
An Evolutionary Approach for Learning Attack Specifications in Network
Graphs

Virginia N. L. Franqueira
University of Twente

Enschede, The Netherlands
franqueirav@ewi.utwente.nl

Raul H. C. Lopes
Brunel University
London, England

raul.lopes@brunel.ac.uk

Pascal van Eck
University of Twente

Enschede, The Netherlands
p.a.t.vaneck@ewi.utwente.nl

Abstract

This paper presents an evolutionary algorithm that
learns attack scenarios, called attack specifications, from a
network graph. This learning process aims to find attack
specifications that minimise cost and maximise the value
that an attacker gets from a successful attack. The attack
specifications that the algorithm learns are represented us-
ing an approach based on Hoare’s CSP (Communicating
Sequential Processes). This new approach is able to repre-
sent several elements found in attacks, for example synchro-
nisation. These attack specifications can be used by network
administrators to find vulnerable scenarios, composed from
the basic constructs Sequence, Parallel and Choice, that
lead to valuable assets in the network.

Keywords: AI in Security and Information Assurance,
Evolutionary Computing

1 Introduction

This paper presents an evolutionary approach for learn-
ing attack specifications for network attacks involving
synchronisation, coordination, concurrency, distribution,
choice, and sequencing of attack steps. To the best of our
knowledge, this is the first time an approach permits attack
specifications with such a level of expressiveness to be gen-
erated by machine.

The idea of attack specifications comes from the specifi-
cation of parallel programming. It is based on the notion of
communicating processes (CSP: Communicating Sequen-
tial Processes by Hare [11, 12]). We view an attack step
as a process with input and output ports which allow its
composition with other attack steps. The resulting attack
specification, output of the algorithm, is a possible attack
scenario in a network topology represented as a graph. In
our network graph, nodes represent computers and arcs
represent communication channels. A node can have value

associated, representing the benefit gained by the attacker in
compromising that node, and sets of nodes can have added
value, greater than the sum of individual values. An arc has
a cost representing the level of protection of the communi-
cation channel, i.e. it represents the difficulty incurred by
the attacker in traversing the arc.

Applied to attacks, synchronisation happens in two lev-
els. The first level of synchronisation is one which assures
that attack steps are not disjoint effort but rather a syn-
chronised composition of attack steps to achieve attackers’
goals. The second level of synchronisation is one which is
required in some attacks. For example, a Denial of Service
attack only happens if the there is a synchronism in over-
loading a resource, service or communication channel. In
this case, there is what we call a point of synchronisation in
the overloading process which requires, as input, the con-
vergence of outputs from previous attack steps.

Coordinated attacks [8, 5] form a class of attacks which
involve a collusion of attackers and one or several targets.
Additionally, it can also involve the coordination of re-
sources to launch an attack. Thus, coordination is directly
related to synchronisation achieved by composition. It is
also related to distribution, when resources and/or actors are
scattered.

Choice happens in attacks when the attacker has several
possibilities, for example, by acquiring access to a collec-
tion of computers, and chooses one option that better fits his
goals. In this case we assume the attacker (representing the
environment) makes a deterministic selection.

Sequencing is a basic concept for modelling attack sce-
narios in steps. It allows the breakdown of attacks in terms
of organised actions.

1.1 Contribution of the paper

The contribution of this paper is twofold. First, the ap-
proach we describe allows vulnerability assessment of a
network, represented as a graph. We believe that the output
attack scenarios returned by the algorithm can be useful for

1
Technical Report TR-CTIT-07-40



a system administrator to gain awareness of potential means
that attackers have to reach valuable targets.

Second, the evolutionary algorithm on its own is a con-
tribution since it deals with multiple solutions but, unlike
traditional Genetic Algorithm and Ant Colony Optimisation
for example, the number of solutions under consideration is
not limited to the size of the population or the number of
ants. The algorithm relies on the analogy of the evolution of
species that allows a population to grow until its individuals
start to compete for resources when unfit individuals start
to die. Most important, the algorithm potentially applies to
other optimisation problems, like the Travel Salesman Prob-
lem, as well, provided a representation of the solution, and
a fitness function.

