
Risk and Argument: A Risk-based
Argumentation Method for Practical Security
Virginia N. L. Franqueira∗, Thein Than Tun†, Yijun Yu†, Roel Wieringa∗ and Bashar Nuseibeh†‡

∗ University of Twente, Enschede, The Netherlands
Email: {franqueirav, r.j.wieringa}@ewi.utwente.nl
† The Open University, Milton Keynes, UK

Email: {t.t.tun, y.yu, b.nuseibeh}@open.ac.uk
‡ Lero, Irish Software Engineering Research Centre, Limerick, Ireland

Email: bashar.nuseibeh@lero.ie

Abstract—When showing that a software system meets certain
security requirements, it is often necessary to work with formal
and informal descriptions of the system behavior, vulnerabilities,
and threats from potential attackers. In earlier work, Haley
et al. [1] showed structured argumentation could deal with
such mixed descriptions. However, incomplete and uncertain
information, and limited resources force practitioners to settle for
good-enough security. To deal with these conditions of practice,
we extend the method of Haley et al. with risk assessment.
The proposed method, RISA (RIsk assessment in Security Argu-
mentation), uses public catalogs of security expertise to support
the risk assessment, and to guide the security argumentation in
identifying rebuttals and mitigations for security requirements
satisfaction. We illustrate RISA with a realistic example of PIN
Entry Device.

Index Terms—Security Requirements, Argumentation, Risk
Assessment, Common Attack Pattern Enumeration and Classifi-
cation (CAPEC), Common Weakness Enumeration (CWE)

I. INTRODUCTION

Structures of argumentation, such as those proposed by
Toulmin et al. [2], provide an effective way to organize knowl-
edge when convincing an audience about a claim. They have
been used in many ways including to build safety cases [3],
to demonstrate compliance to laws and regulations [4], and
to show security requirements satisfaction [1]. Depending
on the nature of the claim, arguments can be built upon
observable and measurable evidence, such as the frequency
of system failures, defects detected by code analysis tools
and developers’ certification records. Engineering of secure
systems has many practical limitations, including incomplete
knowledge about potential attackers, uncertainties about the
system context, limited resources and different trade-off agen-
das. All in all, security is a non-zero-sum game between
defenders and attackers of a system. Absolute security is
usually not feasible, if at all possible. Argumentation works
well in conditions of complete information and sufficient
resources, but when one of these is lacking, it needs to
be supplemented with risk assessment techniques that allow
for uncertainty and incompleteness of available evidence,
and allow partial application when resources are limited. It
facilitates the achievement of practical security: “good-enough
satisfaction” of security requirements within an “as low as
reasonably practicable” [5] level of risk.

Haley et al. [1] have already suggested, but not elaborated,
the need to relate argumentation and risk assessment for
security. Extending that work, we present the RISA (RIsk-
based Security Argumentation) method, which takes advantage
of public catalogs of security expertise and empirical evidence,
in particular, the CAPEC (Common Attack Pattern Enumer-
ation and Classification), and the CWE (Common Weakness
Enumeration) catalogs. The aims of RISA are to:

1) identify the risks to the satisfaction of security require-
ments;

2) differentiate between the risks that should be mitigated
by the system context and the risks that should be
mitigated by the system;

3) analyze those risks to be mitigated by the system and
prioritize the risks found through arguments.

The main contribution of this paper is a systematic approach
to assessing the risks associated with security arguments. This
approach enables requirements engineers to make informed
decisions about the implications of security risks, and how
the system could maintain a good-enough level of security
satisfaction. Our approach is different from other risk assess-
ment frameworks in several ways. First, our approach uses
security arguments, derived from a systematic description of
the system context and formal reasoning about the satisfaction
of the security requirements, as top-level structure of risk
assessment. Second, RISA treats assumptions made in the
arguments as a major source of risks, mitigation of which is
a responsibility to be discharged either by the software or the
system context. Third, the approach makes extensive use of
publicly available catalogs on security risks, and mechanisms
to mitigate risks. These evolving catalogs reflect the changing
nature of security threats, and provide a valuable source of
knowledge to requirements engineers.

The rest of the paper is organized as follows. Section II
introduces our running example, the PIN Entry Device (PED)
case study. Section III provides some background discussion
on security requirements satisfaction, argumentation, and the
security catalogs CAPEC and CWE that support the RISA
method. Section IV presents the RISA method, describes the
role played by argumentation and risk assessment, and lists its



steps. Section V demonstrates the RISA steps using the PED
example. Section VI discusses the method and reviews related
work, and Section VII concludes the paper.

II. ILLUSTRATIVE CASE STUDY: PIN ENTRY DEVICE

PIN Entry Device (PED) is a type of device widely-
deployed and used by consumers to pay for goods with debit
or credit smartcards at the Points-Of-Sales (POS).

When using the device, cardholders typically insert their
cards, issued by a financial institution, into a card-reader in-
terface of the PED, enter the PIN using the PED’s keypad, and
confirm the transaction value via a display on the PED itself.
Then smartcard-based systems are expected to authenticate
cardholders via the PIN and verify the card details against
a public-key certificate before transactions can be completed
successfully. These certificates are usually stored on the chip,
but they can also be stored on the magnetic strip for compati-
bility with card-readers that have not adopted this technology.
Most PEDs used in Europe implement the EMV (EuroPay,
MasterCard and Visa) protocol in the process of authentication
and authorization of payment transactions. This protocol drives
the communication at the PED-card interface and the PED-
bank interface. The protocol in principle allows only encrypted
transmission of the PIN across these interfaces when the PED,
card and bank support asymmetric cryptography. However,
many card issuers adopt a low-cost EMV option in their
smartcards that can be triggered to transmit unencrypted PIN
on the interface PED-card.

Drimer et al. [6] studied two popular PEDs produced
by different manufacturers, and evaluated either under the
Visa evaluation scheme [7] or under the Common Criteria
evaluation scheme [8]. The PEDs were found to be vulnerable
to unsophisticated attacks in practice, and the authors have
drawn lessons from this not only in relation to the evaluation
process [6], [9] but also in relation to the software development
life cycle. Throughout this paper, we will use this non-trivial
example to explain and to motivate the RISA method.

III. BACKGROUND

The RISA method relies on two main concepts proposed
by Haley et al. [1]: the notion of the satisfaction of security
requirements, and the use of outer and inner arguments to
demonstrate the system security. This section recaps those
concepts, and discusses the security catalogs used by the RISA
method.

