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Abstract 
Programming is a core component of any university-level computer science course. When 

learning to program, students’ efforts can be hampered by a variety of misconceptions 

pertaining to fundamental programming concepts. These can range from a complete 

misunderstanding of a concept, to small, yet frequent mistakes that can lead to logical errors 

within programs. The misconceptions students hold can prevent them from developing 

appropriate mental models of concepts, which can ultimately create a barrier to students’ 

learning. These misconceptions can cause issues in terms of students’ understanding of the 

content they are being taught and can also have a detrimental impact on students’ confidence. 

As such, it is necessary to identify students who are likely to require support with learning to 

program at the earliest possible opportunity. The present research, therefore, intends to 

establish a deeper understanding of the mental models students hold of core programming 

concepts prior to starting their degrees, and how they develop during the first semester of 

teaching within an introductory programming module. How students’ mental models relate to 

their prior experiences and their perceived levels of confidence is also explored as part of this 

work, as well as how these factors link to students’ performance within their programming 

module.  

 

There are two distinct parts to this investigation. The first part focuses on the design and 

development of an aptitude test, termed the Programming Checkup, which is the main data 

collection mechanism for this research. The Programming Checkup was subsequently issued 

to students at two occasions, with the first being at the beginning of their courses and the 

second being towards the end of the first semester, therefore, allowing for an examination of 

students’ progress throughout the initial stage of their introductory programming module. 

The second part of the investigation explores the potential for using machine learning and 

students’ responses to the Programming Checkup at the beginning of their courses, as a 

means to predict students’ results in their first introductory programming assessment.  

 

The findings from the analysis conducted during this investigation indicate that there is a 

clear benefit to students in terms of their likelihood of holding appropriate mental models and 

their levels of confidence and anxiety surrounding learning to program by having prior 

programming experience. Likewise, having previously studied computer science also benefits 

students, although not as substantially as prior programming experience. It is apparent that 
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previously studying a mathematics-based subject after leaving school, does not benefit 

students in ways directly represented in their likelihood of holding appropriate mental 

models, nor in terms of their levels of confidence or anxiety surrounding learning to program, 

to the same extent as previously studying computer science or having prior programming 

experience. Furthermore, factors that point to some students being intrinsically motivated, 

wherein students intend to work in a software engineering role after they graduate or consider 

themselves to be “self-taught programmers”, are seen to relate to higher levels of confidence 

and for students being more likely to hold appropriate mental models.  

 

One of the main intentions of this investigation was to explore how students’ responses to the 

Programming Checkup at the beginning of their course can be used to help identify students 

who are likely to require support with learning to program. As such, an exploration of how 

machine learning can be utilised to predict the results students achieve in their first 

introductory programming assessment was undertaken, with both classification and 

regression approaches being considered. The results of this evaluation found that the best 

performing regression model was the Random Forest Regressor, which achieved an average 

RMSE of 0.1686 when trained on the full training dataset, and 0.1687 when evaluated on the 

holdout testing dataset. This, therefore, demonstrates that the training data have not been 

overfitted, and that the model is capable of making predictions with a level of accuracy that is 

sufficient to provide an indication of a student’s performance, and as such, used as a guide 

for identifying students who likely benefit from additional support. Similarly, the Random 

Forest Classifier was found to be the best performing classification model, achieving an 

average AUC of 0.7400 when trained on the full training dataset. However, an average AUC 

of only 0.6595 was achieved when evaluated on the holdout test set, thus indicating a 

substantial amount of overfitting, potentially due to the inherent imbalance within the dataset 

when a result of 50% is used as a threshold. There is, therefore, a clear need for future work 

to establish a more appropriate threshold, as well as to explore ways of improving the 

performance of both the regression and classification models. However, this investigation has 

demonstrated the potential of this approach, which can be improved and expanded upon 

within future research stemming from this work. 
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1. Introduction 

1.1 Investigation Rationale  
This research investigation is inspired by my own experiences of learning to program, which 

began whilst studying A-Level computer science. I remember copying lines of Visual Basic 6 

code from the whiteboard and running them without really understanding what they meant or 

how to modify them. It took a lot of independent work for me to really develop an 

understanding of core programming concepts, although it wasn’t until I started learning C++ 

at university that everything really began to “click together”.  

 

I remember looking around my first-year lab classes and seeing others struggling to get to 

grips with programming, in a similar way to how I had struggled during my classes at 

college. Consequently, when undertaking my first-year research project, I was drawn toward 

developing an understanding of the difficulties of learning to program as a key research 

theme, which continued through into my undergraduate project work and now into this 

research. 

 

As a computer science lecturer, I now have the opportunity to see the process of learning to 

program from an educator’s perspective. Now that I am teaching the first-year undergraduate 

introductory programming module at the University of Central Lancashire, I am required to 

accommodate large variances in programming abilities in students, ranging from those who 

have no programming experience at all, to others who have become quite advanced. 

Nevertheless, I often observe a significant proportion of students who struggle to comprehend 

core programming concepts and require additional support in order to overcome 

misconceptions they are holding. These experiences reinforce my rationale for investigating 

the difficulties students face whilst learning to program, with the eventual aim of providing a 

more individualised learning environment for students, in order to ensure they receive the 

support they need. 
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1.2 Scope of Research 
When students are attempting to learn to program at university level, their efforts may be 

hampered by a variety of misconceptions pertaining to fundamental programming concepts. 

These misconceptions can take a wide range of forms, from a complete misunderstanding of 

a concept, to simple, yet frequent mistakes that will result in logical errors within their 

programs (i.e., the program will compile but the output may not be what the student expects). 

Although many of these misconceptions may appear to be trivial to experienced programmers 

they can be difficult for students to overcome (Sorva, 2013), creating a barrier to their 

learning. 

 

The misconceptions students develop are potentially unknown to the student and are not 

likely to be addressed without specific intervention from teaching staff. However, as Bergin 

and Reilly (2005b) explain, it is common for there to be a very high student-to-lecturer ratio 

in university courses. Lecturers often do not know how students are performing until their 

first assessment, which can take place six to eight weeks into the course. By this time 

students’ misconceptions will have become embedded and will be harder to overcome. It is, 

therefore, necessary to identify students who are most in need of support early on in the 

course to allow appropriate and timely support to be provided to tackle their misconceptions 

directly. This need to identify students who are likely to require support, at the earliest 

possible opportunity, is therefore the primary focus of this investigation.  

 

Subsequently, there are two distinct parts to this investigation. The first part revolves around 

the design and development of an aptitude test, termed the Programming Checkup, which is 

used to collect data on a variety of different factors about each student, including their 

backgrounds and levels of confidence, as well as assessing their levels of understanding of 

core programming concepts. This is achieved by evaluating students’ capacity to read, 

comprehend and logically deduce appropriate answers from a series of simple programming 

statements, which can subsequently be used to highlight any misconceptions that are 

preventing them from developing an accurate mental model of each concept.  

 

The Programming Checkup is issued to students twice, once at the start of their course, prior 

to any teaching taking place (T1), and once at the end of the first semester; approximately 12 
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weeks later (T2), therefore, allowing for a comprehensive view of students’ progress between 

the two timepoints.  

 

For context, this investigation is being carried out within the Computing Department at the 

University of Central Lancashire, with first-year students who are studying one of a number 

of computer science related courses at undergraduate level, which include Computer Science, 

Software Engineering, Computer Games Development, Cyber Security and Computer 

Networks & Security. An additional degree named Computing is also offered, which 

provides students with a level of optionality in what they study during their second and third 

years.  

 

All courses involve the completion of a common first-year, which includes the introductory 

C++ programming module at the centre of this investigation, the learning outcomes of which 

are: 

• Appropriately apply the principles of programming to produce working programs 

• Design an appropriate solution for a given problem 

• Implement a readable and maintainable software solution based on their own design 

• Evaluate the quality of their developed software 

 

Students are not required to have any prior experience of programming in order to study for 

their degrees, therefore the first semester of teaching focuses primarily on introducing 

fundamental programming concepts, up to and including functions, which are reflected in 

their first assessment undertaken towards the end of the first semester. These concepts are 

then built upon during the second semester with topics up to and including object-oriented 

programming (OOP) being covered. The module’s second assessment provides the 

opportunity for a wider range of programming skills to be evaluated, although both 

assignments do assess all four learning outcomes. It should be noted that prior to the 

commencement of their introductory programming module, all students undertake an 

intensive four week long module that exposes them to the various topics that they will 

encounter during their degrees (see Mitchell et al., 2013), including programming in the form 

of Appinventor.  
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The main data collection for this investigation was carried out across three academic years, 

commencing in September 2019. As such, the second and third years of data collection were 

impacted by the Covid-19 pandemic, which necessitated that teaching, and therefore, data 

collection with the Programming Checkup, needed to be carried out solely online during the 

second year of the investigation (academic year 2020-2021). Subsequently, teaching and data 

collection during the third year of the investigation (academic year 2021-2022) was carried 

out in a hybrid setting, which included both in-person and online sessions. Teaching in the 

latter part of the 2019-2020 academic year was also impacted by the pandemic, although this 

was constrained to the final weeks of the introductory programming course and students’ 

submissions of their second assessment. Therefore, data collection with the Programming 

Checkup and students’ first assessment were not affected during the first year of the 

investigation. Nevertheless, efforts were made to ensure that both teaching and data 

collection were as consistent as possible across all three years of the investigation. 

 

The second part of this investigation centres around demonstrating the potential for using 

machine learning and students’ responses to the Programming Checkup at T1, as a means of 

predicting the results they are likely to achieve in their first introductory programming 

assessment, in order to provide an indication as to whether they require additional support. 

Students’ responses at T1 are utilised as this allows for support mechanisms to be 

implemented as students’ progress through the course, rather than attempting to correct 

potentially engrained misconceptions at a later point, for example, after completing their first 

assessment.  

 

This work should generally be viewed as an initial explorative investigation that examines 

whether it is possible to make predictions on students’ performance before they have engaged 

with any teaching, with the aim of identifying those who are likely to require support, and 

upon which future studies can be based on.  