1.2 Organisation of the paper

The paper is organised as follows. First, related work is
reviewed in Section 2. Second, we present our evolutionary
approach in Section 3 in terms of solution representation
(called CSP), edition operations over CSPs and the algo-
rithm itself. Third, we evaluate our approach in Section 4,
using a motivating example. Finally, we draw conclusions
and point to future work in Section 5.

2 Related work

Vulnerability assessment and attack modelling has been
extensively researched using techniques such as trees and
graphs. However, to our knowledge, none of these ap-
proaches permit the modelling of synchronism between at-
tack steps, required for representing for example distributed
attacks, such as DoS.

Fault Tree, Attack Tree and Event Tree (e.g. [10]) refine
a tree root representing an attack goal or known vulnerabil-
ity. These trees cannot represent cycles, cannot represent
order between nodes and cannot model parallelism.

Attack graphs represent attack steps as nodes, and step
transitions as arcs. Phillips and Swiler [19] uses near-
optimal shortest path applied to attack graphs to assess the
vulnerability of targets. Although their approach permits
the modelling of attack step cycles, it does not permit the
modelling of simultaneous steps performed by an attacker,
as the authors pointed out themselves.

Sheyner et al. [21] generate attack graph using a sym-
bolic model checker. This process requires as input a model
of the network represented as a finite state machine and a
safety property to be satisfied by the model. Attack graphs
are generated from all possible counter-examples, if the
property is not satisfied by the model. The approach does
not consider any form of parallel attacks.

Dacier et al. [4] propose privilege graphs where nodes
are possible attack initiators and possible targets, and arcs

are vulnerabilities which allow the acquisition of privileges
for a node-initiator towards a node-target. They trans-
form a privilege graph to Petri-net and then derive a state
graph, which is used for vulnerability assessment in terms
of MTTF (Mean Time To Failure), i.e. mean time for an
attacker to reach a target. The assessment is performed in
terms of attack step and does not permit the composition of
attack scenarios.

Chinchani et al. [3, 2] present challenge graphs. Nodes
are entities which provide information or capabilities, rep-
resented by keys. Arcs are channels of interaction, which
have key-challenges and costs attached. The set of vertices
which reaches the set of target with minimum cost indicates
vulnerable attack scenarios. Their graph can model collud-
ing attackers, i.e. more than one attacker aiming the same
target. However, it cannot model synchronised attack steps.

Gorman et al. [7] uses a graph approach to represent
internet autonomous systems (i.e. key internet nodes), as
nodes, and their connections, as arcs. They analyse security
in terms of statistical parameters and infection propagation,
using different attack and defence strategies. Their assess-
ment of vulnerability is based on investment with defence.
Gregg et al [9] measure attack effectiveness using Proba-
bility of DoS computed as a function of timeout settings,
number of connections allowed, and rate of attack requests.
Like Gorman et al., they draw conclusions in a quantitative
way only, without interest on attack scenarios.

Petri nets allow the modelling of the two levels of syn-
chronisation mentioned in Section 1 the first is achieved by
net soundness, and the second, by combining structures like
AND-split and AND-join [23, 14] in a net. Petri Nets have
the same level of expressiveness as our approach, since they
can represent all the elements we mentioned as required
for modelling attacks. However, we suspect that the effort
to specify complex attack scenario involving many steps is
higher in Petri Nets compared to our approach due in part
to a substantial increase in net length.

CSP (Communicating Sequential Processes) by
Hoare [11, 12] and CCS (Calculus of Communicating Sys-
tems) by Milner [16], have been traditionally used to model
concurrent processes. However, recently there has been an
increasing interest in using them, and Pi-calculus[17] as
well, for modelling for example cryptographic protocols
using the Dolev-Yao [6] methodology with CCS [15], and
other protocols, like non-repudiation between parties, using
CSP [20].

