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Abstract

Effective representation and recognition of human faces are essential in a
number of applications including human-computer interaction (HCI), bio-
metrics or video conferencing. This paper presents initial results obtained for
a novel method of 3-D facial expressions representation based on the shape
space vector of the statistical shape model. The statistical shape model is
constructed based on the control points of the B-spline surfaces of the train-
ing data set. The model fitting for the data is achieved by a modified iterative
closest point (ICP) method with the surface deformations restricted to the es-
timated shape space. The proposed method is fully automated and tested on
the synthetic 3-D facial data with various facial expressions. Experimental
results show that the proposed 3-D facial expression representation can be
potentially used for practical applications.

1 Introduction
Facial expressions provide important information in communication between people, and
can be used to enable communication with computers in a more natural way. Recently,
some research efforts have been made in facial expression recognition for human-computer
interaction (HCI) systems, video conferencing and augmented reality [15][9]. Most of
the current facial expression representation methods are for 2-D images [14][1] and are
only able to yield a good recognition performance in constrained environments such as
those with proper head pose and lighting. By using 3-D faces instead of 2-D images, the
performance of facial expression recognition can be significantly improved in terms of
robustness and accuracy due to the extra information in the additional dimension [16]. In
this paper, a novel approach is proposed for effective 3-D facial expression representation
based on the shape space vector of the statistical shape model.

The objective of the data representation for expression recognition is to extract the
data characteristics which can be utilised to distinguish different facial expressions. The
representation methods can be generally classified into two categories: feature based and
model based. The feature based approaches rely on global appearance features (for exam-
ple, feature points associated with the Facial Action Coding System (FACS) [14][12]) and
local appearance features (for example, the Local Binary Patterns (LBP) [18]) to provide
most discriminating information of the face. The model based approaches rely on various



models such as deformable templates and statistical models [7][2]. An example for the
former is a deformable template combined with the non-rigid registration method based
on the iterative closest point (ICP) algorithm to achieve facial expression representation
[16], and an example for the latter is the popular active appearance model which uses the
geometric information as well as the texture information of the faces [7].

The method proposed in this paper uses the statistical shape model (SSM) in order
to represent the facial expressions. Whereas most previously proposed methods use data
points directly to build SSM (also known as point distribution model (PDM)), in the pro-
posed method SSM is constructed from the control points of the B-spline surface fitted
to the data points. The proposed method is similar in principle to the active shape model
(ASM). Whereas ASM method models local texture distribution to search for the best
data points to find the match for each model point, the proposed method uses modified
ICP method for this purpose. Unlike the active appearance model (AAM) the SSM only
relies on the shape of the face. Although AAM utilises more information, the SSM is
independent of texture information of the face, and as such can be used when this infor-
mation is missing (e.g. when a 3-D shape is measured using one of the sensors based
on the time-of-flight principle) or the texture information is difficult to interpret due to
varying lighting condition and/or head pose.

The remainder of the paper is organised as follows. Sections 2 and 3 explain the
model building stages with Section 2 devoted to the facial surface fitting method based
on B-splines and Section 3 describing the methodology for building the statistical shape
model based on the control points of B-spline surfaces. This is followed by the model
fitting stage described in Section 4 and the evaluation of the proposed method in Section
5, with the concluding remarks given in Section 6. Finally, the future work is sketched
briefly in Section 7.

2 Spline Facial Surfaces

2.1 B-spline Surfaces
Most of 3-D model based face representation methods use a polygon mesh for repre-
senting the skin surface [21][16]. There are limited number of approaches which use a
B-spline surface instead of a polygon mesh. Hoch et al [10] combined the control points
of the B-spline surface and a FACS system to model the facial variations. Although a
polygon mesh is easy to handle and control, it requires a significant storage space and is
sensitive to the noise embedded in the data. Parametric B-spline surfaces are attractive
because they are capable to efficiently represent 3-D faces and can resist a certain level of
noise. The B-spline surface is given by

f � u � v ��� n � 1

∑
i � 0

m � 1

∑
j � 0

Qi 	 jNi 	 k � u � M j 	 l � v � (1)

where Qi 	 j are the control polygon net, with subscripts i and j being the indices of the
control points, and n 
 m is the number of point in the control polygon net. Ni 	 k and M j 	 l
are the basis functions in the bi-parametric directions u and v. The basis functions are



calculated using following recursive formulae

Ni 	 1 � u ���� 1 If xi � u � xi � 1
0 otherwise (2)