 

Ethical approval for this research was obtained through the University of Central 

Lancashire’s Psychology and Social Sciences (PSYSOC) ethics committee (Reference 

number: PSYSOC 454). 
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1.3 Research Questions 
At the heart of this investigation, is my motivation as a practitioner-researcher to help 

struggling students overcome their difficulties with learning to program. As such, the 

investigation is guided by three research questions:   

 

RQ 1 How do students’ mental models of core programming concepts develop during a 

university introductory programming module? 

 

Mental models can be defined as a mental representation of the properties and behaviours of 

a given concept that is based upon an individual’s prior knowledge and experiences (Norman, 

1983; Sorva, 2013). As such, the concept of mental models is critical within this investigation 

as the process of learning to program can be viewed in terms of students’ development of 

coherent mental models that represent the actions that fundamental programming concepts 

perform when processed by a computer (Ben-Ari, 1998; VanDeGrift et al., 2010). Students’ 

mental models are significantly influenced by their prior experiences and the knowledge they 

believe to be relevant (Ben-Ari, 2001; Sorva, 2013). However, misconceptions can be 

introduced if mental models are constructed upon knowledge which is in fact irrelevant or 

inaccurate, resulting in a mental model that is therefore inaccurate, and can create a barrier to 

students’ learning (Sirkiä & Sorva, 2012). 

 

In order to establish a deeper understanding of the issues students face when learning to 

program, it is important to examine the mental models that they possess upon commencement 

of their course, and subsequently, how they develop as students progress with their learning. 

As such, in this research, estimates are produced of how likely students are to be holding 

appropriate mental models of core programming concepts through students’ responses to the 

Programming Checkup and a technique known as Bayesian Knowledge Tracing (Baker et al., 

2008; Corbett & Anderson, 1994). Originally developed for use with Intelligent Tutoring 

Systems, Bayesian Knowledge Tracing attempts to estimate the probability of a student 

knowing a skill based on whether students answer questions correctly or not, while also 

taking into account the potential for them to slip and make a mistake or guess the answer 

correctly (Baker, 2020; Baker et al., 2008; Corbett & Anderson, 1994). Therefore, within the 

context of this investigation, Bayesian Knowledge Tracing estimates the likelihood of 

students holding an appropriate mental model for each concept, with answers being examined 
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to identify whether students have demonstrated use of an appropriate model, or whether 

potential misconceptions have been shown within their answers. Such an approach allows for 

a detailed analysis of the development of students’ mental models between T1 and T2, as 

well as their performance within the introductory programming module.   

 

RQ 2 Is students’ perception of confidence and their previous experience positively related to 

their mental model development as well as their performance within their first introductory 

programming assessment?  

 

As previously discussed, students’ prior experiences exert a significant influence on the 

misconceptions that they hold, and as such, the accuracy of their mental models (Bonar & 

Soloway, 1985). Given that this investigation is taking place within higher education, 

students are likely to come from a variety of backgrounds, which could potentially be of a 

help or a hindrance when learning to program. Therefore, it is important to establish what 

relevant previous experience a student has, in order to examine the impact it has on their 

programming abilities. This naturally includes whether they have prior experience of 

programming and/or studying computer science, but also their experiences in studying 

mathematics-based subjects, given that experience in mathematics has been shown to aid 

students when learning to program (Bergin & Reilly, 2005b; Byrne & Lyons, 2001; Gomes et 

al., 2006; Wilson & Shrock, 2001). Furthermore, it is also beneficial to examine how strongly 

students consider themselves to be “self-taught programmers”, and whether they intend to 

pursue a career in software engineering, as both of these factors provide an indication as to 

whether students are intrinsically motivated, which has previously been shown to be linked to 

higher levels of performance within an introductory programming module when compared to 

students who are extrinsically motivated (Bergin & Reilly, 2005a). 

 

Learning to program is often a slow, complex and daunting process for students (Cheah, 

2020; Guzdial, 2010; Perkins et al., 1986; Robins, 2019; Rogalski & Samurçay, 1990), 

particularly for those who do not have any prior experience associated with programming. 

Indeed, students’ programming abilities can also be influenced by their perceived levels of 

confidence, with Rogerson and Scott (2010) claiming students’ level of fear towards 

programming can form almost physical barriers, resulting in a loss of confidence that 

ultimately hampers their learning. The Programming Checkup contains a number of factors 
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that assess different aspects of students’ confidence levels, ranging from a modified version 

of Ramalingam and Wiedenbeck’s (1998) “Computer Programming Self-Efficacy Scale”, to 

measures of how confident students are in their answers being correct for each question 

within the Programming Diagnostic portion of the Programming Checkup. Reviewing how 

students’ previous experiences and levels of confidence relate to their programming abilities, 

both in terms of their mental model estimates and their results within the introductory 

programming module, allows for the establishment of a deeper understanding of the factors 

that influence students’ programming abilities.  

 

RQ 3 Can students’ initial responses to the Programming Checkup be used to make 

predictions of students’ introductory programming assessment results? 

 

The design of the Programming Checkup was guided by the previous two research questions. 

The overall intention of the Programming Checkup was always the identification of students 

who would likely require support with learning to program. Early identification of these 

students enables support mechanisms to be put in place in order to allow for their 

misconceptions to be tackled directly before they have become engrained, thus aiding in 

students’ mental model development and allowing them to progress through their course 

(Romero & Ventura, 2019). 

 

As the T1 data collection for the Programming Checkup takes place at the commencement of 

students’ courses and as such, prior to any teaching taking place, the results can be utilised as 

input for a predictive model that attempts to predict the result each student will achieve 

within their first introductory programming assessment, given that it assesses students’ 

understandings of core programming concepts. This, therefore, requires an exploration of a 

variety of machine learning algorithms, with both regression and classification techniques 

being considered, which can then be built upon in future work that explores integrating the 

predictions into formal support mechanisms within the introductory programming module 

that students study. 

 

At this stage, the aim of this research is to examine whether it is at all possible to use the 

results from the Programming Checkup at T1 to make predictions on students Assessment 1 

results given the inherent difficulties associated with making predictions at such an early 

stage, due to the variety of factors that can influence students’ performance (López-
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Zambrano et al., 2021). Therefore, a degree of error can be tolerated when considering the 

performance of regression models, with the intention being for the models to be refined and 

improved upon in future, larger studies. 

 

1.4 Thesis Structure 
This thesis consists of six chapters, including this introduction, which has defined the scope 

of the investigation and provided context for the three research questions that have influenced 

this work. The overall thesis structure, including a summary of the subsequent chapters is 

provided below: 

 

Chapter 2 – The Issue of Learning to Program provides a detailed account of the literature 

that has influenced the focus of this investigation. This includes discussion of topics relating 

to the difficulties students face when learning to program, including the misconceptions that 

they can develop, as well as on the cognitive impacts of learning to program. 

 

Chapter 3 – Investigation Methodology is primarily focused on the first part of this 

investigation whereby the aptitude test, which becomes the Programming Checkup, is 

developed. This includes discussion of literature associated with the different factors that 

were considered for inclusion, along with the pilot studies that were used to refine the 

aptitude test design. A brief explanation of each of machine learning algorithms being 

considered for use within the predictive models, as detailed in Chapter 4, is also presented 

within this chapter. 

 

Chapter 4 – Predictive Model Development describes the second part of this investigation, 

which is the development and testing of the models that use students’ responses to the 

Programming Checkup to predict their first introductory programming assessment results. As 

such, this chapter includes a full description of how the Programming Checkup data were 

processed and subsequently used to train and evaluate the different classification and 

regression models.  
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Chapter 5 – Programming Checkup Analysis presents an in-depth statistical analysis of 

students’ Programming Checkup results, which includes reviewing how students’ responses 

change between T1 and T2, as well as how they relate to both introductory programming 

assessments. It should be noted that the analysis within this chapter was conducted after the 

model development described in Chapter 4. This was done in order to prevent the data, which 

had been originally isolated in order to be used as a test dataset, from influencing any of the 

decisions during model development.   

 

Chapter 6 – General Discussion of Research Outcomes and Future Directions details the 

conclusions stemming from this work, including directly addressing the three research 

questions that were established at the start of this thesis. Additionally, the limitations which 

constrain the conclusions from this work and the future work stemming from it are also 

discussed. Finally, the work presented in this thesis is reflected upon within the concluding 

remarks and self-reflection. 

 
1.5 Research Contribution 
This investigation is firmly situated within the field of computer science education. The 

findings of this work can directly contribute to supporting both researchers and educators 

alike with understanding some of the difficulties students face whilst learning to program. 

Specifically, this investigation represents an original contribution to knowledge as it is the 

first time that students’ mental models of core programming concepts, their levels of 

confidence and their prior experiences have been evaluated concurrently, subsequently 

allowing for a deepening of the understanding of how these factors relate to each other and 

also how students’ performance within their introductory programming module develops. 

Furthermore, the use of Bayesian Knowledge Tracing to estimate the likelihood of students 

holding appropriate mental models for each of the concepts being examined within the 

Programming Checkup represents a unique approach to assessing students’ mental models 

that could be adopted for use within other fields.  

 

The intention behind this investigation has always been to identify students who are likely to 

require support with learning to program at the earliest possible opportunity. This 

investigation also seeks to demonstrate the potential for using students’ responses to the 

Programming Checkup at T1, which takes place prior to any teaching, to predict the results 

they are likely to achieve in their first introductory programming assessment, therefore, 
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giving an indication as to whether they are likely to require support. The subsequent 

exploration of how this can be achieved using machine learning provides a foundation for 

future work to examine methods of improving the performance of the predictive models, 

particularly in the case of the classification model where a significant body of work could be 

conducted into determining an appropriate threshold within students’ assessment results from 

both a machine learning and a pedagogic perspective. Furthermore, this investigation should 

be viewed as a starting point that enables future research into the issues students face when 

learning to program and the interventions that can be put in place to support them.  