3 Our evolutionary approach

We use a system of pools and credits to simulate the evo-
lutionary process of species, where species are allowed to
grow until their individuals start to compete for resources
to survive. Our approach has the following characteristics

2
Technical Report TR-CTIT-07-40



which represent a benefit over traditional local search op-
timisation methods, such as Genetic Algorithm, Simulated
Annealing and Ant Colony Optimisation, for example: (i)
the size of the solution population is flexible and depends
only on the number of credits which are consumed in the
reproduction process, (ii) a solution (i.e. a CSP) is not dis-
charged after it has reproduced, increasing the chances of
producing future good quality offsprings, and (iii) individ-
uals have second chances of survival, if they have proofed
themselves worthy, i.e. CSPs receive recharges of credits if
they have value. Thus, the algorithm uses three CSP pools,
named Speculation Pool (SP), Attack Pool (AP) and Dy-
ing Pool (DP). Figure 1 shows the life-cycle of a CSP based
on those pools.

CSP is
created

CSP generates
offsprings

CSP consumes
credit

CSP is close to
a target

CSP has 
value > 0

CSP generates
offsprings

CSP is 
deleted

CSP consumes
credit

CSP for 
output

+credit

-credit

credit>=0

credit<0
SP

DPAP

yes no

no

-credit

credit>=0

credit<0

yes

Figure 1. Life-cycle of a CSP

After a CSP is created, it receives credits and is allowed
to mature in the SP. Each time a CSP is edited, its amount of
credit either decreases, if the generated offspring has fitness
worse than its father, or remains unchanged, in the opposite
case. This decrease is proportional to the complexity of the
generated offspring. Thus, if in order to generate the off-
spring, it is necessary to traverse the father CSP structure
then the complexity is given by the number of arcs in the
father CSP. Otherwise, the complexity is one. The CSP re-
mains in the SP until its credits have finished. When this
happens, there are two possibilities. Either the CSP has
reached a target (i.e. CSP has value different than zero),
and in this case it is moved to the AP, or it has not reached a
target, and in this case it is moved to the DP. In the AP, the
CSP is allowed more credit to improve its complexity. By
the end of this AP credits, the CSP is sent to output. In the

DP, the CSP is checked to see whether it is within a distance
(according to a threshold parameter) to a target. If “yes”, its
SP credits are restored and it is sent back to the SP. If “no”,
the CSP is deleted. A CSP is only allowed to return to SP
from DP once.

3.1 Solution representation

A solution for the evolutionary algorithm is represented
as a CSP attack specification, called CSP. Our CSP is based
on Hoare’s CSP [11, 12]. Thus, an attack CSP is a composi-
tion of arcs from a network graph, similar to a composition
of processes. Thus, an arc is regarded as a process in our
CSP.

Definition 1 (A network graph.) A network graph is a tu-
ple:

G = (N,A, I, α, β), (1)

where N is a set of nodes, representing computers, and A is
a set of arcs, representing communication channels, I is an
initial set of nodes the organisation has under suspicion or
wants to investigate, α : A → N is a function that assigns
cost to arcs, and β : 2N → N (where 2N is the set of all
sub-sets of N ) a function that assigns value to sets of nodes.
We call this β function Added Value.

Definition 2 (CSP.) A CSP is: (i) an arc ∈ A from a net-
work graph, represented as Arc(a, b), or (ii) a sequen-
tial composition of a pair of CSPs, Seq[CSP1, CSP2],
or (iii) a parallel composition of a pair of CSPs,
Par[CSP1, CSP2], or (iv) a choice composition of a pair
of CSPs, Choice[CSP1, CSP2].

Definition 3 (CSP Head Set and Tail Set.) The head of
an Arc(a, b) is a and its tail is b. The head set of a CSP1 is
the subset of nodes h in CSP1 such that no node in h is tail
of any arc in CSP1. The tail set of a CSP1 is the subset of
nodes t in CSP1 such that no node in t is head of any arc
in CSP1.

Definition 4 (Sequential composition.) A sequential com-
position Seq[CSP1, CSP2] can happen when the tail set
of CSP1 is a subset of the head set of CSP2. This com-
position means that CSP1 happens and, when completed,
CSP2 follows.

Definition 5 (Parallel composition.) A parallel composi-
tion Par[CSP1, CSP2] can happen between any pair of
CSPs. It means that CSP1 and CSP2 start simultaneously.