Ni 	 k � u ��� � u � xi � Ni 	 k � 1 � u �
xi � k � 1 � xi � � xi � k � u � Ni � 1 	 k � 1 � u �

xi � k � xi � 1
(3)

and

M j 	 1 � v ����� 1 If y j � v � y j � 1
0 otherwise (4)

M j 	 l � v ��� � v � y j � M j 	 l � 1 � v �
y j � l � 1 � y j � � y j � l � v � M j � 1 	 l � 1 � v �

y j � l � y j � 1
(5)

where the xi and yi are elements of knot vectors.

2.2 Facial Surface Fitting
The purpose of the surface fitting is to calculate the control points of the B-spline surfaces
which represent 3-D data usually by approximating the data in the least squares sense.
Equation 1 can be expressed compactly in matrix notation as

f � u � v ��� β � u � v � Ψ (6)

which is a inner product between a vector of the B-spline basis functions

β � u � v ����� N0 	 k � u � M0 	 l � v ��� N0 	 k � u � M1 	 l � v ����������� Nn � 1 	 k � u � Mm � 1 	 l � v ��� (7)

and a vector of control points

Ψ ��� Q0 	 0 � Q0 	 1 ��������� Qn � 1 	m � 1 � T (8)

In practice, the surface must be sampled, so the parametric variables u and v are replaced
by their samples us and vr, and the corresponding control points calculated in the least
squares sense are given as

Ψ ��� BT B � � 1BT F (9)

where B is the matrix containing all the sampled vectors of the B-spline basis functions

B �������
β � u0 � v0 �
β � u0 � v1 �

...
β � up � 1 � vq � 1 �

�!   " (10)

where F is a vector of data samples

F ��� f0 	 0 � f0 	 1 �������#� fp � 1 	 q � 1 � T (11)

where p and q are the number of the data samples in the u and v directions, respectively.
Additional optimisation methods, such as Newton or Levenberg-Marquardt , can be in-
corporated to optimise the values of the sampled parameter us and vr in order to improve



the fitting result [17]. Figure 1 demonstrates the results of the B-spline surface fitting. The
size of data samples is 70 
 90, and the fitted B-spline surface is bi-cubic and contains
28 
 36 control points. Figure 1 (c) $ (e) show the spatial distribution of data samples
based on the value of the corresponding closest distance. The average closest distance be-
tween the data points and the fitted B-spline surface is 0 � 033mm, which confirms that the
B-spline surfaces are capable of representing 3-D facial data efficiently and accurately.

Figure 1: Results for B-spline surface fitting: (a) rendered 3-D data, (b) Fitted B-spline
Surface, (c)-(e) display the closest distance maps which respectively are not bigger then
0.5, 0.2, and 0.1 mm (bigger the distance the brighter the point)

3 Statistical Shape Model
The statistical shape model also known as point distribution model was first proposed by
Cootes et al [8], and it is one of the most widely used techniques in the model-based data
representation. The model describes shape variations based on statistics of the position of
the corresponding points in the training data set. In the proposed method, the statistical
shape model is built on the corresponding control points of the B-spline surfaces fitted for
the training data set by employing the principal component analysis (PCA).

Figure 2: Mesh transformation from face a triangular mesh to a regular mesh



3.1 Establishing Correspondence
The first step of building a statistical shape model is to establish point-to-point correspon-
dence between each face and a reference face in the training data set. The reference face is
predefined as the first face in the training data set. The correspondence is essential, since
incorrect correspondence can either introduce too much variations or lead to illegal in-
stances of the model [5]. In the proposed method, a synthetic training data set with given
correspondence information is generated using the FaceGenModeller % [19], therefore,
the correspondence estimation for the training data set is not needed.

