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Abstract

This article focuses on control of the power take
off (PTO) element of a point absorber wave energy con-
verter. The research is based on a nonlinear simulation of
a PTO hydraulic circuit, in which the piston velocity and
generator torque act as ‘disturbance’ and control actua-
tor variables respectively, whilst the damping force is the
controlled output variable. The piston velocity is gener-
ated by a hydrodynamic simulation model that reacts to
both the damping force and sea wave profile. The damp-
ing force set point will be obtained from an associated
power capture optimisation module and may be time
varying. However, it is clear that such an adaptive tuning
system also requires high performance ‘low-level’ con-
trol of the device actuators, in order to fully realise the
benefits of optimisation. In this regard, the present arti-
cle illustrates use of the Proportional-Integral-Plus (PIP)
control methodology as applied to the PTO simulation.
In their simplest linear form, such PIP controllers do
not account for the interconnected system variables men-
tioned above. For this reason, the research also considers
‘feed–forward’ and ‘state–dependent’ forms of PIP con-
trol, in which the piston velocity is appended to a non–
minimal state space representation of the system.

Keywords: SUPERGEN, power take off simulation, optimal
control, non-minimal state space

Nomenclature
kl = motor leakage co-efficient
v = piston velocity
A = pipe cross-sectional area
B = friction coefficient
D = motor constant
Dh = hydraulic diameter of pipe
y = damping force
KS = pipe cross-section shape factor
L = motor shaft angular momentum
Lg = geometrical length of pipe

c© Proceedings of the 8th European Wave and Tidal Energy
Conference, Uppsala, Sweden, 2009

Leq = equivalent length of local resistances
J = moment of inertia
Ppr = accumulator pre-charge pressure
Re = Reynolds number
S = piston cylinder cross-section area
u = torque applied to motor shaft
V = volume of oil in accumulator
VA = volume of accumulator
ηm = motor efficiency
κ = specific heat ratio
ρ = density of oil

Subscripts

k = value atkth sample

Superscripts
. = first derivative

1 Introduction

One of the most challenging problems in the develop-
ment of wave energy converters (WECs) relates to their
optimisation and control in order to maximise energy
conversion. In order to extract the maximum amount of
energy from ocean waves, the resonant frequency of a
WEC should match the dominant frequency of the wave
spectrum as it changes with variations in sea state. In
general, it is possible to adjust the resistance of the de-
vice to movement caused by the action of waves and
thereby tune the WEC to this frequency. In the present
article, this is achieved by changing the damping force
in the power take off (PTO) mechanism.

Many WEC control strategies have been proposed in-
cluding, for example, latching [1] and various adaptive
tuning methods [2, 3]. In order to evaluate and im-
plement such control strategies, they have to be opti-
mised for realistic sea states. This optimisation process
can be arduous and must be repeated if the system state
changes; for example, if predictions of future waves are
made available to the control system.
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Recent research at Lancaster has focused on the de-
velopment of generic strategies for WEC optimisation
based on the use of Evolutionary Algorithms (EAs). In
particular, reference [4] utilises a real coded EA and a
novel time domain model of a point absorber WEC [3]
to optimise power capture. One advantage of EAs in
this context, is their potential extension to machine learn-
ing. In this case, an initial model-based optimisation step
would be followed by application to the real device, al-
lowing the controller to continue to develop on-line.

However, it is clear that such an adaptive tuning mod-
ule also requires high performance ‘low-level’ control
of the device actuators. In other words, fast and accu-
rate feedback control of nonlinear actuators is necessary
in order to fully realise the benefits of the optimisation
phase. To help investigate these issues, the present re-
search couples a time domain WEC model (section 3) to
an illustrative nonlinear simulation of a PTO hydraulic
circuit (section 4).

Fig. 1 illustrates the connection between these models
and the key variables considered in the article. Here, the
piston velocityvk and generator torqueuk represent dis-
turbance and control input variables respectively, whilst
the damping forceyk is regarded as the controlled out-
put variable [5]. In fact, the damping force set pointdk

is ultimately obtained from the optimisation module and
may be time varying. Finally, the piston velocity is gen-
erated by the hydrodynamic model that is in turn driven
by the damping force and an externally specified (and
potentially nonlinear) sea wave profile.

In the present article, statistically obtained trans-
fer function models are identified and used to design
Proportional-Integral-Plus (PIP) control systems [6–11].
These are straightforward to implement and provide a
logical extension of conventional PID controllers, with
additional dynamic feedback compensators introduced
automatically when the process is of greater than first
order as here (section 5).

