately monotonic 

increasing probability of being zero; see (W. B. Pennebaker and J. L. Mitchell 1992, 

p. 173). 
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The entropy-coding processing step generates an intermediate sequence of symbols. 

While each nonzero coefficient is variable-length coded; each run of zero coefficients, 

i.e. zero run, is run-length coded; see subsection 3.4.6. Zigzag reordering is an 

important processing step; since it affects the zero runs, and therefore changes the 

statistics of the symbols used during entropy coding. 

As an example, figure 4.3 depicts in a logarithmic scale the probability distribution of 

the zero runs preceding the last nonzero coefficient for standard 8 x 8 zigzag reordering, 

and image Lena with a spatial resolution of 512 x 512 pixels for quality setting q = 50. 

The probability of occurrence decreases as the length of zero run increases. Note that 

the use of extension symbols, coding zero runs longer than 15, is not taken into account. 

However, zero runs of lengths 16, 17, 19, 20, 21, and above 22 do not occur. 

1 

0.1 

0.01 

i 
' 	0.001 
0.4 

0.0001 

0.00001 

0 	2 	4 	6 	8 	10 12 	14 	16 	18 20 22 

Length of Zero Run 

Figure 4.3 Probability Distribution of Runs of Zero Coefficients, 

Standard Zigzag Reordering, Lena 512 x 512, q = 50 
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Note that a corresponding entropy for the zero runs of 1.63 bits has been calculated 

using equation 2.7. Figure 4.4 shows the image Lena with a spatial resolution of 

512 x 512 pixels for quality setting q = 50. Subsection 4.3.3 provides details on the 

experimentation. 

Reproduced by Special Permission of Playboy magazine. 
© 1972 by Playboy. 

Figure 4.4 Decoded JPEG Image, Lena 512 x 512, q = 50 

- 74 - 



4.3 	Adaptive Zigzag Reordering 

4.3.1 	Motivation for Adaptive Zigzag Reordering 

The JPEG standard for the DCT-based method defines one fixed 8 x 8 zigzag scan path 

for coefficient reordering that is used for every block of DCT coefficients regardless of 

specific block content. Although this processing step approximately arranges the 

coefficients in order of increasing DCT frequency, and increasing probability of being 

zero; it does not directly address the symbol statistics for entropy coding. 

Adaptive zigzag reordering processes an L x M sub-block that is yielded from the 

L.  x M.  block of coefficients, where L.  = 8 and M. = 8 for the DCT-based 

method of the JPEG standard. This sub-block is not necessarily square, but is 

rectangular with the dimensions 1 :5 L :5 L. rows and 1 !~ M !~ M.  columns. Note 

that the sub-block is defined to include the DC coefficient. By taking the specific block 

content into account, adaptive zigzag reordering reduces the entropy of the symbols, and 

thus improves efficiency of entropy coding. 

4.3.2 	Determination of Sub-blocks 

For transcoding, i.e. lossless conversion of a block of coefficients, the sub-block must 

contain all nonzero coefficients. Hence the smallest possible rectangle to include all 

nonzero coefficients is identified. The coefficients within the sub-block are then zigzag-

reordered using a zigzag scan path that is appropriate for the dimensions of the sub-

block. Since sub-blocks generally have different dimensions, reordering is no longer a 

straightforward task; section 4.4 describes a zigzag-reordering algorithm based on a 

binary decision tree. The dimensions of the sub-block need to be retained in order to 
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traverse the zigzag scan path correctly during decoding; section 4.6 addresses coding of 

the sub-block dimensions. 

As an example, figure 4.5 depicts an 8 x 8 block of transform coefficients with the 

corresponding 4 x 5 sub-block indicated by the dotted line. 

—26 —3 —6 2 20 0 0 

1 —2 —4 0 00 0 0 

—3 1 5 —1 —10 0 0 

74 1 2 —1 0:0 0 0 

00000000 

00000000 

00000000 

00000000 

Figure 4.5 Example of 8 x 8 Block of Transform Coefficients 

Standard zigzag reordering of the block using the fixed 8 x 8 zigzag scan path is shown 

in figure 4.6. The nonzero coefficients are indicated by black dots. There are twelve 

zero runs of length zero, two zero runs of one, one zero run of two, and one zero run of 

five. 



FOO

0 0 

 o 0 

 o 0 

 0 0 

 0 0 

 0 0 

 0 0 

0 0 0 0 0 0 0 0 

Figure 4.6 Example of Standard Zigzag Reordering 

Adaptive zigzag reordering of the sub-block using the appropriate 4 x 5 zigzag scan 

path is shown in figure 4.7. The nonzero coefficients are indicated by black dots. There 

are 14 zero runs of length zero, and two zero runs of one. 

Figure 4.7 Example of Adaptive Zigzag Reordering 

Adaptive zigzag reordering reduces the length of the zero runs as well as the number of 

different lengths of zero runs. However, it does not change the total number of zero 

runs. It modifies the probability distribution of runs of zero coefficients so that the 

entropy of the symbols is reduced and the potential effectiveness of entropy coding is 

improved. 
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Following the example used in figure 4.3, figure 4.8 depicts in a logarithmic scale the 

probability distribution of the zero runs preceding the last nonzero coefficient for 

adaptive zigzag reordering, and image Lena with a spatial resolution of 512 x 512 pixels 

for quality setting q = 50. The probability of occurrence decreases more rapidly as the 

length of zero run increases. Zero runs of lengths 10, 12, and above 13 do not occur. 

Note that a corresponding entropy for the zero runs of 1.15 bits has been calculated 

using equation 2.7. 

1 

0.1 	- 

-4 

0.01 	- 

'C 

2 0.001 - 

0.0001 - 

0.00001 - 

0 	2 	4 	6 	8 	10 	12 	14 16 	18 20 22 

Length of Zero Run 

Figure 4.8 Probability Distribution of Runs of Zero Coefficients, 

Adaptive Zigzag Reordering, Lena 512 x 512, q = 50 

Figure 4.9 depicts the probability distribution of the sub-block dimensions for image 

Lena with a spatial resolution of 512 x 512 pixels for quality setting q = 50. The 

probability distribution is formed along the diagonal, hence sub-blocks tend to be 

approximately square. As a result of using quality setting q = 50, the probability of 

occurrence decreases as the row and column dimensions increase. 

WIN 



0.10 

Number of Columns 

Figure 4.9 Probability Distribution of Sub-block Dimensions, 

Lena 512x512, q=S0 

4.3.3 	Experimental Results 

Experimental results have been obtained using MATLAB (MathWorks 1994). The 

transform-coefficient matrices have been generated using the Independent JPEG 

Group's software (Independent JPEG Group 1996). The quality setting q controls 

scaling of the quantization tables; see subsection 3.4.4. The experimental results have 

been produced for quality settings in the range from 10 ('poor' quality) to 90 ('good' 

quality). Appendix E contains the original images used for experimentation. Note that 

processing based on 8 x 8 blocks for images with spatial resolutions of 256 x 256 and 

512 x 512 pixels involves 1024 and 4096 blocks respectively. 

The entropies of the runs of zero coefficients for standard and adaptive zigzag 

reordering have been evaluated over the range of quality settings. Figures 4.10 and 4.11 
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compare the entropies for the image Lena with a spatial resolution of 512 x 512 and 

256 x 256 pixels respectively. Figure 4.12 compares the entropies for the image 

Cameraman with a spatial resolution of 256 x 256 pixels. Figure 4.13 compares the 

entropies for the image F-16 with a spatial resolution of 512 x 512 pixels. For adaptive 

zigzag reordering, the entropy of runs of zero coefficients is always lower than that for 

standard zigzag reordering. 

2.0 

1.5 
'C 
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1.0 
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0.5 

MKOXIA 
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JPEG Quality Setting 
fr 	Standard Zigzag Reordering 	0 	Adaptive Zigzag Reordering 

Figure 4.10 Entropy of Runs of Zero Coefficients versus Quality Setting, 

Lena 512x512 
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Figure 4.11 Entropy of Runs of Zero Coefficients versus Quality Setting, 

Lena 256x256 
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Figure 4.12 Entropy of Runs of Zero Coefficients versus Quality Setting, 

Cameraman 256 x 256 
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Figure 4.13 Entropy of Runs of Zero Coefficients versus Quality Setting, 

F-16 512x512 

Figure 4.14 summarizes the percentage entropy reduction over the range of quality 

settings for the four images. Adaptive zigzag reordering consistently produces a lower 

entropy indicating improved efficiency for entropy coding. For higher quality settings 

the number of nonzero coefficients increases, and therefore the sub-block dimensions 

approach the standard 8 x 8 block dimensions more frequently. However, for the 

images analysed, a significant entropy reduction of at least 15 % has been obtained for 

'medium' quality settings (q = 30,35.....70). 
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Figure 4.14 Entropy Reduction for Runs of Zero Coefficients versus Quality Setting 

4.4 	Versatile Zigzag-reordering Algorithm 

4.4.1 	Motivation for Versatile Zigzag-reordering Algorithm 

Adaptive zigzag reordering reduces the entropy of the runs of zero coefficients by 

traversing a scan path that is tailored to the dimensions of a rectangular sub-block in a 

particular block of quantized transform coefficients. Although scan paths may be 

derived and provided in advance for all required sub-block dimensions, a versatile 

algorithm is more flexible and appropriate; especially when the sub-block dimensions, 

and therefore the number of possible scan paths and the lengths of the scan paths, 

increase. A versatile algorithm generates scan paths for sub-blocks of any dimensions. 

It may determine the scan paths "on the fly", i.e. as the scan path of a particular sub-

block is being traversed. In addition, the algorithm may also be implemented in 

hardware. 



The coordinates of the next element in the zigzag scan path; and therefore the whole 

zigzag scan path; can be determined through Boolean expressions that evaluate the 

coordinates of the current element, and the dimensions of the sub-block. The versatile 

zigzag-reordering algorithm described in this section is based on a binary decision tree 

using a sequence of three binary tests to determine the coordinates of the next element. 

4.4.2 The Sub-block 

A sub-block is defined as matrix A(L, M) of L rows by M columns: 

	

ra(l,l) a(1,2) . 	a(1,M) 1 

	

a(2,1) a(2,2) . 	a(2,M) 
A(L,M)=I 	 I 	 (4.1) 

a(1,m) . 	I 

	

[a(L,1) a(L,2) . 	a(L,M)j 

with 1!~1!~L and 1!~m!~M. 

Zigzag reordering that starts at the top left-hand position, as shown in figures 4.6 

and 4.7 for two examples, utilizes four directions of movement, as shown in figure 4.15, 

and no movement at the last position of a sub-block, i.e. the bottom right-hand position. 

A move in the upper-right direction requires a decrement of the current row index, 

indicated by 1— -; and an increment of the current column index, indicated by m + +. 

A move in the right direction requires no change to the row index, indicated by 1; and 

an increment of the column index. A move in the lower direction requires an increment 

of the row index, and no change to the column index. A move in the lower-left direction 

requires an increment of the row index, and a decrement of the column index. 

n 



- -, in + + 

1++,ni 

Figure 4.15 Directions of Movement 

Certain changes in the row and column indices cannot occur at certain positions; for 

example the row index cannot be decremented for positions in the first row, and the 

column index cannot be incremented for positions in the last column. However, the 

coordinates of the next element, indicated by (1,m), in the zigzag scan path; and 

therefore the whole zigzag scan path; can be determined through Boolean expressions 

evaluating the coordinates of the current element, indicated by (1, m), and the 

dimensions of the sub-block, L and M. 

4.4.3 	Parameters 

For the versatile zigzag-reordering algorithm five parameters that correspond to binary 

tests have been defined for convenience: 

R1(1, in) indicates whether the current element a(!, in) is positioned in the first row 

J(4.2) (1,m) 	
0 otherwise 

1 for! = 1 
Rl  

RL(1, m) indicates whether the current element is positioned in the last row 

Sm 



RL(l,m) {1 forl=L 
= 	 (4.3) 

0 otherwise 

C1(1,m) indicates whether the current element is positioned in the first column 

Cl(1,m){1 form = 
= 	 (4.4) 

0 otherwise 

CM(1, m) indicates whether the current element is positioned in the last column 

CM(1,m){1 form=M = 	 (4.5) 
0 otherwise 

P(1, m) indicates whether the sum of row index I and column index m of the current 

element is odd 

P(l,m)={1 jf(1+m)isodd 

0 otherwise 
	 (4.6) 

The five parameters can be combined and evaluated through Boolean expressions. 

However, binary matrices of L rows by M columns may be used to represent the five 

parameters of all elements in an L x M sub-block compactly. 

In matrix Rl(L, M) all elements in the first row are one, and the remaining elements are 

zero: 

11.1 

00.0 
Rl(L,M)= 	. . 	 (4.7) 

00.0 

In matrix RL(L,M) all elements in the last row are one, and the remaining elements are 

zero: 

n 



00.0 

RL(L,M)= 
00.0 
	 (4.8) 

11.1 

In matrix C1(L, M) all elements in the first column are one, and the remaining elements 

are zero: 

10.0 

10. 
C1(L,M) 	

0
= 

1a.0 

(4.9) 

In matrix CM(L, M) all elements in the last column are one, and the remaining elements 

0.01 

0.01 
CM(L,M)= 	 (4.10) 

0.01 

In matrix P(L, M) all elements whose sum of row index I and column index m is odd 

are one, and the remaining elements are zero: 

010. 

101. 
P(L,M)= 0 1 0 
	

(4.11) 

4.4.4 	The Truth Table 

The truth table, shown in table 4.1, lists all 32 possible combinations of the five binary 

parameters R1(I, m), RL(I, m), Cl(1, m), CM(I, in), and P(l, in); and the corresponding 

changes in the row and column indices. I and I are the row indices of the current 
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element and the next element respectively. I + + denotes an increment of the row 

index I , i. e. addition of 1; 1 denotes no change to the row index 1; and 1— - denotes 

a decrement of the row index I, i. e. subtraction of 1. Changes in the column index m 

are identified similarly. 

Combination R1(1,m) RL(1,m) C1(l,m) CM(I,m) P(1,m) 1 

0 0 0 0 0 0 1-- m++ 
1 0 0 0 0 1 1++ m-- 
2 0 0 0 1 0 l++ m 
3 0 0 0 1 1 I++ m-- 
4 0 0 1 0 0 1-- m++ 
5 0 0 1 0 1 l++ m 
6 0 0 1 1 0 1++ m 
7 0 0 1 1 1 l++ m 
8 0 1 0 0 0 1-- m++ 
9 0 1 0 0 1 1 
10 0 1 0 1 0 1 m 
11 0 1 0 1 1 1 m 
12 0 1 1 0 0 i!-- m++ 
13 0 1 1 0 1 1 
14 0 1 1 1 0 1 m 
15 0 1 1 1 1 1 m 
16 1 0 0 0 0 1 
17 1 0 0 0 1 l++ m-- 
18 1 0 0 1 0 1+-i- m 
19 1 0 0 1 1 1++ m-- 
20 1 0 1 0 0 1 
21 1 0 1 0 1 1++ m 
22 1 0 1 1 0 1++ m 
23 1 0 1 1 1 1++ m 
24 1 1 0 0 0 1 
25 1 1 0 0 1 1 
26 1 1 0 1 0 1 
27 1 1 0 1 1 1 m 
28 1 1 1 0 0 1 
29 1 1 1 0 1 1 
30 1 1 1 1 0 1 m 
31 1 1 1 1 1 1 m 

Table 4.1 Complete Truth Table for Changes in Row and Column Indices 
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If RL(l, m) = 1, i.e. the position of the current element is in the last row of the sub-block; 

and CM(l, m) = 1, i.e. the position is in the last column of a sub-block; the position of 

the current element is the last position in the sub-block, i.e. no changes in the row and 

column indices are required regardless of Rl(1, m), Cl(1, m), and P(1, m); see 

combinations 10, 11, 14, 15, 26, 27, 30, and 31. 

If R1(1,m) = 0, i.e. the position of the current element is not in the first row of the sub-

block; CM(1,m) = 0, i.e. the position is not in the last column of a sub-block; and 

P(l,m) = 0, i.e. sum of row and column indices is even; the position of the next 

element is situated in the upper-right direction, i.e. the row index 1 must be 

decremented and the column index m must be incremented; see combinations 0, 4, 8, 

and 12. However, if Rl(l, m) = 1, i.e. the position in is the first row of the sub-block 

and the row index I cannot be decremented; CM(1,m) = 0; and P(l,m) = 0; the 

position of the next element is situated in the right direction, i.e. the row index I must 

remain unchanged and the column index in must be incremented; see combinations 16, 

20, 24, and 28. 

If RL(I, m) = 0, i.e. the position of the current element is not in the last row of the sub-

block; C1(1, m) = 0, i.e. the position is not in the first column of a sub-block; and 

P(I, m) = 1, i.e. sum of row and column indices is odd; the position of the next element 

is situated in the lower-left direction, i.e. the row index I must be incremented and the 

column index m must be decremented; see combinations 1, 3, 17, and 19. However, if 

RL(1, in) = 0; C1(I, in) = 1, i.e. the position is in the first column of a sub-block and the 

column index in cannot be decremented; and P(l, in) = 1; the position of the next 
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element is situated in the lower direction, i.e. the row index I must be incremented and 

the column index m must remain unchanged; see combinations 5,7, 21, and 23. 

If RL(1, m) = 0, i.e. the position of the current element is not in the last row of the sub-

block; CM(1, m) = 1, i.e. the position is in the last column of a sub-block; and 

P(l,m) = 0, i.e. sum of row and column indices is even; the position of the next 

element is situated in the lower direction, i.e. the row index I must be incremented and 

the column index m must remain unchanged; see combinations 2, 6, 18, and 22. 

If RL(l, in) = 1, i.e. the position of the current element is in the last row of the sub-block; 

CM(l, m) = 0, i.e. the position is not in the last column of a sub-block; and P(l, in) = 1, 

i.e. sum of row and column indices is odd; the position of the next element is situated in 

the right direction, i.e. the row index I must remain unchanged and the column 

index m must be incremented; see combinations 9, 13, 25, and 29. 

A reduced truth table uses don't cares to represent compactly combinations that are 

unaffected by certain parameters; see table 4.2. 

Entry R1(I,m) RL(1,m) C1(1,m) CM(I,m) P(I,m) 1 

0 X 1 X 1 X I m 
1 0 X X 0 0 1-- m++ 
2 1 X X 0 0 1 
3 X 0 0 X 1 I++ m-- 
4 X 0 1 K 1 in 
5 K 0 K 1 0 l++ m 
6 K 1 K 0 1 1 

K denotes don't care 

Table 4.2 Reduced Truth Table for Changes in Row and Column Indices 
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4.4.5 	Boolean Expressions 

From the reduced truth table, given in table 4.2, Boolean expressions can be derived for 

combined changes in the row and column indices by logically ORing table entries that 

have the same effects on the row index I and the column index in respectively. Note 

that the coordinates of the current element, generally indicated by (1, in), are omitted for 

clarity. The following expressions, given in sum-of-products form, determine the 

changes in the row and column indices: 

No move is defined by 

i=i 1 if (RL CM) is true 
= 4 

(4.12) 

where 1 and l are the row indices of the current element and the next element 

respectively, in and m are the column indices of the current element and the next 

element respectively. 

A move in the upper-right direction is defined by 

i=i--- 1 
m m++J if OkTCM.P)istrue (4.13) 

where 1 — — refers to a decrement of the current row index, and in + + refers to an 

increment of the current column index. 

A move in the right direction is defined by 

r=i 	1 

m 	
m++J zf((R1.CM.P)+(RL.CM.P))istrue 	 (4.14) 
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A move in the lower direction is defined by 

i =i++1 

=m I (f(fT.ClP)+QiLCM.P))istrue 	 (4.15) 

where I + + refers to an increment of the current row index. 

A move in the lower-left direction is defined by 

l+=1++ 
m =m—_j :f(WL.C1.P)istrue 	 (4.16) 

where m - - refers to a decrement of the current column index. 

However, Boolean expressions can also be derived from the reduced truth table for 

independent changes in the row and column indices by logically ORing table entries that 

have the same effect on the row index I or the column index m respectively. The 

following expressions, given in sum-of-products form, determine the changes in the row 

and column indices independently: 

A decrement of the row index I is defined by 

1' =1-- jf(A.i.CM.P)istrue 	 (4.17) 

An increment of the row index 1 is defined by 

1 =1++ zf((RLC1.P)+(NL.C1.P)+(RL.Cfrf.P))istnie 	(4.18) 

A decrement of the column index m is defined by 

m'=m-- zf(M.C1.P)istrue 	 (4.19) 
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An increment of the column index m is defined by 

m=m++ if (çi.&Tfl+(R1.rM.P)+(RL.di.P))istrue (4.20) 

The above expressions, given in sum-of-products form, may be reduced and rearranged 

as required. 

4.4.6 	The Binary Decision Tree 

The construction of the binary decision tree is related to the reduced truth table shown in 

table 4.2. The parity column, representing the parity parameter P(1, in), contains one 

don't care; therefore the parity parameter P(1,m) provides more information than the 

other parameters, whose columns contain more than one don't care. The truth table 

depicted in table 4.3 removes this don't care by expanding entry 0 of the reduced truth 

table with respect to the parity parameter. Thus the parity column contains two 

separable groups: a group of four entries with P(1,m) = 0, and a group of four entries 

with P(1, in) = 1. 

Entry R1(l,m) RL(l,rn) C1(l,m) CM(1,m) P(1,m) r 
0 X I X 1 0 1 m 
1 X 1 X 1 1 1 m 
2 0 X X 0 0 1--- m++ 
3 1 X X 0 0 1 
4 X 0 0 X 1 1++ m-- 
5 X 0 1 X 1 1++ m 
6 X 0 X 1 0 1++ 
7 X 1 X 0 1 1 

X denotes don't care 

Table 4.3 Truth Table for Construction of Binary Decision Tree 

With reference to table 4.3, for the group with P(1, in) = 0; consisting of entries 0, 2, 3, 

and 6; the last-column column, representing the last-column parameter CM(1, in), does 
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not contain don't cares. Thus it contains two separable groups: a group of two entries 

with CM(l, m) = 0, and a group of two entries with CM(1, m) = 1. 

For the group with P(1, m) = 0 and CM(1, m) = 0, consisting of entries 2 and 3, the 

first-row column, representing the first-row parameter Rl(1, m), does not contain 

don't cares. Thus it separates the changes in the row and column indices. For 

Rl(1,m) = 0 the row index I is decremented and the column index m is incremented; 

see entry 2. For R1(1,m) = 1 the row index I remains unchanged and the column 

index m is incremented; see entry 3. 

For the group with P(I,m) = 0 and CM(1,m) = 1, consisting of entries 0 and 6, the last- 

row column, representing the last-row parameter RL(l, m), does not contain don't cares. 

Thus it separates the changes in the row and column indices. For RL(l, m) = 0 the row 

index I is incremented and the column index m remains unchanged; see entry 6. For 

RL(l, m) = 1 both indices remain unchanged; see entry 0. 

The group with P(I,m) = 1; consisting of entries 1, 4, 5, and 7; can be separated 

similarly. Hence the required changes in the row and colunm indices can be determined 

based on a sequence of three binary tests. 

The binary decision tree is shown in figure 4.16. The root node represents the parity 

parameter P(I,m), i.e. the test for the sum of row index I and column index m being 

odd. Note that, following convention, left children are identified by 0, and right 

children are identified by 1. The two children of the root node correspond for 

P(I, m) = 0 to the last-column parameter CM(I, m) and for P(l, m) = 1 to the last-row 
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parameter RL(1, m). The two children of the node corresponding to the last-column 

parameter CM(1,m) represent the two row parameters R1(1,m) and RL(1,m) 

respectively, and the two children of the node corresponding to the last-row 

parameter RL(1,m) represent the two column parameters C1(1,m) and CM(1,m) 

respectively. On the last level, eight external nodes refer to the changes in the row and 

column indices. Note that three of the changes in the row and column indices appear 

twice within the eight external nodes since there are only four directions of movement, 

as shown in figure 4.15, and no movement at the last position of a sub-block. 

Figure 4.16 Decision Tree for Changes in Row and Column Indices 

To obtain the changes in the row and column indices, and therefore the position of the 

next element, a sequence of three binary tests based on the position of the current 

element, indicated by (1, m), in the L x M sub-block is generated starting from the root 

node. The first test always evaluates the parity parameter P(1, m); and depending on 

the result of this test either the last-column parameter CM(1, m) for P(1, m) = 0, or the 

last-row parameter RL(1, m) for P(1, m) = 1 is tested. The third test is conducted in a 

similar manner, and finally determines the changes in the row and column indices. The 
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binary decision tree generates a valid test sequence for the position of any element in 

any L x M sub-block. Appendix F contains a worked example. 

4.5 	Hardware Implementation of Zigzag-reordering Algorithm 

4.5.1 	Motivation for Hardware Implementation of Zigzag-reordering 

Algorithm 

JPEG aimed to achieve cost effective and computationally efficient implementations for 

software and hardware. Therefore, it was intended to keep the system simple enough to 

permit single-chip implementations (W. B. Pennebaker and J. L. Mitchell 1992, p. 305). 

However, the hardware implementation of the zigzag-reordering algorithm described in 

this section is based on two programmable logic devices (PLDs) and aims to 

demonstrate the feasibility of the approach. Note that a PLD is an array of basic logic 

element, i.e. gates, interconnected by programmable links; such as fuses for one-time 

programmable PLDs, or floating gates for erasable PLDs. The implementation 

constitutes a Moore state machine with binary inputs representing the dimensions of the 

sub-block to be reordered. It involves two stages, each of which is mapped into a 

separate GAL16V8 device; see (Lattice 1996 and 1997). 