A. Satisfaction of Security Requirements

Following the WSR principle of the Problem Frames ap-
proach [10], the framework of Haley et al. separates software
artifacts into W , S and R, where W represents a description
of the world in which the software is to be used (i.e., the
system context), S represents the specification of a system,
and R represents a description of the requirements. The main
property of these artifacts is that the software within the system
context should satisfy the requirements, as indicated by the
entailment (1):

W,S ` R (1)

Similar to the Problem Frames approach, the framework of
Haley et al. describes the world context W in terms of domains
(short for problem world domains), elements of the world that
can be either tangible (such as people, other systems, and
hardware) or intangible (such as software and data structure).
Typically, W also contains assumptions made about these
domains. Domains interface with each other and with the
system S via shared phenomena (such as events, states and
values) that are controlled by a domain and are visible to some
other domain(s).

In the framework of Haley et al., security requirements
are constraints on functional requirements that protect the
assets from identified harms. For example, in the requirement
“Provide Human Resource (HR) data requested by the user,
only to HR staff”, providing HR data to users making the
requests is regarded as a functional requirement, and ensuring
that only those requests from members of HR staff are fulfilled
is regarded as a constraint on the functional requirement, thus
a security requirement. Security requirements are part of R in
the entailment (1). Therefore, satisfaction of security require-
ments, spelled out in security arguments, show (i) whether
properties of W and S entail the security requirements, and
(ii) whether assumptions in W and S are correct.

B. Security Arguments of Haley et al. Framework

The framework of Haley et al. distinguishes two kinds of
argument for satisfaction of security requirements.

1) Outer arguments: The outer arguments show whether
properties of W and S entail the security requirements.
These arguments are typically expressed in a formal language,
such as propositional logic. Therefore, outer arguments are
proofs of the entailment (1) for security requirements. This is
expressed as follows:

(domain behavior premises) ` (security requirement(s))
(2)

Outer arguments rely on properties of W and S (domain
behavior premises), some of which may turn out to be incor-
rect assumptions. These premises need to be challenged, and
be grounded in facts if possible, or taken as true, for instance,
on the basis of a lack of contrary evidence.

2) Inner arguments: The general purpose of an inner
argument is to try to rebut an outer argument by questioning its
premises. Notice that the outer arguments establish the scope
of security assessment, whilst the inner arguments deepen the
assessment. The framework of Haley et al. uses Toulmin-style
structures, enhanced with the notion of recursiveness from
Newman et al. [11], for inner arguments. The general structure
of inner arguments used in the framework of Haley et al. is
shown in Fig. 1.

A claim is the object of an argument, a statement that one
wishes to convince an audience to accept. A ground is a piece
of evidence, a fact, a theory, a phenomenon considered to be
true. A warrant is a statement that links a ground and a claim,

2



counterargument

Grounds Claim

argument

Rebuttals

flow of argumentation

Warrants

Fig. 1. Structure of arguments used in the framework of Haley et al. [1]

showing how a claim is justified by ground(s). A rebuttal
is a counterargument which reduces support for the claim.
Specifically in the case of security-related argumentation,
rebuttals represent the risks that the claim of an argument
is false. Rebuttals can be mitigated in order to restore the
confidence that the claim of the rebutted argument is true. A
mitigation, while negating a rebuttal, may introduce additional
knowledge to show that the rebuttal, i.e. a risk, can somehow
be tolerated. Therefore, mitigations address risks but may not
necessarily eliminate the risks, and residual risks may remain.
Moreover, mitigations may also introduce new risks, leading
to new rounds of rebuttals and mitigations in argumentation.

C. Relationship between Outer and Inner Arguments

Fig. 2 shows how outer and inner arguments are related: the
formal outer argument provides the main structure that drives
the inner argumentation. Each of the outer argument premises
(a → b) is the beginning for one thread of inner arguments,
where a is the ground and b is the claim to be challenged by
examining the ground a and the implication →. Each round
of inner argumentation is indicated by the notation R | Mr.n,
where R stands for Risk and M for Mitigation, r indicates
the round and n represents a sequential number.

Outer argument premises

ro
u
n
d
s 

o
f 

in
n
er

 a
rg

u
m

en
ta

ti
o
n

Premise 1: ground−claim argument Premise 2: ground−claim argument

R1.2

M2.1

M2.2

R3.2

R3.2

R1.1 risks

mitigations

risks

R1.2

M2.1

M2.2

R3.2

R3.2

R1.1 risks

mitigations

risks

ground claim/
ground

claim/
ground

Fig. 2. Relationship between outer and inner arguments

In Section IV, we contrast the process of argumentation
used in the framework of Haley et al. with our new approach
proposed by the RISA method.

D. Public Catalogs of Security Expertise

The National Cyber Security Division of the U.S. De-
partment of Homeland Security has a strategic initiative to
promote software assurance. Two projects under this initiative
are particularly useful for the RISA method, namely, CAPEC
and CWE1.

1Their websites, http://cwe.mitre.org/ and http://capec.mitre.org/, are both
sponsored and managed by the Mitre Corporation.

Common Attack Pattern Enumeration and Classification
(CAPEC) is a publicly available catalog of known at-
tacks, described according to a standard schema [12]. The
CAPEC catalog2, contains 460 entries, organized according
to different views and categories. Complete CAPEC en-
tries provide not only information about attack execution
flow, methods of attack, attack prerequisites, and attacker
skills/knowledge/resources required, but also about typical
severity, and generic solutions and mitigations. In addition,
complete entries in CAPEC also provide pointers to specific
weaknesses (“underlying issues that may cause vulnerabil-
ities” [12]), i.e. to CWE(s), and to concrete examples of
vulnerabilities which have been detected in use (these are CVE
(Common Vulnerabilities and Exposure) entries recorded in
the National Vulnerability Database3).

Common Weakness Enumeration (CWE) is a public catalog
of weaknesses4, where each weakness can either become a
direct source of vulnerabilities, or contribute indirectly to an
increase in the likelihood of an attack to happen and/or an
increase in the impact of the attack, if it succeeds [12]. It
also follows a standard schema [13], providing different views,
groupings and relations with other weaknesses, as well as
pointers to CAPEC and CVE entries. Complete CWEs indi-
cate common consequences, likelihood of exploit, detection
methods and potential mitigations at different phases, such
as Requirements and Architecture/Design. The RISA method
uses CAPEC and CWE as sources for security knowledge,
making the analysis of risks more systematic, repeatable, and
less dependent on subjective judgments.