With the known point-to-point correspondence, the correspondence between control
points of B-spline surfaces can be easily established by fitting the B-spline surfaces to
the corresponding points in the training data set. The B-spline data approximation used
in this method requires the data point to be on a regular mesh. Since the pattern of the
output data from FaceGenModeller % is given as an irregular triangular mesh, the mesh
transformation is necessary. The whole transformation contains three stages: (1) transfor-
mation from the Cartesian coordinate system into the cylindrical coordinate system, (2)
regular mesh interpolation; and (3) transformation from the cylindrical coordinate system
to the Cartesian coordinate system. These steps are described in more detail below, and
the result of the mesh transformation using one of the training data is shown in Figure 2.

1. Transformation from Cartesian coordinates to cylindrical coordinates. The original
training data set is given in the Cartesian coordinates. The cylindrical coordinates
are used to transform the point pattern into regular mesh. The transformation can
be written as

r ��& x2 � y2 (12)

θ � tan � 1 � y
x
� (13)

z � z (14)

where r ')( 0 � ∞ � , θ ')( 0 � 2π � and z ')�*� ∞ � ∞ � . The training data set is represented
by � r � θ � z � instead of � x � y � z � in Cartesian coordinates as shown in Figure 3.

Figure 3: Transformation from Cartesian coordinate system to cylindrical coordinate sys-
tem

2. Interpolation for vertices on a regular mesh defined on θ � z plane in the cylindrical
coordinate system using vertices originally defined on a triangular mesh in x � y � z



coordinate system. Figure 4 shows the projection of the triangular mesh on θ � z
plane for one of the training data. The interpolation can be achieved using one
of the common surface interpolation methods such as radial basis function [6] or
multi-level B-splines [13].

Figure 4: Face projection on the θ � z plane with original triangular mesh and interpolated
regular mesh

3. Vertices transformation from the cylindrical coordinate system to the Cartesian co-
ordinate system. The interpolated regular mesh is then transformed back to the
Cartesian coordinate system. The transformation can be stated as

x � r cosθ (15)

y � r sinθ (16)

z � z (17)

Having the regular mesh pattern, the training data set can be approximated by a B-
spline surface. In this work, the mesh transformation is performed using the InSpeckEM %
software [11]. Figure 5 shows a part of the training data set, which is in the regular mesh
and contains 125 3-D synthetic faces with various expressions.

Figure 5: Part of training data set: (a) texture representation, (b) geometric representation



3.2 Principle component analysis
Using a standard principle component analysis (PCA), each face in the training data set
can be approximately represented in a low dimensional shape vector space [5] instead of
the original high dimensional data vector space. Given a training data set of N faces ,
Qi � i � 0 � 1 �������#� N � 1 � , each containing M corresponding control points Qi ' R3M, where
Qi are the control points of the i � th face. Since the data points for each face in the
training data set are in correspondence, the control points Qi are in correspondence as
well. The first step of the PCA is to construct the mean vector of the control points Q
(representing the mean face) for the training data set.

Q � 1
N

N

∑
i � 1

Qi (18)

Let C be defined as the covariance matrix calculated from the training data set.

C � 1
N

N

∑
i � 1
� Qi � Q �+� Qi � Q � T (19)

By building a matrix X of “centered” shape vectors with Qi � Q as the i � th column of
the matrix X , the covariance matrix C is defined as

C � X , XT (20)

where matrix C has 3M rows and columns. Since the number of faces N in the training
data set is smaller than the number of control points, the eigen decomposition of matrix
C -.� XT X is performed first. The first N largest eigenvalues λi � i � 1 �������#� N � and eigenvec-
tors pi � i � 1 �������#� N � of the original covariance matrix C are then determined respectively
by

λi � λ -i (21)

pi � X , p -i/
X , p -i / (22)

where λ -i and p -i are respectively eigenvalues and eigenvectors of the matrix C - . By using
these eigenvalues and eigenvectors, the control points of any shape in the training data set
can be approximately represented using a linear model of the form0

Q � Pb � Q (23)

where the so called “Shape Matrix” P �1( p1 �������#� pK 2 is a 3M 
 K matrix of K eigenvectors
associated with the first K largest eigenvalues “modes of variation” of matrix C. The
shape space vector b controls contribution of each mode of variation in the approximation
surface [5]. Most of variation can usually be modeled by a small number of modes K.
Equation 23 can be used to generate new examples of faces by varying the shape space
vector b with suitable limits, so the new faces will be similar to those in the training data
set [8]. The suitable limits are typically defined as� 3 & λi � bi � 3 & λi (24)

Figure 6 shows the effects of varying the first three elements of the shape space vector.