To illustrate the approach in the present context, a
PIP controller is developed for the PTO element of the
simulation (section 6). However, in their simplest lin-
ear form, such PIP controllers do not account for the
interconnected system variables shown in Fig. 1 and
this may lead to poor control performance for realistic
nonlinear sea states. For this reason, two extended ap-
proaches to the design problem are suggested, based on
feed-forward (section 6) and state dependent parameter
(section 7) methods.

2 SUPERGEN

The research reported in this article takes place under
the auspices of the Supergen Marine Energy Research
Consortium. The over-arching objective of Phase 2
(2007-2011) of the project is to ‘Increase knowledge and
understanding of the device-sea interactions of energy
converters from model-scale in the laboratory to full size
in the open sea’ (www.supergen-marine.org.uk).
There are ten research workstreams led by 11 academic
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Figure 1: Schematic diagram of the WEC controller.

staff investigators across five core universities, includ-
ing The University of Edinburgh, Heriot-Watt Univer-
sity, The University of Strathclyde, Lancaster University
and Queens University Belfast.

Work stream 7 on advanced control and network in-
tegration started October 2008, with the aim to develop
continuously adapting control techniques to optimise the
energy extraction and survivability (of generic WECs).
The objective of this work is to ensure that the effects of
nonlinearity and non-stationarity of the marine resource
on wave and tidal current energy conversion are well un-
derstood and satisfactorily mitigated through advanced,
evolving and coordinated control of the devices and their
power take-off system.

3 Optimisation

To evaluate dynamic (time varying) control systems
in real seas, a time domain model of the WEC is re-
quired. Although evolutionary algorithms are known to
be an efficient method for optimising within an exten-
sive search space, a large number of evaluations of the
model are necessary. For this reason, a recently devel-
oped computationally efficient WEC model is selected
for the research and briefly reviewed below.

3.1 Hydrodynamic model

The model is based on the equations of motion of
a simple mass–spring–damper system, initially consid-
ered in the frequency domain [3]. The coefficients of the
equation represent the effect of water on the device, as
shown below:

{−ω2[M +Aω ]+ iωBω +C}ξω = Fω (1)

ω is the angular frequency of the incoming waves
(rad/s);

M is the dry mass of the device (kg);

Aω is the “added mass” (kg);

Bω is the radiation damping (Nsm−1);

C is the hydrodynamic stiffness or centralising force
(Nm−1);

Fω is the wave excitation force (N); and

ξ is the complex displacement amplitude (m).
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Here, the ‘added mass’ refers to the mass of water that
moves with the device. Radiation damping is the energy
lost in waves radiating from a moving object in still wa-
ter. Hydrodynamic spring force refers to the buoyancy
of a floating device, whilst the wave force is the force
exerted by a wave on a stationary object. The hydro-
dynamic coefficients are derived by WAMIT, a compu-
tational fluid dynamics package developed at the Mas-
sachusetts Institute of Technology (www.wamit.com).
WAMIT uses panel methods and potential flow theory
to calculate the response of offshore structures to linear
monochromatic waves. The model is subsequently con-
verted into the time domain by fitting transfer functions
to the three hydrodynamic forces. More detailed expla-
nations of the complete model are given by [3].

In an extension to the basic formulation, the equations
are updated to allow for time variation (hence optimisa-
tion and control) of the following three forces:

• Applied damping: the damping force applied by the
PTO system.

• Applied stiffness: an additional applied spring
force used to tune the device.

• Latching: an extreme damping force that can be ap-
plied or removed by the control system.

However, for the preliminary results reported in sec-
tions 4 through to 7, the last two forces above are ig-
nored, i.e. only the PTO element is used for feedback
control purposes.

3.2 Power capture optimisation

The ‘high level’ control problem is to optimise the ex-
ternal spring force and damping force required for max-
imum power capture. In this regard, the power carried
by waves is usually represented as power per unit wave
crest. The capture width of a device can, therefore, be
conveniently represented as the length of wave crest cap-
tured in the current sea state. To convert this figure into
a non-dimensional value, it is subsequently divided by
the width of the device. In other words, a device with
a capture width ratio of unity captures all of the energy
that acts directly on it.

