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Abstract

Over last years, the diffeomorphic image registration algorithms have been success-
fully introduced into the field of the medical image analysis. At the same time, the
particular usability of these techniques, in majority derived from the solid math-
ematical background, has been only quantitatively explored for the limited appli-
cations such as longitudinal studies on treatment quality, or diseases progression.
The thesis considers the deformable image registration algorithms, seeking out those
that maintain the medical correctness of the estimated dense deformation fields in
terms of the preservation of the object and its neighbourhood topology, offer the
reasonable computational complexity to satisfy time restrictions coming from the
potential applications, and are able to cope with low quality data typically encoun-
tered in Adaptive Radiotherapy (ART). The research has led to the main emphasis
being laid on the diffeomorphic image registration to achieve one-to-one mapping
between images. This involves introduction of the log-domain parameterisation of
the deformation field by its approximation via a stationary velocity field.

A quantitative and qualitative examination of existing and newly proposed al-
gorithms for pairwise deformable image registration presented in this thesis, shows
that the log-Euclidean parameterisation can be successfully utilised in the biomed-
ical applications. Although algorithms utilising the log-domain parameterisation
have theoretical justification for maintaining diffeomorphism, in general, the de-
formation fields produced by them have similar properties as these estimated by
classical methods. Having this in mind, the best compromise in terms of the qual-
ity of the deformation fields has been found for the consistent image registration
framework. The experimental results suggest also that the image registration with
the symmetrical warping of the input images outperforms the classical approaches,
and simultaneously can be easily introduced to most known algorithms.

Furthermore, the log-domain implicit group-wise image registration is proposed.
By linking the various sets of images related to the different subjects, the proposed
image registration approach establishes a common subject space and between-subject
correspondences therein. Although the correspondences between groups of images
can be found by performing the classic image registration, the reference image se-
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lection (not required in the proposed implementation), may lead to a biased mean
image being estimated and the corresponding common subject space not adequate
to represent the general properties of the data sets.

The approaches to diffeomorphic image registration have been also utilised as
the principal elements for estimating the movements of the organs in the pelvic area
based on the dense deformation field prediction system driven by the partial infor-
mation coming from the specific type of the measurements parameterised using the
implicit surface representation, and recognising facial expressions where the station-
ary velocity fields are used as the facial expression descriptors. Both applications
have been extensively evaluated based on the real representative data sets of three-
dimensional volumes and two-dimensional images, and the obtained results indicate
the practical usability of the proposed techniques.
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Chapter 1

Introduction

1.1 Image registration

Image registration is one of the fundamental tasks in medical image processing. It
can be simply considered as a process of aligning/matching two or more images ex-
hibiting some resemblance(s) in terms of their contents. For the most complicated
cases, the images can be very hard to be compared directly and sometimes the cor-
respondences between images can not be visually recognised even by the human
observers. The images could have been captured at different times, from different
viewpoints, using various types of scanners thereby representing different imaging
modalities (e. g. Computed Tomography, Magnetic Resonance Imaging or Ultra-
sound Scanning, etc.). In addition, the complexity of image registration comes from
the fact that images can represent either different instances of the same subjects
(e. g. multiple scans of the same patient during the treatment/clinical trial) to en-
able intra-subject analysis, or different subjects having similar properties (e. g. the
planning scans of the different patients) to model the inter-subject variability.

Over the last twenty years, a significant amount of work has been carried out on
not only the theoretical and methodological aspects but also on application-driven
developments of image registration. Thus, the most common approaches have been
described in the standard textbooks [51, 90, 158, 134, 92] and surveys [81, 164]. The
major research has been mainly focused on low-dimensional space parameterised
registration (e. g. rigid and/or affine registration) or deformable registration when
dense data sets (images) are available. Indeed, such kind of registration techniques
can be stated as an optimisation problem of a predefined objective function with
respect to the estimated transformation. The choice of the objective function (or to
be more precise, the choice of the principal elements of the objective function such
as similarity measure, regularisation term and penalty terms) is a matter of prior
user knowledge of the characteristics of the input data that are to be registered,
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and the desired properties of the estimated transformation. Thus, due to a wide
range of data types, acquisition protocols, and different objects/organs represented
in the data, etc., it is not surprising that there is an enormous number of image
registration methods. Whereas most of these methods are strictly application-driven
techniques developed to cope with the particular problem, some of them can be
recognised as more general thereby they have been successfully applied to solve
various issues. Examples of the commonly used methods may include original Demon
approach [138] and its subsequent extensions [148, 143, 144, 145], methods based on
the calculus of variations [56, 24, 57, 78], B-spline parameterisation of transformation
[112, 118, 128, 115, 130, 43], or optical flow approaches [59, 154, 155, 60].

Recently, specific class of the image registration methods - the diffeomorphic
image registration has been recognised as a very important technique to deal with
a range of biomedical problems. Diffeomorphism can be simply considered as a
smooth one-to-one transformation (mapping) that also has a smooth inverse trans-
formation. Although at the first sight the strict mathematical formalism may give an
impression of not adequate for real biomedical problems, the properties of the diffeo-
morphic transformation can provide very versatile solutions in many applications.
As a matter of fact that in most real biomedical cases, the adapted transforma-
tion (deformation) model does not reflect the underlying mechanisms (true tissue
properties) for the changes between images (or sets of images). The diffeomorphic
formulation fulfils by definition the conditions such as continuity and preservation
of the topology among organs to avoid cracks and folds in the estimated transforma-
tions. Maintaining of the objects’ topologies is very important for applications such
as automatic labelling and segmentation driven by the atlases, longitudinal studies
on disease progression, or observations of the treatment outcomes due to therapy to
name a few of them. There are various methodologies which have been considered to
provide efficient diffeomorphic image registration formulation, the most know meth-
ods obey the small step constraint [56, 25, 115, 155], log-Euclidean framework that
is expressed via stationary velocity field parameterisation [4, 5, 143, 144, 145, 53],
or time dependent modelling of the displacement field flow [26, 15, 14].

On the other hand, in many practical situations the complete data sets are not
available or the overall image quality is low, thereby the traditional registration
methods, aiming at estimation of the dense deformation field, can not be directly
applied to such data as the similarity measure for assessing the quality of the es-
timated deformation can not be reliably computed. Thus far, the corresponding
dense displacement field has to be estimated based on incomplete data. However,
in some cases it is possible to obtain high quality training data from which a de-
formation (motion) model can be built. Subsequently such model can be either
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incorporated into the classical image registration process [3, 135] as an additional
constraint (statistically-constrained image registration) or linked somehow to a par-
tial information delivered by a measurement (sometimes also called surrogate) that
is affected by the deforming tissue and therefore can be used to directly infer about
the tissue deformation [159, 73, 75, 74, 36, 123, 124]. Although some efforts have
been recently undertaken to improve the surrogate-based image registration and
segmentation, it still remains a challenging problem particularly when it is to be
applied as a part of a clinical procedures.

The aforementioned approaches require an appropriate measurement that suit-
ably represents tissue deformations and in the same time it is easy to extract from
often severely corrupted data. Currently, such surrogates are most often defined by a
set of points. Some implementations of this methodology include online systems for
simultaneous compensation of laparoscopic camera motion and respiration induced
tissue deformations [93], 4D image-guided lung radiation therapy [159, 73, 75, 74],
and pelvic area subject-specific [125] as well as population based [123, 124] organs
modelling. For lung motion estimation the air content of a reference volume as a
predictor was used [36]. Although the research in this area is ongoing, the results
reported so far in literature are not satisfactory, mostly due to errors of establishing
point correspondences between different representative phases of organs motion.

Equally important for prediction-based estimation of a dense deformation field
is constructing the motion model that can capture a wide spectrum of possible vari-
ations of organs’ motion. This task in itself is challenging as it requires an accurate
calculation of the deformation field for the data present in the training data set, and
subsequently multiple execution of the deformable image registration algorithms can
be highly time consuming. Whereas the intra-patient motion model can be easily
generated utilising multiple registrations between the acquired volumes representing
different phases of organs’ motion [125, 159], the inter-patient motion model that is
built in a similar manner, is biased towards the chosen reference image. Therefore,
a mean reference patient has to be estimated first and then the common patient
space can be established [9, 28, 42, 153, 98]. Moreover, in many recent approaches
[159, 73, 75, 74] due to a large dimensionality of data (three-dimensional deformation
fields for each image), the statistical models of the deformation fields were obtained
by directly applying the re-parameterisation and dimension reduction algorithms
such as the Principal Component Analysis [16] to the deformation fields (or its B-
spline parameterisation [113, 114, 22]). Although these approaches were to some
extent successful in particular applications, this motion model has some disadvan-
tages. The most important is that the eigenvectors do not form a vector space of
valid deformation fields (e.g. diffeomorphism is not guaranteed to be preserved) [4].
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Thus, the recently proposed log-domain parameterisation of the deformation field
via stationary velocity fields [4, 17] theoretically gives a versatile tool to cope with
the problem of an empirically learnt deformation model. Some results of calculat-
ing the mean motion model based on the velocity fields of the patient-independent
respiratory cycle for the purpose of predicting the deformation field in the four-
dimensional radiotherapy of lungs, were reported in [36]. Other works that aimed
at calculating vectorial statistics on the diffeomorphic displacement fields, look into
the white matter changes in the brains of the HIV/AIDS patients [135].

Another research question that has been considered in the computer vision thus
far, is utilising the estimated deformation fields as the feature vectors in the facial
expression modelling and recognition systems. The displacement fields can be calcu-
lated for two-dimensional static images or dynamic sequences to represent different
subjects under a specific facial expression for the purpose of the subject recognition
[60] or various subject’s expressions for expression recognition [154, 126, 99, 98]. In
all cases, the motion fields have been successfully considered as the automatically
generated facial expression descriptors.

All in all, the first part of this thesis deals with the quantitative and qualita-
tive assessment of the non-rigid image registration techniques mostly focusing on
the diffeomorphic approaches such as the small-step approaches and the different
methods utilising the stationary velocity fields parameterisation. An extensive com-
parison is included to show the adequacy of the log-domain parameterisation in
several possible biomedical applications including brain labelling, and motion es-
timation of organs in the pelvic area and respiratory cycle. In addition, a novel
image registration algorithm (that has been applied to the pelvic-area MRI data)
is proposed, subsequently with a more robust method of direct inverting deforma-
tion field than the previously reported methods. Concerning the applications, the
second part of this thesis presents the dense deformation field prediction framework
that is built using in the principles of the previously investigated image registra-
tion methods and the implicit surfaces as a measurement parameterisation of the
organs’ of interest i. e. bladder and rectum. Similarly, when the facial expression
recognition system based on the stationary velocity field parameterisation is intro-
duced, the subject-independent facial expression descriptors are established utilising
the log-domain implicit group-wise registration method and the consistent pair-wise
face registration. Thus, this thesis is devoted to the methodological aspects and the
direct applicability of image registration to the biomedical data.
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1.2 Motivation of work undertaken

The primary motivation of the project was to develop a robust method for movement
estimation of the prostate and adjacent organs for the possible radiotherapy appli-
cations. The motion estimation technique has to provide the necessary accuracy in
terms of the prostate position in a suitable time scale, dealing additionally with the
problem of the partially missing data, often severely corrupted by different types of
noise. In the presented research an attempt to solve such registration problem is
made with the help of an empirically learn deformation (motion) model. For this
purpose, the training data has to be first pre-processed to extract information about
possible dependencies between observed deformation fields and measurement domain
(e. g. surfaces of the rectum or/and the bladder). This task itself is challenging as
it requires an accurate calculation of the deformation field for the three-dimensional
volumes included in the representative training data set by utilising the deformable
image registration algorithm. Although, the data represent the same area of different
subjects, each set used for training stage has to be first mapped to the so-called com-
mon subject space to make the calculated deformations subject-independent. Thus,
an investigation of the method for finding an appropriate common subject space has
to be additionally undertaken. The aforementioned deformation model has been
constructed from training three-dimensional data, mainly MRI, taken from different
but representative phases of organ’s deformation. To keep overall consistency with
respect to the diffeomorphic properties of the deformation fields, the log-domain
framework is established. Moreover, the proposed method extends the current ap-
proaches by attempting first time to use the implicit shape representation of the
selected measurements for regression model estimation.

The research also includes the systematic and quantitative evaluation of the pre-
viously proposed methods for pair-wise image registration and their comparison with
the methods developed during the project with a major focus on the different formu-
lations of the diffeomorphic image registration. The comparisons are performed both
on the simulated data to show accuracy with respect to the ground truth parameters
and on real data to show suitability of these methods for medical applications.

The main application outcomes of the proposed research are believed to have a
potential for improving the accuracy of radiotherapy, but other medical applications
could also benefit from the developed techniques.
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1.3 Organisation of thesis

The thesis can be divided into two separate parts: methodologies and applications.
The first part consists of a general overview of image registration, a detailed descrip-
tion of the methods investigated as well as qualitative and quantitative assessments
of those methods. Additionally, a novel method for directly inverting deformation
fields and the image registration that utilised this method are also introduced. The
second part of the thesis is focused on the research of possible usage of the pre-
sented and proposed image registration algorithms for the image-guided adaptive
radiotherapy of prostate cancer and for facial expressions recognition systems.

Chapter 1 puts the research described in the following chapters in the context of
the current state-of-the-art of image registration. Secondly, the motivations of the
research project are explained and the research questions are stated. This chapter
also enumerates the author’s contributions.

Chapter 2 gives an overview of the image registration problem that is studied in
this thesis. First, the generic classification types are introduced to show the basic
components of image registration such as similarity measures, models of transfor-
mation (deformation), incorporated constraints, and a wide range of medical appli-
cations. Also the importance of further investigation in this area is outlined, with
a particular emphasis in the context of the biomedical applications. The following
sections of this chapter look at the commonly known techniques and briefly describe
their properties. Additionally, the notation used in this thesis is introduced.

Chapter 3 provides detailed analysis of the commonly used optimisation meth-
ods applied to the image registration algorithms such as the steepest descent-like
method, the Newton’s iteration method and the Demon method. Then, different
formulations of the diffeomorphic image registration algorithms are introduced and
discussed based on the results given in the literature. Furthermore, the inverse con-
sistency criterion is considered as a biomedically important concept for improving
the quality of the deformation fields. Image registration with symmetric warping of
input images is also examined in details specifically in terms of the possible speed-
ing up of the deformation field estimation process. Finally, Chapter 3 presents the
author’s contribution to the symmetric image registration as a novel algorithm for
inverting the deformation field established in the optimisation framework, and the
idea of the new symmetric image registration based on it.

Chapter 4 explains the need for the assessment of the image registration al-
gorithms presented and briefly reviews the most known comparison works. Then,
several criteria that can measure quality and quantify the obtained results are pre-
sented and their properties are discussed. Finally, a critical analysis is carried out
based on the numerous experiments conducted on different data, including public
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available data sets, with respect to the different criteria.
Chapter 5 extends the pairwise image registration techniques to group-wise image

registration that is able to estimate the correspondences between multiple images in
different set(s) including inter- and intra- subject data sets. Chapter 5 focuses on the
implicit group-wise registration that is shown as not biased by the reference image
selection. To maintain diffeomorphic consistency across this work, the previously
proposed algorithm of implicit group-wise image registration is reformulated to the
log-Euclidean framework. The experimental results are shown on both simulated
and biomedical data including MRIs of prostate, MRIs of head, and facial expression
images.

Chapter 6 presents possible application of the studied image registration algo-
rithms to the pelvic-area medical data. The presented method used sets of the MRI
images of different subjects to generate an inter-subject (subject independent) mo-
tion model of the prostate and adjacent tissues which is then utilised to build a novel
system for prediction of the dense deformation field based on the partial informa-
tion delivered by rectum and bladder segmentation. The evaluation of the proposed
method is presented first using the data with synthetic deformation fields to give a
systematic evidence for the correctness of the prediction generated. Furthermore,
the examples including real MRI data are presented thereby demonstrating the po-
tential usefulness of the proposed system for the Adaptive Radiotherapy.

Chapter 7 introduces the log-Euclidean parameterisation of the diffeomorphic
deformation fields to the facial expressions representation. The implicit group-wise
diffeomorphic image registration algorithm generates the common face space to nor-
malise the neutral facial expressions across different subjects thereby making them
subject-independent. Subsequently, sets of the images of different basic facial ex-
pressions are represented by the velocity fields, obtained through diffeomorphic reg-
istration. This chapter ends with an extensive experimental analysis of the proposed
facial expression representation and comparison of robustness based on the separa-
bility analysis criterion and recognition rates.

Chapter 8 concludes the overall work undertaken in this thesis. Following the
summaries of the contributions presented, the suggestions of the further possible
extensions to this work are briefly outlined.
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1.4 Contributions of the research

The work undertaken considers utilising the diffeomorphic image registration in
areas of biomedical applications. Thus, the main contributions of this work can be
found in two areas.

First, this work emphasises the increased robustness of the image registration al-
gorithms with symmetric warping in comparison to the classical formulation. A new
method for inverting dense deformation fields, that is crucial for some class of the
symmetric image registration was proposed and based on it, a new method for sym-
metric image registration with directly inverted deformation fields has been intro-
duced (Chapter 3). These findings and the results of performing different symmetric
image registration methods were first presented at the Conference on Medical Image
Understanding and Analysis (MIUA) 2011 and published in the conference proceed-
ings with the title: Direct inverse deformation field approach to pelvic-area
symmetric image registration [96]. Furthermore, due to the high-ranked reviews
of this paper, the extended version entitled Symmetric image registration with
directly calculated inverse deformation field, has been accepted to special is-
sue of The Annals of the British Machine Vision Association and it is in press. The
extensive comparison of the different formulations of diffeomorphic image registra-
tion algorithms for a wide range of medical data with qualitative and quantitative
analysis of obtained results (presented in Chapter 4) is in preparation for submission.

From the application-driven point of view, the dense deformation field prediction
system built via the log-Euclidean parameterised implicit group-wise registration es-
tablishes the common subject space (Chapter 6) can be seen as a novel methodology
for deformation field estimation. Furthermore, utilising the implicit shape represen-
tation of the bladder and rectum instead of the commonly used Point Distribution
Model was shown as an effective way to predict prostate position with a possible
application in the Adaptive Radiotherapy. The concept of this prediction system
and the preliminary results obtained from the real MRI data sets have been ac-
cepted to the 4th MICCAI Workshop on Computational and Clinical Applications
of Abdominal Imaging and the paper is in press. The title of the publication is: An
implicit inter-subject shape driven image deformation model for prostate
motion estimation.

Another contribution presented in Chapter 7, is using the stationary velocity
field parameterisation of the deformation field obtained for multiple diffeomorphic
registration of face images as a robust feature vector for automatic facial expression
recognition. The results from this application were presented at the International
Conference on Pattern Recognition Applications and Methods (ICPRAM) and pub-
lished at the conference proceedings with the title: Facial expression recognition
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using log-Euclidean statistical shape models [98], Furthermore, this paper was
invited in an extended format to be included in the Springer Proceedings in Mathe-
matics & Statistics (PROMS) - Mathematical Methodologies in Pattern Recognition
and Machine Learning with the title Facial expression recognition using dif-
feomorphic image registration framework.

The author’s contributions to the methodology and applications of image regis-
tration can be summaries as follows:

• Various novel combinations of the optimisation methods and deformation field
parameterisations have been considered and investigated in depth.

• A robust method has been proposed for inversion of a deformation field, along-
side a new method for symmetric image registration.

• A comprehensive quantitative and qualitative assessments have been carried
out of commonly known algorithms for the pairwise deformable image regis-
tration.

• A novel technique has been proposed for subject independent estimation of
model-based image dense deformation fields based on the implicit shape rep-
resentation of the organs surface and the velocity field parameterisation applied
to the MRI pelvic data.

• A subject independent facial expression recognition methodology has been
proposed and validated using the diffeomorphic image registration framework.
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Chapter 2

Principles of image registration

This chapter gives a general overview of the image registration algorithms with
detailed descriptions of the basic components of the deformable image registration.
First, the similarity criteria for the intensity-based image registration are introduced,
and their quantitative properties for measuring distance between different types
of the images are described. Then, the essential role of the regularisation terms
enabling solution of the image registration problem that in most interesting cases
is ill-posed what means that, without regularisation, solution may not exists, may
not be unique or may not continuously dependent on the input data are described.
In addition, numerous additional approaches of preserving the properties of the
desired solution for some specific applications are presented and their reliability
and robustness are discussed. Finally, some strategies for estimating an optimal
transformation are briefly outlined. This chapter ends with the concluding remarks
on the presented classifications and addresses several interesting challenges in the
field of the biomedical image registration.

2.1 Introduction

Image registration establishes a meaningful correspondence between object(s) in the
images or in multiple sets of images, by evaluating a deterministic process of finding
a spatial transformation between the images. During the last decades, the number
of applications using various image acquisition scanners has grown rapidly, thereby
resulting intensive research on image registration. The research efforts have led to
notable scientific achievements in applications such as astrophysics, remote sensing,
cartography, biological, medical (clinical) analysis, engineering (bioengineering), and
computer vision to name a few [164].

From the biological and medical perspective, the estimation of a plausible trans-
formation between images is a fundamental task, with an enormous number of the
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practical applications. Medical image registration enables a great variety of image
analysis by allowing not only multiple sets of images to be compared but also the
information from them to be combined. For example, a comparison of images taken
before, during, and after therapy (intervention) can provide a comprehensive knowl-
edge about a treatment and increase the rate of recovery, or reduce the side effects of
undertaken therapy. The state-of-the-art example of therapy taking the advantage
of the image registration is the adaptive radiotherapy of lungs [116, 159, 74, 36],
prostate [78, 148, 40, 53, 61, 123, 124], head and neck [148, 21, 94]. As pointed
above, the equally important is combing information from different sources of im-
ages using image registration. In so-called multi-modal image registration, images
coming from different scanners have to be first spatially registered to provide com-
plementary knowledge about organ(s) of interest. The multi-modal image regis-
tration can be seen as a fusion of information in two ways, by either combing the
structural (anatomical) knowledge about organs between images such as Computed
Tomography (CT), Magnetic Resonance Imaging (MRI), Ultrasound Scanning (US)
[61, 71, 29, 70], and Diffusion Tensor Image (DTI) [135], or finding the correspon-
dence between structural and functional information from images such as Positron
Emission Tomography (PET) [34] and functional MRI (fMRI) [42].

Additionally, image registration methods have been investigated for the longi-
tudinal studies and clinical diagnosis of neurological disease progression, where the
inter- and intra- subject normalisation is a crucial step. The results from those eval-
uations indicate that some patterns are to be detected by machine learning methods
for the common neurodegeneration such as Alzheimer’s disease or dementia [5, 10].
In the same fashion based on performing multiple image registrations, the initial
results of statistical analysis for the Diffusion Tensor Images were reported for the
significant changes of white matter in HIV/AIDS patients [135]. In the field of
computational anatomy, image registration presents a powerful tool to perform the
population-based quantification of the anatomical variability of biological shapes
[64, 132, 42, 146, 153]. Motion models, where image registration is a key step for
the deformation field estimation, are promising solutions to the problems such as the
image artifacts in the image acquisition stage [83], or the image-guided interventions
in a non-static environment. Examples of utilisation motion models computed by
image registration cover the studies on the respiratory motion [159, 73, 75, 74, 36, 88],
the cardiac motion [22], the brain deformation [114, 17], prostate and the adjacent
organs motion [125], and the liver motion induced by the respiratory cycle [93]. An
important image registration task in computer-guided surgery is to provide effective
and efficient (real-time or nearly real-time) motion compensation and registration of
the pre-operative patient data (or patient model) to the intra-operative data coming
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Figure 2.1: Classification of image registration methods.

from i.e. laparoscopy- [93] or endoscopy- [20, 23] based minimally invasive surgery
(MIS) and needle aspiration biopsy (NAB).

Four principal aspects of image registration have to be considered before the
most appropriate approach is to be chosen and evaluated in a particular application.
These aspects are:

• objective function with the major focus on the similarity criterion driving
alignment of the corresponding structures,

• image transformation model, that is a necessary condition to make image
registration problem solvable,

• constraints, that tune the estimated solution to satisfy desired requirements,

• optimisation framework as a strategy of finding an optimal solution for a spe-
cific objective function.

The aspects enumerated above can be naturally coupled with the criteria to classify
the image registration methods. A brief overview of the four principal aspects is
presented in the following sections to describe the principles and primary impor-
tant components of image registration. Additionally, Figure 2.1 summaries image
registration classification.

The first aspect is linked to the main ingredient of image registration, similarity
criterion (or discrepancy measure) is unavoidably incorporated into the definition
of the image registration objective function. The impact of the selected similarity
criterion in the image registration is so essential that naturally leads to the most
common classification criterion of the registration methods: the feature-based image
registration and the intensity-based image registration.
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The feature-based image registration (also called landmark-based image registra-
tion [109, 164, 92], or geometric registration [43]) relies on establishing meaningful
correspondences between some features, that firstly have to be extracted from the
images either manually by expert(s) or via an automatic detection process. The
features can be either extrinsic (hard) or intrinsic (soft). By the extrinsic features,
it means the objects artificially introduced into the imaged space such as fiducial
markers put directly into patient body in clinical case, while the intrinsic features
can be some-how deducted from the obtained images based on the visible anatomi-
cal structures by automatic detection algorithms or expert’s knowledge (i.e. points,
contours, surfaces). The extraction process of any suitable features can be very chal-
lenging task because the obtained features have to represent relevant information
from the analysed data, and the repeatability of the feature extraction process [134].
The objective of the feature-based image registration is to minimise the distance be-
tween those salient landmarks. The distance can be simply chosen as the Euclidean
distance, or more sophisticated measures such as geodesic distance. Commonly the
number of the selected landmarks is significantly lower than the overall image points
thereby the computational cost of the registration is reduced, however, the interpo-
lation strategies (e.g. Thin-Plate-Spline interpolation [90, 92]) are unavoidable to
obtain a dense deformation field for all image points.

The intensity-based similarity criteria measure how similar are the input images
with respect to their intensity patterns. The selection of a particular measure is
strongly dependent on the source of input images. When the input images are ac-
quired from the same device (with a repeatable acquisition protocol) or at least the
similar intensity distribution can be assumed, the sum of the squared differences or
the correlation coefficient [32, 57, 10] can be considered as the simplest to evalu-
ate and an accurate measurement. When the problem of registering images from
different scanners is tackled, more complex similarity measures have to be taken
into account. In this case, the state-of-the-art example is the mutual information
criterion [147, 31, 57, 136], derived from information theory. Other examples of
possible measures include correlation ratio [108, 57], normalised mutual information
[133, 112, 156], and entropy correlation coefficient [80]. These similarity criteria
search for underlying statistical dependencies and intensity relations between im-
ages. A detailed overview of the mutual information-based metrics is given in [100].
From the assumption that the image intensity changes appear in the corresponding
position, the normalised gradient fields distance [48] was derived. The normalised
gradient fields have been investigated as a sufficient measure to determine the op-
timal transformation between some classes of the multi-modal images. In some
applications, an intensity correction of the image content is introduced [45] rather
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than exploiting the aforementioned general discrepancy measures.
In addition, considerable effort has been undertaken to combine the feature-

based and intensity-based approaches to form the hybrid registration framework,
incorporating the advantages of each approaches [63, 79, 43, 29].

Due to the inherent image registration problem of being ill-posed, an additional
assumptions about an optimal solution have to be included. The common approach
to encourage a desired solution, thereby making it (possibly) unique, is adapting
a representative transformation model. Through the transformation model image
registration can be broadly put in two main categories namely, parametric and non-
parametric image registration.

The transformations that are restricted to any parametric space, can be sub-
divided into the groups either describing the global alignment or the local defor-
mations. The most common global transformations are the rigid and affine models
offering the low computational complexity due to reducing the number of variables to
a few transformation parameters. Besides the high robustness of the low-dimensional
parameterisation, the ability of modelling the local deformation is limited, since the
local deformations can not be sufficiently explained by translation, rotation or scal-
ing [112]. Thus their area of medical applications is very narrow i.e. the global
position of the patient body (for rigid structures such as bones or skull) or the
pre-processing step for higher order parameterisation or non-parametric schemes.
More precise, but still a parametric model of describing the human anatomy vari-
ability is based on the B-spline transformation space parameterisation originally
proposed in [112] and extended in [118]. The transformation is represented using
B-spline parameterised control points on the regular grid [112] or non-uniformly dis-
tributed [118] that are not linked to any specific image features. Further extension
was proposed in [84, 121] by describing interaction between the control points using
physical analogies derived from the input images. It has to be mentioned that the
low-dimensional parameterisation may restrict solution to be unique, however in
general an additional regularisation is inevitable [92].

The opposite of the parametric-based image registration is non-parametric image
registration. Instead of a set of parameters describing the transformation, a regu-
larisation term (also called smoother) is added into similarity criterion to design
a well-posed framework. An appropriate regularisation term should have proper-
ties to distinguish the plausible transformation (more often described with respect
to the deformation field or displacement field in non-parametric registration) for
a particular application. As in many cases, there is no ground truth available of
the desired deformation field, so many regularisation techniques have been devel-
oped. The state-of-the-art regularisation terms are often derived from the physical
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motivations related to the underlying properties of the objects included in the regis-
tration. Continuum mechanical models such as the linear elasticity model described
by the Navier-Lame equations [11], or the diffusion model [59] (the membrane en-
ergy model) given by the Laplace equations have been particularly investigated as a
general and practical form of regularisation. Other smoothers such as the curvature
model (the bending energy model) have been designed for specific applications [38].
These models can be used for the regularisation of the deformation field and/or for
regularisation of the update of the deformation field (fluid continuum model) [19].
Indeed both of the them lead to a solution. While regularisation of the deformation
field restricts the transformation to small deformations, regularisation on the up-
date of the deformation field is extremely flexible. Besides, an interesting technique
of deformation field smoothing was proposed in [138] (so-called Demon), where the
deformations are regularised by the low-pass Gaussian convolution filter. Recently
this approach was put into the optimisation framework and the fluid-like version
(smoothing the update of the deformation field) was also proposed [143, 145]. Fur-
ther investigations showed that Demon smoothing is related to the diffusive model
of transformation [90, 82]. The detailed overview of the most common regularisers
can be found in [151, 90, 92].

In most biomedical applications, the results of implementing a general image reg-
istration algorithm is not always suitable. Although the estimated transformation
warps image/volume to be similar to the reference image/volume, this transforma-
tion may not be representative of the deformation expected in the biomedical cases
e.g. due to folding. As a most compelling example, the human body deformations
can occur in places where some tissues are highly elastic, some are deformable but
do not change the volume, and other can be also totally rigid. For this reason, an
additional knowledge have to be introduced to the registration process, to make the
estimated results medically plausible. The important thing to realise is that this in-
troduced user knowledge is not done to replace the regularisation term [39]. Having
in mind a wide range of the common medical applications, a number of the proposed
additional constrains is equally significant even without including the some-how re-
dundant solutions of the same problem via different ways of defining problem. The
way of the separating these constraints is by some means of the proposed ad hoc to
be based either on the manner of introducing the additional information or on the
desired properties.

The first way of dividing the additional knowledge into image registration is re-
lated to the soft-constrains approach, hard-constraints approach or even developing
a full new registration problem formulation. The soft constraints are constraints that
do not necessarily have to be fulfilled during image registration and some deviation
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from the expected properties can happen [91]. In contrast, the hard constraints
totally rule out the unwanted solutions [50]. In last case, the reformulation can be
seen as transferring a problem from one domain into the other, that has the partic-
ular properties i. e. a diffeomorphic formulation of the image registration via flow
in suitable infinite-dimensional group of smooth, invertible transformations [25], or
via an approximation of a Lie group by a time-independent flow (stationery velocity
field) [4, 5, 143, 144, 145, 82].

Taking into account the desired properties of the estimated transformation, the
most common restrictions can be straightaway enumerated. The tissue deformation
modelling requires the possession of the local rigidity characteristics implemented
in many different manners [72, 84, 77, 65, 110, 128, 129, 49, 130, 91]; ensuring the
considerable volume changes [47, 50, 82]; the discontinuities in motion for slipping
objects i.e. lungs [111, 117, 107]. Motion estimation can be also restricted via
pre-learnt statistical models [150, 3, 119, 34, 135].

During the past years many medical image algorithms have been restricted to the
diffeomorphic framework. A diffeomorphic transformation is defined as a continuous
differentiable mapping preserving the neighbourhood topology. As in general there is
no unique solution, this approach offer a very consistent and biologically meaningful
results that is valid for a large number of the problems where images represent the
same objects but different in shapes. The earliest work are related to preserving
the one-to-one mapping and consistency criterion directly [27, 63] and extended to
different modalities [162, 136]. Other approaches ensuring the diffeomorphism are
based on a flow under the specific group of the transformations [25]; the time-
dependent flow [26, 15], the small step multi-pass technique [155], the B-spline
parameterisation with additional constraints [115] or the geodesic shooting method
[89, 6]. Recently, a new parameterisation has been adapted into the diffeomorphic
registration derived from the Lie algebra [4, 5, 143, 144, 145, 82, 53].

The last criterion mentioned above for classifying the image registration tech-
niques is the procedure of finding the optimal solution. In general, in the case of
the deformable image registration, a high-dimension, non-linear, non-convex image
registration problem has to be solved in a reasonable time. Various optimisation
algorithms have been utilised to cope with this problem. One of the possible classes
of solution strategy is related to the so-called optimise-discretise approach that aims
at finding the analytical Euler-Lagrange equations, which are then discretised and
solved with some sort of the selected solution schemes. Variational techniques of
solving the image registration problem are discussed in [30]. The overall description
of the optimise-discretise strategy is presented in [90]. The other strategy is known
as the discretise-optimise technique [92], where an appropriate discretise scheme is
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applied first to get a finite-dimensional optimisation problem that can solved with an
associated optimisation method. Besides the strategy used, there is always a chance
to get trapped in a local minimum. The common technique to at least partially
reduce this problem is adopting the multi-scale or the multi-resolution scheme.

Recently discrete optimisation techniques have been introduced in order to solve
image registration problem [43, 54]. Contrary to the previously mentioned ap-
proaches, in this case domains and codomains of images and deformation field are
approximated by a set of predefined labels rather than real numbers. Subsequently
using different models such as Random Markov Field or graphs a solution of the de-
sired energy function can be found using one of combinatorial optimisation methods
(e.g. graph-cut algorithm).

As shown above, a significant number of approaches has been proposed to cope
with estimation the plausible transformations. Although many practical problems
have been addressed, there are issues that have not been solved yet. Moreover,
development of new scanners and acquisition protocols opens new areas of possible
research to satisfy medical requirements. Recently, one of the most active research
area has been found in the diffeomorphic formulation of the image registration.
The interesting thing to be investigated in future, seems to define the framework
that can integrate a general diffeomorphic formulation with some real-life problems
of a partial information, low-quality images, occlusions etc. Another issue that
has to be listed as problematic in image registration is the validation criteria, to
give an objective and quantitative result of performing a particular registration
algorithm, and to compare different approaches. Currently the most common way
of the validation is using the synthetic ground truth data (often not necessarily
describing the real clinical conditions), phantom simulations, the numerical criteria
describing some (usually limited) properties of the estimated transformations, or the
biased visual inspections by the experts. All of these approaches towards validation
have some drawbacks and limitations. Furthermore, although the new trends in
computing have speeded up significantly the processing time during past years, in the
same time the acquisition systems have been also improved resulting in larger data
sets. In some applications demanding nearly real-time processing, the limitations
on the computational time are very restrictive. Finally, probably all of the existing
methods have some design parameters that have to be set before, or during the
registration process. Having this in mind, the automatic or at least systems with
limited human operator interactions are preferable in many cases.

To sum up, a brief overview and the common classifications of the image regis-
tration techniques were introduced. The basic principles of the different approaches
to image registration from the mathematical point of view can be found in the
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textbooks [90, 158, 92]. A general overview of image registration techniques for spe-
cific application areas are covered in [51, 164] and in [81, 134] where the discussed
examples are focused in majority on the biomedical field.

2.2 Principles of image registration

Deformable image registration is a process of determining a spatial transformation
that establishes plausible (i.e. the correctness in terms of e.g. biological tissue prop-
erties) correspondences between the object(s) in two (pair-wise image registration),
or more images (group-wise image registration).

In this section, the pair-wise image registration will be considered for two given
input images: image If that is termed fixed image (also called as reference image or
target image), and image Im that is termed moving image (named also as template
image or source image):

If , Im : Ω Ñ R,Ω � Rd (2.1)

where d denotes the spatial dimension of image (the data dimensionality). Having
two input images, the aim for the deformable image registration is to estimate an
optimal, in some sense, transformation ~ϕopt:

~ϕopt : Ω Ñ Rd,Ω � Rd (2.2)

warping moving image Im to be similar (in sense of the assumed criterion of simi-
larity) to fixed image If :

If � Im � ~ϕ � Imp~ϕq (2.3)

where � is a composition operator. The transformation (deformation field) ~ϕp~xq
can be also stated in term of a displacement field ~up~xq � ru1p~xq, . . . , udp~xqs from a
spatial position ~x � rx1, . . . , xds P Ω:

ϕp~xq � ~x� ~up~xq (2.4)

The problem of finding an optimal displacement field ~uopt can be phrased as an
optimisation problem:

~uopt � arg min
~u

ε p~u; If , Imp~uqq (2.5)

The objective function εp~uq (often called an energy function) consists of a similarity
criterion (also called as discrepancy or volumetric distance measure) Sim measuring
how similar images are, and a regularisation term (smoother) Reg measuring the
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reasonability (plausibility [92]) of the estimated displacement field:

εp~uq � SimpIf p~xq, Imp~x� ~up~xqqqdx� αRegp~up~xqqdx (2.6)

where: α is a weighting factor to control the respective influence of Sim and Reg
and α ¡ 0.

In some formulations of the image registration problem, an additional compo-
nent, the penalty term Pen, is added to the energy function given by Equation 2.6,
that discourages undesirable transformations [39]. Therefore, the energy function
εp~uq can be phrased as follows:

εp~uq � SimpIf p~xq, Imp~x� ~up~xqqqdx� αRegp~up~xqqdx� βPenp~up~xqqdx (2.7)

where β ¡ 0 denotes a penalty parameter to control the impact of the penalty term
Pen. Contrary to the regularisation term Reg, that is necessary to guarantee the
deformable image registration problem to be solvable, the penalty term Pen can
only provide an improvement to the properties of the estimated transformation or
a feasible way of including a priori knowledge into the registration process.