Figure 6: Effects of varying the first three shape space vector b1, b2 and b3

4 Model Fitting
Provided that the faces in the training data set are a fair sample from the population of
faces to be represented by the model the statistical shape model can be used to represent
faces not present in the training data set. In the proposed method the model fitting includes
estimation of the shape and pose parameters. Whereas the pose parameters consists of
translation vector, rotation matrix and a scaling factor the shape parameters are defined by
the shape space vector. The algorithm starts with aligning data and the model mean face
using similarity transformation. Subsequently model refinement continues by iteratively
estimating the shape space vector and the pose parameters.

4.1 Similarity Registration
The iterative closest point (ICP) method can be used to achieve similarity registration
between the new faces and a deformed model. The ICP [4] is a widely used point-based
surface matching algorithm. The whole procedure iteratively refines the alignment by
alternately choosing corresponding points and finding the best similarity transformation
that minimizes a cost function based on the distance between the corresponding points.
The cost function is defined by

E � Np

∑
i � 1

/
p -i �3� sRpi � T � / 2 (25)

where p -i and pi � i � 1 ��������� Np � are respectively the corresponding vertices from the model
and the re-meshed data face represented as 3 
 1 vectors. R is a 3 
 3 rotation matrix, T



is a 3 
 1 translation vector and s is a scaling factor. Following the algorithms in [3][20],
R, T and s are calculated as follow:

1. From the point sets, 4 pi 5 and 4 p -i 5 � i � 1 �������#� N � , compute the mean vectors, p and
p - , using

p � 1
N

N

∑
i � 1

pi (26)

p - � 1
N

N

∑
i � 1

p -i (27)

2. Calculate qi and q -i � i � 1 �������#� N � using

qi � pi � p (28)

q -i � p -i � p - (29)

3. Calculate the matrix H using

H � N

∑
i � 1

q -iqT
i (30)

4. Find the SVD of H
H � UΣV T (31)

5. Calculate
X � UV T (32)

6. Compute the rotation matrix using

R � UDV T (33)

D ��� I If det � X ��� � 1
diag � 1 � 1 ��� 1 � If det � X ����� 1 (34)

7. Find the translation vector and scaling factor using

s � tr � qq - T R �
tr � qqT � (35)

T � p - � sRp (36)

where q ��( q1 ��� � � � qN 2 and q -6��( q -1 ��� � � � q -N 2 are 3 
 N matrices.

In Equation 33, matrix D is a ”safeguard” which makes sure the calculated matrix R
is a rotation matrix, and not a reflection in 3-D space. The similarity registration involves
two steps: (i) estimation of correspondence, based on the closest point, between points
from the new face and the points from the current model and (ii) computation of the pose
parameters. The outline of the similarity registration algorithm is given in Algorithm 1.
Figure 7 shows the result of similarity registration. The mesh and rendered surface indi-
cate the new face and the model, respectively.



Algorithm 1: Similarity Registration Algorithm
input : vertices P from the new face and vertices P - samped from the current

model surface

output: transformed, using estimated similarity transformation, vertices P

initialization :
set threshold τ � τ 7 0 � for terminating the iteration, k � 0, d0 � inf, e � τ ;

while e 8 τ do
k � k � 1;

Compute correspondence pi 9 p - j : i ; with j � i ��� argmin j < 1:Np

/
pi � p - j / ;

Compute the pose parameters : R, T , and s using equations 26 - 36;

Transform the points from the set P using similarity transformation
pi � sRpi � T and update the set P accordingly;