 

The contributions from this investigation align with the intention to publish within the field 

of computer science education. As such, publications will be developed with specific foci on 

students’ mental models of core programming concepts, the impact of students’ confidence 

levels on their progression within their introductory programming module and predicting 

students’ assessment results using data from the Programming Checkup. Additionally, 

publications focusing on pedagogic interventions will form a core part of future work 

stemming from this investigation.  
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2. The Issue of Learning to Program 

2.1 Literature Scope 
This chapter intends to provide an account of the literature that has influenced the focus of 

this investigation through the three previously stated research questions. The reasons as to 

why programming is seen to be such a difficult topic for students to learn will be discussed as 

a means of providing context for further consideration regarding the cognitive impacts of 

learning to program and the issues students face when attempting to comprehend 

fundamental programming concepts.  

 

Specifically, Section 2.2 provides context to this investigation by exploring why learning to 

program is generally a difficult task for students. Subsequently, Section 2.3 focuses on 

exploring the concept of computational thinking and approaches to teaching and learning 

programming, with discussions surrounding the cognitive factors that can impact on students’ 

capacity to comprehend the material being taught being presented within Section 2.4. Finally, 

Section 2.5 introduces the concept of “mental models” and provides discussion pertaining to 

how students can misinterpret fundamental programming concepts. As such, this chapter 

aims to contextualise the motivations of this research by providing a detailed understanding 

of the process of learning to program and subsequently highlight the difficulties that students 

face. 

 

The literature discussed in this chapter comprises a wide range of sources collected using the 

University of Central Lancashire Library Search, which is powered by the ExLibris database, 

and supplemented with the use of Google Scholar and the ACM Digital Library. The 

preference was to include literature that has been published more recently. However, it is 

important to acknowledge that a significant amount of work surrounding the difficulties of 

learning to program was conducted pre-2000 and is still heavily cited. This work has also 

been included within this section as although technologies have developed significantly over 

the years, the core principles of teaching and learning programming have remained the same. 
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2.2 The Difficulties of Programming 
Exploring the difficulties attached to learning to program is crucial to the construction of this 

work and has been a widely deliberated topic in computer science for decades. Stemming 

back as far as the 1970s and 80s, researchers have been attempting to develop an 

understanding of the difficulties faced by anyone wanting to learn to program (Capstick et al., 

1975). The broad nature of programming has encouraged a variety of research approaches, 

from investigating relationships between programming abilities and cognitive styles (the 

methodology a student uses to solve problems, i.e. analytical or heuristic based approaches; 

Cheney, 1980), to examining how students’ understanding of specific programming concepts 

(such as iteration or recursion), can influence their capacity to understand other related 

concepts. For example, Wiedenbeck (1989) examined the relationships between the 

understanding of iteration and recursion. Subsequently, as computers have evolved over time, 

so have the research methods, with newer investigations utilising various data mining and 

artificial intelligence techniques (Al-Radaideh et al., 2006; Blikstein et al., 2014; Watson et 

al., 2013) in an attempt to gain insight into the factors that influence programming abilities.  

 

An initial analysis by Konecki and Petrlic (2014) of literature relating to the problems faced 

by novice programmers revealed that the general consensus amongst both students and 

teachers is that programming is a difficult topic to learn. To that end, a large, multi-

institutional study conducted by the Innovation and Technology in Computer Science 

Education (ITiCSE) 2001 working group (McCracken et al., 2001) revealed that many 

students are still unable to program after the conclusion of their introductory course. They go 

on to discuss that many of the programming solutions that students provided would not 

compile due to syntax errors, suggesting that students have not even acquired the skills 

needed to make a program during their course. This observation aligns with original 

motivation for conducting this research. 

 

Although the study conducted by McCracken et al. (2001) highlights a range of issues facing 

students who are learning to program, their study does not attempt to identify any causes of 

these difficulties. Subsequently, a later ITiCSE working group (Lister et al., 2004) explored 

the issues identified by McCracken et al. (2001) through an additional multi-institutional 

study, in an attempt to identify an explanation of why students struggle to program.  
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The premise of Lister et al.’s (2004) study focuses around providing an alternative to the 

belief that a lack of problem-solving abilities is responsible for students’ difficulties. Lister et 

al. (2004) believe this to be a popular explanation, although no empirical evidence is 

provided to support this claim, My own personal experiences of teaching programming at 

university-level does, however, points towards this as a cause. 

 

Like the study conducted by McCracken et al. (2001), Lister et al. (2004) undertook a multi-

institutional investigation in which students were tasked with completing a series of multiple-

choice questions. These questions tested students’ ability to predict the outcome of executing 

a short piece of code, as well as their capacity to complete a short piece of near-complete 

code by selecting from a number of possibilities. Lister et al. (2004) also conducted 

interviews with the students and analysed their “doodles” on scratch paper to gain further 

insight into how they arrived at their answers.  

 

It was determined by Lister et al. (2004) that many of the students who took part in their 

study had manifested a fragile ability to systematically analyse a short piece of code and as 

such, lacked the capacity to read and comprehend code. These claims were supported by 

interviews conducted with students who had scored poorly in the test as they showed the 

students had significant difficulties in correctly evaluating the code, with some students even 

admitting to guessing.  

 

Lister et al. (2004) noted that some students who scored well on their test but struggled to 

write code of a similar complexity are likely suffering from a weakness in problem-solving 

ability, as the ability to accurately read and comprehend code is a precursor to developing the 

ability to devise appropriate solutions to problems. They therefore suggest that any future 

studies wishing to investigate the problem-solving abilities of novice programmers should 

include a mechanism to identify students who face difficulties with reading and 

comprehending code. 

 

Lister et al. (2004) also acknowledge the fact that as this is a multi-institutional study, it is 

inevitable that there will be some differences amongst the participating students. For 

example, it was noted that students’ programming abilities varied by institutions – potentially 

because of differing entry requirements. It was also acknowledged that the questions had to 

be translated from Java to C++ and indention styles changed to account for what students had 
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been taught in their classes. Furthermore, although the majority of students completed the test 

towards the end of the first semester, it was found that some students completed the test at an 

earlier point in the semester or as late as the third semester, thus having differing levels of 

experience. Differences in how the test was carried out were also identified, with one 

researcher creating multiple versions of the test to prevent copying and another issuing the 

test on a computer whilst the rest of the tests were issued on paper. Additionally, students’ 

motivations for taking part in the test also differed, with some students taking part 

voluntarily, whilst others were required to complete the test as it contributed to their course 

results.  

 

To improve the generalisability of future studies, greater experimental control of factors 

would be desirable, for example, by using pseudocode to make the test language-independent 

and making the participant recruitment and testing process as identical as possible to support 

any claims arising from the study. It is also worth noting that over half of Lister et al.’s 

(2004) data was contributed by a single university. Lister et al. (2004) acknowledge this fact 

and state that after conducting a statistical analysis it was determined that the uneven 

sampling did influence the results of the investigation but did not dominate their findings. 

However, further studies should be carried out to support their claims. 

 

The initial claims that a lack of problem-solving skill can hamper programming ability were 

also examined by Gomes et al. (2006) who conducted an investigation into how students’ 

programming abilities are influenced by mathematical and problem-solving abilities. Gomes 

et al.’s (2006) propose that a lack of problem-solving abilities, specifically those that involve 

mathematical and logical knowledge, significantly contribute to the difficulties students face 

whilst learning to program. To investigate this belief, their investigation focused on around 

33 students who had failed their first programming course and were showing severe 

difficulties in getting to grips with basic programming concepts. As part of the investigation 

students were enrolled in a course designed to improve their mathematical and logical 

knowledge. During the course, students attended sessions where they were required to 

complete different mathematics and logic-based exercises, as well as a number of problem-

solving tasks in a variety of contexts, with a particular focus on tasks relating to 

programming. Students were also supported by mathematics and computer science teachers 

who were able to address problems and introduce mathematical concepts where necessary 

after each task-based session. 
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Although Gomes et al. (2004) did not present results for how students’ programming abilities 

had progressed by the time they had finished the course, they did identify that students 

exhibited a significant lack of mathematical skills, which was reflected in limited problem-

solving abilities and, therefore, poor programming abilities. This is an important 

consideration that must be kept in mind within the design of the study for this research. It will 

be interesting to determine whether previously studying mathematics has a significant 

relationship with students’ success within an introductory programming module.  

 

McCracken et al. (2001) defined problem solving as a five-step process: 

1. Abstract the problem from its description 

2. Generate sub-problems 

3. Transform sub-problems into sub-solutions 

4. Re-compose  

5. Evaluate and iterate 

 

Despite the limited sample size of Gomes et al.’s (2004) study, a number of factors, which 

they propose contributed to students’ lack of problem-solving abilities, were identified, some 

of which appear to correlate with McCracken et al.’s (2001) definition of the problem-solving 

process. These factors were mostly related to students’ abstraction abilities, which involve 

developing an understanding of a problem, breaking it down into smaller chunks and then 

making logical deductions to develop an appropriate solution.  

 

It is apparent from these three studies that more work is needed to validate the relationship 

between programming and problem-solving abilities. More research is also required into the 

factors that contribute to problem-solving abilities, including the ability to accurately read 

and comprehend code, and engage in abstraction (a key component of computational thinking 

- which is discussed in more detail in the next section).  

 

An interesting line of research has also been posed by Lowe (2019) who re-examined the 

work conducted by Lister et al. (2004) using Dual Process Theory. According to Lowe 

(2019), the minds of novice programmers can often seem forgetful, irrational, and sometimes 

paradoxical, with students appearing to be on the right path and then making an irrational 

mistake. Dual Process Theory offers a potential explanation for how decisions are made by 

separating mental processing in to two mechanisms, System 1 and System 2 (sometimes 
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referred to as Implicit and Explicit). System 1 can be described as universal cognition and 

includes instinctive behaviours and complex, yet mundane tasks such as reading and 

interpreting text. Whereas System 2 handles more logical, focused thinking (Evans, 2003; 

Lowe, 2019). Although Lowe’s (2019) initial study only examines data from two of Lister et 

al.’s questions, they have potentially identified a new method of examining the thought 

processes of novice programmers, which may prove useful in the design of future research 

into programming pedagogy.   

