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ABSTRACT Many interconnected IoT devices driven by imperatives of efficiency and convenience often
lack adequate security measures, making them susceptible to exploitation by cyber-criminals. Effective
network security necessitates meticulous intrusion detection, which typically involves scrutinizing the
network traffic using deep packet or stateful protocol inspection techniques. However, traditional inspection
methods often require manual feature engineering, which can result in loss of payload information and thus,
false alarms. In this study, a controlled testbed environment is established to capture botnet traffic. The paper
introduces a detection approach that involves converting raw NetFlow data to IDX, short for ‘Index,’ image
representations. A hybrid deep learning architecture is designed, integrating VGG19 and GRU structures to
learn the spatial and temporal features, respectively. The detection results show that the proposed solution
achieves 98.883% true positives rate and 0.9% false negatives rate, surpassing conventional anomaly
detection. In addition, an adaptive sliding window technique is introduced for live intrusion detection and
prevention. Through iterative testing and refinement, a runtime of 0.041ms per image and 0.00171ms per
packet is achieved, confirming the robust nature of the proposed method.

INDEX TERMS Botnet detection, flow-to-image conversion, intrusion detection, intrusion prevention,
sliding windows, spatial features, temporal features.

I. INTRODUCTION

I n today’s interconnected world, security and integrity of
computer networks have become paramount. As organi-

zations and individuals rely heavily on networked systems
for communication, data sharing, and essential services, the
vulnerability to cyber threats has escalated exponentially.
From large-scale data breaches to sophisticated hacking at-
tempts, the realm of network intrusions has evolved into a
complex and ever-present challenge [1], [2]. In response, the
field of network intrusion detection has emerged as a crucial
line of defense, aiming to detect and mitigate unauthorized
access, malicious activities, and potential data breaches. By
effectively identifying and responding to network intrusions,
one can safeguard sensitive information, protect critical in-
frastructure, and preserve the trust of network users. This
research endeavors to contribute to the field of network in-
trusion detection by addressing the challenges associatedwith
accurately detecting and mitigating cyber threats in real-time.

Among the most prevalent and damaging types of network
intrusions is the insidious menace of botnet attacks. A bot-

net refers to a network of compromised computers, known
as ‘‘zombies’’ or ‘‘bots,’’ controlled remotely by a central
command-and-control (C&C) server. These coordinated at-
tacks can be orchestrated for various malicious purposes,
such as distributed denial-of-service (DDoS) attacks, man-
in-the-middle (MiTM) attacks, spam dissemination, data ex-
filtration, and even crypto mining [3]. As per the statistics
published by Parachute, botnets were responsible for 51%
of all detected network attacks in 2022 [4]. The severity and
abundance of botnet attacks despite the existing intrusion
prevention infrastructure underscore the need for a robust
network intrusion detection and prevention system capable of
identifying and mitigating these evolving threats.

Traffic classification is an important aspect of botnet detec-
tion [5], [6]. It primarily analyzes specific fields within traffic
packets to determine the likelihood of network vulnerability
or anomalous activity that may pose a threat to network
security. In order to detect and classify the abnormal traffic,
the traffic packets are usually segmented into flows based
on their five-tuple information (i.e., source IP, destination IP,
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source port, destination port, and protocol) and timestamp [7].
Presently, the port-based methods, payload-based methods,
and statistical features-based methods are well-established
traffic detection technologies employed for the identification
and analysis of abnormal network behavior.

The port-based traffic detection method was widely
adopted in the past due to the simplicity of network protocols
and the utilization of fixed port numbers by specific appli-
cations [8]. However, with the advancement of dynamic port
allocation and redirection, the approach fails to adequately
capture the traffic attributes, resulting in declined detection
effectiveness. The payload-based traffic detection method
leverages information from the application layer, with deep
packet inspection (DPI) technology being a notable exam-
ple [9]. DPI involves decrypting and encrypting transmitted
traffic data and effectively identifies malicious packets [10],
[11]. Nonetheless, the growing use of encryption protocols
such as Hypertext Transfer Protocol Secure (HTTPS) and
increasing concerns for privacy have significantly limited
the applicability of DPI. Additionally, the statistical feature-
based traffic detection method relies on factors such as packet
arrival time, packet size, and statistical characteristics of
traffic packet fields to represent traffic attributes [12]. By
employing artificially designed features andmachine learning
algorithms, this method offers relatively reliable techniques
for analyzing and detecting abnormal traffic. However, ac-
curate labeling of traffic data remains crucial when training
supervised algorithms in the context of this approach.

Previous research has mainly focused on enhancing classi-
fication accuracy and other metrics by operating at the data
link layer. Both traditional machine learning algorithms and
various neural network algorithms in deep learning have uti-
lized complex feature engineering to extract information from
traffic data. However, feature engineering can lead to the loss
or alteration of original temporal and spatial features of traffic
packets. For example, Yeo et al. [13] extracted temporal fea-
tures such as flow inter-arrival time, burst inter-arrival time,
and flow duration, while Yu et al. [14] extracted temporal fea-
tures like flow activation time, packet arrival time, and time
interval, as well as spatial features such as packet number, IP
address, and transmission direction. Although these extracted
traffic features enable classification algorithms to make use
of missing data information, the classification accuracy and
other metrics have maxed out, posing significant challenges
for further enhancement.