IV. OVERVIEW OF THE RISA METHOD

As shown in Fig. 3 the RISA (RIsk assessment in Security
Argumentation) method extends the process of argumentation
for security requirements proposed in the Haley et al. frame-
work by incorporating a process of risk assessment.

Steps 1 to 3 of the proposed approach are same as the first
three steps of the framework of Haley et al., and are briefly
summarized below.

A. Step 1 to Step 3

In Step 1 (Identify Functional Requirements), functional
requirements of the system and the system context (domains
and shared phenomena) are identified. These requirements may
be derived from the higher-level goals of the system. In Step
2 (Identify Security Goals), assets that need to be protected,
management principles regarding those assets, and security
goals are identified. In Step 3 (Identify Security Require-
ments), security requirements are derived from security goals,
and are expressed as constraints on the functional requirements
identified in Step 1. Problem diagrams are constructed in this
step.

2http://capec.mitre.org/data/, version 1.6, accessed on 21 Feb 2011
3http://nvd.nist.gov/, version 2.0, accessed on 21 Feb 2011
4http://cwe.mitre.org/data/, version 1.11, accessed on 21 Feb 2011

3



Fig. 3. Schematic overview of the RISA method

B. Step 4: Construct Outer Arguments

Unlike the fourth step of the Haley et al. framework,
only the outer arguments for security requirements (excluding
the inner arguments) are constructed in Step 4 of RISA.
These outer arguments are formal, and they make use of
domain properties, correctness of which is examined by inner
arguments. Behavioral premises used in the outer arguments
may represent risks, which are identified using a systematic
risk assessment process in RISA. This is represented in the
figure by the arrow from Step 4 to Step 5.

Steps 5 to 8 correspond with the process of constructing
inner arguments in the Haley et al. framework. These four
steps show how domain assumptions in outer arguments are
challenged by means of risk assessment based on public
security catalogs.

C. Step 5: Identify Risks

In this step, behavioral premises in outer arguments regard-
ing the domains (arrow from Step 4 to Step 5 in Fig. 3) are
identified as potential risks. For instance, in the PED example,
there could be a behavioral premise about the confidentiality
of the PIN entered using the keypad. Public security catalogs
are then searched to find known security weaknesses regarding
the confidentiality of passwords entered using a keypad.

D. Step 6: Classify Risks

The risks are classified into two groups. In one group
are risks transferred to the context because nothing can be
done by the system to mitigate them. In the PED example,
the confidentiality of the PIN (one of the PED security
requirements) depends on cards having certain cryptographic
capabilities. Although the PED can generally comply with this
demand, there is still the risk that the card will not comply.
Therefore, the obligation to mitigate this risk is transferred
either partially or fully to the card. In the other group are risks

that should be mitigated by the system. In the PED example,
integrity of the PIN over the network has to be ensured by
the system. Classification and transferring of obligations to
mitigate risks to the system and its context could modify the
behavior and properties of the domains and shared phenomena,
and perhaps even the functional requirements (as indicated by
the arrow from Step 6 to Step 1). As a result of these changes,
outer arguments may be rebutted.

E. Step 7: Mitigate Risks

Appropriate security mechanisms for mitigating the risks
are searched for in the public security catalogs (arrow from
the catalogs to Step 7). Some of these mechanisms themselves
could introduce new risks and therefore should be assessed in
a new round of inner argumentation (arrow from Step 7 to
Step 5).

F. Step 8: Prioritize Risks

In the last step, risks are prioritized on the basis of their
severity as indicated by the public security catalogs (arrow
from catalogs to Step 8). These risks affect the priority of
requirements to be satisfied (arrow from Step 8 to Steps 1–4).
When the residual risks are deemed to be acceptable given the
limitation of development resources, the system has reached
the level of good-enough security.

G. Discussion

Fig. 4 illustrates how elements from risk assessment, used
in the RISA method, fit into the inner argument schema, as
presented in Fig. 2. Unlike the traditional process of argumen-
tation (based on Toulmin’s practical argumentation [2]), that is
intrinsically performed in depth-first as a dialog (Fig. 2), argu-
mentation based on risk assessment is performed in breadth-
first. Each of these approaches have advantages (discussed in
Section VI) but, typically, in risk assessment two rounds of
argumentation are performed within the same cycle: one is
related to risks that rebut outer arguments, and the other is
related to mitigations that counter these risks.

Therefore, risks regarding all behavioral premises are identi-
fied and classified in terms of those that should be mitigated by
the system and those that should be mitigated by the context,
and prioritized on the basis of the severity of the risk they
represent, providing input to the next round of argumentation.

Mitigate risks

R1.2

R1.1

M2.1

M2.2

R3.2

R3.2

risks
R1.2

R1.1 risks

M2.1

M2.2

R3.2

R3.2

mitigations mitigations

risks risks

ground claim/
ground

claim/
ground

Prioritize
risks

Identify and
classify risks

Identify and
classify risks

Fig. 4. Risk-based inner argumentation

The recursiveness of the inner argumentation is represented
by the indirect connection between Step 5 and Step 7, which
involves the process of finding mitigations to risks, and the

4



direct connection between Step 7 and Step 5, which involves
the process of finding new risks in mitigations.

Public catalogs provide input for all steps in risk assess-
ment, except for Step 6, which has to be done by domain
experts relying on the knowledge of the exact requirements.
In the RISA method, we use CAPEC and CWE to feed the
identification of risks with descriptions and information about
known attack patterns and weaknesses in software. They can
also provide information on how these attacks and weaknesses
can be mitigated, and empirical values indicating the severity
that allow the prioritization of risks. In some cases, in-house
security catalogs may supplement public security catalogs.

Since these risks are attached to arguments and security
requirements, prioritizing risks indirectly results in the priori-
tization of arguments and security requirements.

V. THE PED EXAMPLE

This section describes a step-by-step application of RISA
to the PED example.

A. Satisfaction of Security Requirements

The system under analysis is the PED; it consists of four
main components: card-reader, keypad, display and CPU.

1) Step 1—Identify Functional Requirements: The overall
functional goal of the system in relation to PED users is the
following:
[FG1]: Provide convenient payment option at Points-Of-Sale to
consumers

The following functional requirement can be derived from
the functional goal above:
[FR1]: Allow consumers to pay at Points-Of-Sale with PIN

2) Step 2—Identify Security Goals: Obviously, the con-
sumers’ PIN is the most valuable asset in this case. Protecting
the PIN is important not only because of the potential financial
impact on the consumers, but also because of the substantial
negative impact it will have on the reputation of the banking
authorities [14], and the PED manufacturers. Card details,
stored in smartcards, are also relevant assets; their value
comes from the possibility to fake the magnetic-strip on the
smartcards [6]. Other assets involved with the PED system
include: transaction value, design characteristics, the smartcard
itself, and cryptographic keys. For the illustration of our
analysis, the main security goal is to protect the PIN.