4.5.2 	The GAL16V8 Device 

The GAI16V8 device is an electrically erasable 20-pin generic array logic PLD with a 

user-programmable 64 x 32 AND array, a fixed 8 x 8 OR array, and an output stage 

employing output logic macro-cells (OLMCs) with eight product lines, i.e. AND gate 

outputs, connected to each OLMC. Figure 4.17 depicts the functional block diagram of 

the GAL16V8. The device has eight dedicated inputs and eight user-configurable pins; 
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I/CLK 

"0/a 

I/o/a 

I/O/Q 

IIOIQ 

I/O/Q 

I/O/Q 

I/0/Q 

110/0 

hOE 

each of which may be configured individually as input, combinational output, or 

registered output within the appropriate OLMC; see (Lattice 1996 and 1997). 

Registered outputs are also fed back into the AND array of the device enabling a state 

machine to be implemented on a single device. 

Reproduced by Special Permission of Lattice Semiconductor. 
© 1996 by Lattice Semiconductor. 

Figure 4.17 Functional Block Diagram of GAL 16V8 Device 
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4.5.3 	The Tango-PLD Development Tool 

Tango-PLD is a universal development tool for designing and simulating logic systems 

for PLDs. It consists of a language preprocessor, a design compiler, a logic minimizer, a 

functional simulator, and a fusemap generator. It provides a C-like hardware 

description language, Tango Design Language (TDL); and produces industry-standard 

Joint Electronic Device Engineering Council (JEDEC) fusemap files for programming 

PLDs. The functional simulator can verify a design before it is committed to hardware. 

Tango-PLD supports a variety of device architectures including the GAL 16V8 device 

family; see (ACCEL 1989a and b). 

	

4.5.4 	The Moore State Machine for Versatile Zigzag-reordering Algorithm 

The hardware implementation constitutes a Moore state machine consisting of two 

stages. Each stage is mapped into a separate GAL16V8 device, and the state machine is 

implemented by interconnecting the two devices as shown in figure 4.18. 

The state machine has six binary inputs representing the dimensions, i.e. number of 

rows L and number of columns M, of the sub-block to be reordered. While the 

versatile zigzag-reordering algorithm operates on sub-blocks of any dimensions, this 

particular implementation operates on sub-blocks with up to eight rows and up to eight 

columns. Thus it allows all 64 sub-block dimensions from 1 x 1 to 8 x 8 to be 

generated. However, the implementation is compatible with the JPEG standard, that 

partitions image components into 8 x 8 blocks for the DCT-based method. Note that, 

due to the 3-bit representation of the number of rows, the binary pattern 000 indicates a 

sub-block containing one row, 001 indicates a sub-block containing two rows, etc. up to 

n 



111 indicating a sub-block containing eight rows. The number of columns in a sub-

block is represented similarly. 

A reset signal, labelled RESET, is used to initialize the row and column indices, I 

and m, to the binary pattern 000 corresponding to the position of the first element in the 

sequence regardless of the sub-block dimensions, L and M. The generation of the 

appropriate zigzag scan sequence is synchronized to a clock signal, labelled CLK. Since 

stage A is purely combinational, both signals are applied only to stage B. 

Moore state machine 

CLK 

RESET: 

LI 

L 	: 34 GAL16V8

HRL~ 

 GAL16V8 

I stageA stageB 
M  DONE > 

I >  

Figure 4.18 Block Diagram of Moore State Machine for 

Versatile Zigzag-reordering Algorithm 

The state machine has six binary outputs that represent the row index I and the column 

index m of the position of the current element in the scan path as described for the six 

binary inputs. 

WE 



A signal, labelled DONE, is asserted to indicate completion of the zigzag scan sequence 

of the current sub-block; the row and column indices, I and m, are initialized to 000 in 

readiness for the zigzag scan sequence of the next sub-block. 

Stage A determines, according to equations 4.2 to 4.6, the five binary parameters 

Rl(I, m), RL(1, m), Cl(1, m), CM(l, m), and P(l, m) from the current values of the row 

and column indices, I and m, and the current sub-block dimensions, L and M. This 

stage is purely combinational and has twelve binary inputs that are processed as four 

groups with three bits each, and five outputs that represent the five binary parameters. 

The parity P is evaluated by XORing the least-significant bits of the row and column 

indices. Note that the parity P is the same for both, row and column, indices starting 

from either zero or one. In the combinational output configuration, one of the eight 

product lines is used to control the tn-state input of the OLMC. Stage A utilizes 21 out 

of 64 product lines, i.e. 33 %; and six of the maximum seven product lines per output 

for two output signals. 

Stage B determines the next row and column indices from the current indices and the 

five binary parameters using the clock signal to control the timing of the zigzag-scan-

sequence generation, and the reset signal to initialize the row and column indices to 000 

for the first scan. Note that the implementation of the increments and decrements is 

described in subsection 4.5.5. The stage has two 3-bit outputs that represent the row 

index I and the column index m. The outputs are implemented as registered outputs 

enabling them to be fed back internally to the AND array of the device. The stage also 

generates the DONE signal. In the registered output configuration, all of the eight 
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product lines are available. Stage B utilizes 42 out of 64 product lines, i.e. 66 %; and 

all of the maximum eight product lines per output for two output signals. 

The TDL files, describing each stage individually and the entire state machine, are 

contained in appendix G. The files also include extracts from the full sets of test 

vectors. Each device has been individually simulated to verify its correct operation, and 

the entire state machine has also been simulated to ensure that all zigzag scan paths are 

correctly generated. 

4.5.5 	Implementation of Increments and Decrements 

Boolean expressions denoting arithmetic increments and decrements do not fit within 

the GAL 16V8 device. However; since, in practice, a row index is never decremented 

from 000 or incremented from 111, don't-care states can be used for these states in order 

to reduce the number of product lines per output. 

Table 4.4 depicts the state table for the binary increments of the row index 1. Boolean 

expressions can be derived for each bit; and don't cares can be assumed to be either 

zero or one. 

000 001 010 011 100 101 110 111 

001 010 011 100 101 110 111 XXX 

X denotes don't care 

Table 4.4 Binary Increments 

The least-significant bit, denoted by 10 and 10 respectively, toggles between zero and 

one: 

/0 .  = 10 
	

(4.21) 
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with the appropriate don't care assumed to be zero. 

The next bit, denoted by 11 and lit  respectively, is defined by XORing 10 and 11: 

11' =((m.ii)+(1o.]i)) 	 (4.22) 

with the appropriate don't care assumed to be zero. 

The most-significant bit, denoted by 12 and 12 + respectively, is defined by: 

12 = ((loll) + 12) 	 (4.23) 

with the appropriate don't care assumed to be one. 

Table 4.5 depicts the state table for the binary decrements of the row index 1. 

Similarly, Booiean expressions can be derived for each bit; and don't cares can be 

assumed to be either zero or one. 

000 001 010 011 100 101 110 111 

XXX 000 001 010 011 100 101 110 

X denotes don't care 

Table 4.5 Binary Decrements 

Again, the least-significant bit toggles between zero and one: 

10 = 10 	 (4.24) 

with the appropriate don't care assumed to be one. 

The next bit is defined by XNORing 10 and 11: 

11 = ((10.11) + 	. 11)) 	 (4.25) 

with the appropriate don't care assumed to be one. 
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The most-significant bit is defined by: 

12 = ((10•12) + (1112)) 	 (4.26) 

with the appropriate don't care assumed to be zero. 

The binary increments and decrements are applied to the bits of the column index 

similarly. Using these tailored Boolean expressions for increments and decrements 

enables stage B to be implemented on a single GAL 16V8 device. 

4.6 	Coding of Sub-block Dimensions 

4.6.1 	Motivation for Coding of Sub-block Dimensions 

Adaptive zigzag reordering reduces the entropy of the runs of zero coefficients by 

traversing a scan path that is tailored to the dimensions of a rectangular sub-block in a 

particular block of quantized transform coefficients. Since the sub-blocks generally 

have different dimensions depending on the specific content of the corresponding block, 

the dimensions of the sub-block need to be retained in order to traverse the zigzag scan 

path correctly during decoding. Therefore the sub-block dimensions themselves need to 

be efficiently coded. 

4.6.2 	The Sub-block Dimensions 

For an image-compression scheme operating on L. x M. blocks, L. M. symbols 

are required to identify directly the L.M. possible sub-block dimensions. Assuming 

the worst case, i.e. that all symbols are equally probable, the maximum entropy H.  

can be obtained using equation 2.7: 
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Ht_.a  = L M 	1 	
log

' 	

1 	
bits=log 2 (L,M_)bits (4.27) 

, L.M. L. 

For the DCT-based method within the JPEG standard operating on 8 x 8 blocks, the 

maximum entropy of the sub-block dimensions is therefore: 

Hm  = 1092 82 bits = 6 bits 
	

(4.28) 

It has been found that, although the sub-block dimensions are not evenly distributed in 

practice, entropy coding, such as Huffman or arithmetic coding, of the sub-block 

dimensions themselves is not sufficiently efficient to produce an overall reduction in bit 

rate. It has also been found that coding of the sub-block dimensions with reference to 

the dimensions of the preceding sub-block, that tends to have similar complexity, does 

not significantly improve efficiency. 

However, the dimensions of a sub-block are correlated with the number of coefficients 

within the sub-block, thus allowing more efficient coding. 

4.6.3 	Sub-block Dimensions and Scan-path Length 

In the JPEG standard the EOB symbol is used to terminate a vector, i.e. zigzag-

reordered block, of quantized DCT coefficients after the last nonzero coefficient. 

Therefore the number of positions along a zigzag scan path of a sub-block, i.e. the scan-

path length, is known and can be evaluated; it varies between 1 and i.e. 64 

for 8 x 8 blocks as defined by the JPEG standard for the DCT-based method. For any 

particular L x M sub-block, the minimum scan-path length depends on L and M; 

however, the maximum scan-path length is LM as longer scan paths require larger sub-

blocks. Usually, the scan-path length does not uniquely identify the sub-block 

dimensions; however, it restricts the number of sub-block dimensions that are suitable 
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to contain a particular number of positions. Figure 4.19 depicts all four possible sub-

block dimensions for the scan-path length of five. The last nonzero coefficient in each 

scan path is indicated by a black dot. In the 5 x 1 and 1 x 5 sub-blocks, shown in 

figure 4.19 a) and d) respectively, the last nonzero coefficient is at the fifth position; a 

different scan-path length leads to different sub-block dimensions. The 3 x 2 sub-

block, depicted in figure 4.19 b) accommodates scan-path lengths of four, five, or six. 

However, the 2 x 3 sub-block, shown in figure 4.19 c) accommodates scan-path lengths 

of five or six; note that a 2 x 2 sub-block suffices for the scan-path length of four. 

Z/O
O)O)0)O)• 

(a) 	(b) 	(c) 	 (d) 

Figure 4.19 Scan-path Length of 5 for (a) 5 xl, (b) 3 x 2, 

(c) 2 x 3, and (d) lx 5 Sub-blocks 

Figure 4.20 depicts two of nine possible sub-block dimensions for a scan-path length of 

14; the seven remaining sub-block dimensions are 7x2, 5x3, 4x4, 5x4, 3x6, 

2x7.  and 2x8. 
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Y0O  0 

(a) 	 (b) 

Figure 4.20 Scan-path Length of 14 for (a) 3 x 5, and (b) 4 x 5 Sub-blocks 

Table 4.6 combines the scan-path lengths in the range [1,2,.. .,64] with the sub-block 

dimensions from 1 x 1 to 8 x 8, thus covering the 8 x 8 blocks defined by the JPEG 

standard for the DCT-based method. Note that Length refers to the scan-path length, L 

is the number of sub-block rows, M is the number of sub-block columns, and Number 

refers to the number of sub-block dimensions that can accommodate a particular scan-

path length. Table 4.6 (1) contains lx 1 to 8 x 4 sub-blocks, that have scan-path 

lengths in the range [1,2.....32]. Table 4.6 (2) contains scan-path lengths in the range 

[1,2.....32] of lx 5 to 8 x 8 sub-blocks, and table 4.6 (3) contains scan-path lengths in 

the range [33,34.....64] of lx 5 to 8 x 8 sub-blocks. The number of possible sub-block 

dimensions increases with the scan-path length, reaches its maximum value of 14 for 

scan-path lengths of 28 and 30, and decreases afterwards. Note that the maximum 

number of symbols to uniquely identify the dimensions of a sub-block with a given 

scan-path length is 14. 
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4.6.4 	Entropy Coding of Sub-block Dimensions 

Assuming the worst case, i.e. that all sub-blocks contain only scan-path lengths of 28 

or 30, the maximum entropy of the symbols for the sub-block dimensions is: 

H. = 109 2  14 bits = 3.8 bits 
	

(4.29) 

Entropy coding, for example Huffman coding, can assign codewords according to the 

probability distribution of the sub-block dimensions for each scan-path length 

independently. However, the same codeword can be used with different scan-path 

lengths, so that the most-probable symbol, i.e. sub-block, within every scan-path length 

is coded with the same codeword. The scan-path length, that is known, and an 

additional symbol therefore identify the dimensions of a sub-block. 

Since the number of possible sub-block dimensions is one for scan-path lengths of 1 

and 57 to 64, these scan-path lengths uniquely identify sub-block dimensions 1 x 1 and 

8 x 8 respectively; see table 4.6. Hence, for identification of the corresponding sub-

block dimensions no additional symbol needs to be generated, stored, or transmitted. 

Symbols can be represented as a stream that is only accessed when necessary, i.e. when 

the scan-path length does not uniquely identify the sub-block dimensions. 

It has been found that adaptive zigzag reordering as described in section 4.3 combined 

with coding of sub-block dimensions as described in this section produces a lower bit 

rate than standard JPEG. 
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The sub-block dimensions need to be retained in order to traverse the zigzag scan path 

correctly during decoding. The correlation between sub-block dimensions and scan-path 

length is investigated. Coding of the sub-block dimensions that takes the scan-path 

length into account is developed, and further improvements are suggested. 

The chapter addresses issues that affect adaptive zigzag reordering of transform 

coefficients in various respects. 

-112- 



Chapter 5 

Artificial Neural Networks 



5.1 	Introduction 

This chapter introduces the notion of artificial neural networks (ANN5). The subject 

has attracted much attention, and research has generated a large body of knowledge, 

therefore this chapter concentrates on feedforward ANNs and the error-backpropagation 

algorithm, that are used in the image-compression scheme described in chapter 6. 

Section 5.2 briefly describes biological neural networks, summarizes the historical 

foundation of ANNs, outlines properties and realizations of ANNs, and enumerates 

some areas of application. 

Section 5.3 describes a single artificial neuron; develops propagation, activation, and 

output functions; and introduces a simple notation. 

Section 5.4 focuses on feedforward ANNs, describes forward propagation and learning, 

introduces the error-backpropagation algorithm and other learning rules, and explains 

multilayer feedforward ANNs. 

Section 5.5 briefly outlines the application of ANNs to digital image compression. 

Finally section 5.6 concludes the chapter with a brief summary. 

5.2 	Introduction to Artificial Neural Networks 

5.2.1 	Biological Neural Networks 

The human brain is the most complicated and fascinating structure. It contains about 

100 x 10 9  neurons interconnected via more than 100 x 1012  links (A. Zell 1994, 

chapter 2). Each neuron is a complex biochemical processing unit. Similar to any 

biological cell, the cell membrane and the contained cell body build the nerve cell that is 
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between 5 pm and 100 pm in size (M. Kunt et al. 1985). A main fibre called axon and a 

number of fibre branches called dendrites are attached to the nerve cell. Figure 5.1 

depicts a simplified neuron with the dendrites, that work as inputs to the nerve cell, 

shown on the left; and the axon, that works as output from the nerve cell, shown on the 

right. The junction between the axon of one neuron and the dendrite of another neuron 

is called a synapse. An individual neuron can receive signals from thousands of 

presynaptic neurons, and can transmit to thousands of postsynaptic neurons; it can 

handle up to 200000 synapses. The information transfer from the presynaptic neuron to 

the postsynaptic neuron is made electrochemically. 

in 

Figure 5.1 Simplified Nerve Cell 

While stimulation via excitatory synapses increases the electrical potential of the cell 

membrane, stimulation via inhibitory synapses decreases the potential. Once a certain 

threshold is exceeded, the neuron fires: its stimulating signal, consisting of pulse trains, 

propagates via axon, synapses, and dendrites to the postsynaptic neurons. Each pulse 

has a magnitude of about 100 mV and a duration of about 1 ms. The repetition rate of 

these pulses is proportional to the intensity of a stimulus. Thus the nerve cells 

communicate through frequency modulation (FM). Synaptic connections change with 

time; they can increase, decrease, or even disappear. Axons can build new connections 
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and attach to neurons that were previously unconnected. This process is described as 

learning. Further reading includes a brief description of nerve cells (M. Kunt et al. 

1985) and a comprehensive introduction to biological neurons (E. R. Kandel et al. 

1991). A. Zell (1994) produced a comprehensive introduction to neural networks 

including biological foundations, network architectures, network simulation, and 

applications. M. T. Hagan et al. (1996) focused on the design of neural networks. 

ANNs are computational models that mimic their biological counterparts. Note that the 

concept of artificial neural networks can be applied to software simulations and 

hardware implementations; see subsection 5.2.4. Similarly to the human brain ANNs 

consist of a number of simple processing units, i. e. neurons, and a number of 

interconnections, i. e. weights. Thus, two key features distinguish artificial neural 

networks from conventional computational systems: 

• 	Artificial neural networks are naturally massively parallel; and 

• 	Artificial neural networks are adaptive, i.e. trainable. 

Exact modelling of biological neural networks is not yet possible; and is, for technical 

applications, often neither necessary nor desirable. For most artificial neurons the 

amplitude of the output signal is proportional to the intensity of a stimulus. Thus they 

communicate through amplitude modulation (AM). The learning ability of an ANN is 

based on changing the ANN itself by exploiting the following approaches individually 

or in combination: 

• 	Building new connections, 

• 	Removing existing connections, 

• 	Changing weights of connections, 

• 	Changing thresholds of neurons, 
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Changing the functions of neurons, 

• 	Inserting new neurons, and 

Removing existing neurons. 

Changing the weights of connections is the most prominent approach, and accomplishes 

building and removing connections as well. However, changing the functions that 

define a neuron does not seem to correspond with biological nerve cells. 

The learning strategy describes the degree of supervision during the learning period: 

In supervised learning a 'teacher' provides the desired output pattern with each input 

pattern. The aim is to repeatedly change the trainable weights, so that the network can 

generate an approximation of the desired output for a known or new, but similar, input 

pattern. It is the fastest learning strategy, but does not correspond with learning in 

biological neural networks. 

In reinforcement learning the network produces from each input pattern an output 

pattern that is then rated by a 'teacher'. The aim is to analyse these additional hints; for 

example correct and incorrect, or degree of correctness; and to repeatedly change the 

trainable weights, so that the network itself finds the correct output pattern for a given 

input pattern. This strategy is slower than supervised learning because of the limited 

information, but corresponds much better with learning in biological neural networks. 

In unsupervised learning, also known as self-organised learning, the network receives 

only the input pattern and organizes similar input patterns into similar classes by 

activating the same or adjacent neurons. This strategy extracts statistical features from 

the input pattern, and meets learning in biological neural networks best, but is unsuitable 

for some tasks. 
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5.2.2 	Foundations of Artificial Neural Networks 

Research on artificial neural networks was stimulated in the 1940s when 

W. S. McCulloch and W. Pitts (1943) published their work on networks of McCulloch-

Pitts neurons. D. 0. Hebb (1949) introduced with the Hebb rule a simple rule for 

supervised learning that has been intensively used. K. Lashley (1950) recognized that 

biological neural networks store knowledge distributively. 

The first successful neurocomputer, Mark I Perceptron, was built by F. Rosenblatt 

(1958) and co-workers. It contained a 20x20-pixel sensor and 512 servomechanical 

potentiometers realizing variable weights; and could recognize simple symbols. 

F. Rosenblatt (1959) described variations of the perceptron and introduced the 

perceptron convergence theorem. B. Widrow and M. E. Hoff (1960) developed the 

adaptive linear element (Adaline). B. Widrow founded later the first neurocomputing 

company, Memitor Corporation. N. J. Nilson (1965) summarized this period. 

However, the popularity of artificial neural networks decreased rapidly with growing 

understanding of the limitations of the known techniques. M. Minsky and S. Papert 

(1969) analysed some perceptrons, showed that these perceptrons were not suitable for 

many problems, assumed the failure of bigger models, and announced this field of 

research to be a dead end. Limited research continued, generating important 

contributions; see for example (T. Kohonen 1972; C. von der Malsburg 1973; 

P. J. Werbos 1974; S. Grossberg 1976 and 1980; J. L. McClelland and D. E. Rumelhart 

1981; and J. J. Hopfield 1982). 

New interest in artificial neural networks grew in the 1980s, and research was 

reinforced. J. J. Hopfield had a strong influence due to an important publication 
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(J. J. Hopfield and D. W. Tank 1985) and his personal involvement. The error-

backpropagation algorithm, originally described by P. J. Werbos (1974), was 

popularized by D. E. Rumelhart et al. (1986a and b), and demonstrated fast and efficient 

learning. Nettalk, a project of T. J. Sejnowski and C. R. Rosenberg (1986), was a 

feedforward ANN using a self-supervised backpropagation algorithm that learnt to read 

written words aloud. From 1986 many researchers started their work in various new 

areas of research and application. 

J. A. Anderson and E. Rosenfeld (1988) compiled important contributions for a 

comprehensive summary of the foundations of neural networks. Further reading 

includes 	(J. A. Anderson et al. 1990; D. E. Rumelhart 	et al. 1986); and 

J. L. McClelland et al. 1986). 

R. P. Lippmann (1987) produced a widely acclaimed comprehensive review, describing 

six important neural-network models for application in pattern classification, that was 

selectively updated by D. R. Hush and B. G. Home (1993). B. Widrow and M. A. Lehr 

(1990) reviewed feedforward ANNs; and S. I. Amari (1990) compiled mathematical 

foundations of neurocomputing. 

5.2.3 	Properties of Artificial Neural Networks 

The distinct properties of artificial neural networks include: 

• 	Learning ability: an ANN learns by example; it extracts information from the 

training data without need for rules or formulae resulting in less need to determine 

relevant factors a priori. The ANN can adapt more easily to new conditions, i.e. 

input data, than conventional algorithms. 
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• 	Distributed knowledge: an ANN stores knowledge distributively in the weights of 

its neurons. This architecture suits parallel processing. 

Parallelism: an ANN consists of a large number of interconnected simple 

processing units, i.e. neurons, operating in parallel. This structure is very suitable 

for parallel processing, for example on transputer systems. However, the design 

must limit the amount of communication in order to lead to a practical system. 

Very large-scale integration (VLSI) circuits form an additional class of hardware: 

neurochips. 

• 	Fault tolerance: storing information distributively within an ANN enables better 

fault tolerance for component and connection defects, if the system is 

appropriately designed. 

• 	Associative storage: while conventional computers use address-based storage of 

information, an ANN uses content-based storage resulting in better and faster 

performance for pattern-association tasks. 

• 	Robustness: a correctly trained ANN is less sensitive to distortion and noise in the 

input data than conventional algorithms. 

Implemented representation: in an ANN information is incorporated in the 

program rather than stored in an independent database. The active representation 

of knowledge is shaped by adjusting parameters. 

• 	Need for training: before retrieving any information, most ANNs must iteratively 

adjust their parameters by repeatedly applying sufficient and relevant training data 

to their inputs, and changing their variables according to a specified learning rule. 

These variables are often initialized with small 'random numbers in order to avoid 

saturation. Because of the distributed representation of knowledge, it is very 
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difficult to preset some fundamental knowledge. Some ANNs are designed rather 

than trained. 

• 	Hidden knowledge: an ANN extracts information from the training data and stores 

knowledge by adjusting its parameters. This internal representation is difficult to 

interpret, analyse, and verify. 

• 	Time consumption for learning: powerful algorithms and new concepts speed up 

the training process, but this initial period remains very time consuming, 

especially for large and complex networks. 

5.2.4 	Realization of Artificial Neural Networks 

The concept of artificial neural networks is now widely accepted and generates a variety 

of products. 

Packages for software simulation of artificial neural networks are available for academic 

and commercial use; for example ANSim and ANSpec, Aspirin/MIGRAINES, 

BrainMaker, Cortex-Pro, FAST, Galatea, GENESIS, ICSIM, LVQ-PAK and SOM-

PAK, MATLAB with Neural Network Toolbox, MONNET, MUME, Nestor 

Development System, NeuFuz 4, Neural Shell, NeuralWorks Professional 11/Plus, 

Neuralyst, NeuroForecaster, NeuroGraph, NEURO-Compiler, NeuroSolutions v2.0, 

NEUROtools, SENN++, PDP simulators (J. L. McClelland and D. E. Rumelhart 1988), 

PlaNet, Pygmalion, Rochester Connectionist Simulator, SESAME, SNNS, UCLA-

SFINX, VieNet2, and Xenon. 

Hardware solutions include multiple-instruction multiple-data (MIMD) and single- 

instruction multiple-data (SIMD) parallel-processing systems, co-processor boards for 

workstations and personal computers, neurocomputers built from standard or special 

spit 



components, digital and analogue neurocomputing VLSI circuits, and optical 

neurocomputing systems. 

5.2.5 	Applications of Artificial Neural Networks 

In industry and research artificial neural networks have been successfully applied in 

very different applications including (H. B. Demuth and M. Beale 1994, pp.  1/8 and 

1/9): 

Aerospace: aircraft autopilot, flight path simulation, aircraft control systems, 

aircraft component simulation, and aircraft component fault detection. 

• 

	

	Automotive: automobile automatic guidance system, and warranty activity 

analysis. 

Banking: cheque and document reading, and credit application evaluation. 

• 

	

	Electronics: code sequence prediction, integrated-circuit chip layout, process 

control, chip failure analysis, and nonlinear modelling. 