Reference [4] develops a generic approach for WEC
optimisation using EAs. Simulation results are presented
for tuning an illustrative device in both sinusoidal and
Pierson Moskowitz [12] spectra waves; and for optimi-
sation of both ‘slow tuning’ [2] and ‘latching’ [1] con-
trol systems. The EA is able to find optima for all the
problems presented, despite the very large search do-
main required for the latching control problem. In fact,
the proposed GA successfully optimises these control
algorithms for realistic seas without prior assumptions.
However, further work is required to refine the GA, in
order to improve the robustness of the search and this is
the focus of current research by the authors [4].

4 PTO simulation

Bacelli et al [5] derive a model of a hydraulic PTO
for a point absorbing WEC, based on the schematic dia-
gram shown in Fig. 2. In this model, a hydraulic piston
connected to the oscillating body of the WEC produces
an alternating flow of oil. Four non-return valves and
a gas accumulator rectify and smooth the flow, whilst
a hydraulic motor converts the flow into rotational mo-
mentum. The model also takes account of losses in the
system, due to the drop in pressure along pipes, leakages
and motor friction.

The velocity of the pistonv and the applied torque
on the shaft of the hydraulic motoru, are related to the
damping forcey by the means of five key equations. Two
nonlinear state equations (2) describe the relationship
between the volume of oil in the accumulatorV , and the
hydraulic motor shaft angular momentumL,

V̇ =−kl ·h(V )− D
J
·L+S · v

L̇ = Dηm ·h(V )− B
J
·L−u

(2)

wherekl , D, J, S, ηm and B are constant coefficients
representing the motor leakage, motor constant, moment
of inertia, the piston cylinder cross-sectional area, motor
efficiency and friction respectively. An associated output
equation relates the damping force to the oil volume and
piston velocity, as follows,

y = S ·h(V )+S · k (S · v) (3)

whereh(V ) is the accumulator pressure,

h(V ) =
Ppr(

1− V
VA

)κ (4)

andk (S · v) is the Haaland approximation of the Darcy
equation for pressure loss due to friction, for laminar
flow in a pipe, defined as follows,

k(S · v) =
KS

Re
(Lg +Leq)

Dh

ρ
2A2 S · v|S · v| (5)

In these equations,Ppr, VA, κ , KS, Re,Lg, Leq, Dh, ρ and
A are the accumulator pre-charge pressure, volume of
accumulator, specific heat ratio, pipe cross-section shape
factor, Reynolds number, geometrical length of the pipe,
equivalent length of local resistances, hydraulic diameter
of the pipe, density of oil and the pipe cross-sectional
area respectively (all constant coefficients).

The PTO model is designed to work in tandem with a
hydrodynamic model providing the data for piston veloc-
ity using the values for the damping force and sea state in
a feedback loop, as illustrated in Fig. 1. However, for the
preliminary research reported in the present article, the
PTO model is considered in isolation, with the velocity
of the piston defined as an external disturbance.

The state and output equations form the basis of a
nonlinear Matlab/Simulink model of the PTO. Several
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Figure 2: PTO hydraulic circuit (after [5]

Parameter Value

S 0.1m2

ηm 0.9
J 7.6×10−3kg/m2

D 1.88×10−4m3

B 0.1Nms
Ppr 2×106Pa
κ 1.4
VA 0.1m3

kl 2.6×10−11m5/Ns
KS 64
Re 2000
Lg 5m
Leq 1m
Dh 0.04m
ρ 844kg/m3

A calculated fromDh

Table 1: PTO model parameters.

parameters for this model correspond to a commercially
available fixed displacement hydraulic motor from the
‘Staffa’ range built by Kawasaki [13]. Although this mo-
tor is small in comparison to those present in full-size
WECs, it is representative of a scaled-down model, such
as those used for small-scale sea trials. Other parame-
ters have been suggested by [5], several of which are ini-
tially based upon default values for the SimHydraulics
extension to Simulink. The parameter values used in the
present article are shown in Table 1.

5 Control methodology

For many nonlinear systems, the essential small per-
turbation behaviour can be very well approximated by
simple linearised transfer function models and, to date,
this has been the approach most commonly employed in
PIP control system design [6, 8]. Such linear PIP con-
trol systems have been successfully employed in a wide
range of practical applications; for example, to maintain
verticality of a hydraulically operated vibro-lance used
for foundation work on building sites [10].

However, to improve PIP control of nonlinear sys-
tems, recent research has instead utilised a quasi-linear
State Dependent Parameter (SDP) model structure [14],
in which the parameters are functionally dependent on
other variables in the system. This formulation may then
be used to design a SDP/PIP control law at each sam-

pling instant using linear methods, such as pole assign-
ment [11] or suboptimal linear quadratic [9] design. The
nonlinear approach is briefly reviewed below, whilst the
linear case follows straightforwardly by using time in-
variant coefficients (see section 6 for an example).