 

Although a lack of problem-solving ability has been suggested as one potential cause of 

difficulties in learning to program, the broad nature of programming provides several 

different areas that could be potentially troublesome for students. Du Boulay (1986) suggests 

that there are five key areas of difficulty within programming:  

 
1. General Orientation – students must develop an understanding of what programming 

is for, the kinds of problems that can be tackled by it and the advantages of learning it.  

2. Notional Machine – students can struggle to realise how a computer executes the 

instructions in a program through a lack of understanding of the notional machine.  

A notional machine represents the general properties of the machine the student is 

learning to control and as such, is a characterisation of the computer in its role as an 

executor of programs in a particular language (Sorva, 2013). 

3. Notation – students may experience problems with learning the syntax and semantics 

of a particular language. The semantics of a language can be viewed as an elaboration 

of the properties and behaviour of the notional machine. 

4. Structures – students may face difficulties in applying the notation of a language 

when attempting to apply or adapt known schemas and plans to suit the requirements 

of a program, for example, adapting a loop to compute a numerical sum. 

5. Pragmatics – students must learn to apply their knowledge of programming to specify, 

develop, test and debug a program. This not only requires an understanding of how to 

write a program, but also how to identify and solve problems effectively.  

 
These five areas cannot be fully separated from each other and as such, students are often 

overwhelmed during their first encounters with programming as they attempt to try and 

comprehend all of the different issues at once (Du Boulay, 1986). In this research, this feeling 

of overwhelmingness will be referred to as “programming shock”. Despite the fact that Du 
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Boulay’s (1986) analysis of novice programmers was conducted over 30 years ago, during 

which time technology has advanced significantly, the principles that Du Boulay discussed 

are still highly relevant to modern-day programming and, result in Du Boulay’s (1986) work 

still being heavily cited within the Computing Education research field.  

 

Robins (2019) describes programming languages as “complex artificial constructs”, which, 

like natural language, “consist of a relatively small number of elements that can be combined 

in infinitely many productive ways (p. 327). Consequently, the process of learning to 

program is often referred to as being slow and complex (Guzdial, 2010; Robins, 2019; 

Rogalski & Samurçay, 1990). Rogalski and Samurçay (1990) suggested that the complexities 

of learning to program stem from the fact it relies on a variety of cognitive activities, with 

students being required to develop accurate and reliable mental representations of the 

processes carried out during the development of a program, as well of basic programming 

concepts such as variables, loops and conditional statements that are, in effect, the building 

blocks students utilise to solve problems. Even the most basic of programming concepts is 

abstract in nature, with no real-world counterpart (Guzdial, 2010; Khalife, 2006), which 

consequently makes understanding and applying them appropriately an area of difficulty for 

students (Cheah, 2020; Guzdial, 2010; Lahtinen et al., 2005; Luxton-Reilly, 2016; Luxton-

Reilly et al., 2018; Robins, 2019). Indeed, students’ knowledge is often limited to a surface 

level, ‘line by line’ view of programs, resulting in students often struggling to identify where 

it is appropriate to use a particular concept, even if they have a general understanding of how 

it works (Lahtinen et al., 2005; Perkins et al., 1986). 

 

In an attempt to gain a more detailed understanding into why students find even the most 

basic programming concepts difficult to master, Berglund and Lister (2010) utilised 

Kansanen and Meri’s didactic triangle (1999) to analyse the interactions between students, 

teachers and content in an introductory programming scenario. A didactic triangle is a 

technique used to illustrate the interactions between components within the teaching-

studying-learning process (Kansanen & Meri, 1999). This was applied by Berglund and 

Lister (2010) to gain an improved awareness of the issues that they believe are often taken for 

granted or left implicit when teaching and learning programming. During their investigation 

Berglund and Lister (2010) revealed that there is a strong disconnect between teachers and 

students, with teachers tending to base their lessons on their own understanding of a 

particular concept rather than on how it should be taught effectively.  
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Berglund and Lister (2010) demonstrate this latter point with an example from Bruce (2005), 

who revealed that teachers who are familiar with teaching procedural programming, as 

opposed to object-oriented programming, tend to teach an object-oriented based course much 

the same as they would teach a procedural programming course, and only include object-

oriented topics when required too. Although Bruce’s comments are derived from an analysis 

of the Special Interest Group on Computer Science Education (SIGCSE) mailing list 

discussion and have little empirical evidence to support them, they do demonstrate teachers’ 

viewpoints and support Berglund and Lister’s view that teachers base lessons on their own 

needs instead of that of the students.  

 

Berglund and Lister (2010) go on to add that programming is a difficult topic to both teach 

and learn and that educators know very little about their students’ world and motivations. To 

make the teaching more accessible to students, educators must adapt their methods to meet 

students’ viewpoints. Berglund and Lister’s (2010) work highlights the need for more 

comprehensive research into the different factors that influence a student’s view of basic 

programming concepts, and programming as a whole, as well as into how teaching methods 

can be modified to meet students’ needs. Furthermore, it is the motivating factor behind the 

research questions that form the focus of this investigation, as enabling educators to identify 

students who are likely to require support, as well as developing an understanding as to how 

students are attempting to understand programming concepts, will enable them to provide 

more direct support to students. 

 

Additionally, Lister (2011) examines the processes through which students learn to 

comprehend and reason about code from a neo-Piagetian perspective, which is centred 

around the belief that regardless of age, people progress towards increasingly abstract forms 

of reasoning as they gain more domain experience (Lister, 2011; Teague & Lister, 2014a). 

This is opposed to the traditional Piagetian perspective which focuses on the development of 

children, whereby increasingly forms of abstract reasoning becomes possible as their brains 

develop (Lister, 2011; Teague & Lister, 2014a). The four stages of cognitive development 

within novice programmers; which progress from least mature to most, are defined as (Lister, 

2011; Teague et al., 2013; Teague & Lister, 2014a, 2014b, 2014c): 

 

 



 19 

1. Sensorimotor – Students in this stage cannot reliably trace code in order to establish 

the final values of variables due to the misconceptions that they hold. Their domain 

knowledge is limited and fragile, and the focus of the student is on learning the syntax 

of the language, thus making tracing code a task which requires significant cognitive 

effort. Students in this stage also often work through trial and error. 

2. Preoperational – By this stage, students are able to trace code reliably but struggle to 

reason about it. Misconceptions may still be present, with students being generally 

unable to see how different pieces of code fit together to produce a solution as a 

whole. Students at this stage may eventually produce a correct solution, but 

significant effort would be required in order to do so. 

3. Concrete Operational – Students at the Concrete Operational stage are starting to 

reason at a more abstract level. They can understand short pieces of code simply by 

reading them, without the need to manually trace through their operations, and can 

now, for the first time, comprehend both the whole solution, and the individual parts 

at the same time. 

4. Formal Operational – At the Formal Operation stage, students are able to reliably 

and efficiently produce solutions to solve problems by carrying out each of the 

previously discussed ‘problem solving steps’ (McCracken et al., 2001).   

 

A series of think aloud studies were conducted by Teague et al. (Teague et al., 2013; Teague 

& Lister, 2014a, 2014b, 2014c) which provide support for the validity of these four 

developmental categories. Similar to Berglund and Lister’s (2010) recommendation to 

modifying teaching methods to meet students’ needs, there is also a clear need to explicitly 

consider students’ reasoning abilities within the design of introductory programming modules 

(Lister, 2011; Luxton-Reilly et al., 2018; Teague et al., 2013; Teague & Lister, 2014a, 2014b, 

2014c). However, it would be beneficial for future studies to be conducted with larger 

numbers of participants in order to allow for the exploration of the rate at which students 

progress between each of the categories while learning to program, and what issues can 

prevent them from making progress (Luxton-Reilly et al., 2018). 

 

As has been mentioned previously, learning to program is a slow and complex task (Guzdial, 

2010; Rogalski & Samurçay, 1990) with Winslow (1996) suggesting it takes approximately 

10 years to turn a novice programmer into an expert, a view supported by my own personal 

experiences in learning and later teaching programming. Consequently, a three-year 
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undergraduate course can only provide a platform for students to develop their programming 

abilities from. 

 

Naturally, the conversion from novice to expert has several intermediate steps. Winslow 

(1996) cites a commonly referenced scale from Dreyfus and Dreyfus (1986), a republished 

version of which (Dreyfus, 2004) has been cited over 700 times, that breaks down the 

novice/expert continuum into five stages: 

 

1. Novice: Learns objective facts, features and rules for determining actions – 

everything they do is context free.  

2. Advanced Beginner: Starts to recognise and handle situations not covered by given 

facts, features and rules (context sensitive) without quite understanding what they are 

doing. 

3. Competence: After considering the whole situation, consciously chooses an 

organised plan for achieving the goal. 

4. Proficiency: No longer has to consciously reason through all the steps to determine a 

plan. 

5. Expert: Generally knows what to do based upon mature and practiced understanding.  

 

It is hoped that by the end of an undergraduate degree students should be ranked between 

competent and proficient (Winslow, 1996). However, with large portions of students being 

unable to produce working programs at the end of their introductory programming modules 

(Konecki & Petrlic, 2014), the aim of having the majority of graduates being classed as at 

least competent programmers seems optimistic at best. Bruce et al. (2004) investigated in 

great detail the processes that students go through whilst learning to program. Through 

interviews conducted with students, Bruce et al.’s (2004) study revealed that students can go 

about learning to program in any of five different ways: 

 

1. Following: Students who are classed as “following” are generally only interested in 

keeping up with set assignments. Their interests are only focused on where there are 

marks to be gained, and they often exhibit frustration if the course material does not 

match their expectations. Their interests are limited to what is needed to pass the 

module and they do not reflect on programming in a broader context.  
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2. Coding: Students view the act of learning to program as learning to code specifically. 

Such students focus on learning the syntax of a language as being central to learning 

to program. They are driven by the belief that they must learn to code in order to 

program. Due to the amount of syntax needing to be learned students often get 

frustrated and see taking time to explore concepts and discovering their own solutions 

as being a waste. 