Although, the most intuitive approach for image registration seems to be direct
minimisation of the similarity measure Sim without introducing any regularisation
term, this expectation has some fundamental drawbacks. Firstly, the minimisation of
the similarity measure is an ill-posed problem since many solutions can exist (many
local and/or even global minima), and secondly, small changes of the input data can
lead to significant changes of the estimated results. These basic requirements such as
an existence and uniqueness of a solution and a continuous dependence of the result
on the input data are so-called Hadamard terms of a well-posed problem [90, 30]. The
reason for the inherent ill-possess of the image registration can be intuitively seen
from the observation, that providing a scalar information of the image intensity, the
vector valued transformation has to be estimated [39]. Moreover, in most situations
when image registration is used, the additional assumptions have to be implicitly
made to estimate a desirable deformation field. Thus, these considerations lead to
conclusion that the explicit adding of the additional regularisation term Reg into
the optimisation framework is unavoidable. Additionally, selection of an appropriate
regularisation term is strictly dependent on a particular application and the desirable
properties of the estimated transformation.
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2.3 Similarity criteria

The similarity criterion can measure distance between features (landmarks) taken
from images (feature-based image registration) or volumetric distance between image
intensities (intensity-based image registration). In this work, the intensity-based
image registration approaches are to be investigated, therefore the intensity-based
criteria are described in this section.

The simplest choice of volumetric distance and for this reason very effective in
the case of the mono-modal data, is the sum of the squared difference (SSD) defined
as:

SSDpIf , Imp~ϕqq �
»

Ω
pIf p~xq � Imp~ϕp~xqqq2dx (2.8)

The SSD criterion is quite restrictive because it assumes that corresponding objects
have the same intensities in both input images (If p~xq � Imp~ϕp~xqq). When the
dependence between image intensity levels in images is linear (If p~xq � κImp~ϕp~xqq
where κ P R is a scalar value), cross correlation (CC) [32, 57] can be utilised. For
images of the same modality, the SSD yields similar results as the CC and also the
images with linear dependence of the intensity can be easily adjusted to be mono-
modal images. One way of utilising SSD for the multi-modal images is to introduce
an intensity correction of the image content [45]. The practical applications of the
CC in computer vision can be utilised in term of robustness for the unpredictable
illuminations or inhomogeneity in medical data (e.g. MRI) [10].

For any functional dependency of the image intensity (it may not be known a
priori), a correlation ratio (CR) was proposed as a measure expressing a level of the
functional dependence between two images. The CR is defined as follows:

CRpIf , Imp~ϕqq � varrEpIf |Imp~ϕqqs
varpIf q (2.9)

where varrEpIf |Imp~ϕqqs measures the part of If which is predicted by Imp~ϕq and
varpIf q is a variance of If . The CR was successfully applied for the rigidly pa-
rameterised transformations estimation [108]. Furthermore, a general variational
framework with analytically derived gradient of CR for the non-parametric image
registration was proposed in [56, 24]. A wide range of medical data sets were eval-
uated for both approaches yielding the results that indicate visually correct align-
ment of anatomical structures. While the aforementioned similarity criteria such
as the SSD, CC and Mutual Information (to be outlined in the next paragraph)
are not dependent on the order of input images, particular care has to taken dur-
ing evaluation of the CR due to asymmetric properties of this measure (in general
CRpIf , Imq � CRpIm, If q) [108]. In addition, the CR-driven image registration can
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fail when an underlying intensity dependence is not a monotonic function [57].
In general case, the statistical entropy-based (information theory-derived) mea-

sures such as Mutual Information (MI) [31, 147], have to be considered to find an
intensity relation between images. The MI is commonly defined using the joint
probability density function of the intensity distribution P pIf p~xq, Imp~ϕp~xqqq and the
marginal probability density functions of the intensity distributions ppIf p~xqq and
ppImp~ϕp~xqqq for images If and Imp~ϕq respectively. The MI between images If and
Imp~ϕq is given by:

MIpIf , Imp~ϕqq � �
»

Ω
log P pIf p~xq, Imp~ϕp~xqqq

ppIf p~xqqppImp~ϕp~xqqqdx (2.10)

The MI indicates how the intensity of the pair of images fail to be independent
(or how much global information is shared by the pair of images). The analytical
expression of the derivative of the MI was derived in [57] for the non-parameteric
case. Although the MI has been intensively investigated in many image registration
algorithms for the images originating from a wide range of the applications (see
[100] for detailed overview of MI-based registration methods), it suffers from some
limitations due to the process of the joint intensity distribution estimation and it
is extremely sensitive to the region of overlapping between images [80, 133, 156].
The first issue is due to the fact that in general the joint intensity distribution
P pIf p~xq, Imp~ϕp~xqqq is unknown, and has to be estimated either using the histogram-
based estimator or Parzen-window-based estimator. The second problem related
to the negative effect of the varying image overlapping region was minimised by
introducing the normalised mutual information (NMI) (proposed and evaluated in
[133]). In the same way as for the MI, the analytical derivative of the NMI was
derived in [156].

While the SSD seems to be too restrictive in many applications, the MI can be
actually too general to use as well, and a normalised gradient field distance can be
seen as a compromise between these similarity measures. The normalised gradient
field distance measure (NGF) [48, 92] is based on the assumption that intensity
changes of images with different modalities appear at corresponding positions. The
NGF is defined by:

NGF pIf , Imp~ϕqq �
»

Ω
1 � pηpIf p~xqqηpImp~ϕp~xqqqq2dx (2.11)

where ηpIf q and ηpImp~ϕqq are normalised gradients of images If and Imp~ϕq respec-
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tively. The normalised gradient ηpIf p~xqq is defined as:

ηpIf p~xqq �
$&
%

∇If p~xq?
}∇If p~xq}�ν

if ∇If p~xq � 0

0 otherwise
(2.12)

where ν is a parameter (so-called edge parameter) that determines whether gradient
is to be considered as an edge or the noise in image [48].

The outlined similarity measures are calculated as a global criterion on the im-
age domain where both reference and warped moving image are overlapping. In
some applications, this can be seen as a shortcoming because the spatial dependen-
cies are not incorporated into the registration process. Recently, a non-rigid image
registration framework combining both global and local similarity criteria has been
proposed [156]. The integration of the global similarity measure Simg and the local
discrepancy Siml is done via a simple weighting scheme defined as:

SimpIf , Imp~ϕqq � γSimgpIf , Imp~ϕqq � p1 � γqSimlpIf , Imp~ϕqq (2.13)

where γ P r0, 1s is a parameter that trades off between global and local statistics.
The weighting scheme given by Equation 2.13 was applied to NMI with an adaptive
procedure of γ adjustment in [156]. Another approach incorporating the spatial
information into image registration was proposed in [55, 25]. However, an exploiting
of the local similarity criterion only as such is not effective and likely to result in
registration to be trapped in local minima [156].

From the theoretical point of view, evaluating more general similarity measures
can lead to estimation of larger variety of possible transformations, with some hidden
by more restrictive similarity measures. In the meantime, the similarity criterion
should also indicate the most plausible transformation [92]. As a result of these
concerns about the most appropriate similarity criterion, the choice of the similarity
measure has to be relevant to intensity dependencies (or relations) between input
images, as it can significantly influence the process of estimating the optimal trans-
formation. Thus far, defining (or even in a simple case of selecting for some sort of
images) a suitable criterion is a challenging task, and on its own, it is a subject of
research for specific applications and data. From examples of the different modality
images obtained for brain [1, 2] shown in Figure 2.2, it is noticeable that finding
visual correspondences between relevant objects (structures) in different modalities
images can be difficult even for a human observer.
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Figure 2.2: Multimodal examples of the brain images taken from different scanners:
(from left to right) Computed Tomography [1], Magnetic Resonance Imaging T1 [2],
Magnetic Resonance Imaging T2 [2], and Positron Emission Tomography [2].

2.4 Nature of transformation

Historically, the earliest works in the area of image registration restricted the es-
timated transformation to the low-dimensional space of transformation. A param-
eterised transformation ~ϕq is typically defined as linear combinations of the basic
functions and the parameters. The simple case of the two dimensional (d � 2)
rigid transformation ~ϕrigid (which allows for translations and rotations) is defined in
following way:

~ϕrigidp~xq � R � ~x� ~T (2.14)

where R is the rotation matrix with parameter θ

R �
�

cospθq � sinpθq
sinpθq cospθq

�
(2.15)

and ~T � rt1, t2s is the translation vector with parameters ti, i � 1, 2 where ti denotes
translation in the ith direction of image domain. Another commonly used parame-
terised transformation is affine transformation that extends the rigid transformation
to shearing and scaling. A detailed description of possible parametric transforma-
tions can be found in [158]. There was also another reason for the low-dimensional
space restriction behind the ill-posed properties of the image registration problem
related to the limited computational resources (computing speed). Although the
simplicity of the parameterisation is noticeable, where only a few parameters have
to be estimated to describe the transformation, the drawback is in very low accu-
racy of registering the local deformations. The intuitive approach is to extend the
number of parameters to the desired level to alleviate the limitation of the small
set of possible transformations associated with the affine or rigid transformations.
In practice, to capture the local anatomical variability, the B-spline based param-
eterisation of the transformation was proposed [112]. The parameterisation of the
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transformation ~ϕBsl can be done in terms of the deformation field ~uBsl:

~uBslp~xq �
¸
l�0

¸
m�0

¸
n�0

Blpx1
bqBmpx2

bqBnpx3
bq~ci�l,j�m,k�n (2.16)

where Bl stands for the B-spline polynomial (usually of order 3 - the cubic B-
Spline polynomial), ~c denotes the control points which parameterise the deformation
field and i, j and k denote the indices of thee control point cells containing ~x, and
x1
b , x

2
b and x3

b are the relative positions of x1, x2 and x3 [112, 65, 115]. The B-spline
parameterised control points representing transformation can be either put on the
regular grid [112] or non-uniformly distributed [118] that they may not be linked to
any specific image features. In addition, the derivative of the transformation ~ϕBsl can
be also expressed in terms of the B-spline coefficients, that offer an easy and efficient
way of providing the gradients with respect to the deformation for optimisation
strategy [112, 129]. The B-spline parameterisation of the transformation has been
used in many different applications, showing in most cases good performance in
terms of objects deformations modelling. The applications include not only the
original applications to the MRI of the breast [112], but also the cardiac motion
modelling [22], full body PET scans [77], and brain variability modelling [114, 115].

The parameterisation can limit the set of the transformation that can be es-
timated for one element set, but in general the additional regularisation has to be
introduced [92]. This can be intuitively explained by considering the example images
of squares shown in Figure 2.3. Despite of using the low-dimensional transformation
space i.e. rigid transformation with only 3 parameters, the solution is not unique
and can be obtained by translation or via rotations. However, adding the desired
regularisation on the space of transformation parameters alleviate this problem and
can lead to the unique set of the optimal parameters (regularised parametric image
registration [112, 92]).

On the other hand, the non-parametric approaches restrict the estimated de-
formation field ~u by the regularisation term Regp~uq. An appropriate regularisation
term should have the properties of distinguishing the plausible transformations and
sometimes it is designed for a particular application, especially is the variability of
desired displacement is known a priori or can be determined empirically. Unfortu-
nately, in most medical applications, the variability of the optimal transformation
is not known. In those cases, the regularisation models are derived from the physi-
cal motivations linked in some unspecified ways to the underlying properties of the
registered objects. Four commonly used types of the regularisation terms are de-
scribed below including a diffusive regularisation, a linear elastic model, a curvature
regularisation and the fluid model. In general, the selection of the one that can be
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seen as the best one is not possible because each of them has some advantages and
disadvantages.

The diffusive regularisation (a membrane energy model or Laplacian model)
measures variations of the deformation field ~u, and is defined as a sum of the partial
derivatives [59, 90, 5, 92]:

Regdiff p~uq � 1
2

»
Ω

ḑ

j�1

ḑ

k�1
λdiff

�Bujp~xq
Bxk


2

dx (2.17)

where λdiff is a diffusion parameter. A higher value of λdiff encodes a lower amount
of the deformation field variability, enforcing a smoother deformation field and min-
imising the oscillations of the deformation field [90]. The diffusive regularisation
term was used in some applications such as adaptive radiotherapy [78, 159, 97]

It was shown that the diffusive regularisation is connected to the so-called Demon
algorithm [138, 143, 144, 145], where the regularisation is performed by a low-pass
Gaussian filtering procedure [90, 82]. The straightforward implementation of the
Demon algorithm makes this regularisation type very common in many applications.

Another common choice of the possible regularisation is related to the physical
properties of an elastic isotropic and homogeneous body. The linear elasticity reg-
ularisation [11] measures the energy (so called strain) introduced by deforming an
elastic material, and is approximated for the small deformation by:

Regelasp~uq � 1
2

»
Ω

ḑ

j�1

ḑ

k�1

�
λelas

�Bujp~xq
Bxj


�Bukp~xq
Bxk



�

µelas
2

�Bujp~xq
Bxk � Bukp~xq

Bxj

2
�
dx (2.18)

where λelas and µelas are so-called Lame parameters. A higher value of the param-
eter λelas encodes a less variation of

�
Bujp~xq
Bxj

	�
Bukp~xq
Bxk

	
leading to volume-preserving

properties. In opposite, a smaller value of parameter λelas tends to maximise the
expansion of the elastic body.

�
Bujp~xq
Bxj

	�
Bukp~xq
Bxk

	
is the divergence operator and indi-

cates a change of volume. A higher value of the parameter µelas leads to penalising
scaling and shearing and allows for rotations [5]. The other interpretation of the
parameters µelas and λelas is often referred to the Young’s modulus of the elasticity
and the Poissons’s contraction ratio [90] The linear elastic regularisation term has
been used widely in many applications [56, 24, 27, 57].

The curvature regularisation is defined based on the second order derivatives of
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2.4. NATURE OF TRANSFORMATION

Figure 2.3: Example of images of squares that shows the ambiguity arising from the
non-regularised image registration.

the deformation field ~u to minimise the curvature of the deformation field [38, 90]:

Regcurvp~uq � 1
2

»
Ω

ḑ

j�1

ḑ

k�1

ḑ

l�1
λcurv

�B2ujp~xq
BxkBxl


2

dx (2.19)

where λcurv is a curvature parameter. The motivation for deriving this regularisation
model was found in the penalisation of the affine transformation properties of the
diffusive and linear elastic smoothers. For this reason, the additional pre-registration
(rigid of affine) has to be carried out to minimise the distances between the rigid
structures.

The matrix stencils for a convolution operation of the described regularisation
terms are presented in [90, 5].

The mentioned regularisation terms take as an input the deformation field ~u, and
the regularisation can be performed with respect to the update of the deformation
field ~du. Performing regularisation (smoothing) on the deformation field restricts
also the estimated transformations to small and local deformations. In some appli-
cations this restriction is too strong to recover the particular motions. The proposed
solution to this issues is related to use the fluid continuum model of the body de-
formations [19, 90]. When the update of the deformation field is regularised, the
image registration can be referred as a fluid image registration [19]. The fluid image
registration is very powerful as in principle, it can deform any moving image to
the reference image as long as they have the same range of the intensity level [90].
However, this is also a limitation for some sort of medical applications, because in
general the organs do not deform in a fluid-like manner.

Although, the image registration with the regularisation terms is called non-
parametric image registration, parameters λdiff , λelas and µelas, λcurv are present in
these models. In contrast to the parametric approach, where the set of the parame-
ters describes the estimated transformation, the parameters from the regularisation
terms are only influencing the deformation field during registration.

The illustrative example of performing image registration with different types of
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Figure 2.4: Effects of different regularisation terms for registration of two images of
square shapes (shown in Figure 2.3). (From top to bottom) The intermediate warped
image and the regular grid warped by the estimated transformation with increasing
number of iterations using: (from left to right) a linear elastic regularisation, a
diffusive regularisation, a Gaussian filtering on the deformation field, a Gaussian
filtering on the update of the deformation field.
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Figure 2.5: Effects of different parameter values for the linear elastic regularisation
of deformation field of two images of square shapes (shown in Figure 2.3). (From
top to bottom) The intermediate warped image and the regular grid warped by the
estimated transformation with increasing number of iterations using: (from left to
right) a linear elastic regularisation with values of the parameter set to 0.1, 0.3, 0.5
and 0.7 respectively.
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the regularisation terms is shown in Figure 2.4. It can be seen that all regularisation
terms allow to estimate a meaningful transformation that warps the moving image
to be similar to the reference image (though small artifacts can occur due to image
interpolation). As it is expected utilisation the various models for the regularisation
term in registration produces a different transformation field. Coupled with the
problem of selecting the appropriate regularisation is the problem of tuning the
optimal parameters for the chosen regulariser. Having this in mind, the next example
shown in Figure 2.5 presents the impact of the parameter value of the linear elastic
regularisation for the deformation field. Even for the same type of the regularisation,
it does not result in the same estimated deformation field while the warped images
are seen to be visually correctly registered. All in all, the selection of the most
plausible transformation has to be driven by the particular application.

2.5 Additional image registration constraints

The components of image registration that have been discussed previously are the
inevitable parts of the objective function given by Equation 2.6. Solving the en-
ergy function that consists of the similarity measure Sim and regularisation term,
ends with estimating a transformation relevant to the chosen components and their
parameters. Although the estimated transformation warps the moving image to
be similar to the reference image, the obtained transformation may not fulfil the
particular application restrictions, even for the choice of the most appropriate regu-
larisation. For example, as it can be seen in Figure 2.4, the estimated transformation
for the fluid regularisation has some noticeable foldings. Another interesting con-
clusion can be drawn, when the square is assumed to be a rigid object and the
surrounding background to be deformable. In this case, none of the solution shown
is correct, because the elastic deformations occur inside the square. Indeed another
more suitable regularisation can be found out, but it may not reflect all the desired
properties for the objects in image. The above example corresponds to the common
problem of medical image registration, where the transformation estimated by the
general registration technique is not valid in terms of the biological correctness. For
this reason, additional constraints have to be introduced to registration process, to
make the estimated transformation usable in clinical applications.

User-defined constraints

The common properties that model the specific deformation field can be either
known a priori such as rigidity of bones, volume preservation, discontinuities of
the slipping structures, preservation of the neighbourhood topology reflecting the
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biological structure of organs, or learnt from the statistically constructed model(s)
of the organs/tissue motion based on the representative set of data. In addition,
the penalisation terms can be also included in image registration to make possi-
ble the visualisation of the structure variations between the timestamps of image
acquisitions e.g. pre- and post- contrast injection images.

The local rigidity of the objects like bones was introduced into the non-rigid
formulation of the image registration in several ways. One of the possibilities is
to introduce the penalty term Pen (given in Equation 2.7), that must satisfy the
rigidity conditions. The rigidity conditions derived from the rigid transformation
properties (Equation 2.15) are as follows: the linearity (affinity), the orthogonality
(orthonormality) and the orientation preservation (properness) [91] (the terminology
in the brackets comes from [130]). The linearity condition is fulfilled when the second
order derivatives are zero, while the orthogonality and the orientation preservation
can be expressed in terms of the Jacobian matrix of the deformation. The Jacobian
matrix of the deformation field ϕ is defined as follows:

Jp~up~xqq �

�
���

Bu1p~xq
Bx1 . . . Bu1p~xq

Bxd

... . . . ...
Budp~xq
Bx1 . . . Budp~xq

Bxd

�
��� (2.20)

The orthogonality is defined as Jp~up~xqqTJp~up~xqq � Id and the orientation preserva-
tion as keeping the determinant of the Jacobian matrix detpJp~up~xqqq equal one for
all ~x where Id denotes an identity matrix. Utilising the above conditions, numerous
image registration algorithms were proposed to a wide range of the applications.
Loeckx et al. [77] proposed the B-spline parameterised image registration method
to punish the transformations that are not locally rigid, by imposing the above con-
ditions with spatially varying weighting factor β (given in Equation 2.7). In [130] a
similar approach was applied to the clinical data of the thorax containing the lung
tumors, and to the 2-dimensional digital substraction angiography. The parameter
β in both approaches was selected manually, while in [110] the relation with the
Computed Tomography intensity values was shown and applied to the image reg-
istration algorithm. Non-parametric image registration with the local rigidity was
proposed in [91]. While the mentioned approaches defined the local rigidity as a so-
called soft-penalty, where some perturbations with the estimated solution can occur
and the local rigidity may not be fulfilled, a constrained registration was proposed
[49]. By incorporating hard constraints, the results yielded by this framework are
guaranteed to be rigid. Other techniques that preserve the local rigidity, are based
on the adaptive context-based filtering of the deformation field [128], or modelling
the interaction between control points using physical analogies derived from the in-
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put images, and are capable to treat some preselected parts of the image as the rigid
objects [84].

An important property from the medical point of view is tracking the struc-
tures that are incompressible e.g. tissue of the heart. Several approaches to cope
with the volume-preserving image registration have been proposed. Similarly as
in case of the local rigidity, the techniques based on penalising either the soft or
hard constraints were proposed [47, 50]. The condition that transformation is a
volume-preserving transformation is derived from the fact that the determinant of
the incompressible transformation is equal one: detpJp~up~xqqq � 1. Recently, it was
shown that integrating divergence-free velocity fields produces the incompressible
deformation field [82]. The proposed approach is more computationally efficient due
to fast Demon-like implementation.

The aforementioned methods use regularisation terms to ensure smoothness of
the deformation field and the additional constraint to make this deformation field
realistic. In some applications such as estimation of the lung motion, the smooth-
ness properties contradict motion physiology at the object boundaries. In this case,
the lungs and chest slip each other during the respiratory cycle, and create disconti-
nuities in real motion. The modelling of the sliding effect on the organs and tissues
boundaries was proposed in [111] where a decomposition of the deformation field
was performed to penalise an unwanted solution. Another approach based on the
non-linear diffusive registration with the directional dependent regularisation that
is applied to the lungs motion was presented in [117].

Statistically-derived constraints

Until now, the additional constraints were some-how user defined, where a particular
combination of the regularisation term and the soft- or hard- constraints was added
to enforce a specific kind of the motion. The user knowledge was incorporated first
by defining appropriate penalty term Penp~uq by either using the properties of the
Jacobian matrix Ju, by decoupling the regularisation term, or by additional filtering
operations. However, describing the anatomical deformation of the organs and/or
tissues is possible only in relatively simple cases. To provide a reliable additional
knowledge that can be first learnt from the representative data sets, statistically-
derived constraints have been widely proposed. The statistical models can be built
based either on the shapes or on the motion. Incorporating the statistical shape
information was presented in [150] where the shapes boundaries were described by
a set of the points. The mean and the major modes of the variations of the set of
the aligned shapes were found out by applying the Principal Component Analysis
(PCA) to them. Then the statistical shape information is incorporated into non-
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rigid image registration by the additional criterion that tries to fit the registered
shape(s) into the statistical model.

The second approach of incorporating the statistical knowledge into registration
utilises the deformations models. In contrast to the previous approach, the represen-
tative images have to be first registered and then the PCA is applied to the obtained
deformation fields (or parameters describing the deformation field in the case of the
parametric approaches). The principal modes of the deformation are then incorpo-
rated into the registration framework and restrict the estimated transformation to
be statistically related to the pre-learnt model. The approaches, that rely on the
statistical motion models, have been introduced to the lung motion estimation [76],
to the partially missing and noisy data [3], to constrain image registration between
structural CT and functional (PET) images and recently to construct the statistical
regularisation for DTI of the brain [135]. In all cases, the obtained results suggest
that the transformation additionally constrained by the statistical models has been
improved to achieve the desired solution.

Diffeomorphism

One of the main limitations of both the user-defined and the statistically created
constraints is that they require either the explicit knowledge about the underlying
organs/tissue properties or the representative data set(s) to be learnt from. How-
ever, this condition may not be fulfilled in many situations due to the lack of the
reasonable models to describe the tissue deformation class, or the limitations of pro-
viding a sufficiently large data set. To provide the medical or biological correctness
of the estimated transformations, the diffeomorphic image registration formulation
has been considered as a powerful framework. The diffeomorphic image registra-
tion produces a smooth (differentiable), one-to-one transformation that additionally
have smooth inverse transformations (by this it means that the inverse transforma-
tion may not be calculated explicitly during the registration, but can be calculated
using some others methods [7, 27, 96] taking the advantage of being one-to-one
transformation). In other words, the diffeomorphic transformation preserves the
neighbourhood topologies of the objects in images. For those reasons, the diffeo-
morphic image registration frameworks are recognised as a worthy of being chosen
to medical applications, especially when no additional knowledge about the desired
solution can be assumed [5, 145]. Preventing from foldings (the examples of the
foldings are visible in Figure 2.4 in the third and fourth column), that in most med-
ical cases are not justified, opens a wide range of the possible applications where
invertible transformations are plausible. Maintaining topologies and guaranteeing
the connected objects in images remains connected after warping can also be utilised
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for automatic segmentation and labelling the structures from electronic atlases [27].
The earliest research on the diffeomorphic image registration relies on the fluid

registration with the time-dependent transformation ϕp~x, tq [26]:

ϕp~x, tq � ~x� ~up~x, tq (2.21)

Estimation of the diffeomorphic transformation ~ϕ is linked to a time-dependent
velocity field ~w by evolving:

B~up~x, tq
Bt � ~wp~up~x, tq, tq (2.22)

An optimal solution ~ϕp~x, t � 1q is arising as a result of the integration of the flow
given in Equation 2.22 in the following way:

ϕoptp~x, t � 1q � ~up~x, t � 0q �
» t�1

t�0
~wp~up~x, tq, tqdt (2.23)

where ~up~x, t � 0q is an identity transformation. Therefore, the optimisation problem
can be stated with respect to the velocity field ~w:

arg min
~w
εp~wp~x, tqq � SimpIf , Imp~ϕp~wp~x, tqqqq �

» t�1

t�0
αRegp~wp~x, tqqdt (2.24)

The solution of Equation 2.24 was proposed by Christensen et al. [26] and is as-
sociated with first computing the force: ∇SimpIf , Imp~ϕp~wp~x, tqqqq for the current
transformation ~ϕptq, then solving a linear partial differential equation (PDE) for
the new velocity field ~wptq and finally performing the explicit Euler integration of
the flow ~uptq. This problem was also studied in [15], where the Large Deformation
Diffeomorphic Metric Mapping (LDDMM) algorithm generates a shortest geodesic
distance (path) of the flow ~u. In both cases, it requires an additional integration of
the time-varying velocity field ~w.

Recently, a stationary velocity field ~v parameterisation of the diffeomorphic
transformation was proposed [4], where the velocity field is constant over the in-
tegration time:

B~up~x, tq
Bt � ~vp~up~x, tqq (2.25)

This approach has the advantage of being computationally effective due to a fast
algorithm for the deformation field calculation (originally proposed in [4]). Further,
this paramterisation of the diffeomorphic transformation was adapted to non-rigid
image registration [5, 143, 144, 145, 53], and the obtained results suggest that sta-
tionary velocity fields are feasible way of describing the motion variability in medical
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applications.
Diffeomorpic image registration can also be described in terms of the algebraic

structure called a group. The group is defined as a algebraic structure consisting
of a set of some elements and an operation on them. The operation takes two of
the set elements and generates another element that still has the property of the set
elements. To be quantified as a group, the set of elements and operation on them
must hold four basic requirements defined as the group axioms. These requirements
are as follows: closure, associativity, the neutral element existence, and inverse
element existence. To put the diffeomorphic transformation estimation in another
way, the set of the diffeomorphic transformationsDiff and the composition operator
� can be stated as (in the perfect case) a Lie group (Diff , �). Any Lie group can
be associated with another algebraic structure called a Lie algebra. The Lie algebra
is a vector space (vector space of the velocity fields) with the associated operation
called the Lie brackets and the Lie algebra captures the structure of the Lie group
(Diff , �). The Lie group and the Lie algebra are related through the exponential
mapping exp that is a smooth mapping from the neighbourhood elements of the Lie
algebra to the elements of the Lie group that are infinitesimally close to the neutral
element of this Lie group. The exponential mapping recaptures the structure of
the Lie group from the Lie algebra. Thus, the estimation of the diffeomorphic
transformation can be obtained as finding an update in the Lie algebra space and
through the exponential mapping it is composed with the element from the Lie group
[4, 145]. In addition, Arsigny et al. [4] showed that the principal logarithm (that is
the inverse of the exponential mapping) corresponds to the stationary velocity field
parameterisation of the diffeomorphic transformation. The efficient algorithms to
compute the principal logarithm were proposed in [4, 17], while the fast algorithm
for calculating exponential mapping of the vector field was proposed in [4]. The
accuracy and the performance of the different variants of those algorithms were
shown in [18].

The diffeomorphic framework was also applied to the non-rigid B-spline based
image registration [115]. To preserve the properties of the diffeomorphic trans-
formation for the estimated transformation, the multiple composition of B-spline
transformations that are primary ensured to be one-to-one mapping, is repeated.
As it was pointed in the previous section, the composition of the diffeomorphic
transformations becomes also a diffeomorphic transformation. In the same manner,
some of the non-paramteric approaches were established to be diffeomorphic by the
composition of the diffeomorphic update of the deformation fields. To prevent the
update of the deformation from folding, the penalisation of the determinant below
zero [27, 63] and the explicit limiting magnitude procedure were proposed [155].
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2.6 Solving image registration problem

In general, in the case of the deformable image registration, a high-dimensional,
non-linear, non-convex image registration problem has to be solved in a reasonable
time. Various optimisation strategies have been utilised to cope with this problem.

As it was shown, the image registration problem can be stated as an optimisation
problem (Equation 2.5) for the particular components of image registration. The
most common strategy of finding the optimal transformation is using the iterative
algorithms. The iterative algorithm starts with the initial guess about the solution
and then by generating multiple steps converging to the solution. For non-rigid
image registration the initial guess ~u0 of the displacement is usually given as an
identity transform or the solution of the parametric pre-registration:

~u � ~u0 � ~du1 � . . .� ~dui (2.26)

where ~dui is an update of the deformation field calculated by the iterative method
and i is an iteration index.

The easiest way to consider estimation of the transformation (minimising the
non-linear functional) is to calculate the gradient of the image registration function
(given in Equation 2.6) and use the gradient-based steepest descent method. The
updates of the displacement field are equivalent to finding the derivative ∇εp~uq of
the functional εp~uq (so-called the Gateaux derivative):

∇εp~uq � Bεp~uq
B~u (2.27)

The update of the deformation field for the steepest descent strategy is summarised
below:

~dui�1 � �τi∇εp~uiq (2.28)

where τi is a length step parameter. The strategies relying on the higher order
schemes e.g. Newton method are not used commonly for non-parametric image
registration due to required calculation of the high order derivatives of the images
and similarity measures [90, 30].

Another possible strategy requires first to find the analytical Euler-Lagrange
equations corresponding to the objective function, and then to discretise and solve
them with the selected numerical solution schemes. The Euler-Lagrange equation
is defined as follows:

Ap~uqp~xq � fp~x, ~up~xqq � 0 (2.29)

where A is a partial differential operator related the regularisation term, and f is
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called a force linked to the similarity measure [90]. The partial differential equation
(PDE) given by Equation 2.29 can be solved for example by the fixed-point iteration
scheme [90]. The optimisation problem given by Equation 2.5 or the Euler-Lagrange
equation 2.29 can be reformulated into a time-dependent process and finding the
steady solution with change of the deformation field:

�B~uBt �
Bεp~uq
B~u (2.30)

Thus, a non-linear optimisation problem is rewritten to be solved as a linear problem.
In practice, two schemes of the time discretisation are commonly used, explicit time
discretisation and semi-implicit time discretisation [30]. The general overview of the
computational techniques for solving an image registration problem is presented in
[90, 30].

The aforementioned strategies are so-called optimise-discretise strategies [90] be-
cause first the analytical solution had to be found, then the numerical schemes are
applied. The opposite class of the solution strategy that has to be mentioned, is
known as a discretise-optimise technique [92]. The discretise-optimise technique
relies on an appropriate discretising scheme that is applied first to get a finite-
dimensional optimisation problem. Then the finite-dimensional problem can be
solved with an associated optimisation method. This strategy is shown as compu-
tationally robust because the high order method can be used for estimation of the
transformation.

Besides the strategy that is evaluated, there always is a chance to get trapped
into the local minimum. The common technique to avoid this problem is adopting
the multi-scale or the multi-resolution scheme.

2.7 Summary

The main purpose of this chapter was to introduce briefly the image registration
problem, and the principle components involved in the estimation of the optimal, in
some sense, transformation. The approaches described in this chapter are the most
common techniques, that have been investigated in the past years. The major focus
was on presenting the deformable image registration with the particular property
such as diffeomorphism, that has been shown to be valuable formulation of the
image registration applied to medical data. The mentioned formulation that allow
a generic diffeomorphic framework to be defined, the log-Euclidean framework, is
outlined as it is going to be critically assessed in the following chapters.

The four aspects of image registration were discussed and based on them the
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classifications of the image registration algorithms were presented. As the first set
of separation, the similarity criteria were chosen. A wide range of the volumetric
distances between images was presented and the advantages in parallel with the
main limitations were pointed out. Another classification was designed in terms of
the transformation properties. The image registration was broadly divided into two
categories namely, parametric- and non-parametric image registration. As it was
shown, in majority of medical applications, some additional requirements for the
transformation are necessary, and based on them, image registration was classified.
The comparative section ends with a description of the optimisation strategies, that
are commonly used to solve image registration problems.

The aim of these comparisons is not only to introduce the problem of image
registration, but also to be used in the consecutive chapters as the theoretical back-
ground for the discussion on the obtained results for assessed image registration
algorithms.
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Chapter 3

Implementations of image
registration

This chapter first considers the three commonly used image registration algorithms:
the steepest descent approach (so-called variational Optical Flow), the Newton’s
iteration-based approach (originally named as fast Free Form Deformation), and
the Demon approach. Then, the different formulations of diffeomorphic image reg-
istration are presented: the small-step approach, the exponential updates scheme,
the log-Euclidean parametrisation of the deformation field, and image registration
constrained by the inverse consistency criterion. Together with the detailed descrip-
tion of these formulations, the previously introduced algorithms are reformulated
to establish them in the diffeomorphic manner. Equally important in this chapter
is to present the details of the image registration algorithms that are based on the
log-Euclidean parameterisation of the deformation fields via the stationary vector
fields. The next step is to give a more in depth analysis of all those algorithms and
their formulations. The aim of this analysis is to re-examine those approaches to
determine their usefulness and robustness in possible medical-driven applications.
This chapter ends by introducing the idea of the symmetrisation of the registration
process by simultaneously warping input images into another one. A novel algo-
rithm for the deformation field inversion is presented and based on it a new method
of image registration with symmetric warping is also suggested.

3.1 Classical approaches to image registration

The previous chapter introduced numerous image registration approaches and gave
a brief description of them. This chapter presents the details for a few of them,
namely: the steepest descent approach (so-called variational Optical Flow), the
Newton’s iteration approach (originally named as fast Free Form Deformation), and

38



3.1. CLASSICAL APPROACHES TO IMAGE REGISTRATION

the Demon approach. The selection of this particular set of algorithms is driven by
several objectives. Firstly, all of these methods are intensity-driven and can therefore
be considered to be fully automatic approaches (up to the successful selection of the
so-called design parameters embedded in these schemes). Secondly, most of the
aforementioned algorithms are utilised in the biomedical applications, therefore,
they can be seen as the most suitable for the further applications of the undertaken
project. Furthermore, the investigation is going to be pursued on a specific class
of the image registration algorithms - diffeomorphic image registration, leading to
the practically useful outcomes covered in the application-driven part of this thesis.
To sum up, some examples of the potentially biomedically favourable, automatic,
intensity-based, diffeomorphic image registration methods are described in details
in the following sections.

3.1.1 Steepest descent approach

The variational techniques are often a common first choice method for finding an
appropriate solution in many areas of computer vision, owing to both the excellent
results that can be obtained through this approach and the strict mathematical for-
mulation. The image registration based on the variational approach is phrased using
the backgrounds of the calculus of variations. The general variational framework for
image registration was presented in [56, 24, 57, 90], and it provides a simple method
to integrate different similarity criteria and a suitable regularisation terms in one
common energy functional that has to be either maximised or minimised.

As in the previous chapter, the problem of image registration is stated as a
minimisation of the objective function:

εp~uq �
»

Ω
SimpIf p~xq, Imp~x� ~up~xqqqdx� α

»
Ω
Regp~up~xqqdx (3.1)

Assuming the existence of a local minimum ~uopt for the energy function (given by
Equation 3.1), the functional derivative (or formally first Gateaux derivative [57])
∇εp~uq of the energy function εp~uq at ~uopt must hold as follows:

∇εp~uq � ~0 (3.2)

Following reasoning from [56, 24, 57], it can be shown that the condition of the
optimality given by Equation 3.2 is equivalent to gradient of the energy function εp~uq.
As it was presented in the previous chapter, the optimisation for image registration is
a non-linear problem due to non-linearity introduced by the dependence between the
input images and displacement field. In the general framework given in [56, 24, 57],
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a solution ~uopt is estimated by solving Equation 3.2 based on the steepest descent
strategy with artificially introduced variable t:

B~u
Bt � �∇εp~uq (3.3)

starting from a suitable initial guess ~u0. The direction of the steepest descent is
dependent on the choice of the similarity criterion and the regularisation term:

∇εp~uq � ∇SimpIf , Imp~uqq � α∇Regp~uq (3.4)

In the simple case when the sum of the squared differences is selected (Equation
2.8) as a similarity criterion, the force ∇SimpIf , Imp~ϕp~xqqq is defined by:

∇SimpIf p~xq, Imp~ϕp~xqqq � pIf p~xq � Imp~ϕp~xqqq∇Imp~ϕp~xqq (3.5)

where Imp~ϕp~xqq is moving image Im warped via transformation ~ϕ, and ∇Imp~ϕp~xqq
is gradient of the warped moving image Imp~ϕp~xqq. Furthermore, when the linear
elastic model is assumed (2.18), the partial differential operator ∇Regp~uq is defined
as follows:

∇Regp~up~xqq � pµ∆~up~xq � pλ� µq∇p∇ � ~up~xqqq (3.6)

where ∆~up~xq is a Laplace operator, and ∇ �~up~xq is divergence operator. Finally, ~uopt
is estimated according Equation 2.26 by calculating the direction of update ~dui for
the deformation field at ith iteration in the following way:

~duip~xq � pIf p~xq � Imp~ϕi�1p~xqqq∇Imp~ϕi�1p~xqq
�αpµelas∆~ui�1p~xq � pλelas � µelasq∇p∇ � ~ui�1p~xqqq (3.7)

Equation 3.7 is finally discretised. The algorithm with the SSD and the linear elastic
model is summarised in Algorithm 1. The matrix stencils for fast convolution of the
deformation field (Algorithm 1 Line 5) can be found in [57, 90, 5].