5.1 System identification

Numerous publications describe an approach for the
identification of SDP models; see e.g. [14, 15] and
the references therein. The approach exploits recursive
Kalman Filtering and Fixed Interval Smoothing (FIS)
methods, within an iterative ‘backfitting’ algorithm that
involves special re-ordering of the time series data. Con-
sider the following SDP model in deterministic form,

yk = wT
k pk (6)

where,

wT
k =

[
−yk−1 · · · −yk−n uk−1 · · · uk−m

]

pk =
[

p1,k p2,k
]T

p1,k =
[

a1{χk} · · · an {χk}
]

p2,k =
[

b1{χk} · · · bm {χk}
]

Here yk and uk are the output and input vari-
ables respectively, whileai {χk}(i = 1,2, . . . ,n) and
b j {χk}( j = 1, . . . ,m) are state dependent parameters.
The latter are assumed to be functions of a non-minimal
state vectorχT

k . For SDP/PIP control system design, it
is usually sufficient to limit the model (6) to the case that
χT

k = wT
k . Finally, any pure time delay is represented by

setting the leadingb j {χk} terms to zero.
The first stage of the analysis involves the identifica-

tion of conventional linear models, for whichai {χk} =
ai andbi {χk} = bi are time invariant. This helps to de-
fine the initial structure of the SDP model above. In this
case, equation (6) is usually represented in the form of a
discrete-time transfer function and the present research
uses an optimal refined instrumental variable algorithm
to estimate the parameters [15]. The two main statistical
measures utilised to help identify the most appropriate
model structure, are the coefficient of determinationR2

T ,
based on the response error; and Young’s Identification
Criterion (YIC), which provides a combined measure of
model fit and parametric efficiency.

5.2 Control design

The non-minimal state space representation of the sys-
tem (6) is,

xk+1 = F
{

χk+1

}
xk +g

{
χk+1

}
uk +drk+1

yk = hxk (7)

where then+m non-minimal state vector is,

xk =
[
yk · · · yk−n+1 uk−1 · · · uk−m+1 zk

]T

(8)
andzk = zk−1 +[dk − yk] is the integral-of-error between
the reference or command inputdk and the sampled out-
put yk. Inherent type 1 servomechanism performance is
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introduced by means of this integral-of-error state. For
brevity, theF{χk}, g{χk}, d andh definitions are omit-
ted: see [9] for details. Finally, the PIP control law takes
the following state variable feedback form,

uk =−c{χk}xk (9)

where the state dependent control gain vector,

c{χk}=
[

f0,k, . . . , fn−1,k,g1,k, . . . ,gm−1,k,−kI,k
]

(10)

is obtained by either pole assignment [11] or optimisa-
tion of a linear quadratic cost function using a state de-
pendent Riccati equation [9]. In either case, Fig. 3 illus-
trates the controller in block diagram form, where,

F1
{

χk,z
−1} = f1,kz−1 + . . .+ fn−1,kz−n+1

G
{

χk,z
−1} = 1+g1,kz−1 + . . .+gm−1,kz−m+1

while f0,k andkI,k are the time varying (state dependent)
proportional and integral gains respectively. Finally,
A

{
χk,z

−1
}

and B
{

χk,z
−1

}
are polynomials in the

backward shift operator (z−1yk = yk−1), i.e. the pseudo-
transfer function representation the SDP model (6).

In the linear case, these approaches reduce to the stan-
dard time invariant form [6, 8]. The required stabil-
ity and pole assignability (or controllability in the linear
case) results are omitted here for brevity but are devel-
oped by the earlier publications cited above.

6 Worked example – linear control

As discussed above, a ‘low-level’ PIP control strategy
is required to ensure the PTO reaches a desired value for
the damping force, where the latter is set by the ‘high-
level’ controller in order to optimise the response of the
WEC to the current sea state. In the present worked ex-
ample, however, the damping force set point has been
arbitrarily chosen to illustrate the ‘low-level’ approach.
Furthermore, the example focuses on linear (time invari-
ant) PIP design, whilst potential improvements using the
nonlinear approach are considered in section 7.