A. CONTRIBUTIONS
In particular, the paper contributes: i) a traffic handling ap-
proach that eliminates the need for manual feature engineer-
ing and addresses the information loss problem by working
directly with raw NetFlow data and generating IDX format
images, a format designed to store multi-dimensional arrays,
consisting of a header followed by binary data, ii) an inte-
grated deep learning-based intrusion detection algorithm that
learns the flow features two-fold, and iii) an adaptive sliding
windows-based intrusion prevention framework that proac-

tively monitors the incoming traffic and identifies network
intrusions in real-time. Beyond the novelty of the integrated
approachwhich is shown to outperform existing solutions, the
novelty in the constituent elements includes the introduction
of the adaptive sliding window approach, which enables our
system to dynamically adjust its monitoring window size and
type based on the changing network conditions. Furthermore,
our work introduces a pioneering method for generating IDX
format images from raw NetFlow data, obviating the need
for manual feature engineering and overcoming information
loss issues prevalent in conventional methods. The indexed
image format allows for efficient storage and retrieval of
large datasets, which is crucial for applications like machine
learning and pattern recognition where performance is key.
Additionally, the paper’s contribution extends to the estab-
lishment of a comprehensive testbed, offering a new dataset
that will be made publicly available and can be readily used
by the research community.
It must be noted that the proposed method has the potential

to be leveraged for emerging paradigms, such as misbehaving
source detection in Collective Perception Message Dissemi-
nation for autonomous driving [15]. Such a systemwould rely
on edge computing nodes, such as RSUs, to perform real-time
detection of misbehaving messages at the network edge. The
conversion to image format is particularly attractive for such
applications, as it allows the creation of synthetic data for
training through the employment of generative AI approaches
[16] which have been particularly successful for image data.
The remainder of the paper is organized as follows. Sec-

tion II details the previous research carried out for network
intrusion detection and prevention using statistical methods,
pattern matching, expert systems, and machine learning algo-
rithms and the reliability achieved so far. Section III presents
the proposed methodology and the implementation details,
including the equipment used for setting up the testbed, data
collection procedure, and detection approach being designed
in this research, while Section IV discusses the results. Fi-
nally, we draw concluding remarks in Section V.

II. RELATED WORK
Intrusion Detection Systems (IDS) constitute a class of soft-
ware tools designed to identify instances of unauthorized
access to computer networks or systems. The concept of IDS
was first introduced by Anderson in 1980, where he empha-
sized the need to develop a threat model to identify types
and sources of potential threats [17]. He categorized threats
as ‘‘internal or external penetrations, and misfeasance’’, and
devised a security monitoring system to detect abnormal user
behavior. Subsequent developments were nicely reviewed by
Axelsson in [18], conducting an extensive survey and tax-
onomy of intrusion detection systems, delving into various
aspects, particularly focusing on the principles of detection.
Notable works include the work of Fadlullah et al. in

[19] presenting a novel approach – Detection and TRAce-
Back (DTRAB), to counter attacks on encrypted protocols
by utilizing traffic-feature analysis. The paper focused on
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developing an anomaly-based IDS using the non-parametric
cumulative sum (CUMSUM) algorithm for strategically dis-
tributed monitoring stubs. DTRAB achieved a 100% detec-
tion rate in detecting individual attacks when the number of
flows remained below 7, but its performance was observed
to degrade as the number of flows increased, highlighting
a limitation in scalability. Nadiammai [20] explored the ap-
plication of data mining algorithms to intrusion detection
databases, comparing the performance of various traditional
rule and function-based classifiers. The results indicated that
the sequential minimal optimization (SMO) classification
algorithm outperformed others in terms of accuracy, speci-
ficity, and sensitivity, reaching an accuracy of 97.78% with
a detection time of 2.56 seconds. However, the focus on
traditional ML techniques may limit adaptability to emerging
attack vectors and the dynamic nature of today’s network
ecosystem. Gogoi et al. [21] presented a multi-level hybrid
intrusion detection system (MLH-IDS) that combined super-
vised, unsupervised, and outlier-based techniques to improve
detection efficiency for both existing and zero-day attacks.
The performance evaluation of MLH-IDS demonstrated a de-
tection rate ranging from 81.43% for U2R attacks to 99.99%
for DoS attacks. However, the performance of MLH-IDS is
contingent on the quality of input features; if the feature
selection process is not optimized, it may lead to suboptimal
results. Bang et al. [22] utilized LTE signaling to extract
spatial and temporal characteristics of traffic data in wireless
sensor networks. They employed the semi-Markov model to
detect potential attacks. Their approach was successful in
differentiating attack nodes and maintaining a very low rate
of false positives. Nonetheless, this reliance on LTE signal-
ing limits the applicability of their method to environments
where such infrastructure is available, potentially excluding
many scenarios in diverse network topologies. Danish et al.
[12] introduced a novel LoRaWAN-based Intrusion Detection
System (LIDS) for jamming attacks. They developed a real
experimental testbed, and trained LIDS on real join request
data utilizing two statistical algorithms: Kullback Leibler
Divergence (KLD) and Hamming distance (HD). Their per-
formance evaluations based on Receiver Operating Char-
acteristic (ROC) produced high detection rates, with KLD
achieving up to 98% and HD up to 88%, both with a 5% false
positive rate. However, the reliance on statistical algorithms
can lead to challenges in generalizing results across diverse
network conditions and attack scenarios. Liu [23] proposed a
unique approach for features extraction and encoding from
NetFlow data into NetFlow images using feature correla-
tion analysis and surrounding correlation (SC) matrix. These
NetFlow images were then utilized as input to the 3-layer
CNN and ResNet18 models, resulting in an accuracy of 93%
and 95.86%, respectively. While this method showcases the
potential of using image representations for network data,
it primarily focuses on static feature extraction, which may
not adequately address the dynamic nature of evolving cyber
threats. Souza et al. [24] proposed a hybrid IDS approach
using a Fuzzy Neural Network. The IDS operated as a host

intrusion detection system and underwent malware detection
tests on three publicly available malware pattern datasets.
Their simulation results demonstrated a striking accuracy of
99.02% with a detection time of 4.03 seconds. However, this
approach may face challenges in scalability and adaptability
in real-time scenarios where rapid response is crucial.
We now shift our focus to Intrusion Prevention Systems