Measure the misalignment dk between corresponding points in the new data
point set P and model point set P - ;
e � dk � 1 � dk ;

end

Figure 7: Results of the similarity registration: (a) before the registration, (b) after the
registration

4.2 Model Refinement
With the data registered to the current model using similarity transformation, the objective
of the model refinement is to deform the model so it is aligned to the transformed data
points. To estimate optimal pose and shape parameters the whole process has to iterate.
This can be seen as a hybrid of the ICP method and least squares projection onto the
shape space. The least squares projection onto the shape space can provide the shape
space vector

0
b which controls the deformation of the model and can be used as a feature

vector for interpretation of facial expression of the new faces. The shape space vector
0
b

for the new face is calculated as 0
b � PT � Qd � Q � (37)



where Qd ' R3M is a vector of M 3-D control points representing the new face. The mean
vector of control points Q and shape matrix P are obtained from Equations 18 and 22.
The details of the algorithm are explained in Algorithm 2.

Algorithm 2: Model Refinement Algorithm

input : The point set P of a new face, and the face model: P, Q

output: Estimate of the shape space vector
0
b

initialization :
set threshold σ � σ 7 0 � for terminating the refinement,

0
b0 � 0, k � 0 ;

while
/ 0
bk � 0bk � 1

/ 8 σ do

Calculate B-splines control points of the deformed model:
0
Q � P

0
bk � Q ;

Build the point set P - from the deformed model surface, defined by
0
Q, using

equation 6 with uniformly sampled parametric variables u and v ;

Perform similarity registration between points sets P and P - using
Algorithm 1 ;

Calculate the control points Qd for P on the transformed new face using
method described in section 2.2 ;

k � k � 1 ;

Project the control points Qd of the transformed new face onto the shape space0
bk � PT � Qd � Q � ;

end

Examples of the results of the described algorithm are shown in Figure 8 and 9. It
shows that the deformed model is well aligned with the new face in Figure 8. The corre-
sponding distributions of the closest point distance before and after the model fitting are
shown in Figure 8, and the maximum closest distance is reduced from above 10mm to
around 3mm with average closest distance of 2 � 33mm.

Figure 8: Results of the model fitting: (a) model mean face, (b) new face, (c) deformed
model



Figure 9: Closest distance as a function of point position: (a) before the model fitting, (b)
after the model fitting

5 Experiments and Results
In this section, a selection of results based on different experiment configurations are pre-
sented to demonstrate the properties of the described method. In the first two experiments
the training data set of 100 faces is used to build statistical shape model. In this data
set 60% of faces are of the same individual with 7 different expressions, namely: anger,
disgust, fear, surprise, smile closed, smile open, and sadness. The exact makeup of the
expressions, including number of faces with the specific expression and level of the ex-
pression, is chosen randomly. The remaining 40% of the training data set consists of faces
of 4 people of different ethnic origin with randomly selected expressions. For the third
and final experiment the training data set has been extended by further 26 faces of two
different individuals with randomly selected expressions from the ”smile” and ”anger”
categories. Figure 5 shows a part of this training data set with five different facial expres-
sions.

For the tests three different face categories are used. In the first experiment the same
face is used as in the first 60% of the initial training data set, but with the expressions
not present in the training data set. In the second experiment four different faces are used
showing different level of anger expression. These faces were not included in the training
data set. In the third experiment the extend training data set is used, with 126 faces in
total, to produce new statistical shape model. In this case the test was carried out using
the same faces as used in the additional 26 faces training subset but with face expressions
not present in the training data set.

All the faces were generated using FaceGenModeller % , and Figure 10 shows the 3-D
mean face and superposition of the corresponding five principal 3-D eigenfaces with the
mean face, obtained from the training data set. These five eigenfaces cover around 99%
variation of the training data set.