For linear PIP design, equation (6) may be repre-
sented in conventional transfer function form,

yk =
B(z−1)
A(z−1)

uk (11)

Here,yk anduk are the sampled damping force (output)
and generator torque (control input) variables respec-
tively, whilst B(z−1) andA(z−1) are polynomials in the
backward shift operator, i.e.B(z−1) = b1z−1 + b2z−2 +
. . .+bmz−m andA(z−1) = 1+a1z−1 + . . .+anz−n.

6.1 Linear model identification

Equation (11) is identified using data obtained by per-
turbing the open-loop simulation about an equilibrium
point. For the present example, the following second
order transfer function with unity time delay, yields a
good representation of the system suitable for linear PIP
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Figure 4: Linear model response compared to PTO simula-
tion for small perturbations close to an operating point, with
the baseline removed in the graphs. Upper subplot: simu-
lated damping force (dots) and linear model fit (solid), plotted
against sample number. Lower subplot: motor torque.

design, withR2
T = 0.9999 andY IC = −22.649 respec-

tively,

yk =
b1z−1

1+a1z−1 +a2z−2 uk (12)

To obtain the control model (12), simulated data are col-
lected at a sampling rate of 0.02 seconds. Experimen-
tation suggests that such a sampling rate allows for the
estimation of a suitable backward shift operator model
and is fast enough to handle the disturbances associated
with the piston velocity. Fig. 4 illustrates the model fit
with the chosen equilibrium levels removed. Here, the
upper and lower subplots showyk and uk respectively,
with the response of the nonlinear PTO simulation and
equation (12) visually indistinguishable.

6.2 Linear control design

Equation (12) is represented in non-minimal state
space form (7) as follows, whereF{χk} = F and
g{χk}= g are again time invariant in this linear case,




yk

yk−1

zk


 =




−a1 −a2 0
1 0 0
a1 a2 1







yk−1

yk−2

zk−1




+




b1

0
−b1


uk−1 +




0
0
1


rk (13)

yk =
[

1 0 0
]



yk

yk−1

zk


 (14)

The PIP control law (9) is,

uk =−
[

f0 f1 −kI
]



yk

yk−1

zk


 (15)

where f0 andkI are the proportional and integral gains
respectively, whilstf1 is an additional feedback gain re-
quired for PIP control of the model (12). There are no
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dk ykuk
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kI {χk}
1− z−1

1

G
{

χk,z
−1

}
B

{
χk,z

−1
}

A
{

χk,z
−1

}

F1
{

χk,z
−1

}

f0{χk}

Figure 3: Proportional-Integral-Plus (PIP) control structure.

input compensators in this case, since the system has a
time delay of one sampling interval and the transfer func-
tion has no zeros. Furthermore, for linear PIP design, the
gain vector (10) is time invariant, i.e.c{χk}= c.

The control gains are conveniently obtained by min-
imising the following standard linear quadratic cost
function,

J =
1
2

∞

∑
i=0

xT
i Qxi + r u2

i (16)

wherer is a positive scalar andQ is a symmetric, posi-
tive semi-definite matrix, the diagonal elements of which
define the weights associated with current and past val-
ues of the output, past values of the input (when these
exist as state variables) and the integral-of-error state.
For the present example, satisfactory closed-loop perfor-
mance is obtained by settingQ = diag[1 100 0.5] and
r = 1. Solution of the ubiquitous Riccati equation yields
c = [13.9536 −8.3973 0.4606].

This single-input, single-output PIP controller may
be implemented in two ways: (i) the standard feedback
form, which is similar in structure to a conventional PI
controller or (ii) in a forward-path form in which the in-
ner loop of the controller is eliminated to form a single
forward-path transfer function (or pre-compensation fil-
ter). Each of these has advantages in practice [7] and so
both implementations are examined here.

When the above PIP algorithm is applied to the full
nonlinear PTO simulation with no disturbances (i.e. the
piston velocity is unrealistically fixed constant), Fig. 5
shows that the two control structures yield very similar
results. However, once the piston velocity is included
as a sinusoidal disturbance signal, the feedback form is
found to yield considerably improved performance over
the forward-path form, as shown in Fig. 6.