Definition 6 (Choice composition.) A choice composition
Choice[CSP1, CSP2] can happen between any pair of
CSPs. It means that CSP1 or CSP2, but not both, is se-
lected deterministically by the attacker, i.e. by the environ-
ment.

3
Technical Report TR-CTIT-07-40



Definition 7 (Target.) A target is a set of nodes from a
CSP1’s tail set that has added value greater than a given
threshold.

Definition 8 (Attack.) An attack is a CSP1 that starts on
a node ∈ I and ends on a target.

Definition 9 (CSP Value.) The value of a CSP is the added
value of its tail set. If the CSP tail set has no added value,
its value is zero.

Definition 10 (CSP Cost.) The cost of a CSP is the sum of
costs of its arcs.

Definition 11 (CSP Fitness.) The fitness F of a CSP is:

F = CSPV alue− CSPCost (2)

3.2 Edition operations

Edition operations are selected based on a probabilistic
distribution function, among a set of five possible opera-
tions.

The possible edition operations are described next. Edi-
tions always generate new offsprings, i.e. the original CSP
remains as it is.

1. New atomic CSP: A new CSP, consisting of one arc,
can be created according to two different options. The
first option is: the created Arc(a, b) can have node a
chosen from the initial set I . In this case, the CSP
will grow towards a target. The second option is: the
created Arc(a, b) has node a 6∈ I and node b with no
added value. Thus, the CSP will grow both towards a
node ∈ I and towards a target.

2. Arc extension: This edition involves two steps. The
first step is the selection of a CSP to be extended. This
selection happens according to one of the following
criterion: (i) CSP with smallest cost, (ii) CSP with
highest value, (iii) CSP with highest fitness, or (iv) ran-
dom. The second step is the selection of an arc to be
added to the CSP. Among all the arcs of the graph, and
depending on the type of CSP (i.e. if it grows forwards,
backwards or both), an arc that can be composed with
the CSP head set or tail set is selected following the
four criteria described before.

3. Seq composition: This edition involves a pair of
CSPs: CSP1 and CSP2. First, as described on the
previous edition, CSP1 is selected. Second, a list of
candidate for CSP2 is generated using the following
criterion: the tail set of CSP1 needs to be a subset of
CSP2 head set. Third, one CSP is selected randomly
from the list of candidates. Finally,the sequential com-
position Seq[CSP1, CSP2] is generated with selected
CSP1 and CSP2.

4. Par composition: This edition involves a pair of
CSPs: CSP1 and CSP2. In this case, both CSPs are
selected as described in edition “Arc extension”. The
only restriction imposed in this case is: if both CSPs
have value greater than zero (Definition 9), then both
tail sets need to be disjoint. A the parallel composition
Par[CSP1, CSP2] is generated with selected CSP1

and CSP2.

5. New Par CSP: This edition creates a CSP1 which is
the Par composition of several arcs selected from the
target nodes. This selection can be either: random, by
best value (i.e. the highest value is selected), or by
preference for best value (i.e. the higher values have
more chance to be selected).

6. Parallel join: This edition extends an existing CSP1

with a new CSP2. A CSP2 with head set equal to
CSP1 tail set is created, if CSP1 grows forwards. The
sequential composition Seq[CSP1, CSP2] is gener-
ated in this case. A CSP2 with tail set equal to CSP1

head set is created, if CSP1 grows backwards (or both
forwards and backwards). The sequential composition
Seq[CSP2, CSP1] is generated in this case.

All the editions enumerated above apply to CSPs in SP.
However, only the “Arc extension” edition apply to CSPs in
AP.

3.3 The algorithm

The evolutionary algorithm consists of two main phases:
the reproduction phase and the retirement phase. In the for-
mer, editions occur creating new generations of CSPs. In
the latter, CSPs are selected to be deleted, for output and
for a new stage of reproduction. An algorithm iteration,
called cycle, also has credits (provided as parameter) which
increases each time a CSP is edited. A cycle can gener-
ate several possible attack specifications as output (from
the AP). Figure 2 presents the main algorithm, where cy-
cle credits sums credits consumed in the reproduction phase
and MAX credits is a parameter. Figure 3 presents the al-
gorithm for the reproduction phase, where nSP and nAP are
parameters, and Figure 4 presents the algorithm for the re-
tirement phase.