3) Step 3—Identify Security Requirements: As mentioned
earlier, security requirements are viewed as constraints on
the system functional requirement according to its functional
goals. In this case, such a composition produces the following
two security requirements:
[SR1]: PIN entered by consumers shall remain confidential
during payment transactions at Points-Of-Sale
[SR2]: PIN entered by consumers shall remain accurate during
payment transactions at Points-Of-Sale (i.e. integrity of the PIN
shall be preserved)

According to the documentation available about the PED
system (e.g. [6], [14]), these two requirements are satisfied by
implementing the following security functions:

[SF1]: Enclosure of PED components provides tamper detec-
tion and response mechanisms to resist physical attacks
[SF2]: Encryption/Decryption of PIN ensures that the PIN is
encrypted within the PED immediately after the PIN entry is
complete

These security functions correspond with the “require-
ments” A1.1 and C2, extracted from the PED security require-
ments document from Mastercard [15].

The system context, W in the entailment (1), is then
elaborated. The functional requirement of the PED helps us to
delimit the context; from “payment transaction using a PED”
we identify five domains: consumer, card, merchant, terminal
and bank. Using a slightly modified version of the notation
used by the Problem Frames approach [10], Fig. 5 shows the
context of the PED system and its security requirements. The
notation is unusual in two ways: (i) it treats the PED system
as a machine with its own components, and (ii) causality in
shared phenomena is indicated by directed arrows. Notice that
the diagram shows the shared phenomena related not only to
PIN, but also to the card details and the transaction value,
which are relevant to the PED payment transactions.

In terms of PIN, the diagram illustrates the behavior already
described in Section II, namely that “Cardholders [consumers]
typically insert their cards . . . into the PED’s card-reader
interface, enter their PIN using the PED’s keypad, and confirm
the transaction value via a display on the PED itself”. Note that
the action performed by consumers to insert their cards into
the card-reader is not represented explicitly in the diagram.

The PED system has two possible main usage scenarios. It
can be used at the Points-Of-Sales connected to a terminal, or
stand-alone. The former case is often found in supermarkets,
once the merchant scans products, their value get registered
by the terminal; at the end, the terminal sends the value of the
transaction to the PED that displays the value to the consumer.
The latter case is often found in restaurants: the merchant
enters the transaction value directly into the PED via the
keypad and the PED displays this value to the consumer.

The card details flow from their initial location (the card)
along with the PIN and the transaction value until they reach
the bank for approval.

The shared phenomena related to the PIN in Fig. 5 are
detailed using the following convention: an arrow from a
domain A annotated with phenomenon b is written as A!b.

• consumer!PIN: consumer enters PIN
• keypad!PIN: keypad sends PIN to the card-reader
• card-reader!PIN: card-readers sends PIN to the card
• card!confirmation-PIN-ok: card requests confirmation

that PIN is ok to the card-reader
• card-reader!PIN-confirmed(PIN,card-details): card-

reader sends confirmation that PIN is ok to the PED
CPU

• CPU!authorization-request(PIN,value,card-details):
CPU sends request for authorization of payment
transaction to bank

• bank!confirmation-transaction: bank sends confirma-
tion (positive or negative) of transaction to the PED CPU

5



PIN

value

PIN-
confirmed(PIN, 

card-details)

consumer PINvalue

value

PIN

confirmation-
PIN-ok

card-details

PEDauthorization-
request(PIN,value,

card-details)

value
value

value PIN shall remain 
confidential and accurate during

payment transactions

confirmation-
transaction

Shared phenomenon between domains, as 
indicated by direction of arrow

Machine/System

card-
reader cardCPU

display keypad

merchant

terminal

bank

Domain p

Security requirements which constrain the system

Fig. 5. System context of the PED system and its security requirements

4) Step 4—Construct Outer Arguments: The behavior of
the PIN needs to guarantee that:

P1, P2, P3, P4, P5, P6, A7 ` bank!confirmation-transaction

The premises are defined below using the propositional
logic.
Premises:
P1. consumer!PIN → keypad!PIN
P2. keypad!PIN → card-reader!PIN
P3. card-reader!PIN → card!confirmation-PIN-ok
P4. card!confirmation-PIN-ok → card-reader!PIN-confirmed
P5. card-reader!PIN-confirmed → CPU!authorization-request
P6. CPU!authorization-request → bank!confirmation-transac-
tion
Triggering assumption:
A7. consumer!PIN holds
Conclusions:
C8. keypad!PIN (Detach,P1,A7)
C9. card-reader!PIN (Detach,P2,C8)
C10. card!confirmation-PIN-ok (Detach,P3,C9)
C11. card-reader!PIN-confirmed (Detach,P4,C10)
C12. CPU!authorization-request (Detach,P5,C11)
C13. bank!confirmation-transaction (Detach,P6,C12)

Assuming that the phenomena in behavioral premises (P1–
P6) are triggered in sequence, context is correct and later
implementation of the PED does not introduce deviations from
the behavior specified, this proof means that, in principle,
the PED behavior (i.e., the PED with its security functions
under its context) can satisfy both security requirements (SR1:
confidentiality of PIN, and SR2: accuracy of PIN) while
meeting its own functional requirement (FR1). It proves that
the entailment (2) can be fulfilled for the PED example.

However, the proof premises (P1-P6) and triggering assump-
tion (A7) can be challenged in practice. If any of these can
be challenged effectively, the result could represent a non-
satisfaction of entailment (2) for the PED example.

B. Risk assessment for inner arguments
The premises (P1–P6) and triggering assumption (A7) of

the outer argument, the output of the previous step, provides

a structure for assessing risks. The following discussion will
focus on risks related to SR1 only.