• 	Medical: breast cancer cell analysis, electroencephalogram (EEG) and 

electrocardiogram (ECG) analysis, prosthesis design, optimization of transplant 

times, and hospital quality improvement. A. S. Miller et al. (1992) reviewed the 

applications of ANNs to medical imaging and signal processing. 

• 	Robotics: trajectory control, forklift robot, manipulator controllers, and vision 

systems. 

• 	Speech: speech recognition, speech compression, vowel classification, and text-to- 

speech synthesis. 
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5.3 	Artificial Neuron 

5.3.1 	Structure of Artificial Neuron 

An artificial neuron is a basic processing unit and the building block for ANNs. Its 

purpose is to generate an output value dependent on the input values and its previous 

activations. Figure 5.2 shows the general structure of an artificial neuron with 

R inputs. The neuron consists of weight vector w, that modifies the R -element input 

vector p; scalar bias b, that can be used as an offset; propagation function that 

generates the net input n from input vector p, weight vector w and bias b; activation 

function f0,. that calculates the activation c of the neuron from the net input n and 

previous activations; and finally output function that determines the scalar 

output a of the neuron. Note that the weights in vector w and the bias b are adjustable 

parameters. A weight of zero removes the connection between the output of some 

neuron and the input of a neuron; and the output of a neuron can be fed back to its input 

for direct feedback. The propagation, activation, and output functions determine the 

characteristics of the neuron. The following subsections outline some of the available 

functions. N. Hoffmann (1993, chapter 2) produced a more detailed summary. 

neuron 
WI 	 ___ 

Figure 5.2 Structure of an Artificial Neuron 
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5.3.2 	Propagation Function 

The propagation function f generates the net input n, a scalar, that represents the 

effective input to the neuron by evaluating the R -element input column vector p, the 

T-element weight row vector w, and scalar bias b 

7r fpro (P, wJ) 	 (5.1) 

where p 
= 	

2) and w = [w(1) w(2) ... w(T)] with R !~ T. 

p(R) 

Although many functions are suitable as a propagation function, most neurons use a sum 

of weighted inputs to generate the net input n as defined in equation 5.2. 

n= (w(j)p(j))+b= wp+b 
	

(5.2) 

Each element of the input vector, p(j), is multiplied by the corresponding element of the 

weight vector, w(j); and the products are summed. This is the dot product of the row 

vector w and the column vector p. The scalar bias b is regarded as a weight element 

connected to a constant input of one. Higher-order neurons, for which T> R, have 

additional weights that scale the products of two or more input elements. 

The propagation function of radial-basis neurons, for example, calculates the vector 

distance between weight vector w and input vector p that is multiplied by bias b 

b 
	

(5.3) 
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5.3.3 	Activation Function 

The activation function fact  calculates the current activation c(t), a scalar, by evaluating 

the net input it , previous activations c(t - 1), c(t - 2),..., and other parameters 

c(t) = fact (n, c(t - 1), c(t - 2),...) 
	

(5.4) 

The linear activation function implements an activation that rises as the net input n 

increases discounting previous activations 

c(t) = k n 
	

(5.5) 

where k is the slope. The parameter k = 1 gives the identity function. The bias b of 

the propagation function fprn  can be used to account for any offset. 

Other functions; for example for brain state in the box (BSB), and distributed memory 

and amnesia (DMA) networks; model the activation in more detail. The net input n 

accumulates over time, and a decay term moves the activation back towards a steady 

state. 

The Hopfield activation function evaluates the sign of the net input n; and for a net 

input it equal to zero, the activation remains unchanged 

m 	forncO 

c(t)= c(t— i) forn=O 
	

(5.6) 

1 	forn>O 

where, dependent on the model, m = —i or m = 0. 
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5.3.4 	Output Function 

The output function f determines the scalar output a of the neuron that depends on 

the activation c. Output functions are usually monotonically increasing functions of the 

activation C; and may contain additional threshold, limit, or slope parameters 

(5.7) 

In some networks, i.e. competitive networks, the output of a neuron depends on its 

activation as well as on the activation of other neurons. Some ANNs require neurons 

with a differentiable output function. 

The linear output function implements an output that rises as the activation increases 

a = k (c—i)) 
	

(5.8) 

where t is a threshold that shifts the function out off the origin and k is the slope. 

0 = 0 and k = 1 gives the identity function. 

The hard limit output function outputs minimum value m for activations less than 

threshold i) and maximum value M for activations greater than or equal to 

RI7Tfl r.L] 

Im forccO 

IM forc~!O 
(5.9) 

where m < M. 
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The saturating linear output function is a linear function within a range of input values, 

[-1,1], and a hard limit function outside that range. The general function is: 

in 
	

for (c—t)c—1 

a= k(c—t) for-1!~ (c—i3)!~1 
	

(5.10) 

M 
	

for (c-13)>1 

where I = 
M—m 

2k 

The general log-sigmoid output function, that is differentiable, maps the input 

range (—oo,-l-oo) into the output range (in, M): 

a = in + 
M—m 	

(5.11) 

1+e 	hi-rn 

where k is the slope, t is the threshold, in is the minimum value, and M is the 

maximum value. 

The parameters k = 1/4, 0 = 0, in = 0, and M = 1 give a log-sigmoid output function 

that maps the input range (—oo,+oo) into the output range (0,1) 

1 

1 + e_C 
(5.12) 

The parameters k = 1, i3 = 0, in = — 1 , and M = I give the hyperbolic tangent sigmoid 

output function. 

If the neuron uses the linear activation function from equation 5.5, bias b of the 

propagation function fpm  accounts for threshold 0 in the output functions. 

The output function of radial-basis neurons is not monotonic 

a = 	 (5.13) 
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The radial-basis neuron works as a detector that outputs one whenever the input 

vector p is identical to weight vector w. 

5.3.5 	Simplified Artificial Neuron 

For many types of neuron either the activation or the output function is the identity 

function, hence both functions can be combined to a single transfer function f,,. 

Figure 5.3 shows the structure of a simplified artificial neuron. 

neuron 

Figure 5.3 Structure of a Simplified Artificial Neuron 

ANNs are usually arranged in layers each of which consists of identical neurons. 

H. B. Demuth and M. Beale (1994, chapter 2) devised a notation that can be easily 

extended from a single neuron, as shown in figure 5.4, to layers and networks. 

Dimensions are in row x column notation. Note that R is the number of inputs and 

weights, thus the number of weights is limited to the number of inputs. 



input 	 neuron 

(Thr 

lx1 

Figure 5.4 Notation of a Simplified Artificial Neuron 

The propagation function fpro  and the transfer function f_ can be visualized by the 

appropriate symbols, some of which are shown in figure 5.5. 

ED® 
weighted 	vector 

sum 	distance 

a) Propagation Functions 

H H 
linear 	hard 	saturating 	log 	radial 

limit 	linear 	sigmoid 	basis 

b) Transfer Functions 

Figure 5.5 Symbols for Functions of Artificial Neuron 
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5.4 	Feedforward Artificial Neural Networks 

5.4.1 	Structure of Feedforward Artificial Neural Networks 

Hardware complexity and software performance limit the size of practical ANNs 

currently to up to about 10 x io artificial neurons and 100 x io connections. 

Artificial neurons can be interconnected to any kind of structure, however ANNs are 

usually arranged in layers each of which consisting of identical neurons. 

Figure 5.6 depicts the layer diagrams of generic feedforward ANNs with one and two 

layers of trainable neurons. In feedforward ANNs each layer only receives inputs from 

preceding layers, i.e. there are no feedback connections. The one-layer ANN has 

R inputs and S neurons, hence weight matrix W consists of S x R elements. The 

two-layer ANN has R inputs, 51 and 52 neurons in layer 1 and 2 respectively, an 

Si x R -elements weight matrix Wl, and an S2 x Si -element weight matrix W2. The 

output of every neuron in layer 1 feeds into the input of every neuron in layer 2. The 

number of layers may be increased to extend the ANN. Note that the layer that 

generates the network output is referred to as the output layer, the remaining layers are 

referred to as hidden layers. 
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a) Feedforward ANN with One Layer 

input neuron layer 1 neuron layer 2 

II 	a2 
w1 
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Rxl 

pI __ 

 TS2 
Sixi 

f,ranj 

S2x11 H bi 

çXl 
Slj 	

2)<l 	
52j 

b) Feedforward ANN with Two Layers 

Figure 5.6 Generic Feedforward Artificial Neural Networks 

An ANN usually functions in either of two modes of operation. During learning the 

ANN adapts its structure and parameters to match a set of training data according to a 

specified learning strategy and learning rule. Note that most ANNs adapt their 

parameters, i.e. weights and biases, rather than their structure. During forward 

propagation, or recall, the ANN accepts input data and generates output data, however 

the weights and biases remain unchanged. 
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5.4.2 	Forward Propagation 

During forward propagation input data, i.e. an R -element input vector p, are presented 

to the inputs of the neurons in layer 1; see figure 5.6 b). Using the appropriate 

propagation function and transfer function, the Si -element output vector of layer 1, al, 

is calculated and is presented to the inputs of the neurons in layer 2. The output vector 

of layer 2, a2, is determined similarly. For ANNs with more layers this process can be 

extended accordingly. Assuming that the input vector p remains unchanged, and that 

the transfer function does not utilize previous output values; recalculation of the 

network produces identical values. 

	

5.4.3 	Learning 

During learning the network is modified so that the ANN adapts to its task. Although 

modifications to the structure of the network; for example number and type of neurons, 

and number of layers; are possible, most ANINs change their parameters in order to 

adapt. During a learning step the weights, that resemble synapses in biological neural 

networks, are adjusted 

W(t) = 	—1) + LsW 
	

(5.14) 

where the changes to the weights, AW, are defined by a learning rule. Note that the bias 

can be regarded as a weight element connected to a constant input of one. Learning 

usually requires many learning steps. 

When the required output, i.e. target, to a given input is known; supervised learning can 

be utilized to minimize the difference between the output, actually generated from the 

input, and the target. The input vector p and the corresponding target vector t build a 

training pair. The training set is a collection of training pairs, and can be represented by 
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input matrix P and target matrix T. One application of the whole training set is 

referred to as an epoch. 

Compared to weight adjustments per learning step based on individual training pairs; 

batch training, that produces one weight adjustment per epoch based on the complete 

training set, improves learning of an ANN; see (H. B. Demuth and M. Beale 1994, 

p. 5/7). 

5.4.4 	Hebb Rule 

D. 0. Hebb (1949) postulated that if two neurons were concurrently active, the weight 

of the corresponding connection would increase, hence the weight adjustment AW(i,j) 

can be defined as 

txW(i,j)= Ir a(i) p(i) 
	

(5.15) 

where a(i) is the output of neuron i ; p(j) is the j th input to neuron i , i.e. the output 

of neuron j; and Ir is the learning rate. 

The learning rate controls the size of the weight changes during learning. For supervised 

learning the target t(i) replaces the output a(i) 

LSW(i,j) = Ir t(i) p(j) 
	

(5.16) 

However, as targets are only available for neurons in the last layer, equation 5.16 can 

only be applied to neurons in single-layer networks and neurons in output layers. Note 

that the difference between target and output is not taken into account. Weights can be 

initially set to zero. The order of applying the training pairs or increasing the number of 

epochs do not improve learning: 
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AW(i,j)= k Elr  T(i,q) P(j,q) 	 (5.17) 

where k is a scaling factor that can account for the number of epochs, Q is the number 

of training pairs in the training set, T is the target matrix, and P is the input matrix. 

5.4.5 	Delta Rule 

The delta rule, also referred to as Widrow-Hoff rule, evaluates the difference between 

target and output to calculate the weight adjustment eXW(i,j) 

AW(i,j) = Ir (t(i) - a(i)) p(j) 
	

(5.18) 

where t(i) is the target for neuron i ; a(i) is the output of neuron i ; p(j) is the j th 

input to neuron i, i.e. the output of neuron j; and Ir is the learning rate. For 

t(i)> a(i) the weight adjustment IXW(i,j) is positive, for t(i) .c a(i) the weight 

adjustment is negative, and for t(i) = a(i) the weight adjustment is zero. However the 

weight can only be changed when input p(j) contributes to the output, i.e. p(i) # 0. 

The delta rule can be applied to neurons in single-layer networks. 

Neurons in a perceptron network have a hard limit transfer function, and usually output 

either 0 or 1. Therefore the targets can only be 0 or 1. With a learning rate Ir  = 1, 

equation 5.18 resembles the perceptron learning rule: for (1(i) - a(i)) = 1 the weight 

adjustment AW(i, j) is p(j), for (t(i) - a(i)) = —1 the weight adjustment is —p(j), and 

for (t(i) - a(i)) = 0 the weight adjustment is zero. 



For batch training equation 5.18 can be extended to include the complete training set 

eXW(i,j) = Ir I (T(i, q)— A(i,q)) PQ,q) (5.19) 

where Q is the number of training pairs in the training set, T is the target matrix, A is 

the output matrix, and P is the input matrix. 

5.4.6 	Error-backpropagation Algorithm 

The error-backpropagation algorithm was described by P. J. Werbos (1974), and 

popularized by D. E. Rumelhart et al. (1986a and b). It can be applied to neurons with 

nonlinear, but monotonous differentiable transfer function in multilayer networks. 

Weights are initially set to 'random' values. The aim of the error-backpropagation 

algorithn is to find the weights of the ANN that minimize a cost function for a given 

training set. Since there are no targets for calculating weight adjustments in hidden 

layers, the algorithm first uses the input to generate the output of the ANN, updates the 

neurons in the output layer, and then works backwards. 

The algorithm uses a gradient-descent technique to minimize the cost function E of the 

output layer out that is the squared difference between target and output. The q th pair 

of the training set contributes to the cost function 

Sc- 

E(q)=. 	(T(i,q)—A 0 (i,q)) 2  (5.20) 

where Sc—, is the number of neurons in the output layer, T is the target matrix, and A 014, 

is the output matrix of the ANN. Note that the scaling factor 1/2 does not compromise 

the minimization. 
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The cost function E of the error-backpropagation algorithm is the sum of the individual 

contributions 

Q S0, 

E = 	E(q)= -- 	(T(i,q)— A 0 (i,q)) 2 	 (5.21) 
q=} 1=1 

where Q is the number of training pairs in the training set. 

The gradient-descent technique employed by the error-backpropagation algorithm uses 

the partial derivative of the error function E with respect to weight W(i,j) in layer / 

to obtain a weight adjustment A W, (i,j) that is opposite to the gradient 

zXW,(z,j)= —Ir 
aE 	

(5.22) 
aw, (ti) 

where Ir is the learning rate. Hence the error E decreases as learning progresses. 

Using the sum of weighted inputs as the propagation function, the net input N, (i, q) of 

neuron i in layer I for training pair q is 

N,(i,q)= X(W,(i,j) J(i,q)) 
	

(5.23) 
it! 

where R, is the number of inputs to layer 1, 14 is the weight matrix, and I- is the input 

matrix of layer 1 containing neuron i. Note that the input matrix I is identical to the 

output matrix A,_, of the preceding layer 1-1. With reference to equation 5.2, the bias 

is regarded as a weight element connected to a constant input of one. 

The partial derivative of the net input N, (i, q) with respect to weight W, (i, J) is 

aN,(i,q)a 	R1 

aw,Q,j) 	
J('j,q) 	 (5.24) 
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Expanding equation 5.22 using equation 5.21 gives 

Ls W1(i,j)=—lr 	
a 	 ' aE() aN1 (i,q) 

(5.25) 
aN,(i,q) aw1 (i,j) 

which can be simplified using the partial derivative from equation 5.24 

aE() 	 Q 
AW,(i,j)= —Ir P1 (j,q)= Ir 	S,(i,q) P,(j,q) 	(5.26) 

q=I aN (i, q) ,  

where 
dE(q)  -- aE(q) dA,(i,q) 	

(5.27) 
5,(q)= ThN,(i,q) - aA,(i,q) aN1 (i,q) 

Equation 5.27 defines the error signal that, after applying the chain rule, contains the 

first derivative of the transfer function 

aA,(i,q)a 
 DNI  aN,(i,q) - 	i, q) fnfj(Nt0_1',mM t (N,(i,q)) 	 (5.28) 

For a neuron in the output layer out the remaining partial derivative from equation 5.27 

gives after differentiating equation 5.20 

- aE(q) --a 	lsow 

aA0  (i, q) - aA01  (i, q) 	
(TQ, q) - A 0 , (i, q)) 2  

- aE(q)  

a40 
 (i, q) = (T(i, q) - 	(i, q)) (5.29) 

Combining equations 5.28 and 5.29 with equation 5.27, and arranging gives the error 

signal for a neuron in the output layer out 

6 0ji, q) = f 	(N 04, (i, q))  (T(i, q) - A 004, (i, q)) 	 (5.30) 
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For batch training the weight adjustment in the output layer out is obtained by inserting 

equation 5.30 into equation 5.26 

LW (i,j) = Ir 	(N0  (i,q)) (T(i,q)— A0  (i,q)) P (j,q) 	(5.31) 

For a neuron in a hidden layer I the derivative of the individual cost function E(q) is 

not readily available and must be derived from the succeeding layer I + 1 by applying 

the chain rule to the remaining partial derivative from equation 5.27 

aE(q) 	S"' 	aE(q) aN,+, (h,q) 	
(5.32) 

aA'(i, q) = aN1 (h,) dA,(i,q) 

where the summation accounts for the S,, 1  terms 	(h,q). 

For layer I + 1 the error signal is defined as for layer I in equation 5.27 

aE(q) 
(5.33) 

- dN, 1 (h,q) 

As in equation 5.23 using the sum of weighted inputs as propagation function, the net 

input N,, 1  (h, q) of neuron h in layer i + i for training pair q is 

N11  (h, q) = 	(nc' (h, i) 1 +  (i, q)) 
	

(5.34) 

where R, 1  is the number of inputs, 	is the weight matrix, and P, is the input 

matrix of layer 1 + 1 containing neuron h. 

The partial derivative of the net input N, 1  (h, q) with respect to input P (i, q) is 

dN, 1  (1, q) - 	 a ,(l4',(h,i) F 1 (i,q)) = 	 (5.35) 
aF 1 (i,q) - 



Note that the output of layer I , A, (i, q), is identical to the input of layer I + 1, P, (i, q). 

Combining equations 5.33 and 5.35 with equation 5.32, and arranging produces 

weighted error signal of layer I + 1 

aE(q) 	'+' 
= 18 1+1 (h,q) W 1 (h,i) 

A'(i , q)  11=1 

(5.36) 

Combining equations 5.28 and 5.36 with equation 5.27, and arranging gives the error 

signal for a neuron in the layer I 

St . '  

S ,(i,q) = 1 trails! (N, (i,q)) 	W1+1  (h,i) 8 1 . 4  (h,q) 	 (5.37) 
h1 

For batch training the weight adjustment in layer I is obtained by inserting 

equations 5.37 into equation 5.26 

Q 	 St. 

AW (i, J) = Ir 	f',,5, (N, (i, q)) I W, +1  (h, i) S 1., (h, q) P (i q) 	(5.38) 
ql 	 h=I 

For neurons with a log-sigmoid transfer function equation 5.12 can be differentiated as 

follows 

1(x) = 	
1

= (i +e') 
	

(5.39) 

	

1 	 1 	1_l 
f' (x) = —1 (i +e') 2  (_e_x) = 

	

1 

1 +e 1  1 +e' ex 
	

+e_x 
 = 

1+e' 1+ex 

1 	(1+e_x 	1 
_X 	

'\ 
I=f(x)(1—fx)) 	 (5.40) 1+ e  (..l+e_X 	l+e') 

Since the transfer function determines the output of a neuron from its net input 

A,(i,q) = f,_.,,,31 (N, (i,q)) 
	

(5.41) 
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the first derivative of the log-sigmoid transfer function can be expressed as 

firms1 (N, (i, q)) = A, (i, q) (i - A, (i, q)) (5.42) 

For batch training the weight adjustment for neurons in the output layer out with a log-

sigmoid transfer function is 

Q 
Aw,,, (i,j) = Ir I A 0 ,, (i, q) (i - A 0 , (i, q))  (T(i, q)— A 0,,, (i, q))  P (1, q) (5.43) 

q=I 

For batch training the weight adjustment for neurons in layer I with a log-sigmoid 

transfer function is 

Q 	 s,+ I 

s&sW,(i,j)= Ir 	A,(i,q)(1 —A,(i,q)) 	W, 1 (hi) 5, 1 (h,q) 1(i,q) 	(5.44) 
ql 	 h=l 

For neurons with a linear transfer function equation 5.8 can be differentiated as follows 

f(x) = k(x—t3) 	 (5.45) 

f(x)=k 	 (5.46) 

For batch training the weight adjustment for neurons in a single-layer network with a 

linear transfer function is 

AW(i,j) = Ir Ek  (T(i,q)— A(i,q)) P(j,q) 
	

(5.47) 

where k is a constant that can be summed and aggregated with the learning rate ir to 

resemble equation 5.19, the delta rule for batch training. Note that the error-

backpropagation algorithm is referred to as the generalized delta rule. 

Figure 5.7 depicts the structure of error-backpropagation algorithm for batch training. 

The weight matrices are initialized with 'random' numbers. The range can be derived 
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for each weight from the expected minimum and maximum values of the corresponding 

input. Learning progresses until the error decreases below a specified value or the 

maximum number of epochs is reached. During forward propagation the input matrix of 

the training set is presented to the input of the ANN. The outputs of all layers for all 

training pairs are calculated and stored. The error signals of the output layer for all 

training pairs are calculated from the output matrix of the ANN and the target matrix of 

the training set. Starting from the last hidden layer, the error signals of each hidden 

layer are calculated from the error signals of the succeeding layer. When all error 

signals are available, the weight matrices are updated. 

initialize weights 
while learnina not finished 

present input matrix of training set to network 
obtain output matrices of all layers 
calculate error signals of output layer; equation 5.30 
select last hidden layer 
for all hidden layers 

calculate error signals of hidden layer; equation 5.37 
select preceding hidden layer 
hits; equation 5.26 

Figure 5.7 Structure of Error-backpropagation Algorithm 

The backpropagation algorithm has been improved using momentum and adaptive 

learning rate, and the Levenberg-Marquardt optimization is an alternative technique to 

gradient descent; see (H. B. Demuth and M. Beale 1994, pp.  5/3 1-5/34). 

5.4.7 	Multilayer Feedforward Artificial Neural Networks 

Single-layer ANNs have proved to be useful in a range of applications. They thap 

similar input vectors to similar output vectors. The single-layer perceptron, first devised 

by F. Rosenblatt (1959), is suited for simple classification problems. Figure 5.8 shows a 
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single-layer perceptron having S neurons with a hard-limit transfer function that 

generates either 0 for net inputs less than zero or 1 otherwise. Note that bias b accounts 

for the threshold. The perceptron is trained on examples of correct behaviour using the 

perceptron learning rule. 

input 	hard-limit neuron layer 

(Th ( 

Sxl 	
sJ 

Figure 5.8 Single-layer Perceptron 

F. Rosenblatt proved that, if the input vectors are linearly separable into a number of 

classes, the perceptron learning rule converges in finite time and positions decision 

hyperplanes between the classes. However, if the input vectors are not linearly 

separable, learning will never reach a stage where all vectors are properly classified. 

The mapping of similar input vectors to similar output vectors restricts the usefulness of 

single-layer ANNs. For many practical problems very similar input vectors require very 

different output vectors. M. Minsky and S. Papert (1969) reported, with great negative 

effect on the popularity of neural networks, that these ANNs were not suitable for many 

problems including the exclusive-OR (XOR) problem. Note that the delta rule 

converges for linearly separable and linearly inseparable input vectors, but may or may 

not produce separating hyperplanes (R. C. Gonzalez and R. E. Woods 1992, 

pp. 602-603). 
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A two-layer ANN is the simplest form of a multilayer ANN. Assuming that each layer 

consists of identical neurons, a variety of networks can be created from a selection of 

neuron types, that are outlined in section 5.3. In principle, different types can be used 

for different layers or even different neurons in the same layer; however the common 

approach is to use the same type throughout the ANN (R. C. Gonzalez and R. E. Woods 

1992, p.  605). While the number of neurons in the output layer is determined, for 

example, by the number of pattern classes; the number of neurons in the hidden layers 

determines the learning capacity of the ANN. 

A two-layer ANN having Si neurons with a hard-limit transfer function in the hidden 

layer and 52 neurons with a hard-limit transfer function in the output layer is shown in 

figure 5.9. Neurons in the hidden layer, i.e. layer 1, cannot be trained using the 

perceptron learning rule or delta rule, since targets are not available. A hidden layer 

with 'random' weights may be used to pre-process the input vectors so that they may 

become linearly separable (H. B. Demuth and M. Beale 1994, pp.  3/2 1-3/22). 

input 	hard-limit neuron layer 1 	 hard-limit neuron layer 2 
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R 	Slxl 	 Si 	S2xl 	 S2 

Figure 5.9 Two-layer Perceptron 

Figure 5.10 shows a two-layer ANN having Si neurons with a linear transfer function 

in the hidden layer and S2 neurons with a linear transfer function in the output layer. 
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Figure 5.10 Two-layer Linear ANN 

Using equations 5.2 and 5.5, the output vector a, of linear layer I can be expressed as 

a1  = k,(W,p, +b,) 

where k, is the slope of the transfer function, W, is the weight matrix of layer I , p, is 

the input vector to layer I , and b, is the bias vector. 

Hence the output vector of layer ! is 

a1  =k(W1 p1  +b1 )=k1 (Wp+b) 	 (5.49) 

Similarly, the output vector of layer 2 is 

a2  k 2 (Wp 2 +b2 )=k2 (W2 a1 +b2 ) 	 (5.50) 

Combining equations 5.49 and 5.50 gives 

a2  = k 2 ( W2 k 1 (4çp+b1 )+b2 )= k 1 k 2  W1 W2 p+Wb, 	 (5.51) 
k i  

The output vector of a single-layer linear ANN is 

a = ksingit  (iV jngje p + b51 ,) 	 (5.52) 



For the parameters k jgge  = k1  k2, 
Wingie 

= Wj VF, and 
kcingze = W2 b + 	both ANNs 

k i  

produce identical output vectors for the same input vectors. Hence, a multilayer linear 

ANN is not more powerful than a single-layer linear ANN (H. B. Demuth and M. Beale 

1994, p.4)31). 