SP = {}, AP = {}, DP = {}
FOR n cycles with MAX_credits each

reproduction phase
IF cycle_credits > MAX_credits

retirement phase

Figure 2. Main algorithm

4
Technical Report TR-CTIT-07-40



FOR nSP editions
FOR each CSP in SP

select edition
perform edition
update credit

FOR nAP editions
FOR each CSP in AP

perform edition (arc extension)
update credit

Figure 3. Reproduction phase algorithm

FOR each CSP in SP with credit<0
IF CSP Value > 0

restore credit
move to AP

ELSE move to DP

FOR each CSP in AP with credit<0
output CSP

FOR each CSP in DP
IF tail set close to target (threshold)

restore credit
move to SP

ELSE delete CSP

Figure 4. Retirement phase algorithm

4 Analysis of our Evolutionary Approach

4.1 Motivating example: Denial of Ser-
vices by E-mail Worm.

This example of a Denial of Services (DoS) attack by an
e-mail worm was collected and adapted from Chinchani et
al. [3, Section 4.2]. Figure 5 shows a graph representation
of the attack in four stages.

In the first stage, an insider (node i denoting the insider
computer) sends an e-mail to a coworker (node n52) con-
taining an attachment, for example requesting review of an
attached document. When the coworker opens the attach-
ment, his computer gets contaminated, causing the original
e-mail (worm) to be replicated and sent to e-mails contained
in his address book. Thus, the e-mail worm from node n52
contaminates node n61 connected to a different mail server
inside the Local Area Network (LAN), in stage 2. The same
process happens on stage 3, where node n61 contaminates
nodes n62 and n63. In stage 4, we see the DoS taking place
with nodes n61, n62 and n63 flooding the mail server’s ca-
pacity (e.g. bandwidth) (node ms2) with e-mails arriving
within a short period of time, i.e. synchronised e-mails.

4.2 CSP representation of the example

Figure 6 shows the CSP attack specification which cor-
respond to the DoS example.

The DoS on the target happens because arcs
Arc(n61,ms2), Arc(n62,ms2) and Arc(n63,ms2) are
triggered together due to the semantics of the parallel com-
position. Thus, this attack involves one point of synchroni-
sation in its last stage. This point is represented in the CSP
specification by the last Par inside a Seq. It means that
Par[Arc(n61,ms2), Arc(n62,ms2), Arc(n63,ms2)]
will only start after the previous Par has completed, and
that Arc(n61,ms2), Arc(n62,ms2), and Arc(n63,ms2)
will start simultaneously.

4.3 Learning the example scenario

We consider a default network topology, adapted from
Suehring [22] and illustrated in Figure 7, to construct a net-
work graph to be used as input to the evolutionary algo-
rithm. The network topology represents an organisational
network that has a router which interfaces internal and ex-
ternal traffic, and is connected to four firewalls. Firewalls
1 and 2 interface with LANs 1 and 2 respectively, and fire-
walls 3 and 4 interface with servers 1 and 2 respectively.

router

firewall2firewall1
mail server1
web server1

pc
mac
linux
printer

INTERNET

pc
mac
linux
printer

firewall3 firewall4
mail server2
web server2

SERVERS1LAN1

LAN2 SERVERS2

communication 
channel
backbone

Figure 7. Default network topology adapted
from Suehring [22]

We have implemented the algorithm in Haskell and per-
formed a number of tests. We found that the algorithm is
able to generate the example CSP, using the following in-
put.