1) Step 5—Identify Risks: This activity aims to identify
the risks related to the security requirement SR1 that could
rebut all the premises and triggering assumptions carried over
from the outer argument. Supported by the CAPEC and CWE
security catalogs, the activity involves searching for catalog
entries that represent a risk to the claim of each premise,
including the triggering assumption. For example, what has to
be challenged for premise “P1: consumer!PIN → keypad!PIN”
is the confidentiality of consumers’ PIN (SR1). This involves:
(i) the confidentiality of the PIN as it is entered by consumers
(A7), and (ii) the confidentiality of the PIN from the moment it
is entered by consumers until it reaches the keypad. Therefore,
these two aspects drive the analysis of risks which can rebut
P1. As illustrated in Fig. 6, risks identified for P1, given A7,
allow us to evaluate the satisfaction of conclusion C8 of the
outer argument for SR1. Similar rationale applies to P2-P6.

inner argumentation 
for conclusion about C9
of the outer argument

confidentiality
risks to

confidentiality
risks to

inner argumentation 
for conclusion about C10
of the outer argument

R1.5

R1.1
... ...

R1.6

R1.9

leaves keypad
keypad (P1)/ PIN

(P2)

PIN reaches
card−reader (P2)/

card−reader (P3)
PIN leaves

PIN reaches
transaction and 
enters PIN (A7)

of the outer argument
for conclusion about C8
inner argumentation 

Consumer initiates

Fig. 6. Behavioral premises of the PED system to be challenged via risk-
based inner argumentation

Table I lists the risks identified for premises P1 and P2
with references to CAPEC and CWE entries. It also contains
some references marked with the symbol ?, indicating the
CAPEC/CWE entries that are related to the risk but are not
incomplete enough to be useful at this stage. Since these
catalogs are constantly evolving it is important to keep them
for future reference.

2) Step 6—Classify Risks: We classify risks according to
two types of risk treatments.

6



TABLE I
IDENTIFICATION OF RISKS FOR PREMISES P1 AND P2

Challenged Risk Reference
Premise P1 R1.1: consumer is triggered to

reveal PIN via social engineer-
ing attack

CAPEC-403?

Premise P1 R1.2: PIN is revealed by miss-
ing PIN field masking

CWE-549

Premise P1 R1.3: PIN is revealed by brute
force attack

CAPEC-49,
CAPEC-70 &
CAPEC-112

Premise P1 R1.4: PIN is revealed due to
lack of aging policy

CWE-262

Premise P1 R1.5: PIN is collected by fake
PED set to allow pharming at-
tack

CAPEC-89

Premise P2 R1.6: PIN is revealed if sent
unencrypted within the PED
and the PED enclosure can be
tampered with

CWE-311 &
CAPEC-436?

Premise P2 R1.7: PIN is revealed if sent
encrypted within the PED but
PED enclosure can be tam-
pered with

CAPEC-20 &
CWE-327 &
CAPEC-436?

Premise P2 R1.8: PIN is revealed via snif-
fer installed by PED adminis-
trators

CAPEC-65

Premise P2 R1.9: Unauthorized access to
PIN is concealed via log
injection-tampering-forging by
PED administrators

CAPEC-93

A risk is classified as “transfer risk” if it is assumed
that context domains, involved in ensuring the satisfaction
of the entailment (1), will be responsible for its mitigation.
Identifying such a class of risks is important for two reasons:
it allows different parties in the PED context domains to be
made explicitly accountable for the mitigation of the identified
risks, and it allows regulations to be enforced [16].

A risk is classified as “mitigate risk” if it is assumed
that the system will be responsible for its mitigation. The
classification of risks from Table I is shown in Table II.
Note that this table illustrates with R1.7 that one risk can
be classified in both classes. Typically, risks classified under
“mitigate risk” contain brief descriptions of mitigations in the
format of requirements. Mitigations described in this table are
mostly retrieved from best practices solutions and mitigations
described in the CAPEC and CWE entries mentioned in
Table I. For example, CWE-311 (reference for risk R1.6),
entitled “Missing Encryption of Sensitive Data” discusses
potential mitigations for this weakness in terms of different
phases of the software life cycle. Under Phase:Requirements,
we find the description of mitigation “Any transmission of PIN
should use well-vetted encryption algorithms”, as presented in
Table II.

3) Step 7—Mitigate Risks: Only those risks classified as
“mitigate risks” are carried over to this stage. This step
involves a cross-analysis of mitigations identified for each risk
during the classification activity (Table II), in order to obtain

TABLE II
CLASSIFICATION OF RISKS FOR PREMISES P1 AND P2

Risk Risk treatment
R1.1 Transfer risk: assumed consumers take mitigations
R1.2 Mitigate risk: PED should obfuscate display of PIN

as entered by consumers in keypad
R1.3 Transfer risk: assumed banks (e.g., require strong PIN

policy) and consumers (e.g., avoid common, guessable
PIN) take mitigations

R1.4 Transfer risk: assumed banks and card issuers take
mitigations (e.g., by periodically requiring PIN change
and card renewal)

R1.5 Mitigate risk: PED should use (i) authentication
mechanisms, and (ii) audit mechanisms to log autho-
rized replacements

R1.6 Mitigate risk: Any transmission of PIN should use
well-vetted encryption algorithms

R1.7 Mitigate risk: (i) encryption of PIN should use ac-
cepted algorithms and recommended key sizes, (ii)
cryptographic keys should be managed and protected
(Transfer risk: assumed cards will also comply with
this mitigation), (iii) PED design should allow upgrade
of cryptographic algorithms

R1.8 Mitigate risk: Any transmission of PIN should be
encrypted

R1.9 Mitigate risk: PED should provide access control to
physical log files

a consolidated list of mitigations, as shown in Table III. This
table shows that mitigation M2.4 counters risks R1.6, R1.7
and R1.8, and that risk R1.7 is countered by mitigations M2.4,
M2.5 and M2.6. Notice that risks R1.1., R1.3 and R1.4 are not
presented in the table.

TABLE III
MITIGATIONS OF RISKS IDENTIFIED FOR P1 AND P2

Risk Mitigation
R1.2 M2.1: PED should obfuscate display of PIN as

entered by consumers in keypad
R1.5 M2.2: PED should use authentication mechanisms
R1.5 M2.3: PED should have audit mechanisms to log

authorized replacements
R1.6 &
R1.7 &
R1.8

M2.4: Any transmission of PIN should use well-
vetted encryption algorithms and recommended
key sizes

R1.7 M2.5: Cryptographic keys should be managed and
protected

R1.7 M2.6: PED design should allow upgrade of cryp-
tographic algorithms

R1.9 M2.7: PED should provide access control to phys-
ical log files

4) Step 8—Prioritize Risks: This step involves retrieving
from the CAPEC and CWE entries indicating the severity of
risks identified, as shown in Table IV.