Although in the original work the framework was called variational Optical Flow
(or variational approach), here the method is referred as the steepest descent ap-
proach because the other methods that will be described also depend on variational
principles.

The presented framework is very generic and a wide class of known similarity
measures and regularisation terms can be chosen instead of the SSD and a linear
elastic model. In [56, 24] the derivatives of Mutual Information, Correlation Coef-
ficient and Correlation Ratio were introduced, to characterise the relation between
images. That work was then extended by providing the local similarity criteria
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Algorithm 1 Steepest descent approach

Input: Images: If and Im
Weight of regularisation α
Design parameters (for linear elastic model: λelas, µelas)

Output: Transformation ~ϕ

1: ~u0 � ~0, i � 1
2: repeat

3: for all ~x P Ω do

4: calculate force ∇SimpIf p~xq, Imp~ϕi�1p~xqqq (Equation 3.5)
5: calculate ∇Regp~ui�1p~xqq (Equation 3.6)

6: calculate update ~duip~xq (Equation 3.7)

7: update deformation field ~uip~xq � ~ui�1p~xq � ~duip~xq
8: end for

9: i � i� 1
10: until (deformation field does not change) or (i ¥ IterMax)
11: return ~u

[57, 25], to alleviate the assumption about the stationary distribution of the im-
age intensities across spatial positions. Recently, Yi and Soatto [156] derived the
Gateaux derivative for the Normalised Mutual Information. In place of the local
similarity criterion, the weighted similarity criterion was introduced, to take advan-
tages of the both global and local properties of images. The weighted similarity
criterion is shown in Equation 2.13. All of the mentioned statistical measures en-
able finding the correspondences between images with different modalities. The
main limitation of the explicit derivative calculation both the similarity criterion
and the regularisation term (except the linear operators such as linear elasticity,
diffusion, or curvature model) is usually the complex form of those derivatives. As
a result, computing the analytical gradient of more sophisticated image registration
components with respect to the non-parameterised deformation fields is a non-trivial
task.

3.1.2 Newton’s iteration approach

While the steepest descent approach offers not only a general but also very flexible
framework for image registration with a wide variety of possible similarity criteria
and regularisation terms, the approach suffers from some limitations including slow
convergence, typical for the steepest descent strategy, and the difficulties linked to
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explicit calculation of the analytical gradients of first order in the case of complex
form of similarity measures. The next method that is to be discussed here uses the
Newton’s iteration strategy to estimate the transformation.

In [78], the objective function (given by Equation 2.6):

εp~uq � SimpIf p~xq, Imp~x� ~up~xqqq � αRegp~up~xqq (3.8)

consists of minimisation the sum of the squared differences (Equation 2.8) and the
diffusive deformation model (Equation 2.17) for regularisation thereby the objective
function is defined in the following way:

εp~uq �
»

Ω
pIf p~xq � Imp~x� ~up~xqqq2dx� λdiff

»
Ω

ḑ

j�1

ḑ

k�1

�Bujp~xq
Bxk


2

dx (3.9)

Similarly, as in the case of the steepest descent approach introduced in the previous
section, using the calculus of variations, Equation 3.9 becomes a problem of solving
a system of nonlinear elliptic partial differential equations (PDE):

pIf � Imp~ϕqq∇Imp~ϕq � λdiff∆~u � ~0 (3.10)

The Newton’s iteration method estimates the solution in an iterative manner by
evaluating:

ulip~xq � uli�1p~xq �
Llip~xq
BLl

ip~xq

Bul
i�1p~xq

(3.11)

where ~Lip~xq �
�
L1
i p~xq, . . . , Llip~xq, . . . , Ldi p~xq

�
denotes the left side of Equation 3.10

and l is an index of image dimension. As a result of utilising the diffusive model
of regularisation, each dimension d of the displacement ~ui (transformation) can be
solved separately. To apply the Newton’s iteration strategy for solving Equation
3.10, the equation is discretised by setting the finite difference method. The finite
difference method approximates Equation 3.10 in the following way:

Llip~xq � pIf p~xq � Imp~ϕi�1p~xqqq∇lImp~ϕi�1p~xqq � λdiff∆uli�1p~xq (3.12)

where Llip~xq corresponds to the specific dimension image/volume l at ith iteration.
The derivative of Lli,

BLl
ip~xq

Bul
i�1

is derived from an approximated version of Equation
3.10 (details in [78]):

BLlip~xq
Buli�1

� �λdiff �
�
∇lImp~ϕi�1p~xqq

�2 (3.13)
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Algorithm 2 Newton’s iteration approach

Input: Images If and Im
Parameter: λdiff

Output: Transformation ~ϕ

1: ~u0 � ~0, i � 1
2: repeat

3: for all ~x P Ω do

4: for all l do
5: calculate Llip~xq (Equation 3.12)
6: calculate ∇lLlip~xq (Equation 3.13)
7: calculate update dulip~xq (Equation 3.14)
8: end for

9: update deformation field (Equation 3.11)
~uip~xq � ~ui�1p~xq � ~duip~xq

10: end for

11: i � i� 1
12: until (deformation field does not change) or (i ¥ IterMax)
13: return ~u

The update of the deformation field for the Newton’s iteration method is finally
given in following way:

dulip~xq �
Llip~xq
BLl

ip~xq

Bul
i�1p~xq

� �pIf p~xq � Imp~ϕi�1p~xqqq∇lImp~ϕi�1p~xqq � λdiff∆uli�1p~xq
λdiff � p∇lImp~ϕi�1p~xqqq2

(3.14)

The Newton’s iteration approach is summarised in Algorithm 2. Lu et al. [78]
proposed to use the Gauss-Seidel method for calculating Lli, that uses the latest
estimated value of the displacement field ulip~xq and warped moving image Imp~ϕip~xqq.
In [97] the other possible methods for calculating Lil were evaluated and compared,
showing that the choice of the Gauss-Seidel method is a good trade off between
simplicity and computational cost. Although the Successive Over-Relaxation (SOR)
method achieved a slightly better convergence rate, it was necessary to find the
embedded relaxation parameter that is data-dependent.

This algorithm was originally evaluated for radiotherapy-based applications [78],
and also assessed in works done by Zhang et al. [159] and Papiez et al. [97] for the
same purposes.
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3.1.3 Demon approach

The large number of the applications where it was used makes the Demon algorithm
[138] probably one of the best known image registration algorithm in computer
vision. In contrast to the other approaches that have been discussed previously,
originally the concept of the Demon method was neither established in any optimi-
sation framework nor linked into any deformation model. The method was derived
from the physics analogy with the Maxwell’s demon in thermodynamics (detailed
discussion in the seminal paper by Thirion [138]). The lack of the underlying math-
ematical proof of the possibility of estimating the optimal transformation have led
to many variants of this methods, dependent on the experimental results. Besides
the intuitive way of presenting this algorithm, some possible frameworks have been
developed to put the Demon algorithm as an optimisation problem [90, 145, 163].

The Demon algorithm is derived from the basic assumption of the optical flow
equation [59], where it is assumed that the intensity (brightness) of the moving
image is constant over time (so-called brightness consistency criterion):

If � Imp~ϕq (3.15)

For small changes of the displacement field ~du, the Taylor expansion of the images’
intensity difference pIf p~xq � Imp~x� ~dup~xqqq holds:

pIf p~xq � Imp~x� ~dup~xqqq � pIf p~xq � Imp~xqq �∇Imp~xq ~dup~xq (3.16)

providing the mentioned optical flow equation [59]. The unique solution of the
Equation 3.16 can not be determined directly, thus Thirion [138] proposed to select
the direction of the minimum length vector ~du towards the fixed image If :

~dup~xq � If p~xq � Imp~ϕp~xqq
}∇If p~xq}2 ∇If p~xq (3.17)

The value of the above equation tends to infinity when the gradient of the fixed
image }∇If p~xq}2 is close to zero. For the purpose of stabilising it, an additional
component κ has to be considered:

~dup~xq � If p~xq � Imp~ϕp~xqq
}∇If p~xq}2 � κ

∇If p~xq (3.18)

In the seminal paper of the Demon approach [138] the additional component was
chosen to be κ � pIf p~xq � Imp~ϕip~xqqq2. Due to the fact that calculation of the
update ~du once is not sufficient to estimate the transformation, the updates of
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the displacement field can be computed in an iterative manner from the following
formula:

~duip~xq �
$&
%

pIf p~xq�I
~ϕi�1
m p~xqq

}∇Iip~xq}2�pIf p~xq�I
~ϕi�1
m p~xqq2

∇Iip~xq if }∇Iip~xq}2 � pIf p~xq � I ~ϕi�1
m p~xqq2 ¡ 0

0 otherwise
(3.19)

where ∇Iip~xq is chosen to be ∇If p~xq for the originally proposed method, and
I ~ϕi�1
m p~xq � Imp~x � ~ui�1p~xqq. Using general notation of gradient ∇Iip~xq in Equation
3.19 was motivated to emphasise that in principle other regularisation techniques
of Equation 3.16 can be considered. It is mainly due to the shortcomings from the
lack of any underlying optimisation framework in the original work. For this reason
∇Ii can be calculated in many ways: the so-called fixed Thirion’s gradient (a static
gradient) that was originally proposed in [138]:

∇Iip~xq � ∇If p~xq (3.20)

a moving Thirion’s gradient (or an active gradient) taken from the assumption that
at the end of the registration If p~xq � Imp~ϕp~xqq and similarly the gradient of images
∇If p~xq � ∇Imp~ϕp~xqq:

∇Iip~xq � ∇Imp~x� ~ui�1p~xqq (3.21)

or the combination of both of them - the symmetric gradient [145]:

∇Iip~xq � 1
2p∇If p~xq �∇Imp~x� ~ui�1p~xqqq (3.22)

The update of the displacement field (Equation 3.19) can be calculated for each
image point, the contours, or the labels of the segmented objects [138]. The regular-
isation of Demon is done by smoothing via Gaussian filtering either for the update
of displacement (denoted by Gfluid) or directly displacement (denoted by Gfdiff )
[145].

Due to very high efficiency and widespread use in the multiple applications
[138, 148, 21], several attempts to interpret and theoretically justify the Demon
have been made. Modersitzki [90] showed the Demon as a variational problem of
solving the SSD and the diffusive model as similarity criterion and regularisation
term respectively. Another approach was given by Vercauteren et al. [145], where the
Demon was presented as minimisation of a global energy function including the sum
of the squared difference with additional hidden variable so-called correspondence,
optimised using the Newton-like strategy. Recently, Zikic et al. [163] presented the
general preconditioning system based on the steepest descent strategy to exploit dif-
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Algorithm 3 Demon approach

Input: Images: If and Im
Parameters: Gfluid, Gdiff

Output: Transformation ~ϕ

1: ~u0 � ~0, i � 1
2: repeat

3: for all ~x P Ω do

4: calculate update ~dup~xq (Equation 3.19)
5: smooth update of the deformation field using Gaussian filter Gfluid:

~duip~xq � Gfluid � p ~duip~xqq
6: update deformation field ~uip~xq � ~ui�1p~xq � ~duip~xq
7: smooth deformation field ~uip~xq using Gaussian filter Gdiff :

~uip~xq � Gdiff � p~uip~xqq
8: end for

9: i � i� 1
10: until (deformation field does not change) or (i ¥ IterMax)
11: return ~u

ferent similarity criteria using the Demon approach. The proposed preconditioning
system modifies the magnitude of ∇Ip~xq.

3.2 Diffeomorphic image registration

Until this section, image registration has been considered in the simplest formula-
tion that involves estimating a smooth mapping establishing correspondences be-
tween the objects in the images. Section 2.5 introduced the theoretical concept of
diffeomorphism as a common requirement for the estimated displacement field that
is assumed to be a smooth, one-to-one differentiable mapping having a smooth and
differentiable inverse. The importance of preserving the neighbourhood topology of
the objects (that is given implicitly by the definition of diffeomorphism) has been
shown in many medically driven applications. Because of these numerous applica-
tions, several different frameworks have been proposed to establish the diffeomor-
phic formulation of the image registration problem. The approaches investigated
and analysed here, can be broadly divided into two groups. The first type of the
diffeomorphic image registration is based on the assumption of the closure (consis-
tency) under composition of two diffeomorphic transformations. In other words, if
two transformations are diffeomorphic, the result of their composition will be also
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diffeomorphic (up to certain numerical errors due to dealing with the discrete cases).
The methods utilising the composition techniques are often called as a small-step
approach. The second approach is formulated using the log-domain parameterisa-
tion of the displacement field by the stationary velocity field. Based on the group
theory interpretation given in Section 2.5, these two approaches can be linked by
the concatenation of the transformation operation done either for the diffeomorphic
transformations or for the vector fields in the Lie algebra space.

As it was pointed out in the previous chapter, there are the other approaches
that aim to formulate the diffeomorphic image registration e.g. time-dependent
fluid image registration [26], time-dependent registration via estimating the geodesic
path [15, 14], and the parametric image registration with constrained B-spline [115].
The choice of the small-step or the log-Domain frameworks to be investigated in
this work, is particularly motivated by several reasons. First of all, the mentioned
approaches are subjected to some conditions that are embedded into the underlying
mathematical formulation e.g. the mathematical statement of the small enough
steps of updating deformation fields in the case of the small-step approach. This
work aims at providing the experimental evidences of the value of that quantity
e. g. the length of the small-step. Another reason lies in an attempt to apply
these image registration algorithms to a new application, to the pelvic area of body.
It is done because the major works have been done in the field of the brain data
analysis. Applications of these methods to analysis of the pelvic area data bring
new challenges. Although in general, the pelvic organs can be described as keeping
diffeomorphic properties, from time to time, some exceptions such as gas bowels,
and/or changes of the rectum contents can occur. Additionally, the changes of
the pelvic-area organ shapes can be also relatively significant in comparison to the
variability of the brain shapes. Finally, the computational effort of the methods
that are chosen to be investigated, is reported to be significantly reduced compared
to the time-dependent diffeomorphic algorithms [26, 15, 14].

3.2.1 Small-step approaches

The small-step approach utilises the closure of the diffeomorphic transformations
under composition operator �. The displacement estimated based on the small-step
technique can be seen as multiple compositions of the updates of deformation field
~dui calculated in each iteration i of the image registration:

~u � ~u0 � ~du1 � . . . � ~dui (3.23)
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where ~u0 is an initial guess of the displacement (usually ~u0 � ~0 or the result of the
pre-registration). Due to memory restrictions and in order to simplify the aspects
of the implementation, the above formula can be rewritten as a composition of the
already known displacement field (estimated in the previous iteration) ~ui�1 and the
currently calculated update of the deformation field ~dui:

~ui � ~ui�1 � ~dui (3.24)

Various approaches have been proposed to restrict the magnitude of update of
the deformation field to be diffeomorphic transformation. Chefd’hotel et al. [25]
presented the theoretical framework of the diffeomorphic flow of the multi-modal
similarity criterion based force with regularisation applied to the update of the
deformation field. Thereby, it can be seen as fluid-like time-dependent flow in a
suitable infinite-dimensional space of the invertible transformation [26]. In order
to obtain the sufficiently smooth update of the deformation field, the Gaussian
filtering procedure was applied when practical implementations of this framework
were carried out.

The common way of checking whether the calculated update of the deformation
field preserves one-to-one mapping, is computing the determinant of the Jacobian
matrix detpJp~uqq of that update [26, 27]. The positive value of detpJp~uqq indi-
cates that the one-to-one mapping property is not broken. In [131], the idea of
the magnitude limiting procedure was derived to guarantee the invertibility of the
updated deformation field. The concept of the magnitude limiting procedure can
be explained in the following way. When the vectors representing the update of the
deformation field associated with two neighbourhood intensity points have a norm
(length) larger than some threshold, they can cross each other and folding can occur.
If these vectors are small enough (their norm is below the threshold), they represent
an invertible transformation. It was shown intuitively that the maximum magnitude
(norm) of the update of the deformation field that preserves one-to-one mapping,
has to be below half of the voxel/pixel size (image spacing). In the same man-
ner, the diffeomorphic formulation of the B-spline parameterised image registration
via multiple compositions was proposed in [115]. In contrast to the previous, intu-
itive explanation of the threshold value for the invertible transformation, the local
injectivity theorem of the cubic B-spline was introduced. From that theorem, the
maximum displacement of the control points was deduced to be 0.4 of the spacing of
the control points grid. In the registration algorithm proposed by Yang et al. [155],
the indirect adaptation of the conclusion given in [115] was done to the Demon-like
update of the deformation field. The procedure of the limiting magnitude proposed
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in [155] that is defined as follows:

~duip~xq �
#

~duip~xq if } ~duip~xq} ¤ 0.4
0.4 ~duip~xq

} ~duip~xq}
otherwise

(3.25)

is evaluated at every iteration i and simultaneously the update of deformation field
~dui is additionally smoothed using Gaussian filtering. Although, this explicit proce-
dure ensures the update of the displacement field to be a diffeomorphic transforma-
tion, it seems to be too restrictive in comparison to the statement from the previous
approaches, especially when compared to the threshold value given in [131].

The advantages of using the compositive way of updating the deformation field
(Equation 3.23) in place of the additive scheme (given by the Equation 2.26) were
discussed in [145], where the compositive version of the Demon algorithm was also
proposed, evaluated and compared against the original additive formulation. The
Demon algorithm with composition of the update deformation field was shown ex-
perimentally to preserve local one-to-one mapping for small updates.

3.2.2 Exponential updates

In Section 2.5, the Lie group interpretation of the diffeomorphic transformation was
introduced based on the work done by Arsigny et al. [4]. As it was pointed out,
the Lie group is associated with the Lie algebra via exponential mapping expp�q.
Considering that the smooth vector field can be mapped to diffeomorphic transfor-
mation using this exponential mapping, the image registration algorithm searching
for the update of the deformation field on the Lie algebra was proposed by Ver-
cauteren et al. [145]. Rather then calculating the update of deformation field ~du,
the update on the Lie algebra ~dv is computed and then projected onto the Lie group
and composed with previous estimated updates in the following way:

~u � ~u0 � expp ~dv1q � . . . � expp ~dviq (3.26)

The fast algorithm of calculating the exponential mapping expp�q implemented in the
recursive manner based on the Scaling and Squaring (SS) technique was originally
proposed in [4] (and it is also summarised in Algorithm 4). As in the case of
the small-step approach, Equation 3.26 can be rewritten for the memory efficient
implementation:

~ui � ~ui�1 � expp ~dviq (3.27)

The update ~dvi on the Lie algebra is calculated in a similar fashion to the update
of the deformation field ~du. In the case of the Demon algorithm, the update ~dv is
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Algorithm 4 Fast exponential integration of velocity field

Input: Velocity field: ~v
Parameters: Nexp

Output: displacement field ~u
1: ~u0 Ð 1

2Nexp � ~v
2: for i � 1 to Nexp do

3: ~ui = ~ui�1 � ~ui�1

4: end for

5: return ~u

given by Equation 3.28 where ~ϕip~xq � ~x � ~uip~xq and ∇Iip~xq can be chosen in the
similar fashion as for the Demon approach (Section 3.1.3).

~dvip~xq � pIf p~xq � Imp~ϕi�1p~xqqq
}∇Iip~xq}2 � pIf p~xq � Imp~ϕi�1p~xqqq2∇Iip~xq (3.28)

In [155] it was argued that exponential mapping expp ~dvq is only a rough approxima-
tion of the diffeomorphic transformation and the explicit limiting procedure (given
by Equation 3.25) is more efficient but neither theoretical nor experimental proof
was given. Contrary to that statement, it was shown in [145] that for small updates
of the deformation field the composition of the updates of the deformation field
~du produces similar results to those obtained with the exponential update on the
Lie algebra expp ~dvq. A detailed discussion of the exponential mapping based image
registration and related theoretical inaccuracies is presented in [145].

The performance of the scaling and squaring technique that is an essential step for
calculating the exponential mapping was assessed in [18]. The experimental results
suggest that the SS-based technique offers the best trade-off between accuracy and
computational time. In [5] it was found out that the optimal number of the recursion
levels Nexp is between eight and ten. The larger number of recursion levels is prone to
numerical errors due to dealing close to computational precision. Other techniques
to estimate the exponential mapping were also compared [18].

3.2.3 Log-domain parameterisation

The updates on the Lie algebra mapped through the exponential mapping can be
seen as one of the possible adaptations of the outcomes of the work done on the
stationary velocity field parameterisation of the diffeomorphism by Arsigny et al.
[4]. Other approaches taking advantages of the log-domain parameterisation of
the diffeomorphic transformation are the Diffeomorphic Anatomical Registration
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using Exponentiated Lie Algebra (DARTEL) algorithm proposed in [5], and the log-
domain Demon approach proposed in [144]. In contrast to the exponentiation of the
updates on the Lie algebra exp

�
~dv
	
, the mentioned log-domain image registration

algorithms parameterise the displacement field ~u as a stationary velocity field ~v.
Then, the diffeomorphic transformation ~ϕp~xq can be defined in following way:

~ϕp~xq � ~x� ~up~xq � ~x� expp~vp~xqq (3.29)

The diffeomorphic update and the displacement field are calculated through the
exponential mapping and can be concatenated using the composition operator �
(the composition operation on the Lie group). This composition is given by:

expp~viq � expp~vi�1q � expp ~dviq (3.30)

while the current velocity field ~vi can be expressed as follows:

~vi � log
�

expp~vi�1q � expp ~dviq
	

(3.31)

The drawback of Equation 3.31 is that estimation of the velocity field ~vi is linked
with computing the principal logarithm logp�q which is reported to have high com-
putational burden (e.g. volume of size 256x256x60 in 60 minutes using a standard
computer [4]). In order to represent the velocity field ~vi in the log-domain through
an efficient way in a reasonable time, the Baker-Campbell-Hausdorff (BCH) formula
[17, 144] has to be applied to approximate the current velocity field ~vi:

~vi � BCH
�
~vi�1, ~dvi

�
(3.32)

where the BCH formula for any two velocity fields ~vi�1 and ~dvi is given by:

BCH
�
~vi�1, ~dvi

�
� ~vi�1 � ~dvi � 1

2

�
~vi�1, ~dvi

�
� 1

12

�
~vi�1,

�
~vi�1, ~dvi

��
� . . . (3.33)

The Lie bracket
�
~vi�1, ~dvi

�
is the operation on the Lie algebra vector space defined

in the following way [17, 144];

�
~vi�1p~xq, ~dvip~xq

�
�

ḑ

j�1

�
vji�1p~xq

B ~dvip~xq
Bxj � dvji p~xq

B~vi�1p~xq
Bxj

�
(3.34)

where ~vi�1p~xq � rv1
i�1p~xq, . . . , vdi�1p~xqs and ~dvip~xq � rdv1

i p~xq, . . . , dvdi p~xqs. Utilisation
of the BCH formula approximates the current velocity field ~vi, thereby allows one to
establish the image registration algorithm in the log-domain space in a very efficient
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way. As an illustration of this reformulation of the image registration objective, the
energy function is presented by Equation 3.35.

εp~vq �
»

Ω
SimpIf p~xq, Imp~x� expp~vp~xqqqqdx� α

»
Ω
Regp~vp~xqqdx (3.35)

In contrast to the general image registration problem given by Equation 2.6, the
log-domain formulation estimates the velocity field, and the final transformation is
returned by the exponential mapping. The additional outcome of the parameterisa-
tion via the stationary velocity field is that the inverse of the transformation ~ϕ�1 can
be quickly estimated through the backward integration of the velocity field [5, 144]:

~ϕ�1p~xq � ~x� expp�~vp~xqq (3.36)

The example presenting the forward and backward exponentiation (integration) of
the velocity field ~v is shown in Figure 3.1.

It is interesting that the algorithm proposed by Ashburner [5] treats the up-
dates of the velocity field ~dvi in the additive optimisation framework (given by the
Equation 3.37) without considering whether such velocity field ~v theoretically exists.

~v � ~v0 � ~dv1 � . . .� ~dvi (3.37)

Considering the BCH formula, the additive way of concatenation of the updates of
the velocity fields can be seen as the approximation of the velocity field using just
first two elements of the BCH formula (Equation 3.33). It was shown experimentally
in [17, 144], that using more than three first elements of BCH formula does not lead
to a significant increase in accuracy. In addition, Bossa et al. [17] showed that the
approximation using the BCH formula produces errors on the similar level to those
in the case of the direct calculation of the principal logarithm.

In order to take advantage of the parameterisation of the displacement field via
the stationary velocity field, the algorithms presented in the first section of this
chapter (Section 3.1), are reformulated here to their log-domain versions. Instead of
calculating the update of the displacement field ~dui, the update of the velocity field
~dvi on the Lie algebra space is computed and then concatenated with the current
velocity field based on the BCH formula (Equation 3.33). The regularisation is
performed on the velocity field (and/or update of the velocity field) rather then
on the displacement field (and/or update of the displacement field). The update
of the velocity field for the steepest descent approach is given by Equation 3.38,
and Equation 3.39 provides the update for the Newton’s iteration approach. The
Demon method’s update of the velocity field was presented in the previous section
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Algorithm 5 Log-domain steepest descent approach

Input: Images: If and Im
Weight of regularisation α
Design parameters (for linear elastic model: λelas, µelas)

Output: Velocity field ~v, transformation ~ϕ

1: ~v0 � 0, i � 1
2: repeat

3: exponentiation of velocity field: ~ui � expp~viq
4: for all ~x P Ω do

5: calculate update of velocity field: ~dvip~xq (Equation 3.38)

6: update velocity field ~vip~xq � BCH
�
~vi�1p~xq, ~dvip~xq

�
7: end for

8: i � i� 1
9: until (velocity field does not change) or (i ¥ IterMax)

10: calculate transformation ~ϕ (Equation 3.29)
11: return ~v and ~ϕ

(given by Equation 3.28) and the regularisation of output is performed via Gaussian
filtering of the velocity field/update of the velocity field rather than the displacement
field/update of the displacement.

~dvip~xq � pIf p~xq� Imp~ϕi�1p~xqqq∇Imp~ϕi�1p~xqq�αpµ∆~vi�1p~xq�pλ�µq∇p∇ �~vi�1p~xqqq
(3.38)

~dv
l

ip~xq � �pIf p~xq � Imp~ϕi�1p~xqqq∇lImp~ϕi�1p~xqq � λdiff∆vli�1p~xq
λdiff � p∇lImp~ϕi�1p~xqqq2 (3.39)

The overall log-domain image registration algorithm based on the steepest de-
scent approach is summarised in Algorithm 5. The log-domain Newton’s iteration
approach can be deduced in the similar manner, when the update of the velocity
field calculated using Equation 3.38 (Line 5 of Algorithm 5) has to be replaced by
the update calculated using Equation 3.39. The presented log-domain algorithms
extend the original works (the Newton’s iteration method [78, 97], and the steep-
est descent approach [56, 24]), and enable to take advantages of the diffeomorphic
framework.

The log-domain parameterisation of the diffeomorphic transformation has in-
teresting properties when utilised for calculating the statistics on the displacement
fields [4, 144]. It is important to realise that performing the Euclidean statistics on
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the diffeomorphic displacement fields does not preserve the diffeomorphic properties
of the results of those statistics. The most compelling example can be shown easily
by taking the average of the diffemorphic transformations:

~uave � 1
N

Ņ

j�1
~uj (3.40)

where N is the number of the displacement fields used for the calculation of the
average. While the input displacement fields ~ui can be enforced to be diffeomorphic
(e. g. as a result of performing a diffeomorphic algorithm), the output displace-
ment ~uave may no longer be diffeomorphic. This occurs due to the fact that the
displacement fields are not vector fields. The framework proposed by Arsigny et al.
[4] showed that calculating the principal logarithm of the diffeomorphic transforma-
tions, results in well-defined vector fields. As a consequence, the Euclidean statistics
on those vector fields can be obtained. For example, when the average of the ve-
locity fields is considered, the output is also a velocity field and the diffeomorphic
displacement field associated with this velocity field can be obtained through the
exponential mapping:

~uave � exp
�

1
N

Ņ

j�1
logp~ujq

�
(3.41)

As it was outlined, calculating the principal logarithm is a time-consuming procedure
[4, 17] but, when the parameterisation of the displacement field is enforced explicitly
in the image registration, the output of this registration is already the velocity field.
Indeed, the calculation of the principal logarithm can be avoided using the log-
domain image registration approaches.

3.3 Consistent image registration

The diffeomorphic transformation ~ϕ estimated during the evaluation of the proce-
dures described above is a smooth displacement field, preserving one-to-one mapping
properties. Although, the smooth inverse transformation ~ϕ�1 also exists (due to the
determinant of the Jacobian matrix for the transformation ~ϕ being locally posi-
tive), it is usually not calculated explicitly during the registration process (except in
the log-domain approaches). Intuitively, it should be easily to estimate the inverse
transformation ~ϕ�1 by changing the order of the input images i.e. a reference image
becomes a moving image and a moving image becomes a reference image. Whereas
the diffeomorphic formulation preserves that every image point in the moving image
Im is mapped onto the image point in the reference image If , there is no reason
why the transformation estimated for the swapped input images will map the im-
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expp0.25 � ~vq expp0.5 � ~vq expp0.75 � ~vq expp1.0 � ~vq

expp�0.25 � ~vq expp�0.5 � ~vq expp�0.75 � ~vq expp�1.0 � ~vq

Figure 3.1: Examples of the forward and backward integration of the velocity field
for the sample images. (Top row) The forward integration of the velocity field ~v at
different times provides the deformation field for warping the moving image, while
(Bottom row) the backward integration of the velocity field ~v at different times
provides the deformation field for warping the fixed image

age points from the moving image to the corresponding image points in the fixed
image. In other words, the transformation estimated between the fixed and mov-
ing image (named the forward transformation) ~ϕforw is not the same as the inverse
of the transformation calculated for the moving and fixed image ~ϕback (named the
backward transformation or reverse transformation [27, 63]). This inconsistency

~ϕforw � ~ϕ�1
back (3.42)

comes partially from the fact of the ill-posed of the image registration and in
some cases can also be a result of choosing a similarity criterion with asymmet-
ric properties such as the Correlation Ratio [108]. The Inverse Consistency Er-
ror (ICE) that describes the inconsistency between the forward transformation
~ϕforwp~xq � ~x � ~uforwp~xq and backward transformation ~ϕbackp~xq � ~x � ~ubackp~xq can
be defined at every spatial position ~x as follows:

ICEp~ϕforwp~xq, ~ϕbackp~xqq � }p~x� p~ϕforw � ~ϕbackqp~xqq} (3.43)

where }�} is a Euclidean distance [27, 127]. An example presenting the inconsistency
between the forward and backward transformation estimated using the classical
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Figure 3.2: Examples of the inconsistency between forward and backward trans-
formation estimated using classical Demon algorithm (top row) and results of en-
suring the inverse consistency criterion during the consistent Demon registration
(bottom row). (From left to right) forward transformation, backward transforma-
tion, p~x�p~ϕforw � ~ϕbackqp~xqq, and p~x�p~ϕback � ~ϕforwqp~xqq. In perfect case of fulfilling
the inverse consistency criterion, p~x�p~ϕforw � ~ϕbackqp~xqq and p~x�p~ϕback � ~ϕforwqp~xqq
should be represented by the regular grid.

Demon algorithm is shown in Figure 3.2. In the perfect case of preserving the
inverse consistency criterion, p~x � p~ϕforw � ~ϕbackqp~xqq should be represented by the
regular grid. However, the transformations that were first estimated for the fixed
and moving image and then with the swapped input images are not consistent
thereby the grid is significantly distorted (top row of Figure 3.2). On the other hand,
when using the consistent log-domain Demon algorithm, the obtained forward and
backward transformations are close to the ideal case of the consistency. Indeed, the
grid showing p~x�p~ϕforw� ~ϕbackqp~xqq is almost regular (see bottom row of Figure 3.2).
In addition, the transformations estimated via consistent algorithms look smoother
(for the same set of the design parameters).

The earliest work on overcoming the aforementioned inconsistency was done
by the symmetrisation of the similarity measure Sim and explicit minimisation
of the inverse consistency error via joint estimation of the forward and backward
transformations [27]. The symmetrisation of the similarity criterion is defined in
following manner:

SimsympIf , Im, ~ϕforw, ~ϕbackq � SimpIf , Im � ~ϕforwq � SimpIf � ~ϕback, Imq (3.44)

while the minimising of the ICE can be seen as an additional penalty term given
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by:

PenICEp~uforw, ~ubackq �
»

Ω
}~uforwp~xq � ~u�1

backp~xq}2dx�
»

Ω
}~ubackp~xq � ~u�1

forwp~xq}2dx

(3.45)
In addition, the general energy function of this image registration is coupled with
the regularisation terms for each displacement field Regp~uforwq and Regp~ubackq to
preserve their smoothness and the constraints (PenJacp~uforwq and PenJacp~ubackq)
that prevent determinant of the Jacobian matrix for both transformations from
going below zero. The overall cost function for the consistent image registration
proposed in [27] can be summarised by:

εp~uforw, ~ubackq � SimsympIf , Im, ~uforw, ~ubackq �Regp~uforwq �Regp~ubackq�
PenJacp~uforwq � PenJacp~ubackq � PenICEp~uforw, ~ubackq (3.46)

The inverse displacement fields involved in the penalty term PenICE, are calculated
directly by the algorithm presented in the mentioned work (it is also summarised
in the Section 3.4.2). Although the input images here are still differentiated by
the subscripts f and m to name the fixed and moving image, this has only been
done in order to keep notation consistent throughout the thesis. The order of the
input images in the consistent image registration is not important due to symmetric
properties and joint estimation of both forward and backward transformations. The
detailed description of the framework for consistent image registration proposed by
Christensen and Johnson [27] is motivated by two principal reasons. In the first
place, this framework can be considered as the state-of-art method for consistent
image registration. Furthermore, each condition that must be fulfilled to keep the
image registration algorithm consistent is demonstrated explicitly in the energy func-
tion ε (Equation 3.46). This means it can be used as a reference to assess whether
the other methods are preserving all the consistency criteria.

A variational multi-modal framework of the consistent image registration was
proposed in [162]. Besides the use of the different similarity criterion to enable
multi-modal registration, the direct inversion of the deformation fields that is a
crucial step in [27] was avoided by a different formulation of the problem. The
energy function is defined there by:

εp~uforw, ~ubackq � SimsympIf , Im, ~uforw, ~ubackq �Regp~uforwq �Regp~ubackq
�PenICEp~uforw, ~ubackq (3.47)

and then the Gateaux derivatives are calculated with respect to both the forward
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and backward transformations. As a result of the two Euler-Lagrange equations, the
PDE for both the forward and the backward transformations has to be solved. Multi-
modal consistent image registration was also investigated in [136], where the Demon-
like flows of the Mutual Information were calculated. In contrast to aforementioned
techniques, the ICE is not included directly in the objective function but it is
minimised by the additional iterative procedure inserted into the image registration
framework. Although both approaches minimise the ICE in every iteration, the
ensurance of the one-to-one mapping is questionable, because no restrictions on the
determinant of the Jacobian matrix are introduced.

The consistent landmark-based image registration algorithms were proposed in
[63]. Although the registration of the landmarks is usually consistent due to finding
the forward and backward transformations (correspondences) for the same set of
the features, the forward and backward dense deformation fields interpolated for the
regions away from the features are not consistent. One of the proposed algorithms
first registers the landmarks and then minimises the ICE between estimated forward
and backward transformations by a repeatable procedure as long as the distance
between landmarks and the ICE is reduced below the desired levels. The second
method combines the above landmark-matching procedure with the intensity-based
registration proposed in [27].

Log-domain consistent image registration

The log-domain parameterisation of the displacement field provides some interest-
ing outcomes that can be incorporated straightaway into the formulation of the
consistent image registration. The major advantage that is offered by the station-
ary velocity field parameterisation is the fact that the estimated transformation is
diffeomorphic (this provides a smooth transformation with a locally positive deter-
minant of the Jacobian matrix for this transformation). The second advantage of
the log-domain image registration is derived from the fact that the backward (in-
verse) transformation can be quickly calculated from the velocity field obtained for
the forward transformation based on the backward integration. When compared to
the state-of-the-art consistent image registration [27], the missing component of the
registration to be consistent is reducing the ICE between the forward and backward
transformations. For this purpose, Vercauteren et al. [144] proposed the averaging
procedure for the forward and backward velocity fields that guarantees the sym-
metry of the results and make registration consistent. The origin of the averaging
procedure applied in [144] to the velocity fields can be derived from the seminal
paper for the Demon algorithm. Thirion [138] proposed procedure to compose the
forward and the backward transformation and then take the half of the composition
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result to add to the forward transformation and subtract from the backward trans-
formation. This procedure there was performed to enforce that the transformation
would be a one-to-one mapping.