A two-layer ANN having Si neurons with a log-sigmoid transfer function in the hidden 

layer and S2 neurons with a log-sigmoid transfer function in the output layer is shown 

in figure 5.11. The ANN can be trained, using an appropriate training set, to generate 

reasonable output vectors for new, i.e. previously unseen, input vectors. Note that the 

output of this ANN is restricted to the range (0,1), since the log-sigmoid transfer 

function uses equation 5.12. 

input 	log-sigmoid neuron layer 1 
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Figure 5.11 Two-layer Log-sigmoid ANN 

Since the linear function is differentiable and monotonically increasing, neurons with 

this type of transfer function can be employed, for example in conjunction with neurons 

having log-sigmoid transfer function, in the output layer of multilayer feedforward 

ANNs that are trained using the error-backpropagation algorithm. This enables the 

ANN to output any value, rather than only values from a relatively small range generated 

mule 



by a sigmoid function. Figure 5.12 depicts a two-layer ANN having Si neurons with a 

log-sigmoid transfer function in the hidden layer and S2 neurons with a linear transfer 

function in the output layer. 

Although this subsection refers to two-layer feedforward ANNs, the number of layers 

may be increased to extend an ANN. Multilayer nonlinear ANNs, that are trained using 

the error-backpropagation algorithm, can be applied to linearly separable and linearly 

inseparable problems. As nonlinear ANNs may have more than one local error 

minimum; the error-backpropagation algorithm, employing a gradient-descent 

technique, may not always, dependent on the initial weights, find the global error 

minimum. The number of hidden neurons has great effect on the performance of the 

ANN. If the number of hidden neurons is too small, the ANN may not be able to learn 

the information contained in the training set. If the number of hidden neurons is too 

large, the ANN may not be able to generate a reasonable output vector for a new input 

vector. 

input 	log-sigmoid neuron layer 1 	 linear neuron layer 2 
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Figure 5.12 Two-layer Log-sigmoid Linear ANN 
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5.5 	Artificial Neural Networks in Digital Image Compression 

Over recent years numerous approaches have been proposed for employing ANNs in 

digital image processing in general and digital image compression in particular. This 

section outlines some of those techniques. 

In predictive coding, multilayer feedforward ANNs can, unlike conventional predictors, 

take advantage of nonlinear inter-element redundancies. In addition neural-network-

based predictors are less sensitive to noise than conventional predictors; see for example 

(Z. He and H. Li 1990). 

In direct block-based application of ANNs to digital image compression each block of 

pixels extracted from the original image is interpreted as an input vector to a multilayer 

feedforward ANN. The number of neurons in the output layer is identical to the number 

of network inputs. The targets of the training set are identical to the corresponding 

inputs. To achieve compression, the number of neurons in the hidden layer is smaller 

than the number of network inputs; and the output precision of the neurons in the 

hidden layer, that represent the encoded block, may be smaller than that of the network 

inputs and neurons in the output layer. G. W. Cottrell et al. (1989) used a feedforward 

ANN using error backpropagation. G. L. Sicuranza et al. (1990) reported similar work; 

they introduced activity functions to classify each block, and to select one of four or six 

ANNs for adaptive encoding (S. Marsi et al. 1991). D. Cai et al. (1992) utilized two 

DCT-based activity functions to classify each block and to select one of four linear 

ANNs of identical structure for encoding. D. Cai and M. Zhou (1992) employed a 

statistical activity function to classify each block and to select one of two ANNs with 

different ratios of network inputs and neurons in the hidden layer. F. Arduini et al. 

- 147 - 



(1992) used the intensity and direction of spatial activity to split an image into variable-

size blocks that are encoded by ANNs with appropriate number of network inputs and 

neurons in the output layers, and varying ratios of network inputs and neurons in the 

hidden layer. S. Carrato and S. Marsi (1992) proposed a parallel structure of ANNs 

with different ratios of network inputs and neurons in the hidden layer. Each block is 

concurrently processed by every ANN and the highest compression ratio to meet the 

predefined SNR is chosen, thus implementing feedback. 

In vector quantization, ANNs cluster vectors from the training set into representative 

regions using competitive, i. e. unsupervised, learning. The weight vector of a neuron 

resembles the codeword. To overcome unequal utilization of the neurons, the Kohonen 

self-organizing feature map (KSOFM) defines a neighbourhood around the neuron that 

wins during a learning step and updates that neighbourhood. Thus adjacent neurons 

respond to similar input vectors. One or more ANNs are employed to efficiently design 

the codebook. S. P. Luttrell (1989) employed neural-network-based vector quantization 

for the compression of synthetic aperture (SAR) images. C. C. Lu and Y. H. Shin 

(1992) designed separate codebooks for edge and background blocks. M. R. Carbonara 

et al. (1992) designed equiprobable codebooks using frequency-sensitive competitive 

learning. H. Lui and D. Y. Y. Yun (1992) compared different approaches and proposed 

the near-optimal learning algorithm for achieving real-time vector quantization. 

S. Panchanathan et al. (1992) suggested a combination of the error-backpropagation 

algorithm and KSOFM for vector quantization. 

Block truncation coding converts each block of pixels extracted from the original image 

into mean, variance, and a binary pattern indicating whether each pixel lies above or 

below the mean; see (R. J. Clarke 1995, pp.  175-177). G. Qiu et al. (1991) used a 
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Hopfield network to obtain the binary pattern, and included a classification based on 

block detail to implement adaptive compression (G. Qiu et al. 1993a); see also 

(H. B. Mitchell and M. Dorfan 1992). 

L. 0. Chua and T. Lin (1988) used a Hopfield network that receives spatial-domain 

image data and outputs binary codes to perform transform coding thus combining 

transform, quantization, and binary coding. H. Niemann and J. K. Wu (1993) used a 

two-layer feedforward linear ANN within their adaptive image-coding scheme to obtain 

the Karhunen-Loève transform. 

Other neural-network-based digital-image-processing techniques may be exploited for 

digital image compression. R. A. Hutchinson and J. W. Welsh (1989), and 

C. Nightingale and R. A. Hutchinson (1990) considered ANNs for feature location. 

C. C. Klimasauskas (1990) used an ANN for edge detection. G. Qiu et al. (1993b) 

employed several multilayer feedforward ANNs for edge pattern learning for digital 

image compression. J. A. Parikh et al. (1990) reported on edge and line detection, and 

texture analysis using ANNs. H. Niemann and J. K. Wu (1993) devised an adaptive 

image coding scheme that uses neural-network-based texture classification to select a 

dedicated coding scheme. Image segmentation has attracted considerable attention; 

N. R. Pal and S. K. Pal (1993) included ANN-based approaches in their review of 

segmentation techniques. M. Mattavelli et al. (1995) built on earlier work (B. Macq 

et al. 1994) and applied ANNs to human-visual-system-based image restoration. The 

decoded image that is affected by coding noise is decomposed into perceptual channel 

components and processed pixel by pixel. Hence the number of network inputs is, in 

contrast to other approaches, governed only by the number of perceptual channel 

components. 
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N. P. WaJker et al. (1994) described the compression of single and multiple, i.e. moving 

or 3-D, images using multilayer feedforward ANNs and KSOFMs. S. G. Romaniuk 

(1994) suggested automatic construction of ANNs for lossless image compression, 

instead of training ANNs of predetermined architecture. R. J. Clarke (1995, p.  224) 

pointed out that ANNs can be employed in any overall scheme that incorporates a stage 

of optimization, for example of prediction coefficients, codebooks, and transform 

coefficients. 

5.6 	Summary 

Artificial neural networks; consisting of a large number of simple processing elements, 

i.e. neurons; are computational systems that are massively parallel and adaptive, i.e. 

trainable. During learning the structure and the parameters of the ANN can be modified 

so that it adapts to its task. ANNs are usually arranged in layers each of which consists 

of identical neurons. A simplified neuron consists of a propagation function; that 

generates the net input from inputs, weights, and bias; and transfer function; that 

determines the output of the neuron from the net input. A number of propagation and 

transfer functions have been defined. Different strategies, for example supervised and 

unsupervised learning, are available for learning. For supervised learning the training 

set contains, in addition to the input set, a target set that represents the desired outputs. 

ANNs can be simulated in software and implemented in hardware. 

The error-backpropagation algorithm uses a gradient-descent technique to minimize the 

cost function E that may have more than one local error minimum. Dependent on the 

initial weights the error-backpropagation algorithm may not always find the global error 

minimum. However, it is capable of training multilayer feedforward networks 
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consisting of neurons with differentiable and monotonically increasing transfer 

functions. 
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Chapter 6 

Neural-network-based 
Block Classification 



	

6.1 	Introduction 

This chapter describes classification of blocks of transform coefficients in a JPEG-like 

image-compression scheme. The classification determines, using an artificial neural 

network (ANN), the dimensions of a sub-block to be encoded. The classification 

processing step precedes adaptive zigzag reordering, described in chapter 4, in the 

encoder. Since the generated sub-block does not necessarily include all nonzero 

coefficients, the conversion of a block of coefficients is, in some cases, lossy. 

Section 6.2 focuses on quantization of transform coefficients, used in the DCT-based 

method of the JPEG standard as introduced in chapter 3. 

Section 6.3 describes neural-network-based determination of sub-block dimensions. 

Section 6.4 compares zigzag reordering with neural-network-based classification with 

standard as well as adaptive zigzag reordering using experimental results. Finally 

section 6.5 concludes the chapter with a brief summary. 

	

6.2 	Quantization of Transform Coefficients 

The quantization processing step employed in the DCT-based method of the JPEG 

standard is shown in figure 6.1. Each coefficient S(v, u) in the 8 x 8 block of transform 

coefficients represents a DCI frequency; see subsection 3.4.3. 

The quantization step sizes Q(v,u) are contained in a quantization table, and can be set 

individually for each DCT coefficient. Although only coefficients of the Fourier 

transform correspond directly to spatial frequency, visual thresholds can be determined 

for the DCT coefficients; see (H. Lohscheller 1984; and N. B. Nill 1985). For 
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quantization step sizes below corresponding visual thresholds, the human visual system 

should not be able to detect any difference between the reconstructed blocks of samples 

using unquantized and dequantized DCT coefficients (W. B. Pennebaker and 

J. L. Mitchell 1992, p.  35). 

5(0,0) 5(0,1) . 	5(0,7) 	 Sq(0,0) Sq(0,1) . 	Sq(0,7) 

50,0) 5(1,1) . 	5(1,7) 	quantization 	Sq(1,0) Sq(1,1) . 	Sq(l,7) 

S(v,u) . 	 . 	. 	Sq(v,u) 

5(7,0) 5(7,1) . 	5(7,7) 	 Sq(7,0) Sq(7,l) . 	Sq(7,7) 
DCT coefficients 	 quantized DCT coefficients 

[I 
Q(0,0) Q(0,1) . 	Q(0,7) 

Q(1 10) Q(1 11) . 	Q(1,7) 

Q(v,u) 

Q(7,0) Q(7,1) . 	Q(7,7) 
quantization table 

Figure 6.1 Quantization 

While the transform processing steps cannot be computed with perfect accuracy, it is the 

quantization processing step in the DCT-based method of the JPEG standard that is 

specifically designed to achieve compression at the expense of accuracy. It corresponds 

to spatial filtering in the human visual system; see subsection 2.4.2. 

6.3 	Block Classification 

6.3.1 	Motivation for Block Classification 

The JPEG standard for the DCT-based method accommodates up to four 

8 x 8 quantization tables for processing images with up to 255 components. However, 

since a quantization table must be globally used for all blocks of an image component, 
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local changes in block content cannot be taken into account. Hence spatial masking 

cannot be exploited. 

Block classification assesses a block of transform coefficients, and generates the 

dimensions of a sub-block to be retained. Since the classification processing step 

processes each block individually; it takes block content, i.e. the contribution of every 

coefficient, into account. 

Adaptive zigzag reordering, described in chapter 4, performs lossless conversion; 

however isolated nonzero coefficients in a block of transform coefficients diminish the 

effectiveness of this processing step, since retaining isolated nonzero coefficients also 

requires that a large number of otherwise unnecessary zero coefficients are included in a 

sub-block. However, if the contribution of an isolated coefficient to reconstruction is 

found to be expendable, a significantly smaller sub-block may be retained. Note that the 

additional reconstruction error is limited to the corresponding block of samples. Hence 

the classification processing step assists, during encoding, the succeeding adaptive-

zigzag-reordering processing step. Although isolated nonzero coefficients could be 

individually removed, the decision to sacrifice an isolated coefficient should take the 

contributions of all transform coefficients in a block into account. 

The classification processing step is required in the encoder in order to generate the sub-

block dimensions for adaptive zigzag reordering. The classification processing step 

employs a two-layer ANN that is trained using an error-backpropagation algorithm; see 

subsections 5.4.6 and 5.4.7. This additional processing step increases the workload of 

the encoder. However, the classification processing step is not required in the decoder. 
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6.3.2 	Structure of the Artificial Neural Network 

The classification processing step employs a feedforward ANN with 64 inputs and 

64 outputs. The ANN consists of two trainable layers, i.e. hidden layer and output layer. 

Figure 6.2 depicts the ANN during learning; the neurons in both layers have log-

sigmoid transfer functions; see equation 5.12. The hidden layer consists of 

256 neurons. This number has been determined experimentally, and is a compromise 

between classification performance and network complexity. 

input 	 hidden layer 	 output layer 
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1 64xl  
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-- 	H
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64 	256x1 	 256 	Mx! 	 64 

Figure 6.2 ANN for Block Classification during Learning 

Figure 6.3 depicts the ANN during forward propagation, i.e. block classification; since 

the error-backpropagation algorithm is not being applied, the output layer produces valid 

and most appropriate i-in-64 codes using the competitive transfer function that 

transforms the net-input vector of a layer of neurons so that the neuron receiving the 

greatest net input has an output of one and all other neurons have outputs of zero; see 

(II. B. Demuth and M. Beale 1994, pp.  13/17-13/18). 
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Figure 6.3 ANN for Block Classification during Forward Propagation 

6.3.3 	Network Inputs 

Since every coefficient is to be taken into account, the number of inputs is determined 

by the block dimensions. A 64-element input vector is required for 8 x 8 blocks as 

defined by the JPEG standard for the DCT-based method. 

The coefficients are not directly presented to the ANN. Note that 8-bit precision image 

samples transform to 11-bit precision DCT coefficients in the range [-1023,1023]. In 

order to homogenize network inputs, amplitudes of the DCT coefficients are classified 

according to their magnitude categories in JPEG; see table 3.4; and the classifications 

are normalized, i.e. divided by the maximum value within each block. The network 

inputs therefore receive input vectors representing blocks of normalized amplitude 

classifications, each of which is in the range [0,1]. 

As an example, figure 6.4 depicts an 8 x 8 block of transform coefficients. Note that 

the block requires a 5 x 6 sub-block for lossless conversion; however, discarding the 

coefficient of value one at position (5,6) would generate a smaller 4 x 5 sub-block that 

could be zigzag-reordered more efficiently. 
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Figure 6.4 Example of 8 x 8 Block of Transform Coefficients 

The corresponding 8 x 8 block of amplitude classifications is shown in figure 6.5. Note 

that the classifications are unsigned, and that larger magnitudes are de-emphasized due 

to the approximately logarithmically increasing magnitude categories. 

5 2 3 2 2 0 0 0 

12300000 
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Figure 6.5 Example of 8 x 8 Block of Amplitude Classifications 

Figure 6.6 depicts the resulting 8 x 8 block of normalized amplitude classifications that 

builds a 64-element input vector. 



1.0 0.4 0.6 0.4 0.4 0.0 0.0 0.0 
0.2 0.4 0.6 0.0 0.0 0.0 0.0 0.0 
0.4 0.2 0.6 0.2 0.2 0.0 0.0 0.0 
0.6 0.2 0.4 0.2 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Figure 6.6 Example of 8 x 8 Block of Normalized Amplitude Classifications 

	

6.3.4 	Network Outputs 

A 64-element output vector is required to identify directly all 64 possible sub-block 

dimensions using a simple 1-in-64 binary code; i.e. the vector has a one in the position 

of the sub-block dimensions that it represents, and zeros elsewhere. This code, although 

requiring 64 neurons, allows competitive selection of one output neuron, and has found 

to be more reliable than other codes; for example a 6-bit natural binary code that would 

require only six output neurons. However, note that the number of outputs could be 

reduced when the number of sub-block dimensions is limited; or when the sub-block 

dimensions, i.e. number of rows and number of columns, are coded separately. The log-

sigmoid transfer function, employed during learning, is differentiable and monotonicaily 

increasing. Its output range is restricted to the range (0,1); and is, therefore, 

appropriate for learning to output binary values (H. B. Demuth and M. Beak 1994, 

p. 11/42). 

	

6.3.5 	Learning 

Before the ANN is employed in forward propagation for classification of blocks of 

transform coefficients, i.e. to determine the dimensions of sub-blocks, its weights are 
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adjusted during learning to suit the classification task. The ANN is trained using the 

error-backpropagation algorithm described in subsection 5.4.6. The weight matrices and 

bias vectors are initialized with 'random' numbers. Learning is carried out in two 

phases each of which uses batch training. 

During the initial learning phase the ANN is trained on 64 idealized training pairs that 

correspond to the 64 possible sub-block dimensions. For each input vector in the 

training set, all elements that belong to a sub-block are set to one, and the elements that 

are outside the sub-block are set to zero. The corresponding target vectors contain the 

1 -in-64 codes that identify the appropriate sub-block dimensions. Note that the input 

vectors and the output vectors form input matrix and target matrix respectively. The 

initial learning phase adjusts the weights and biases towards the classification task using 

a smaller training set. 

During the further learning phase the input matrix contains, in addition to the 

64 idealized input vectors, 580 input vectors that have been derived from the images 

shown in appendix B; the target matrix consists of the appropriate code vectors. The 

580 additional input vectors represent ten selected examples for each of 58 sub-block 

dimensions. However, for six of the 64 possible sub-block dimensions; namely 5 x 1, 

6x1, 7x1, 8x1, 8x2, and lx7; suitableexamples havenotbeen derived fromthe 

images. The generation of the authentic training pairs is described in subsection 6.4.2. 

The small number of idealized training pairs supports the ability of the ANN to classify 

ideal input vectors and input vectors that correspond to sub-block dimensions for which 

training pairs have not been available. 
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6.4 	Experimental Results 

6.4.1 	Implementation 

The neural network has been implemented, and experimental results have been obtained 

using MATLAB (MathWorks 1994) and its Neural Networks Toolbox (H. B. Demuth 

and M. Beale 1994). The transform-coefficient matrices have been generated using the 

Independent JPEG Group's software (Independent JPEG Group 1996). The quality 

setting q controls scaling of the quantization tables; see subsection 3.4.4. The 

experimental results have been produced for quality settings in the range from 10 ('poor' 

quality) to 90 ('good' quality). Appendix E contains the original images used for 

experimentation. 

6.4.2 	Authentic Training Pairs 

The authentic training pairs have been generated by subjective classification of the 

8 x 8 blocks of normalized amplitude classifications. The blocks have been studied, and 

the sub-block dimensions have been chosen so that most of the nonzero normalized 

amplitude classifications are contained in the sub-block, and only some of the smaller 

normalized amplitude classifications are excluded. The sub-block dimensions of the 

block of normalized amplitude classifications shown in figure 6.6, for example, would 

be 4x 5.  Blocks of normalized amplitude classifications that have been difficult to 

classify have been excluded from classification. The input matrix of the training set has 

been built from a selection of classified blocks, and the target matrix has been generated 

from the 1-in-64 codes of the corresponding sub-block dimensions. 
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The image Lena with a spatial resolution of 256 x 256 pixels has been used with quality 

settings q = 75 and q = 90, and the image Cameraman has been used with quality 

setting q = 90 to produce 3072 blocks of normalized amplitude classifications. From 

these blocks 229 blocks have not been classified, and 580 blocks have been selected to 

give 10 examples for each of 58 sub-block dimensions found in the images. 

6.4.3 	Learning 

The initial learning phase has lasted for 5000 epochs, and the learning rate has been set 

to 0.01. Figure 6.7 depicts the mean-square error (MSE) per training pair over the 

course of the initial learning phase. Note that the MSE per pair allows direct 

comparisons of learning using training sets with different numbers of training pairs. 

The initial error caused through the intialization with 'random' numbers has been found 

to be about 16. During approximately the first 2800 epochs the MSE per pair decreases 

from 1 to 0.1. After 5000 epochs the MSE per pair reaches about 0.024. 
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Figure 6.7 MSE per Training Pair versus Epochs during Initial Learning Phase 
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The further learning phase has lasted for 30000 epochs, and the learning rate has been 

set to 0.01. Figure 6.8 depicts the MSE per pair over the course of the further learning 

phase. The initial error of about 0.9 is caused through the additional training pairs. 

After 10000, 20000, and 30000 epochs the MSE per pair reaches about 0.085, 0.07 1, 

and 0.065 respectively. 
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Figure 6.8 MSE per Training Pair versus Epochs during Further Learning Phase 

6.4.4 	Classification 

The entropies of the runs of zero coefficients for zigzag reordering with neural-network-

based classification, standard zigzag reordering, and adaptive zigzag reordering have 

been evaluated over the given range of quality settings and are presented versus the 

peak-signal-to-noise ratio (PSNR). The ANN used for block classification employs the 

weight matrices and bias vectors that have been obtained after 30000 epochs. 

Figures 6.9 and 6.10 depict the entropies for the image Lena with a spatial resolution of 

512 x 512 pixels and 256 x 256 pixels respectively. Note that the PSNR generally 
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increases with increasing quality selling q. Figures 6.11 and 6.12 depict the entropies 

for the images Cameraman with a spatial resolution of 256 x 256 pixels, and F-16 with 

a spatial resolution of 512 x 512 pixels respectively. Note that, for a given quality 

setting and therefore the same PSNR, adaptive zigzag reordering featuring lossless 

conversion always produces a lower entropy of the runs of zero coefficients than 

standard zigzag reordering. However, zigzag reordering with neural-network-based 

classification featuring lossy conversion produces even lower entropies. These 

particular weight matrices and bias vectors lead to entropies below 1 bit. 
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Figure 6.9 Entropy of Runs of Zero Coefficients versus Peak-signal-to-noise Ratio, 
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Figure 6.10 Entropy of Runs of Zero Coefficients versus Peak-signal-to-noise Ratio, 

Lena 256x256 
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Figure 6.12 Entropy of Runs of Zero Coefficients versus Peak-signal-to-noise Ratio, 

F-16 512 x512 

Since some coefficients are discarded through the classification processing step, zigzag 

reordering with neural-network-based classification requires a higher quality setting in 

order to achieve the same PSNR as standard zigzag reordering. For a given PSNR the 

subjective image qualities of zigzag reordering with neural-network-based classification 

and standard zigzag reordering are similar. As an example, figure 6.13 and figure 6.14 

depict the image Lena with a spatial resolution of 512 x 512 pixels for standard zigzag 

reordering and quality setting q = 65; and zigzag reordering with neural-network-based 

classification and setting q = 85 respectively. Note that the corresponding PSNRs are 

36.81 dB and 36.77dB respectively. 
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Figure 6.14 Decoded Block-classified Image, Lena 512 x 512, q = 85 

It has been found that the block classification produces similar results with ANNs 

employing weight matrices and bias vectors that have been obtained after 10000, 20000, 

and 30000 epochs. As a typical example, figure 6.15 shows the entropies of the runs of 

zero coefficients for image Lena with a spatial resolution of 512 x 512 pixels using 

zigzag reordering with neural-network-based classification for weight matrices and bias 

vectors obtained after 10000, 20000, and 30000 learning epochs. Although the MSE per 

pair reduces during learning from 0.085 after 10000 epochs to 0.065 after 30000 epochs, 

n 



the entropies are only slightly reduced for quality settings in the range [10,45], and 

show little difference for quality settings in the range [50,90]. 
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Figure 6.15 Entropy of Runs of Zero Coefficients versus Peak-signal-to-noise Ratio, 

Different Weight Matrices and Bias Vectors, Lena 512 x 512 

6.5 	Summary 

Block classification assesses a block of transform coefficients, and generates the 

dimensions of a sub-block to be retained; it takes block content, i.e. the contribution of 

every coefficient, into account. Therefore, if the contribution of an isolated coefficient 

to reconstruction is found to be expendable, a significantly smaller sub-block may be 

retained. 
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The classification processing step is only required in the encoder in order to determine 

the sub-block dimensions for adaptive zigzag reordering. The additional processing step 

increases the workload of the encoder. 

The classification processing step employs a feedforward ANN with 64 inputs and 

64 outputs. A 64-element input vector is required for 8 x 8 blocks as defined by the 

JPEG standard for the DCT-based method. In order to homogenize network inputs, the 

coefficients are represented through their normalized amplitude classifications. 

A 64-element output vector is required to identify directly all 64 possible sub-block 

dimensions using a simple 1-in-64 binary code. The ANN consists of two trainable 

layers, i.e. hidden layer and output layer, and is trained using an error-backpropagation 

algorithm. During learning the neurons in both layers have log-sigmoid transfer 

functions. During forward propagation, the transfer function in the output layer is 

replaced with the competitive transfer function. 

Learning is carried out in two phases each of which uses batch training. During the 

initial learning phase the ANN is trained for 5000 epochs on 64 idealized training pairs 

that correspond to the 64 possible sub-block dimensions. During the further learning 

phase the ANN is trained for 30000 epochs on the 64 idealized and 580 input authentic 

training pairs. For six of the 64 possible sub-block dimensions suitable examples have 

not been derived from the images. 