(IPS), exploring the research efforts dedicated to develop-
ing and evaluating methodologies that not only detect unau-
thorized activities but also incorporate preventive measures.
Zoppi et al. [25] proposed an unsupervised anomaly detection
approach using sliding windows for monitoring dynamic IoT
systems. The study explored the limitations and drawbacks
of anomaly detection in systems where the expected behavior
changes over time and conducted a quantitative analysis using
Statistical Predictor and Safety Margin (SPSM) algorithm to
compute adaptive bounds for anomalous activities as well as
K-Means and Histogram-based Outlier Score (HBOS).While
their scores were not as favorable, the methodology employed
in this research holds promise for future investigations in the
field. Moreover, the gap lies in their reliance on unsupervised
techniques, which can struggle with high false positive rates
in highly dynamic environments. Krishna et al. [26] proposed
the utilization of deep learning-basedMulti-Layer Perceptron
architecture for immediate classification of DoS, Probe, R2L,
and U2R attacks which resulted in an accuracy of 91.41%.
Additionally, they implemented a prevention phase using a
background script and IPtable that make decisions based on
the classification results. Despite these advancements, the ap-
proach primarily focuses on immediate classification without
adequately addressing the evolving nature of attack vectors,
which may affect long-term effectiveness. Furthermore, the
reliance on a background script for prevention may introduce
latency and is limited in its ability to adapt to new threats
in real time. Later, in 2021, a game theory-based preventive
approach was proposed by Govindaraj et al. [27] to mitigate
DDoS attacks and ensure network stability. They modeled
a system as a 2-player Bayesian signaling zero sum game,
where the Nash Equilibrium represented optimal strategies
for both the attacker and the system. The results of the study,
simulated on ns3 network simulator, demonstrated an 80%
detection rate, 90% prevention rate, and a false positive rate
of 6%. While this approach provides a novel perspective
on DDoS mitigation, it primarily focuses on a theoretical
model, as well the reliance on game theory can introduce
computational overhead. Baldini and Amerini [28] presented
a real-time algorithm based on a sliding window approach
with the application of Morphological Fractal Dimension
(MFD) for detecting DDoS attacks. They aimed to address the
computational cost associated with existing IDS and explored
the use of MFD. Their results demonstrated a significant
improvement in DDoS attack detection compared to entropy-
based methods. In addition, they introduced a novel algo-
rithm for automatically defining the sliding window size that
achieved a high detection accuracy of 99.30%, outperforming
similar approaches on the same dataset, while maintaining a
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fast execution time of 34ms. However, whileMFD is effective
for certain patterns of DDoS attacks, it may not capture the
full spectrum of network behavior associated with different
types of intrusions. Kumar et al. [29] proposed the imple-
mentation of a Network-based Intrusion Prevention System
(NBIPS), utlizing the existing Snort framework, to protect
cloud servers and IoT systems from unauthorized access.
The proposed NBIPS, positioned behind a firewall, acts as
a defense mechanism by inspecting network activity streams,
identifying misuse instances, and taking preventive measures.
Their system, installed as either an inline or passive model,
monitors and blocks traffic using signature-based protocols,
thereby preventing attacks on IoT systems. Their results indi-
cate communication cost minimization up to 384 bits. While
the NBIPS demonstrates effectiveness in preventing known
attacks through signature-based detection, it may struggle
to address emerging threats that do not match existing sig-
natures. This reliance on pre-defined signatures can leave
the system vulnerable to zero-day attacks. Patil et al. [30]
developed an architecture that combines the Snort IDS/IPS
withmachine learning to create a robust and secure system for
detecting and preventing attacks in domestic networks. Their
system, named JARVIS, utilized Random Forest models to
detect malicious patterns in real-time network traffic data. By
dynamically updating Snort rules based on the model’s sug-
gestions, they achieved resource consumption optimization
and improved the system’s efficiency. The results showed an
accuracy of 97% in detecting incoming attacks and suggesting
deployable rules through the web interface, enabling effec-
tive prevention of further damage. While JARVIS effectively
enhances detection rates, its utilization of Random Forest
models may limit its capacity to handle adaptive attacks
that do not conform to historical patterns. Naula et al. [31]

proposed a novel approach using Software-Defined Network-
ing (SDN) to automate detection and mitigation of slow-
rate DDoS attacks. By leveraging SDN’s centralized control
and programmability, their system was configured to con-
duct state assessment and to implement blocking mechanisms
to prevent DDoS attacks. The scheme’s effectiveness was
demonstrated through experiments using the live generated
SDN-SlowRate-DDoS dataset, achieving accuracy ranging
from 91.66% to 100%. Nonetheless, their dependency on a
centralized architecture raises concerns about potential single
points of failure, which could be exploited by attackers to
disrupt the detection and mitigation processes.
We found that most previous research employed shallow

classification models, yielding excellent results when the
feature dimension is small. However, in scenarios with large
datasets and large feature dimensions, the classification per-
formance is compromised. Furthermore, the existing land-
scape of intrusion prevention faces several challenges, such as
high-speed network traffic, complex rule-based approaches,
and a significant number of false alarms. To address these
gaps, this paper proposes a flexible network intrusionsmitiga-
tion solution that, in particular, incorporates live data capture
in a realistic network setting, eliminating the need for prior
feature engineering, and ensuring no incoming packet infor-
mation is discarded. By prioritizing dynamic implementation,
our proposed scheme leverages a two-fold detection approach
via image-based deep nested classifiers. We establish real-
time evaluation and deployment support utilizing adaptive
sliding windows for efficient handling of network traffic
considering the real-world network constraints. We resolve
to define a time-efficient adaptive method that relies simply
on flow statistics and channel parameters to determine the
optimal window size.
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III. METHODOLOGY
This section is structured into two subsections. The initial
subsections provide an extensive overview of our proposed
approach highlighting the testbed and IDS design. The de-
tailed workflow, including preprocessing stage and IDS de-
sign, is illustrated in Figure 1. The final subsection focuses
on the practical implementation of the proposed model within
a dynamic network environment, specifically incorporating
adaptive sliding windows.

A. TESTBED SETUP AND LOCAL AREA NETWORK
CONFIGURATION
A testbed is elemental in facilitating extensive experiments
and evaluations in the field of network testing and analysis.
The objective is to establish a setting that emulates real-world
networking scenarios while enabling controlled experimen-
tation. In this research work, we design a comprehensive
testbed configuration that comprises a) four personal com-
puters (PCs) and b) twelve PCs to be used as bots, along
with a Fast Ethernet Switch, a Raspberry Pi module, and a
mobile workstation functioning as a Command & Control
(C&C) server. The PCs are strategically connected to the
Ethernet Switch via Cat 6 Ethernet cables to ensure seam-
less communication and dependable data transmission. This
connection configuration ensures that all bots are within the
same local network connectivity, facilitating network traffic
flow as validated by Figure 2. For the performance evaluation
of the proposed scheme we have opted for a testbed imple-
mentation, which better demonstrates the amenability for real
deployment and in addition offers to the research community
a new data set for further exploitation.