Figure 10: Face model: (a) mean face , (b)-(f) superposition of the mean face with first
five eigenfaces

For the results obtained from the test performed on the same face type with differ-
ent facial expressions figure 11 shows the 16 test faces. These faces are seen to have 4
different facial expressions, namely: anger, disgust, fear and smile, and each facial ex-
pression is seen to consist of four different degrees of expressiveness. Figure 12, shows
the first three elements of the 5-dimensional shape space vectors b ��� b1 �������#� b5 � T calcu-
lated, using algorithm 2, for each face from figure 11. From Figure 12, it is seen that the
shape space vectors corresponding to different facial expressions are well separated. Fur-
thermore, the different degrees of expressiveness are indicated by the positions of shape
space vectors along a line which orientation is defined by the expression type.

Figure 11: Faces representing different expressions for the same individual: (a) anger, (b)
disgust, (c) fear, (d) smile



Figure 12: Representation of the first three elements of the shape space vectors for the
faces from the Figure 11

For the results obtained from the test performed on different ethnic faces with the
same expression of anger, Figure 13 shows the 16 test faces. These faces are seen to
belong to 4 different ethnic groups, namely: African, European, Southeast Asian, and
Indian, and the four faces in each group are seen to express a different degree of anger.
Figure 14 shows the first three elements of the 5-dimensional shape space vectors b calcu-
lated for all test faces shown in figure 13. From Figure 14, it is seen that the shape space
vectors are again well separated with the shape vectors corresponding to the same face
located approximately on the same line. All the lines seem to have, in this case, the same
orientation.

Figure 13: Faces representing the anger expression for individuals from different ethnic
origin: (a) African, (b) European, (c) South East Asian, (d) Indian



Figure 14: Representation of the first three elements of the shape space vectors for the
faces from the Figure 13

For the results obtained from the test performed on different ethnic faces with anger
and smile expressions figure 15 shows the 16 test faces. These faces are seen to belong to
two different ethnic groups with particular expressions, namely: African-Anger, African-
Smile, European-Anger and European-Smile, and each facial expression is seen to consist
of four different degrees of expressiveness. Similarly, Figure 16 shows the first three
elements of the 5-dimensional shape space vectors b. From Figure 16, it is seen that the
shape space vectors associated with the same type of facial expression from African and
European group are positioned in similar orientation in the shape space, and different type
of facial expression from African and European groups are well separated.

Figure 15: Faces representing the anger and smile expressions for individuals from two
ethnic groups: (a) African-Anger, (b) African-Smile, (c) European-Anger, (d) European-
Smile



Figure 16: Representation of the first three elements of the shape space vectors for the
faces from the Figure 15

6 Conclusions
In this paper, a method for a compact representation of 3-D faces has been presented. The
novel aspects of the method include the use of B-splines for surface fitting of whole 3-D
faces; the development of the B-spline control points based SSM, and the idea of using
low dimensional shape space vectors as an efficient descriptor of facial expressions and
facial surface deformations.

The effectiveness of the proposed method has been demonstrated by tests carried out
on three synthetic data sets. It is shown that different types of facial expressions pro-
duce well separated low dimensional shape space vectors. The faces from different ethnic
groups with the same facial expression produce shape space vectors which are also well
separated, and that facial expressions belonging to the same category (with different de-
grees of expressiveness) are indicated by the positions of shape space vectors along the
same direction. These results indicate that the proposed method can offer efficient and
effective 3-D face representation which can handle large face variations and subtle ex-
pression differences.

7 Future work
This paper describes initial results and as such they are not comprehensive or complete.
There is more work to be done to evaluate the proposed methodology as well as further
develop the algorithm. The most obvious omission in this paper is lack of results obtained
for real data. Although some results for real data have been obtained, they are very limited
and therefore authors decided not to include them in this paper. Recently authors acquired
a 3-D facial expression database (BU-3DFEDB) of real human faces [22]. This will be
used to evaluate further the proposed methodology. Authors also plan to investigate to
what extend the database of synthetic faces can replace the database constructed from real
faces. This would be important for practical applicability of the method as construction of
3-D databases is still an expensive proposition. The authors also plan to extend the method
by adopting a multi-resolution registration method, possibly by using one of subdivision
schemes, to improve robustness and speed up computation time. Further improvements
of the method will probably include building a hierarchical system where firstly the face



type is decided upon and subsequently the facial expression is searched using a statistical
shape model build from the facial expression database constructed for a specific face type.
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