This table makes it evident that this analysis only gives a
rough impression of the severity of risks and that security
experts are again confronted with incomplete information,
which often happens in security practice. It also becomes
apparent that, because several CAPEC and CWE entries may

7



TABLE IV
PRIORITIZATION OF RISKS FOR PREMISES P1 AND P2

Mitigation Risk Typical risk severity
M2.1 R1.2 no indication in the CWE
M2.2 R1.5 very highM2.3 R1.5
M2.4 R1.6 &

R1.7 &
R1.8

low to very high (depending on specifics
of different attacks)

M2.5 R1.7 low to high (depending on specifics of
different attacks)M2.6 R1.7

M2.7 R1.9 high

refer to the same risk, we may obtain in the end a lower bound
and an upper bound on risk severity. In this case, a decision
should be made about the strategy to follow depending on
several factors, such as attitude towards risk (e.g., risk-averse,
risk-taking or in-between), security-criticality of the system,
and so on. For example, from a risk-averse point-of-view, we
consider M2.2, M2.3 and M2.4 as priority over the others.

Recursion of Inner Arguments Mitigations may also
introduce new risks, so for each mitigation in Table III a new
iteration of Step 5 may be required. These iterations stop when
the system security is considered good-enough, i.e. the residual
risks are considered acceptable, and the resources for security
analysis have been used (e.g., deadline or budget have been
reached).

For example, if we take mitigation M2.3 which is related
to the very high severity risk R1.5 (Table IV), we can see
that this risk refers to the possibility of pharming attacks
(Table I). According to CAPEC-89, a pharming attack occurs
“when the victim is fooled into entering sensitive data into
supposedly trusted locations”. This risk challenges the premise
P1, which refers to the PIN shared between consumer and
keypad (Fig. 5). Since SR1 is about the confidentiality of
PIN, the risk assessment suggests that the pharming attack is a
rebuttal to the security argument of SR1. The risk assessment
further indicates that one way to mitigate this risk is by
introducing an audit mechanism for the keypad (Table III).
This new round of rebuttal to the premises of the security
argument, and a mitigation to the rebuttal are obtained from
the risk assessment.

VI. RELATED WORK & DISCUSSION

A. Risk in Requirements Engineering

In requirements engineering literature, the issue of risks
has been considered in two related yet distinct ways: project
risks and system risks. Project risks are related to the process
of software development and factors that may contribute to
the failure and success of the project. Several factors may be
related to the project risks, including requirements creep [17],
[18], requirements negotiation and project estimates [18], and
project resources. System risks are related to the behavior of
the software system that may contribute to the system satis-
fying or not satisfying the requirements. Factors contributing

to system risks include missing or incorrect requirements and
domain assumptions [19].

Threat modeling for the elicitation of security requirements
has been extensively researched in the domain of requirements
engineering. Published approaches include: misuse cases [20],
abuse cases [21], attack trees [22], abuse frames [23], anti-
goals [24], and combinations of these [25]. These approaches
overlap only partially with the RISA method, mainly in the
activity of risk identification. In this activity, they may provide
a more in-depth analysis of specific issues/scenarios, therefore,
in this sense they complement RISA. However, they lack the
advantage of argumentation to allow validation of security
requirements satisfaction and of maintaining the focus of
security on the system as a whole.

B. Structured Argumentation

Argumentation provides a rationale to convince an audi-
ence that a claim should be considered valid. Three qualities
are often discussed in the informal argumentation literature:
convincingness, soundness, and completeness. Convincingness
relates to whether the argumentation is compelling enough to
assure an intended audience that the conclusion reached is
reasonable [1]. Soundness relates to whether the argumenta-
tion fulfills the argumentation schema and is based on “true
premises” [26]. Completeness relates to whether nothing has
been omitted that could lead to a different conclusion about a
claim [26], [27].

A known problem in argumentation is the subjectivity in-
volved in identifying arguments and counterarguments (which
relates to soundness), and the difficulty in determining com-
pleteness. Proposals to reduce these problems rely on the help
of: (i) pre-defined critical questions [28], [29], (ii) what-if
scenarios [30], (ii) expert assurance checks [26], (v) guide-
lines [31] or (vi) how/why questioning, as proposed in [1].
However, these approaches provide limited support and are
rather static, i.e. they do not evolve in the speed required to
assure good-enough security of systems. The RISA method
reduces these problems by using ever evolving public catalogs,
updated using input by a pool of security experts from several
organizations5.

Since security involves uncertainty and incomplete informa-
tion, it becomes difficult, if not impossible, to show satisfac-
tion of these qualities. Expert judgment is needed, probably
enhanced with peer review [26], to improve the quality of
good-enough security argumentation. Nevertheless, the main
benefit of using argumentation is that, in contrast to an ad-
hoc approach, it structures the reasoning and exposes it to
criticism [26]. The RISA method contributes towards reducing
incompleteness and uncertainty because its risk-based argu-
mentation is supported by public catalogs which accumulate
information about risks, best practice mitigations and empirical
severity values based on input from a large community of
security experts.

5http://cwe.mitre.org/community/index.html, accessed on 21 Feb 2011

8



C. Traditional versus risk-based (security) argumentation

As mentioned in Section III, the process of argumentation
traditionally follows a depth-first style. It provides a neat
and intuitive view about the evolution of an argument in
the format of a debate between two opponents. It is well-
suited to be represented as a tree structure of arguments and
counterarguments.

This process of argumentation, however, is not suitable
when reasoning about practical security. For example, it often
happens that one mitigation counters several risks, one risk
challenges several premises, and several mitigations introduce
one same new risk as seen in Table III, Step 2. As a
result, rather than a tree, a more complex graph structure of
arguments is often needed. In such situations, a breadth-first
style of argumentation based on risk assessment scales better.
The RISA method is designed for such practical needs, while
still providing the ability to reconstruct argument threads via
backward traceability. Thus it is possible to link mitigations
back to risks, then back to premises, which relate to the outer
arguments to be validated in the first place.

D. Risk Assessment

Three basic elements distinguish the risk-based security
argumentation method described in this paper from other
risk assessment frameworks: (i) it provides a rationale for a
systematic representation of system context from which the
behavior of the system is derived and the outer argument is
constructed, providing structure to the risk assessment part of
the method, (ii) it makes assumptions about domains of the
system context explicit via transferred risks, and (iii) it uses
public security catalogs to support the risk assessment.