Formally, the consistent log-domain image registration can be stated as optimi-
sation of the single velocity field ~v defined by the following energy term:

εp~vq � SimsympIf , Im, expp~vq, expp�~vqq �Regp~vq (3.48)

During the optimisation of the above energy function, the log-domain consistent
image registration requires calculation of the forward and the backward update of
the velocity field. The forward ~dvi,forwp~xq and backward ~dvi,backp~xq updates of the
velocity field for the steepest descent approach are given by:

~dvi,forwp~xq � pIf p~xq � Imp~ϕi�1p~xqqq∇Imp~ϕi�1p~xqq
�αpµ∆~vi�1p~xq � pλ� µq∇p∇ � ~vi�1p~xqqq

(3.49)
~dvi,backp~xq � pImp~xq � If p~ϕ�1

i�1p~xqqq∇If p~ϕ�1
i�1p~xqq

�αpµ∆p�~vi�1p~xqq � pλ� µq∇p∇ � p�~vi�1p~xqqqq

The forward ~dvi,forwp~xq and backward ~dvi,backp~xq updates of the velocity field for
Newton’s iteration approach are given by:

~dv
l

i,forwlp~xq � �pIf p~xq � Imp~ϕi�1p~xqqq∇lImp~ϕi�1p~xqq � λdiff∆vli�1p~xq
λdiff �∇lImp~ϕi�1p~xqq �∇lImp~ϕi�1p~xqq

(3.50)

~dv
l

i,forwp~xq � �pImp~xq � If p~ϕ�1
i�1p~xqqq∇lIf p~ϕ�1

i�1p~xqq � λdiff∆p�vli�1p~xqq
λdiff �∇lIf p~ϕ�1

i�1p~xqq �∇lIf p~ϕ�1
i�1p~xqq

The forward ~dvi,forwp~xq and backward ~dvi,backp~xq updates of the velocity field for the
Demon approach are given by:

~dvi,forwp~xq � pIf p~xq � Imp~ϕi�1p~xqqq
}∇Iip~xq}2 � pIf p~xq � Imp~ϕi�1p~xqqq2∇Iip~xq

(3.51)

~dvi,backp~xq � pImp~xq � If p~ϕ�1
i�1p~xqqq

}∇Iip~xq}2 � pImp~xq � If p~ϕ�1
i�1p~xqqq2

∇Ip~xq

The log-domain consistent image registration algorithm based on the steepest de-
scent approach is summarised in Algorithm 6. The Newton’s iteration algorithm and
the Demon approach can be deduced in the same straightforward manner. Origi-

59



3.3. CONSISTENT IMAGE REGISTRATION

nally the consistent symmetric Demon approach was proposed in [144], where it was
called the symmetric log-domain Demon approach to emphasise the symmetrisa-
tion of the similarity criterion in the objective function. The consistent log-domain
methods based on the steepest descent approach and Newton’s iteration approach
presented in this section benefit from the log-domain parameterisation and enforce
the inverse consistency criterion, thereby opening the already known algorithms to
new applications.

Algorithm 6 Consistent log-domain steepest descent approach

Input: Images: If and Im, α
Parameters: α, λelas, µelas

Output: Velocity field ~v, Transformations ~ϕforw and ~ϕback

1: ~v � 0, i � 1
2: repeat

3: forward integration of velocity field: ~ui,forw � expp~vi�1q
4: backward integration of velocity field: ~ui,back � expp�~vi�1q
5: for all ~x P Ω do

6: calculate forward update of the velocity field:
~dvi,forwp~xq (Equation 3.50)

7: calculate backward update of the velocity field:
~dvi,backp~xq (Equation 3.50)

8: calculate forward velocity field ~vforw:
~vforwp~xq � BCH

�
~vi�1p~xq, ~dvi,forwp~xq

�
9: calculate backward velocity field ~vback:

~vbackp~xq � BCH
�
�~vi�1p~xq,� ~dvi,backp~xq

�
10: average forward and backward velocity field:

~dvip~xq � 1
2p~vforwp~xq � ~vbackp~xqq (Equation 3.41)

11: update velocity field ~vip~xq:
~vip~xq � ~dvip~xq

12: end for

13: i � i� 1
14: until (velocity field does not change)or (i ¥ IterMax)
15: calculate forward transformation ~ϕforw (Equation 3.29)
16: calculate backward transformation ~ϕback (Equation 3.36)
17: return ~v, ~ϕforw, ~ϕback
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Figure 3.3: Symmetric image registration scheme

3.4 Image registration with symmetric warping

The consistent diffeomorphic image registration has been reported as almost ide-
ally suited for image registration for the major biomedical applications. However,
in some cases the relatively large deformation has to be estimated and the desired
level of accuracy in terms of the similarity measure or the ICE may not be achieved.
In order to improve the overall robustness of the consistent image registration algo-
rithm, the symmetric warping of the input images toward the intermediate, hidden
mean, was presented in [14, 10, 155, 53, 96]. The image registration with symmetric
warping of the images can be stated as an optimisation problem:

εp~uhf , ~uhbq � SimpIf p~ϕhf q, Imp~ϕhbqq �Regp~uhf q �Regp~uhbq (3.52)

where ~ϕhf p~xq � ~x� ~uhf p~xq and ~ϕhb � ~x� ~uhbp~xq are the corresponding transforma-
tions warping, respectively, image If and image Im to an intermediate image Ih. The
subscripts hf and hb stand for the half-way forward and backward transformations
respectively [53]. The results of the symmetric registration towards the intermediate
image Ih: ~ϕhf and ~ϕhb have to be inverted and the final transformations ~ϕforw and
~ϕback are the compositions of ~ϕhf and ~ϕhb and their inverses ~ϕ�1

hf and ~ϕ�1
hb :

~ϕforw � ~ϕhf � ~ϕ�1
hb (3.53)

and
~ϕback � ~ϕhb � ~ϕ�1

hf (3.54)

The overall scheme of the symmetric image registration process is illustrated in
Figure 3.3.

The best known image registration algorithms proposed with the symmetric
warping of the input images are as follows. Beg and Khan [14] extended the LD-
DMM image registration algorithm [15] and experimentally showed an improvement
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in the accuracy of the ICE and the Region Overlapping (RO) of the investigated
organs. Similar conclusions can be drawn from the work presented in [10], where
symmetric warping improves the cross-correlation-driven diffeomorphic image reg-
istration adapted to the normalisation of the brain degenerations. Other possible
schemes for image registration with symmetric warping are described in detail in
the following sections.

3.4.1 Small-step multiple pass approach

The small-step multiple pass approach originally proposed in [155] is derived from
the computational simplification of the approaches proposed in [14, 10] using the
Demon-like update of the displacement field for estimation the transformations:

~duip~xq � If p~ϕi�1,hf p~xqq � Imp~ϕi�1,hbp~xqq
}∇Ii,symp~xq}2 � pIf p~ϕi�1,hf p~xqq � Imp~ϕi�1,hbp~xqqq2∇Ii,symp~xq (3.55)

where gradient ∇Ii,symp~xq is defined in the following way:

∇Ii,symp~xq � 1
2p∇If p~ϕi�1,hf p~xqq �∇Imp~ϕi�1,hbp~xqqq (3.56)

The symmetric warping gradient (Equation 3.56) is similar to the symmetric gradient
proposed in [145] (compare to Equation 3.22).

In general in the small-step multiple pass approach, it is assumed that the half-
way forward displacement field ~ui,h�f p~xq:

~ui,hf p~xq � Gdiff �
�
~ui�1,hf p~xq �

�
Gfluid �

�
~dui,hf p~xq

			
(3.57)

and the backward displacement field ~ui,hbp~xq:

~ui,hbp~xq � Gdiff �
�
~ui�1,hbp~xq �

�
Gfluid �

�
~dui,hbp~xq

			
(3.58)

are linked by the assumption that the forward and the backward updates of the
deformation field can be approximated by:

~duip~xq � ~dui,hf p~xq � � ~dui,hbp~xq (3.59)

where Gdiff� and Gfluid� represent Gaussian kernel convolutions which operate on
updated displacement fields ~ui,hf and ~ui,hb, and the update of the displacement
field ~dui respectively. This assumption simplifies significantly the estimation of the
deformation fields but it holds only for small updates [5]. Due to the fact that
the diffeomorphism adapted for this approach relies on the small-step technique
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and the Demon-like force does not guarantee, the explicit procedure of the limiting
the deformation magnitude (given by Equation 3.25) is applied when the estimated
update is greater than 0.4 voxel spacing size (this limit was chosen ad hoc by [155]
following the limits that were determined for B-Spline deformable image registration
[115]). Therefore, the small-step update manner (see Section 3.2.1) is kept.

3.4.2 Direct inverse update estimation approach

The direct inverse deformation field approach proposed by Papiez and Matuszewski
[96] is inspired by the need to check how good the approximation of the inverse
update given by the Equation 3.59 is in practice. To assess this, the direct inverse
approach is built on the previous approach by directly inverting the update of the
deformation field in each iteration. The proposed update scheme is defined for the
half-way forward displacement field as follows:

~ui,hf p~xq � Gdiff �
�
~ui�1,hf p~xq �

�
Gfluid �

�
~dui,hf p~xq

			
(3.60)

and for the half-way backward displacement field by;

~ui,hbp~xq � Gdiff �
�
~ui�1,hbp~xq �

�
Gfluid �

�
~dui,hbp~xq

			
(3.61)

where the update of the half-way backward transformation ~dui,hbp~xq is calculated as
the inverse of the update of the half-way forward transformation ~dui,hf p~xq:

~dui,hbp~xq � ~du
�1
i,hf p~xq (3.62)

The technique applied to the update scheme in Equation 3.61 and in Equation 3.62
are in contrast with the approximation given by Equation 3.59 (compare formula
for updating ~ui,hb given in Equation 3.58) as it uses the direct inverse update of the
deformation which does not suffer from the limitations of the small-step multiple
pass approach (because ~dui � p ~duiq�1p~xq � ~x). The direct inverse deformation based
algorithm is summarised in Algorithm 7.

For the small-step multiple pass approach and the direct inverse approach, there
is a need to estimate the inverse deformation fields ~ϕhf and ~ϕhb. This has to be done
accurately and fast, especially for the direct inverse approach, where the inverse
is also calculated in each iteration. In the small-step multiple pass approach, the
inverse transformations of ~ϕhf and ~ϕhb are calculated using the method proposed by
[7]. Here, a novel method is presented (based on the method proposed by [27]) that
is more accurate then the previously reported methods.
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Algorithm 7 Direct inverse deformation field approach to image registration with
symmetric warping

Input: Images: If and Im
Parameters: Gfluid, Gdiff

Output: Forward transformation ~ϕforw, backward transformation ~ϕback

1: ~uforw � ~0, ~uback � ~0, i � 1
2: repeat

3: for all ~x P Ω do

4: calculate forward update ~dui,hf p~xq (Equation 3.55 )
5: smooth update of the deformation field using Gaussian filter Gfluid:

~dui,hf p~xq � Gfluid � p ~dui,hf p~xqq
6: calculate backward update ~du

�1
i,hbp~xq using the Algorithm 8

7: update forward displacement field ~ui,hf p~xq � ~ui�1,hf p~xq � ~dui,hf p~xq
8: smooth forward displacement field ~ui,hf p~xq using Gaussian filter Gdiff :

~ui,hf p~xq � Gdiff � p~ui,hf p~xqq
9: update backward deformation field ~ui,hbp~xq � ~ui�1,hbp~xq � ~dui,hbp~xq

10: smooth backward deformation field ~ui,hbp~xq using Gaussian filter Gdiff :
~ui,hbp~xq � Gdiff � p~ui,hbp~xqq

11: end for

12: i � i� 1
13: until (deformation fields do not change) or (i ¥ IterMax)
14: calculate the inverse of the ~ϕhf and the inverse of the ~ϕhb

using the Algorithm 8
15: calculate forward transformation (Equation 3.53) and backward transformation

(Equation 3.54) by composition of the half-way transformations
16: return ~ϕforw and ~ϕback

Christensen’s method

The procedure used to compute the inverse transformation proposed in [27] assumes
that an input transformation ~ϕ is a continuously differentiable mapping from Ω Ñ Ω
with a positive determinant of the Jacobian detpJp~ϕp~xqqq for all spatial position
~x P Ω. An inverse deformation field can be found by selecting a point at a spatial
position ~y � ry1, . . . , yds P Ω and carrying out an iterative process to search for a
point ~x which makes distance }~y � ~ϕp~xq} smaller than a desired threshold ξ. The
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iterations defining the inverse transformation are given by:

~xi�1 � ~xi � ~y � ~ϕp~xiq
2 (3.63)

The initially selected point ~x0 should not be far from the final estimate ~x. The
drawback of this method is that it is not established via a formal mathematical
scheme. Although the method has been shown to converge to good results when the
minimum value of the determinant of Jacobian is greater than zero, the method has
been validated for relatively small deformations fields (i.e. the CT and MRI brain
scans [27], [63]).

Proposed deformation field inversion model

In the proposed method the inversion of the deformation field is achieved by using
a Newton-Raphson like method. Let a point misalignment function ~fp~xq be defined
as:

~fp~xq � ~y � ~ϕp~xq (3.64)

For each ~y P Ω, the aim is to find a corresponding ~x which will make ~fp~xq as close
to zero as possible. This is achieved in an iterative fashion:

~xi�1 � ~xi � ~dxi (3.65)

Approximating the misalignment function using a first order Taylor series expansion
gives:

~fp~x� ~dxq � ~fp~xq � Jp~fp~xqq ~dx (3.66)

where Jp~fp~xqq denotes the Jacobian matrix Assuming ~fp~x� ~dxq � 0 and introducing
regularisation, the updates ~dxi can be calculated from a set of linear equations:

J
�
~fp~xq

	
� ρD ~dx � �~fp~xq (3.67)

where D is an d-dimensional diagonal matrix, and ρ is a position dependent regu-
larisation parameter. The regularisation is introduced only for the areas where the
determinant of Jp~fp~xqq is close to zero.

3.4.3 Log-domain parameterised approach with symmetric
warping

As other registration formulations, the log-domain-based framework with symmetric
warping can be introduced to represent diffeomorphic forward ~ϕforw and backward
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Algorithm 8 Proposed method of inverting deformation field

Input: Transformation ~ϕ Parameter: ξ
Output: Inverse of transformation ~ϕ�1

1: for all ~y P Ω do

2: i � 0
3: ~x � ~0
4: repeat

5: calculate determinant of the Jacobian matrix detpJp~fp~xqqq
6: if detpJp~fp~xqqq ¤ 0 then

7: add regularisation ρD
8: end if

9: solve a set of linear equations given by Equation 3.67
10: update the current estimation of ~xi:

~xi�1 � ~xi � ~dxi

11: i � i� 1
12: until (}~fp~xq} ¥ ξ) or (i ¥ IterMax)
13: ~ϕ�1p~yq � ~x

14: end for

15: return ~ϕ�1

transformations ~ϕback via a stationary velocity field ~v. Based on this framework an
inverse consistent symmetric image registration has been proposed by Han et al.
[53], where the displacement fields ~uhf and ~ub are calculated from corresponding
velocity fields ~vf and ~vb, that are parameterised using a single stationary velocity
field ~v expressed in the following way:

~vi,hf � logpexpp~vi�1q � expp ~dviqq (3.68)

~vi,hb � logpexpp�~vi�1q � expp ~�dviqq (3.69)

where ~dvi is defined in the following way:

~dvip~xq � If p~ϕi�1,hf p~xqq � Imp~ϕi�1,hbp~xqq
}∇Ii,symp~xq}2 � pIf p~ϕi�1,hf p~xqq � Imp~ϕi�1,hbp~xqqq2∇Ii,symp~xq (3.70)

where gradient ∇Ii,symp~xq is defined by Equation 3.56 and the half-way forward
transformation is defined as ~ϕi,hf p~xq � ~x � expp~vip~xqq and the half-way backward
transformation by ~ϕi,bf p~xq � ~x� expp�~vip~xqq.
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To maintain the inverse consistency criterion the velocity field ~vi is calculated
based on the average of the forward and backward velocity fields in log-domain space
as follows:

~vi � 1
2 logpexpp~vi,hf q � expp~vi,hbqq (3.71)

The principal logarithm of exponential mappings for Equation 3.68, Equation 3.69
and Equation 3.71 is approximated using the Baker-Campbell-Hausdorff formula
given by Equation 3.33. The advantage of this approach is that the final transfor-
mations ~ϕforw and ~ϕback can be obtained by the composition of exponentiation of
the velocity field ~v:

~ϕforw � ~x� expp~vq � pexpp�~vqq�1 � ~x� expp2~vq
~ϕback � ~x� expp�~vq � pexpp~vqq�1 � ~x� expp�2~vq (3.72)

Although the results presented in [53] show good performance, it was also shown
that computing the exponential mapping has some limitations for large deformations
[18] and the quality of the BCH formula approximation for concatenating the half-
way velocity field was not assessed.

3.5 Summary

This chapter gives the details of the most common image registration algorithms
with respect to the optimisation schemes adapted to solve image registration prob-
lems. The described methods cover the steepest descent-like approach and Newton’s
iteration approach obtained using the calculus of the variations. The Demon ap-
proach was also presented.

Moreover, this chapter also describes the various formulations of the image regis-
tration frameworks. The formulations presented here maintain diffeomorphic prop-
erties by taking the advantage of small-step restrictions or via log-Euclidean param-
eterisation related to the stationary velocity fields approximation. The stationary
velocity fields are exploited in two ways either applied to the updates of the deforma-
tion field, or directly to the deformation field. Furthermore, the inverse consistency
criterion is incorporated to the mentioned algorithms thereby the consistent for-
ward and backward transformations are simultaneously estimated. Finally, image
registration with symmetric warping of input images is presented and its theoretical
advantages are outlined.

This chapter presented a novel method for inverting the deformation field which
can be seen as an extension to the previously reported method [27]. Unlike the
existing method described in [27], the proposed method for inverting the transfor-
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Algorithm 9 Log-domain image registration with symmetric warping

Input: Images: If and Im
Parameters: Gfluid, Gdiff

Output: Forward transformation ~ϕforw, backward transformation ~ϕback, velocity
field ~v

1: ~v � ~0, i � 1
2: repeat

3: forward integration of velocity field: ~ui,forw � expp~vi�1q
4: backward integration of velocity field: ~ui,back � expp�~vi�1q
5: for all ~x P Ω do

6: calculate update of velocity field ~dvip~xq (Equation 3.70 )
7: smooth update of the velocity field using Gaussian filter Gfluid:

~dvip~xq � Gfluid � p ~dvip~xqq
8: calculate forward velocity field

~vi,hf p~xq � BCH
�
~vi�1p~xq, ~dvi,hf p~xq

�
9: calculate backward velocity field

~vi,hbp~xq � BCH
�
�~vi�1p~xq,� ~dvi,hbp~xq

�
10: average forward and backward velocity field:

~dvip~xq � 1
2p~vforwp~xq � ~vbackp~xqq (Equation 3.71)

11: update velocity field ~vip~xq:
~vip~xq � ~dvip~xq

12: smooth velocity field ~vip~xq using Gaussian filter Gdiff :
~vip~xq � Gdiff � p~vip~xqq

13: end for

14: i � i� 1
15: until (velocity field does not change) or (i ¥ IterMax)
16: concatenate half-way velocity field ~v (Equation 3.72)
17: return ~ϕforw, ~ϕback, ~v

mation is established in the optimisation framework using the Newton’s method.
Furthermore, a new image registration algorithm with symmetric warping is pre-
sented which makes use of the newly proposed method of the inverting deformation
field.

Finally, this chapter gives systematic overviews on image registration methodolo-
gies presented from different points of view. These different views include methods
used for optimisation an objective function, various approaches to establish the dif-
feomorphic image registration, and additional constraints that can either improve
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the quality of the estimated transformation (enforcing the inverse consistency crite-
rion using consistent image registration), or speed up the registration process (im-
age registration with symmetric warping). Although the steepest descent method,
Newton’s iteration method, are already known image registration approaches, their
different versions discussed in this chapter can be also seen as new image registration
methods.
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Chapter 4

Comparison of image registration

This chapter presents the experimental results of the assessment of the algorithms
presented and proposed in Chapter 3 and the different formulations of the image
registration problem. First, the impact of the parameterisation of the deformation
field using the stationary velocity field is shown. Then, the importance of the inverse
consistency criterion for several applications is assessed based on the experiments,
that are carried out for the consistent image registrations. As the next step of the
evaluation, improved robustness of the image registration algorithms with symmetric
image warping is presented. Finally, the described methods are compared against
each another to find out the most appropriate for the specific medical applications.
All of the performed tests, that produced the following results, were done both on
the simulated data to show the accuracy with respect to the known parameters
of the ground truth data, and on the data coming from the real applications. A
wide range of the executed experiments and types of the data involved in these
experiments, make this comparison a comprehensive and critical analysis of the
presented algorithms. Following evaluations can be potentially useful as a kind of
the look-up tables of the expected behaviour of the presented algorithms in the
particular applications.

4.1 Introduction

Qualitative and quantitative comparison of the image registration algorithms is an
important part of utilising these algorithms in practical applications. The reason for
the critical assessment of the image registration algorithms is unquestionably linked
to the ill-posed properties of the image registration, where small changes of the input
data can lead into significant changes in the estimated transformations [90, 92]. As
it was pointed out in the previous chapters, introducing the regularisation term and
the additional penalisation is inevitable, but this still may not entirely support the
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stability of the solution. Moreover, a number of parameters inherently involved in
the chosen deformation models (so-called the design parameters), can significantly
lengthen in time the estimation process of the most desired solution, specifically
when these parameters are tuned by a trial-and-error procedure. It may commonly
happen that the set of the optimal parameters for the specific set of images does not
work properly with another set of images, that are visually similar. The mentioned
issues lead to the necessity of the critical analysis of the known image registration
algorithms using different setups for both data and parameters. Before the exper-
imental results are given and furthermore discussed, a brief overview of the known
comparison works is provided here, firstly to show the lack of the general assessment
of the image registration comparison, secondly to present common frameworks to
benchmark algorithms and finally to point out some of the interesting conclusions
from these works.

The most commonly referred algorithm in the biomedically-driven image regis-
tration applications seems to be the Demon approach. It is customary referred to be
a state-of-the-art method to be compared against a proposed method. The Thirion’s
Demon [138] and its active gradient-based modification [148] were implemented and
assessed against each other for the image-guided radiation therapy procedures in
[148]. The wide variety of the conducted experiments, and various data sets used in
those experiments indicate better robustness of the active gradient-based approach
(given in Equation 3.21). The results from the verification using deformable pelvis
phantom confirm the clinical reasonability/correctness of using the Demon-based
approaches in the radiotherapy procedures.

Different variants of the image intensity gradients thereby the various Demon
algorithms were implemented for the graphic processing units (GPU) using the com-
pute unified device architecture (CUDA) and compared against each other in [44].
The major focus of that investigation was to find out the trade off between the
computational cost and the accuracy (assessed both based on the manually selected
landmarks and for the intensities of images involved in the registration using cor-
relation coefficient) for the thoracic CT data. As it may be expected, the fastest
method is based on the fixed Thirion’s gradient (Equation 3.20 and [138]) due to
only one gradient calculation operation during all image registration procedures.
On the opposite side, due an additional computational cost of gradient of moving
image calculation at each iteration, the symmetric gradient (Equation 3.56) used
in the consistent image registration based on the Demon approach with symmetric
warping was the slowest one. The overall accuracy of all Demon methods was simi-
lar. The weak point of this comparison is that it was evaluated using only one data
set consisting of five three-dimensional CT volumes. In order to get some general
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conclusions, the comparison should be performed also on data from other common
radiotherapy applications.

The comparison of the Newton’s iteration approach with the Demon is given
in [78]. The experiments were carried out on the synthetic and medical data, and
also phantom studies were presented. The main limitations of this comparison are
as follows. Firstly, the simulated data consist of the data set of the deformation
fields that are restricted to the harmonic deformations, and moreover, no evidences
either theoretical or experimental are given to prove the relevance of this type of
the deformations linked to the real-life deformations. Secondly, the properties of the
estimated deformation fields such as smoothness or preservation of the one-to-one
mapping that are essential in the treatment applications, are not assessed.

To the best knowledge of the author, the extensive comparison involving the
variational approach proposed by Chefd’hotel et al. [24], Hermosillo et al. [56, 57]
have not been done. The only experimental results that have been found to be
evaluated, are those, described in [24, 56, 57] where limited examples of the medical
applications are presented with the main emphasis on the presented technique rather
than the medical outcomes.

In general, the impact of the stationary velocity field parameterisation was not
critically assessed. The seminal papers where either the displacement fields [5, 144]
or the updates of the deformation field [143, 145] were parameterised via the station-
ary velocity field, give some fundamental comparisons of the new concept but they
are limited to the Demon approach. The mentioned evaluations are more oriented
to explain the idea of the log-domain registration whereas the provided experimen-
tal results do not cover any particular area of applications. In addition, Han et al.
[53] gives only the statement that the log-domain image registration with symmet-
ric warping performs better than the original log-domain algorithm. No additional
quantitative measures are evaluated.

The comparison of the Large Deformation Diffeomorphic Metric Mapping (LD-
DMM) algorithm reformulated so the stationary velocity field is used instead of the
originally time-dependent version and the diffeomorphic Demon approach is pre-
sented in [58]. The most important conclusions given there are the following. Both
algorithms produce similar results in terms of the accuracy assessed by the image
intensities comparison. Although, the Demon algorithm is shown as slightly faster,
the overall convergence rate is slower than in the case of stationary LDDMM. The
stationary LDDMM has advantages when the characteristics of the estimated defor-
mation fields such as the smoothness or the inverse consistency criterion are crucial.
Finally, it is worth to emphasise that the results shown in that work indicate the
existence of sets of the design parameters that produce non-diffeomorphic transfor-
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mations. It also indicates that the theoretical (mathematical) justification on the
diffeomorphism embedded in the proposed frameworks does not prevent from failing
to fulfil one-to-one mapping properties.

The quantitative evaluation of the consistent log-domain Demon algorithm was
performed in [94] for the cone-beam CT guided radiotherapy procedures of the neck
and head. The obtained results indicate that the Demon based approach can be
successfully utilised for the images obtained from the same type of the scanners
and offers acceptable trade-off between accuracy and the computational cost. The
validation was performed using several criteria to assess the image quality after
registration such as correlation coefficient, the quality of the estimated transforma-
tion via harmonic energy, and the accuracy in terms of the distances between the
manually selected landmarks.

The general comparison of common non-rigid methodologies with a particular
focus on the radiotherapy applications is presented in [21]. The three algorithms,
used there for the evaluation, are: original Thirion’s Demon algorithm [138], fastFFD
(here called as a the Newton’s iteration approach) [78] and the level-set inspired ap-
proach proposed by Vemuri et al. [142]. All of these methods are implemented in
four different manners including the originally proposed implementation, additional
Gaussian smoothing procedure of the input images, and with and without the em-
bedded rigid preregistration. These different strategies were compared against each
other and with the results were obtained by the parameteric registration using the
rigid transformation model driven by the Mutual Information. The presented results
in terms of the volumetric criterion (correlation coefficient) and the region overlap-
ping of segmented organs (Equation 4.10) suggest that the Demon-based approaches
yield the best robustness for the head and neck data sets. Comparison between the
Newton’s iteration algorithm and the Demon approach gives the opposite conclu-
sions that these were summarised in [78]. The reason for this inconsistency can be
partially explained by the different types of the data used in the performed evalua-
tions. In that comparison work, the quality of the estimated deformation fields in
terms of the medical correctness (one-to-one mapping, inverse consistency criterion)
was not assessed.

The comparison of the three common image registration algorithms such as De-
mon [138], B-spline approach [112] and the spring mass system [84, 121] was pre-
sented in [122]. The evaluation was done in two trials: firstly using the set of
simulated images either with different types of the noise included in the images or
without any noise, secondly using the real clinical CBCT and CT data from the
radiotherapy of the neck and the pelvis area. The Demon algorithm was shown as
having the best robustness when no noise is present in the input data. In terms
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of the sensitivity to noise, the Demon algorithm fails to estimate the ground truth
deformation field when the images are affected by the Gaussian noise or the struc-
tured noise. In this particular evaluation driven by the radiotherapy applications,
the spring mass system [84, 121] achieved the best performance.

The largest evaluation done for the 14 non-linear and one linear image registra-
tion algorithms was conducted by Klein et al. [68]. The aim of this evaluation was
to assess the quality of the automatic brain images labelling process using the image
registration techniques. The data set used as the test data set was restricted to 80
MRI brain volumes obtained from four different sources. From the perspective of
the other work, the most interesting finding outlined in this work is the statement
that the relative performance of the registration methods under comparison appear
to be little affected by the choice of the subject population, labelling protocol, and type
of overlap measure. Thus, it suggests that at least for the brain analysis, the new
images taken either from new subjects or using the new protocols can be successfully
registered with the desired level of accuracy by the mentioned methods.

Due to the lack of the ground truth data available to validate and compare the
image registration algorithms, the interesting functionality is going to be offered by
the Non-rigid Image Registration Evaluation Program (NIREP) [127]. The NIREP
aims to developing the tools, the relevant metrics and the data sets to provide a
rigorous and consistent testing procedure for any image registration algorithm. The
NIREP will enable comparison of the performance of the algorithms under specific
conditions and for the particular applications in the controlled setup. At the time of
evaluating the algorithms described in this work, the NIREP was in the prototype
stage and was not available to produce any kind of the assessments. At this work,
some metrics that are used in the NIREP are evaluated.

Recently, a general evaluation methodology for computer vision applications and
a collection of the databases of the ground truth flows for the optical flow based reg-
istration methods were presented by Baker et al. [12]. Interestingly, one of the
conclusions emphasises that no single method is yet able to achieve strong perfor-
mance across a wide variety of data types. Although this statement is made for
the general and real-world applications in computer vision, it can be easily applied
to the medical image registration due to the same nature of problems inseparably
linked with any type of the motion estimation.

To sum up, the assessment of different image registration algorithms and dif-
ferent formulations of the diffeomorphic approaches such as registration with the
exponential update, the log-domain parameterisation for the deformation field, and
the small step multi-pass approach can be potentially useful in many areas e.g. to
build more sophisticated systems where image registration acts as a tool for further
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data processing. Similarly, it is seems to be interesting enough to assess the out-
comes given by ensuring the inverse consistency criterion for the consistent image
registration. Finally, the questionable benefits coming from the symmetrisation of
the registration process can be checked.

4.2 Environment for experiments

The image algorithms have been extensively assessed with different types of exper-
iments, thereby enabling calculating a great variety of evaluation statistics.

Firstly, the impact of the parameterisation of the deformation field using the
stationary velocity fields is investigated. The original version of the algorithm,
and the two possible implementations (the exponential update, and the log-domain
approach) are included during this stage of investigation. Although, the similar
experiments were conducted in the original work introducing the log-Euclidean pa-
rameterisation into image registration [143, 144, 145], this work extends them by
evaluating different image registration methods (the steepest descent method, the
Newton’s iteration method, and the Demon method). This is done to assess whether
the log-Euclidean parameterisation gives the similar effects on the estimated defor-
mation fields as it was shown for the well-known Demon algorithm.

The second set of the experiments was carried out with respect to the three solu-
tion schemes: estimation of the transformation from the moving image to the refer-
ence image, the consistent framework (joint estimation of the forward and backward
transformation), and the image registration framework with symmetric warping.

Finally, between-method analysis was conducted to show robustness of the de-
scribed methods with respect to possible applications in computer vision, medical
image analysis and biomedical motion modelling. Three described methods: the
steepest descent method, the Newton’s iteration method, and the Demon method
are validated with wide spectrum of the design parameters, and compared against
each other using different data sets.

4.2.1 Data set description

This section describes both the synthetically generated data and the clinical data
used for the image registration assessment.

Random synthetic data generation

The synthetic data set consists of the synthetically generated reference images, and
the ground truth deformation fields (velocity fields) warping the reference images to
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Figure 4.1: Example of the synthetically generated data: (from left to right) -
fixed image, fixed image warped by the deformation field, and the grid warped by
synthetically generated deformation field.

obtain the moving image.
The reference images were generated from a random zero-mean and unit variance

Gaussian image process defined for all points of a two-dimensional regular grid of size
64x64. Then, the generated image is smoothed by a low-pass filter, scaled into the
range r0.0, 1.0s, and padded with a black border to avoid the edge artifacts during
image registration. The sample of the synthetically generated image is shown in
Figure 4.1.

The known velocity fields were generated from two independent random zero-
mean and a three pixel standard deviation Gaussian velocity process defined on the
selected knots of the sparse two-dimensional regular grid of size 12x12. Then, for
both components of the velocity field the repeatable low-pass filtering procedure
was applied to obtain a desirable smoothness (the determinant of the Jacobian
matrix has to be positive). Finally, velocity fields were interpolated to the finer grid
resolution (64x64) with cubic spline interpolation and then scaled and exponentiated
to get a wide range magnitudes of diffeomorphic deformation fields. This procedure
of generating deformation field is similar to the state-of-the-art method described in
[17] that was used to validate the Baker-Campbell-Hausdorff formula for calculation
of the velocity fields. The sample of the synthetically generated deformation field is
shown in Figure 4.1 and in Figure 4.2.

Real data

The real data used for the validation consist of two public available data sets and
one available at the University of Central Lancashire.

The data sets include:

• POPI (POPI stands for the Point-validated Pixel-based Breathing Thorax
Model) computed tomography of lungs with the landmarks manually selected
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Figure 4.2: Example of the partially synthetically generated data: (from left to
right) fixed image - the axial slice from MRI brain volume, fixed image warped by
the deformation field, and the grid warped by synthetically generated deformation
field.

by the medical experts for assessment of the image registration quality. The
data were obtained by the Léon Bérard Cancer Center & CREATIS Laboratory
in Lyon, France and are freely available to download from the Internet. For
the data, the set of the landmarks is attached thereby the target registration
error (TRE) can be calculated as a quantitative measure and compared to
other method published on the aforementioned web page. Further details of
the data sets can be found in [141]. The data set consists of ten volumes with
the size of 482 x 360 x 141 and the resolution is 0.976562mm x 0.976562mm
with a slice thickness of 2.0mm. This particular set was used for validation
of the registration method by [43]. Thus far, various in-house data sets of the
lungs were usually used for the validation [159, 73, 75, 74, 36]. The example
of CT lung data are shown in Figure 4.4.

• BrainWeb data set consists of 20 anatomical models of 20 normal brains [8].
Each anatomical model is labelled thus each tissue class (each brain structure)
can be found in the volume. The structure of brains is divided into 12 classes:
Background, CSF, Gray Matter, White Matter, Fat, Muscle, Muscle/Skin,
Skull, Blood vessels, Connective (region around fat), dura mater and bone
marrow. Therefore, the registration quality can be assessed by the segmenta-
tion accuracy. With one of the models used as a reference and the remaining
models registered to it, the ground truth labelling of the reference image is
compared with the labelling achieved by the warping labels of the registered
images. The segmentation accuracy is calculated based on the region overlap-
ping (RO) of the different structures. The data set consists of 20 volumes of
size 256 x 256 x 181 with the spatial resolution of 1.0mm x 1.0mm x 1.0mm.
In this comparison work, the first ten volumes was used only. The reason
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Figure 4.3: Example of MRI brain data (left) and their ground truth (manual)
labelling (right) used in the experimental validation.

for selecting the brain image data set is motivated by the literature findings,
where the brain annotation is most often used as a quantitative measure of the
image registration algorithms [27, 162, 4, 143, 144, 145, 136, 68]. The example
of MRI brain data are shown in Figure 4.3.

• Data set of the MRI images of the pelvic-area organs. The data exhibit sig-
nificant changes of the bladder size and shape. The quality of the registration
can be assessed in a similar manner as in the case of the brain data due to
the labelling provided for the anatomical structures such as the prostate and
the bladder. The data set consists of five volumes of size 240 x 320 x 30 with
the spatial resolution of 1.0mm x 1.0mm x 3.0mm representing one subject
with shape changes of bladder, rectum, and prostate. The pelvic-area image
registration is also very common issue as the potential benefits of the accurate
registration can be entirely applied to the radiotherapy of the prostate cancer.
The example of MRI brain data are shown in Figure 4.5.

4.2.2 Validation criteria

Validating the performance of the image registration methods was accomplished
through several evaluation statistics quantifying the obtained results. The quantifi-
cation was done in several ways, either for the warped images, or with respect to
the estimated transformations, or in terms of the biomedical quantities.

Due to the mono-modal data set, the sum of the squared differences (SSDI) is
chosen as the measure of the similarity between two images. The SSDI matching
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Figure 4.4: Example of CT lung data used in the experimental validation: (left) the
end-inhalation (right) exhalation phase are shown.