• An input network graph with up to 2000 nodes: we
used a graph with 3 LANs (LAN1, LAN2 and LAN3).
Nodes in LAN1 (nodes 1-) are connected to mail server

5
Technical Report TR-CTIT-07-40



i

insider

n53

n54n52

mail server 

ms1

n61

n62

ms2

n63

n64

n65

mail server 

i

insider

n53

n54n52

mail server 

ms1

n61

n62

ms2

n63

n64

n65

mail server 

i

insider

n53

n54n52

mail server 

ms1

n61

n62

ms2

n63

n64

n65

mail server 

i

insider

n53

n54n52

mail server 

ms1

n61

n62

ms2

n63

n64

n65

mail server 

point of 
synchronization

1st stage: insider sends e-mail with worm 2nd stage: worm reproduces

3rd stage: worm reproduces 4th stage: contaminated nodes cause DoS

Figure 5. Denial of Services by E-mail Worm

CSP = Seq[Seq[Arc(i,ms1),Arc(ms1,n52)], (stage 1)
Seq[Arc(n52,ms1),Arc(ms1,ms2),Arc(ms2,n61)], (stage 2)
Par[Seq[Arc(n61,ms2),Arc(ms2,n62)],Seq[Arc(n61,ms2),Arc(ms2,n63)]], (stage 3)
Par[Arc(n61,ms2),Arc(n62,ms2),Arc(n63,ms2)]] (stage 4)

Figure 6. CSP representing the attack scenario shown in Figure 5

represented by node 91, nodes in LAN2 (nodes 2-) are
connected to mail server 92 and nodes in LAN3 (nodes
3-) are connected to mail server 93.

• The cost of each type of communication channel: this
cost represents the difficulty the attacker will have to
traverse the channel, thus it represents its level of pro-
tection provided. For example a ssh communication is
more secure than a smtp connection and, consequently,
the ssh cost should be higher than the smtp cost. In this
case, the cost of the smtp connection for the example
is set to 10.

• The initial set: our initial set is node 12 in LAN1.

• The added value of targets: our target is node 93.
To simulate three attacking nodes (representing the
limit of simultaneous connections that mail server 93
can handle) to node 93, we set the added value to
(1000.0, 92, 92, 92).

Figure 8 shows an output sample from the algorithm.
The attacking node 12 contaminates node 21, located in an-
other LAN. Node 21 has node 39 in its address book, al-
though node 11 did not. Thus, the worm is propagated from
node 39 to nodes 311, 312 and 313, yet in another LAN.
These last nodes mount the DoS attack on the mail server,

node 93. This CSP was produced from a network of 20
nodes with 1000 cycles. Its final attributes were: (i) head
set = [12], (ii) tail set = [93], (iii) cost = 130 (13 arcs of 10),
(iv) value = 1000, and (v) fitness = 870.

Although the output reproduced in Figure 8 has not many
nodes involved, similar but more complex DoS scenarios
have been reproduced with cycles ranging from 1000 for a
network with 50 or 100 nodes, to 5000 for networks of up
2000 nodes. The algorithm found DoS-like attacks within
a maximum of 30 minutes when using a 2000 nodes net-
work in a Pentium 4/512MB RAM/2.8 GHz machine run-
ning Linux Ubuntu. These networks were all randomly gen-
erated and nodes were distributed among one to five LANs.

Proposition 1 The complexity of the algorithm is O(C ∗
n2), where n is the number of nodes in the graph and C is
the number of cycles. (A newly created CSP is discarded if
it has more than n2 arcs.)

Proof. Each cycle has a (nSP +nAP +nDP ) editions
demanding time O(n2), given limit on the number of arcs
of a CSP, and the fact that nSP, nAP, nDP are small con-
stants compared to the size of the graph. The number of
cycles in the main loop is in general equal or greater than n,
which makes the algorithm run with a cubic upper bound.
However, it must be observed that in general CSPs have

6
Technical Report TR-CTIT-07-40



CSP = Seq[Seq[Arc(12,91),Arc(91,92],Arc(92,21)], (stage 1)
Seq[Arc(21,92),Arc(92,93),Arc(93,39),Arc(39,93)], (stage 2)
Par[Arc(93,311),Arc(93,312),Arc(93,313)], (stage 3)
Par[Arc(311,93),Arc(312,93),Arc(313,93)]] (stage 4)

Figure 8. Output sample produced by the algorithm

size much smaller than n because their size is limited by
the credit they receive.