3. Understanding and Integrating: In this category students view the act of learning to 

program as learning to understand and integrate the concepts involved. Students who 

go about learning to program in this way are seeking to develop an understanding of 

the “bigger picture” of programming. Typing in the code and seeing if it works is not 

enough for them; these students seek to understand what they have done in order to 

affect the particular outcome. In some cases, students view learning to program as 

building on prior experience, with concepts being learned sequentially. Each concept 

is viewed as a “building block” which must be mastered before moving on to the next 

one; a student may spend a significant amount of time on a single concept they are 

struggling to understand and will only move on once they have mastered it, or when 

introduced to an additional concept they feel is more important. It is possible that 

students may adopt a trial and error approach to writing their programs, making 

experimentation an important part of their learning process. Students in this category 

focus less on the code itself, but more on using code as a means to achieve an 

understanding of concepts. They are motivated by their desire for insight and are 

consciously aware of the ‘bigger picture’ of programming outside of their module 

assignments.  

4. Problem Solving: Students in this category experience learning to program as 

learning what it takes to solve problems. As in the previous category, students are 

conscious of the ‘bigger picture’ of how the programming skills they are learning 

relate to the problems they are attempting to solve. For students in this category the 

problem is always the starting point and although coding is an important part of the 

learning process, it is not the main focus. Students in this category do tend to want to 

‘jump in’ and start coding in an attempt to solve the problem and can also be inspired 

to solve problems that have not been set as part of the assignment.  

5. Participating: Students in this category are learning what it means to be part of a 

programming community. Students are no longer focusing on learning the syntax and 

semantics; instead, students are learning how to think like a professional programmer, 
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as well as investigating the different aspects of working in the software engineering 

industry. Students also become much more aware of programming culture – for 

example, evaluating the readability of a program as being as important as the 

program’s features. 

 

Bruce et al. (2004) go on to state that students who do not move past Categories 1 (following) 

or 2 (coding) are less likely to achieve the learning outcomes of their programming course. 

These students have adapted a surface orientation and are, therefore, not seeking meaning in 

what they are doing and are merely learning the answers to questions or strings of code 

needed to complete tasks. As a result of their surface orientation students may struggle to 

apply the concepts they have ‘learned’ in later programming tasks.  

 

In contrast, students who experience learning to program as in Categories 3 to 5 are adopting 

a deeper orientation to the subject – they are seeing the meaning in what they are doing and 

can place it within the ‘bigger picture’, therefore providing themselves with much firmer 

foundations for learning more advanced concepts in later programming classes.  

 

Bruce et al. (2004) note that the range of categories highlights a distinction between students 

who focus on ‘parts’ as opposed to those who focus on ‘wholes’ in their learning experience 

and as such, teaching and assessment strategies must be adapted to ensure students of all 

categories remained engaged with the course. For example, students from Categories 1 or 2 

could be classed as focusing on ‘parts’ of the subject, as Category 1 students tend to have a 

desire for information to be presented to them in small amounts and make little or no attempt 

to place learning into the boarder context of programming. Similarly, students in Category 2 

focus purely on the syntax of the language they are trying to learn, often to the detriment of 

their understanding of the underlying programming concepts. Teachers may be able to 

encourage students to begin to see the bigger picture by prompting them to refocus by 

explicitly emphasising the broader context of what the students are learning and 

programming generally. In terms of assessment, Bruce et al. (2004) suggest that smaller, 

more frequent assignments may help students who see learning to program as a means of 

getting through the course as it increases the opportunities for the students to receive 

feedback and for teachers to ensure they are on the right track. 
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Alternatively, students who focus on ‘wholes’ whilst learning to program, as in Categories 3 

and 4, expect staff to provide context and ways to help them develop a sense of 

understanding of how the topics they are learning relate to the wider programming world. 

Consequently, students in these categories tend to prefer assignments which build on 

previous ones, as students’ motivation may increase if they are given problems they perceive 

as having relevance to them (Bruce et al, 2004).  

 

If it is the goal of the class to produce students who approach programming in the way that 

Category 3 describes, then this must be explicitly incorporated into the teaching strategy. 

Students cannot be expected to embrace new ways of viewing the programming world if they 

are not being introduced to it by their teachers. These comments echo those of Berglund and 

Lister (2010), who noted that teachers must adapt their material to meet the views of the 

student. Although the studies by Bruce et al. (2004) and Berglund and Lister (2010) are both 

well cited, there still remains a significant amount of work to determine how well these 

modifications to teaching strategies actually benefit students who are struggling to learn to 

program. Bruce et al. (2004) also acknowledge that whilst their categories are discrete, 

students may adopt different ways of experiencing learning to program at various points 

during their introductory programming module, therefore, a more in-depth study should be 

carried out across a larger sample of students to identify how they progress through an 

introductory programming module and what factors influence their approaches to learning. 

Nevertheless, the categories described by Bruce et al. (2004) speak to the motivational levels 

of students and as such, may influence students’ performance within their introductory 

programming module. 
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2.3 The Mind of a Programmer 
There is a common misconception that computer science is predominately about 

programming (Lu & Fletcher, 2009) however, an important factor in both learning to 

program and developing an understanding of computer science as a whole is the concept of 

computational thinking. 

 

A popular definition of computational thinking comes from a paper by Jeannette Wing 

(2006), which has been cited over 10,000 times (Google Scholar), and describes 

computational thinking as “taking an approach to solving problems, designing systems and 

understanding human behaviour that draws on concepts fundamental to computing”. Further 

to Wing’s definition, Lue and Fletcher (2009) provide an overview of the main components 

of computational thinking: 

 

• It is a method of solving problems and designing systems that draws on fundamental 

computer science concepts. 

• Different levels of abstraction are used to understand and solve problems more 

efficiently. 

• It involves thinking algorithmically and applying mathematical conceptions to 

develop more efficient, fair and secure solutions. 

• An understanding of the consequence of scale must be developed, not only in terms of 

efficiency, but also for economic and social reasons.  

 

It is important to note that computational thinking is not about getting people to think like 

computers, rather it is about encouraging students to develop a full set of mental tools 

necessary to effectively use computers to solve complex human problems (Lu & Fletcher, 

2009; Reges, 2008; Wing, 2006). 

 

Rogalski and Samurçay (1990) highlighted the fact that acquiring and developing 

programming knowledge is a highly complex process, as students must not only learn to code 

(i.e., by understanding and applying the syntax and semantics of a language appropriately), 

but they must also develop the skills and thought processes needed to establish the 

requirements of a program and to devise appropriate solutions. In essence, students must 

develop their computational thinking abilities concurrently with learning to code.  
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Students’ exposure to topics such as problem solving through iteration (Brennan & Resnick, 

2012) and abstraction (Wing, 2008) whilst learning to code help to form the building blocks 

of their computational thinking abilities, which in turn enable students to improve their 

problem solving and develop more succinct solutions (Wing, 2006; Wing, 2008). However, 

the applications of computational thinking are not limited to the realms of computer science 

and programming alone. Wing (2008) believes that computational thinking is for everyone, 

everywhere, as it encourages new ways of tackling problems which would not be possible 

without a computer. As such, computational thinking has found increasing relevance in 

subjects outside of computer science including mathematics, science and engineering 

(Hambrusch, Hoffmann, Korb, Haugan, & Hosking, 2009; Weintrop et al., 2016; Wing, 

2008). 

 

The importance of computational thinking within the computer science syllabus itself has 

also been acknowledged by a number of exam boards (AQA, 2020; OCR, 2020; Pearson, 

2020) whose GCSE specifications explicitly examine students’ Computational Thinking 

abilities. Although the exact content of introductory programming classes at undergraduate 

level varies by university, they must all nevertheless address some of the key components of 

computational thinking whilst also introducing students to basic programming concepts such 

as variables, selection and iteration. 

 

The range of content needing to be addressed within introductory programming classes, 

combined with the fact that students with varying levels of experience must be catered for, 

makes designing effective content difficult for educators. This is reflected in the relatively 

high failure rates in introductory programming modules which were revealed in a study 

conducted by Bennedsen and Caspersen (2007) who estimated that on average 33% of 

students fail their introductory programming modules. Although the initial study by 

Bennedsen and Caspersen (2007) had a limited sample size, their initial results were later 

confirmed by Watson and Li (2014) and then later revised in a significantly larger study to 

28% of students failing (Bennedsen & Caspersen, 2019). These figures are substantial 

enough to indicate that there is still a clear requirement for improvement within introductory 

programming modules and provides support for the importance of adapting materials to meet 

the needs and experiences of students, as Berglund and Lister (2010) suggest. 
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One potential method for improving student performance in their introductory programming 

modules could be the adoption of the constructivism teaching methodology (Ben-Ari, 2001; 

Jones & Brader-Araje, 2002; Piaget, 1973; Vygotsky, 1962). Constructivism differs from 

traditional teaching approaches in which knowledge is transferred to students in a continuous 

process in the form of lectures, textbooks, etc. Rather, constructivism-based teaching is 

centred around students actively constructing their own understanding of a concept. In doing 

so, students create a cognitive model, which is a combination of their pre-existing domain 

knowledge and the knowledge that they have gained through applying the concept being 

learned (Ben-Ari, 2001; Gonzalez, 2004; Jones & Brader-Araje, 2002; Piaget, 1973; 

Vygotsky, 1962; Yadin, 2012). 

 

There are said to be two dominant constructivism philosophies: Piaget’s personal (individual) 

constructivism and Vygotsky’s social constructivism (Phillips 2000, as cited in Amineh & 

Asl, 2015). Piaget’s philosophy is based around active participation, whereby students pass 

through successive stages that allow for an increasingly accurate understanding of reality  

(Piaget, 1973) to be established. As such, there may be stages where students accept an idea, 

but then may come to change it or reject it entirely at a later stage (Amineh & Asl, 2015; 

Piaget, 1973), therefore, students develop their understanding of a topic through active 

participation, meaning learning cannot occur passively (Amineh & Asl, 2015).  