However, it is important to acknowledge that practical
scenarios might involve bots located in different network
environments or distributed geographically, potentially en-
countering network congestion. The testbed operations are
largely dependent on the C&C server, which plays a pivotal
role in orchestrating network attacks. To address concerns re-
garding high availability and potential single points of failure,
we have implemented failover clustering and data replica-
tion mechanisms in the C&C server’s configuration. Failover
clustering allows us to maintain a standby C&C server that
is continuously synchronized with the primary server. In the

FIGURE 2. Ping test: Network accessible

event of a failure, the standby server can quickly take over
operations with minimal downtime. Additionally, data repli-
cation ensures that all operational data is continuously up-
dated between the primary and secondary servers, minimizing
the risk of data loss during a failover. This enhancement not
only improves the resilience of the system but also ensures
continuous operation in real-world scenarios.
Furthermore, the integration of the Raspberry Pi device

with the central switch provides the advantage of real-time
capture of network traffic data, further enhancing the effec-
tiveness of our testbed in simulating various network condi-
tions.

B. MALICIOUS TRAFFIC GENERATION AND CAPTURE
Once the testbed is configured, the next stage is to generate
and capture malicious network traffic. We designed a sys-
tematic scheme to launch network attacks from the C&C
server and subsequently capture the generated malicious traf-
fic using Wireshark, installed on the Pi module. A set of nine
distinct attacks, namely: Ping of Death, ARP Spoofing, SYN
Flood, UDP Flood, HTTP Flood, Rudy, TCP SYN Scan, TCP
Connect Scan, UDP Scan, are employed to simulate various
forms of network intrusions.
It is important to note that we simulated each attack in

bursts of 12 packets without presetting the inter-arrival time
between requests to create a manageable yet impactful test
scenario, except for the Rudy attack, which featured head-
ers sent with an inter-arrival time of 5 seconds between
slow HTTP requests. The choice to send 12 × 4 packets or
12 × 12 packets in quick succession from both the four-
bot and twelve-bot configurations, with no intentional delay,
aimed to overwhelm the target and quickly saturate the traffic
levels typically observed in real botnet attacks. This approach
allows us to evaluate how rapidly and effectively our intrusion
detection system can respond to resource exhaustion tactics,
providing insights into its performance under stress.

C. DATA PREPROCESSING
Preprocessing is an essential aspect in the preparation of
network traffic data for subsequent analysis and classifica-
tion. The preprocessing stage involves multiple steps that aim
to transform the raw network traffic data into IDX format
image representation. Unlike conventional methods that use
feature engineering, our approach preserves all the inherent
feature information present in each packet. This eliminates
the need for filtering or manual extraction of specific traffic
features. Our preprocessing pipeline, outlined in Algorithm
1, begins with packet sanitization wherein we anonymize the
sensitive information fields (such as, the source and destina-
tion MAC and IP addresses) in the Data Link and Internet
Protocol Layers. Upon examining the network traffic packets
in Wireshark (as shown by the sample in Figure 1a), it could
be observed that the information is reserved in hexadecimal
codes. We convert these hexadecimal streams into bytes se-
quences. Next, we adjust the packet size and extract 384
bytes including the Application Layer (i.e., payload informa-
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Algorithm 1 Flow-to-Image Conversion
Input: PCAP files
Output: IDX format images
1: Step 1: Get flows of 24 packets each
2: for each PCAP do
3: Initizalize lists: pkts = [ ], flows = [ ]
4: Read Ethernet packets
5: for each packet do
6: Packet Sanitization:Mask src & dst IP and MAC address
7: Hex-to-Byte: Convert hexadecimal packet information into byte sequence
8: if packet size < 384 bytes then
9: Zero-pad the packet to adjust length
10: else if packet size > 384 bytes then
11: Truncate the packet to adjust length
12: end if
13: pkts← packet
14: end for
15: for i from 0 to len(pkts)− 1 with step size 24 do
16: flows← packets in pkts from index i to i+ 24
17: end for
18: for each flow in flows do
19: if flow size < 24 then
20: Pad flow with [bytes([0])× 384] repeated (24−flow size) times
21: end if
22: Vectorize: Reshape flow to 384× 24-dimensional array
23: end for
24: end for
25: Step 2: Transform each flow into IDX image
26: for each flow in flows do
27: Write IDX header
28: Write 9, 216-dimensional flow to IDX data field
29: end for

tion) from each packet to ensure uniformity and maintain a
balance between performance and computational efficiency.
After certain trails, we have come to the conclusion that this
selection allows us to capture essential features of the traffic
while minimizing the processing load on our system. To
achieve this, we zero-pad the packets less than 384 bytes and
truncate those longer than 384 bytes, thereby standardizing
the input. Finally, we combine a set of 24 packets as one flow
and vectorize the bytes sequences into a 384 × 24 = 9, 216-
dimensional feature vector. This approach facilitates efficient
processing and classification while still capturing significant
data characteristics. The next step is to generate 2D IDX im-
ages from bytes-type feature vectors. The IDX file format has
the capacity to represent multidimensional numerical arrays,
thus rendering it suitable for storing image data. Finally, we
generate IDX header and pack the traffic data in IDX format
to be used for training. It is important to mention that prior to
training, the feature vectors are reshaped into 96 × 96 8-bit
unsigned integer arrays.