The authentic training pairs have been generated by subjective classification of the 

8 x 8 blocks of normalized amplitude classifications from three images. The input 

matrix of the training set has been built from a selection of classified blocks, and the 



target matrix has been generated from the 1-in-64 codes of the corresponding sub-block 

dimensions. 

Zigzag reordering with neural-network-based classification featuring lossy conversion 

produces lower entropies than standard zigzag reordering and adaptive zigzag 

reordering. Since some coefficients are discarded through the classification processing 

step, a higher quality setting is required in order to achieve the same PSNR as produced 

by standard zigzag reordering and adaptive zigzag reordering. 

These particular weight matrices and bias vectors lead to entropies below 1 bit. 

Although the MSE per pair reduces during learning from 0.085 after 10000 epochs to 

0.065 after 30000 epochs, the entropies are only slightly reduced for quality settings in 

the range [10,45], and show little difference for quality settings in the range [50,90]. 
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Chapter 7 

Conclusions and 
Recommendations for 

Further Work 



	

7.1 	Introduction 

This chapter draws conclusions and provides recommendations for further work. 

Section 7.2 summarizes the contributions to knowledge described in this thesis. 

Section 7.3 offers recommendations for further research directions with respect to the 

contributions made. 

	

7.2 	Summary and Conclusions 

Digital image compression, dating back to the late 1940s, exploits different forms of 

data redundancy; namely coding, interpixel, and psychovisual redundancy; in order to 

reduce storage and transmission requirements in digital image processing. If the 

reconstructed image is numerically identical to the original image, the employed 

compression technique is lossless. If the reconstructed image approximates the original 

image, the employed compression technique is lossy. A large variety of compression 

techniques; for example Huffman coding, mn-length coding, predictive coding, 

transform coding, and vector quantization; has evolved over the years. The main 

advantage of transform coding is that it processes images in a similar maimer to the 

human visual system. 

The JPEG standard for the DCT-based method, that was aimed to boost the utilization 

of digital images in general-purpose computer systems, is now a well-established lossy 

technique that combines transform coding, quantization, run-length coding, and entropy 

coding. It is the combination of several processing steps that makes this technique 

superior to those techniques that address only a single redundancy. 

- 173 - 



Since the amount of image data being collected, processed, stored, and transmitted 

increases rapidly due to higher utilization, new applications, and higher standards, 

digital image compression remains a key technology. As the limits of techniques 

exploiting coding and interpixel redundancies have been reached, the move towards 

perceptual coding exploiting psychovisual redundancy, i.e. properties of the human 

visual system, is natural in attempting to reduce bit rates. 

Work on artificial neural networks also dates back to the 1940s. Compared to 

conventional computational systems; artificial neural networks, consisting of a number 

of simple processing units, are massively parallel and adaptive. ANNs have the ability 

to learn by example. A variety of network architectures, for example feedforward 

networks and Kohonen self-organizing feature maps, has been developed; and feasible 

applications begin to emerge. The multilayer feedforward ANN trained using the error-

backpropagation algorithm has attracted most interest. 

The work presented in this thesis addresses aspects of coding of coefficients that are 

present, for example, in the JPEG standard for the DCT-based method. The statistics 

for entropy coding after coefficient reordering are analysed, and adaptive zigzag 

reordering, a novel versatile technique that achieves efficient reordering by processing 

variable-size rectangular sub-blocks of coefficients, is developed. Classification of 

blocks of DCT coefficients using a two-layer feedforward ANN prior to adaptive zigzag 

reordering is investigated. 

The main original contributions to knowledge described within this thesis are: 

An analysis of the entropies of runs of zero coefficients for coefficient reordering 

along fixed and adaptive zigzag scan paths for images with different spatial 
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resolutions and JPEG quality settings that establishes the benefits of addressing 

the symbol statistics for entropy coding rather than assuming a model with 

increasingly probable zero coefficients. Such an analysis has not previously been 

published. 

The development of Boolean expressions and a binary decision tree to implement a 

versatile zigzag-reordering algorithm; that determines the scan paths 'on the fly', 

and removes the necessity to derive and provide scan paths for all required sub-

block dimensions in advance. The versatile algorithm for adaptive zigzag 

reordering has been presented as a paper at an international symposium; see 

(H. J. Grosse et al. 1997c) in appendix H. 

• 	The development of a hardware implementation of the versatile zigzag-reordering 

algorithm to investigate and to demonstrate the feasibility of such an 

implementation. The hardware implementation of the versatile zigzag-reordering 

algorithm has been presented as a paper at an international conference; see 

(H. J. Grosse et al. 1997b) in appendix H. 

The development of a coding scheme that takes the scan-path length into account 

to provide efficient coding of the sub-block dimensions, that need to be retained in 

order to traverse the zigzag scan path correctly during decoding. Such a scheme 

has not previously been published. 

The development of classification of blocks of transform coefficients, using a 

two-layer feedforward ANN, to discard expendable nonzero transform 

coefficients, and to determine the sub-block dimensions prior to adaptive zigzag 

reordering. The block classification using an ANN prior to adaptive zigzag 

reordering has been presented as a paper at a colloquium; see (H. J. Grosse et al. 

1997a) in appendix H. 
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Note that the entropy-coding processing steps in the JPEG standard for the DCT-based 

method utilize an intermediate sequence of symbols. Since each run of zero coefficients 

is combined with the magnitude category of the succeeding nonzero coefficient to form 

a symbol, the reduction in entropy of runs of zero coefficients that has been achieved 

through adaptive zigzag reordering can be only partially exploited. In addition, the 

standard specifies a maximum length of codewords of 16 bits, that can limit the 

effectiveness of the Fluffman coding. However, for lossless conversion using adaptive 

zigzag reordering and coding of sub-block dimensions, an overall reduction in bit rate of 

3 % to 4 % has been achieved for the four grey-scale images with all quality settings 

used during informal tests. Note that two streams have been stored separately; and only 

one codebook has been derived from a range of images and quality settings, and used for 

coding of sub-block dimensions. 

Zigzag reordering with neural-network-based classification further reduces the entropy 

of runs of the zero coefficients. However, since some coefficients are discarded through 

the classification processing step; naturally a higher quality setting, i.e. finer 

quantization of coefficients, is required in order to achieve the same objective image 

quality. 

The JPEG standard for the DCT-based method provides a framework for digital 

compression of continuous-tone still images that provides flexibility, for example four 

modes of operation and user-specifiable quantization tables; but does not support 

adaptation to content changes within the image or its components. Although 

enhancements, for example image-dependent perceptually optimum quantization tables 

and perceptual prequantization, that maintain JPEG-compatible image data streams were 

suggested, the standard is inherently non-adaptive. 
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The work presented in this thesis takes a new approach, and supports an adaptive 

framework. For lossless conversion, zigzag-reordered sub-blocks must contain all 

nonzero coefficients; however, if coefficients are found to be expendable, smaller sub-

blocks may be retained. It has been shown that adaptive zigzag reordering represents the 

retained coefficients more compactly. The block classification processing step allows 

different strategies to be implemented for the determination of the sub-block 

dimensions. 

7.3 	Reconunendations for Further Work 

Naturally, digital image processing moves towards higher spatial resolution and colour 

imaging. Although the total amount of image data increases rapidly, this development 

leads to lower bit rates; since increasing the number of pixels for a given image size 

increases the interpixel redundancy, and chrominance can be coded more efficiently 

than luminance; compare for example tables C. 1 and C.2 in appendix C. In addition, 

the relative overhead per pixel caused by an overhead of fixed size, for example the 

quantization tables in the JPEG standard for the DCT-based method, decreases as the 

number of pixels increases. It is therefore suggested that further work in general 

encompasses colour images of increased spatial resolution. 

Adaptive zigzag reordering employs the versatile zigzag-reordering algorithm to 

generate a zigzag scan path that is tailored to the dimensions of a sub-block. However, 

the ratio between the row dimension and column dimension is not currently taken into 

account; see for example figure 7.1. Note that the direction of movement at the first 

position is always to the right as long as the number of columns is greater than one. 
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(a) (b) 

Figure 7.1 Zigzag Scan Path for (a) 3 x 6, and (b) 6 x 3 Sub-blocks 

The effect of different reordering algorithms on the entropy of the runs of zero 

coefficients could be investigated. As an example, figure 7.2 depicts two zigzag scan 

paths where the direction of movement at the first position, and hence the complete scan 

path, is influenced by the larger dimension. 

/Z 
(a) 
	

(b) 

Figure 7.2 New Zigzag Scan Path for (a) 3 x 6, and (b) 6 x 3 Sub-blocks 

Coding of the sub-block dimensions is based on the scan-path length. One set of 

14 codewords is used for all scan-path lengths. Codewords are separately allocated for 

every scan-path length. The codebook design could be investigated with regard to the 

- 178- 



distribution of the sub-block dimensions; see figure 4.9. Since, the distribution of the 

sub-block dimensions depends on the JPEG quality setting, this additional parameter 

could also be taken into account. 

The JPEG standard requires synchronous operation, i.e. encoding and shortly delayed 

decoding at comparable speeds, and thus similar encoder and decoder complexity; but 

permits nonsynchronous mode of encoding if significant performance advantages are 

feasible. Note that, due to the variety of computer systems, encoders and decoders of 

similar complexity may operate at very different speeds. Although synchronous 

operation is an important feature of a general-purpose digital-image-compression 

scheme, an increasing number of applications relates to non-real-time one-to-many 

distribution of digital images via, for example, CD (compact disc) and the Internet 

where significant performance advantages may justify an increased encoder complexity. 

In recommending further work, a more detailed study into the design of encoders could 

be undertaken using adaptive zigzag reordering in the underlying framework. 

In particular, the classification processing step, that determines the dimensions of a sub-

block to be encoded, could be investigated in more detail. Additional training sets, 

taking subjective image quality into account, could be produced for different quality 

settings. Modifications to the ANN; including preprocessing, structure, and learning; 

could be investigated in more detail. 
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Appendices 



A 	Landsat Image Size Worked Example 

Landsat-4 and Landsat-5 carried two sensor types producing images of similar structure. 

The general equation for calculating the size of an image, S, is 

S=LM>R1 	 (A.!) 

where L is the number of horizontal pixels, i.e. number of pixels per scan line; M is 

the number of vertical pixels, i.e. number of scan lines; R is the resolution of spectral 

band 1; and I is the number of spectral bands. 

For identical resolution R of all spectral bands, equation A. 1 reduces to: 

S=LMRJ 
	

(A.2) 

Table A. 1 summarizes the specification for Landsat-4 and -5 MSS and TM images; see 

(P. M. Mather 1987, p.  84). 

MSS TM 
Pixels per Scan Line 3600 6900 

Scan Lines 2286 5700 
Band Resolution 6 bits 8 bits 
Number of Bands 4 7 

Table A. 1 Specification for Landsat-4 and -5 MSS and TM Images 

The size of an MSS image is therefore 

5MSSrrth = 3600 x 2286 x 6 x 4 bits = 23.5 MB 	 (A.3) 
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However, since storage locations of computer memory are usually organized in multiples 

of bytes, the realistic size of an MSS image file is 

SUSS = 3600 x 2286 x 8 x 4 bits = 31.4 MB 	 (A.4) 

The size of a TM image is 

SM  = 6900 x 5700 x 8 x 7 bits = 262.6 MB 	 (A.5) 

-A2- 



B 	Huffman Tree Design Worked Example 

Wi 	Introduction 

This appendix provides a worked example of the design of a Huffman tree for an 8-level 

image of size 8 x 8. 

B.2 	Design Procedure 

Figure B.1 depicts an 8-level image of size 8 x 8. Table B. 1 presents the frequency of 

occurrence for every symbol. 

H H G G G B OG 

H G C C C B G G 

G C C C C C G E 

GF F F F F E E 

G F F F F F E E 

G F F D F F G D 

G F F D F F G D 

A A A A A A A A 

Figure B.1 8-level Image 

Symbol A B C D E F G H 
Frequencyof 
Occurrence 

8 2 8 4 5 18 16 3 

Table B.l Symbol Distribution of 8-level Image 

Figure B.2 depicts the generation of an appropriate Huffman tree. Using the compound 

node with a weight of 5 rather than symbol E with a weight of 5 for generating the 

second parent node introduces an additional level; see figure B.2 c). 
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Figure B.2 a) - e) Generation of a Huffman Tree for 8-level Image 
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Figure B.2 fl - h) Generation of a Huffman Tree for 8-level Image 
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Using symbol E instead would move symbols B, E, and H on the same level with 

symbol D as swapping the two nodes with a weight of 5 suggests; see figure B.2 h). 

Tracing the path from the root node to a particular symbol generates a unique string 

of Os and is associated with that symbol. Table B.2 provides the Huffman codewords 

that can be used to encode and decode the 8-level example image. In addition, the 

frequency of occurrence of every symbol has been multiplied with the length of the 

codeword of the symbol, and the image size has been calculated. The same information 

is provided for a 3-bit natural binary code. For comparison the self-information has 

been calculated using equation 2.5, and a zero-order entropy of 2.67 bits elemenL' has 

been estimated using equation 2.7. In this example, the Huffman tree generates 

codewords with the number of bits equal to self-information for symbols A, B, C, D, 

and G; note that their probabilities of occurrence are integer powers of (1/2). While 

symbol E is undercoded, symbols F and H are overcoded. However, the size of the 

Huffman-coded image approaches with 172 bits the lower bound of 170.6 bits. 

Symbol A B C D E F G H 
Frequencyof 
Occurrence 

8 2 8 4 5 18 16 3 

Natural Code (binary) 000 001 010 011 100 101 110 lii 
NumberofBits 24 6 24 12 15 54 48 9 

Image Size in Bits 192  _ ____ ____ 
Huffman Code (binary) 001 10110 100 1010 000 11 01 10111 

NumberofBits 24 10 24 16 15 36 32 15 
Image Size in Bits    172  ______ 
Self-information 3.00 5.00 3.00 4.00 3.68 1.83 2.00 4.42 
Number of Bits 24.00 10.00 1 24.00 16.00 18.39 32.94 32.00 1 	13.25 

Lower Bound in Bits 170.6 

Table B.2 Sizes of 8-level Image 



C 	JPEG Example Tables 

C.1 	Introduction 

This appendix provides examples of quantization and Huffman tables; see (ISOIIEC 

10918-1:1994, annex K). 

C.2 	Quantization Tables 

16 11 10 16 24 40 51 61 
12 12 14 19 26 58 60 55 
14 13 16 24 40 57 69 56 
14 17 22 29 51 87 80 62 
18 22 37 56 68 109 103 77 
24 35 55 64 81 104 113 92 
49 64 78 87 103 121 120 101 
72 92 95 98 112 100 103 99 

Table C. 1 Example of Luminance Quantization Table 

17 18 24 47 99 99 99 99 
18 21 26 66 99 99 99 99 
24 26 56 99 99 99 99 99 
47 66 99 99 99 99 99 99 
99 99 99 99 99 99 99 99 
99 99 99 99 99 99 99 99 
99 99 99 99 99 99 99 99 
99 99 99 99 99 99 99 99 

Table C.2 Example of Chrominance Quantization Table 
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C.3 	Huffman Tables for 8-bit Precision 

DC Difference 	Codeword 
Category 

(hexadecimal) 	(binary) 
0 	00 
1 	010 
2 	011 
3 	100 
4 	101 
5 	110 
6 	1110 
7 	11110 
8 	111110 
9 	1111110 
A 	11111110 
B 	111111110 

Table C.3 Example of Luminance DC Difference Table 

DC Difference 	Codeword 
Category 

(hexadecimal) 	(binary) 
0 	00 
1 	01 
2 	10 
3 	110 
4 	1110 
5 	11110 
6 	111110 
7 	1111110 
8 	11111110 
9 	111111110 
A 	1111111110 
B 	11111111110 

Table C.4 Example of Chrominance DC Difference Table 
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Zero Run AC Category 

(hexadecimal) 

Coding 
Symbol 

(hexadecimal) 

Codeword 

(binary) 
o o EOB 1010 
0 1 01 00 
0 2 02 01 
0 3 03 100 
0 4 04 1011 
0 5 05 11010 
0 6 06 1111000 
0 7 07 11111000 
0 8 08 1111110110 
0 9 09 1111111110000010 
0 A OA 1111111110000011 
1 1 11 1100 
1 2 12 11011 
1 3 13 1111001 
1 4 14 111110110 
1 5 15 11111110110 
1 6 16 1111111110000100 
1 7 17 1111111110000101 
1 8 18 1111111110000110 
1 9 19 1111111110000111 
1 A 1A 1111111110001000 
2 1 21 11100 
2 2 22 11111001 
2 3 23 1111110111 
2 4 24 111111110100 
2 5 25 1111111110001001 
2 6 26 1111111110001010 
2 7 27 1111111110001011 
2 8 28 1111111110001100 
2 9 29 1111111110001101 
2 A 2A 1111111110001110 
3 1 31 111010 
3 2 32 111110111 
3 3 33 111111110101 
3 4 34 1111111110001111 
3 5 35 1111111110010000 
3 6 36 1111111110010001 
3 7 37 1111111110010010 
3 8 38 1111111110010011 
3 9 39 1111111110010100 
3 A 3A 1111111110010101 

Table Ci (1 of 4) Example of Luminance AC Table 
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Zero Run AC Category 

(hexadecimal) 

Coding 
Symbol 

(hexadecimal) 

Codeword 

(binary) 
4 1 41 111011 
4 2 42 1111111000 
4 3 43 1111111110010110 
4 4 44 1111111110010111 
4 5 45 1111111110011000 
4 6 46 1111111110011001 
4 7 47 1111111110011010 
4 8 48 1111111110011011 
4 9 49 1111111110011100 
4 A 4A 1111111110011101 
5 1 51 1111010 
5 2 52 11111110111 
5 3 53 1111111110011110 
5 4 54 1111111110011111 
5 5 55 1111111110100000 
5 6 56 1111111110100001 
5 7 57 1111111110100010 
5 8 58 1111111110100011 
5 9 59 1111111110100100 
S A 5A 1111111110100101 
6 1 61 1111011 
6 2 62 111111110110 
6 3 63 1111111110100110 
6 4 64 1111111110100111 
6 5 65 1111111110101000 
6 6 66 1111111110101001 
6 7 67 1111111110101010 
6 8 68 1111111110101011 
6 9 69 1111111110101100 
6 A 6A 1111111110101101 
7 1 71 11111010 
7 2 72 111111110111 
7 3 73 1111111110101110 
7 4 74 1111111110101111 
7 5 75 1111111110110000 
7 6 76 1111111110110001 
7 7 77 1111111110110010 
7 8 78 1111111110110011 
7 9 79 1111111110110100 
7 A 7A 1111111110110101 

Table C.5 (2 of 4) Example of Luminance AC Table 
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Zero Run AC Category 

(hexadecimal) 

Coding 
Symbol 

(hexadecimal) 

Codeword 

(binary) 
8 1 81 111111000 
8 2 82 111111111000000 
8 3 83 1111111110110110 
8 4 84 1111111110110111 
8 5 85 1111111110111000 
8 6 86 1111111110111001 
8 7 87 1111111110111010 
8 8 88 1111111110111011 
8 9 89 1111111110111100 
8 A 8A 1111111110111101 
9 1 91 111111001 
9 2 92 1111111110111110 
9 3 93 1111111110111111 
9 4 94 1111111111000000 
9 5 95 1111111111000001 
9 6 96 1111111111000010 
9 7 97 1111111111000011 
9 8 98 1111111111000100 
9 9 99 1111111111000101 
9 A 9A 1111111111000110 
10 1 Al 111111010 
10 2 A2 1111111111000111 
10 3 A3 1111111111001000 
10 4 A4 1111111111001001 
10 5 AS 1111111111001010 
10 6 A6 1111111111001011 
10 7 A7 1111111111001100 
10 8 A8 1111111111001101 
10 9 A9 1111111111001110 
10 A AA 1111111111001111 
11 1 B! 1111111001 
11 2 B2 1111111111010000 
11 3 B3 1111111111010001 
11 4 B4 1111111111010010 
11 5 B5 1111111111010011 
11 6 B6 1111111111010100 
11 7 B7 1111111111010101 
11 8 B8 1111111111010110 
11 9 B9 1111111111010111 
11 A BA 1111111111011000 

Table C.5 (3 of 4) Example of Luminance AC Table 
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Zero Run AC Category 

(hexadecimal) 

Coding 
Symbol 

(hexadecimal) 

Codeword 

(binary) 
12 1 Cl 1111111010 
12 2 C2 1111111111011001 
12 3 C3 1111111111011010 
12 4 C4 1111111111011011 
12 5 CS 1111111111011100 
12 6 C6 1111111111011101 
12 7 C7 1111111111011110 
12 8 C8 1111111111011111 
12 9 C9 1111111111100000 
12 A CA 1111111111100001 
13 1 Dl 11111111000 
13 2 D2 1111111111100010 
13 3 D3 1111111111100011 
13 4 D4 1111111111100100 
13 5 D5 1111111111100101 
13 6 D6 1111111111100110 
13 7 D7 1111111111100111 
13 8 D8 1111111111101000 
13 9 D9 1111111111101001 
13 A DA 1111111111101010 
14 1 El 1111111111101011 
14 2 E2 1111111111101100 
14 3 E3 1111111111101101 
14 4 E4 1111111111101110 
14 5 ES 1111111111101111 
14 6 E6 1111111111110000 
14 7 E7 1111111111110001 
14 8 E8 1111111111110010 
14 9 £9 1111111111110011 
14 A BA 1111111111110100 
15 0 ZRL 11111111001 
15 1 Fl 1111111111110101 
15 2 F2 1111111111110110 
15 3 F3 1111111111110111 
15 4 P4 1111111111111000 
15 5 PS 1111111111111001 
15 6 P6 1111111111111010 
15 7 P7 1111111111111011 
15 8 F8 1111111111111100 
15 9 F9 1111111111111101 
15 A PA lllllllllllllllO 

Table C.5 (4 of 4) Example of Luminance AC Table 



D 	JPEG Baseline Sequential Process Worked Example 

D.1 	Introduction 

This appendix provides a worked example of the coder processing steps in the baseline 

sequential process. An 8 x 8 block of samples is encoded and subsequently decoded 

following the processing steps described in section 3.4. 

D.2 	Encoding Processing Steps 

Figure D. 1 depicts an 8 x 8 block of source samples extracted from a real image; the 

small variations from sample to sample indicate the predominance of low spatial 

frequencies (G. K. Wallace 1992). 

139 144 149 153 155 155 155 155 

144 151 153 156 159 156 156 156 

150 155 160 163 158 156 156 156 

159 161 162 160 160 159 159 159 

159 160 161 162 162 155 155 155 

161 161 161 161 160 157 157 157 

162 162 161 163 162 157 157 157 

162 162 161 161 163 158 158 158 

Figure D. 1 8 x 8 Block of Source Samples 
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Figure D.2 depicts the 8 x 8 block of samples level-shifted to the range [-128,127]. 

11 16 21 25 27 27 27 27 
16 23 25 28 31 28 28 28 
22 27 32 35 30 28 28 28 
31 33 34 32 32 31 31 31 
31 32 33 34 34 27 27 27 
33 33 33 33 32 29 29 29 
34 34 33 35 34 29 29 29 
34 34 33 33 35 30 30 30 

Figure D.2 8 x 8 Block of Samples to FDCT 

Figure D.3 depicts the 8 x 8 block of DCT coefficients to one decimal place generated 

by the FDCT. Except for a few of the lower frequency coefficients the amplitudes are 

quite small. 

235.6 	-1.0 -12.1 -5.2 	2.1 -1.7 -2.7 	1.3 
-22.6 -17.5 -6.2 -3.2 -2.9 -0.1 0.4 -1.2 
-10.9 -9.3 -1.6 	1.5 	0.2 -0.9 -0.6 -0.1 

-7.1 -1.9 0.2 1.5 0.9 -0.1 0.0 0.3 
-0.6 -0.8 1.5 1.6 -0.1 -0.7 0.6 1.3 

1.8 -0.2 1.6 -0.3 -.0.8 1.5 1.0 -1.0 
-1.3 -0.4 -0.3 -1.5 -0.5 1.7 1.1 -0.8 
-2.6 1.6 -3.8 -1.8 1.9 1.2 -0.6 -0.4 

Figure D.3 8 x 8 Block of DCT Coefficients 
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Figure D.4 depicts the 8 x 8 block of quantized DCT coefficients processed using the 

luminance quantization table given in table C. 1. 

15 0 —1 0 0 0 0 0 

—2 —1 0 0 0 0 0 0 

—1 —1 0 0 0 0 0 0 

00000000 

00000000 

00000000 

00000000 

00000000 

Figure D.4 8 x 8 Block of Quantized DCI Coefficients 

Assuming that the quantized DC coefficient of the preceding block is 12, equation 3.5 

generates the difference DIFF = +3. Figure D.5 depicts the 1-D vector reordered using 

the 8 x 8 zigzag scan path shown in figure 3.6. 

[3 0 —2 —1 —1 —1 0 0 —1 0 0 ... 0] 

Figure D.5 1-D Vector of Reordered Values 

Figure D.6 shows the intermediate sequence of symbols: one coding pair represents the 

DC difference category and the DC difference value itself followed by coding pairs each 

of which consists of zero run, AC category, and nonzero AC coefficient itself; and 

terminates with LOB. 

[(2)(3) (1,2)(-2) (0,1)(-1) (0,1)(—) (0,1)(-1) (2,1)(-1) LOB] 

Figure D.6 Encoding of Intermediate Sequence of Symbols 
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Since it has been assumed that the source samples originate from a luminance 

component, the DC difference category and the AC categories are Huffman-encoded 

using tables C.3 and C.5 respectively. The additional bits for the DC difference value 

and the nonzero AC coefficients are generated using table 3.5. Figure D.7 shows the 

entropy-encoded stream of image data. Note that the spaces are solely for readability. 