Figure 4.5: Example of MRI pelvic area data used in the experimental validation
with a ground truth annotation of the organs of interest: bladder (red), rectum
(green), and prostate with seminal vesicles (blue).
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criterion is defined by:

SSDIpIj, Ikq � 1
N

¸
~x

pIjp~xq � Ikp~xqq2 (4.1)

where Ij and Ik are the assessed images and N is the number of image points
(pixels/voxels). During the evaluation of the synthetic data with the ground truth
deformation field, the sum of the squared differences SSD~ϕ for the estimated trans-
formation ~ϕest and the known transformation ~ϕorg can be calculated. The SSD~ϕ is
defined as follows:

SSD~ϕp~ϕorg, ~ϕestq � 1
N

¸
~x

}~ϕorgp~xq � ~ϕestp~xq}2 (4.2)

The distance to the known Jacobian of transformation (distJac) is computed in the
following way:

distJacp~ϕorg, ~ϕestq � 1
N

¸
~x

pdetpJp~ϕorgp~xqqq � detpJp~ϕestp~xqqqq2 (4.3)

This criterion is often used to track the deformation field estimation when the ground
truth data are available [144, 145]. To enable further comparison of the estimated
deformation fields, the determinant of the Jacobian matrix of the transformations is
also calculated to track the minimum of the Jacobian matrix determinant (minJac).
The minimum of the determinant of the Jacobian matrix is defined as follows:

minJacp~ϕq � min
~x
pdetpJp~ϕp~xqqqq (4.4)

Tracking of minJac is important because it reflects the volume changes of a point
mapped through the estimated transformation [27]. A positive value of minJac
indicates that the estimated transformation is one-to-one mapping between image
points, while a negative value suggests that the transformation locally folds the
domain inside out. The smoothness of the estimated deformation field was measured
by evaluating the harmonic energy (HE) criterion [144, 145, 94]. The harmonic
energy is defined as:

HEp~ϕp~xqq � 1
N

¸
~x

ḑ

j�1

ḑ

k�1

�Bϕkp~xq
Bxj


2

(4.5)

In many applications (especially in medical and biological image analysis), it is
commonly assumed that each spatial point in moving image Im is mapped to the
corresponding point in fixed image If . This also applies for the backward transfor-
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mation i.e. the point from fixed image If has a corresponding point in moving image
Im. Nevertheless, most of the image registration algorithms estimate the forward
transformation that does not invert the backward transformation and vice verse.
This inconsistency (described in details in Chapter 3.3) for the estimated transfor-
mations can be assessed with respect to the inverse consistency criterion (ICC).
A computable criterion reflecting the inability to provide unique description of the
correspondence between two images is the inverse consistency error (ICE). The
ICE is defined here as an average distance between the original points in one image
and their positions in this image after mapping to another image and subsequent
mapping back to the original image as follows:

ICEp~ϕforwp~xq, ~ϕbackp~xqq � }p~x� p~ϕforw � ~ϕbackqp~xqq}2 (4.6)

The inverse consistency error measures only the consistency between the forward
and backward transformation, while the accuracy of transformation is not assessed
(a detailed discussion is presented in [27, 127]). In the case of the perfectly consistent
transformations, the ICE is equal to zero. During the validation the average of the
ICE (aveICE) is also calculated as follows:

aveICEp~ϕforw, ~ϕbackq �
1
2

�
1
N

¸
~x

}~x� p~ϕforw � ~ϕbackqp~xq} � 1
N

¸
~x

}~x� p~ϕback � ~ϕforwqp~xq}
�

(4.7)

and maximum ICE (maxICE) as follows:

maxICEp~ϕforw, ~ϕbackq �
max pmax }~x� p~ϕforw � ~ϕbackqp~xq},max }~x� p~ϕback � ~ϕforwqp~xq}q (4.8)

All aforementioned criteria indicate the quantity with respect to either the image
similarity measures or the deformation field statistics, while they somehow do not
reflect the anatomical correctness of the results. Thus far, there is a lack of the
ground truth data in the clinical applications and alternative criteria for the physical
measures of accuracy have to used. From the medical point of view, the algorithms
were validated with respect to the Region Overlapping (RO) (or sometimes called
Dice Similarity Index (DSI)). The Region Overlapping for organ of interest P is
defined as:

ROP pPref , Pwarpq � numberOfV oxelspPref X Pwarpq
numberOfV oxelspPref Y Pwarpq (4.9)

where Pref is an organ segmented in the reference image, and Pwarp is the same
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organ segmented in the warped image. ROP assesses how well two segmentations of
the organ of interest agree or disagree with each other [127]. It can be also defined
as follows:

ROP%pPref , Pwarpq � ROP pPref , Pwarpq � 100 (4.10)

Another, common choice of the description for the anatomical registration accuracy
is based on the salient, corresponding points between images identified by the medi-
cal experts. This enable the target registration error (TRE)to be used by measuring
the distance between those selected landmarks before and after registration. The
TRE is defined as follows:

TREpHfix, Hmovq � 1
NL

¸
~x

}~hfix � ~hmov}2 (4.11)

where Hfix and Hmov are sets of manually selected landmarks in the fixed (refer-
ence) image ~hfix and in the moving image ~hmov, and NL is the number of selected
landmarks. After image registration, the selected landmarks in the moving image
Hmov are warped using the resulting deformation field and the target registration
error is calculated between the points in the reference image and points mapped by
the estimated transformation. In the case of perfect matching, the distance should
be zero.

4.2.3 Implementation remarks

Whereas the pseudo-code formulations of all the described algorithms were given in
the previous chapter, numerical schemes that are crucial to the related approaches,
are detailed in this section.

Discrete matrix stencils for the regularisation terms used in the described ap-
proaches are presented in the textbooks [90, 92] and papers [24, 57, 5].

The convolution by a Gaussian kernel is approximated by the fast recursive filter
implemented by the smoothing operator, originally proposed in [35]. This specific
type of Gaussian filtering is already included in CImg Library, and also was used in
the originally presented image registration algorithm [56, 57, 24].

The d-linear interpolation method is used to calculate the intensity value of an
arbitrary spatial position. The gradients of images are calculated using the cen-
tral difference forms. Furthermore, the gradients during the registration process
are calculated for the input images that are warped by the currently known es-
timation of the deformation field instead of performing the interpolation of input
image gradients. Calculating gradients directly on the newly warped images has
similar computational cost, while it was shown to improve robustness in terms of
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the registration force quality in [131]. A detailed discussion on different interpo-
lation methods, their computational cost, quality of interpolation and quantitative
comparison in the context of the medical applications can be found in [137].

The described algorithms benefit significantly in terms of the execution time
by the C++ implementation as a MATLAB mex file in the majority utilising the
open-source, C++, image processing toolkit CImg Library. Although the included
methods and classes of this toolkit offer high portability for different operating
systems, the algorithms were evaluated under Windows 7 system.

4.3 Qualitative and quantitative comparison

This section presents experimental results of validation for all the algorithms that
were described in the previous sections using both synthetic and real clinical data
sets.

The synthetic part of the validation consists of the experiments conducted on
the data generated by the procedure described in Section 4.2.1. Experiments were
carried out with a completely controlled setup. The procedure of generating the
deformation fields via their velocity fields produces 100 random deformation fields
that were used to warp the synthetic images (example is shown in Figure 4.1) and
then each version of the presented algorithms was run to estimate the already known
deformation field. Subsequently, the random transformations were also applied to
two-dimensional real images coming from three-dimensional MRI brain volumes (ex-
ample of axial slice used in validation is shown in Figure 4.2). The algorithms were
always initiated with an identity transformation and the same default set of design
parameters. The design parameters for the Demons approaches are set as Gdiff =
1.0 and Gfluid = 1.0, following most of the cited papers; for the Newton’s iteration
approach λdiff = 0.1 as the default value in [78, 159, 21]; for the steepest-like method
one of the set of the parameters from [56, 57, 24] was chosen with α = 0.1 for the
weight of parameterisation and µelas = 1.0 as the simplified elasticity parameter [56].
Since the main emphasis was put on the comparison of the different algorithms and
their various formulations, the multi-resolution manner was not used at this stage of
experiments. To enable observations of the convergence rate of the specific criterion
and their further analysis, each algorithm was evaluated multiple times with a fixed
number of iterations starting from 1 and ending with 50.

The second part of the validation was carried out on the real clinical data where
the ground truth deformation fields were not known. The aim of the comparisons is
to show advantages and weak points of the particular algorithms and their different
versions in the typical cases of the medical applications. Examples include 3D
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volumes concerning different applications in medical image analysis and medical
motion analysis (presented in Chapter 6) using data such as MRI brain images
(Figure 4.3), MRI pelvic-area (Figure 4.5), and CT of lungs (Figure 4.4). Although
the ground truth data are not available, the numerical assessment can be still done
in somehow quantitative manner using the criteria described in the previous section.
All methods were evaluated in the multi-resolution manner with the number of levels
depending on the volumetric size of the particular data set: four levels for brain
data sets and for pelvic-area data, and three levels for the lung data set. Finally,
the number of iterations and the various combinations of the design parameters were
checked during these comparisons to find out their impact on the final results.

4.3.1 Impact of the stationary velocity field parameterisa-
tion

This section summarises the experiments that were carried out to examine the pa-
rameterisation of the deformation field by the stationary velocity fields. The pa-
rameteresation was introduced to all the investigated algorithms in two possible
manners: parameterisation of the update deformation field (exponential update of
the deformation field introduced in Section 3.2.2), and a parameterisation of the full
deformation field as the stationary velocity field that is then exponentiated to get
the displacement field (described in Section 3.2.3).

Synthetic data

The results for the assessment done for the synthetic data are presented in Figure
4.8 for the Demon approaches, in Figure 4.7 for the Newton’s iteration approaches,
and in Figure 4.6 for the steepest-like approaches. These figures show the evolutions
of the several criteria that are chosen to describe the important properties of the
deformation fields over the executed iterations. In addition, the evaluated algorithms
utilise two types of gradients, gradient calculated using the original version of the
algorithm that is denoted in figures as org gr and the symmetric gradient that uses
the intensity information from the fixed and moving image at the same time is
denoted in figures by sym gr (Equation 3.22). In the case of image registration with
symmetric warping, only symmetric gradient is calculated (Equation 3.56).

In general, the parameterisation via the stationary velocity field introduced to
either the update of the deformation field or displacement field, produces slightly
smoother transformations in terms of the harmonic energy (HE) for all evaluated
algorithms. The most noticeable results are achieved for the steepest-like method
(Figure 4.6c) where the HE of the deformation field estimated using the exponen-
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tial update technique is about 10% better than that for the original method. For
the Newton’s iteration method, the HE decreases for the log-domain formulation,
while for the exponential update version it stays at the same level of the originally
proposed method. Both the exponential update version and the log-domain version
of the Demon approaches produce slightly smoother transformation than its original
Thirion’s version.

In all cases, the original methods show better convergence in terms of minimising
the SSDI between registered images.

Brain MRI data

The results obtained for the MRI brain data set are presented in Figure 4.11 for
the Demon approaches, in Figure 4.10 for the Newton iteration approaches, and in
Figure 4.9 for the steepest-like approaches

All algorithms with the incorporated exponential update scheme and the log-
domain parameterised version of them perform worse in terms of the SSDI between
images than their original formulations. This difference is more notably seen for the
log-domain formulation (especially for the Newton’s method in Figure 4.10g). After
executing 100 iterations, the log-domain Demon, the log-domain Newton’s iteration
and, the log-domain steepest-like method produce the SSDI that is 7.0%, 9.0% and
9.0% worse than those SSDI produced by their original versions. Correspondingly
after the same number of performed iterations, the SSDI for the algorithms with
the exponential update scheme are only about 3.0% worse than that by the original
methods.

In the same time, the harmonic energy is reduced for both types of the ap-
proaches: with exponential update and log-domain parameterisation. The deforma-
tion fields estimated after 100 iterations by the Demon with exponential update and
the log-domain Demon are about 5.0% and 1.5% smoother respectively in terms of
the HE than the deformation field estimated using the original Demon version. For
the Newton’s method, the smoothness is significantly reduced in both types of the
parameterisation by a level of 15.0% when compared to the original Newton’s iter-
ation method. Similarly, the steepest-like method with exponential update ensures
the smoothness of the deformation fields to be about 12.0% more than the original
steepest-like method, while the log-domain version is about 13.0%.

Finally, the results of assessment of the segmentation accuracy obtained for all
methods indicate that the parameterisation of the deformation field either via ex-
ponential update or introducing the full log-domain framework slightly decreases
the values of the ROs for all measured structures. The average RO is about 0.5
worse for the approach with exponential update and 1.0 worst for the log-domain
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(a) (b)

(c) (d)

(e) (f)

Figure 4.6: Results obtained for the simulated data set using different types of the
steepest-like approach (Algorithm 1). The convergence studies are shown for: (a)
the average of the SSDI between images, (b) the average of the SSD~ϕ between
estimated deformation field and ground truth deformation field, (c) the average
HE, (d) the average distance to the real Jacobian, (e) the minimum and (f) the
maximum determinant of the Jacobian matrix of the estimated transformation.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7: Results obtained for the simulated data set using different types of the
Newton’s iteration approach (Algorithm 2). The convergence studies are shown for:
(a) the average of the SSDI between images, (b) the average of the SSD~ϕ between
estimated deformation field and ground truth deformation field, (c) the average HE,
(d) the average distance to the real Jacobian, (e) the minimum and (f) the maximum
determinant of the Jacobian matrix of the estimated transformation.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.8: Results obtained for the simulated data set using different types of
the Demon approach (Algorithm 3). The convergence studies are shown for: (a)
the average of the SSDI between images, (b) the average of the SSD~ϕ between
estimated deformation field and ground truth deformation field, (c) the average
HE, (d) the average distance to the real Jacobian, (e) the minimum and (f) the
maximum determinant of the Jacobian matrix of the estimated transformation.

88



4.3. QUALITATIVE AND QUANTITATIVE COMPARISON

parameterisation than in the case of the original versions.
To sum up, the outlined results suggest that the parameterisation of the displace-

ment field via the stationary velocity field introduced either for the update of the
deformation field or for the deformation field has minor impact on the overall per-
formance of the presented image registration algorithms. The accomplished experi-
ments show a slightly decreased accuracy for the segmentation using the estimated
deformation fields, whereas the smoothness properties of these transformations that
are desirable in the brain images analysis are remarkably improved.

Pelvic-area MRI data

The results obtained for the different formulations of the presented image registra-
tion methods using the MRI pelvic-area data set are shown in Figure 4.14 for the
Demon approaches, in Figure 4.13 for the Newton’s iteration methods and in Figure
4.12 for the steepest-like approaches.

From the perspective of the SSDI between the registered images and the har-
monic energy, the general behaviour the parameterised algorithms is similar as that
from the evaluation performed on the MRI data of brain. The methods with the
exponential update of the deformation field and the log-domain formulated methods
produce slightly worse SSDI . The most noticeable difference can be observed for
the Newton’s iteration method (Figure 4.13g) where the SSDI calculated for the
original formulation is about 8.0% better than in the case of the parameterised ver-
sions. Similarly, the harmonic energy decreases for all parameterised methods while
this reduction for the Demon and the steepest-like approaches is negligible. How-
ever, the Newton’s iteration method with the exponential update and its log-domain
version can be characterised by the reduction of 15% when compared to the original
method. In addition, the HE for the Newton’s iteration method grows rapidly at
the beginning of the registration process and then is minimised through execution
of more iterations.

The values of the RO calculated for the prostate do not enlarge the impact of
the parameterisation incorporated into the registration framework. The maximum
difference between RO calculated for the prostate using the original method and the
parameterised methods is notice for the Newton’s iteration method and it is equal
0.75. Comparatively, the RO of bladder shows slightly more noticeable variability,
but still the maximal difference between the original method and the parameterised
method was found to be 1.8 in the case of the Demon approach, 3.0 for the Newton’s
iteration approach, and 1.4 for the steepest-like approach (all for the exponential
update scheme).

Altogether, the conclusions that can be drawn for the MRI pelvic-area data are
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.9: Results obtained for the MRI brain data set using different types of
the steepest-like approach (Algorithm 1). The average values of the RO for: (a) the
original, (b) with exponential update, (c) the log-domain , (d) the inverse consistent,
and for (e) the log-domain with symmetric warping . (f) The average RO for the
different formulations after 100 iterations. The convergence of the average of: (g)
the SSDI between images, and (h) the HE.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.10: Results obtained for the brain data set using different types of the
Newton’s iteration approach (Algorithm 2). The average values of the RO for: (a)
the original (a), (b) with exponential update, (c) the log-domain, (d) the inverse
consistent, and for (e) the log-domain with symmetric warping. (f) The average RO
for the different formulations after 100 iterations. The convergence of the average
of: (g) the SSDI between images, and (h) the HE.

91



4.3. QUALITATIVE AND QUANTITATIVE COMPARISON

(a) (b)
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(e) (f)

(g) (h)

Figure 4.11: Results obtained for the brain data set using different types of the
Demon approach (Algorithm 3). The average values of the RO for: (a) the original,
(b) with exponential update, (c) the log-domain, (d) the inverse consistent,and for
(e) the log-domain with symmetric warping. (f) The average RO for the different
formulations after 100 iterations. The convergence of the average of: (g) the SSDI

between images, and (h) the HE.
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similar to those for the MRI brain data. The stationary velocity field represen-
tation provides a versatile framework to estimate the transformations. Therefore,
the accuracy in terms of the RO of the segmented structures is comparable to the
original formulations optimising in the space of the displacement fields instead of
the velocity fields, meanwhile the smoothness of the transformations indicated by
the reduced HE is improved.

Lung CT data

The last set of experiments that were carried out to check the impact of the sta-
tionary velocity field representation, was using the CT lung data set. The obtained
results are shown in Figure 4.17 for the Demon approaches, in Figure 4.16 for the
Newton’s iteration methods and in Figure 4.15 for the steepest-like approaches.

Similarly to all previous cases, the SSDI between images and the harmonic
energy shows corresponding patterns of the behaviour for the assessed parameteri-
sation. After performing 100 iterations, the SSDI stays at the similar level with the
slightly worse results for the parameterised versions of the algorithms. The most
noticeable difference is seen for the Newton’s iteration approach, where the differ-
ence between SSDI for the original version and the parametrised version is equal
to 10.0% of the original SSDI . In all other cases this difference is negligible.

The harmonic energy is reduced by 4.5% the Demon approach with the exponen-
tial update and by about 1.5% for the log-domain version. The reduction of the HE
for the Newton’s iteration approach is about 5.0% for the log-domain framework,
while for the scheme with the update of the deformation field, the HE increased
about 1.0%. The steepest-like approach implemented in the log-domain manner
reduces the HE by 13.5% and with the exponential update by 12.5%.

The target registration error (TRE) after 100 iterations for the Demon ap-
proaches with and without parameterisation is similar at 1.87mm. The TRE for
the original Newton’s iteration approach and its log-domain version also stays at the
same level of 2.25mm, whereas the scheme with the exponential update produces
significantly worse results of 2.58mm. The TRE for the steepest-like approach dif-
fers between the original implementation and its parameterised versions but the
difference is 0.14mm for the log-domain framework, and 0.07mm for the method
with the exponential update scheme.

To sum up, the parameterisation of the deformation fields via stationary velocity
fields is also robust for the estimation of the respiratory motion using the CT images.
The only exception for this is the example of the Newton’s iteration method with
the exponential update that produces somehow unexpected result of the HE and
the TRE. Although, it may indicate that this particular method is not suited well
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(g) (h)

Figure 4.12: Results obtained for the MRI pelvic-area data set using different types
of the steepest-like iteration approach (Algorithm 1). The average values of the RO
for: (a) the original, (b) with exponential update, (c) the log-domain, (d) the inverse
consistent, and for (e) the log-domain with symmetric warping. (f) The average RO
for the different formulations after 100 iterations. The convergence of the average
of: (g) the SSDI between images, and (h) the HE.
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(a) (b)
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Figure 4.13: Results obtained for the MRI pelvic-area data set using different types
of the Newton’s iteration approach (Algorithm 2). The average values of the RO
for: (a) the original, (b) with exponential update, (c) the log-domain, (d) the inverse
consistent, and for (e) the log-domain with symmetric warping. (f) The average RO
for the different formulations after 100 iterations. The convergence of the average
of: (g) the SSDI between images, and (h) the HE.
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(a) (b)
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(e) (f)
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Figure 4.14: Results obtained for the MRI pelvic-area data set using different types
of the Demon approach (Algorithm 3). The average values of the RO for: (a) the
original, (b) with exponential update, (c) the log-domain, (d) the inverse consistent,
and for (e) the log-domain with symmetric warping. (f) The average RO for the
different formulations after 100 iterations. The convergence of the average of: (g)
the SSDI between images, and (h) the HE.
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for this application, the TRE is consistent with the worst result of SSDI calculated
for the same method.

Observations on the stationary velocity field parameterisation

In general, the presented results suggest, that the parameterisation of the displace-
ment field done either for the update of the deformation field or for the full defor-
mation field as the log-domain framework, improve the estimated transformations
in terms of the smoothness properties (here, quantified by the harmonic energy). In
some cases the harmonic energy was reduced up to 15.0% (such examples include
the Newton’s iterations approach for the MRI of brain and pelvic-area). Although
the values of the region overlapping for the segmented objects of interests are shown
to be worse than those calculated utilising the original approaches, the differences
are negligible in the majority cases due to the fact that the variance of the RO’s
values can be introduced at the same level by the medical experts in data anno-
tating process. Similarly, the target registration error between manually selected
landmarks indicates good overall robustness of the parameterised algorithms.

4.3.2 Impact of the inverse consistency criterion

This section presents the results of the experiments performed to check the impact
on enforcing the inverse consistency criterion (ICC) during the registration process.
First, the results from the experiments evaluated in the controlled setup are shown.
Then, the experimental results obtained for the different real data sets are presented
and discussed.

Synthetic data

The most noticeable impact on enforcing the inverse consistency criterion is ob-
served for the harmonic energy. The HE is reduced for all consistent methods when
compared to other formulations.

Additionally, the consistent versions of the algorithms produce the deformation
fields that have the determinant of the Jacobian similar to the true determinant
of the Jacobian. In the same fashion, the consistent Newton’s iteration and the
consistent steepest-like method produce the deformation fields that are remarkable
similar to the expected ground truth data (for the Demon approach this difference
is negligible).

97



4.3. QUALITATIVE AND QUANTITATIVE COMPARISON

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.15: Results obtained for the CT lung data set using different types of the
steepest-like approach (Algorithm 1). The average values of the TRE for: (a) the
original, (b) with exponential update, (c) the log-domain, (d) the inverse consistent,
and for (e) the log-domain with symmetric warping. (f) The average TRE for the
different formulations after 100 iterations. The convergence of the average of: (g)
the SSDI between images, and (h) the HE.
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Figure 4.16: Results obtained for the CT lung data set using different types of the
Newton’s iteration approach (Algorithm 2). The average values of the TRE for:
(a) the original, (b) with exponential update, (c) the log-domain, (d) the inverse
consistent, and for (e) the log-domain with symmetric warping. (f) The average
TRE for the different formulations after 100 iterations. The convergence of the
average of: (g) the SSDI between images, and (h) the HE.
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Figure 4.17: Results obtained for the CT lung data set using different types of
the Demon approach (Algorithm 3). The average values of the TRE for: (a) the
original, (b) with exponential update, (c) the log-domain, (d) the inverse consistent,
and for (e) the log-domain with symmetric warping. (f) The average TRE for the
different formulations after 100 iterations. The convergence of the average of: (g)
the SSDI between images, and (h) the HE.
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Brain MRI data

The results of the carried out experiments are shown in Figure 4.11d for the con-
sistent Demon approach, in Figure 4.10d for the consistent Newton’s iteration ap-
proach, and in Figure 4.9d for the consistent steepest-like approach.

The SSDI between the registered images for all of the consistent image registra-
tion approaches is surprisingly small, about 1.0% worse than that for the original
versions of the algorithms. This can be explained by looking deeply at the way of
calculating the forces for the registration process. The gradient calculated for the
consistent image registration is similar to the symmetric gradient that was previously
reported as more efficient in the image registration [145].

The harmonic energy of the deformation fields estimated by the consistent image
registration is always smaller than those produced by any other formulations of the
image registration. For the Demon approach it is 8.5% better compared to the
original Demon, 4.0% better compared to the Demon with exponential update, and
7.0% better compared to the log-domain Demon.

The HE of the consistent Newton’s iteration approach is characterised by about
30% reduction in comparison to the original approach. Furthermore, the HE is also
better. Compared to the version with the exponential update and the log-domain,
they are about 15.8% and 16.7% better. The consistent steepest-like method reduces
theHE by 26.7% when compared to the original method, and 16.4% and 15.0% when
compared to the approach with the exponential update and the log-domain version.

The segmentation accuracy assessed by calculating the ROs of the particular
brain structure is on the average 0.4 worse than that for the original methods. For
the structure of the skin and the dura mater, the values of the RO were slightly
better for the consistent methods (except the consistent steepest-like method for the
skin where the performance is similar). This may suggest, that the structure that
are very thin and thereby very easy to be lost during the registration can potentially
benefit from the consistent formulation of the image registration.

From the medically-driven application side, it can be concluded that the consis-
tent image registration can provide very useful properties such as the significantly
improved smoothness of the estimated deformation fields, at a very small cost of re-
duced SSDI thereby increasing the accuracy of automatic labelling for some struc-
tures.

Pelvic-area data

The results of the experiments performed on the MRI pelvic-area data using the
consistent image registration are shown in the following figures: Figure 4.14d shows
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the results for the Demon approach, Figure 4.13d for the Newton’s iteration method,
and Figure 4.12d for the steepest-like method.

The SSDI achieved by the consistent Demon is about 5.7% better than the
SSDI achieved by the original Demon. For the Newton’s method and the steepest-
like method the SSDI achieved by the original versions is better than the SSDI of
the consistent approaches.

The harmonic energy is minimised significantly in all the approaches enforcing
the consistency during the registration. The most noticeable reduction is observed
for the consistent Newton’s iteration approach and it is 31.6% better compared to
the original version. The consistent Demon and the consistent steepest-like ap-
proach reduce the HE 21.5% and 19.0% with respect to their original versions. In
addition, all of the presented consistent algorithms produce better HE than their
diffeomorphic approaches using either the exponential update scheme or the log-
domain formulation.

Finally, the results of the segmentation accuracy through the evaluating of the
consistent image registration show the negligibly worst values of the RO for the
prostate (worse less than 0.5). Similarly, the RO of bladder is also worse for the
consistent approaches, but the maximum difference between the RO achieved using
the original and the consistent version of the algorithm is equal to 4.2% for the
steepest-like approach. For the Demon and the Newton’s iteration approach, the
RO is worse about 2.7% and 1.6% respectively.

Lung CT data

The results of the assessment conducted on the CT of lung for the consistent image
registration based on the Demon approach is shown in Figure 4.17d, on the Newton’s
iteration approach in Figure 4.16d and on the steepest-like approach in Figure 4.15d.

The SSDI achieved by the consistently formulated algorithms is better when
compared to their original versions. For the consistent Demon and the steepest-like
approach, the SSDI is reduced by 7.8% and 6.8% respectively when compared to
the original versions, whereas for the consistent Newton iteration method is almost
similar to the original method.

The harmonic energy of the deformation fields produced the consistent Demon
and Newton’s iteration approach is reduced by 8.5%, while for the steepest-like
approach it is minimised more notably up to 26.8% when compared to the original
versions.

The target registration error of the manually selected landmarks for the consis-
tent Demon approach and the consistent Newton’s iteration approach stays at the
same level of their original versions. For the consistent steepest-like method, the
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TRE is minimised to the level of 2.87mm that is about 0.1 less than that of the
original steepest-like method.

To sum up, the presented results strongly suggest, that the inverse consistency
criterion has the minor impact on the respiratory motion estimation process using
the CT volumes. Although, the SSDI between registered images is minimised and
the smoothness criterion is also reduced, the TRE does not change when compared
to the other formulations.

Observations on the consistent image registration

Ensuring the inverse consistency criterion during the registration process has dif-
ferent impacts on the various data. In general, the consistent image registration
framework produces better values of the SSDI between registered images thereby
it suggests better matching after registration. The improvement in terms of the
SSDI can be explained by comparing the gradients used for the image registra-
tion force calculation. The gradient for the consistent image registration is similar
to the symmetric gradient that was reported in the literature as more efficient for
the mono-modal registration [145]. Additionally, the registration with the inverse
consistency criterion minimisation, estimates the deformation fields that are more
smooth in terms of the HE. The reduction of the HE can be explained as a result
of performing the embedded procedure of averaging the forward and the backward
transformations to make them consistent. Both criteria the SSDI and the HE are
improved due to consistent registration, thus the results of either the segmentation
accuracy or the target registration errors are expected to be improved as well. Thus
far, the experimental evidence of this improved performance was found only in the
case of some brain structures. These structures such as the skin or the dura mater,
are very thin. The results achieved for the pelvic-area data or the lung data, may
indicate that the motion to be estimated is somehow not consistent. The respira-
tory motion is not diffeomorphic in the principles due to the slipping effect on the
lung boundaries [117]. On the other hand, the motion of the bladder is driven by
the edges of this organ, while the motion of the bladder context is induced by the
regularisation term, thus may not be adequate.

4.3.3 Impact of the symmetrisation of registration

The third set of experiments consists of utilising the three methods implemented in
the symmetric warping manner. Similar as the previous assessments, first the exper-
iments were conducted with the synthetically generated data, then the different real
data sets were used to quantify the performance of the aforementioned symmetric
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algorithms in the particular biomedical applications. In general, the deformation
fields estimated by utilising the image registration with the symmetric warping are
more accurate in terms of the distance to the ground truth deformation fields. Also
the distance to the true Jacobian is reduced (except the steepest-like method).

Synthetic data

The symmetrisation incorporated into the registration algorithms was found to pro-
vide many interesting observations when applied to the synthetic data.

Firstly, the image registration algorithms perform significantly better in terms
of the SSDI when compared to their original versions. The algorithms have also
faster convergence for this criterion. The harmonic energy (HE) of the image regis-
tration with the symmetric warping is always worse than in the case of the original
registration techniques. It is mostly due to double forces that register images in two
independent ways by providing more information into registration.

Brain MRI data

The results of the carried out experiments are shown in Figure 4.11e for the con-
sistent Demon approach, in Figure 4.10e for the consistent Newton’s iteration ap-
proach, and in Figure 4.9e for the consistent steepest-like approach.

The results obtained by the image registration with symmetric warping on the
MRI brain images are characterised by the significant minimisation of the SSDI

between registered images. The SSDI obtained by the symmetric Demon approach
is 26.5% better than in that case of the original Demon, for the symmetric Newton’s
iteration and the symmetric steepest-like approach the SSDI is reduced by 20.6%
and 12.7% when compared to the original methods.

Contrary to the other assessed approaches, the image registration with symmetric
warping increases the value of the harmonic energy. Thus, theHE for the symmetric
Demon is twice worse than that of the original Demon approach. The HE for the
symmetric version of the Newton’s and the steepest-like method is increased by
about 20% when compared to their original versions.

The image registration with symmetric warping increases on the average the
values of the ROs for the brain structures up to 4.0 for the symmetric Demon, to 2.2
for the Newton’s iteration method, and only about 1.1 for the symmetric steepest-
like method when compared to their original versions. The best improvements are
observed for the structure such as dura matter (17.2% for the Demon, 15.7% for the
Newton’s method, 11.3% for the steepest-like method), CSF (14.6% for the Demon,
8.8% for the Newton’s method, 6.2% for the steepest-like method), white mater
(12.8% for the Demon, 6.6% for the Newton’s method, 3.1% for the steepest-like
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method) and grey matter (10.7% for the Demon, 5.8% for the Newton’s method,
3.6% for the steepest-like method). These structures (except dura mater) occupy
the largest area of the brain.

The image registration with symmetric warping shows an improved performance
in terms of automatic labelling of the brain structures, thereby it can be considered
for the practical utilisation. Although the HE is significantly worse than that pro-
duced by any other approaches, the results suggest that it does not decrease overall
robustness of the symmetric framework.

Pelvic-area MRI data

The results of the experiments performed on the MRI pelvic-area data using the
image registration with symmetric warping are shown in the following figures: Figure
4.14e shows the results for the Demon approach, Figure 4.13e for the Newton’s
iteration method, and Figure 4.12e for the steepest-like method.

All the image registration algorithms with the symmetric warping reduce the
SSDI . The maximum reduction is gained by symmetric Demon approach and it is
21.3% better than that of the original version. For the symmetric Newton’s iteration
and the symmetric steepest-like method, the SSDI is better by about 9.1% and
4.5%, respectively.

The harmonic energy is increased for all methods. For the symmetric Demon
approach, the HE is twice worse than that of the original Demon. For the Newton’s
and the steepest-like method, the HE is worse only by 9.5% and 49.0%, respectively.

Although, there is a significant reduction of the SSDI between registered images,
the values of the RO for the prostate stays at the same level, while the RO for the
bladder is better by only about 3.7%, 2.0% and 0.5% for the Demon, the Newton’s
iteration and the steepest-like method when compared to their original versions.

The presented results suggest that the benefits of using the symmetric warping
approach for the MRI pelvic-area data is negligible.

Lung CT data

The results of the assessment conducted on the CT of lungs for the images registra-
tion with the warping based on the Demon approach is shown in Figure 4.17e, on
the Newton’s iteration approach in Figure 4.16e and on the steepest-like approach
in Figure 4.15e.

Similar to the previous cases, the image registration algorithms with the sym-
metric warping, produces the significantly better SSDI between registered images
than that of the originally proposed methods. The SSDI is better by about 16.3%,
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10.7%, and 10.8% for the symmetric version of the Demon, the Newton’s iteration
and the steepest-like method.

Also the harmonic energy has similar patterns. The HE is twice worse for the
symmetric Demon, whereas the symmetric Newton’s iteration and the steepest-like
method produce the deformation fields with the HE being 38.4% and 21.1% worse
than that of the original methods.

The distances between the manually selected landmarks for the Demon method
and the steepest-like method with symmetric warping stays at the same level as that
of the original methods, while for the Newton’s iteration method the TRE is slightly
worse (the TRE is worse by about 0.1mm). The differences are not significant.

Altogether, the symmetrisation of the image registration does not have the prac-
tical advantages on the respiratory motion estimation. Although, the SSDI between
registered images is reduced, it does not lead to further improvement of the land-
marks positions estimation.

Observations on the symmetrisation of the registration

The significant improvement of the image registration with symmetric warping in
terms of the SSDI is not surprising. Indeed, this registration takes the advantage
of the double forces to warp the moving image to the mean image and simultane-
ously the reference image to the same mean image. In addition, the increased HE
is somehow linked to this double forces by providing more deformation in every it-
eration. The final composition of two half-way velocity field (half-way deformation
fields) has a minor impact on the final velocity field (deformation field) [17].

The presented results of the image registration with symmetric warping show
symmetrisation improves the performance of the registration only in some cases.
The experimental evidence was found for the MRI brain data set, where some struc-
tures were better labelled than those by utilising either the original or diffeomorphic
algorithms. Further investigations on other data sets do not show similar improve-
ment of the image registration in terms of the RO of prostate or the TRE between
selected landmarks in the lungs. The results achieved for the pelvic-area do not con-
firm the statement from [53] where the symmetric image registration was claimed as
having better performance than the log-domain registration. The presented results
for the brain labelling are consistent with the results reported in [10], where regis-
tration with symmetric warping was shown as producing slightly better ROs of the
different areas of brain.
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4.3.4 Comparison of different image registration methods

Last assessment was devoted to compare the presented algorithms in their original
version. Thus, the conducted experiments show the positive and negative aspects of
the aforementioned algorithms thereby enabling selection of the most appropriate
in the particular applications.

Synthetic data

The results of the assessment of the algorithms evaluated on the synthetic data are
shown in Figure 4.18.

The Newton’s iteration approach offers the fastest convergence of the SSDI

between registered images. Only a few iterations are needed to be close to the final
solution. Although the Demon approach is slightly slower in terms of minimising the
SSDI , it overtakes the Newton’s iteration method after 18 iterations. The steepest-
like approach is the worst of the assessed method with twice higher error in terms
of the SSDI .

On the other hand, when SSD~ϕ between the estimated and the ground truth
deformation fields are taken into account, the Demon performance is the best. The
Demon algorithm estimates the most similar deformation field to the desired one.
On the opposite, the deformation field estimated by the steepest-like method has
an average error around 1.4 pixel size.

The harmonic energy (HE)of the estimated deformation fields differs signifi-
cantly between the presented methods. The smoothest transformations are esti-
mated using the Newton’s iteration approach. Due to quick convergence rate the
Newton’s iteration algorithm produces a worse value of the HE at the beginning
and then through the registration process, the HE is reduced. The HE of the
transformations estimated by the Demon approach is almost twice worse than that
of the Newton’s iteration approach. The reason of the significantly worse value of
the HE for the Demon approach can be possibly explained by the manner of the
regularisation incorporated into the method. The Gaussian filtering infers stronger
the local deformation than the regularisation directly embedded in the registration
process.

The fourth criterion of the assessment is the distance to the true Jacobian. The
best performance was achieved by the Demon approach, whereas the steepest-like
method performs the worst.
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(a) (b)

(c) (d)

Figure 4.18: Results obtained for the synthetic data set using different approaches.
The convergence of the average value of: (a) the SSDI between images, (b) the
SSD~ϕ between the estimated transformation and the ground truth transformation,
(c) the HE, and (d) the distance to the true Jacobian.
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method CSF GM WM Fat Muscle Skin
Average Region Overlapping

Demon 46.33 61.79 61.20 31.78 23.42 64.98
Newton 46.51 57.63 54.62 41.37 24.32 66.83
Steepest 42.55 54.36 51.37 37.81 22.82 65.49

Skull Vessels Around fat Dura mater Bone marrow
Average Region Overlapping

Demon 49.03 17.31 7.28 19.80 35.03
Newton 49.69 13.60 8.96 18.58 33.73
Steepest 46.05 11.30 8.22 17.02 31.36

Table 4.1: Average Region Overlapping values of the brain structures after 100
executed iterations for different image registration methods.

Brain MRI data

The results obtained for the brain images data set using different registration algo-
rithms in their originally proposed version show in general, good overall robustness
of the Demon and the Newton’s iteration approach. When SSDI between registered
images is considered as the criterion, the best alignment of images after 100 itera-
tions is found by the Newton iteration method (SSDI = 0.0024), and it is followed
by the Demon approach (SSDI = 0.0027). Although, the worse result is obtained
for the steepest-like method (SSDI = 0.0028), Figure 4.9g shows a trend for this
value to be minimised more iterations (reduction of SSDI between 50 and 100 iter-
ations is more than 12% ). Contrary to this, the reduction of SSDI between 50 and
100 iterations for the Demon and Newton’s iteration method (see in Figure 4.11g
and Figure 4.10g) is negligible (less than 1%).

The smoother transformation in terms of the harmonic energy is estimated using
the steepest-like method (HE=0.048), while the worst value of HE is achieved by
the Newton’s iteration method (HE=0.052) and the Demon approach (HE=0.049).

The methods in their original version were found to produce some transforma-
tions that do not preserve one-to-one correspondences. This was indicated by the
negative determinant of the Jacobian of the estimated transformation. Correspond-
ingly, the highest average values of the determinant of the Jacobian were obtained
using the Newton’s iteration and steepest-like method (above 5.0). The highest
average values of the determinant of the Jacobian calculated for transformations
estimated by the Demon approach was 2.65.

Table 4.1 shows the best results of the region overlapping for the structures of
brains for all evaluated methods. The results indicate that, there is no one best
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method to achieve the best alignment of all brain structures.
The Newton’s iteration method achieves better results in the thin areas with

higher values of the images intensity gradients (can be considered as edges) such
as skin, skull, fat (20% better than Demon) and areas around fat. The RO was
better for the Demon approach for the larger structures such as grey matter (7%
better than the Newton’s iteration method) or white matter (about 10% better than
the Newton’s iteration method) and remaining structures: vessels (20% better than
the Newton’s iteration method), dura mater and bone marrow. The steepest-like
method achieves the worst results in most cases. Although it is difficult to find
any general conclusions, it is worth to mention, that the Newton’s iteration method
that achieves the lowest error in terms of the SSDI between images, never provides
the lowest region overlapping for any structure. Moreover, the high values of the
maximum determinant of the Jacobian for the estimated transformations and the
high value of the smoothness term may indicate good properties of local registration
for small brain structures. On the other hand, the low values of the harmonic energy
and the maximum determinant of the Jacobian for the estimated transformations
may be well-suited for larger structures such grey matter (GM) or white matter
(WM).