D. INTRUSION DETECTION PIPELINE
We develop a nested classification scheme integrating Con-
volutional Neural Network (CNN) and Recurrent Neural Net-
work (RNN). The convolution operation of CNNs stands out
in spatial perception and image recognition tasks. In network
environments, traffic packets often fragment during transmis-
sion, whereby these fragments look like IP packets. The IP
field of each packet carries significant spatial characteristics
related to the flow. Therefore, recognizing the importance
of spatial attributes, the first block of our nested classifier
employs the CNN architecture to extract spatial features.
Further, the second layer of our classifier is based on the
RNN architecture to extract temporal features of the flow.
The recurrent connections of RNN are notable in capturing
temporal dependencies in sequential data. In the context of
network traffic, the flow of traffic packets adheres to a par-
ticular chronological order, while their arrival at the receiving
end is influenced by delays, giving rise to a distinct sequence.
At the same time, the number of traffic packets transmitted
within a specified timeframe displays variation, and these
attributes together indicate the existence of temporal charac-
teristics. The details of our convolution and recurrence stacks
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are summarized below.

1) CNN Model
We utilize a pretrained VGG19 model as our CNN-based
spatial feature extractor. The VGG19 model, illustrated in
Figure 3, is composed of a series of convolutional layers, fol-
lowed by max-pooling layers. This architecture is renowned
for its depth, consisting of 19 weight layers, hence the name
VGG19. The convolutional layers use small receptive fields
(3× 3) with a stride of 1, and padding is applied to maintain
spatial resolution. This design choice enables the model to
learn complex spatial features while keeping the number of
parameters manageable. After each convolutional layer in
VGG19, a rectified linear unit (ReLU) activation function is
applied. This activation function, defined in Eq. 1, introduces
non-linearity into the network, enhancing its ability to capture
complex patterns. The convolution operation itself involves
sliding 3 × 3 filters, ω, over the input feature map, denoted
as x, and performing element-wise multiplication. The bias
term, b, is then added, and the resulting values are passed
through the activation function, which yields the output of the
convolutional layer, as given in Eq. 2.

f (x) = max(0, x) (1)

y = f (ω ∗ x + b) (2)

Subsequently, max-pooling layers are inserted periodically
within the VGG19 architecture to reduce the spatial dimen-
sions of the feature maps while preserving important in-
formation. Max-pooling involves dividing the input feature
map into non-overlapping regions and selecting themaximum
value within each region. This downsampling operation aids
in capturing translation invariance and reduces the compu-
tational load. In summary, the model’s output functions as a
feature map, which encodes the high-level spatial information
obtained from the NetFlow images.

2) RNN Model
We utilize the Gated Recurrent Unit (GRU) architecture as
the RNN-based temporal feature extractor due to its inherent
computational efficiency compared to other RNN configura-
tions like LSTMs. This is crucial for our application, as accel-
erated processing of network traffic is essential for effective
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FIGURE 4. GRU Architecture

intrusion detection. The GRU cell, depicted in Figure 4, con-
sists of multiple recurrent layers, each comprising a series of
recurrent neurons. The primary concept underlying the GRU
architecture is the integration of gating mechanisms, which
enable selective retention or updating of information within
the hidden state. This would allow our model to dynamically
adapt to evolving network traffic patterns, making it more
robust and resilient to novel attacks in the long term. The gat-
ing mechanisms in the GRU control the flow of information
within the recurrent layers by utilizing an update gate and a
reset gate, as given by Eq. 3 and 4, respectively.

zt = σ(Wz ⊙ [ht−1, xt ] + bz) (3)

rt = σ(Wr ⊙ [ht−1, xt ] + br) (4)

Here, xt represents the input at time step t , ht−1 denotes the
previous hidden state, W denotes the weight matrices, and b
denotes the bias vectors. The sigmoid function (σ) is used
to evaluate the gates, and ⊙ signifies element-wise multi-
plication. The hidden state, as defined in Eq. 5, is updated
at each iteration based on the outputs of the gates and the
input. The inclusion of the hyperbolic tangent function (tanh)
introduces non-linearity, enabling the GRU model to capture
complex relationships within the data.

ht = (1−zt)⊙ht−1+zt⊙tanh(Wh · [rt⊙ht−1, xt ]+bh) (5)

In the context of our nested classifier, the GRUmodel receives
feature maps extracted by the VGG19 network. By sequen-
tially processing these feature maps through the recurrent
layers, the GRU model effectively captures temporal patterns
in the network traffic data. This capability allows the model
to detect abnormalities and make informed decisions based
on the temporal characteristics of the traffic.

E. INTRUSION PREVENTION FRAMEWORK
Intrusion prevention is a critical aspect of network security,
aiming to mitigate potential threats before they compromise
a system or network. It extends the implementation of an
IDS without sanitizing the packets so as to actively prevent
unauthorized access, attacks, and malicious activities that
could jeopardize the confidentiality, integrity, and availability
(CIA) of network resources. Our proposed solution for real-
time intrusion prevention, highlighting key components and
effective safeguarding strategies, is presented next.
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1) Adaptive Sliding Windows Approach
We propose an adaptive sliding window approach that ac-
commodates two types of windows: content-based and time-
based. Content-based windows are utilized when the traffic
volume exceeds a predefined threshold and focus on smaller
subsets of traffic data, facilitating real-time analysis and
prevention of attacks based on packet content. Time-based
windows capture a larger time span of network traffic data,
enabling identification of anomalies or malicious patterns
over a defined period. The decision to employ a content-
based or time-based window is dynamically taken based on
the rate of incoming traffic and the volume of data. If the
traffic rate exceeds a threshold, the system automatically tran-
sitions to content-based windows, ensuring timely analysis.
Conversely, if the traffic rate falls below the threshold, time-
based windows are employed, providing a broader context for
packet inspection. This dynamic window selection optimizes
resource utilization and enhances the effectiveness of the
Intrusion Prevention System (IPS).

Within each sliding window, the proposed intrusion pre-
vention solution, placed right after the firewall, incorporates
the intrusion detection system previously trained on a large
database of benign and malicious traffic, and makes decisions
in real-time as illustrated in Figure 5.

However, in a real-world implementation of an IPS using
adaptive sliding windows, network bandwidth limitations,
computational resource availability, and latency concerns
need to be addressed. For this purpose, we employ quality
of service (QoS) mechanisms to prioritize traffic and allocate
sufficient bandwidth to the IPS. The underlying detection al-
gorithms and processingworkflows are ensured to be flexible,
minimizing latency and ensuring real-time analysis. Com-
putational resources, including CPU, memory, and buffer
storage, are allocated adequately based on the expected traffic
volume. By implementing these strategies, our proposed IPS
solution operates optimally within our testbed environment,
providing robust intrusion prevention.