5. Conclusions and Future Work

We have presented an evolutionary-based algorithm
which learns attack specifications representing attack sce-
narios from a network graph. We took the approach of vali-
dating the algorithm by modelling a known attack that is es-
pecially hard to represent because it requires a point of syn-
chronisation. Thus, we used a Denial of Services by Email
Worm attack as a motivating example. The algorithm was
able to learn this type of attack from networks up to 2000
nodes. We believe that this type of tool can be valuable for
administrators to acknowledge potential attack scenarios to-
wards valuable assets.

Furthermore, we were also able to reproduce, with 700
cycles, a Distributed DoS (DDoS) attack[18], using a net-
work with 150 nodes. For the execution of this attack, an
attacker commands a set of contaminated machines, called
masters, which listen for connections from the attacker on
non-standard service port numbers. Another set of contam-
inated machines (called zombies), each one with its IP ad-
dress registered with a master, listen for its master command
to attack. Thus, this attack requires two points of synchroni-
sation, one for the triggering of masters and one for the trig-
gering of zombies. As a result, the zombies perform a DoS,
for example, by launching a simultaneous packet flooding
attack against the target. Figure 9 illustrates this generic
DDoS attack.

We will focus next on further validating the algorithm for
other known attacks which also involve synchronisation, co-
ordination, concurrency, distribution, choice, and sequenc-
ing of attack steps.

In principle, the algorithm also applies for the assess-
ment of vulnerabilities which involve a more complex struc-
ture, such as the ones within the domain of Access Con-
trol. In this case, we need to use a RBAC-based graph [13],
which has several types of nodes and different relations be-
tween them, represented as arcs. Therefore, in this case, an
hypergraph is needed, and we envision two ways to achieve
this: (i) use the current algorithm and transform an hyper-
graph into a graph, by applying a conversion method de-
scribed by Berge [1, Section 17.4], or (ii) incorporate the
hypergraph into the algorithm. In this last case, instead of

m2a

attacker

points of 
synchronization

z2

z1

z3

masters zombies

t
m3

m1

z4

z5

Figure 9. A generic Distributed Denial of Ser-
vices attack

composing CSPs using head set and tail set, as we do now,
we would need to compose them using further information.

In terms of the algorithm itself, we have presented an
evolutionary-based approach that represents an improve-
ment compared to traditional local search optimisation
heuristics. In our approach, the search space is explored
by many alternative solutions at the same time, like it hap-
pens with Genetic Algorithm for example, but the parent so-
lutions remain active in the system of pools. Thus, a same
parent solution has several opportunities to improve by gen-
erating more than one offspring.

References

[1] C. Berge. Graphs and Hypergraphs, volume 6 of North-
Holland Mathematical Library. American Elsevier Pub. Co,
second edition, 1975.

[2] R. Chinchani, A. Iyer, H. Q. Ngo, and S. Upad-
hyaya. Towards a Theory of Insider Threat Assess-
ment. In DSN 2005: Int. Conference on Dependable
Systems and Networks, pages 108–117. IEEE Publishing,
July 2005. http://ieeexplore.ieee.org/iel5/
9904/31476/01467785.pdf.

[3] R. Chinchani, A. Iyer, H. N. Q., and S. Upadhyaya. A
Target-Centric Formal Model For Insider Threat and More.
Technical Report 2004-16, University of Buffalo, US, Octo-
ber 2004.

7
Technical Report TR-CTIT-07-40



[4] M. Dacier, Y. Deswarte, and M. Kaaniche. Models and
Tools for Quantitative Assessment of Operational Security.
In IFIP SEC’96, pages 177–186, May 1996.

[5] P. Defibaugh-Chavez, S. Mukkamala, and A. H. Sung. Effi-
cacy of Coordinated Distributed Multiple Attacks (A Proac-
tive Approach to Cyber Defense). In AINA 2006: 20th
Int. Conf. on Advanced Information Networking and Ap-
plications, pages 10–14. IEEE Computer Society, April
2006. http://doi.ieeecomputersociety.org/
10.1109/AINA.2006.161.

[6] D. Dolev and A. C. Yao. On the Security ofPublic Key Pro-
tocols. In Proc. of the IEEE 22nd Annual Symposium on
Foundations of Computer Science, pages 350–357, 1981.