In terms of speed of calculations, it seems that increasing the number of executed
iterations for the Demon and the Newton’s iteration algorithms above 50 iterations,
does not change significantly the results whereas the steepest-like method requires
at least twice more iterations to achieve comparable values of the chosen criteria.

Pelvic-area MRI data

This section describes the results obtained for the assessment using the MRI pelvic-
area data. Similar to the MRI data of brain, the best results in terms of the SSDI

between images used in registration was achieved by the Newton’s iteration method
(SSDI=0.00085). The SSDI for the Demon and steepest-like method is on average
about 0.00107 and 0.00106 respectively. When the convergence rate of reducing the
SSDI is taken into account, the Newton’s iteration and the Demon method does
not change it significantly after executing 50 iterations (the SSDI is reduced by
less than 1%), whereas the steepest-like method reduces the SSDI about 22% from
0.00127 to 0.00106.

The harmonic energy is the worst for the steepest-like and the Demon method
(HE=0.021 for both method), while for the Newton’s iteration approach it is 0.015.
Furthermore, the notable difference is observed, that in the case of the Newton’s
iteration method, the HE grows rapidly during first few iteration (Figure 4.13f) and
then is minimised gradually when more iterations of registration is performed.

110



4.3. QUALITATIVE AND QUANTITATIVE COMPARISON

method Prostate Bladder
Average Region Overlapping

Demon 84.01 70.37
Newton 83.95 72.53
Steepest 82.27 64,10

Table 4.2: Average Region Overlapping values of the pelvic-area structures after 100
executed iterations for different image registration methods.

Again, all methods produce transformations that have locally negative determi-
nant of the Jacobian. The highest average value of the determinant of the Jacobian
comes from the transformations estimated using the Newton’s iteration method
(3.16), while for the Demon and the steepest-like method it is averaged at 2.18 and
3.0 respectively.

The average values of the region overlapping for the prostate and bladder are
presented in Table 4.2. While, the differences between the results obtained for the
prostate are negligible (the best for the Demon at 84.01, and the worst for the
steepest-like method at 82.27), the ROs of the bladder are expressively different.
The highest value was gained by the Newton’s iteration method (RObl=72.53). The
worst result was produced by the steepest-like method with RObl=64.1 (it is about
11% less than that for the Newton’s iteration method, and about 9% less than that
for the Demon method).

In terms of speed of calculations, it seems that increasing the number of executed
iterations for the Demon and the Newton algorithms above 75 iterations, does not
change significantly the results whereas the steepest-like method requires at least
twice more iterations to achieve comparable values of the chosen criteria.

Lung CT data

The results of the CT lung comparison show that the Demon method achieves
the best value of the SSDI between registered images (SSDI for the Demon ap-
proach is 129.0�10�3). For the Newton’s iteration method the SSDI is slightly worse
and it is 135.0�10�3, whereas for the steepest-like method it is almost twice worse
(SSDI=241.0�10�3).

The harmonic energy is similar for the Demon and the steepest-like approach
(for the Demon it is 0.049, while for the steepest-like it is 0.048). The deformation
fields estimated by the Newton’s iteration method have twice better value and it is
0.021.

The results in terms of the SSDI somehow can be linked to the target registration
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error, where the Demon algorithm achieves the best performance with the result
equal to 1.87mm. The second method is the Newton’s iteration approach (also the
second one in terms of the SSDI) that produces the TRE at the level of 1.94mm.
The worst performance is from the steepest-like method and the TRE is equal to
2.97mm.

Observations

The presented results give a clear conclusion that the estimated transformations and
their characteristics are strongly dependent on the input data.

The assessment using the simulated data with already known ground truth de-
formation fields, suggests that the Demon approach is the most robust method. The
Demon approach achieves the best value of the SSDI between registered images,
the deformation fields estimated using this technique were the closest to the ground
truth data, and has the shortest distance to the true Jacobian. The Newton’s it-
eration approach was the quickest in convergence at the beginning in terms of the
SSDI . Other properties of the deformation fields estimated by the Newton’s iter-
ation method were worse when compared to the Demon method, but it has better
performance than the steepest-like method.

The results achieved by the Newton’s iteration method suggest that this method
performs better when the higher contrast data are to be registered such as MRI
of brains or MRI of pelvic-area organs utilised in this chapter. Whereas for the
data of lower quality such as CT of lungs, the results were slightly worse than those
produced by the Demon approach.

The results of the CT of lungs assessment are somehow consistent with the results
presented in other papers in comparison of the Demon method with the Newton’s
iteration method [21]. On the other hand, the results are opposite to the results
presented in [78], where the Newton’s iteration method was originally introduced.
The conclusion there suggested that the Newton’s iteration method performs better
in the radiotherapy applications when CT images are used.

The methods presented in [141, 43] produce the smaller TRE between manu-
ally selected landmarks when compared with the results presented in this chapter.
This can be explained by looking deeper into the methods proposed in these papers.
First, evaluation done by Vandemeulebroucke et al. [141] used the approach that
is specifically designed to register images coming from the respiratory cycles [116]
thereby the method is strictly application-oriented, thus performs better for this
particular data set. The results presented in [116] shows that the proposed registra-
tion method reduces distances between manually selected landmarks twice better
than that of the original Demon method. Secondly, the framework proposed in [43]
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uses not only the intensity information (involved in the similarity measure Sim)
but additionally incorporates the knowledge from the provided landmarks into the
registration process. Therefore, the registration described there, can benefit from
support of the landmarks as from a priori knowledge to produce more accurate
results.

4.3.5 Remarks on determining design parameters

Computational cost of the iteration

The results presented in the previous sections indicate that all presented methods
have different convergence rates thus the number of the iterations needed to estimate
the final transformation varies between them. Additionally, the presented methods
have also different computational effort related directly to the manner of calculating
the registration forces. In order to get the measures showing the differences in time
between these methods, the presented methods and their different formulations were
assessed also with respect to their computational cost. Each algorithm was run
with two-dimensional simulated data with fixed number of iteration without multi-
resolution implementation. The number of iteration was chosen to be equal to 5000.
The cost of one iteration of the original Demon was selected as the reference time
unit, and all other times were normalised with respect to this unit. The results
of this experiment is summarised in Table 4.3. The steepest-like approach is the
fastest algorithm whereas the Demon algorithm is the slowest approach. The reason
that the Demon algorithm is more than twice slower than the other two can be
explained by the way of introduced regularisation. Although, all methods calculate
the force that updates the deformation field, in the Demon algorithm, the additional
procedure of the Gaussian smoothing has to applied either for the update of the
deformation field, or to the deformation field, or to both of them.

The methods parameterised with the stationary velocity field either for the up-
date of the deformation field or the deformation field require at least twice more
time than the original methods. The increased time is due to calculating the expo-
nential mapping using the scale and squaring algorithm. The approaches utilising
the consistency criterion and the symmetrisation of the flow are the slowest due to
calculations of two gradients: gradient of the reference image and the gradient of the
warped moving image for the consistent image registration, or gradients of warped
input images as in the case of the image registration with symmetric warping.
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method Demon Newton Steepest
original 1.00 0.46 0.44
exponential 2.42 1.92 1.91
log-domain 2.26 1.74 1.37
consistent 4.11 3.34 3.23
symmetric 4.22 3.50 3.38

Table 4.3: Experimental results of the computational effort for the presented
method. The results are given with respect to computational cost of one Demon
iteration.

4.3.6 Validation of inverse deformation field estimation

This section presents the comparison results of the inverse deformation field meth-
ods. The method for inverting the deformation field are essential for some classes of
the consistent image registration [27, 63] and the image registration with symmetric
warping [155, 96].

Validation of the inverse deformation field estimation methods is conducted us-
ing the spatial deformation field calculated during the symmetric image registration.
The results of this registration towards the intermediate image Ih: ~ϕhb and ~ϕhf are
used as an input data for the methods inverting the deformation field. In the ex-
periments the Christensen’s (section 3.4.2, [27]), the proposed (section 3.4.2), and
Ashburner’s [7] methods were tested. For the Christensen’s and the proposed meth-
ods the iterations are terminated when they reach either the maximum iterations
number of 1000 or the desired distance threshold value of 0.001. For the proposed
method, parameter ρ (in Equation 3.67) was chosen to make the minimum value of
detpJp~fp~xqqq greater than 0.1. For the Ashburner’s method [7], its implementation
from the SPM library [41] was used in the experiments.

For the synthetic data, Figure 4.19 shows that the inverse deformation field pro-
duced by the proposed method (Figure 4.19f) is much smoother than that produced
by the Christensen’s method (Figure 4.19b), especially in the area where the Jaco-
bian determinant has large values (Figure 4.19e). In terms of the ICE values shown
in Figure 4.19c-d,g-h, although both methods have the maximum ICE value around
the middle of the image, the ICE maximum value produced by the Christensen’s
method is significantly higher. Furthermore, the mean value of ICE and the max-
imum value of maxICE, both calculated from all the pixel locations, computed
based on ~ϕhb/~ϕ�1

hb , and ~ϕhf/~ϕ�1
hf are also listed in the first rows of Table 4.4, where

both the mean ICE and maximum maxICE values for the Christensen’s method
are seen to be higher.

For the MRI volumetric images, the data set consist of five volumes, and image
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Inverse consistency error
~ϕhb and ~ϕ�1

hb max
Christensen Ashburner proposed method detpJq

(2D) Fig. 0.210 (38.5) - 0.158 (28.9) 2.1
(3D) Set 2 0.015 (0.65) 0.134 (4.67) 0.015 (0.65) 4.9
(3D) Set 3 0.016 (0.52) 0.150 (3.75) 0.015 (0.51) 5.9
(3D) Set 4 0.017 (2.56) 0.186 (5.45) 0.016 (0.76) 8.4
(3D) Set 5 0.021 (6.64) 0.261 (12.0) 0.020 (1.11) 12.0

~ϕhf and ~ϕ�1
hf max

Christensen Ashburner proposed method detpJq
(2D) Fig. 0.736 (49.0) - 0.004 (0.89) 14.9
(3D) Set 2 0.015 (0.49) 0.131 (4.76) 0.015 (0.49) 4.7
(3D) Set 3 0.016 (0.83) 0.147 (5.78) 0.016 (0.83) 4.3
(3D) Set 4 0.017 (1.10) 0.197 (10.3) 0.017 (1.09) 5.5
(3D) Set 5 0.021 (3.62) 0.296 (16.4) 0.021 (1.67) 8.0

Table 4.4: Comparison results for inverse deformation field estimation algorithms.
The mean of ICE, maximum of maxICE (in brackets), and maximum of detpJq
are shown for each algorithm and each test data. Both 2D synthetic data and real
3D MRI data, showing pelvic region, were used in the experiments.

registration was performed with respect to the first volume. The results of the
ICE values produced by the two commonly used methods [27, 7] and the proposed
method are tabulated in Table 4.4. From Table 4.4, it is seen that the maximum
value in the Jacobian determinant is increasing from set 2 to set 5 which correspond
to increasing organ shape changes between the images. In terms of performance,
Ashburner’s method is seen to be the worst with highest average and maximum
ICE values, the proposed method is seen to be the best with similar average and
maximum ICE values as those from Christensen’s method for small organ shape
deformation, and smallest average and maximum ICE values for the largest organ
shape deformation.

4.4 Summary

This chapter focused on presentation and discussion of the assessments results of
registration methods with the comprehensive list of utilised optimisation algorithms,
deformation field parameterisations and image registration formulations, introduced
and proposed in Chapter 3.

In term of the image registration optimisation, algorithms such as the Demon
approach, the Newton’s iteration method, and the steepest-like method were evalu-
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.19: Results of evaluation the inverting methods for the synthetic data:
(a) input deformation field, (b) inverse deformation field estimated using [27], (c)
ICE for ~ϕhf � ~ϕ�1

hf and (d) ICE for ~ϕ�1
hf � ~ϕhf using [27], (e) Jacobian of the input

transformation, (f) inverse deformation field estimated using the proposed method,
(g) ICE for ~ϕhf � ~ϕ�1

hf and (h) ICE for ~ϕ�1
hf � ~ϕhf using the proposed method.

ated. The obtained results suggest that the best performance was achieved by the
Demon and Newton’s iteration methods. In all cases, the steepest descent method
was the worst.

Moreover, various formulations of the image registration were assessed in terms of
the properties of estimated deformations fields and their usefulness in several practi-
cal applications such as brain structures labelling, pelvic-area organs and respiratory
cycle motion estimation. These formulations include the original version of the im-
age registration algorithms, and the formulations ensuring the diffeomorphism either
by the exponential update or by the log-domain parameterisation. These different
diffeomorphic formulations are shown to be versatile methods in the investigated ap-
plications. The different parameterisations of the displacement field have been found
to have minor impact on the overall performance of the presented image registration
algorithms. Although, the accomplished experiments show a slightly decreased ac-
curacy for the segmentation using the estimated deformation fields, the smoothness
properties of these transformations that are desirable in some applications (e.g. the
brain images labelling) are remarkably improved.

The obtained results show also that the consistent image registration algorithms
are somehow the best choice for the used data sets. They offer the good performance
in terms of the RO for the segmented structures (or the TRE in the case of the
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manually selected landmarks assessment) that is only slightly worse than in the case
of the original versions and furthermore for some specific structures better than for
the original versions e.g. skin and dura mater. Although, the smoothness properties
of the estimated deformation fields are improved, these have been expected from the
way how the consistent image registration is defined by introduction of the additional
averaging procedure of the forward and the backward transformations.

Finally the image registration with symmetric warping of the input images was
assessed. The results obtained for brain data set labelling indicate improved perfor-
mance of terms of the RO. Other applications investigated in this chapter do not
benefit significantly from the symmetrisation of image registration.

This chapter also presented results for the assessment of a new method for es-
timation of the inverse deformation field proposed in Chapter 3.4.2. Using the
maximum value of the Jacobian determinant, maxpdetpJqq, as an indicator of the
level of deformation, the performance of the Christensen’s method is seen to deteri-
orate strongly with maxpdetpJqq exceeding 6, whereas the proposed method is able
to handle large deformation with maxpdetpJqq significantly greater than 6.

All in all, the presented results show advantage of using diffeomorphic approaches
established in the consistent framework. In addition, a minor impact of the station-
ary velocity field parameterisation was found when the quantitative measures were
evaluated.
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Chapter 5

Group-wise image registration

This chapter describes an implicit reference group-wise image registration that
jointly estimates the correspondences between a group (set) of images/volumes taken
from different subjects. It can be seen as an extension to the pairwise image regis-
tration with symmetric warping described in Section 3.4. By simultaneous indirect
estimation of transformations between images from a set to the hidden group av-
erage, firstly, the bias associated with the reference image chosen is alleviated, and
secondly the mean intensity image is generated (an intensity atlas). Due to the
adapted log-domain parameterisation of the deformation fields, the presented log-
domain implicit reference group-wise image registration produces the set of the dif-
feomorphic transformations, that can be further used for vectorial statistical analysis
of the between-subject variability.

In this chapter a brief overview of the inter-subject spatial normalisation is first
presented to show the importance of the group-wise image registration techniques
in the different areas of biomedical image analysis (Section 5.1). Then, the concept
of the implicit reference group-wise image registration framework is introduced and
its log-domain parameterised version is proposed (Section 5.2). Section 5.3 presents
optimisation schemes to solve the mentioned group-wise registration problem. Fi-
nally, in Section 5.4 two annotated data sets (MRI images of pelvic area and brain)
were used to evaluate the performance of the proposed framework.

5.1 Introduction

The pairwise image registration techniques were described as approaches that en-
able the establishment of the correspondences between the reference image and the
moving image, while the group-wise image registration algorithms aim at spatial
normalisation among groups (sets) of images (not necessarily belonging to the same
subject). Thus, a wide variety of group-wise image registration approaches have been
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studied in recent years that have been addressing the most important objectives of
medical image analysis. From several of the recently investigated applications, the
increasing number of works has been particularly undertaken in specific areas in-
cluding brain analysis based on structural and functional images [42], brain atlas
formation [46, 9, 132, 28, 153], building shape models of the brain [33, 113, 114],
building motion models of the myocardium [22] and organs in the pelvic-area [125],
and longitudinal tracking of disease progression [66, 67].

Historically, the first attempt of the spatial normalisation sets of images was
done utilising the pairwise registration with the reference image selected entirely.
In the simplest case, one image from this group can be chosen as a reference image
and the remaining images are registered to it by multiple evaluation of the pairwise
image registration. In [125], patient-specific inter-fractional abdomen organs and
adjacent organs’ deformations were modelled utilising results obtained from multiple
registration of several CTs taken during the treatment to the CT used for planning.
In a similar fashion, when a patient disease record is represented by a time series of
images that was taken over his/her longitudinal progression of disease, the within-
subject anatomical changes over this time can be straightway addressed [66, 67].
Although of the simplicity of these approaches, they were highly limited to between-
subject registration due to the bias introduced by the selection of the reference
image. In addition, choosing the outlying reference image can lead to generating
the common image space (given by a selected image), that is not adequate to the
group of images.

To overcome the aforementioned problems related to the group-wise registration
with the selected reference image, methods with an iterative updating manner of
the selected reference image were proposed [46, 64, 28]. The approach proposed by
Guimond et al. [46] produces first the intensity average of images obtained from
pairwise image registration to the chosen reference image, and afterwards warp this
average by the average of the deformation fields in order to generate the mean
image (and therefore, the common image space). Some kind of simplification of the
method mentioned above has been proposed by Christensen et al. [28] where only
the selected reference image is updated by the transformations average to synthesise
the mean image. Regardless of the updating process, the selection of the reference
image is still noticeable. In the method proposed by Joshi et al. [64], the reference
image is constructed iteratively by averaging intensity of group of images, using the
transformation estimated from registration of the images to the temporary available
average. Although, the main issue with the reference image selection is solved in this
approach, the method itself has some drawbacks. Its main limitation is the averaging
procedure, which gives very fuzzy average image especially at the beginning of the
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registration. This may lead to several difficulties such as slow convergence of the
group-wise registration, degeneration of the anatomical details, and the problem
with establishing reliable correspondences between sharp images and the blurred
average image (detailed discussion is presented in [153]).

To state the group-wise image registration from another perspective, the defini-
tion of the group-wise image registration can be linked to the symmetric pairwise
image registration, where a mean of two images is somehow generated as an addi-
tional result of the minimisation of the similarity criterion between the input images
with an additional regularisation term (presented in Section 3.4). Indeed, this mean
image can be then seen as a reference image for the common image space of two
input images, due to finding the correspondences between the input images and this
mean, and eliminating of the bias according to the reference image selection. In the
similar manner, minimisation of the similarity measure between each pair of images
in the given sets, leads to the simultaneous estimation of multiple transformations
mapping each image to a hidden (implicit) common reference image. The method-
ology, in which selection of the reference image is entirely omitted, provides superior
transformations in terms of the within-group variance after registration, and avoids
the bias associated with the reference image chosen [42]. Methods that utilised the
framework described above can assume either a large deformation model [64], or
a small deformation linear elastic model [42]. Meanwhile, in most cases the linear
average of deformations is calculated. However, it was shown in [9], that linear av-
eraging of the deformation fields does not necessary preserve the large deformation
model, and should be replaced by the geodesic averaging.

In this chapter, the log-domain parameterisation of the deformation fields will be
considered using the optimisation frameworks discussed in Section 3.1. This param-
eterisation tackles the problem of the average calculation via the principal logarithm
of the diffeomorphic deformation fields and allows the Euclidean operations to be
performed on them. Furthermore, the log-domain parameterisation ensures that the
estimated transformations maintain the one-to-one mappings properties.

5.2 Log-domain group-wise registration

During this chapter, the group-wise image registration will be considered for the
given set (group) of the input images I denoted by:

I � tIk : Ω Ñ R,Ω � Rd, k � 1, . . . , Ku (5.1)
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where: d denotes a spatial dimension of image and K is the number of images in
the group. Having the set of images I, the main aim of the deformable group-wise
image registration is to estimate the optimal, in some sense, set of transformations
ϕ̃opt:

ϕ̃opt � t~ϕoptk : Ω Ñ Rd,Ω � Rd, k � 1, . . . , Ku (5.2)

warping the images taken from I to a common space image Icom:

Icom � Ik � ~ϕk � Ikp~ϕkq (5.3)

In general, the problem of finding a set of the optimal displacement fields ũopt

can be formulated as an optimisation problem:

ũopt � arg min
ũ

ε pũ; Iq (5.4)

When Icom is entirely given either by the selection of one image from the given
group [46, 28] or via the intensity average calculation of all images in the set [64],
the process of estimating the set of transformations is called the reference-based
group-wise registration and the objective function εpũq can be defined as:

εpũq �
¸
k�1

»
Ω
SimpIcomp~xq, Ikp~x� ~ukp~xqqqdx� α

¸
k�1

»
Ω
Regp~ukp~xqqdx (5.5)

Similarly, the implicit reference group-wise image registration problem [42] can be
stated as an estimation of the set of the transformations from each image Ik in
the group I to an unknown common space image Icom. Thereby the estimation is
considered as minimising the sum of the similarity measures and the regularisation
terms between each pair of deformed images as follows:

εpũq �
¸
k�1

¸
l�1
k�l

»
Ω
SimpIkp~x� ~ukp~xqq, Ilp~x� ~ulp~uqqqdx

�α
¸
k�1

»
Ω
Regp~ukp~xqqdx (5.6)

In contrast to Equation 5.5 where Icom was directly involved in registration
process and explicitly generated in each step of the registration, in the implicit
reference group-wise registration given by Equation 5.6, Icom is generated as an
additional result of establishing the unknown common space. In particular, when a
similarity criterion Sim is the sum of the squared differences (defined by Equation
2.8), and the linear elastic regularisation term (Equation 2.18) is used, the objective
function is similar as that proposed in [42].
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Indeed, the objective function presented in Equation 5.6 provides a well-posed
framework for the implicit reference group-wise image registration. Similarly as
the case of the pair-wise image registration (presented in Chapter 2) the estimated
displacement fields ũ may not be diffeomorphic. Although, the diffeomorphic ap-
proaches can be somehow easily introduced by the above formulation, the averaging
procedure of the deformation fields can lead to producing a non-diffeomorphic aver-
age deformation field [4]. Additionally, it was shown that for the large deformation
motion model, the linear averaging of the deformation field is not valid [9].

For this purpose, it seems that the parameterisation using the log-Euclidean
space [4] is the appropriate framework, addressing the aforementioned problems.
This parameterisation enables the Euclidean operations to be performed on the
principal logarithm of the deformation field.

Similarly as in the case of the log-domain pairwise image registration (chapter
3.2), the set of the displacement fields ũ is parameterised by the set of the stationary
velocity fields ṽ denoted by:

ũ � texpp~vkq, k � 1, . . . , Ku (5.7)

and the log-domain implicit reference group-wise diffeomorphic image registration
is now defined as:

εpṽq �
¸
k�1

¸
l�1
k�l

»
Ω
SimpIkp~x� expp~vkp~xqqq, Ilp~x� expp~vlp~xqqqqdx

�α
¸
k�1

»
Ω
Regp~vkp~xqqdx (5.8)

The efficient algorithm of calculating exponential mapping expp~vkp~xqq was sum-
marised in Algorithm 4 in Chapter 3 (originally proposed in [4]). In contrast to
Equation 5.6 where optimisation is performed with respect to the set of the dis-
placements ũ, the optimisation described by Equation 5.8 is done for the set of the
velocity fields ṽ. The optimisation of the objective function given by Equation 5.8
can be performed using different methods.

The set of transformations ϕ̃ estimated during the implicit reference group-wise
image registration links the images in the group I to the common reference image
Icom. Therefore, the transformation ~ϕk,l between images Ik and Il (k � l) can be
estimated as a composition of the transformation ~ϕk,com and the inverse transfor-
mation of ~ϕl,com:

~ϕk,l � ~ϕk,com � ~ϕ�1
l,com (5.9)

Due to the stationary velocity field parameterisation in the log-domain, the inverse
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of the transformation ~ϕl,com can be obtained at almost no computation cost by a
backward integration of the velocity field ~vl.

~ϕk,l � expp~vkq � expp�~vlq (5.10)

Another way of calculating the transformation ~ϕk,l between images Ik and Il (k � l)
is to take advantage of the Baker-Campbell-Hausdorff (BCH) formula for the velocity
field concatenation (described in details in Section 3.2.3) [17]:

~ϕk,l � exp pBCH r~vk,�~vlsq (5.11)

5.3 Solution schemes

The objective function of the group-wise image registration defined by Equation 5.8
can be solved using different methods. Similarly, as it was done for the pairwise
image registration, three image registration forces can be introduced.

From the fact that the symmetric image registration can be seen as an implicit
reference image registration, with only two input images, the minimisation process
of Equation 5.8 is similar to the methods presented in Section 3.4. In this case,
three commonly used forces have been reformulated to enable them to be used in
the implicit reference group-wise image registration: the steepest gradient approach
[56, 57, 24] symmetric force defined as:

~dv
i

klp~xq � pIϕ
i�1
k

k p~xq � I
ϕi�1

l
l p~xqqp∇Iϕ

i�1
k

k p~xq �∇Iϕ
i�1
l

l p~xqq (5.12)

the Newton’s iteration approach force [78, 97] defined in the symmetric way:

~dv
i

klp~xq �
pIϕ

i�1
k

k p~xq � I
ϕi�1

l
l p~xqqp∇Iϕ

i�1
k

k p~xq �∇Iϕ
i�1
l

l p~xqq
}∇Iϕ

i�1
k

k p~xq �∇Iϕ
i�1
l

l p~xq}2 � λ
(5.13)

and the Demon force [145] used in the symmetric manner [155, 96] in the following
way:

~dv
i

klp~xq �
pIϕ

i�1
k

k p~xq � I
ϕi�1

l
l p~xqqp∇Iϕ

i�1
k

k p~xq �∇Iϕ
i�1
l

l p~xqq
}∇Iϕ

i�1
k

k p~xq �∇Iϕ
i�1
l

l p~xq}2 � pIϕ
i�1
k

k p~xq � I
ϕi�1

l
l p~xqq2

(5.14)

where I
ϕi�1

k
k p~xq � Inek pϕi�1

k p~xqq, Iϕ
i�1
l

l p~xq � Inel pϕi�1
l p~xqq are warped images and

∇Iϕ
i�1
k

k p~xq, ∇Iϕ
i�1
l

l p~xq are gradients of those images, and i is an iteration index.
Although, according to Equation 3.41 the log-Euclidean mean requires calculat-
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ing the logarithm, which is reported to be a time-consuming process [4, 17], the
proposed symmetric forces are assumed to be represented in the log-domain space.
In consequence, the principal logarithm of transformation is produced as an output
of image registration and therefore the logarithm is not calculated directly. The
average update of the velocity field is calculated using the log-Euclidean mean for
vector fields ~dv

i

kl given by (according to Equation 3.41):

~dv
i

kp~xq �
1
K

¸
l

p ~dviklp~xqq (5.15)

Finally, the deformation field ~ui�1
k p~xq for the steepest descent approach and the

Newton’s iteration approach is calculated via exponential mapping for the updated
velocity field under the BCH formula [17, 144]:

~vi�1
k p~xq � BCH

�
~vikp~xq, ~dv

i

kp~xq
�

(5.16)

while for the Demon approach the additional smoothing by the low-pass Gaussian
filter pGfluid�q is applied to the ~dv

i

kp~xq resulting in:

~vi�1
k p~xq � BCH

�
~vikp~xq, Gfluid � p ~dvikp~xqq

�
(5.17)

The resulting implicit reference group-wise image registration with the symmetric
Demon force is summarised in Algorithm 10. The steepest descent symmetric force
(Equation 5.12) and the Newton iteration approach force (Equation 5.13) can be
put in place of line 5 and then the smoothing procedure can be omitted (lines 8 and
10).

As an additional result of performing the implicit reference group-wise image
registration, the common space reference image can be generated by averaging the
intensity of all images after registration:

Icomp~xq � 1
K

¸
k

Ikp~ϕkp~xqq (5.18)

The sample images of common space reference image Icom estimated using different
data sets are presented in the following figures. Results are shown in Figure 5.1e-
h for the illustrative example data set, in Figure 5.2 for the pelvic-area MRIs, in
Figure 5.4 for the brain data set, and in Figure 7.2 (Chapter 7) for the 2D neutral
face expression training set.
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Algorithm 10 Log-domain implicit reference group-wise image registration based
on the symmetric Demon force

Input: Set of the images I
Parameters: Gfluid, Gdiff

Output: Set of velocity fields ṽ

1: ṽ0 Ð 0, i=1
2: repeat

3: for k � 1 to K do

4: for l � 1 to K and l � k do

5: Calculate update velocity field ~dv
i

kl according to
Equation 5.17

6: end for

7: Calculate average of updates ~dv
i

k according to
Equation 5.15

8: Smooth average velocity field update using Gaussian filter Gfluid:
~dv
i

k � Gfluid � p ~dvikq
9: Update velocity field ~vi�1

k according to
Equation 5.17

10: Smooth velocity field using Gaussian filter Gdiff :
~vi�1
k � Gdiff � ~vi�1

k

11: end for

12: i = i+1;
13: until (velocity fields ṽ do not change) or (i¡ maxIteration)
14: return ṽ

5.4 Evaluation

The evaluation of the proposed parameterisation of the implicit reference group-wise
image registration was done using four types of the data: the synthetic shapes [42],
the MRI data of pelvic-area, the MRI data of the brain [8], and two-dimensional data
set of static face images [157]. The quantitative assessment of the image registration
performance was carried out by performing the several known validation criteria.

5.4.1 Evaluation criteria

The quantitative performance of group-wise registration includes the Intensity Vari-
ance (IV ) criterion [127]. The intensity variance measures the similarity of the
group of images (population) based on the pixel intensity differences. The IV is

125



5.4. EVALUATION

computed in the following way:

IV p~xq � 1
K � 1

Ķ

k

pIkpϕkp~xqq � Icomp~xqq2 (5.19)

where Icom is given by Equation 5.18. The perfect group-wise registration results for
images of the same modality should be characterised with minimum pixel intensity
differences between registered images.

The Region Overlapping between two organs of interest (or structures from or-
gans) from the group of images (ROp

kl) is calculated using the definition given by
Equation 4.10 for pairwise registration. The ROp

kl is stated as follows:

ROp
kl �

numberOfV oxelspPk X Plp~ϕl,kqq
numberOfV oxelspPk Y Plp~ϕl,kqq (5.20)

where Pk is an organ segmented in image Ik, Plp ~ϕl,kq is the same organ segmented
in image I l warped by transformation ~ϕl,k, and p is a label index describing an
evaluated organ P . Transformation ~ϕl,k is obtained by the concatenation of the
velocity fields (following Equation 5.11). For any group of images, the Average
Region Overlapping (ARO) with respect to the common reference image that can
be calculated in the following way:

AROp
R �

1
K � pK � 1q

¸
l�1
k�l

¸
k

numberOfV oxelspPkp~ϕkq X Plp~ϕlqq
numberOfV oxelspPkp~ϕkq Y Plp~ϕlqq (5.21)

When the group-wise image registration with selected reference image Ik is evalu-
ated, the AROp is simplified as follows:

AROp
k �

1
K � 1

¸
l�1
k�l

ROp
kl (5.22)

where the transformation ~ϕl,k used in ROp
kl is obtained by the direct estimation

using the pairwise image registration.

5.4.2 Evaluation examples

Illustrative example data set evaluation

A data set of four two-dimensional images of size of 256x256 that consists of a circle
(Figure 5.1a), two ellipses (Figures 5.1b-c), and a square (Figure 5.1d) was used to
show that the estimated transformations deform each shape present in the data set
to common shape - mean shape. The input images are shown in Figure 5.1a-d, while
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the input images mapped to the implicit common space are shown in Figure 5.1e-
h. Figures 5.1i-l show the estimated deformation fields mapping the input images
to the common shape space. The results show that the implicit reference group-
wise image registration brings each of the input shapes to the common shape of
all input shapes, and all warped shapes are similar to the average of them - mean
shape. Visualisation of the IV before and after performing the registration (Figures
5.1o-m) also shows the significant reduction of the IV after registration.

Inter-patient data examples evaluation

A data set of pelvic-area MRI data was used for evaluation of the log-domain im-
plicit group-wise image registration. It consists of five volumes taken from different
subjects. The average of these volumes before registration is shown in Figure 5.2a.
The intensity variance of volumes before registration is shown in Figure 5.2b. After
performing the registration, both the average of the volumes and the intensity vari-
ance are significantly improved. Figure 5.2c shows the mean intensity volume after
registration and Figure 5.2d shows the intensity variance after registration. The IV
after registration is noticeably lower than that before registration. The relatively
high value of the IV on the body boundaries results from differences in the MRI
data acquisition for different subjects (the example is shown in Figure 5.3).

The Average Region Overlapping (ARO) calculated between the segmented or-
gans before registration and after registration indicate that organs registered us-
ing the log-domain implicit group-wise registration have good overlap in the com-
mon space. The ARO for prostate before registration is 17.72�10.62, for rectum is
25.28�15.08, whereas for bladder is 34.64�5.91. The ARO for prostate after regis-
tration is 55.79�7.69, for rectum is 61.63�4.28, and for bladder is 62.68�4.92. The
aforementioned results are worse that the results shown in Table 4.2 (Chapter 4)
for the pelvic-area organs. Reasons for that inconsistencies are the following. First
of all, in the previous example the ARO was calculated for data acquired for the
same patient, so the between-subjects anatomical differences are not present in the
data set, and the registration has an easier problem to solve. Secondly, the ARO in
Table 4.2 is expected to be higher since the ARO is calculated in the specific patient
space for the data of this particular patient.

Brain images labelling

A data set of MRI brain data was used for evaluation of the log-domain implicit
group-wise image registration. It consists of ten volumes taken from different sub-
jects [8]. The average of those volumes before registration is shown in Figure 5.4a.
The intensity variance of volumes before registration is shown in Figure 5.4b. After
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n)

Figure 5.1: Results of performing the log-domain implicit group-wise registration for
the illustrative data set evaluation based on the Demon force: (a)-(d) input images;
(e)-(h) input images warped into common space; (i)-(l) estimated deformation fields
warping the regular grid; (m) IV before registration, (n) IV after registration.
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(a) (b)

(c) (d)

Figure 5.2: Results of performing the log-domain implicit group-wise registration
for the MRI pelvic-area data set evaluation based on the Demon force: (a) average
of the input volumes; (b) IV before registration; (c) average of the input volumes
after performing registration; (d) IV after registration.
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Figure 5.3: Example of inconsistency in the MRI data acquisition. Two axial slices
of the MRI pelvic-area data coming from different subjects.

CSF GM WM Fat Muscle Skin
Average Relative Overlapping

before 23.61 45.96 44.92 7.93 9.10 40.85
after 52.73 71.60 71.69 28.67 23.38 67.19

Skull Vessels Around fat Dura matter Bone marrow
Average Relative Overlapping

before 25.94 5.95 2.13 8.02 14.29
after 55.76 21.60 6.18 22.61 31.93

Table 5.1: Average Region Overlapping (ARO) values of the brain structures after
log-domain implicit group-wise image registration.

performing the group-wise registration, both the average of the volumes and the in-
tensity variance are visually improved. Figure 5.4c shows the mean intensity volume
after registration and Figure 5.4d shows the intensity variance after registration.

The segmentation results through the warping labels are summarised in Table
5.1. The results suggest that the log-domain implicit group-wise registration es-
timates the transformations that map the input volumes into the common space.
The values of the Average Region Overlapping for all segmented structures were im-
proved. When these results are compared with the results obtained for the pairwise
image registration assessment (Table 4.1) that can be considered as the group-wise
image registration with directly selected reference image, the implicit group-wise
registration produces slightly better results in most cases. The improved perfor-
mance is noticeable for larger structures such as white matter and grey matter, and
it is about 10%.
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(a) (b)

(c) (d)

Figure 5.4: Results of performing the log-domain implicit group-wise registration
for the MRI brain data set evaluation based on the Demon force: (a) average of the
input volumes; (b) IV before registration; (c) average of the input volumes after
performing registration; (d) IV after registration.
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5.5 Summary

The concept and the implementation details of the diffeomorphic implicit group-
wise image registration taking the advantage of the parameterisation of deformation
fields via stationary velocity fields were presented in this chapter.

The proposed method of mean image estimation is motivated by the method
proposed by Geng et al. [42] where Equation 5.6 is solved by the parametrisation
of the displacement fields using the three-dimensional Fourier series and estimated
by the gradient descent algorithm. The details of this representation and the so-
lution scheme can be found in [27]. In contrast to this method, in the proposed
method the transformations are parameterised by the stationary velocity fields and
all operations on them are performed in the log-Euclidean domain to ensure diffeo-
morphism. Furthermore, the utilisation of the velocity fields provides a feasible way
of computation of the inverse transformation ~ϕ�1

i while the method proposed in [42]
requires an additional step of calculation of the inverse transformation (described in
[27]). The results of performing the proposed group-wise registration method can
be directly used for calculation of the vectorial statistics.

Finally, the computational complexity of the presented approach is approxi-
mately linear with respect to the number of input images, since the number of
the transformations to be estimated equals exactly the number of input images.
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Chapter 6

Statistical modelling of 4D
deformations using diffeomorphic
image registration

This chapter describes a new model based technique for estimation of a dense de-
formation field utilising an implicit representation of shape changes. Unlike existing
methods based on the Point Distribution Model (PDM), the proposed method is
not effected by an incorrect point correspondence which is a major limiting factor
in practical applications of the PDM with clinical data. The proposed method uses
regression between parametric representations of organ’s shapes and corresponding
dense displacement field parameterised by the stationary vector field. The regression
function is estimated based on training data with an inverse-consistent estimation
of the velocity field, established in the log-Euclidean diffeomorphic formulation. To
enable calculation of the inter-subject statistics, the mean shape of the patients in
the training data set is built, and the estimated intra-subject transformations are
mapped into the common patient space. The evaluation of the proposed method
is carried out on MRI prostate imaging examples with synthetic deformation fields
to provide systematic experimental evidence of correctness of the implicit shape
representation for shape-driven prediction of the deformation field. Additionally,
real MRI data are used to show accuracy in terms of the deformation field predic-
tion thereby the prostate position. The results show an increased robustness of the
proposed framework in comparison to the PDM approaches and demonstrate the
potential of its application to the Adaptive Radiotherapy (ART) of prostate.
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6.1 Introduction

Deformation modelling is an essential tool for improving accuracy and robustness
of image segmentation [160, 161] and registration [3] especially when data are of
very poor quality; very noisy and/or partially missing. For example, with such data
traditional registration methods, aiming at estimation of the dense deformation
field, can not be directly applied as the similarity measure for assessing the quality
of the estimated deformation can not be reliably computed. In such cases a partial
information, delivered by a surrogate somehow linked to the tissue deformations,
is often used instead. A surrogate is generally defined as a measurement which is
affected by the deforming tissue and which can be used to indirectly infer the tissue
deformation. Although some efforts have been recently undertaken to improve the
surrogate-based image registration and segmentation, it still remains a challenging
problem particularly when it is to be applied as a part of a clinical procedure.
Such approach requires an appropriate surrogate which suitably represents tissue
deformations and in the same time it is easy to extract from often severely corrupted
data. Currently, such surrogates are most often defined by a set of points.