2) Continuous Traffic Monitoring & Alerting
The proposed solution incorporates a comprehensive continu-
ousmonitoring and alerting feature, which plays a crucial role
in facilitating real-time threat detection and ensuring timely
response to potential security breaches. Initially, all incom-

ing traffic is processed by our pretrained intrusion detec-
tion system. When the IDS detects any malicious activity, it
promptly triggers an alert by initiating a notification process.
We define an altering function that establishes a connection
to the Windows Event Log and creates a custom event entry.
Upon detecting abnormality in the incoming traffic profile,
it generates an alert with the specified event type, event ID,
message, and source. The alert is meticulously crafted to
deliver precise and detailed information about the detected
intrusion, including the source IP, destination IP, and attack
type.
Furthermore, all alerts are logged for future reference, pro-

viding a historical record that can be reviewed during incident
investigations or for compliance purposes. In the future, we
plan to leverage this logged data to develop a reinforcement
learning framework aimed at enhancing our current intrusion
detection and prevention pipeline.

IV. EXPERIMENTATION & EVALUATION
The section presents experimental results of our proposed
intrusion detection solution using machine learning-based, (i)
binary classification, and (ii) multi-class classification of the
network traffic.

A. IMPLEMENTATION DETAILS
We train our classifiers on a compute engine consisting of an
Intel Xeon CPU operating at 2.20 GHz and equipped with 2
vCPUs and 13 GB of RAM, alongside an NVIDIA T4 GPU
with 16 GB of VRAM. We begin by simulating botnet traffic
using the testbed described in section III-A and then trans-
form the traffic flows into images as per the preprocessing
pipeline described in section III-C. These images are then
fed into the nested classifier, which seamlessly integrates the
robustness of a pretrained VGG19 model with the dynamic
adaptability of a GRU architecture. Detailed analysis regard-
ing the classifier’s training performance is presented below.

1) Multi-class Classification
For multiclass classification, we use our live captured traffic
dataset comprising nine distinct network attacks and one
normal traffic profile, resulting in a total of 10 classes. The
training parameters include the Mean Squared Error (MSE)
as the loss function, the Root Mean Squared Propagation
(RMSprop) as the optimization algorithm, and a learning rate
of 0.001 at a momentum of 0.5. The training is conducted on
a total of 0.175M images, organized into batches of 64, and
iterated over 30 epochs. With each epoch consisting of 2734
iterations, the training phase continues for 28.57 hours and
concludes with an impressive training accuracy of 99.8276%
and a minimal MSE loss of 0.0841. The learning curves,
depicted in Figure 6, illustrate the steady convergence of
the training process. Notably, the validation process closely
aligns with the training curve, reaching a peak accuracy of
99.6324%. With the highest validation loss of 5.9893 during
the first epoch, the classifier manages to minimize it up to
0.0324 at the end of 30th epoch. These findings suggest the
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FIGURE 6. Learning Curves for Multiclass Classification
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FIGURE 7. Learning Curves for Binary Classification

absence of overfitting and highlight the classifier’s generaliz-
ability. It is worth mentioning that these results are achieved
by resizing the input images from their original dimensions
of 96×96×3 to conform to the input size requirement of the
VGG19 model i.e., 224× 224× 3.

2) Binary Classification
We also investigate the performance of our proposed detec-
tion model from a simpler perspective by reducing the prob-
lem into a binary decision, distinguishing between network
attacks and normal traffic. We partition our live captured
dataset into two distinct classes: one representing network
attacks and the other representing normal traffic. The pa-
rameters defined for the binary training process include the
Binary Cross Entropy (BCE) as the loss function, the Adam
optimization algorithm, and a learning rate of 0.003. A total
of 70k images undergo training, organized into batches of
48, and iterated over 75 epochs. Each epoch comprises 1459
iterations, allowing the classifier to learn effectively from the
dataset and generate accurate predictions. The training phase
extends over a duration of 21.86 hours, yielding a remarkable
training accuracy of 99.3750% and a negligible binary cross
entropy (BCE) of 0.1369. The learning curves showing the
model’s performance in terms of accuracy and loss, illustrated
in Figure 7, demonstrate the consistent convergence of the
training process similar to the multiclass classifier. Addition-
ally, the validation curves closely parallel the trajectory of the
training curve, achieving a peak accuracy of 99.0623% and a
minimal entropy loss of 0.1357. These insights indicate the
absence of overfitting and emphasize the classifier’s ability
to generalize effectively to unseen data.

B. TESTING AND EVALUATION
We evaluate the multi-class classifier on 37.5k unseen images
with each class in the test set consisting of a total of 3750
images. The model exhibits very good performance, with an
evaluation time as low as 0.17ms per image and an accuracy
of 99.5982%. Similarly, we evaluate the binary classifier on
15k unseen images with each class in the test set consisting of
a total of 7500 images. The binary classification model also
exhibits very good performance, with an evaluation time as
low as 0.041ms per image and an accuracy of 99.6145%.
Additionally, we evaluate the performance of both classi-

fiers on the basis of four key indicators: True Positives (TP)
representing correctly identified traffic flows belonging to
the specific class, True Negatives (TN) indicating correctly
identified traffic flows that do not belong to the class, False
Positives (FP) corresponding to the traffic flows incorrectly
classified as belonging to a class, and False Negatives (FN)
representing the traffic flows incorrectly classified as not
belonging to the class. Based on these indicators, we leverage
the measures of False Positive Rate, False Negatives Rate
(or Specificity), Precision, Recall (or Sensitivity), and F1-
score (calculated using Eq. 6–10, respectively) to comprehen-
sively benchmark our IDS. We aim to minimize FPs and FNs
to achieve accurate intrusion detection while reducing false
alarms and missed intrusions. The performance evaluation
metrics, summarized in Table 1 and 2, provide an inclusive
and quantitative assessment of the model’s generalizability
across multi-class and binary classification scenarios.