To investigate further improvements in the distur-
bance rejection properties of the controller, several novel
multiple–input ‘feedforward’ forms of PIP control are
presently being investigated by the authors, and these re-
sults will be reported in future publications. Here, the
piston velocity is considered as an additional measured
or estimated state variable. In contrast to the above ap-
proach, multiple-input, single-output transfer function
models are obtained from the nonlinear PTO simula-
tion. These models represent the relationship between
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Figure 5: Closed-loop response with no disturbance. Up-
per subplot: command input (sequence of steps) and damping
force, where the feedback and forward path structures yield
visually indistinguishable responses, plotted against time (sec-
onds). Lower subplot: generator torque.

the damping force output and both the hydraulic motor
torque and piston velocity as input variables. In fact,
preliminary results using this approach and based on an
explicit model-based cancellation of the disturbance are
illustrated in Fig. 7. Here, the new feedforward approach
yields an improvement over the standard PIP structure
discussed above, for the particular simulation experi-
ment shown.

7 State-dependent models

In order to sufficiently excite the nonlinear dynam-
ics of the PTO simulation for SDP modelling purposes,
the open-loop generator torque and piston velocity are
represented by independent Psuedo-Random Binary Sig-
nals (PRBS). In each case, the level and duration of the
changing input signal is determined from a Gaussian dis-
tribution across the likely operating range of the system,
as illustrated in Fig. 8. In contrast to Fig. 4, the PTO
system is no longer limited to one operating level, hence
the linear model response given by equation (12) is rela-
tively poor, as illustrated by the thin trace in Fig. 8. How-
ever, a multiple-input (uk, vk), single output (yk) SDP
model yields a good model fit (R2

T =0.9). The new model
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Figure 6: Closed-loop response with piston velocity distur-
bance represented as a sine wave. Upper subplot: command
input (sequence of steps) and damping force controlled us-
ing the feedback (solid) and forward path (dashed) PIP struc-
tures, plotted against time (seconds). Lower subplot: generator
torque.
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Figure 7: Closed-loop response with piston velocity distur-
bance represented as a sine wave. Upper subplot: com-
mand input (constant) and damping force controlled using the
single–input (solid) and multiple–input feedforward (dashed)
PIP structures, plotted against time (seconds). Lower subplot:
generator torque.
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Figure 8: Linear and SDP model fit for a range of operat-
ing levels. Upper subplot: PTO simulation response (dots),
SDP model (thick trace) and linear model (thin), plotted against
sample number. Middle: generator torque. Lower: piston ve-
locity.

is based on equation (6) with,

wT
k = [−yk−1 − yk−2 uk−1 vk−1 vk−2 vk−3]

p1,k =
[

a1{χk} a2{χk} b1{χk}
]

(17)

p2,k =
[

c1{χk} c2{χk} c3{χk}
]

The state dependent parameters are illustrated in Fig. 9,
in which the parameters are found to be linear func-
tions of the states inwT

k . The SDP/PIP control system
associated with equation (17) is presently being devel-
oped. Hence, the relative performance and robustness of
the new controller, applied to the full WEC simulation
in Fig. 1 is the subject of ongoing research by the au-
thors. However, the improved fit of the nonlinear model,
illustrated in Fig. 8, presages a likely improvement in
the associated controller performance, particularly in re-
sponse to large piston velocity disturbances. Such large
disturbances would take the damping force relatively far
from the operating level used by the linear controller.

8 Conclusions

This article has illustrated the application of
proportional-integral-plus (PIP) control methods to a
nonlinear power take off (PTO) hydraulic circuit simula-
tion model. Here, the generator torque is used to regulate
the applied damping force of the wave energy converter.
Although the damping force set point will ultimately be
obtained from a power capture optimisation module also
being developed by the authors [4], the present article
has focused on the low level PIP control problem.

Linear transfer function models provide a good de-
scription of PTO behaviour, suitable for control system
design close to a specified operating level. Although ba-
sic PIP design using single-input, single-output models
yields reasonably good performance and robustness, this
approach does not fully account for the nonlinearities in
the system.

In order to improve the results, therefore, the arti-
cle suggests and briefly evaluates feedforward and state
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Figure 9: SDP model parameters associated with Fig. 8. The
left hand side subplots show the state dependent parameters
a1{χk}, a2{χk} and b1{χk} (from top to bottom) plotted
against delayed generator torque, whilst the right hand side
subplots showc1{χk}, c2{χk} andc3{χk} plotted against de-
layed piston velocity.

dependent forms of PIP control. Here, the piston ve-
locity is appended to a non–minimal state space repre-
sentation of the system to better represent the intercon-
nections between the coupled PTO and hydrodynamic
models. Clearly the next stage of the research is fur-
ther develop and evaluate these approaches for a range
of sea states. Furthermore, the coupled hydrodynamic
PTO simulation model should be evaluated against ex-
perimental data since the present results have been lim-
ited to these physically-based models.
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