Omitting any required parameters, such as quantization tables and Huffman tables; the 

8 x 8 block of 8-bit source samples, totalling 512 bits, has been reduced to 31 bits. 

[oIl ii 11011 01 00 0 00 0 00 0 11100 0 1010] 

Figure D.7 Stream of Image Data 

D.3 	Decoding Processing Steps 

Figure D.8 illustrates the entropy decoding starting with the uniformly spaced stream of 

image data in figure D.8 a). Since the first symbol to be decoded represents the 

DC difference category, table C.3 is used to decode the first symbol in the bit sequence: 

011 codes DC difference category 2; see figure D.8 b). This category requires two 

additional bits: 11 codes 3 as table 3.5 reveals; see figure D.8 c). 

Since the next symbol represents either zero run and AC category or ZRL or EOB, 

table C.5 is used to decode the next symbol in the bit sequence: 11011 codes a zero run 

of one and AC category 2; see figure D.8 d). This category requires two additional bits: 

01 codes -2 as table 3.5 reveals; see figure D.8 e). These steps are repeated until the 

EOB is encountered; see figure D.8 I) - k). 



[0 1111110 1 101000000000 111000 1010] 
a) Stream of Image Data 

[(2)111101 1O10000000001l10001O 10] 

b) Decoding of DC Difference Category 

[(2)(3) 110110100000000011 i000ioio] 

c) Decoding of DC Difference Value 

[(2)(3) (1,2)01000000000111000lO10] 

d) Decoding of First AC Category 

[(2)(3) (1,2)(-2) 00000000011 i000ioio] 

e) Decoding of First AC Amplitude 

[(2)(3) (1,2)(-2) (0,1)(-1) 0000001110001010] 

f) Decoding of Second Nonzero AC Coefficient 

[(2)(3) (1,2)(-2) (0,1)(-1) (0,1)(-1) 0001110001010] 

g) Decoding of Third Nonzero AC Coefficient 

[(2)(3) (1,2)(-2) (0,1)(-1) (0 '1)(—l) (0,1)(-1) 11 100010101 
h) Decoding of Fourth Nonzero AC Coefficient 

[(2)(3) (1,2)(-2) (0,1)(-1) (0,1)(-1) (0 ' 1)(-1) (2,1)(-1) 10 1 01 
j) Decoding of Fifth Nonzero AC Coefficient 

[(2)(3) (1,2)(-2) (0,1)(-1) (0,1)(-1) (0,1)(-1) (2,1)(-1) EOB] 

k) Decoding of EOB 

Figure D.8 Decoding of Intermediate Sequence of Symbols 

Evaluating the zero runs and appending an appropriate number of zeros reconstructs the 

1-D vector as shown in figure D.9. 

[3 0 —2 —1 —1 —1 0 0 —1 0 0 	0] 

Figure D.9 Reconstructed 1-D Vector 
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Assuming that the quantized DC coefficient of the preceding block has been 

reconstructed as 12, the DC coefficient of the current block becomes 15. Figure D.l0 

depicts the 2-D block of quantized coefficients reordered back using the 8 x 8 zigzag 

scan path shown in figure 3.6. 

15 0 —1 0 0 0 0 0 

—2 —1 0 0 0 0 0 0 

—1 —1 0 0 0 0 0 0 

00000000 

00000000 

00000000 

00000000 

00000000 

Figure D. 10 Reconstructed 8 x 8 Block of Quantized DCT Coefficients 

Figure D.1 1 depicts the 8 x 8 block of dequantized DCT coefficients processed using 

the luminance quantization table given in table C.!. 

240 0-1000000 

—24-12 000000 

—14-13 000000 

0 0 000000 

0 0 000000 

0 0 000000 

0 0 000000 

0 0 000000 

Figure D. 11 8 x 8 Block of Dequantized DCT Coefficients 



Figure D. 12 depicts the 8 x 8 block of samples generated by the IDCT. 

16 18 21 24 26 28 28 28 
20 22 24 26 28 28 28 28 
27 28 29 30 30 29 28 27 
32 33 33 34 33 31 29 27 

35 35 36 35 34 32 30 28 
35 36 36 36 34 32 30 29 
32 33 34 34 34 33 31 30 
30 31 33 33 34 33 31 30 

Figure D. 12 8 x 8 Block of Samples from DCI 

Figure D. 13 depicts the 8 x 8 block of reconstructed samples level-shifted back to the 

original range [0,255]. 

144 146 149 152 154 156 156 156 
148 150 152 154 156 156 156 156 
155 156 157 158 158 157 156 155 
160 161 161 162 161 159 157 155 
163 163 164 163 162 160 158 156 
163 164 164 164 162 160 158 157 
160 161 162 162 162 161 159 158 
158 159 161 161 162 161 159 158 

Figure D. 13 8 x 8 Block of Reconstructed Samples 



D.4 	Reconstruction Error 

Figure D. 14 shows the 8 x 8 block of source samples minus reconstructed samples, 

s - r. A mean-square error of 5.2 has been calculated using equation 2.12. 

—5 —2 0 	1 	1 —1 —1 —1 
—4 1123000 

—5 —1 3 5 0 —1 0 1 

—1 0 1 —2 —1 0 2 4 

—4 —3 —3 —1 0 —5 —3 —1 

—2 —3 —3 —3 —2 —3 —1 0 

2 1 —1 1 0 —4 —2 —1 

4 3 0 0 1 —3 —1 0 

Figure D. 14 8 x 8 Block of Error Values 



E 	Images 

Experimentation has been carried out on four 8-bit grey-scale images. The image Lena, 

depicted in figure E. 1, shows head and shoulder of a woman in an indoor scene; it has a 

spatial resolution of 512 x 512 pixels. A version of the image with a spatial resolution 

of 256 x 256 pixels has also been used. 

Reproduced by Special Permission of Playboy magazine. 
© 1972 by Playboy. 

Figure E. 1 Original Image, Lena 512 x 512 
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The image F-16, depicted in figure E.3, shows an aeroplane in a midair scene; it has a 

spatial resolution of 512 x 512 pixels. 

FigureE.3 Original Image, F-16 512x512 
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F 	Versatile Zigzag Reordering Algorithm Worked Example 

Fl 	Introduction 

This appendix provides a worked example for the versatile zigzag reordering algorithm. 

The scan path of a 3 x 2 sub-block is traversed using the binary decision tree described 

in subsection 4.4.6 and repeated in figure F. 1 for convenience. 

Figure F.! Decision Tree for Changes in Row and Column Indices 

F.2 	Versatile Zigzag Reordering Algorithm 

Figure Fl depicts stages during the generation of the scan path for a sub-block with 

L = 3 rows and M = 2 columns. The current position in the scan path is indicated by a 

black dot. 
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Figure F.2 Generation of Zigzag Scan Path for 3 x 2 Sub-block 

The first position is given by (1 = 1, in = 1) since the scan path starts at the top left-hand 

position; see figure F.2 a). Determining the direction of movement at the first position 

begins with testing the parity parameter P(1, m): 

	

P(1=1,m=1)=O 	 (F.!) 

since (1 + in) = (1 + 1) = 2 which is even. 

The second test evaluates therefore the last-column parameter CM(1, in): 

CM(1=l,m=l)=O 	 (Fl) 

since (in # M). 

The third test evaluates therefore the first-row parameter R1(1, m): 

	

R1(1=1,m=1)=1 	 (R3) 

since (1 = L). 
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The position of the next element is situated in the right direction, i.e. the row index I 

must remain unchanged and the column index in must be incremented; see 

figure F.2 b). 

The second position is therefore given by (1 = 1, m = 2). Determining the direction of 

movement at this position begins with testing the parity parameter P(1, m): 

P(1=l,i'n=2)=1 	 (P.4) 

since (1 + m) = (1 + 2) = 3 which is odd. 

The second test evaluates therefore the last-row parameter RL(I, in): 

RL(I=1,in=2)=O 	 (P5) 

since (I # L). 

The third test evaluates therefore the first-column parameter C1(l,m): 

C1(1=1,m=1)=O 	 (P.6) 

since (in # 1). 

The position of the next element is situated in the lower-left direction, i.e. the row 

index I must be incremented and the column index in must be decremented; see 

figure P.2 c). 
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The third position is therefore given by (1 = 2, m = 1). Determining the direction of 

movement at this position evaluates the test sequence: 

P(l=2,m=1)=1 	 (P.7) 

since (1 + ,n) = (2 + 1) = 3 which is odd. 

RL(1=2,m=1)=O 	 (R8) 

since (l# L). 

Cl(1=2,m=1)=1 	 (F.9) 

since (m = 1). 

The position of the next element is situated in the lower direction, i.e. the row index I 

must be incremented and the column index m must remain unchanged; see 

figure P.2 d). 

The fourth position is therefore given by (1 = 3,m = 1). Determining the direction of 

movement at this position evaluates the test sequence: 

P(l=3,m=1)=O 	 (P.10) 

since (1 + m) = (3 + 1) = 4 which is even. 

CM(l = 3,m = 1) = 0 	 (F.!!) 

since (in # M). 
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R1(1=3,m=1)=O 
	

(F.12) 

since (1#1). 

The position of the next element is situated in the upper-right direction, i.e. the row 

index I must be decremented and the column index m must be incremented; see 

figure F.2 e). 

The fifth position is therefore given by (I = 2, m = 2). Determining the direction of 

movement at this position evaluates the test sequence: 

P(1=2,m=2)=O 	 (P.13) 

since (I + m) = (2 + 2) = 4 which is even. 

CM(I=2,m=2)=1 	 (P.14) 

since (m = M). 

RL(I=2,m=2)=O 	 (P.15) 

since (I # L). 

The position of the sixth element is situated in the lower direction, i.e. the row index I 

must be incremented and the column index ,n must remain unchanged; see 

figure P.2 . 
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The sixth position is therefore given by (1 = 3, m = 2). The full scan of the 3 x 2 sub- 

block is complete. Determining the direction of movement at this position evaluates the 

test sequence: 

P(1=3,m=2)=1 	 (F.16) 

since (1 + m) = (3 + 2) = 5 which is odd. 

RL(1=3,m=2)=1 	
I 

(F.17) 

since (1=L). 

CM(1=3,m=2)=1 	 (F.18) 

since (m = M). 

The position remains unchanged, i.e. the row index I and the column index m must 

remain unchanged. 
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G 	Hardware Implementation Source Files 

G.1 	Introduction 

This appendix contains the source files for the hardware implementation of the zigzag-

reordering algorithm described in section 4.5. The files in sections G.2 and G.3 specify 

stage A and stage B respectively. The file in section G.4 combines the stages and 

simulates the state machine. Note that full sets of test vectors covering all 64 possible 

sub-block dimensions have been derived; however, the sections G.2 to 0.4 include only 

abbreviated sets covering sub-block dimensions that are mentioned in chapter 4. 
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G.2 	Source File Stage A 

/*********DEpJTMENT*0F*ELECTRICAL*D*ELECTRONIC*ENGINEERING********* 
* * 
* File : 	stage_a.tdl 	 * 
* * 
* Description : file contains first, combinational stage of Moore 	* 
* state machine for versatile zigzag-reordering 	* 
* algorithm, and simulates the stage for given 	* 
* sub-block dimensions 	 * 
* * 
* Author : Hanns-Juergen Grosse 	 * 
* * 
* Copyright 1996-1997 by Hanns-Juergen Grosse. All rights reserved. * 
* * 
* Inputs : 	(3 bits per input) 	 * 
* external: 	 * 
* 112. .0 	(rows in sub-block) 	 * 
* mm2. .0 	(columns in sub-block) 	 * 
* from stage_b: 	 * 
* 12. .0 	(current row index) 	 * 
* m2. .0 	(current column index) 	 * 
* * 
* Outputs : 	(1 bit per output) 	 * 
* p 	(parity parameter) 	 * 
* ri 	(first-row parameter) 	 * 
* rl 	(last-row parameter) 	 * 
* ci 	(first-column parameter) 	 * 
* cm 	(last-column parameter) 	 * 
* * 
* Note row and column indices range from 000 to 111 	* 
* * 

stage_a(in 112..0, 
mm2. .0, 
12..0, 
m2..0; 

out p, 
ri, 
ri, 
ci, 
cm) 

group 11[112..0); 
group mm[mm2..0]; 
group 1[12. .0]; 
group m[m2. .0]; 

/ output enable */ 
p.oe = 1; 
ri.oe = 1; 
rl.oe = 1; 
ci.oe = 1; 
cm.oe = 1; 

/ rows in sub-block / 
/* columns in sub-block */ 
/ current row index / 
/ current column index */ 

/ parity parameter / 
1* first-row parameter *1 

1* last-row parameter / 
1* first-column parameter *1 

/* last-column parameter / 
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p = 10 A  mO; / parity parameter 	/ 

if (0 	== 1) /* first-row parameter 	/ 

rl = 1; 

if (11 == 1) / last-row parameter 	/ 

rl = 1; 

if (0 	== m) /* first-column parameter 	/ 

ci = 1; 

if (mm == m) /* last-column parameter 	/ 

cm = 1; 

/ write JEDEC file */ 
putpart ( "glGvB", "stage_a", 

112, 111, 110, mm2, mml, mm0, 12, 11, 10, GND, 
rl, rl, m2, ml, mO, 	p, cl, cm, VCC); 

/* simulate stage_a / 
test(ll, mm, 1, m => p, rl, rl, ci, cm) 
{ 	tracef("%d %d %d %d 	%d %d %d %d %d", 

11, mm, 1, m, p, ri, rl, cl, cm); 

1* 

* test vectors for 5x1, 3x2, 2x3, lx5, 3x5, 4x5, 
* and SxS zigzag scan paths 
* 

* Note: 
* row and column indices range from 000 to ill, therefore 
* the scan paths are defined as 4x0, 2xi, lx2, 0x4, 2x4, 3x4, and 7x7 
* 

*1 

row x column path */ 
/ Sxl path */ 

(4, 0, 0, 0=> 0, 1, 0, 1, 1); 
(4, 0, i, 0=> 1, 0, 0, 1, 1); 
(4, 0, 2,  0=> 0, 0, 0, 1, 1); 
(4, 0, 3,  0=> 1, 0, 0, 1, 1); 
(4, 0, 4,  0=> 0, 0, 1, 1, 1); 

1* 3x2 path / 

(2, 1, 0, 0=> 0, 1, 0, 1, 0); 
(2, 1, 0, 1=> 1, 1, 0, 0, 1); 
(2, 1, 1, 0 => 1, 0, 0, 1, 0); 
(2, 1, 2, 0 => 0, 0, 1, 1, 0); 
(2, 1, 1, 1 a 0, 0, 0, 0, 1); 
(2, 1, 2, 1 => 1, 0, 1, 0, 1); 

1* 2x3 path */ 

(i, 2, 0, 0=> 0, 1, 0, 1, 0); 
(i, 2, 0, 1 => i, 1, 0, 0, 0); 
(i, 2, 1, 0=> 1, 0, 1, 1, 0); 
(i, 2, i, 1=> 0, 0, 1, 0, 0); 
(1, 2, 0, 2 a 0, 1, 0, 0, 1); 
(1, 2, 1, 2 a 1, 0, 1, 0, 1); 
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1* lxS path */ 

(0, 4, 0, 0 => 0, 1, 1, 1, 0); 
(0, 4, 0, 1>1, 1, 1, 0, 0); 
(0, 4, 0, 2 => 0, 1, 1, 0, 0); 
(0, 4, 0, 3 => 1, 1, 1, 0, 0); 
(0, 4, 0, 4=> 0, 1, 1, 0, 1); 

/ 3x5 path */ 

(2, 4, 0, 0 => 0, 1, 0, 1, 0); 
(2, 4, 0, 1 => 1, 1, 0, 0, 0); 
(2, 4, 1, 0 => 1, 0, 0, 1, 0); 
(2, 4, 2, 0 => 0, 0, 1, 1, 0); 
(2, 4, 1, 1 => 0, 0, 0, 0, 0); 
(2, 4, 0, 2 => 0, 1, 0, 0, 0); 
(2, 4, 0, 3 => 1, 1, 0, 0, 0); 
(2, 4, 1, 2 => 1, 0, 0, 0, 0); 
(2, 4, 2, 1=> 1, 0, 1, 0, 0); 
(2, 4, 2, 2 => 0, 0, 1, 0, 0); 
(2, 4, 1, 3 => 0, O r  0, 0, 0); 
(2, 4, O r  4 => 0, 1, 0, 0, 1); 
(2, 4, 1, 4 => 1, 0, 0, 0, 1); 
(2, 4, 2, 3 => 1, 0, 1, 0, 0); 
(2, 4, 2, 4=> 0, 0, 1, 0, 1); 

1* 4x5 path / 

(3, 4, 0, 0=> 0, 1, 0, 1, 0); 
(3, 4, 0, 1=> 1, 1, 0, 0, 0); 
(3, 4, 1, 0 => 1, 0, 0, 1, 0); 
(3, 4, 2, 0 => 0, 0, O r  1, 0); 
(3, 4, 1, 1 => 0, 0, 0, 0, 0); 
(3, 4, 0, 2 => 0, 1, 0, 0, 0); 
(3, 4, 0, 3 => 1, 1, 0, 0, 0); 
(3, 4, 1, 2 => 1, 0, 0, 0, 0); 
(3, 4, 2, 1=> 1, 0, 0, 0, 0); 
(3, 4, 3, 0=> 1, 0, 1, 1, 0); 
(3, 4, 3, 1=> 0, 0, 1, 0, 0); 
(3, 4, 2, 2 => 0, 0, 0, 0, 0); 
(3, 4, 1, 3 => 0, 0, 0, 0, 0); 
(3, 4, 0, 4 => 0, 1, 0, 0, 1); 
(3, 4, 1, 4 => 1, 0, 0, 0, 1); 
(3, 4, 2, 3 => 1, 0, 0, 0, 0); 
(3, 4, 3, 2 => 1, 0, 1, 0, 0); 
(3, 4, 3, 3 => 0, 0, 1, 0, 0); 
(3, 4, 2, 4 => 0, 0, 0, 0, 1); 
(3, 4, 3, 4 => 1, 0, 1, 0, 1); 

/ 8x8 path */ 

(7, 7, 0, 0 => 0, 1, 0, 1, 0); 
(7, 7, 0, 1 => 1, 1, 0, 0, 0); 
(7, 7, 1, 0 a 1, 0, 0, 1, 0); 
(7, 7, 2, 0 a 0, 0, 0, 1, 0); 
(7, 7, 1, 1 a 0, 0, 0, 0, 0); 
(7, 7, 0, 2 a 0, 1, 0, 0, 0); 
(7, 7, 0, 3 a 1, 1, 0, 0, 0); 
(7, 7, 1, 2 a 1, 0, 0, 0, 0); 
(7, 7, 2,  1=> 1, 0, 0, 0, 0); 
(7, 7, 3,  0=> 1, 0, 0, 1, 0); 
(7, 7, 4,  0=> 0, 0, 0, 1, 0); 
(7, 7, 3, 1 => 0, 0, 0, 0, 0); 
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(7, 7, 2, 2 => 0, 0, 0, 0, 0); 
(7, 7, 1, 3 => 0, 0, 0, 0, 0); 
(7, 7, 0, 4>0, 1, 0, 0, 0); 
(7, 7, 0, 5 => 1, 1, 0, 0, 0); 
(7, 7, 1, 4 => 1, 0, 0, 0, 0); 
(7, 7, 2, 3 => 1, 0, 0, 0, 0); 
(7, 7, 3, 2 a 1, 0, 0, 0, 0); 
(7, 7, 4, 1=> 1, 0, 0, 0, 0); 
(7, 7, 5, 0 a 1, 0, 0, 1, 0); 
(7, 7, 6, 0=> 0, 0, 0, 1, 0); 
(7, 7, 5, 1 a 0, 0, 0, 0, 0); 
(7, 7, 4, 2 => 0, 0, 0, 0, 0); 
(7, 7, 3, 3 a 0, 0, 0, 0, 0); 
(7, 7, 2, 4 => 0, 0, 0, 0, 0); 
(7, 7, 1, 5 a 0, 0, 0, 0, 0); 
(7, 7, 0, 6=> 0, 1, 0, 0, 0); 
(7, 7, 0, 7 a 1, 1, 0, 0, 1); 
(7, 7, 1, 6 a 1, 0, 0, 0, 0); 
(7, 7, 2, 5 => 1, 0, 0, 0, 0); 
(7, 7, 3, 4 => 1, 0, 0, 0, 0); 
(7, 7, 4, 3 a 1, 0, 0, 0, 0); 
(7, 7, 5, 2 => 1, 0, 0, 0, 0); 
(7, 7, 6, 1=> 1, 0, 0, 0, 0); 
(7, 7, 7, 0=> 1, 0, 1, 1, 0); 
(7, 7, 7, 1=> 0, 0, 1, 0, 0); 
(7, 7, 6, 2 a 0, 0, 0, 0, 0); 
(7, 7, 5, 3 => 0, 0, 0, 0, 0); 
(7, 7, 4, 4 => 0, 0, 0, 0, 0); 
(7, 7, 3, 5 => 0, 0, 0, 0, 0); 
(7, 7, 2, 6 a 0, 0, 0, 0, 0); 
(7, 7, 1, 7 a 0, 0, 0, 0, 1); 
(7, 7, 2, 7 a 1, 0, 0, 0, 1); 
(7, 7, 3,  6=> 1, 0, 0, 0, 0); 
(7, 7, 4,  5a 1, 0, 0, 0, 0); 
(7, 7, 5,  4a 1, 0, 0, 0, 0); 
(7, 7, 6,  3a 1, 0, 0, 0, 0); 
(7, 7,  7, 2=> 1, 0, 1, 0, 0); 
(7, 7, 7, 3 a 0, 0, 1, 0, 0); 
(7, 7, 6, 4a 0, 0, 0, 0, 0); 
(7, 7, 5, Sa 0, 0, 0, 0, 0); 
(7, 7, 4, 6 a 0, 0, 0, 0, 0); 
(7, 7, 3, 7 a 0, 0, 0, 0, 1); 
(7, 7, 4,  7 a 1, 0, 0, 0, 1); 
(7, 7, 5,  6 a 1, 0, 0, 0, 0); 
(7, 7, 6, 5 a 1, 0, 0, 0, 0); 
(7, 7, 7, 4 => 1, 0, 1, 0, 0); 
(7, 7, 7, 5 a 0, 0, 1, 0, 0); 
(7, 7, 6, 6 a 0, 0, 0, 0, 0); 
(7, 7, 5, 7 => 0, 0, 0, 0, 1); 
(7, 7, 6, 7 a 1, 0, 0, 0, 1); 
(7, 7, 7, 6 => 1, 0, 1, 0, 0); 
(7, 7, 7, 7=> 0, 0, 1, 0, 1); 

1 	/* end of test / 

1 	/* end of stage_a *1 
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G.3 	Source File Stage B 

/*********DEpAflTMENT*OF*ELECTRICAL*JD*gLECpRONIC*ENGINEERING********* 
* * 
* File 	: stage_b.tdl 	 * 
* * 
* Description : file contains second, sequential stage of Moore 	* 
* state machine for versatile zigzag-reordering 	* 
* algorithm, and simulates the stage for given 	* 
* sub-block dimensions 	 * 
* * 
* Author 	: Hanns-Juergen Grosse 	 * 
* * 
* Copyright 1996-1997 by Hanns-Juergen Grosse. All rights reserved. * 
* * 
* Inputs 	: (1 bit per input) 	 * 
* from stage_a: 	 * 
* p 	(parity parameter) 	 * 
* rl 	(first-row parameter) 	 * 
* rl 	(last-row parameter) 	 * 
* ci 	(first-column parameter) 	 * 
* cm 	(last-column parameter) 	 * 
* external: 	 * 
* clk 	(clock signal) 	 * 
* oe 	(output enable, to be connected to OND) 	* 
* reset 	(reset signal) 	 * 
* * 
* Outputs 	: (3 bits per output) 	 * 
* 12. .0 	(current row index) 	 * 
* m2. .0 	(current column index) 	 * 
* (1 bit per input) 	 * 
* done 	(scan-complete signal) 	 * 
* * 
* Note 	: row and column indices range from 000 to 111 	* 
* * 
****** ****** *** * * 	 *** ************* */ 

stage_b(in 	p. / 	parity parameter 	/ 

rl, /* first-row parameter 	/ 

rl, /* last-row parameter 	/ 

ci, /* first-column parameter 	/ 

cm, 1* last-column parameter 	/ 

clk, /* clock signal */ 
oe, / 	output enable */ 
reset; 	1* reset signal *1 

reg 	12..0, /* current row index */ 
m2. .0; / 	current column index 	/ 

out done) 	/* scan-complete signal */ 

group 1[12..0]; 
group m[m2..0]; 

/* clock signal */ 
l.ck = clk; 
m.ck = clk; 
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/ output enable / 
l.oe = Joe; 
m.oe = Joe; 
done.oe = 1; 

7* synchronous clear */ 
l.clr = reset; 
m.clr = reset; 

/* overall decision tree / 
it (r1 & cm) 

7* force back to start, ready for next sub-block / 
done = 1; 
1 = 0; 
m = 0; 

else 
done = 0; 
if (1 == p) 
{ 	if (1 == ri) 

/ row unchanged / 
1 = 1; 

/ increment column */ 
mO = !m0; 
ml = mU ^ ml; 
m2 = (mO & ml) I m2; 

else 
/ increment row I 
10 = !10; 
11 = 10 All ;  

12 = (10 & 11) I 12; 

if (1 == ci) 
7* column unchanged *7 
m = m; 

I else 
/ decrement column */ 
mO = !mO; 
ml = nO ! ml; 
m2 = (mO & m2) I (ml & m2); 

7* end if (cl) */ 
7* end if (r1) */ 

I else 
( 	if (1 == cm) 

/ increment row / 
10 = !lO; 
11 = 10 A  11; 
12 = (10 & 11) 1 12; 

/* column unchanged */ 
m = m; 