In [93] an online system is described for simultaneous compensation of laparo-
scopic camera motion and periodic, respiration induced, deformation of tissue in the
abdominal region based on a measurement of liver surface represented by a small
number of points. Some other implementations of this methodology used in a 4D
image-guided radiation therapy of lungs, use the most superior point of diaphragm’s
position along the longitudinal axis [159], or a whole lung region segmented from
CT [75, 73], cone-beam CT [74], which was represented using a standard PDM with
a fixed number of points selected from segmented shape contour. Recently, the
boundary correspondences established across the different prostate shapes using the
deformable shape models were utilised in the fast method of the deformation field
estimation for non-boundary regions of prostate [123, 124].

Similarly, the methods of modelling organ deformation and correlated motion
of adjacent structures were applied to data sets of prostate, bladder and rectum
in [125]. The contours of organs of interest were delineated by the same physi-
cian for each CT data. Then, the set of corresponding points forming the shape
surface of each organ was generated based on a biomechanical model of tissue and
represented using the major modes of the Principal Component Analysis. The eval-
uated experiments indicated that the individual variation of measured organs can
be characterised by few dominant eigenvectors, thereby it can assist adaptive radio-
therapy planning. The shape variability of rectum and bladder with applications
to radiotherapy planning and delivery was also considered in [102], where the sta-
tistical deformation model was built on parameters of spherical harmonics used to
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represent organs surface with surrogates defined by a very small number of points
interactively selected by an operator. The population model of the prostate shape
was generated by the method proposed in [123, 124] where the thin-plate model
algorithm was used to register the patient CT images and deformable shape model
to segment and establish the correspondences between boundary points among the
training data set.

All the methods mentioned above require to estimate correspondence between
points detected in images representing different deformation phases. Although this
can be relatively reliably achieved during the model training phase by careful time
consuming, often manual selection of corresponding points, such task is prone to
occurrence of gross errors during the model evaluation where often near real time
performance is required. It will be shown, later in this chapter, that such correspon-
dence errors significantly affect the accuracy of the estimated deformation field. To
avoid problems associated with the point correspondence it is proposed here to use
an implicit shape representation for shape description. The implicit shape represen-
tation was considered and successfully utilised for segmentation of medical images
containing known types of objects [140], and also in a global alignment and local
registration of shapes [62]. In both cases, this representation solves difficulties by
finding correspondences.

Whereas the intra-subject motion model can be easily generated utilising mul-
tiple registration between acquired volumes representing different phases of organs’
motion [125, 159], the inter-subject motion model that is built in a similar manner,
is biased towards the chosen reference image. Therefore, a mean reference subject
has to be estimated first and then the common subject space can be established [42].
Moreover, in many recent approaches ([159, 73, 74, 123, 124]), the statistical models
of the deformation fields were obtained by directly applying the PCA to the defor-
mation fields (or B-spline parameterisation [114]). Although these approaches were
to some extent successful in particular applications, this motion model has some
disadvantages. The most important is that such eigenvectors do not form a vector
space of valid deformation fields (e.g. diffeomorphism is not guaranteed to be pre-
served). Here, the log-Euclidean framework [4, 17, 144] is applied to parameterise
non-linear diffeomorphic deformation fields.

The main contribution of this chapter is a novel approach to dense deformation
field estimation. The proposed method uses the implicit surfaces to represent the
shape of bladder and rectum. The presented results show the advantages of this
shape descriptor in comparison to PDM. Moreover, the common subject space that
is essential for the presented method, is established in the log-Euclidean framework
by performing the implicit group-wise registration. The results obtained for the sim-

135



6.2. INTER-SUBJECT MOTION MODEL

ulated and real MRI data are shown to demonstrate the plausibility of the described
prediction system.

6.2 Inter-subject motion model

In the proposed approach, each subject k : k � 1, . . . , K is described by a set of
n-dimensional images Ik � tIkl : Ω � Rn Ñ R, l � 0, . . . , Lku. A transformation
~ϕ0l : Ω Ñ Ω that warps image Ikl to image Ik0 , is represented by a stationary velocity
field ~vk0l, related to a diffeomorphic displacement field ~uk0l through the exponential
mapping ~ϕk0lp~xq � ~x� ~uk0lp~xq � ~x� expp~vk0lp~xqq [4, 144].

Calculating the velocity fields for each set of patient images can only provide
a patient specific motion model. In order to obtain the general motion model, the
common subject space have to be established. To avoid possible bias due to selecting
a particular reference image, the implicit group-wise image registration was proposed
in [42]. Contrary to the original method, to maintain diffeomorphic consistency in
this work, the displacement fields are parametrised via stationary velocity fields.
The energy function εpṽq is given in Equation 6.1 where Sim is a similarity measure
and Reg is a regularisation term [144], and the Demon-like approach is used to
minimise it.

εpṽq �
Ķ

k1�1

Ķ

k2�1
k1�k2

SimpIk1
0 pexpp~vk1

0 qq, Ik2
0 pexpp~vk2

0 qqq � α
Ķ

k1�1
Regp~vk1

0 q (6.1)

The implicit group-wise registration estimates the set of transformations ϕ̃k0m that
warps each planning image Ik0 to the mean intensity image Im, that finally can be
calculated as an average of all warped images 1

K

°
Ik0 p~ϕ0mq.

6.3 Intra-subject motion model

Generation of the deformation model requires estimation of numerous non-linear
diffeomorphic transformations between different stages of organs’ motion. Owing
to already estimated transformations ϕk0m, the intra-patient deformations are cal-
culated for the images Jkl � Ikl p~ϕk0mq in the common subject space. To assure a
symmetry of the registration with respect to input images and impose the inverse
consistency criterion, the consistent log-domain intensity-based algorithm is used.
This approach implements a fast and efficient Demon method that minimises the
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energy:

εp ~vk0lq � SimpJk0 , Jkl pexpp~v0lqqq � SimpJkl , Jk0 pexpp�~v0lqqq � αRegp~v0lq (6.2)

The main advantage of using this method of registration is that the output velocity
field ~v0l minimising energy ε (Equation 6.2) can be directly used for the log-domain
calculation of deformation statistics without explicit computing logarithm of the
displacement field, that is time consuming [4, 17]. However, different methods of
registration can be used instead as long as they allow to perform the vectorial statis-
tics and preserve the invertibility constraint [4].

6.4 Surrogate representation

To evaluate the proposed surrogate-based image deformation estimation method-
ology the experiments were conducted with MRI volumetric data acquired for the
pelvic region with the shape of bladder and rectum treated as a surrogate (measure-
ment) for the dense displacement field estimation. Segmentation of these organs
is a relatively simple task because of usually high intensity contrast between blad-
der/rectum and surrounding tissues and can be easily achieved using one of many
proposed automatic or semi-automatic segmentation algorithms [160]. As a result
of segmentation of an n-dimensional image Jkl a binary image Skl : Ω � Rn Ñ
t0, 1u representing the organ of interest is produced. The sign distance function
φkl p~xq is defined as the minimum Euclidean distance from a given voxel position
~x � rx1, ..., xns P Ω to the shape’s Skl boundary, multiplied by 1 or -1 depending on
which side of boundary ~x is located. The positive or negative distance is assigned
to all voxels inside or outside Skl respectively, whereas for all voxels on the shape
boundary the distance function has value zero. An efficient algorithm, with the lin-
ear computation time, for exact Euclidean Distance (ED) calculation for arbitrary
dimensional binary images was proposed by Maurer et al. [87]. An example of such
implicit shape representation of a bladder segmented from an MRI image is shown
in Figure 6.1.

6.5 Generation of 4D motion model

During the training process the motion model, linking shape and corresponding
deformation field, is estimated using a data set of implicit shapes and matched ve-
locity fields. First, due to a high dimensionality of the velocity field and adopted
shape representation, direct estimation of the motion model is computationally pro-
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Figure 6.1: Bladder segmented from MRI (top left) and sequence of its implicit
representation with highlighted surface position (black).

hibitive. A commonly used technique for reducing dimensionality of data is PCA
[159, 73, 75, 74, 123, 124]. In this case, it allows extraction of the major modes of
variation of shape and velocity field. For each registered image Jp (p � 1, . . . , P ;
where P is the number of volumes in the database, different from the reference vol-
ume P � K � pL�1q) the corresponding velocity field and implicit shapes are formed
as a vector:

Vp � r~vpp~x0q, . . . , ~vpp~xdq, . . . , ~vpp~xDqs (6.3)

where ~vpp~xdq � rv1
pp~xdq, . . . , vnp p~xdqs is the velocity vector at ~xd, with d representing

voxel index d � 1, . . . , D; and D denoting the number of voxels in the volume.
Similarly for the implicit shape(s):

Φp � rφpp~x0q, . . . , φpp~xdq, . . . , φpp~xDqs (6.4)

where φpp~xdq is a value of the signed distance function at ~xd. After carrying out
PCA using all Vp, the velocity field can be approximated as:

Vp � µV �
EV̧

i�1
γpi ~wi � µV � ΓpWV (6.5)

where µV is the sample mean velocity field, ~wi is the ith eigenvector, γpi are co-
efficients, WV is a matrix of eigenvectors and Γp is vector of coefficients with EV

representing the number of the major velocity field eigenmodes observed in the
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training data set. Similarly, for the implicit shape representation:

Φp � µΦ �
EΦ̧

i�1
θpi~zi � µΦ � ΘpZΦ (6.6)

where µΦ is the sample mean implicit shape, ~zi is the ith eigenvector, θpi are coeffi-
cients, ZΦ is a matrix of eigenvectors and Θt is a vector of coefficients with EΦ rep-
resenting the number of the major implicit shape eigenmodes present in the training
data set. Although, the sign distance function is not closed under additive operation
of shape eigenvectors, it was shown in [140] that this theoretical inconsistency does
not affect the performance of this shape representation in practice. Moreover, the
shape descriptors are not used directly to reconstruct the object shape but rather
to provide features to estimate the parameters of the stationary velocity model (a
vector space), therefore the reconstruction of a valid deformation is ensured. The
motion modelM linking observed organ deformations with the corresponding veloc-
ity field is built via the multivariate linear regression between coefficients matrices
Γ � �

ΓT0 , . . . ,ΓTp , . . . ,ΓTP
�T and Θ � �

ΘT
0 , . . . ,ΘT

p , . . . ,ΘT
P

�T :
M � pΘTΘ � ρDq�1ΘTΓ (6.7)

where ρ denotes a regularisation parameter for the prediction model and D is an
identity matrix [124].

Once the modelM is learnt, it can be utilised in a practical way both on the new
images for patient already included in the model and for images of the new patients.
In both cases, the new image has to be first mapped to the common patient space and
then segmented to obtain the shape descriptor. Then, the implicit representation
of any new shape Φnew can be directly projected onto the shape eigenvector space
ZΦ to get shape coefficients Θnew. Subsequently corresponding velocity coefficients
Γnew can be calculated using the estimated motion model: Γnew � ΘnewM . Then,
under the Baker-Campbell-Hausdorff formula for the composition of the diffeomor-
phic deformations [17], the predicted diffeomorphic deformation field unew can be
approximated by exponentiation of the sum of the velocity fields eigenvectors:

unew � exppµV � ΓnewWV q (6.8)

The computational burden of the developed training scheme is highly time-consuming,
mostly due to required multiple registration of volumes, but it is performed only once
during the learning of the motion model M . However, the model evaluation is fast
as it involves only calculation of the implicit shape descriptors, matrix multiplica-
tion and calculation of the exponential map. The scheme presenting the proposed
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model training framework and the corresponding model evaluation process is shown
in Figure 6.2.

Figure 6.2: Training process and deformation field prediction using the implicit
shape-based dense deformation field estimation model for prostate

6.6 Evaluation of proposed framework

The proposed use of the implicit shape representation as a surrogate for estimation
of the dense displacement field has been validated using two sets of tests.

For the first set a number of different deformation fields were synthetically gen-
erated and applied to real MRI volumetric data acquired from a male pelvic area.
Using such data, with the ground truth displacement field available, a number of
trials were carried out to assess the method accuracy. These results were also com-
pared against the results obtained using the previously proposed Point Distribution
Model (PMD).

For the second part of the experiments, real MRI data were used. The data
set consists of 25 scans obtained from 5 subjects. For each subject images were
collected in equal intervals over 40 minutes showing significant shape changes of blad-
der/rectum. Then images were normalised to the spatial resolution of 1.0x1.0x3.0mm
and the anatomical structures used in the experiments were manually annotated.
For each experiment, four sets were chosen as training data, the remaining one as
test data. The experiments were repeated 5 times, every time with a different set
selected as test data.
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6.6.1 Synthetic example

The registration method used for training stage was implemented using the log-
domain consistent Demon approach. The parameters of the image registration were
chosen to be Kfluid � 1.0 for fluid-like regularisation and Kdiff � 1.0 for diffusion-
like regularisation.

The simulated data set consists of 50 volumes of size 320x240x30 which were
warped by known (ground truth) deformation fields. The known velocity fields were
generated from a random zero-mean Gaussian velocity process defined on selected
knots of a sparse 3D regular grid of size 30x20x15, which were heavily smoothed
by a low-pass filter. The selected knots were chosen in the area close to blad-
der. Finally, velocity fields were interpolated to the finer grid resolution with cubic
splines and then scaled and exponentiated to get a wide range of diffeomorphic de-
formation fields. This procedure of generating deformation field is similar to the
method described in [17] which was used to validate the Baker-Campbell-Hausdorff
formula of calculation the velocity fields. An example of the generated synthetic
deformation field is shown in Figure 6.3. Such generated data set was divided into
two parts. The first part with 40 volumes was used for instantiation of the mo-
tion model, whereas the second part of 10 remaining volumes was used for model
evaluation. The experiments were repeated 5 times, each time for a different and
randomly selected training data set. For all the tests segmented bladder was used
as a surrogate, represented either by the signed distance function or by 167 points
uniformly distributed on the bladder surface for the PDM. The number of points
for bladder description is smaller than that used in [125], but the probability of the
occurrence of gross errors increases when more points are used. To model the oc-
currence of wrong point-to-point correspondences, the gross error was introduced to
PDM representation during the method validation. The implemented gross error is
characterised by: ς -representing expected percentage of points affected by the gross
error and, τmaxmin - encoding the minimum (min) and maximum (max) magnitude
of the gross error, with actual simulated error magnitude selected randomly from a
uniform distribution. In all cases the points where selected on the bladder surface.

The results shown in Table 6.1 indicate that the implicit shape representation
performs similarly as PDM without gross error. PDM accuracy deteriorates quite
quickly with even a small level of the gross error (with only one or two points affected
out of 167 used for shape representation) leading to the estimated deformation
field not reliable any longer. The estimation error gets bigger with the increasing
magnitude of gross error τ or when more points are affected by it (for larger ς).
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Table 6.1: Errors of estimation deformation fields obtained using different shape
representations: (PDM perf.) - PDM with ground truth correspondence; (PDM
norm.) - PDM with Gaussian noise µ � 0.0, σ � 1.0 representing typical measure-
ment error; (PDM gros1.) - PDM norm. with gross error ς � 5%, τ 20

10 ;(PDM gros2.)
- PDM norm. with gross error ς � 5%, τ 40

20 ; (PDM gros3.) - PDM norm. with gross
error ς � 1%, τ 40

20 . All results are given in mm.
Trial 1 Trial 2 Trial 3 Trial 4 Trial 5
avg max avg max avg max avg max avg max avg � std

PDM perf. 0.23 3.61 0.25 3.90 0.21 3.36 0.18 2.75 0.18 2.7 0.21 � 0.12
PDM norm. 0.47 4.94 0.52 6.63 0.49 4.82 0.44 4.46 0.44 3.83 0.47 � 0.11
PDM gros1. 0.79 8.77 0.72 7.26 0.76 12.040.60 6.52 0.65 6.26 0.70 � 0.22
PDM gros2. 1.19 17.591.24 13.111.14 12.181.07 16.451.06 10.161.14 � 0.34
PDM gros3. 0.63 6.08 0.59 7.22 0.64 10.170.54 5.81 0.67 7.71 0.61 � 0.22
implicit 0.31 5.36 0.36 4.14 0.30 5.34 0.25 3.42 0.28 4.13 0.30 � 0.14

Table 6.2: Errors of the prediction of the deformation fields with respect to the
results of direct registration.

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 1-5
avg � std (mm)

Deformation
characteristics 7.40�3.39 4.07�0.84 8.61�3.03 5.94�2.42 3.57�1.39 5.92�2.14
Error of
prediction 2.45�1.16 1.45�0.15 2.71�0.98 2.05�0.78 1.25�0.41 1.98�0.62

6.6.2 Real data evaluation

For the second part of the experiments, real MRI data were used. In order to get
quantitative results and to estimate ground truth deformation fields, the registration
was independently performed between corresponding pairs of images that were used
to compare with those estimated using the prediction system. The overall robustness
in terms of the accuracy with respect to the ground truth deformation fields is
summarised in the 2nd row of Table 6.2 whereas the 1st row characterises the ground
truth data. Based on these results, it can be concluded that the proposed method
is able to estimate the dense deformation field with error less than 2.0�0.62mm.
Additionally, the computation speed is significantly reduced when compared with
the classical registration. The average time of prediction when the motion model is
already trained is about 1s while the registration process takes about 180s.

Figure 6.4 presents the variation of the first three modes of the implicit shape
representation. The first mode can be seen as the mode linked to the changes of the
bladder size. Also some changes of the rectum shape are noticeable. The second
mode seems to be related mostly to the rectum and the bladder shape changes
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Figure 6.3: Example of synthetic deformation field used in the experiments (top
left), Estimation error examples: using PDM with Gaussian noise µ � 0.0, σ � 1.0
(top right), PDM with gross error ς � 5%, τ 40

20 (bottom left) and using the implicit
representation (bottom right)

.

Figure 6.4: The variability of the major modes of the implicit shape representation
of the prostate (blue), bladder (red) and rectum (green).

that are likely to model the patient variability. The most remarkable impact of the
third mode is linked to changes of the prostate size. Although the implicit shape
representation does not preserve entirely the neighbourhood topologies, the shapes
in the presented visualisation do not overlap between each other.

The practical advantage of the deformation fields parameterisation using the sta-
tionary velocity fields is shown in Table 6.3. The deformation fields estimated using
the major modes of the motion model that is built using the diffeomorphic defor-
mation fields can be non-diffeomorphic, whereas the deformation fields estimated
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Deformation field representation
-3.0�λr -1.5�λr 0.0�λr 1.5�λr 3.0�λr

Minimum determinant of Jacobian
r � 1 -0.306 0.080 0.109 0.113 0.017
r � 2 -0.062 0.094 0.109 0.125 0.136
r � 3 0.086 0.104 0.109 0.114 -0.213

Velocity field representation
-3.0�λr -1.5�λr 0.0�λr 1.5�λr 3.0�λr

Minimum determinant of Jacobian
r � 1 0.048 0.097 0.113 0.119 0.123
r � 2 0.064 0.096 0.113 0.118 0.121
r � 3 0.100 0.106 0.113 0.115 0.109

Table 6.3: Minimum of the determinant of the Jacobian matrix for the variability of
the trained motion model using the deformation fields and the stationary velocity
fields.

utilising the log-domain paramererised deformation fields to build the motion model
are always diffeomorphic. Thus, the parameterisation of the transformations via
stationary velocity fields is indicated as the robust methodology due to preserving
the one-to-one properties of the estimated deformation fields.

6.7 Summary

The chapter describes a novel technique for model-based dense deformation field
estimation with an implicit surface representation used as an effective and robust
deformation descriptor. The proposed framework uses motion model estimated from
a training data set of shapes and corresponding displacement fields parameterised
via stationary velocity fields estimated using a fast and efficient diffeomorphic regis-
tration scheme, formulated in the log-Euclidean framework. It has been also demon-
strated that with the help of the proposed method, it is possible to predict dense
displacement fields solely from the measured deformations of the implicit surface.
The experiments conducted with the real data show that it is possible to predict
deformation field thereby position of the prostate from shape deformations of the
bladder/rectum. As it is relatively easier to segment bladder (rectum) in the CBCT
data when compared to prostate segmentation, it can be concluded that the proposed
methodology can be potentially useful for adaptive radiation therapy of prostate.
Thus, further investigation is suggested to combine the motion model built from
MRI data with shape descriptors extracted from radiotherapy imaging.
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Chapter 7

Facial expression recognition using
log-Euclidean statistical shape
models

This chapter presents a new method for facial expression modelling and recognition
based on the diffeomorphic image registration parameterised via stationary velocity
fields in the log-Euclidean framework, that was described in the previous chapters.
First, Section 7.1 briefly presents an overview of the current facial expression rep-
resentations and introduces the concept of using the motion fields as a feature for
face recognition and facial expression recognition systems. In Section 7.2, the pro-
cess of common face space generation is utilised based in the implicit group-wise
registration algorithm adapted to the facial expression modelling. Then, Section 7.3
introduces the velocity field based representation of facial expressions (described in
Section 7.3.1), and the Point Distribution Model (presented in Section 7.3.2). The
robustness of the proposed facial expression representation is demonstrated based
on the experimental results of a qualitative and quantitative evaluation (shown in
Section 7.4). The obtained results show that the facial expression representation
based on stationary velocity fields can be successfully utilised in facial expression
recognition, and this parameterisation produces a slightly higher recognition rate
than the facial expression representation based on deformation fields. Finally, the
concluding remarks are given in Section 7.5.

7.1 Introduction

Face is an important medium used not only by humans to communicate, but also
reflecting a person’s emotional and awareness states, cognitive activity, personality
or well-being. Over the last ten years automatic facial expression representation

145



7.1. INTRODUCTION

and recognition have become an area of significant research interest by the com-
puter vision community, with applications in human-computer interaction (HCI)
systems, medical/psychological sciences, and visual communications to name a few.
Although, significant efforts have been undertaken to improve the facial features ex-
traction process and the recognition performance, automatic facial expression recog-
nition is still a challenging task due to an inherent subjective nature of the facial
expressions and their variation over different gender, age, and ethnicity groups. De-
tailed overviews of existing methodologies, recent advances and challenges can be
found in the literature surveys [37, 95] and standard textbooks [86, 139].

The facial expression representation can be seen as a process of extracting fea-
tures, that can be generic such as local binary patterns [120] or Gabor coefficients
[13] or more specific such as landmarks of characteristic points located in areas of
major facial changes due to articulation [69], or a topographic context (TC) that
treats the intensity levels of an image as a 3-D terrain surface [149]. Recently, in
[103, 105] authors postulated that the shape space vectors (SSV) of the statistical
shape model (SSM) can constitute a significant feature space for the recognition
of facial expressions. The SSM can be constructed in many different ways, and it
was developed based on the point distribution model originally proposed by [33]. In
[104], the SSM is built based on the control points of the B-Spline surface of the
training data set, and in [106] an improved version with multi-resolution correspon-
dence search and multi-level model deformation was proposed. In this chapter, the
SSM is generated using the stationary velocity fields obtained from the diffeomorphic
face registration.

The idea of using the motion fields as features in computer vision and pattern
recognition was used previously for face recognition where the optical flow was com-
puted to robustly recognise face with different expressions based on a single sample
per class in the training set [60].

The previous chapters introduced and then utilised the parameterisation of the
diffeomorphic transformations via the principal logarithm of non-linear geometrical
deformations in medical applications. As the facial shapes (mouth, eyes, eye brows)
can be assumed to have constant intra- and inter- subject topology, it is interesting
to check the adequacy of the facial expressions represented using stationary velocity
fields as a result of performing the diffeomorphic image registration that preserves
the spatial topology of objects by maintaining diffeomorphism (detailed description
in Section 3.2). Additionally, using this framework (described in details in Chapter
3.2), the log-Euclidean vectorial statistics can be performed on the diffeomorphic
vector fields via their logarithm, which always preserve the invertibility constraint
contrary to the Euclidean statistics on the deformation fields. In other words, this
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provides a mathematically consistent framework to generate the SSM based on the
deformation fields parameterised via the stationary velocity fields. Finally, facial
expression representation based on the deformation field is compared with facial ex-
pression representation based on the stationary velocity field in terms of separability
in feature space and recognition performance is evaluated.

7.2 Common face space generation

The statistical shape model (SSM) was developed based on the point distribution
model and originally proposed by [33]. The model represents the facial expression
variations based on the statistics calculated through the corresponding features dur-
ing the learning process of the training data set. In order to build an SSM using the
point landmarks, the correspondence for those facial features between different faces
(among the different subjects) in the training data set must be reliably established.
This is done here by generating a mean face model for the neutral facial expression
data set to find first the mappings from any face to the so called common face space.
Subsequently, by transferring the subject specific facial expressions data set into the
common face space, the intra-subject facial expression correspondence is estimated.
Finally, the principal component analysis (PCA) is applied to the training data set
aligned in the common face space, to provide a low-dimensional feature space for
facial expression representation.

The overall scheme of system for establishing correspondences between different
faces is shown in Figure 7.1.

7.2.1 Diffeomorphic implicit group-wise image registration

Generation of the mean face model is an essential step during the training process
because it allows a subject independent common face space to be established for
further analysis.

For a given set of n-dimensional images representing neutral facial expressions
denoted by

Ine � tInek : Ω � Rn Ñ R, k � 1, . . . , Ku (7.1)

where K is the number of subjects included in training data, the objective is to
estimate a set of displacement fields ûne to map the images taken from Ine to the
mean face model Imean. In general, this problem can be formulated as a minimisation
problem:

ûne � arg min
une

εpune; Ineq (7.2)
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Figure 7.1: Scheme for establishing correspondences between faces using the log-
domain implicit group-wise registration.

where εpuneq is defined as

εpuneq �
¸
k

¸
l

»
Ω
SimpInek p~x� ~ukp~xqq, Inel p~x� ~ulqq ~dx

�α
¸
k

»
Ω
Regp~ukp~xqq ~dx (7.3)

where ~x � rx1, ..., xns P Ω denotes given voxel positions, Sim denotes a similarity
measure between each pair of the images, Inek and Inel (l � k) from Ine, Reg denotes
a regularisation term, and α is a weight of the regularisation term.

The algorithm used for generating the mean face model is similar to the work
presented in Chapter 5 and [42]. The main difference is in how the deformation fields
are parameterised with the stationary velocity field used in the proposed method
instead of the Fourier series in [42], and in the method of solving Equation 7.2 with
the Demon approach used instead of the linear elastic model. Using the log-domain
parameterisation for deformation fields has been reported to produce smoother de-
formation fields and it allows vectorial statistics to be calculated directly on the
velocity fields.
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Figure 7.2: Grey-level average of mean face before registration, and after registra-
tion, obtained for different sets of images: (from left to right) female data set, male
data set, mixed data set. (Top row) shows grey-level average before registration, (up-
per middle row) shows grey-level average of images after registration, (lower middle
row) shows the Intensity Variance (IV ) (given by Equation 5.19) before registration
and (bottom row) shows the IV after registration.
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7.3 Facial expression modelling

7.3.1 Velocity field based facial expression model

The next step is to warp all other training faces representing different facial expres-
sions to the mean face (the reference face) via transformation ϕkp~xq estimated for
neutral expressions. For a given set of facial expression images from subject K:

Iex
k � tIexkm : Ω � Rn Ñ R,m � 1, . . . ,Mu (7.4)

where M denotes the number of images. The estimated transformation ϕkp~xq is
applied to get a set of facial expression images in the common face space (space of
the reference image):

Icex

k � tIexkmpϕkp~xqqu (7.5)

By applying the log-domain image registration approach based on the consistent
symmetric Demon algorithm [144], each image in set Icex

k is registered to the image
of neutral expression in common face space Inek pϕkp~xqq, the set of the velocity fields
vex

k is estimated, and the set of the corresponding deformation fields uex
k via ex-

ponential mapping is calculated as well. Utilising this particular method for image
registration has two important advantages. Firstly, the inverse consistency criterion
is maintained during the registration process that helps to keep the smooth trans-
formation especially for cases like matching between open-mouth and close-mouth
shapes. Secondly, the results of registration are the velocity fields so there is no
necessity of calculating the principal logarithm of transformations.

7.3.2 Point Distribution Model

The point distribution model originally proposed by [33] is one of the most often
used techniques for representing shapes. This model describes a shape as a set
of positions (landmarks) in the reference image. The variations between different
shapes require establishment of the correspondence between points detected in the
reference image and images representing different deformations in the training set.
Although this can be relatively reliably achieved during the model training phase
by careful time consuming, often manual selection of corresponding points, such
task is prone to occurrence of gross errors during the model evaluation where often
near real time performance is required. The examples of the manually selected
landmarks for neutral, happiness and sadness expression are shown in Figure 7.3.
The automatically selected landmarks used later on in the experimental section are
obtained with help of the face image registration described in the previous section.
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Figure 7.3: Manually selected landmarks for neutral expression (left), happiness
expression (middle), and sadness expression (right).

Figure 7.4: Automatically selected (green circles) and manually selected (red crosses)
landmarks for happiness expression (left), and sadness expression (right).

The examples of the automatically selected landmarks for happiness and sadness
expression are shown in Figure 7.4. In this case, the manually selected landmarks
in the model face are automatically mapped onto registered faces.

Using the standard principal component analysis (PCA), each face representation
in the training data set can be approximately represented in a low-dimensional shape
vector space instead of the original high-dimensional data vector space [16]. Figure
7.5 shows the effect of varying the first three largest principal component of the PDM
for automatically selected landmarks, where λr where r � 1, 2, 3 is the eigenvalue of
the covariance matrix calculated from the training data set.

Figure 7.6 shows the effect of varying the first three largest principal component
of the velocity fields representation, where λr where r � 1, 2, 3 is eigenvalue of
the covariance matrix calculated from the training data set. The transformation
obtained from the velocity field representation are applied to the mean face.
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Figure 7.5: Variations of the first (top row), the second (middle row), and the third
(bottom row) major mode of the Point Distribution Model for automatically selected
landmarks.

7.4 Experimental results

The data set used for validation consists of 48 subjects that are selected from the
BU-3DFE database [157], with a wide variety of ethnicity, age and gender. Samples
of the faces taken from that database are shown in Figure 7.7, and Figure 7.8
shows the various ranges of expression intensity. The data used during the training
procedure are excluded from the data used for validation. The implicit log-domain
group-wise registration based on the Demon approach minimises the Sum of Squared
Difference between images and hence due to different skin patterns an additional
image intensity adjustment was performed.

7.4.1 Separability analysis

This section studies the properties of the velocity fields based facial expression rep-
resentation and makes comparison with other representations briefly described in
the previous section.

First, to assess whether the Shape Space Vectors based on the velocity fields
can be used as a feature space for facial expression analysis and recognition, the
separability of the SSV-based features in low-dimensional spaces is examined. Then,
the qualitative analysis is conducted using the theoretically derived separability
criterion for the different facial expression representations. Finally, the between-
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Figure 7.6: Variations of the first (top row), the second (middle row), and the third
(bottom row) major mode of the velocity fields representation applied to the unisex
mean image.

expression separability analysis is evaluated to support further facial expression
recognition results.

Illustrative analysis in low-dimensional spaces

Data set used for classification based validation again consists of 48 subjects, and
contains neutral expression, and six basic facial expressions of anger, disgust, fear,
happiness, sadness, and surprise with four different expression intensity ranges.
These data were divided into two subsets containing 24 subjects with 25 faces per
subject representing different expressions. During evaluation, the first subset is cho-
sen to build the SSM of the selected facial expression representation based on the
manually selected landmarks (with 60 landmarks per face), the automatically se-
lected landmarks (also with 60 landmarks per face), the deformation fields, and the
velocity fields (with 512x512 pixels per image). The second subset is used as test-
ing data (with similar parameters of the facial expression representation). Subjects
included in the training data set are not included in the testing data set.

The facial expression representation investigated in this section are the high-
dimensional features, and they are hard to be visualised. To obtain the intuitive
clustering characteristics of the SSV-based facial expression representation, the first
three element of the SSV are used to observe the inter-expression discriminability.
For different facial expression representations, the retained energy for the first three
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Figure 7.7: Sample subject showing seven basic expressions (from top left to bottom
right) neutral, angry, disgust, fear, happiness, sadness, and surprise.

Figure 7.8: Samples of happiness expression for of different expression intensity
ranges from low (left), middle, high to highest (right).

principal components has different levels of the variability included in the training
data set. For the SSM built from the manually selected landmarks and the auto-
matically selected landmarks, the first three components retain 60.76% and 73.41%
of the total data variability, respectively. For the SSM built from the deformation
fields, the first three components retain 75.15% data variability, whereas for the
model that is built from the velocity fields, the first three components retain 76.08%
of the total variability.

Examples of some low-dimensional between-expressions separability visualisa-
tions are given in Figures 7.9- 7.12. For the manually selected landmarks (Figure
7.9) and the automatically selected landmarks (Figure 7.10), the pair of expressions
such as "happiness vs. surprise" and "sadness vs. surprise" can be very easily sep-
arated even in the low-dimensional space, the pair of "happiness vs. sadness" also
exhibits good separability but less noticeable than the previous cases. For the defor-
mation field (Figure 7.11) and the velocity field (Figure 7.12) based representations,
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the separability for the pairs of expressions such as "happiness vs. surprise" and
"sadness vs. surprise" can be also easily identified, but the pair of "happiness vs.
sadness" appears to overlap partly together in the low-dimensional space. On the
opposite side of the illustrative analysis, the pairs of expressions such as "anger vs.
disgust", "anger vs. sadness", or "fear vs. sadness" are completely indistinguish-
able for each type of the facial expression representations. This suggests that the
expression such as anger, fear, and sadness can be easily misclassified.

Quantitative separability analysis

In order to quantitatively assess the separability of the presented facial expression
representations, appropriate criteria are needed. A computable criteria for mea-
surement of within-class and between-class distances for each type of the facial ex-
pression representation were applied following the separability investigations of the
facial expression features reported by Wang and Yin [149] and Quan et al. [105]. The
separability criterion used in this work, is based on the calculation of the average
between-class distances. This criterion can be represented by using the so-called the
within-class matrix, and the between-class matrix. The within-class scatter matrix
SW is defined as follows:

SW �
ç

i�1

1
n

ni̧

k�1
p~xik � ~miqp~xik � ~miqT (7.6)

and the between-class scatter matrix SB is defined as:

SB �
ç

i�1

ni
n
p~mi � ~mqp~mi � ~mqT (7.7)

where: ~xik is a d-dimensional feature, ni is the number of samples in the ith class,
n is the number of samples in all classes, c is the number of classes, ~mi is the mean
of samples in the ith class defined as:

~mi � 1
ni

ni̧

k�1
~xik (7.8)

~m is the mean of all the samples:

~m �
ç

i�1

ni
n
~mi (7.9)

The separability criterion J2p~xq is defined as a natural logarithm of the ratio between
the within-class scatter matrix’s determinant and the between-class scatter matrix’s
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(a) Happiness versus Surprise (b) Anger versus Disgust

(c) Sadness versus Surprise (d) Anger versus Sadness

(e) Happiness versus Sadness (f) Fear versus Sadness

Figure 7.9: Separability Analysis for manually selected landmarks using first three
principal components. Figure (a), (c) and (e) shows the pair of expression with the
highest value of Jexi,exj

2 p~xq while (b), (d) and (f) shows the pair of expression with
the lowest value of Jexi,exj

2 p~xq
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(a) Happiness versus Surprise (b) Anger versus Disgust

(c) Sadness versus Surprise (d) Anger versus Sadness

(e) Happiness versus Sadness (f) Fear versus Sadness

Figure 7.10: Separability analysis for automatically selected landmarks using first
three principal components. (a), (c) and (e) show the pairs of expressions with the
highest value of Jexi,exj

2 p~xq while (b), (d) and (f) show the pairs of expressions with
the lowest value of Jexi,exj

2 p~xq
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(a) Happiness versus Surprise (b) Anger versus Disgust

(c) Sadness versus Surprise (d) Anger versus Sadness

(e) Happiness versus Sadness (f) Fear versus Sadness

Figure 7.11: Separability analysis for deformation field representation using first
three principal components. (a), (c) and (e) show the pairs of expressions with the
highest value of Jexi,exj

2 p~xq while (b), (d) and (f) show the pairs of expressions with
the lowest value of Jexi,exj

2 p~xq
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(a) Happiness versus Surprise (b) Anger versus Disgust

(c) Sadness versus Surprise (d) Anger versus Sadness

(e) Happiness versus Sadness (f) Fear versus Sadness

Figure 7.12: Separability analysis for the velocity field representation using first
three principal components. (a), (c) and (e) show the pairs of expressions with the
highest value of Jexi,exj

2 p~xq while (b), (d) and (f) show the pairs of expressions with
the lowest value of Jexi,exj

2 p~xq
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Figure 7.13: Separability of expression for different features in terms of separability
criterion J2p~xq

determinant:
J2p~xq � ln detpSB � SW q

detpSW q (7.10)

This separability criterion is efficient for comparison of different feature selections,
lying in the completely different spaces (also with different dimensionalities), and
it is intrinsically normalised and reflects the quantity of separability for features
between different classes [149, 105]. The larger the value of J2p~xq means the better
separability.

The separability criterion was evaluated on the different facial expression rep-
resentations, namely, the manually selected landmarks, the automatically selected
landmarks, the full velocity fields, and the full deformation fields and the results of
the comparison are shown in Figure 7.13. For the same ratio of retained energy in the
training data, the value of J2p~xq for the manually selected landmarks is the highest.
In the range above 80%, the separability for the automatically selected landmarks
is not significantly different from than for the manually selected landmarks. The
velocity field and the deformation field based facial expression representation are
the worst.