 

Vygotsky’s social constructivism philosophy, on the other hand, is centred around the belief 

that cognitive growth occurs first at a social level and then later at an individual level 

(Amineh & Asl, 2015; Vygotsky, 1978). Learning is still viewed as an active process but is 

done so in coordination with other people (Amineh & Asl, 2015). Leeds-Hurwitz (2009) 

suggests that the two most important elements in social constructivism are the assumption 

that humans rationalise their experiences by creating a model of the social world and the way 

it functions, as well as the belief that language is the essential system through which humans 

construct reality. Learning, according to Vygotsky (1978) is a process of continual movement 

from a student’s current intellectual level, to a higher one which is closer to their potential. 

Subsequently, this movement occurs within the Zone of Proximal Development (ZPD) 

(Amineh & Asl, 2015; Shabani et al., 2010; Vygotsky, 1978) which is defined by Vygotsky 

as “the distance between the actual developmental level as determined by independent 

problem solving and the level of potential development as determined through problem 

solving under adult guidance, or in collaboration with more capable peers” (Vygotsky, 1978, 
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p. 86). Therefore, the ZPD represents a key component of social constructivism as it 

describes a student’s current level development, as well as the next level that the student can 

achieve when appropriate support, in the form of the presence of a more skilled, or 

knowledgeable, person (Amineh & Asl, 2015; Shabani et al., 2010; Vygotsky, 1978). This 

highlights the key belief behind social constructivism that interactions, whether it be with a 

teacher or a fellow student, supports learning (Shabani et al., 2010). 

 

Despite the clear differences between the philosophies presented by Piaget and Vygotsky, a 

commonality amongst them both, as well as amongst the many other variations of 

constructivism, is that students take an active role in their learning (Amineh & Asl, 2015; 

Biggs, 2014; Shephard, 2019). Within the setting of higher education, a key constructivism-

based approach which has widespread use is constructive alignment (Biggs, 2014). This is a 

outcome-based approach to teaching whereby the intended learning outcomes are defined 

prior to any teaching taking place. The intended learning outcomes are then used to design 

appropriate teaching and learning strategies to enable students to achieve the outcomes and 

assess how well they have been met (Biggs, 1996, 2014; Shephard, 2019). Biggs (1999) notes 

that two variables that influence learning are the level of engagement by students, and the 

extent to which the teacher requires students to be actively involved in the teaching process. 

As such, Biggs’ work provides further grounds to support and encourage students taking an 

active role in their learning. 

 

Ben-Ari’s (2001) widely cited paper ‘Constructivism in Computer Science Education’ 

provides one of the earliest discussions surround constructivism within computer science 

education. The paper presents a comprehensive comparison between traditional and 

constructivist teaching methodologies, which is centred around the following definition of the 

four key components of an education paradigm from Ernest (1995, as cited in Ben-Ari, 

2001): 

 

• An ontology, which is a theory of existence. 

• An epistemology, which is a theory of knowledge, referring to both the specific 

knowledge of an individual and to shared human knowledge. 

• A methodology for acquiring and validating knowledge. 

• A pedagogy, which is a theory of teaching.  
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Ben-Ari uses these four components to describe the traditional educational paradigm 

culminating in the following points:  

 

• An ontological reality does exist. Scientific theories of relativity, quantum mechanics 

and the Newtonian model of absolute space and time are generally used to represent 

reality.   

• Epistemology is foundational. The truth is out there to be uncovered. Necessary 

truths, such as 2 + 2 = 4, are accepted and are combined with valid forms of logical 

deduction to expand the extent of true knowledge.  

• Minds are a clean slate, which can be filled with knowledge. Once enough facts and 

rules of inference are understood, new knowledge can be created through logical 

deduction.  

• The primary means of knowledge transmission is listening to lectures and reading 

books. Repetition ensures that knowledge is retained. 

 

Ben-Ari goes on to describe the constructivist paradigm which he believes to be 

“dramatically different” to that of the traditional educational paradigm.  

 

• The ontological reality is either completely rejected or at least considered irrelevant as 

you can never truly ‘know’ something, therefore, ontologies do not influence the 

constructivist paradigm.  

• Constructivism’s epistemology is nonfoundational and fallible. Absolute truth is 

unattainable and therefore there are no foundations of truth to build upon. Knowledge 

is constructed by each individual and is therefore fallible.  

• Knowledge is acquired recursively, with sensory data being combined with existing 

knowledge to create new cognitive structures, which then form the foundation for 

further construction. Knowledge can also be created through reflection on existing 

knowledge.  

• Passive learning is likely to fail as each student brings a different cognitive frame to 

the classroom and as such, will construct knowledge differently. Learning must 

therefore be active under guidance from the teacher and with feedback from fellow 

students. As Winslow (1996) stated, learning concepts and techniques of a new 

language requires writing programs in that language. The constructivism paradigm is 
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centred on the belief that effective learning requires not only the discovery of facts, 

but also the construction of viable mental models (discussed in detail in the 

subsequent section). 

 

Ben-Ari (2001) also notes that as constructivism builds recursively on knowledge already 

held by the student, the result is an idiosyncratic version of knowledge that may differ from 

“standard scientific knowledge”. In such cases the student is said to have developed a 

misconception (programming misconceptions are discussed in Section 2.4). It is Ben-Ari’s 

belief that teaching techniques derived from constructivism may be more successful than 

traditional techniques as they explicitly address the process of knowledge construction, thus  

placing greater emphasis on addressing the misconceptions students develop. Indeed, I 

believe Ben-Ari’s (2001) suggestions of explicitly teaching models of underlying constructs 

is particularly important in supporting students’ understandings of concepts when learning to 

program.  

 

Learning how to appropriately use and apply a programming language can require a student 

to revaluate their understanding of the language they are attempting to learn, and also their 

understanding of the computer system as a whole (Pea & Kurland, 1984). Discussions 

surrounding constructivism have highlighted the need for students to play an active role 

within their learning, as the teaching of even the simplest of concepts, such as variables, can 

be surprisingly complex (Hill & Guzdial, 2019). As Ben-Ari (2001) suggests, there is a need 

for clear and direct instruction of models of fundamental programming concepts (Ben-Ari, 

2001), which is supported by Hill & Guzdial’s (2019) belief that direct teaching should focus 

on plans (groups of statements as opposed to single lines of code), with worked examples 

being used to aid comprehension and understanding. However, Pea and Kurland (1984) 

believe that students are unlikely to experience the complex cognitive changes required to 

develop understandings of programming conceptions either through spontaneous exploring or 

explicit instruction alone, as they must be engaged with a task in order to interpret new 

concepts.  

 

Whilst the specific ways in which introductory programming modules are taught are not the 

focus of this investigation, they are relevant to how the outcomes of this work are intended to 

be implemented. The improved understanding of students’ mental models which RQ 1 aims 

to establish, would directly support a teaching strategy informed by Lui et al.’s (2004) 
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guidelines, which encourage the clear instruction of mental models of core concepts.  

Furthermore, students deemed likely to struggle within their introductory programming 

course, as per RQ 3, could be supported to take an active role within their learning, through 

constructivism-based techniques. Possible techniques include physical computing (Brehm et 

al., 2019; Przybylla & Romeike, 2014), program visualisation (Bakar et al., 2019; Moons & 

De Backer, 2013), or “cognitive apprenticeships”, such as that described by Boyer et al. 

(2008), which is centred around live demonstrations of how to solve particular problems. 

Boyer et al. (2008) also utilised peer learning activities and online discussion-based activities 

to help promote active engagement amongst students in order to challenge students in their 

zone of proximal development. These techniques could naturally form the basis of the main 

teaching within an introductory programming module, or as part of dedicated, targeted 

interventions, which could be developed as part of an extension to RQ 3 in future work. 
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2.4 Programming Cognition 
Programming is a complex, abstract process that can be difficult to learn (Guzdial, 2010; 

Khalife, 2006). Therefore, in order to conduct meaningful research, and to develop effective 

tools to support the teaching of introductory programming classes, an understanding of the 

cognitive processes involved in programming must be established. There is a strong bi-lateral 

relationship between programming and the field of cognitive psychology, as programming 

offers cognitive psychologists the ideal opportunity to examine cognitive processes in a real-

world domain whilst participants are carrying out clearly defined tasks. Similarly, cognitive 

psychology offers methods for examining the processes that underlie performance in 

computing tasks (Ormerod, 2014). 

 

Ormerod (2014) compares the cognitive processes being carried in the brain to those of a 

computer, stating that much of cognitive psychology is based on a “computational metaphor” 

in which the mind is viewed as a type of information processor. Ormerod goes on to discuss 

the computational metaphor in more detail, stating that the brain carries out processes such as 

memory storage and retrieval, language production and comprehension, attention, perception 

and problem solving that are also carried out by a computer’s Central Processing Unit (CPU).  

 

A computer system can be broken down into three key levels: the software; the 

implementation of programs on the hardware (e.g., memory allocation, CPU speed, etc.); and 

the hardware itself. Ormerod (2014) adopts a literal interpretation of the computational 

metaphor when describing the human cognitive system: the cognitive software is made up of 

mental procedures and representations of knowledge used in performing cognitive tasks. 

Cognitive implementations of software relate to the mechanisms for carrying out mental 

procedures and knowledge representation, such as storage, retrieval or symbol manipulation, 

where limitations in attention and memory can hamper problem solving. Finally, the 

cognitive hardware are the physiological structures in which cognitive processes are carried 

out, specifically, the human brain.  

 

An important construct relating to knowledge representation within the human cognitive 

system is that of the “schema”. A schema is a type of cognitive software that in essence, is a 

data structure used to represent generic concepts being stored in a person’s memory 

(Ormerod, 2014; Rumelhart & Ortony, 2017). Schemas are used to hold generalised versions 
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of objects, situations, events and sequences of actions or events, essentially representing a 

stereotype of a given concept. Anderson (2015) states that schemas represent categorical 

information using a slot structure with each slot representing a particular category.  