FPR =
FP

FP + TN
(6)

FNR =
FN

FN+ TP
(7)

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

F1-score = 2× Precision× Recall

Precision + Recall
(10)

1) Performance Benchmarking Against State-of-the-Art
Further, we compare our model’s performance by bench-
marking it against some state-of-the-art methods for NIDSs
that use machine learning or deep learning, such as CNN
+ ResNet18 [23], MLP [26], CNN [32], SVM [33], ViT
[34], DBN [35], DBN + KELM [35], LeNet-5 + LSTM [36],
and SAE + SVM [37]. Each classifier is trained on the raw
net-flow data for multi-class classification and evaluated in
terms of accuracy, precision, recall, false positives rate, and
evaluation time per packet. The results are listed in Table
3. It can be observed that our method using VGG19 and
GRU architecture for two-fold spatial and temporal feature
extraction outperforms all the other methods across all met-
rics examined.
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TABLE 1. Performance Metrics for Multiclass Classification

Traffic Profile FPR FNR Precision Recall F1-score

Benign 0.09717 0.00815 0.98132 0.99161 0.98644
ARP Spoof 0.09586 0.00275 0.96947 0.99713 0.98311
HTTP Flood 0.09847 0.01307 0.97992 0.98673 0.98332
Ping of Death 0.09914 0.02846 0.95597 0.9713 0.96358
RuDY 0.0989 0.00773 0.96646 0.99219 0.97915
SYN Flood 0.09942 0.02826 0.99129 0.97158 0.98134
SYN Scan 0.09927 0.02162 0.96247 0.97823 0.97028
TCP Connect Scan 0.09945 0.01688 0.97973 0.98303 0.98137
TCP SYN Scan 0.09947 0.04207 0.93206 0.95771 0.94471
UDP Flood 0.09976 0.0056 0.99974 0.99438 0.99705

Macro Average 0.07592 0.01343 0.97189 0.98240 0.97707

TABLE 2. Performance Metrics for Binary Classification

Traffic Profile FPR FNR Precision Recall F1-score

Benign 0.05587 0.00992 0.94698 0.99008 0.96805
Malware 0.05974 0.00887 0.95051 0.99113 0.97039

Macro Average 0.057805 0.009395 0.948745 0.990605 0.96922

TABLE 3. Performance Analysis of State-of-the-Art ML Algorithms

Model Accuracy Precision Recall FPR Runtime (ms/pkt)

Our Net-Flow Dataset

CNN + ResNet18 [23] 0.84347 0.84981 0.80076 0.29137 3324.523
MLP [26] 0.77781 0.78152 0.68009 0.60654 10948.116
CNN [32] 0.81891 0.83515 0.72667 0.30415 10094.63
SVM [33] 0.97621 0.73626 0.61033 0.63479 310.8400
ViT [34] 0.95842 0.93032 0.90138 0.16415 121.9200
DBN [35] 0.82145 0.74951 0.80231 0.43177 28743.99
DBN + KELM [35] 0.90137 0.72364 0.84209 0.40214 30214.17
LeNet-5 + LSTM [36] 0.91891 0.95314 0.87841 0.19587 343.4101
SAE + SVM [37] 0.80145 0.76745 0.75555 0.66714 1043.501
VGG-19 + GRU (Ours) 0.99614 0.97189 0.98240 0.07592 0.001710

CIC-IDS2018 [38]

CNN + ResNet18 [23] 0.89002 0.87479 0.85049 0.31913 2924.713
MLP [26] 0.77041 0.79104 0.76077 0.57156 10078.109
CNN [32] 0.83014 0.83723 0.77704 0.28739 9278.990
SVM [33] 0.98634 0.71230 0.66022 0.67021 298.8000
ViT [34] 0.97719 0.95707 0.95358 0.15529 207.0600
DBN [35] 0.82662 0.76856 0.81577 0.42581 29454.15
DBN + KELM [35] 0.91093 0.79003 0.81085 0.41133 29089.37
LeNet-5 + LSTM [36] 0.97052 0.97844 0.94251 0.22587 414.1978
SAE + SVM [37] 0.82417 0.75514 0.75049 0.69544 998.0071
VGG-19 + GRU (Ours) 0.98322 0.98096 0.97346 0.06199 0.006170

Moreover, to validate the generalizability of our detection
model, we conduct additional evaluations using one of the
widely popular open-source datasets, CIC-IDS2018 [38]. The
results obtained from this evaluation further reinforce the
efficacy of our approach, demonstrating promising perfor-
mance on a diverse set of network attacks. On top of that,
we also compare our results with state-of-the-art methods,
documented in Table 3. It could be observed that our classifier
demonstrates superior performance over all the other methods
in terms of precision, recall, false positives rate, and evalua-

tion time per packet, except for the accuracy which falls short
by 0.00312% compared to SVM’s accuracy.

2) Packet Volume vs. Performance Trade-offs
After conducting various preliminary experiments, we iden-
tified that both packet size and flow size significantly affect
computational efficiency and the detection rates of our hybrid
classification. We determined an optimal packet size of 384
bytes and a count of 24 packets per flow based on empir-
ical trials, which demonstrated that this volume effectively
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TABLE 4. Trade-offs in Flow Size and Performance with a Fixed Packet Size of 384 bytes

Flow Size (pkts) Feature Vector Size (bytes) Accuracy (%) Precision (%) Recall (%) Runtime (ms/pkt)

8 3,072 0.78819 0.83551 0.71571 0.00086
12 4,608 0.83245 0.73579 0.80444 0.00119
24 9,216 0.99614 0.97189 0.98240 0.00170
48 18,432 0.92436 0.99760 0.79914 1.88401
96 36,864 0.50117 0.49981 0.49026 9.96130

TABLE 5. Trade-offs in Packet Size and Performance with a Fixed Flow Size of 24 pkts

Packet Size (bytes) Feature Vector Size (bytes) Accuracy (%) Precision (%) Recall (%) Runtime (ms/pkt)

128 3,072 0.77289 0.83412 0.74256 0.00088
256 6,144 0.91321 0.87134 0.89567 0.00159
384 9,216 0.99614 0.97189 0.98240 0.00170
512 12,288 0.98782 0.96175 0.94832 1.02917
1024 24,576 0.51847 0.43289 0.48673 6.75910

captures essential traffic features while balancing computa-
tional efficiency and detection performance.We observed that
smaller packet sizes tend to miss critical contextual informa-
tion needed for accurate detection, while excessively large
packet or flow sizes can lead to increased processing times
without substantial gains in performance. Table 4 and 5 pro-
vide a comprehensive overview of the trade-offs associated
with different packet sizes and flow sizes, highlighting how
these parameters influence the size of feature vector, accu-
racy, precisiom, recall, and runtime. These insights not only
contribute to the understanding of impact of packet volume
on performance but also guide future designs of intrusion
detection systems.