Explicit Context. In the CORAS framework [32], context
is established by means of an asset diagram (CORAS Step
2) which contains all assets that are logically or physically
related to the system to be assessed. Assets that are directly
harmed as a consequence of an unwanted event affecting the
target of evaluation are considered as part of the system under
analysis: otherwise, they are considered as part of the system
context. The boundary between system and system context can
be further adjusted in CORAS (Step 3) after a preliminary
analysis of risks by means of “dependent diagrams” [33].
Context is delimited in the RISA method by means of the
system functional goal and security requirements, from which
context domains are derived. This allows us to relate the results
of risk assessment to the satisfaction of security requirements.

Other security risk assessment and evaluation
frameworks (e.g., CRAMM [34], ISO 27005:2008 [35],
AS/NZS4360:2004 [36], and Common Criteria [8]) do not
prescribe any representation or delimitation rationale for
context specification; context is often described in natural
language.

Assumptions as Risk. Among the above mentioned risk
assessment and evaluation frameworks, the Australian/New
Zealand Standard (AS/NZS4360:2004 [36]) is the only one
which conveys explicitly the idea that assumptions represent
risks. It prescribes that assumptions should be recorded and

clearly stated but, most importantly, mandates sensitivity anal-
ysis to test the effect of uncertainty in assumptions. The current
RISA method does not incorporate validation of assumptions
made about the system context but it classifies them as risks
to be transferred. We plan to further study risks transferred
and how they affect the satisfaction of security requirements
as future work.

Evolving & Detailed Source of Information. The CORAS
framework [32] uses the guidelines in ISO 27001:2008 [35]
to support risk assessment. CRAMM [34] is supported by a
proprietary database of security controls that are traceable to
risks derived also from the ISO 27001:2008 [35]. Although
ISO 27001 is publicly available, it is a static document and
does not provide the level of details provided by CAPEC and
CWE catalogs. However, both CAPEC and CWE, at their
current stage, still need a lot of improvements, especially in
their search capabilities. This is an area that has started to
receive attention from researchers, see e.g. [37].

Specific RISA steps, such as “Identify Risks” and “Mitigate
Risks”, could be supported by other risk assessment frame-
works such as the model-based approach of CORAS which
uses icons instead of tables. However, although it may improve
the user-friendliness of RISA, the traceability of several rounds
of argumentation may become more complex.

VII. CONCLUSION AND FUTURE WORK

Although absolute security is not possible in practice,
security requirements still have to be satisfied to the extent
allowed by incomplete information, uncertainty and limited
resources. When dealing with practical security, requirements
engineers need to reason about whether security is good
enough. That reasoning typically involves risk assessment.
Extending existing work on argumentation for security, the
proposed RISA method has shown how argumentation can be
extended with risk assessment, thereby exploiting the ability
to identify, classify, mitigate and prioritize risks, and feeding
the prioritized risks back to the process of reasoning about
the satisfaction of the security requirements. RISA takes ad-
vantage of publicly available catalogs of common attacks and
weaknesses, thus a degree of objectivity can be achieved in the
risk assessment. Nevertheless, subjectivity is not completely
eliminated by catalogs such as CWE and CAPEC: for instance,
the evaluation of risk severity is likely to remain subjective.
However, this evaluation is prone to scrutiny by security
experts from the wider community.

The most pressing issue in our future work is validation.
We have demonstrated an application of RISA to a realistic
example of the PIN Entry Device. We are planning to apply the
RISA method to significant industrial case studies, including
the Air Traffic Management system [38]. Furthermore, we
see two main directions for future work which complement
each other: enhancements to the prioritization of risks and
mitigations, consequently reflecting on the prioritization of
arguments, and tool support.

In the current version of the RISA method, prioritization
of risks is qualitative, coarse-grained, and is detached from

9



context. We believe that the Common Weakness Scoring
System [39], which is another recent initiative related to the
CWE, may be valuable in working towards a more systematic
quantitative prioritization of risks taking into account factors
related, for example, to security concerns particular to a
business domain and technology. Prioritization could also be
enhanced by incorporating cost/benefit trade-off considerations
(as in [40]) about mitigations, as well as consideration about
risks. Finally, uncertainty is another important aspect to be
added into prioritization: early work on Probabilistic Argu-
mentation [41] seems to be a promising starting point in this
direction.

Decision making tool support would greatly improve the
practical use of the RISA method. We plan to investigate how
to provide effective automated reasoning about security re-
quirements, based on feedback from risk-based argumentation.

ACKNOWLEDGMENT

The first author is supported by the research program
Sentinels (http://www.sentinels.nl). The UK-based authors
are supported by the SecureChange project, and SFI grant
03/CE2/I303 1. We thank the anonymous reviewers for help-
ful comments and suggestions.

REFERENCES

[1] C. Haley, R. Laney, J. Moffett, and B. Nuseibeh, “Security Requirements
Engineering: A Framework for Representation and Analysis,” IEEE
Trans. Softw. Eng., vol. 34, no. 1, pp. 133–153, 2008.

[2] S. Toulmin, R. Rieke, and A. Janik, An Introduction to Reasoning.
Macmillan, 1979.

[3] T. P. Kelly, “Arguing Safety - A Systematic Approach to Safety Case
Management,” Ph.D. dissertation, University of York, 1998.

[4] B. Burgemeestre, J. Hulstijn, and Y.-H. Tan, “Value-Based Argumenta-
tion for Justifying Compliance,” in DEON’2010. Springer, 2010, pp.
214–228.

[5] R. A. Weaver, “The Safety of Software: Constructing and Assuring
Arguments,” Ph.D. dissertation, University of York, September 2003.

[6] S. Drimer, S. J. Murdoch, and R. Anderson, “Thinking Inside the Box:
System-Level Failures of Tamper Proofing ,” in SP’2008. IEEE Press,
May 2008, pp. 281–295.

[7] Visa, “Testing and Approval,” Website, 2011, https://partnernetwork.
visa.com/vpn/global/category.do?categoryId=103&documentId=
501&userRegion=1, last visited Feb 2011.

[8] “Common Criteria for Information Technology Security Evaluation,
Version 3.1, Revision 3, CCMB-2007-09-001, CCMB-2007-09-002 and
CCMB-2007-09-003,” July 2009.

[9] S. Drimer, S. J. Murdoch, and R. Anderson, “Failures of Tamper-
Proofing in PIN Entry Devices,” IEEE Security and Privacy, vol. 7,
pp. 39–45, November 2009.

[10] M. Jackson, Problem Frames: Analysing and Structuring Software
Development Problems. Addison-Wesley/ACM Press, 2001.