The quantitative analysis in terms of the between-expression separability was
also conducted to explain the noticeable difference of the expressions overlapping
in the low-dimensional spaces. To quantify the between-expression separability, the
two-class case of the separability criterion is evaluated [149]. The within-class scatter
matrix Sexi,exj

W for two-class case (c=2) is defined as follows:

S
exi,exj

W � 1
n
p
nexi̧

k�1
p~xexi

k � ~mexi
qp~xexi

k � ~mexi
qT

�
nexj̧

l�1
p~xexj

l � ~mexj
qp~xexj

l � ~mexj
qT q (7.11)
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Table 7.1: Matrix of the expression separability criterion of Jexi,exj

2 p~xq for the man-
ually selected landmarks

Anger Disgust Fear Happiness Sadness Surprise
Anger - 2.15 2.36 3.71 1.70 4.10
Disgust - - 2.43 3.38 2.82 3.27
Fear - - - 2.09 2.05 2.78
Happiness - - - - 3.95 4.44
Sadness - - - - - 3.90
Surprise - - - - - -

Table 7.2: Matrix of the expression separability criterion of Jexi,exj

2 p~xq for the auto-
matically selected landmarks

Anger Disgust Fear Happiness Sadness Surprise
Anger - 2.11 2.15 3.29 1.57 3.34
Disgust - - 2.23 3.31 2.45 3.06
Fear - - - 2.06 1.92 2.51
Happiness - - - - 3.52 4.02
Sadness - - - - - 3.20
Surprise - - - - - -

and the between-class scatter matrix Sexi,exj

B is defined as:

S
exi,exj

B � nexi
nexj

n2 p~mexi
� ~mexj

qp~mexi
� ~mexj

qT (7.12)

where exi and exj are analysed expressions, nexi
, nexj

are the numbers of samples in
the ith and jth class, n = nexi

+nexj
. For each pair of selected expressions Jexi,exj

2 p~xq
of the different facial expression representations was calculated.

Tables 7.1-7.4 show the separability of all pairs of expressions for different facial
expression representations. A higher value of J2p~xq indicates a better discriminabil-
ity between two examined expressions. The analysis of all different pairs of the
facial expression representation is conducted with the retained energy of the corre-
sponding SSM as close as possible to about 95%. These results support the visual
inspection of the qualitative analysis presented in Figures 7.9-7.12. The separability
of the pairs of expressions such as "happiness vs. surprise", or "sadness vs. surprise"
always reach the high values. The pair of expressions such as "happiness vs. sadness"
achieve the highest value for the manually selected landmarks that is consistent with
the illustrative analysis done in the previous section, where the SSM based on the
manually selected landmarks exhibit much better separability than the other facial
expression representations (compare for example Figure 7.9c and Figure 7.10c). On
the other side, the most overlapped pairs of expressions presented in the qualitative
analysis, achieve very low values of the separability criterion. The lowest value is
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Table 7.3: Matrix of the expression separability criterion of Jexi,exj

2 p~xq for the full
deformation fields

Anger Disgust Fear Happiness Sadness Surprise
Anger - 1.81 2.21 2.56 1.51 4.12
Disgust - - 2.14 2.19 2.29 3.19
Fear - - - 1.61 1.68 2.69
Happiness - - - - 2.57 3.40
Sadness - - - - - 3.41
Surprise - - - - - -

Table 7.4: Matrix of the expression separability criterion of Jexi,exj

2 p~xq for the full
velocity fields

Anger Disgust Fear Happiness Sadness Surprise
Anger - 1.91 2.21 2.61 1.52 3.94
Disgust - - 2.14 2.20 2.32 3.14
Fear - - - 1.62 1.71 2.68
Happiness - - - - 2.61 3.42
Sadness - - - - - 3.46
Surprise - - - - - -

achieved by the pair "anger vs. sadness".
To sum up this section, the computable results from the quantitative analysis

are consistent with the illustrative examples presented in the qualitative analysis.
The results suggest that the SSV built from the velocity fields can be used as a facial
expression representation.

7.4.2 Facial expression recognition

The separability analysis conducted in the previous section indicates that the SSV
feature space based on the velocity can be used for facial expression modelling and
therefore for classification of various facial expressions. Hence, this section presents
the extensive experimental validation of the person-independent expression classifi-
cation. Although, several types of classification methods are evaluated during those
experiments, the main emphasis of this research was laid on checking the adequacy
of building the SSV based on the velocity fields for facial expression representation.

Data sets used for classification based validation again consists of 48 subjects,
and contains neutral expression, and six basic facial expressions of anger, disgust,
fear, happiness, sadness, and surprise with four different expression intensity ranges.
These data were divided into six subsets containing 8 subjects with 25 faces per
subject representing different expressions. During evaluation one subset is selected
as the testing set (200 images), and the remaining data are used for the training
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(1000 images). None of the subjects included in the training data set is included in
the testing data set, because the partitioning is based on the individual subjects,
rather than on the individual images. This entire procedure of selecting subsets
for testing guarantees that every subject is tested for each classifier method. For
each test, all classifiers are reset by default and trained to the initial state using the
chosen training data set. The classification experiments were repeated six times,
every time with a different selection of the subset used for the testing.

Totally four types of facial expression representations have been used for valida-
tion: the manually selected landmarks from the database [157], the automatically
detected facial landmarks using the consistent log-domain Demon registration [144],
the full deformation fields, and the full velocity fields.

Due to different dimensionality of the feature spaces used for comparison, the
size of the SSV for every facial expression representation has been selected to obtain
the retained energy of the corresponding SSM as close to each other as possible. For
all experiments conducted in this section the SSV for manually selected landmarks
has 20 elements corresponding to 95.26%, the SSV for automatically selected land-
marks has 16 elements with 95.28% energy retained, whereas the SSVs for both the
deformation fields and the velocity field, have 13 elements corresponding to 95.22%
and 95.60% respectively.

Four commonly used classification methods were used for evaluation, namely lin-
ear discriminant classifier (LDC) related to the linear discriminant analysis (LDA),
quadratic discriminant classifier (QDC) linked to the quadratic discriminant anal-
ysis (QDA), nearest neighbour classifier (NCC), and naive Bayes classifier (NBC).
The detailed description of these methods can be found in most of the textbooks on
pattern recognition e.g. [16].

The average recognition rates and standard deviations of all six experiments for
different facial expression data are presented in Table 7.10. It can be seen that
the LDC classifier reaches the highest recognition rate for every facial expression
representation whereas the NCC classifier achieves the lowest recognition rates. As
shown in Table 7.10 all facial expression representations achieve a similar recogni-
tion rate for the LDC and NBC classifier with the highest rate for the manually
selected landmarks whereas the lowest recognition rate for the deformation fields
was achieved. For the QDC and NCC classifier the recognition rates are the highest
for the manually and automatic selected landmarks, and significantly lower for facial
expression representation based on deformation and velocity fields. The manually
selected landmarks are included only as a reference for other automatic methods due
to the time-consuming process of their selection. The recognition rates obtained us-
ing the LDC classifier by the automatic methods are lower (maximum 15.1% less
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for the deformation field based representation) than that obtained by using the
manual landmark selection process. In the light of the presented results, it can be
summarised that the representations of facial expressions that do not require user
interaction, reach the recognition rates that are comparable with the recognition
rate of the manually selected landmarks. Thus, this suggests that the algorithm
used for the image registration process can recover the correct landmark correspon-
dences. Secondly, the information included in the estimated deformation fields or
the velocity fields is somehow linked to the information that is given by the selected
landmarks. The second observation can lead to a partial explanation of the higher
recognition rates achieved for the automatically selected landmark in the cases of
the QDC, NCC and NBC methods (results given in Table 7.10). Similar to the
manually selected points, automatic landmarks are selected on more representative
parts of faces, therefore providing more reliable information about the current state
of subject. On the other hand, the deformation fields and the velocity fields con-
tain full information that may lead to be more prone to non-valuable information
retained in the PCA.

The confusion matrices for LDC for different facial expression representations
are given in Tables 7.5 - 7.8. From the view on the classification performance, it can
be concluded that the surprise, disgust, happiness and sadness expressions can be
classified in most cases with above 75% accuracy, anger with about 70% accuracy,
whereas fear is only classified correctly in 61.1%. The best recognition rates (about
90%) are found for surprise, similar to the work reported in [105] for the data sets
selected from the same database [157]. Examples of the confusion matrices for other
classifier methods included in this comparison, namely QDC, NCC, and NBC are
presented in Appendix B.

The results of misclassification support the conclusions of the quantitative sep-
arability analysis conducted in the previous section. The pairs of expressions with
a low value of separability criterion J

exi,exj

2 p~xq are more prone to be misclassified
(e. g. fear and sadness, or anger and sadness). Furthermore, the expression of fear
achieves very low values of separability criterion Jexi,exj

2 p~xq for each facial expression
representation and consequently as it can be expected, the misclassification error is
the highest (often misclassified with happiness or sadness). In the same manner, the
expressions with high value of separability criterion J

exi,exj

2 p~xq achieve high recog-
nition rates (e. g. happiness, or surprise). Table 7.9 summarises the success rates
of the recognition for the different representations included in Tables 7.5 - 7.8 to
emphasise the recognition performance of the six facial expressions using the differ-
ent facial expression representations. Taking into account the subjective nature of
the ground truth data and the results achieved by the human observers [105], the
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results can be considered as reasonable.
The quantitative comparison of the velocity based facial expression representa-

tion with the existing work is a challenging problem. Although the facial expression
database [149] evaluated for the experimental section is widely used by the computer
vision community, some other work utilised different information (e. g. texture,
3D shapes) and different subset of subjects [105, 86]. Moreover, the comparisons
between various facial expression representations are challenging due to different
evaluation methodologies.

The qualitative comparison of this approach with the work reported by Quan
et al. [105] for the same database shows a similar pattern in characteristics for
classified expressions. In spite of evaluating the 3D landmarks in their work, the
surprise expression always reaches the highest recognition rate. At the same time,
fear is often confused with sadness or with happiness.

The facial expression recognition based on the automatically selected landmarks,
the deformation fields, or the velocity fields can be affected by the method used for
the generation/detection of those features. In context of the facial expression repre-
sentation presented in this section, the performance can be considered in terms of the
robustness and accuracy of the image registration algorithms used for the automatic
landmark localisation, and the deformation fields and the velocity fields estimated.
The main drawback of the algorithm used for image registration (described in Sec-
tion 3.2) is that it relies on the SSD as a similarity measure. Although, the additional
pre-processing step was performed to remove the difference between skin patterns
for different subjects included in the database, the uncontrolled conditions can still
make the image registration process inaccurate and unreliable [149]. Another prob-
lem that has to be taken into account is the topology changes between images of the
same subject with different facial expressions. For example, the neutral expression
image does not contain the texture of open mouth and tooth whereas this pattern
is included in images of happiness, disgust, fear and surprise expression. As the
matter of fact that these topology changes can also occur for eyes (the squinted eyes
for the angry or fear expression), the problem can possibly significantly deteriorate
the recognition rates.

In order to check the recognition sensitivity to the quality of the facial expression
representation estimation, the recognition rates of the different expression intensity
levels were calculated for the different classifier methods. The results obtained from
this assessment are shown in Figure 7.14. For the manually selected landmarks,
the recognition rates grow when the expression intensity levels increase from low
to highest for the LDC and QDC classifier method. For the automatically selected
landmarks (Figure 7.14a), the recognition rates grow when the expression intensity
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Table 7.5: Confusion matrix of LDC for manually selected landmarks
Input/ Anger Disgust Fear Happiness Sadness Surprise
Output (%) (%) (%) (%) (%) (%)
Anger 74.5 4.7 3.1 3.1 14.6 0.0
Disgust 8.3 81.8 4.7 0.5 3.6 1.0
Fear 7.8 1.6 59.9 11.5 16.1 3.1
Happiness 4.2 2.1 8.3 85.4 0.0 0.0
Sadness 16.7 1.6 4.2 0.0 77.6 0.0
Surprise 1.0 2.1 4.2 0.5 2.6 89.6

Table 7.6: Confusion matrix of LDC for automatic selected landmarks
Input/ Anger Disgust Fear Happiness Sadness Surprise
Output (%) (%) (%) (%) (%) (%)
Anger 68.8 5.2 5.2 2.6 18.2 0.0
Disgust 12.5 76.6 5.7 0.5 3.6 1.0
Fear 7.8 2.6 55.2 14.1 19.3 1.0
Happiness 4.1 1.6 11.5 82.3 0.0 0.5
Sadness 19.8 3.1 4.7 0.0 72.4 0.0
Surprise 1.0 3.1 7.8 0.5 2.6 87.0

Table 7.7: Confusion matrix of LDC for full deformation fields
Input/ Anger Disgust Fear Happiness Sadness Surprise
Output (%) (%) (%) (%) (%) (%)
Anger 74.5 9.9 1.0 2.6 10.9 1.0
Disgust 9.4 75.5 6.3 5.7 1.6 1.6
Fear 5.7 2.6 56.8 15.6 11.5 7.8
Happiness 2.1 6.3 16.1 74.0 1.0 0.5
Sadness 12.0 0.5 7.3 2.1 78.1 0.0
Surprise 2.6 1.0 2.1 2.1 1.0 91.1

Table 7.8: Confusion matrix of LDC for full velocity fields
Input/ Anger Disgust Fear Happiness Sadness Surprise
Output (%) (%) (%) (%) (%) (%)
Anger 77.6 7.8 0.5 2.1 11.5 0.5
Disgust 8.9 77.1 5.2 5.2 2.6 1.0
Fear 4.7 3.6 61.5 9.9 13.0 7.3
Happiness 3.1 6.3 14.1 76.0 0.0 0.5
Sadness 15.1 0.0 6.8 1.6 76.6 0.0
Surprise 1.6 1.6 3.6 1.0 1.6 90.6
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Table 7.9: Summary of the recognition rates from Tables 7.5 - 7.8.
Feature/ Anger Disgust Fear Happiness Sadness Surprise
Expression (%) (%) (%) (%) (%) (%)
Manual 74.5 81.8 59.9 85.4 77.6 89.6
Automatic 68.8 76.6 55.2 82.3 72.4 87.0
Deformation 74.5 75.5 56.8 74.0 78.1 91.1
Velocity 77.6 77.1 61.5 76.0 76.6 90.6

Table 7.10: Average recognition rates for different classifier methods
Feature/ LDC QDC NNC NBC
classifier (%� SD) (%� SD) (%� SD) (%� SD)
Manually 78.1�4.2 74.0�4.8 61.5�1.1 74.3�2.4
Automatic 73.4�6.0 69.1�6.0 61.9�4.9 70.8�4.0
Deformation 75.0�5.2 58.9�2.9 56.2�5.0 69.1�5.0
Velocity 76.6�4.3 59.3�4.1 57.7�5.1 69.9�5.2
SD: Standard Deviation

levels increase but only from low to high. For the highest expression intensity lev-
els, the recognition rate is similar for the LDC classifier and lower for others. For
the deformation field and the velocity field facial expression representations, the
recognition rates grow only from low to middle. Then, the recognition rates stay
at the similar level or slightly lower for all classifier methods. First of all, these
experimental results immediately illustrate that the quality of the automatic land-
mark selection and the deformation and the velocity fields estimation has a direct
impact on the performance of the facial expression recognition systems (especially
for the high and highest intensity expression levels); secondly, the facial expression
recognition of low-intensity expressions from the single static data can be in some
cases an ambiguous task [149].

Comparatively, similar experiments in terms of machine learning methodologies
were conducted by Ashburner [5] and the deformation field and velocity field based
registration results were utilised to provide the patterns to distinguish the genders
and the age of the subjects using the MRI brain images. The assessment was done
using both the linear and non-linear support-vector machine classifier (SVM) for
471 subjects’ brains where 400 of them were used for learning and the remaining
part for testing. In order to get a precise measure of accuracy, the experiments were
repeated 50 times. In both cases most of the results, for prediction of the gender
and for prediction of the age of the subjects, showed slightly higher accuracy in
terms of the predicted sexes (male, female) and distance to real age for the veloc-
ity field based descriptors. The improvement was only half percent thereby it was
summarised as not significant. Thus, the results given in Table 7.10 where the max-
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(a) (b)

(c) (d)

Figure 7.14: Recognition rates of four classification methods for different intensity
expression levels: low (blue), middle (red), high (green), and highest (yellow) for
the different facial expressions representation: (a) manually selected landmarks, (b)
automatically selected landmarks, (c) the deformation fields, and (d) the velocity
fields.

imum improvements of the facial expression recognition based on the velocity fields
are about 1.6% for the LDC (and minimum 0.4% for the QDC), can be considered
as reasonable and somehow comparable to the results of the aforementioned brain
data analysis.

7.5 Summary

In this chapter, a novel facial expression representation has been introduced for
facial expressions modelling and facial expression recognition systems.

The proposed facial expression recognition system generates first the mean face
by the simultaneous implicit group-wise registration of faces with neutral expression
included in the training data set, and this step enables all faces to be mapped to the
common face space using the estimated transformations and thereby alleviating (at
least theoretically) the individual variations such as race, gender, and face shape.
Then, the intra- subject face expression registration to the subject-independentmean
face allows the Statistical Shape Model to be built based on the velocity fields,
and trained model of facial expressions is utilised for subject-independent facial
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expression recognition.
Prior to the facial expression recognition experiments, the qualitative and the

quantitative separability analysis of the different facial expression representations
was conducted to assess whether the SSM based on the velocity fields can capture
different facial expressions. The visual illustrations of the four different SSVs in the
low-dimensional spaces exhibit good clustering properties to distinguish some facial
expressions such as surprise, happiness, and sadness. The computable numerical
criterion calculated for both the separability analysis and the between-expression
separability analysis, confirms the observations from the visual inspections.

The facial expression recognition experiments were conducted using several clas-
sification methods such LDC, QDC, NCC, and NBC. The obtained results show that
the Shape Space Vectors built based on the velocity fields can be considered as an
effective facial expression representation for the Statistical Shape Model. Although,
the highest recognition rates for all classification algorithms was reached by the SSV
based on the manually selected landmarks, the velocity field based SSV is only 1.5%
lower for the LDC classifier. When recognition results achieved using the velocity
fields are compared with the other facial expression representations, it can be seen
that the SSV built on the velocity fields is able to achieve a comparable recognition
rate. Furthermore, referring to the conclusion from the discriminability analysis,
the misclassification errors are linked to the pairs of the expressions with lowest val-
ues of the separability criterion. This makes all the experimental results from both
separability analysis and the recognition experiments consistent with each other.

Future investigations can consider extending the proposed facial expression recog-
nition system to the dynamic sequences. The temporal information estimated by
the velocity fields can lead to improvement of the performance of current systems.
Although it was not investigated in the work described here, it seems that the veloc-
ity field representation can represent other kinds of the expressions such as micro-
expressions that are being investigated extensively recently [99, 126] as long as any
observable pattern(s) can be captured by the intensity-based image registration. As
an illustration, the recent method making an attempt to spot the micro-expressions
proposed by Shreve et al. [126] utilised the optical based image registration algo-
rithm, that may suggest the importance of further investigation of the velocity field
based approach in this particular area.
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Chapter 8

Contributions and future works

This chapter summarises the author’s contributions both on the image registration
algorithms and their applications presented in this thesis. In addition, the possible
extensions and further investigations are proposed and discussed.

8.1 Contributions

The first part of the presented work aimed at the investigation on the deformable
image registration algorithms, with a particular focus on the methods that pro-
duce diffeomorphic transformations. The various diffeomorphic image registration
approaches such as the small step approach and different formulations of the log-
Euclidean framework were validated for medical applications using a wide spectrum
of real data sets. The second part of this thesis looked at the possible usage of the
aforementioned image registration tools for developing more advanced systems for
the motion modelling and the dense deformation field prediction.

The author’s contributions to the methodology of image registration are as fol-
lows:

• In contrast to other works, where the Demon approach with the exponential
update scheme or the log-domain Demon has been investigated on its own,
the presented work considered various novel combinations of the optimisation
methods and deformation field parameterisatons. Thus, the Newton’s itera-
tion method and the steepest descent-like method and their various versions
presented in this thesis can be also considered as new image registration tech-
niques.

• Another contribution described in this thesis, is a robust method for inver-
sion of the deformation field. The presented experimental results showed an
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improved performance in terms of the inverse consistency criterion when com-
pared to other methods of inverting deformation fields especially when the
large deformation has to be inverted. Additionally, this algorithm can be seen
as an extension to the already known procedure, but established via the opti-
misation framework to make it mathematically consistent. This method can
be used in the image registration with the symmetric warping of the input
images (also evaluated in this thesis), and other applications are also possible.
The method for inversion of the deformation field and the symmetric image
registration is published in [96].

• Due to the inherited image registration problems, the quantitative and quali-
tative examination of commonly known algorithms for the pairwise deformable
image registration was conducted in the Chapter 4. The evaluated experiments
included not only different approaches, but also different log-domain formula-
tions of those algorithms and took into account various additional constraints
such as the inverse consistency criterion or the symmetrisation of the image
registration. Moreover, a wide spectrum of medical data was used (MRI of
brains, MRI of pelvic-area data, and CT of lungs) thereby the experimental
section is more comprehensive than those previously reported. The obtained
results leads to the conclusion that the log-Euclidean parameterisation of the
deformation fields can be successfully utilised in the biomedical applications.
The experimental results suggest also that image registration with symmetri-
cal warping of the input images outperforms the classical approaches. Since,
it was shown in this thesis that this symmetrisation can be easily incorporated
to the considered algorithms, the advantages of the previously mentioned pa-
rameterisation can be simply introduced.

• Chapter 5 presented the log-domain implicit group-wise image registration.
Although, in principle it was inspired by the already known group-wise image
registration algorithm, the proposed version benefits from the log-domain pa-
rameterisation of deformation fields to link the various sets of images related to
the different subjects and establishes the common subject space and between-
subject correspondences therein via the stationary velocity fields. Thus, the
proposed method is very efficient because the inverse mappings can be cal-
culated almost without additional cost (by the backward integration of the
velocity fields using the fast scaling and squaring algorithm). Secondly, the
results of performing the proposed log-domain implicit group-wise registration
can be directly used for calculating the vectorial statistics e. g. for analysis
of the inter-subject variability. The group-wise registration using stationary
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velocity field representation is published in [98].

The second part of this thesis made an attempt to utilise the aforementioned
approaches of the diffeomorphic image registration as the principal elements of more
sophisticated systems for the movement (position) estimation of the organs in the
pelvic-area based on the dense deformation field prediction, or facial expression
recognition where the author’s contributions can be enumerated as follows:

• Chapter 6 presented a novel technique for estimation of model-based image
dense deformation fields with an implicit surface representation used as an
effective and robust deformation descriptor. The proposed framework used
the general (subject independent) motion model estimated from the repre-
sentative training data set of MRI data and the segmented shapes, and the
corresponding displacement fields are parameterised via the stationary velocity
fields estimated using a fast and efficient diffeomorphic registration scheme,
formulated in the consistent log-Euclidean framework. Opposite to most of
the current approaches aiming at prediction of the relevant deformations, the
proposed model is subject-independent and furthermore, the log-domain pa-
rameterisation ensures the diffeomorphic properties throughout the prediction
stage. The presented experimental results on the artificial data demonstrated
that with the help of the proposed method, it is possible to predict a dense
displacement field solely from the measured deformations of the implicit sur-
face. Additionally, the experiments conducted with the real data showed that
it is possible to predict the deformation field and therefore the position of the
prostate from shape deformations of the bladder/rectum.

• The second application investigated in Chapter 7 was facial expression recog-
nition using the diffeomorphic image registration framework. The proposed
approach generated first the mean face by the simultaneous implicit group-
wise registration of the faces with neutral expression in the training data set.
Therefore, this step enabled all faces to be mapped to the common face space
using the estimated transformations and thereby alleviating (at least theoreti-
cally) the individual variations such as race, gender, and face shape. Then, the
intra-subject face expression registration to the subject-independent mean face
allowed the Statistical Shape Model to be built based on the velocity fields.
The trained model of facial expressions can be further utilised for subject-
independent facial expression recognition. The results of the facial expression
recognition using the velocity field based face representation are published in
[98].
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Both applications are extensively evaluated based on the real representative data
sets of the three-dimensional MRI volumes and the two-dimensional face images, and
the obtained results indicate the possibility of the practical usability of the proposed
techniques.

8.2 Future works

From the methodological perspective of the presented image registration algorithms,
the computational burden can be noticeably reduced by the implementing these
algorithms based on the graphic processing units (GPU) using the Compute Uni-
fied Device Architecture (CUDA) [44]. Most of the operations embedded in the
presented registration algorithms are the pixel-wise operations, therefore the par-
allel implementation should be possible without significant effort. Similarly, the
efficient implementation should be introduced to the proposed log-domain implicit
group-wise registration where a linear computational requirement with respect to
the number of input images has been experimentally found.

The implicit group-wise registration can be conceivably improved by using some
pre-processing steps either to select the most representative images to be included
in registration or to weight of the impact of the particular images involved in reg-
istration on the final mean. This pre-processing step can be possibly achieved via
some kind of the manifold learning techniques [152].

The quantitative and qualitative analysis of the presented algorithms that was
performed in Chapter 4 can be potentially extended by carrying out experiments for
functional images such fMRI or PET to check the accuracy of the state-of-the-art
algorithms for new types of information fusion. Thus far, only the knowledge about
the structures of organs was provided based on the intensity values for the evaluated
data sets.

The comparison of the diffeomorphic image registration algorithms can also ben-
efit from including other methodologies, that are only mentioned in this thesis such
as the Large Deformation Diffeomorphic Metric Mapping (LDDMM) [15, 14], or
geodesic shooting technique [89, 6, 146].

The deformation field prediction system described in Chapter 6 seems to be a
valuable contribution to the field of the adaptive radiotherapy of prostate. The
limitation of the proposed system in the current implementation such as mono-
modality evaluation where the constructed motion model is then evaluated for the
measurement coming from the same modality data, can be omitted by finding out the
effective measurements that exists in the typical radiotherapy imaging procedures
e. g. CBCT. Although it has not been validated experimentally in this thesis, such
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surrogates as proposed in this work e. g. the implicit surfaces of bladder or rectum
can be perhaps relatively simply extracted (contrary to the direct image registration
process) from the low quality CBCT images, small number of ultrasonic scans, or
CT projection images.

Another possible application that can utilise the proposed motion model is an im-
age registration framework with statistically derived constraints. The work reported
by Albrecht et al. [3], where the Gaussian distribution of the plausible deformation
fields is assumed, can be extended to any pre-learnt probability e. g. following con-
tributions coming from the work on segmentation from noisy images [161]. Indeed,
the similar methodology of driving the updates of the deformation field via specific
path but for the discrete case was proposed recently and is known as the GRAM
algorithm (GRAM stands for geodesic registration on anatomical manifolds) [52].

The usage of the main eigen modes for the parametric implicit shape represen-
tation (introduced in Chapter 6) has a drawback as the sign distance function is
not closed under additive operation of the sign distance function. Although it was
shown that this theoretical inconsistency does not affect the performance of this
shape representation in practice [140], other representations can be used instead.
Pohl et al. [101] introduced the concept of the Logarithm of the Odds (LogOdds)
for a shape representation. The LogOdds has been shown to demonstrate desirable
properties for medical imaging e. g. the representation encodes the shape of an
anatomical structure as well as the variations within that structure are embedded in
a vector space. Thus, the LogOdds representation that forms a shape vector space
and together with the stationary velocity log-domain framework, that provides a
displacement vector space, can establish the dense deformation field prediction sys-
tem in the mathematical consistent formulation and possibly outperform the current
methodology in practical applications.

From the perspective of the facial expressions recognition systems as future in-
vestigation, the system utilising the dynamic high-resolution sequences of facial
expressions [85] can be potentially considered. The temporal information estimated
through the diffeomorphic image registration and parameterised via the velocity
fields can lead to performance improvement of the current system. Although it was
not investigated in the described work, it seems that the velocity field representation
can represent other kinds of the expressions such as micro-expressions that are being
investigated recently [99, 126] as long as any observable pattern(s) can be captured
by the intensity-based image registration. As an illustration, the recent method
making an attempt to spot the micro-expressions proposed by Shreve et al. [126]
utilised the optical based image registration algorithm, that may suggest the impor-
tance of further investigation of the velocity field based approach in this particular
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area.
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Appendix A

Results of registration using
partially synthetic data

The results for the assessment done for the partially synthetic data are presented in
Figure A.3 for the Demon approaches, in Figure A.2 for the Newton’s iteration ap-
proaches, and in Figure A.1 for the steepest-like approaches. These figures show the
evolutions of the several criteria that are chosen to describe the important properties
of the deformation fields over the executed iterations. In addition, the evaluated al-
gorithms utilise two types of gradients, gradient calculated using the original version
of the algorithm that is denoted in figures as org gr and the symmetric gradient that
uses the intensity information from the fixed and moving image at the same time is
denoted in figures by sym gr (Equation 3.22). In the case of image registration with
symmetric warping, only symmetric gradient is calculated (Equation 3.56).

193



(a) (b)

(c) (d)

(e) (f)

Figure A.1: Results obtained for the simulated data set using different types of
the steepest-like approach (Algorithm 1). The convergence studies are shown for:
(a) the average of the SSDI between images, (b) the average of the SSD~ϕ between
estimated deformation field and ground truth deformation field, (c) the average HE,
(d) the average distance to the real Jacobian, (e) the minimum and (f) the maximum
determinant of the Jacobian matrix of the estimated transformation.
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(a) (b)

(c) (d)

(e) (f)

Figure A.2: Results obtained for the simulated data set using different types of the
Newton’s iteration approach (Algorithm 2). The convergence studies are shown for:
(a) the average of the SSDI between images, (b) the average of the SSD~ϕ between
estimated deformation field and ground truth deformation field, (c) the average HE,
(d) the average distance to the real Jacobian, (e) the minimum and (f) the maximum
determinant of the Jacobian matrix of the estimated transformation.
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(a) (b)

(c) (d)

(e) (f)

Figure A.3: Results obtained for the simulated data set using different types of
the Demon approach (Algorithm 3). The convergence studies are shown for: (a)
the average of the SSDI between images, (b) the average of the SSD~ϕ between
estimated deformation field and ground truth deformation field, (c) the average
HE, (d) the average distance to the real Jacobian, (e) the minimum and (f) the
maximum determinant of the Jacobian matrix of the estimated transformation.
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(a) (b)

(c) (d)

Figure A.4: Results obtained for the synthetic data set using different approaches.
The convergence of the average value of: (a) the SSDI between images, (b) the
SSD~ϕ between the estimated transformation and the ground truth transformation,
(c) the HE, and (d) the distance to the true Jacobian.
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Appendix B

Results of facial expression
recognition experiments

This appendix presents the confusion matrices of the remaining classifier methods
for the different features of the Statistical Shape Vectors. The classifiers include
the quadratic discriminant classifier (QDC), nearest neighbour classifier (NCC),
and naive Bayes classifier (NBC) methods for the manually selected landmarks, the
automatically selected landmarks, the deformation fields, and the velocity fields.

Table B.1: Confusion matrix of QDC for the manually selected landmarks
Input/ Anger Disgust Fear Happiness Sadness Surprise
Output (%) (%) (%) (%) (%) (%)
Anger 67.2 7.8 4.2 2.1 18.8 0.0
Disgust 10.9 75.5 7.8 1.6 1.0 3.1
Fear 4.7 8.3 63.5 7.8 9.9 5.7
Happiness 1.6 4.7 11.5 80.2 1.0 1.0
Sadness 17.7 1.6 13.0 1.0 64.6 2.1
Surprise 0.5 1.6 4.2 0.5 0.0 93.2
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Table B.2: Confusion matrix of QDC for the automatic selected landmarks
Input/ Anger Disgust Fear Happiness Sadness Surprise
Output (%) (%) (%) (%) (%) (%)
Anger 63.0 7.3 5.2 2.1 22.4 0.0
Disgust 13.0 67.2 13.0 1.0 1.0 4.7
Fear 7.3 8.9 57.8 9.4 11.5 5.2
Happiness 2.1 3.1 13.0 79.7 0.5 1.6
Sadness 21.9 6.8 12.5 2.1 55.7 1.0
Surprise 0.5 3.1 4.7 0.0 0.5 91.1

Table B.3: Confusion matrix of QDC for the full deformation fields
Input/ Anger Disgust Fear Happiness Sadness Surprise
Output (%) (%) (%) (%) (%) (%)
Anger 44.8 24.5 5.2 3.1 21.9 0.5
Disgust 7.8 79.2 7.3 1.6 3.1 1.0
Fear 2.1 15.1 50.5 10.4 14.1 7.8
Happiness 2.6 16.1 27.1 50.0 2.1 2.1
Sadness 17.7 12.0 17.7 3.1 47.4 2.1
Surprise 0.0 6.3 9.9 1.0 1.6 81.3

Table B.4: Confusion matrix of QDC for the full velocity fields
Input/ Anger Disgust Fear Happiness Sadness Surprise
Output (%) (%) (%) (%) (%) (%)
Anger 42.2 25.0 5.2 6.3 19.3 2.1
Disgust 9.4 75.0 9.4 2.1 1.0 3.1
Fear 3.6 16.7 46.3 12.0 13.5 7.8
Happiness 2.1 13.0 28.1 50.0 3.1 3.6
Sadness 15.1 10.9 17.7 4.2 49.0 3.1
Surprise 1.0 6.8 7.8 1.0 2.1 81.3

Table B.5: Confusion matrix of NCC for the manually selected landmarks
Input/ Anger Disgust Fear Happiness Sadness Surprise
Output (%) (%) (%) (%) (%) (%)
Anger 63.5 6.3 2.6 6.8 19.8 1.0
Disgust 20.3 60.4 5.2 6.3 6.3 1.6
Fear 12.0 3.6 35.9 19.8 17.2 11.5
Happiness 5.7 4.2 8.3 78.1 3.1 0.5
Sadness 27.1 2.6 15.1 6.3 44.8 4.2
Surprise 2.1 2.1 7.8 0.5 1.6 85.9
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Table B.6: Confusion matrix of NCC for the automatic selected landmarks
Input/ Anger Disgust Fear Happiness Sadness Surprise
Output (%) (%) (%) (%) (%) (%)
Anger 68.2 5.7 5.2 5.7 14.6 0.5
Disgust 18.2 60.4 8.3 4.7 5.7 2.6
Fear 17.2 8.3 36.5 17.2 10.4 10.4
Happiness 6.8 3.6 7.3 79.7 2.1 0.5
Sadness 32.8 1.0 18.8 3.1 41.7 2.6
Surprise 1.6 1.6 8.3 0.5 3.1 84.9

Table B.7: Confusion matrix of NCC for the full deformation fields
Input/ Anger Disgust Fear Happiness Sadness Surprise
Output (%) (%) (%) (%) (%) (%)
Anger 61.0 6.3 3.1 7.3 21.9 0.5
Disgust 20.8 48.4 3.6 7.3 16.1 3.6
Fear 12.5 4.2 36.0 22.9 17.7 6.8
Happiness 9.9 8.3 13.0 57.8 8.9 2.1
Sadness 25.5 4.2 6.8 8.3 46.9 8.3
Surprise 2.1 0.5 2.6 1.0 6.8 87.0

Table B.8: Confusion matrix of NCC for the full velocity fields
Input/ Anger Disgust Fear Happiness Sadness Surprise
Output (%) (%) (%) (%) (%) (%)
Anger 60.0 7.3 2.6 6.3 22.9 0.0
Disgust 19.8 49.0 8.9 8.9 13.5 3.1
Fear 11.5 5.7 39.1 21.9 16.1 5.7
Happiness 10.4 8.3 10.9 59.9 7.8 2.6
Sadness 25.5 3.1 4.7 8.9 51.6 6.2
Surprise 2.1 1.0 2.6 1.0 7.3 85.9

Table B.9: Confusion matrix of NBC for the manually selected landmarks
Input/ Anger Disgust Fear Happiness Sadness Surprise
Output (%) (%) (%) (%) (%) (%)
Anger 75.0 6.3 3.1 2.6 13.0 0.0
Disgust 7.8 79.2 4.7 0.5 5.2 2.6
Fear 6.3 2.6 54.2 12.0 20.3 4.7
Happiness 5.2 0.5 5.2 86.5 1.0 1.6
Sadness 21.3 2.6 9.4 1.0 63.5 2.1
Surprise 3.1 2.1 3.1 1.0 3.1 87.5

200



Table B.10: Confusion matrix of NBC for the automatic selected landmarks
Input/ Anger Disgust Fear Happiness Sadness Surprise
Output (%) (%) (%) (%) (%) (%)
Anger 71.4 4.2 7.3 2.6 14.1 0.5
Disgust 10.4 72.9 6.1 1.0 6.3 3.1
Fear 9.9 4.2 54.7 10.9 17.2 3.1
Happiness 3.6 3.1 10.4 80.7 1.0 1.0
Sadness 24.5 1.6 13.0 0.5 59.4 1.0
Surprise 2.6 2.6 4.7 1.0 3.1 85.9

Table B.11: Confusion matrix of NBC for the full deformation fields
Input/ Anger Disgust Fear Happiness Sadness Surprise
Output (%) (%) (%) (%) (%) (%)
Anger 68.2 12.5 5.2 1.6 12.0 0.5
Disgust 8.3 74.0 6.8 6.8 3.6 0.5
Fear 4.2 11.0 52.1 14.6 11.5 6.8
Happiness 3.6 11.0 14.1 69.3 1.6 0.5
Sadness 17.2 4.7 8.9 5.2 63.5 0.5
Surprise 0.0 4.7 5.2 1.0 1.6 87.5

Table B.12: Confusion matrix of NBC for the full velocity fields
Input/ Anger Disgust Fear Happiness Sadness Surprise
Output (%) (%) (%) (%) (%) (%)
Anger 71.4 12.0 2.1 1.0 12.5 1.0
Disgust 7.3 75.5 8.3 4.7 4.2 0.0
Fear 5.7 9.4 53.1 10.9 14.6 6.3
Happiness 4.2 9.4 14.6 68.8 2.1 1.0
Sadness 17.2 3.6 12.5 3.1 63.5 0.0
Surprise 1.6 4.2 4.7 1.6 1.0 87.0
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