[7] S. P. Gorman, R. G. Kulkarni, L. A. Schintler, and R. R.
Stough. A Network Based Simulation Approach to Cy-
bersecurity Policy. http://policy.gmu.edu/imp/
research.html. George Mason University, School of
Public Policy.

[8] J. Green, D. Marchette, S. Northcutt, and B. Ralph. Analysis
Techniques for Detecting Coordinated Attacks and Probes.
In Proc. of the Workshop on Intrusion Detection and Net-
work Monitoring, pages 1–9, Berkeley, CA, USA, 1999.
USENIX Association.

[9] D. M. Gregg, W. J. Blackert, D. V. Heinbuch, and D. Fur-
nanage. Assessing and Quantifying Denial of Service At-
tacks. MILCOM’01: Military Communications Confer-
ence, 1:76–80, 2001. http://ieeexplore.ieee.
org/xpl/freeabs_all.jsp?arnumber=985767.

[10] G. Helmer, J. Wonga, M. Slagell, V. Honavar, L. Miller, and
R. Lutz. A Software Fault Tree Approach to Requirements
Analysis of an Intrusion Detection System. Requirements
Engineering, 7(4):207–220, November 2002.

[11] C. A. R. Hoare. Communicating sequential processes. Com-
mun. ACM, 21(8):666–677, 1978. http://doi.acm.
org/10.1145/359576.359585.

[12] C. A. R. Hoare. Communicating Sequential Processes. Pren-
tice Hall International, second edition, June 2004. online
version at http://www.usingcsp.com/cspbook.
pdf.

[13] M. Koch, L. V. Mancini, and F. Parisi-Presicce. A GraphB-
based Formalism for RBAC. ACM Trans. Inf. Syst. Se-
cur., 5(3):332–365, 2002. http://doi.acm.org/10.
1145/545186.545191.

[14] S. Kumar. Classification and Detection of Computer In-
trusions. PhD thesis, Purdue University, Department of
Computer Sciences, 1995. citeseer.ist.psu.edu/
kumar95classification.html.

[15] W. Mao. A Structured Operational Modelling of the Dolev-
Yao Threat Model. In Security Protocols 2002, volume
2845/2003 of LNCS, pages 34–46, Berlin Heidelberg, 2004.
Springer.

[16] R. Milner. Calculus of Communicating Systems. Lecture
Notes in Computer Science. Springer-Verlag, Berlin, Ger-
many, 1980.

[17] R. Milner. Communicating and Mobile Systems:
the Pi-Calculus. Cambridge University Press, June
1999. http://www.amazon.ca/exec/obidos/
redirect?tag=citeulike04-20{\&}path=AS%
IN/0521658691.

[18] J. Mirkovic and P. Reiher. A Taxonomy of DDoS At-
tack and DDoS Defense Mechanisms. SIGCOMM Com-
puter Communications Review, 34(2):39–53, 2004. http:
//doi.acm.org/10.1145/997150.997156.

[19] C. Phillips and L. P. Swiler. A Graph-Based System for
Network-Vulnerability Analysis. In NSPW ’98: Proc. 1998
workshop on New Security Paradigms, pages 71–79, New
York, NY, USA, 1998. ACM Press.

[20] S. Schneider. Formal Analysis of a Non-Repudiation Pro-
tocol. In CSFW ’98: Proc. of the 11th IEEE Workshop on
Computer Security Foundations, page 54, Washington, DC,
USA, 1998. IEEE Computer Society.

[21] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. M. Wing.
Automated Generation and Analysis of Attack Graphs. In
SP’02: Proc. 2002 IEEE Symposium on Security and Pri-
vacy, pages 273–284, Washington, DC, USA, 2002. IEEE
Computer Society. http://ieeexplore.ieee.org/
xpl/freeabs_all.jsp?arnumber=1004377.

[22] S. Suehring and R. L. Ziegler. Linux Firewalls. Novell Press,
US, third edition, 2005.

[23] W. van der Aalst and K. van Hee. Workflow Management
Models, Methods, and Systems. Cooperative Information
Systems. The MIT Press, Cambridge, Massachusetts, 2002.

8
Technical Report TR-CTIT-07-40