I else 
/ increment col / 
mU = !mO; 
ml = mU ml; 
m2 = (mO & ml) I m2; 
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if (1 == ri) 
1* row unchanged */ 
1 = 1; 

else 
/* decrement row / 
10 = !10; 
11 = 10 A  11; 
12 = (10 & 12) I (11 & 12); 

/* end if (ri) *1 

/* end if (cm) */ 
/ end if (p) *1 

/* end if (rl & cm) */ 

/ write JEDEC file */ 
putpart( "glGvS", "stage_b", 

	

cik, cm, ci, 	p, reset, 	, ri, 	ri, GND, 
oe, 	12, 	11, 	10, 	m2, ml, mO, _, done, VCC); 

/* simulate stage_b */ 
test(clk, p, rl, ri, ci, cm => 1, in, done) 

tracef("%w %d %d %d %d %d 	%d %d %w", 
cik, p, ri, rl, ci, cm, 1, m, done); 

1* 

* test vectors for 5xl, 3x2, 2x3, 1x5, 3x5, 4x5, 
* and 8x8 zigzag scan paths 
* 
• Note: 
• row and column indices range from 000 to 111, therefore 
• the scan paths are defined as 4x0, 2xi, 1x2, 0x4, 2x4, 3x4, and 7x7 
* 
* indices automatically reset to first position 
* 
*1 

oe = 0; 
reset = 1; 
/ reset to first position / 
(\C, 0, 0, 0, 0, 0 => 0, 0, 0); 
reset = 0; 

/ 	row x column path *1 
/ 	5x1 path */ 
(\C, 0, 1, 0, 1, la 1,  0, 0); 
(\C, 1, 0, 0, 1, 1 => 2,  0, 0); 
(\C, 0, 0, 0, 1, 1 => 3,  0, 0); 
(\C, 1, 0, 0, 1, 1 a 4,  0, 0); 
(\C, 0, 0, 1, 1, 1 => 0, 0, 1); 

/ 	3x2 path 	/ 

(\C, 0, 1, 0, 1, 0 a 0, 1, 0); 
(\C, 1, 1, 0, 0, 1 => 1,  0, 0); 
(\C, 1, 0, 0, 1, 0 => 2,  0, 0); 
(\C, 0, 0, 1, 1, 0=> 1,  1, 0); 
(\C, 0, 0, 0, 0, 1=> 2,  1, 0); 
(\C, 1, 0, 1, 0, 1=> 0, 0, 1); 
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1* 2x3 path / 

(\C, 0, 1, 0, 1, 0 > 0, 1, 0); 
(\C, 1, 1, 0, 0, 01, 0, 0); 
(\C, 1, 0, 1, 1, 0 => 1, 1,  0); 
(\C, 0, 0, 1, 0, 0 => 0, 2,  0); 
(\C, 0, 1, 0, 0, 1 => 1, 2, 0); 
(\C, 1, 0, 1, 0, 1 => 0, 0, 1); 

/ 	1x5 path *1 
(\C, 0, 1, 1, 1, 0 => 0, 1,  0); 
(\C, 1 1  1, 1, 0, 0 => 0, 2,  0); 
(\C, 0, 1, 1, 0, 0 => 	0, 3,  0); 
(\C, 1 1  1, 1, 0, 0 => 	0, 4,  0); 
(\C, 0, 1, 1, 0, 1 => 0, 0, 1); 

/ 3x5 path / 

(\C, 0, 1, 0, 1, 0 => 0, 1, 0); 
(\C, 1, 1, 0, 0, 0 => 1, 0, 0); 
(\C, 1, 0, 0, 1, 0 => 2, 0, 0); 
(\C, 0, 0, 1, 1, 0 => 1, 1, 0); 
(\C, 0, 0, 0, 0, 0 => 0, 2, 0); 
(\C, 0, 1, 0, 0, 0 => 0, 3, 0); 
(\C, 1, 1, 0, 0, 0 => 1, 2, 0); 
(\C, 1, 0, 0, 0, 0=> 2, 1, 0); 
(\C, 1, 0, 1, 0, 0 => 2, 2, 0); 
(\C, 0, 0, 1, 0, 0 => 1, 3, 0); 
(\C, 0, 0, 0, 0, 0 => 0, 4, 0); 
('\C, 0, 1, 0, 0, 1 => 1, 4, 0); 
(\C, 1, 0, 0, 0, 1 => 2, 3, 0); 
(\C, 1, 0, 1, 0, 0 => 2, 4, 0); 
(\C, 0, 0, 1, 0, 1 => 0, 0, 1); 

/ 4x5 path / 

(\C, 0, 1, 0, 1, 0 => 0, 1, 0); 
(\C, 1, 1, 0, 0, 0 => 1, 0, 0); 
(\C, 1, 0, 0, 1, 0 => 2, 0, 0); 
(\C, 0, 0, 0, 1, 0 => 1, 1, 0); 
(\C, 0, 0, 0, 0, 0=> 0, 2, 0); 
(\C, 0, 1, 0, 0, 0 => 0, 3, 0); 
(\C, 1, 1, 0, 0, 0 => 1, 2, 0); 
(\C, 1, 0, 0, 0, 0 => 2, 1, 0); 
(\C, 1, 0, 0, 0, 0 => 3, 0, 0); 
(\C, 1, 0, 1, 1, 0 => 3, 1, 0); 
(\C, 0, 0, 1, 0, 0=> 2, 2, 0); 
(\C, 0, 0, 0, 0, 0 => 1, 3, 0); 
(\C, 0, 0, 0, 0, 0 => 0, 4, 0); 
(\C, 0, 1, 0, 0, 1 => 1, 4, 0); 
(\C, 1, 0, 0, 0, 1 => 2, 3, 0); 
(\C, 1, 0, 0, 0, 0 => 3, 2, 0); 
(\C, 1, 0, 1, 0, 0 => 3, 3, 0); 
(\C, 0, 0, 1, 0, 0 => 2, 4, 0); 
(\C, 0, 0, 0, 0, 1 => 3, 4, 
(\C, 1, 0, 1, 0, 1=> 0, 0, 1); 
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/ 	8x8 path */ 

(\C, 0, 1, 0, 1, 0 => 0, 1, 0); 
(\C, 1, 1, 0, 0, 0 a 1, 0, 0); 
(\C, 1, 0, 0, 1, 0 => 2, 0, 0); 
(\C, 0, 0, 0, 1, 0 => 1, 1, 0); 

(\C, 0, 0, 0, 0, 0 a 0, 2, 0); 
(\C, 0, 1, O r  0, 0 => 0, 3, 0); 
(\C, 1, 1, 0, 0, 0 => 1, 2, 0); 
(\C, 1, 0, 0, 0, 0 => 2, 1, 0); 
(\C, 1, 0, O r  0, 0 => 3, 0, 0); 
(\C, 1, 0, 0, 1, 0 => 4, 0, 0); 
(\C, 0, 0, 0, 1, 0 => 3, 1, 0); 

(\C, 0, 0, 0, 0, 0 => 2, 2, 0); 
(\C, O r  0, 0, 0, 0 => 1, 3, 0); 
(\C, 0, 0, O r  0, 0 a 0, 4, 0); 
(\C, 0, 1, 0, O r  Oa 0, 5, 0); 

(\C, 1, 1, 0, O r  0 a 1, 4, 0); 
(\C, 1, 0, 0, 0, 0 => 2,  3,  0); 
(\C, 1, 0, 0, 0, 0 => 3, 2, 0); 
(\C, 1, 0, 0, 0, 0 a 4, 1, 0); 
(\C, 1, 0, 0, 0, 0 => 5, 0, 0); 
(\C, 1, 0, 0, 1, 0 a 6, 0, 0); 
(\C, 0, 0, 0, 1, 0> 5, 1, 0); 
(\C, 0, 0, 0, 0, 0=> 4, 2,  0); 

(\C, 0, 0, 0, 0, 0 a 3,  3, 0); 
(\C, 0, 0, 0, 0, 0 a 2, 4, 0); 
(\C, 0, 0, 0, 0, 0 a 1, 5, 0); 

(\C, 0, 0, 0, 0, 0 a 0, 6, 0); 
(\C, 0, 1, 0, 0, 0 a O r  7, 0); 

(\C, 1, 1, 0, 0, 1 a 1, 6, 0); 
(\C, 1, 0, 0, 0, 0 a 2, 5, 0); 
(\C, 1, O r  0, 0, 0=> 3,  4,  0); 
(\C, 1, O r  0, 0, 0=> 4, 3, 0); 

(\C, 1, 0, 0, 0, 0 => 5, 2, 0); 
(\C, 1, 0, 0, 0, 0 a 6, 1, 0); 
(\C, 1, 0, 0, 0, 0 => 7, 0, 0); 
(\C, 1, O r  1, 1, 0 a 7, 1, 0); 
(\C, 0, 0, 1, 0, 0=> 6, 2, 0); 
(\C, 0, O r  0, 0, 0=> 5, 3,  0); 
(\C, 0, 0, 0, 0, 0=> 4,  4, 0); 
(\C, 0, Or 0, 0, 0 a 3, 5, 0); 
(\C, 0, 0, 0, 0, 0 a 2, 6, 0); 
(\C, 0, 0, 0, 0, 0=> 1, 7, 0); 
(\C, 0, 0, 0, 0, 1=> 2, 7, 0); 
(\C, 1, 0, 0, 0, 1 => 3, 6, 0); 
(\C, 1, 0, 0, 0, 0 a 4,  5,  0); 
(\C, 1, 0, 0, O r  0 a 5, 4, 0); 
(\C, 1, 0, 0, 0, 0 a 6, 3, 0); 
(\C, 1, 0, O r  0, 0 a 7, 2, 0); 
(\C, 1, 0, 1, 0, 0 a 7, 3, 0); 
(\C, 0, 0, 1, 0, 0 a 6, 4,  0); 
(\C, 0, 0, 0, O r  0 a 5,  5, 0); 
(\C, 0, 0, 0, 0, 0 a 4, 6, 0); 

(\C, 0, 0, 0, 0, 0 a 3, 7, 0); 
(\C, 0, 0, 0, 0, 1 a 4, 7, 0); 
(\C, 1, 0, 0, 0, 1 a 5, 6, 0); 
(\C, 1, O r  0, 0, 0 a 6, 5, 0); 
(\C, 1, 0, 0, 0, 0 a 7, 4, 0); 

(\C, 1, 0, 1, 0, 0 => 7, 5, 0); 

'no' 



(\C, 0, 0, 1, 0, 
(\C, 0, 0 1  0, 0, 
(\C, 0, 0, 0, 0, 
(\C, 1 1  0, 0, 0, 
(\C, 1, 0, 1, 0, 
(\C, 0, 0, 1, 0, 

1 	/* end of test / 

/* end of stage_b / 

0 => 6, 6, 0); 
05, 7, 0); 
1=> 6, 7, 0); 
1=> 7, 6, 0); 
0>7, 7, 0); 
1=> 0, 0, 1); 

-Gil- 



G.4 	Source File State Machine 

/*********DEpARTMENT*OF*ELECTRICAL*JD*ELECTRoNIC*ENGINEERINQ********* 
* * 
* File moore.tdl 	 * 
* * 
* Description file reads the JEDEC fusemaps from stage_a.jed and 	* 
* stage_b.jed, and simulates the Moore state machine 	* 
* for the given sub-block dimensions 	 * 
* * 
* Author Hanns-Juergen Grosse 	 * 
* * 
* Copyright 1996-1997 by Hanns-Juergen Grosse. All rights reserved. * 
* * 
* Inputs (3 bits per input) 	 * 
* 112. .0 	(rows in sub-block) 	 * 
* mm2. .0 	(columns in sub-block) 	 * 
* (1 bit per input) 	 * 
* clk 	(clock signal) 	 * 
* oe 	(output enable, to be connected to GND) 	* 
* 
* 

reset 	(reset signal) 	 * 
* 

* Outputs (3 bits per output) 	 * 
* 12. .0 	(current row index) 	 * 
* m2. .0 	(current column index) 	 * 
* (1 bit per input) 	 * 
* done 	(scan-complete signal) 	 * 
* * 
* Note row and column indices start range from 000 to 111 	* 
* * 

moore(net 112..0, /* rows in sub-block 	/ 

mm2. .0, /* columns in sub-block */ 
clk, /* clock signal */ 
oe, 1* output enable */ 
reset, / 	reset signal */ 
12..0, /* current row index 	/ 

m2. .0, /* current column index */ 
done, /* scan-complete signal */ 
p, / 	parity parameter *1 

ri, /* first-row parameter *1 

rl, /* last-row parameter 	/ 

cl, /* first-column parameter *1 

cm) /* last-column parameter 	/ 

group 11[112..0J; 
group mm[mm2..0]; 
group 1(12..0J; 
group m[m2..0]; 

/* read JEDEC files / 
getpart("gl6v8", "stage_a 11 , 

112, 111, 110, mm2, rnml, mm0, 12, 11, 10, GND, 
-, rl, ri, m2, ml, mO, 	p, ci, cm, VCC); 
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getpart ( "glGvS', rlstagebfl, 

	

clk, cm, ci, 	p. reset, -, -, rl, 	rl, GND, 
oe, 	12, 	11, 	10, 	m2, ml, nO, -, done, VCC); 

/* simulate state machine / 
test(clk, 11, mm => 1, m, done) 
C 	tracef("%w %d %d 	%d %d %w", 

clk, 11, mm, 1, m, done); 

1* 

* test vectors for 5x1, 3x2, 2x3, lxS, 3x5, 4x5, 
* and 8x8 zigzag scan paths 
* 

* Note: 
* row and column indices range from 000 to 111, therefore 
* the scan paths are defined as 4x0, 2x1, 1x2, 0x4, 2x4, 3x4, and 7x7 
* 

* indices automatically reset to first position 
* 

*1 

oe = 0; 
reset = 1; 
I reset to first position / 
(\C, 7, 7 => 0, 0, 7); 
reset = 0; 

/ 	row x column path 	/ 
/ 	5x1 path I 

(\C, 4, 0 => 1,  0, 0); 
(\C, 4, 0 => 2,  0, 0); 
(\C, 4, 0 => 3,  0, 0); 
(\C, 4,  0 => 4, 0, 1); 
(\C, 4, 0=> 0, 0, 0); 

/ 	3x2 path */ 

(\C, 2, 1 => 0, 1, 0); 
(\C, 2, 1=> 1,  0, 0); 
(\C, 2, 1=> 2,  0, 0); 
(\C, 2, 1> 1,  1, 0); 
(\C, 2, 1=> 2,  1, 1); 
(\C, 2, 1 => 0, 0, 0); 

/ 	2x3 path / 

(\C, 1, 2 => 0, 1, 0); 
(\C, 1, 2=> 1, 0, 0); 
(\C, 1, 2=> 1, 1,  0); 
(\C, 1, 2=> 0, 2,  0); 
(\C, 1, 2 => 1, 2, 1); 
(\C, 1, 2 => 0, 0, 0); 

/ 	1x5 path */ 

(\C, 0, 4 => 0, 1,  0); 
(\C, 0, 4 => 0, 2,  0); 
(\C, 0, 4> 0, 3,  0); 
(\C, 0, 4=> 0, 4,  1); 
(\C, 0, 4>0, 0, 0); 
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/ 	3x5 path / 

(\C, 2, 4 => 0, 1, 0); 

(\C, 2, 4 => 1, 0, 0); 

(\C, 2, 4>2, 0, 0); 

(\C, 2, 4 => 1, 1, 0); 

(\C, 2, 4 => 0, 2, 0); 

(\C, 2, 4 => 0, 3, 0); 

(\C, 2, 4 => 1, 2, 0); 

(\C, 2, 4 => 2, 1, 0); 

(\C, 2, 4> 2, 2, 0); 

(\C, 2, 4> 1, 3, 0); 

(\C, 2, 4 => 0, 4, 0); 

(\C, 2, 4> 1, 4, 0); 

(\C, 2, 4 a 2, 3, 0); 

(\C, 2, 4=> 2, 4, 1); 

(\C, 2, 4 a 0, 0, 0); 

1* 4x5 path */ 

(\C, 3, 4 a 0, 1, 0); 

(\C, 3, 4 a 1, 0, 0); 

(\C, 3, 4 a 2,  0, 0); 

(\C, 3,  4> 1, 1, 0); 

(\C, 3, 4 a 0, 2,  0); 

(\C, 3,  4a 0, 3, 0); 

(\C, 3, 4 => 1, 2,  0); 

(\C, 3,  4 a 2, 1, 0); 
(\C, 3, 4 a 3, 0, 0); 

(\C, 3, 4>3, 1, 0); 

(\C, 3, 4 => 2, 2, 0); 

(\C, 3, 4a 1, 3, 0); 

(\C, 3, 4a 0, 4, 0); 

(\C, 3, 4a 1, 4, 0); 

(\C, 3, 4> 2,  3,  0); 

(\C, 3, 4a 3, 2,  0); 
(\C, 3,  4 a 3, 3, 0); 

(\C, 3, 4a 2, 4, 0); 

(\C, 3, 4=> 3, 4, 1); 

(\C, 3, 4 a 0, 0, 0); 

/ 	8x8 path */ 

(\C, 7, 7 a 0, 1, 0); 

(\C, 7, 7 a 1,  0, 0); 

(\C, 7, 7 a 2,  0, 0); 

(\C, 7, 7 a 1, 1,  0); 

(\C, 7, 7 a 0, 2,  0); 

(\C, 7, 7 a 0, 3,  0); 

(\C, 7, 7 a 1, 2, 0); 

(\C, 7, 7 a 2, 1, 0); 
(\C, 7, 7 a 3, 0, 0); 

(\C, 7, 7 a 4, 0, 0); 

(\C, 7, 7a 3, 1, 0); 
(\C, 7, 7 a 2, 2,  0); 

(\C, 7, 7 a 1, 3,  0); 

(\C, 7, 7 a 0, 4,  0); 

(\C, 7, 7 a 0, 5,  0); 

(\C, 7, 7 a 1, 4, 0); 

(\C, 7, 7 a 2,  3,  0); 

(\C, 7, 7 a 3, 2, 0); 

(\C, 7, 7 a 4, 1, 0); 
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(\C, 7, 7 => 5,  0, 0); 
(\C, 7, 7 => 6,  0, 0); 
(\C, 7,  7 => 5, 1, 0); 
(\C, 7, 7 => 4, 2, 0); 
(\C, 7, 7 => 3, 3, 0); 
(\C, 7, 7 => 2, 4, 0); 
(\C, 7, 7 => 1, 5, 0); 
(\C, 7, 7 => 0, 6, 0); 
(\C, 7, 7 => 0, 7, 0); 
(\C, 7, 7 => 1, 6, 0); 
(\C, 7, 7 => 2, 5, 0); 
(\C, 7, 7 => 3, 4, 0); 
(\C, 7, 7 => 4, 3, 0); 
(\C, 7, 7 => 5, 2, 0); 
(\C, 7, 7 => 6, 1, 0); 
(\C, 7, 7 => 7, 0, 0); 
(\C, 7, 7 => 7, 1, 0); 
(\C, 7, 7 => 6, 2, 0); 
(\C, 7, 7 => 5, 3, 0); 
(\C, 7, 7 => 4, 4, 0); 
(\C, 7, 7 => 3, 5, 0); 
(\C, 7, 7 => 2, 6, 0); 
(\C, 7, 7 => 1, 7, 0); 
(\C, 7, 7 => 2, 7, 0); 
(\C, 7, 7 => 3, 6, 0); 
(\C, 7, 7 => 4, 5, 0); 
(\C, 7, 7 => 5, 4, 0); 
(\C, 7, 7 => 6, 3, 0); 
(\C, 7, 7 => 7, 2,  0); 
(\C, 7, 7 => 7, 3,  0); 
(\C, 7, 7 => 6, 4, 0); 
(\C, 7, 7 => 5, 5, 0); 
(\C, 7, 7 => 4, 6, 0); 
(\C, 7, 7 => 3,  7, 0); 
(\C, 7, 7 => 4,  7, 0); 
(\C, 7, 7a 5,  6,  0); 
(\C, 7,  7=> 6, 5, 0); 
(\C, 7, 7=> 7, 4, 0); 
(\C, 7, 7=> 7, 5, 0); 
(\C, 7, 7 => 6, 6, 0); 
(\C, 7, 7 => 5, 7, 0); 
(\C, 7, 7 => 6, 7, 0); 
(\C, 7, 7 => 7, 6,  0); 
(\C, 7,  7 => 7, 7, 1); 
(\C, 7, 7 => 0, 0, 0); 

/ 	end of test / 

) / 	end of moore / 
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SUB-BLOCK CLASSIFICATION USING A NEURAL NETWORK FOR ADAPTIVE ZIGZAG 
REORI)ERING IN JPEG-LIKE IMAGE COMPRESSION SCHEME 

H.-J. Grosse, M. R. Varley, T. J. Terrel!, and Y. K. Chan 

ABSTRACT 

In this paper a neural-network technique for classification of blocks of discrete cosine transform (DCT) 
coefficients using a backpropagation algorithm is described. The DCT is employed in a variety of transform-
based image compression schemes. In the authors' recent JPEG-like image compression scheme, efficient 
reordering of coefficients is achieved by app!ying adaptive zigzag reordering to variable-size rectangular sub-
blocks. The additional neural-network-based sub-block classification discards isolated nonzero coefficients of 
small significance in some sub-blocks and therefore further reduces their sizes. Initial experimental results are 
presented that demonstrate the potential of the additional neura!-network-based sub-block classification in 
terms of improved coding gain. 

INTRODUCTION 

Many image compression schemes, such as the standard JPEG scheme [1], operate by processing small non-
overlapping image blocks (usually square N x N blocks of a fixed size, e.g. 8 pixels x 8 pixels) using a 2-D 
transform such as the discrete cosine transform (DCT) [2]. Whilst the transform itself is reversib!e and 
lossless, it is used to decorrelate the data so that the inter-element correlation in the transform domain is 
significant!y less than that in the spatial domain. The resulting 2-D block of transform coefficients is then 
processed in the transform domain; in many cases this involves discarding some of the low-value transform 
coefficients to reduce the amount of data to be transmitted or stored, which causes a loss of information. 

In the authors' recent JPEG-like scheme, each N x N block of quantized and thresholded transform 
coefficients is modified to yield the smallest possible sub-block to include all nonzero transform coefficients to 
be coded [3, 4]. As an example, Fig. 1(a) depicts an 8 x 8 block of quantized transform coefficients, 

•-26 —3 —6 2 2 : 0 0 0 

! —2 —4 0 o:o 0 0 

—3 ! 5-1 —1:000 

—4 1 2 —1 0 0 

0 0 000000 

00000000 

0 0 000000 

00000000 

(a) 	 (b) 

Figure ! (a) 8 x 8 Block of Transform Coefficients, and (b) Zigzag Scan Path for 4 x 5 Sub-Block 
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with the corresponding 4 x 5 sub-block indicated by the dotted line. The sub-block, being adapted to the 
particularities of the corresponding block, is not necessarily square, but is rectangular and extends from the top 
left-hand corner with a height and a width between I and N. Its dimensions, in the above example 4 x 5, 
need to be retained in order to traverse the scan path correctly using the adaptive zigzag-reordering algorithm. 
The algorithm, which in itself is transparent and lossless, generates the next position in the scan path, and 
therefore the whole scan path, through Boolean expressions operating on the current position and the 
dimensions of the sub-block; and produces a 1 -D matrix of coefficients. Figure 1 (b) depicts the scan path for 
a 4 x 5 sub-block. The l-D matrix is then converted into an intermediate symbol sequence, each symbol 
representing the number of zero coefficients preceding the current nonzero coefficient, the amplitude 
classification and the actual amplitude of the nonzero coefficient [1].  This facilitates entropy coding by 
placing low-frequency coefficients, that are more likely to be nonzero, before high-frequency coefficients. An 
end-of-block symbol (EOB) terminates the block after the last nonzero coefficient. Huffman coding [5], or 
arithmetic coding [6],  can be used to convert the symbols to a continuous data stream. 

SUB-BLOCK DETERMINATION USING NEURAL-NETWORK CLASSIFICATION 

Isolated nonzero transform coefficients in a block diminish the effectiveness of adaptive zigzag reordering, 
since retaining isolated nonzero coefficients also requires that a large number of otherwise unnecessary zero 
coefficients are retained. However, if the contribution to reconstruction of an isolated transform coefficient is 
found to be expendable, a significantly smaller sub-block may be generated. The additional reconstruction 
error introduced by discarding the isolated nonzero coefficient is limited to the corresponding block of pixels. 

The decision to sacrifice an isolated transform coefficient should take into account the contributions of all 
coefficients in the block in order to weight the contribution of the isolated coefficient correctly. As the 
adaptive zigzag-reordering algorithm requires only the sub-block dimensions, i. e. the row and column indices 
of the bottom right-hand corner, a neural-network-based classifier can be used to determine the appropriate 
dimensions. 

FEEDFORWARD NETWORK AND TRAINING SET COMPOSITION 

A feedforward network with 64 input neurons, 256 hidden neurons, and 64 output neurons has been trained 
using a backpropagation algorithm. The neurons in the two trainable layers, i. e. hidden layer and output 
layer, have log-sigmoid transfer functions because their output range, being between 0.0 and 1.0, is 
appropriate for learning to output binary values [7]. 

The input layer provides one neuron per element. In order to homogenize input values, amplitudes of the 
transform coefficients are classed according to their word lengths in bits for entropy coding in JPEG [1]; and 
the classifications are normalized, i. e. divided by the maximum value within the block. The input layer 
therefore receives the block of normalized amplitude classifications, that range from 0.0 to 1.0. As an 
example, Fig. 2 depicts an 8 x 8 block of quantized transform coefficients, the corresponding amplitude 
classifications according to JPEG and the normalized input values to the network. 

The number of neurons in the hidden layer has been determined experimentally and is a compromise between 
performance and complexity. 