[11] S. E. Newman and C. C. Marshall, “Pushing Toulmin Too Far: Learning
from an Argument Representation Scheme,” Xerox PARC, Tech. Rep.
SSL-92-45, 1991.

[12] S. Barnum, Common Attack Pattern Enumeration and Classifica-
tion (CAPEC) Schema Description, Copyright Cigital Inc., com-
missioned by the U.S. Department of Homeland Security, Jan-
uary 2008, http://capec.mitre.org/documents/documentation/CAPEC
Schema Description v1.3.pdf, Version 1.3.

[13] CWE Team, “CWE Schema Documentation,” Online by The MITRE
Corporation, December 2010, http://cwe.mitre.org/documents/schema/
index.html, Version 4.4.2.

[14] The-Card-Payment-Group, “PIN Entry Device Protection Profile,” Com-
mon Criteria Portal, Jul 2003, www.commoncriteriaportal.org/files/
ppfiles/PED PPv1 37.pdf, last visited Jul 2010.

[15] Mastercard International Incorporated, “Payment Card Industry POS
PIN Entry Device Security Requirements,” m2m Group website, http:
//www.m2mgroup.ma/livresetdocs/security%20risk.htm, last visited Feb
2011, October 2004, version 7 1.0, Revised March 2005.

[16] R. Anderson, “Failures on Fraud,” Speed, vol. 3, no. 2, pp. 6–7,
September 2008.

[17] R. A. Carter, A. I. Antón, L. A. Williams, and A. Dagnino, “Evolving
Beyond Requirements Creep: A Risk-Based Evolutionary Prototyping
Model,” in RE’01, 2001, pp. 94–101.

[18] J. Chisan and D. Damian, “Exploring the role of requirements engineer-
ing in improving risk management,” in RE’05, 2005, pp. 481–482.

[19] A. V. Miranskyy, N. H. Madhavji, M. Davison, and M. Reesor, “Mod-
elling Assumptions and Requirements in the Context of Project Risk,”
in RE’05, 2005, pp. 471–472.

[20] G. Sindre and A. L. Opdahl, “Eliciting security requirements with misuse
cases,” Requirements Engineering Journal, vol. 10, no. 1, pp. 34–44,
2005.

[21] J. McDermott and C. Fox, “Using Abuse Case Models for Security
Requirements Analysis,” in ACSAC’99. IEEE Press, 1999, pp. 55–64.

[22] B. Schneier, “Attack Trees: Modeling Security Threats,” Dr. Dobb’s
Journal, December 1999.

[23] L. Lin, B. Nuseibeh, D. Ince, and M. Jackson, “Using abuse frames
to bound the scope of security problems,” in RE’04. IEEE Computer
Society, 2004, pp. 354–355.

[24] A. van Lamsweerde, “Elaborating Security Requirements by Construc-
tion of Intentional Anti-Models,” in ICSE ’04. IEEE Press, 2004, pp.
148–157.

[25] I. A. Tøndel, J. Jensen, and L. Røstad, “Combining Misuse Cases with
Attack Trees and Security Activity Models,” in ARES’2010. IEEE
Press, 2010, pp. 438–445.

[26] P. Graydon and J. Knight, “Success Arguments: Establishing Confidence
in Software Development,” University of Virginia, Tech. Rep. CS-2008-
10, July 2008.

[27] S. B. Shum and N. Hammond, “Argumentation-based Design Rationale:
What Use at What Cost?” Int. Journal of Human-Computer Studies,
vol. 40, no. 4, pp. 603–652, 1994.

[28] D. N. Walton, Argumentation Schemes for Presumptive Reasoning.
Mahwah NJ, USA: Lawrence Erlbaum Associates, 1996.

[29] K. Atkinson, T. Bench-Capon, and P. McBurney, “Justifying Practical
Reasoning,” in CMNA’04, 2004, pp. 87–90.

[30] P. Baroni, F. Cerutti, M. Giacomin, and G. Guida, “An Argumentation-
Based Approach to Modeling Decision Support Contexts with What-
If Capabilities,” in AAAI Fall Symposium. Technical Report SS-09-06.
AAAI Press, 2009, pp. 2–7.

[31] H. Lipson and C. Weinstock, “Evidence of Assurance: Laying the
Foundation for a Credible Security Case,” May 2008, department
of Homeland Security; online: https://buildsecurityin.us-cert.gov/bsi/
articles/knowledge/assurance/973-BSI.html, last visited Feb 2011.

[32] F. den Braber, I. Hogganvik, M. S. Lund, K. Stølen, and F. Vraalsen,
“Model-based security analysis in seven steps - a guided tour to the
CORAS method,” BT Technology Journal, vol. 25, no. 1, pp. 101–117,
2007.

[33] G. Brndeland, H. E. Dahl, I. Engan, and K. Stölen, “Using Dependent
CORAS Diagrams to Analyse Mutual Dependency,” in CRITIS’2007,
ser. LNCS 5141. Springer Press, 2008, pp. 135–148.

[34] Walton-on-Thames: Insight Consulting, “CRAMM User Guide,” July
2005, risk Analysis and Management Method, Version 5.1.

[35] ISO/IEC-27001/27005, “Information technology. Security techniques.
(27001) Information security management systems; (27005) Information
security risk management.” 2008.

[36] AS/NZS-4360:2004, “Australian/New Zealand Standards, Risk Manage-
ment,” Sydney, NSW, 2004.

[37] P. H. Engebretson and J. J. Pauli, “Leveraging Parent Mitigations and
Threats for CAPEC-Driven Hierarchies,” in ITNG’09. IEEE Press,
2009, pp. 344–349.

[38] Y. Yu, T. T. Tun, A. Tedeschi, V. N. L. Franqueira, and B. Nuseibeh,
“Openargue: Supporting argumentation to evolve secure software sys-
tems,” in RE’11. IEEE press, 2011.

[39] “Common Weakness Scoring System (CWSS),” Online: http://cwe.mitre.
org/cwss/#vectors, 2011, version 0.2, 14 February 2011.

[40] V. N. L. Franqueira, S. Houmb, and M. Daneva, “Using Real Option
Thinking to Improve Decision Making in Security Investment,” in
IS’2010 (OTM Conferences), ser. LNCS. Springer Press, 2010, pp.
619–638.

[41] R. Haenni, B. Anrig, J. Kohlas, and N. Lehmann, “A Survey on
Probabilistic Argumentation,” in ECSQARU’01, 2001, pp. 19–25.

10