 

The slots within a schema can hold multiple default values or specific instances of the slot’s 

attributes, as shown in Table 2.1 (Anderson, 2015). 

 
Table 2.1 

Example Schema of a House 

Category Attributes 

Isa Building 

Parts Rooms 

Materials Wood, Brick, Stone 

Function Human Dwelling 

Shape Rectilinear, Triangular 

Size 100 – 10,000 square feet 

 

The attributes listed in Table 2.1 are the default values for the category; what you would 

expect to see. However, other values that have not been included are also acceptable as 

Anderson explains, “the fact that houses are usually built of materials such as wood, brick, 

and stone does not mean that something built of cardboard could not be a house” (Anderson, 

2015, p.113). Additionally, schemas can include an ‘isa’ slot, which unless contradicted, 

allows a concept to inherit the features of a higher concept through a generalisation hierarchy, 

for example, a schema for a house inherits from a building schema, thus negating the need to 

explicitly represent the building’s features within the house schema (Anderson, 2015). 

 

Interestingly, the way schemas represent information is similar to that of a “Class” within 

object-oriented programming, as the schema itself represents a class definition, slots 

represent data members, attributes represent the values assigned to the data members and the 

real-world object that the schema describes is represented by an instance of a class. 

Additionally, classes can also inherit from one another in the same way that schemas do 

using an Isa slot. 

 



 33 

It is worth noting that the content of a schema is purely an abstract representation of a 

particular concept, independent from any particular instance, and is based solely on an 

individual’s prior knowledge (Ormerod, 2014). Drawing on the work of Bartlett (1933), 

Sweller (1994) provides a useful analogy for explaining how the mind processes schemas, by 

examining schemas designed for handling trees. Sweller states that no two trees are identical, 

but all share common features such as branches, height, colour, etc. When asking a person to 

describe a particular tree from memory their description will be heavily influenced by their 

tree schema rather than the exact features of the tree they were asked to describe. Therefore a 

person can easily process potentially infinite varieties of trees by incorporating them into the 

existing tree schema (Ormerod, 2014). 

 

According to Sweller (1994), intellectual skills are gradually learnt through incremental 

schema acquisition, which when first acquired, will be severely constrained until a person 

becomes proficient in the specific skill. Similarly, Perkins et al. (1986) state that experienced 

programmers rely on a repertoire of well-practiced schemas that are developed over time, 

which as Winslow (1996) suggests, may take up to ten years before an individual has 

acquired sufficient knowledge to be classed as an “expert” programmer.  

 

Skills such as programming are gradually learnt through incremental schema acquisition, 

which when first acquired, will be severely constrained until sufficient experience has been 

gained in applying the schemas to allow the individual to become proficient in the skill 

(Sweller, 1994). Subsequently, as a skill is learned and reinforced, the way it is processed in 

the brain changes. A highly cited psychological model developed by Schneider and Shiffrin, 

which was presented across two separate publications (Schneider & Shiffrin 1977; Shiffrin & 

Schneider, 1977), implies that when a skill is first learned it requires the explicit attention of 

the individual in order to carry it out. As such, this can often be time consuming and require 

conscious effort to move from one step to another (Paas & Van Merriënboer, 1994; Sweller, 

1994). Schneider and Shiffrin (1977) therefore, termed this type of information processing 

Controlled Processing. In contrast to controlled processing, Schneider and Shiffrin (1977; 

Shiffrin & Schneider, 1977) also defined Automatic Processing, which occurs with no 

conscious attention from the individual. Automatic processing of a skill is triggered by a 

corresponding stimulus (input) and is then processed automatically without any explicit 

intervention from the individual, thus allowing for faster processing, which appears effortless 
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to the individual (Paas & Van Merriënboer, 1994; Schneider & Shiffrin, 1977; Sweller, 

1994).  

 

Paas and Van Merriënboer (1994) describe the process of a skill developing from purely 

controlled to purely automatic processing as Rule Automation, which occurs through 

continuous practice allowing for the development of “rules” that control problem solving 

behaviour, often over a prolonged period of time. For example, a young child who is learning 

to read must make a conscious effort to read and understand a simple sentence; however, an 

adult who has been reading successfully for a significant number of years would not need to 

actively devote attention to deciphering the meaning of individual letters or words (Sweller, 

1994). Therefore, the child is seen to be using controlled processing, whereas the adult is 

using automatic processing.  

 

Paas and Van Merriënboer (1994) go on to state that novel and inconsistent processing tasks 

typically necessitate controlled processing, whereas automatic processing typically occurs in 

well-practiced consistent tasks. However, complex cognitive tasks require a combination of 

both controlled and automated processing due to the fact that these kinds of tasks can contain 

aspects that cannot be easily automated.  

 

Although schema construction and automation play an important part in the acquisition and 

development of an intellectual skill, they also play an important part in reducing the amount 

of working memory required to perform the skill. Working memory is essentially an area of 

memory. which is dedicated to storing information needed to perform a task that is currently 

being carried out (Anderson, 2015; Baddeley, 1992). Information is stored in slots within 

working memory, with the total number of slots (i.e., a person’s working memory capacity), 

being of a fixed amount. Miller (1956) theorised that an individual’s working memory has 7 

(+/-2) slots available, thus imposing a limit on the amount of information that can be held at 

any one time in working memory.  

 

Owing to the limits of working memory it can become a bottleneck when learning new 

intellectual skills (Duran et al., 2018) as more complex tasks require a greater amount of 

working memory, which in turn degrades the learner’s performance once their working 

memory capacity has become overloaded (Paas et al., 2003). However, the use of schemas 

decreases the overall demands placed on working memory by increasing the amount of 
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information that can be stored within a single slot (Sweller, 1994). For example, a schema’s 

representation of a car can be stored within a single slot without the need to also recall the 

individual elements (engine, doors, wheels, etc.) into working memory. Similarly, once a 

schema has been fully automated there is no need to recall it into working memory, therefore 

bypassing it entirely as processing occurs automatically and allows for other functions to 

utilise available working memory capacity (Paas et al., 2003; Sweller, 1994).   

 

When an intellectual skill is first encountered, a significant amount of cognitive resources 

must be utilised in order to process it until a sufficient number of schemas have been 

constructed and automated, thus freeing resources for other activities (Sweller, 1994). The 

amount of load that performing a particular task poses on a person’s cognitive systems is 

represented by Sweller’s (1988) Cognitive Load Theory. Paas and Van Merriënboer (1994) 

provided an in-depth examination into the causes and effects of cognitive load on skill 

development, stating that the construct of cognitive load is comprised of causal and 

assessment factors; the factors that affect cognitive load and the factors that are affected by 

cognitive load, respectively. Figure 2.1 depicts Paas and Van Merriënboer’s (1994) 

diagrammatic overview of the concept of cognitive load, with casual factors on the left, and 

assessment factors on the right.  
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Figure 2.1 

Representation of Cognitive Load 

 

 
Note. From “Instructional Control of Cognitive Load in the Training of Complex Cognitive 

Tasks” by F. G. Paas and J. J. Van Merriënboer, Educational Psychology Review. 

 

The casual factors of cognitive load relate to the characteristics of the task (or the 

environment in which it is being performed), the characteristics of the individual performing 

the task, or interactions between the two (Paas et al., 1994; Paas & Van Merriënboer, 1994). 

For example, Paas and Van Merriënboer (1994) suggest that task characteristics such as task 

novelty, time available to complete the task and the possible rewards from the task can all 

influence levels of cognitive load. Additionally, an individual’s characteristics can affect 

levels of cognitive load, such as task-relevant prior experiences, cognitive style, preferences 

and the like. These characteristics tend to be relatively stable, meaning they are unlikely to 

suddenly change when performing a task (Paas et al., 1994; Paas & Van Merriënboer, 1994). 

However, factors such as motivation, state of arousal and internal criteria of optimal 

performance, are dependent upon interactions between the individual and the task, and are, 

therefore, unstable, meaning that they may not remain fixed throughout the duration of the 

task (Paas et al., 1994; Paas & Van Merriënboer, 1994). 

 

There are three key factors that can be used to assess an individual’s cognitive load: mental 

load, mental effort and performance (Paas & Van Merriënboer, 1994). Mental load is 

determined by task or environemnt demands and as such, is independent from an individuals 
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characteristics (Paas et al., 1994; Paas & Van Merriënboer, 1994). Paas and Van Merriënboer 

gave the following example to demonstrate mental load:  

 

“[S]uppose that there are two maze tasks A and B, and that maze A is more complex than 

maze B. Then, for all subjects solving the task, the mental load releated to task A is higher 

than the mental load related to task B.”  

(Paas & Van Merriënboer, 1994, p. 354) 

 

From this example it is evident that the mental load of a task is a consistent factor across all 

personel involved in completing that task. Subsequently, mental effort refers to the amount of 

cognitive resources required to complete a particular task (Paas & Van Merriënboer, 1994) 

and is therefore a differentiating factor amongst a set of individuals completiing a task. The 

amount of mental effort required to perform a task also reflects the amount of controlled 

processing being carried out (Paas et al., 1994), and, as such, tasks that require more 

controlled processing will incur a higher cognitive load compared to those that can be 

processed automatically (Sweller, 1994). Paas and Van Merriënboer (1994) again refer to 

their maze example to demonstrate mental effort, stating that as task A is more complex, and 

commands a higher mental effort, it will therefore often show a higher level of mental load. 

However, as Paas and Van Merriënboer go on to explain, this assumption is not always 

accurate, as it is possible that an individual may “brush aside” task A due to its complexity 

and put a lot of effort into completing task B, thus resulting in a higher level of mental effort 

for task B than task A. Additionally, prior expierence can also affect mental effort as a group 

of students who have no previous knowledge of either of the mazes will show higher levels 

of mental effort for task A, whereas a group of students who have had expierence with task A 

but none with task B will show a higher level of mental effort with task A (Paas and 

Merriënboer, 1994). 