The output layer uses a simple l-in-64 binary code to identify the dimensions of the 64 possible sub-block 
classes. This code, although requiring 64 neurons, allows competitive selection of one output neuron and has 
been found to be more reliable than other codes, for example a 6-bit natural binary code that would require 
only 6 neurons. 

Composition of the training set is of great importance as the performance of the network depends on the initial 
training, and the large amounts of image data available must be limited to a representative collection. The 
training set, that has been composed manually, consists of 64 idealized input sets and 10 examples of each of 
the 58 sub-block classes that have been selected from three images. However, for 6 of the 64 possible sub-
block classes, suitable examples have not been found in the selected images. The small number of idealized 
sets, with all elements within the corresponding sub-blocks set to 1.0, supports the network's ability to classify 
ideal input sets and the sub-block classes for which input sets have not been available. 
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Figure 2 (a) Block of Transform Coefficients, (b) Block of Amplitude Classifications, and 
(c) Block of Normalized Amplitude Classifications 

The neural network is used during compression of the image to determine the dimensions of the sub-blocks to 
be retained and encoded for transmission or storage prior to adaptive zigzag reordering. However, it is not 
required during reconstruction of the image. 

EXPERIMENTAL RESULTS 

The neural network has been implemented using MATLAB [8] and its Neural Network Toolbox [7]. For the 
sub-block determination it has been found that a standard backpropagation algorithm has trained the network 
better than a more sophisticated backpropagation algorithm using momentum and adaptive learning rate. The 
transform coefficient matrices have been generated using the Independent JPEG Group's software [9]. 

Several images have been processed using the standard JPEG algorithm, the adaptive zigzag-reordering 
algorithm, and the neural-network-based sub-block determination. The quality setting, q, controlling scaling 

of quantization tables, ranges from 10 ('poor' quality) to 90 ('good' quality) in steps of 5. Note that, in 
accordance with JPEG's EOB symbol, all results apply only to zero coefficients preceding the last nonzero 
coefficient. 

As an example, Fig. 3 depicts the entropy of counts of consecutive zero coefficients for a well-known image, 
'Lena', having a resolution of 512 x 512 pixels. For a given quality setting, and therefore the same peak 
signal-to-noise ratio (psnr), adaptive zigzag reordering always produces a lower entropy for counts of 
consecutive zero coefficients than standard JPEG. The sub-block determination using this particular neural-
network classifier produces even lower entropy values, but requires a higher quality setting in order to achieve 
the same psnr, since some information is discarded by the neural network. Therefore, the aim is to find an 
appropriate compromise between reduction in entropy and increase in quality setting. 

CONCLUDING REMARKS 

It has been demonstrated that the neural-network-based sub-block classification improves the performance of 
adaptive zigzag reordering employed in the authors' recent JPEG-like scheme. 

Since the sub-block dimensions need to be available for reconstruction, the authors are currently investigating 
efficient coding schemes for them. 

In addition, since the blocks of transform coefficients represent visual information, the generation of training 
sets that relate better to properties of the human visual system (HVS) is ongoing. Different neural network 
architectures, for example learning vector quantization (LVQ), are also being investigated. 
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ABSTRACT 

In this paper a hardware implementation of an adaptive 
technique for reordering of discrete cosine 
transform (DCI) coefficients, that are used in a variety 
of transform-based image compression schemes such as 
JPEG, is described. Efficient reordering is achieved for 
variable-size rectangular sub-blocks using Boolean 
operations, that determine the position of the next 
coefficient to be coded. The algorithm has been 
developed for implementation in hardware using 
programmable logic devices (PLD5). The 
implementation constitutes a Moore state machine with 
binary inputs representing the number of rows and 
columns in the sub-block to be reordered. Experimental 
results are presented which demonstrate the potential 
advantages of this new technique, in terms of a 
significant reduction in entropy. 

INTRODUCTION 

Many image compression schemes, such as the standard 
JPEG scheme [I], operate by processing small non-
overlapping image blocks (usually square N x N blocks 
of a fixed size, e.g. 8 pixels x 8 pixels) using a 2-D 
transform such as the discrete cosine transform 
(DCT) [2]. 'Whilst the transform itself is reversible and 
lossless, it is used to decorrelate the data so that the 
inter-element correlation in the transform domain is 
significantly less than that in the spatial domain. The 
resulting 2-D block of transform coefficients is then 
processed in the transform domain; in many cases this 
involves discarding some of the low-value transform 
coefficients to reduce the amount of data to be 
transmitted or stored, which causes a loss of 
information. 

In the authors' new JPEG-like scheme the N x N block 
of quantized and thresholded transform coefficients is 
modified to yield a smaller sub-block of coefficients to 
be coded. This sub-block is not necessarily square, but 
is rectangular with a height and width between I and N. 
Adaptive zigzag reordering, which in itself is a fully 
reversible process, produces a l-D array of coefficients 
which is then converted into an intermediate symbol 
sequence, each symbol representing the number of zero 
coefficients preceding the current nonzero coefficient, 

the amplitude classification and the actual amplitude of 
the nonzero coefficient. This facilitates entropy coding 
by placing low-frequency coefficients, that are more 
likely to be nonzero, before high-frequency coefficients. 

In this paper, a version of the algorithm that has been 
developed for implementation in hardware using 
programmable logic devices (PLDs) is described. The 
implementation constitutes a Moore state machine with 
binary inputs representing the number of rows and 
columns in the sub-block to be reordered. The state 
machine steps through the appropriate number of states 
in sequence, and generates outputs corresponding to the 
row and column indices of each element in turn for a 
zigzag scan path. Since the implementation employs the 
parallel hardware of the PLDs, the appropriate 
operations are mapped directly into Boolean operations, 
implemented using logic gates, instead of nested 
decisions which would be used in a software 
implementation. This enables fast reordering to be 
achieved prior to coefficient coding. 

Experimental results are presented for four images, 
which demonstrate the potential advantages of the new 
adaptive scheme over the standard JPEG scheme, in 
terms of a significant reduction in entropy. 

DETERMINATION OF SUB-BLOCKS 

The proposed algorithm is transparent and lossless, and 
identifies the smallest possible rectangle to include all 
nonzero transform coefficients after quantization, thus 
adapting to the particularities of every block. As an 
example, Fig. I depicts an 8 x 8 block of quantized 
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Figure 1 8 x 8 Block of Transform Coefficients 
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transform coefficients, with the corresponding 4 x 5 
sub-block indicated by the dotted line. Since the sub-
blocks generally have different heights and widths 
depending on the specific content of the corresponding 
block, the dimensions of the sub-block, in the above 
example 4 x 5, need to be retained in order to traverse 
the scan path correctly using the new algorithm. 

VERSATILE ZIGZAG-REORDERING 
ALGORITHM 

A matrix, A(L, M), of L rows by M columns can be 
defined as 

ra(l,l) a(1,2). 	a(i,M) 1 
I a(2,l) a(2,2) . 	a(2,M) I 

A(L,M)=I 	 (1) 

[a(L,l) a(L,2) 	a(L, M)j 

with 15ISLand 15m:5M. 

One of many possible scan paths involves zigzag 
reordering as shown in Fig. 2 for two examples; the 
elements always succeed a neighbouring element. 

(a)  

(b)  

Figure 2 Zigzag Scan Path for (a) 3 x 5 , and 
(b) 4 x 5 Matrices 

The scan path depends on the dimensions, L and M , of 
the matrix. As the dimensions of the matrix are often 
known in advance, 8 x 8 for blocks in JPEG for 
example, the matrix can easily be traversed referring to a 
single scan path. However, applications that allow 
matrices of different and variant dimensions need to 

produce scan paths tailored to the dimensions of the 
matrices being used in order to reduce complexity. 

Th 	 1 + +\ e next element s positton i1 , m ), and therefore the 

whole scan path, is determined through Boolean 
expressions operating on the current element's 
position (i, in) and the dimensions of the sub-block, L 

and M. For zigzag reordering five parameters have 
been defined: 

RI indicates whether the current element is in the first 
row 

II 	forl=l 
R1=1 . (2) 

otherwtce 

RL indicates whether the current element is in the last 
row 

II 	forl=L 
RL=1 (3) 

10 	otherwise 

Cl indicates whether the current element is in the first 
column 

II 	form=I 
Cl=1 . (4) 

10 	otherwise 

CM indicates whether the current element is in the last 
column 

11 	form=M 
CM=1 (5) 

otherwise 

P indicates whether the sum of the row index I and the 
column index m is odd 

jl 	zifQ+m)isodd 
(6) 

L0 	otherwise 

For different scan paths other parameters will be 
required. 

The following expressions determine the changes in row 
and column indices: 

I' = I — I if [iiCM.P] istrue 	 (7) 

m+1 if 	 (8) 

[(RI. &. ) + (RL . CM . p) + ( ii. 	)] is true 

I=I+l if 	 (9) 

[(ii. CM 	+ 	Cl 	+ ( i . j. 	is true 

in =m-1 if [IL.Cl.P] istrue 	 (10) 
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P(1,rn) 

CM(l,rn) 	 RL(1,m) 

RI(1,rn) 	RL(1,rn) 

`/ \ 0/ \ 

Cl(Im) 	CM(1,rn) 

0/ \ 0/ \ 

rn += rn+l 	rn+l 	rn 	rn-I 	m 	m+I 

* indicates scan complete 

Figure 3 Binary Decision Tree for Zigzag Reordering 

The above expressions are given in sum-of-products 
form, but can be rearranged as required. A binary 
decision tree, as shown in Fig. 3, may be used to 
combine equations (7) to (to). 

HARDWARE IMPLEMENTATION USING 
PROGRAMMABLE LOGIC DEVICES 

As an illustration of how the versatile zigzag-reordering 
algorithm can be mapped into dedicated hardware, a 
Moore state machine has been implemented with six 
binary inputs representing the size of the sub-block to be 
reordered. Three of the binary inputs are used to specify 
the number of rows: 000 represents a sub-block 
containing one row, 001 represents a sub-block 
containing two rows etc. up to 111 for a sub-block with 
eight rows. Similarly, the number of columns is 
specified. Whilst the algorithm as described above can 
be applied to sub-blocks of any size, this particular 
hardware implementation allows all 64 sub-block sizes 
from I x I to 8 x 8. The state machine has six outputs 
that represent the row and column indices, I and m, of 
the current element in the scan path in 3 bits each. 
A reset signal (RESET) is used to initialize the row and 
column indices, 1 and rn, to zero; corresponding to the 
first element in the sequence regardless of the sub-block 
size L and M. The appropriate zigzag scan sequence 
is then generated in synchronization to a clock signal 
(CLX). After the scan is complete, i. e. when I = L and 
rn = M, a signal (DONE) is asserted to indicate 
completion of the scan of the current sub-block, and the 
row and column indices, I and m, are automatically 
returned to zero in readiness for the zigzag scan of the 
next sub-block. 

The hardware implementation involves two stages; each 
of which is mapped into a separate GALI6V8 
device (3], which is a generic array logic PLD with a 

user-programmable AND array, a fixed OR array, and an 
output stage employing output logic macro-cells 
(OLMCs). The device has eight dedicated inputs and 
eight user-configurable pins, each of which may be 
configured individually as input, combinational output, 
or registered output within the appropriate OLMC. 
Registered outputs are also fed back into the device's 
AND array enabling a state machine to be implemented 
on a single device. 

The two stages in this implementation are: 

Stage A. 	This stage determines, according to 
equations (2) to (6), P, RI, RL, Cl, and CM from 
the present values of the row and column indices, / 
and rn, and the sub-block size as defined by L and M. 
This is a purely combinational stage with twelve inputs 
(L, M, I, and rn consisting of 3 bits each) and five 
outputs(P, Ri, RL, Cl,and CM). 

Stage B. This stage determines the next row and 

column indices, C and m , from the present indices, 
I and m, and the five outputs of the preceding stage 
using a clock signal (CLX) to control the timing of the 
zigzag-scan-sequence generation, and a reset signal 
(RESET) to initialize the row and column indices to zero 
for the first scan. The outputs from stage B are the two 
3-bit indices, / and rn, which are implemented as 
registered outputs, enabling them to be fed back 
internally to the PLD's AND array. Additionally, a 
DONE signal is available from stage B to indicate that 
the zigzag scan of the current L x M sub-block is 
complete. 

Each stage is mapped into a separate GALI6V8 PLD, 
and the state machine is implemented by interconnecting 
the two PLDs as shown in Fig. 4. 
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Figure 4 Implementation of Zigzag Scan Path using GALl 6V8 PLDs 

The fusemaps for the two devices have been created 
using the development tool Tango-PLD [4], that allows 
specification of the functionality of each device at a high 
level using the C-like Tango Design Language (TDL). 
A simple TDL file has been used to implement stage A 
of the state machine according to equations (2) to (6). 
Stage B has been implemented using a TDL file 
describing the binary decision tree shown in Fig. 3. 

It has been found that the stage A implementation 
requires up to six product lines per output and readily 
fits within a GALI6V8 device. Since, in practice, a row 
or column index is never decremented from 000 or 
incremented from Ill, "don't care" states can be used 
for these cases in order to reduce the number of product 
lines per output. Incorporating these considerations into 
the TDL description of the binary decision tree enables 
the state machine of stage B to be implemented on a 
single GAL 16V8 device with the eight available product 
lines fully utilized for some of the registered outputs. 

Each device has been individually tested to verify its 
correct operation, and the entire state machine, 
consisting of the two GAL 16V8 devices interconnected 
as shown in Fig. 4, has also been tested to ensure that the 
zigzag scan paths are correctly generated. 

ENTROPY REDUCTION VIA ADAPT WE 
ZIGZAG REORDERING 

In the standard JPEG scheme the l-D matrix of zigzag-
reordered coefficients is represented through an 
intermediate symbol sequence, each symbol representing 
the number of zero coefficients preceding the current 
nonzero coefficient, the amplitude classification and the 

actual amplitude of the nonzero coefficient [1]. An 
end-of-block symbol (EOB) terminates the block after 
the last nonzero coefficient. Huffman coding [5], or 
arithmetic coding [6], can be used to convert the 
symbols to a continuous data stream according to the 
JPEG specification. 

EXPERIMENTAL RESULTS 

The images 'Cameraman' and 'Lena256' (both with a 
resolution of 256 x 256), and 'F-16' and 'Lena512' 
(both with a resolution of 512 x 512) have been 
processed using the standard and the adaptive zigzag-
reordering algorithms. The transform coefficient 
matrices have been generated using the Independent 
JPEG Group's software [7]. The quality setting, q, 

controlling scaling of quantization tables, ranges from 10 
('poor' quality) to 90 ('good' quality) in steps of 5. Note 
that, in accordance with JPEG's EOB symbol, all results 
apply only to zero coefficients preceding the last 
nonzero coefficient. 

It has been observed that in all cases the entropy of 
counts of consecutive zero coefficients for adaptive 
zigzag-reordered scan paths is lower than that for the 
standard 8 x 8 zigzag scan path. Figure 5 summarizes 
the percentage entropy reduction for the four images. 
For higher quality settings the number of nonzero 
coefficients increases, therefore the sub-block 
dimensions approach the standard 8 x 8 block 
dimensions more frequently. However, for the images 
analysed using 'medium' quality settings 

(q = 30 to 70), a significant entropy reduction of at 

least IS % has been obtained. 
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Abstract 

In this paper an adaptive technique for reordering of 
discrete cosine transform (DCT) coefficients, that are 
used in a variety of transform-based image compression 
schemes such as JPEG, is described. Efficient reordering 
is achieved for variable-size rectangular sub-blocks using 
an innovative binary decision tree which determines the 
position of the next coefficient to be coded. Experimental 
results are presented which demonstrate the potential 
advantages of this new technique, in terms of a significant 
reduction in entropy. 

1 Introduction 

Many image compression schemes, such as the standard 
JPEG scheme [I], operate by processing small non-
overlapping image blocks (usually square N x N blocks 
of a fixed size, e.g. 8 pixels x 8 pixels) using a 2-D 
transform such as the discrete cosine transform (D(7) [2]. 
Whilst the transform itself is reversible and lossless, it is 
used to decorrelate the data so that the inter-element 
correlation in the transform domain is significantly less 
than that in the spatial domain. The resulting 2-13 block of 
transform coefficients is then processed in the transform 
domain; in many cases this involves discarding some of 
the low-value transform coefficients to reduce the amount 
of data to be transmitted or stored, which causes a loss of 
information. The remaining coefficients are then coded, 
usually in a specific order corresponding, for example, to 
increasing spatial frequency. In JPEG schemes zigzag 
reordering is applied to the quantized and thresholded 

block of coefficients, producing a l-D array of 
coefficients. This facilitates entropy coding by placing 
low-frequency coefficients, that are more likely to be 
nonzero, before high-frequency coefficients. 

The new technique differs in that the N x N block of 
transform coefficients is modified to yield a smaller sub-
block of coefficients to be coded. This sub-block is not 
necessarily square, but is rectangular with a height and 
width between I and N. Since the sub-blocks generally 
have different heights and widths depending on the 
specific content of the corresponding block, the reordering 
is no longer a straightforward task. The algorithm 
described in this paper produces a l-D array containing 
the reordered coefficients from the variable-size sub-
block, using an appropriate zigzag scan path. This 
algorithm determines the required scan path 'on the fly' 
using a binary decision tree, and can be applied to 
rectangular blocks of any height and width. 

Experimental results are presented for four images, 
which demonstrate the potential advantages, in terms of a 
significant reduction in entropy, over the standard JPEG 
scheme. 

2 Determination of sub-blocks 

The proposed algorithm is transparent and lossless, and 
identifies the smallest possible rectangle to include all 
nonzero transform coefficients after quantization, thus 
adapting to the particularities of every block. As an 
example, Fig. 1 depicts an 8 x 8 block of quantized 
transform coefficients, with the corresponding 4 x 5 sub-
block indicated by the dotted line. Since the sub-blocks 
generally have different heights and widths depending on 
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Figure 1 8 x 8 Block of Transform Coefficients 

the specific content of the corresponding block, the 
dimensions of the sub-block, in the above example 4 x 5, 
need to be retained in order to traverse the scan path 
correctly using the new algorithm. 

3 Versatile zigzag-reordering algorithm 

A matrix, A(L, M), of L rows by M columns can be 
defined as 

I(L,l)

Q,i) a(i,2) . 	 a(1,M)

(2,i) a(2,2) 	a(2,M)
A(L,M) 

= aQ, m) 

 a(L,2) . 	a(L,M)j 

with lf:I:~Land 15m:5M. 
One of many possible scan paths involves zigzag 

reordering as shown in Fig. 2 for two examples; the 
elements always succeed a neighbouring element. 

The next element's position in the scan path, 
1+ -\

)  
,m 
 , and therefore the whole scan path, is 

determined using binary decisions based on the current 

element's position, (l,m), and the dimensions of the sub-

block, L and M. For zigzag reordering five parameters 
have been defined: 
RI indicates whether the current element is in the first 
row 

1 i forIl 
(2) 

otherwise 

RL indicates whether the current element is in the last 
row 

I forl=L 
RL 

= j0 otherwise 

Cl indicates whether the current element is in the first 
column 

Cl = 
{l form=1 
 (4) 

0 otherwise 

CM indicates whether the current element is in the last 
column 

I form=M 
CM 

= jo otherwise 	
(5) 

P indicates whether the sum of the row index I and the 
column index in is odd 

II ,f (I+m) is odd 
(6) 

(0 otherwise 

(a)  

(b)  

Figure 2 Zigzag Scan Path for (a) 3 x 5, and 
(b) 4)< 5 Matrices 

Figure 3 depicts a decision tree which may be used to find 

the next element's position, (r 	with three tests 

operating on the parameters defined in equations (2) - (6). 
First the parity parameter P(I, m) is tested, and 

depending on this result, either the last-column 
parameter CM(I, m) for P(I, in) = 0, or the last-row 

parameter RL(I, m) 	for 	P(I, m) = I , 	is 	tested. 

Subsequent decisions are then taken as specified in the 

decision tree. Note that in the case for which both 
l 

= I 

and m = in the full scan of the Lx M sub-block is 
complete. 
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P(l,m) 

CM(1,m) RLfl,m) 

RI(1,m) R41,m) 

0/ \ . 

	

CI'I,m) 	CM(4m) 

	

0/ \ 	0/ \ , 

mm mm 	mm 
* indicates scan complete 

Figure 3 Binary Decision Tree for Zigzag Reordering 

4 Entropy reduction via adaptive zigzag 
reordering 

In the standard JPEG scheme the l-D matrix of zigzag-
reordered coefficients is represented through an 
intermediate symbol sequence, each symbol representing 
the number of zero coefficients preceding the current 
nonzero coefficient, the amplitude classification and the 
actual amplitude of the nonzero coefficient [I]. An 
end-of-block symbol (EOB) terminates the block after the 
last nonzero coefficient. Huffman coding [3], or 
arithmetic coding [4], can be used to convert the symbols 
to a continuous data stream according to the JPEG 
specification. 

The new adaptive technique reduces the counts of 
consecutive zero coefficients; it modifies the distribution 
of the counts of consecutive zero coefficients and also 
reduces the number of different counts. This results in an 
overall reduction in entropy for the counts of consecutive 
zero coefficients, which may be exploited to give an 
increased compression ratio. 

5 Experimental results 

The images 'Cameraman' and 'Lena256' (both with a 
resolution of 256 x 256), and 'F- 16' and 'LenaS 12' (both 
with a resolution of 512 x 512) were processed using the 
standard and the adaptive zigzag-reordering algorithms. 
The transform coefficient matrices were generated using 
the Independent JPEG Groups software [5]. The quality 
setting, q, controlling scaling of quantization tables, 

ranges from 10 ('poor' quality) to 90 ('good' quality) in 
steps of 5. Note that, in accordance with JPEG's EOB 
symbol, all results apply only to zero coefficients 
preceding the last nonzero coefficient. 

It was observed that in all cases the entropy for 
adaptive zigzag-reordered scan paths is lower than that for 
the standard 8 x 8 zigzag scan path. As an example, 
Fig. 4 depicts the entropy of counts of consecutive zero 
coefficients for the image 'Lena5l2'. It is clear that the 
adaptive algorithm consistently produces a lower entropy, 
indicating the potential for improved coding gain. 
Figure 5 summarizes the percentage entropy reduction for 
all four images. For higher quality settings the number of 
nonzero coefficients increases, therefore the sub-block 
dimensions approach the standard 8 x 8 block dimensions 
more frequently. However, for the images analysed using 

'medium' quality settings (q = 30 to 70), a significant 

entropy reduction of at least 15% was obtained. 

6 Concluding remarks 

It has been demonstrated that the new zigzag-reordering 
algorithm consistently gives a significant reduction in the 
entropy of counts of consecutive zero coefficients over a 
wide range of quality settings. The versatility of the 
zigzag-reordering algorithm also supports the use of 
different block sizes for different regions of an image, for 
example 4 x 4 blocks for image regions containing 
significant detail and 16x 16 blocks for background 
regions. 

A hardware implementation of the decision tree has 
been developed using dedicated logic [6]. The algorithm 
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is also being applied in research on discarding isolated 
nonzero coefficients to generate even smaller sub-
blocks [7]. 

A block of size N x N yields a sub-block of one of 

N 2  possible sizes, thus introducing an overhead of 

2 109 2  N bits per block for a simple fixed-length code. 

For N = 8, 64 symbols are necessary to uniquely identify 

every possible sub-block size, generating an overhead of 
6 bits per block. It was found that even after employing 
additional entropy coding, such as Huffman coding [3] or 
arithmetic coding [4], this size of overhead is prohibitive. 
However, the sub-block size is correlated with the number 

of coefficients allowing more efficient encoding. The 
number of coefficients along the scan path, i. e. the scan 
path length, is known and can be evaluated: it varies 

between I and N 2 , and provides some information 

suitable to narrow down the number of sub-block sizes 

possible for a particular number of coefficients. The 
authors are currently investigating improved coding 

schemes for the sub-block sizes. 

7 Acknowledgement 

H.-J. Grosse would like to thank the Department of 

Electrical and Electronic Engineering of the University of 
Central Lancashire for sponsoring his research. 

8 References 

Wallace, G. K. 	1992. 	The JPEG still picture 
compression standard, 	iEEE transactions on 
consumer electronics. 	Feb 1992. 	vol. 38, no. I. 
pp. xviii-xxxiv. 

2 Ahmed, N., Natarajan, T., and Rao, K. R. 1974. 
Discrete cosine transform. IEEE transactions on 
computers. Jan 1974. vol. C-23, no. 1. pp. 90-93 . 

3 Huffman, D. A. 1952. A method for the construction 
of minimum-redundancy codes. Proceedings of the 
IRE. Sep 1952. vol. 40, no.9. pp. 1098- ' 101 . 

4 Witten, I. H., Neal, R. M., and Cleary, J. G. 1987. 
Arithmetic coding for data compression. 
Communications of the ACM. Jun 87. vol. 30, no.6. 
pp. 520-540. 

5 Independent JPEG Group. The Independent JPEG 
Group's software: C source code, release 6a. [Online] 
Available ftp://ftp.simtel.netipub/simtelnetlmsdos/  
graphics/jpegsr6a.zip, 07 Feb 1996. 

6 Grosse, H.-J., Varley, M. R., Terrell, T. J., and Chan, 
Y. K. 1997. Hardware implementation of versatile 
zigzag-reordering algorithm for adaptive JPEG-like 
image compression schemes. In: Sixth international 

conference on image processing and its applications. 
London, UK. The Institution of Electrical Engineers. 

Venue: Dublin, Ireland, 14-17 Jul 1997. 

7 Grosse, H.-J., Varley, M. R., Terrell, T. J., and Chan, 
Y. K. 1997. Sub-block classification using a neural 

network for adaptive zigzag reordering in JPEG-like 
image compression scheme. in: Neural and fuzzy 
systems: design, hardware and applications. London, 
UK. The Institution of Electrical Engineers. Venue: 

London, UK, 09 May 1997. 

SWRE 