C. LIVE INTRUSION PREVENTION EVALUATION
Once we have the trained model, we evalute it in real-time
as an intrusion prevention system. First, we optimize various
network properties to enhance the effectiveness and efficiency
of the system.We allocate a substantial buffer capacity within
the network infrastructure, enabling efficient handling and
processing of incoming packets. This larger buffer size al-
low us to minimize packet loss and ensure comprehensive
analysis for intrusion detection purposes. Additionally, we
ensure sufficient bandwidth availability, enabling the timely
transmission of packets to the intrusion detection system. This
facilitates real-time analysis, allowing for quick decisions.
We conducted extensive performance evaluations under vary-
ing conditions:

1) Attack Load Variations
To assess the robustness of our intrusion prevention system,
we tested it under different attack loads categorized as low,
medium, and high intensities, with low intensity defined as a
sustained rate of 12–24 packets per second (pps) simulating
light network traffic, medium intensity involving an increase
to 24–64 pps representing a more aggressive attack environ-
ment, and high intensity simulating extreme conditions with
rates exceeding 100 pps. The results, presented in Figure
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FIGURE 8. Detection Rates Under Different Attack Loads

8, illustrate the detection rates (DR) achieved by our model
under these varying attack intensities for both the four-bot
and twelve-bot scenarios. While some fluctuations in DRs
can be observed, the rates remained consistently high across
all attack types. Notably, the lowest DR is recorded at 97.5%
in case of medium intensity UDP flood attack from 12-
bot configuration, indicating that even under minimal attack
conditions, our proposed system effectively identified the
intrusion.
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FIGURE 9. Impact of Varying Background Traffic Volume on Detection
Rates

2) Background Traffic Conditions
As another evaluation dimension, we examined our model’s
performance under varying background traffic conditions,
which encompass the legitimate network traffic that occurs
alongside potential botnet activity. To replicate real-world
scenarios, we introduced different volumes and types of legit-
imate traffic, including typical user interactions, web brows-
ing, and application data transfers. This allowed us to analyze
and assess how background noise impacts the detection capa-
bilities of our system and the timeliness of alert generation.
The results, illustrated in Figure 9, highlight the effectiveness
of our approach across various background traffic volumes for
both the four-bot and twelve-bot scenarios. Under the four-bot
attack and low background traffic conditions (50-200 pps),
our model achieved DRs of as high as 99.90% for ARP spoof-
ing attack and as low as 96.40% for UDP flood attack. As
we increased the traffic to moderate levels (500 pps), the DR
ranged from 86.80% for rudy attack to 94.90% for SYN flood
attack. Even under high background traffic conditions (1000
pps), our system maintained DRs between 84.93% for TCP
connect scan attack and 91.21% for UDP scan attack. These
results demonstrate that while the introduction of legitimate
traffic introduced some challenges, our model consistently
managed to identify threats effectively.

3) Real-time Performance and Incident Response
We also examined how our adaptive sliding window approach
enhances real-time performance and incident response capa-
bilities within the intrusion prevention system. The dynamic

FIGURE 10. Real-time Incident Response

switching between content-based and time-based windows is
crucial for optimizing detection efficiency. We set a traffic
rate threshold of 250 pps to dictate this transition: when
incoming traffic exceeds this threshold, the system activates
content-based windows for detailed packet analysis. Con-
versely, when traffic falls below this threshold, time-based
windows are employed, providing a broader context for moni-
toring potential threats. Byminimizing background processes
leading to latency, we ensure that packets are processed into
IDX images and analyzed without significant delays, result-
ing in near real-time detection of intrusions. These optimiza-
tions, including buffer capacity, bandwidth allocation, and
latency reduction, collectively contribute to the successful
outcomes of our live intrusion prevention. Figure 10 shows
snapshot of the IPS operating in real-time. To facilitate ef-
fective incident response, we further implement a robust real-
time alerting mechanism within our live intrusion detection
system. Whenever potential intrusions are detected, our sys-
tem promptly generates alerts by establishing a connection to
the Windows Event Log.

V. CONCLUSION
In this paper, a network intrusion detection and prevention
engine is presented to analyze and classify network traffic
data by transforming raw NetFlows into images. We propose
a deep nested architecture leveraging a pretrainedVGG19 and
a GRU network to learn spatial and temporal features of the
flow. Our spatial feature extractor, based on the concept of
transfer learning, and the temporal feature extractor, utilizing
the gating mechanism is significantly better in terms of pro-
cessing time and resource utilization than other network intru-
sion detection models. In this paper, we use real-world traffic
data captured in a controlled environment employing adaptive
sliding windows. The experimental results demonstrate the
superior performance of the proposed approach in terms of
accuracy, precision, recall and F1-score, accomplished in
both binary and multi-class classification scenarios.
In the future, we plan to expand our testbed to include

a larger number of bots and to incorporate other security
vulnerabilities beyond network intrusions, such as phishing,
spyware, and ransomware. As part of this extension, the
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scalability of the proposed scheme in terms of increasing
penetration of IoT devices in real experiments will also be the
topic of near future research activities. We will also simulate
secured environments to evaluate the impacts of firewalls and
data encryption, utilizing current findings as a baseline to
establish a solid reference point for evaluating our model’s
adaptability to these secured environments. Furthermore, we
aim at investigating the application of various image process-
ing techniques, such as image filtering, image compression,
local binary patterns (LBP), and Fourier transform, to assess
the performance of the model trained on manipulated flow
images.
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