 

Due to the subjective nature of mental effort, it is also important to consider an individual’s 

performance on the task that is being examined, in order to accuratly determine the level of 

cognitive load being experienced by an individual, as all three causal factors are reflected 

within task performance (Paas et al., 1994; Paas & Van Merriënboer, 1994). Refering again 

to Paas and Van Merriënboer’s (1994) maze example, performance is likely to be higher on 

the simpler of the two tasks (task B) with the maze being completed quicker and with fewer 
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errors. However, it may possible to obtain a similar level of performance on the more 

complex task through an increase in a mental effort (Paas & Van Merriënboer, 1994), and 

therefore an increase in overall cognitive load. Differences in prior knowledge and 

expierence are also likely to influence performance levels when completing these tasks.  

 

The level of cognitive load experienced by a student may be a significant factor in 

determining whether a particular topic or concept is successfully learnt by the student (Paas, 

et al., 2003). The overall level of cognitive load a person experiences is in fact a culmination 

of three specific types of cognitive load: intrinsic load, extraneous load and germane load 

(Paas, et al., 2003). Paas et al. (2003) provide the following definitions for each type of 

cognitive load: 

 

• Intrinsic Load – is the interaction between what is being learned and the expertise and 

experiences of the learner. 

• Extraneous Load – is the extra load on top of intrinsic load, which is mainly produced 

through poorly designed instructions.  

• Germane Load – is the amount of load required for the creation and automation of 

schemas.  

 

Whilst Paas et al. (2003) acknowledge that each of the types of cognitive load combine to 

create a total cognitive load, more research is required to study how each of these types of 

cognitive load can be measured individually and to investigate any potential relationships 

with performance. The causes of a high overall level of cognitive load have been discussed in 

length by Paas and Van Merriënboer (1994). They suggest that there are a number of 

characteristics of complex tasks that invoke a high level of mental load, which often results in 

high levels of mental effort and consequently, a high level of cogntive load. Paas and 

Merriënboer (1994) identified two specifc factors that can contribute to high levels of mental 

load: the number and nature of component skills involvelved in completing the task, and the 

complexity of the goal hirearchies. 

 

Paas and Van Merriënboer (1994) define component skills as “subskills that form part of the 

to-be-learned skill”. Consequently, Paas and Van Merriënboer suggest that skills with greater 

numbers of component skills induce a higher level of mental load than those with fewer 
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component skills. Paas and Van Merriënboer (1994) go on to state that the component skills 

can either be recurrent components, which dictate a consistent level of performance across 

problem situations, or nonrecurrent components, which having varying levels of performance 

between tasks, with tasks requiring a greater number of nonrecurrent components imposing a 

greater demand on an individual’s cognitive system. 

 

To demonstrate their definition of component skills, Paas and Van Merriënboer (1994) use 

examples from the context of programming. Tasks such as the use of an Integrated 

Development Environment (IDE), selecting basic commands and applying syntax rules can 

all be classed as recurrent components, whereas tasks including problem decomposition, or 

the identification and resolution of errors can be classed as nonrecurrent components. In 

addition to component skills, Paas and Van Merriënboer (1994) identified that the complexity 

of the sub-goals which must be accomplished in order to achieve a specific overall goal; the 

goal hierarchy, can also provoke higher levels of cognitive load through more complex goal 

hierarchies. It is evident from the work conducted by Paas and Van Merriënboer (1994) that 

as the complexity of the task increases, so does the overall cognitive load experienced by the 

individual.  

 

Sanders and Thomas (2007) conducted an investigation into the misconceptions shown by 16 

novice programmers across five separate programming assignments. Their aim was to 

support instructors of an object-oriented programming course, by developing a number of 

checklists to be used to assess students’ understanding of programming concepts, and also 

diagnose common problems in their programs. Sanders and Thomas (2007) developed their 

checklists by manually reviewing “several hundred pages of code” which they admit was a 

time consuming task. A similar study in the future could potentially use a selection of the 

Educational Data Mining techniques, discussed in Section 3.3, to conduct a more efficient 

study, with a reduced potential for bias. However, during the course of their investigation, 

Sanders and Thomas identified that as the complexity of programs increased, so did the 

number of “elementary” syntactic mistakes. Although this could be, as Sanders and Thomas 

(2007) suggest, due to a “lack of time rather than lack of understanding”, their finding could 

be a potential indicator of the increased cognitive load placed on the students, which is 

inducing a greater number of simplistic mistakes, thus supporting Paas and Van 

Merriënboer’s (1994) claims. 
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In addition to Sanders and Thomas' (2007) evidence in support of the effects of cognitive 

load, a study conducted by Anderson and Jeffries (1985) appears to also support Paas and 

Van Merriënboer’s (1994) view. Anderson and Jeffries (1985) present a series of experiments 

that studied the errors made whilst learning to program in LISP, the first of which examined 

how the complexity of the tasks students were performing affected error rates. Like Sanders 

and Thomas (2007), they determined that as the programs students were writing became 

more complex, the more errors were made. Anderson and Jeffries (1985) go on to state that 

they believe the increase in error rate is due to the excessive demands placed on the students’ 

working memory and may in fact be responsible for the majority of errors made by the 

students rather than their own misunderstandings.      

 

It is reasonable to assume, based on the evidence discussed above, that students experience 

higher levels of cognitive load when completing more complex programming tasks. This 

higher level of cognitive load has the potential to have a negative effect on the students’ 

learning of new material (Paas & Van Merriënboer, 1994), whilst also increasing the 

likelihood of mistakes being made on previously learnt content (Anderson & Jeffries, 1985; 

Sanders & Thomas, 2007). As such, attempting to learn new tasks whilst contending with 

high levels of cognitive load will be difficult for students (Sweller, 1994), thus making the 

level of cognitive load a student experiences a limiting factor when attempting to convey 

tasks of substantial complexity (Paas et al., 1994).  

 

Whilst the design of instructional materials is outside the scope of this investigation, it is 

important to highlight the impact students’ levels of cognitive load can have on their abilities 

to fully engage with the learning process (Berssanette & De Francisco, 2022). Given the 

complexities associated with learning to program, it has been suggested that cognitive 

overload is one of the primary problems within introductory programming due to the 

increased demand that is placed on students’ working memory (Yousoof et al., 2007). 

Students’ levels of cognitive load are, therefore, likely to be a factor in students’ mental 

model development and their levels of confidence, and as such, may influence the results for 

both RQ 1 and RQ 2.    

 

It should be noted, however, that whilst the level of intrinsic load placed on students is fixed, 

the level of extraneous load can be reduced (Sweller, 1994), for example, by reducing the 

number of new topics introduced in a single lesson, ultimately reducing the overall demands 
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on students’ cognitive systems. If lessons are not suitably designed to reduce cognitive load 

the possibility of students experiencing cognitive overload is increased. This is when the 

demands of the task being completed by a student exceed their cognitive capacity and 

consequently, increase the likelihood that a student will fail to learn the topic being taught 

(Paas et al., 1994). A student experiencing “programming shock” is a good example of how 

presenting numerous complex, unfamiliar concepts simultaneously can result in cognitive 

overload and hamper further progress. If a student frequently experiences cognitive overload, 

Paas et al. (1994) believe that it may result in the student losing motivation within the 

subject, and ultimately failure, consequently making it especially important that students’ 

cognitive load levels be considered when designing course materials.   

 

As discussed previously, mental effort is a key component that can be used to assess an 

individual’s level of cognitive load. An interesting experiment conducted by Mason and 

Cooper (2012) examines the views of academic staff from 28 Australian universities on the 

characteristics of the “bottom 10%” of students on their introductory programming modules.  

Mason and Cooper (2012) postulate that many low performing students lack relevant pre-

existing schemas, which are necessary for understanding programming concepts, and 

experience high levels of intrinsic and extraneous cognitive load when faced with an 

instructional presentation. This, in turn, blocks the capacity for germane load, and therefore 

prevents learning. Mason and Cooper go on to explain that the three types of cognitive load 

broadly align to what must be processed by students when learning to program, which are as 

follows: 

 

• Intrinsic load, associated with the concepts and interpretation of the problem 

statements; 

• Extraneous load, determined by the language and environment, along with associated 

constraints such as syntax; and 

• Germane load, associated with the cognitive processing to acquire and automate 

new schemas. 

(Mason & Cooper, 2012, p. 191) 

 

Subsequently, participants within Mason and Cooper’s (2012) study were asked to provide 

mental effort ratings on three areas of cognition (understanding the problem statement, using 
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the development environment and reinforcing previous concepts) for themselves 

(instructors), an average student and a student in the bottom 10% of their class. Perhaps 

unsurprisingly, the participants in Mason and Cooper’s (2012) study rated their own mental 

effort for each of the three components as low, with an average student needing to exert 

“above average” levels of mental effort and students in the bottom 10% needing to exert 

much higher levels of mental effort than an average student. Mason and Cooper state that 

these results are consistent with their argument that “students in the bottom 10% of 

performance are perceived by the introductory programming instructors to be effectively 

swamped in mental effort on each of the three measures” (Mason & Cooper, 2012, p.5).  

Mason and Cooper (2012) go on to identify three main “profiles” of students in the bottom 

10% of their introductory programming modules based on the interviews conducted with 

academic staff. They are as follows: 

 

• ‘Strivers’ – less capable students who are actually trying. 

• ‘Idlers’ – those students who attend class but do not try. 

• ‘Ghosts’ – students who do not attend class/are not seen by instructors. 

(Mason & Cooper, 2012, p. 192)  

 

Mason and Cooper’s (2012) identification of the Idler and Ghost profiles raises an important 

point in relation to student success within a course, as in order to succeed a student must be 

willing to put in a reasonable level of effort. Students who never attend classes (Ghosts) or 

attend but do not apply themselves (Idlers) are much more likely to exhibit 

misunderstandings of fundamental programming concepts as they have not put in the effort to 

learn them. Paas et al. (1994) also touched on this point when stating that students failing to 

learn complex tasks can be attributed to the task demands exceeding their cognitive capacity, 

an inadequate allocation of attention from the student, or both.  

 

On the contrary, students who are identified as Strivers are, according to Mason and Cooper 

(2012), putting in very high to extreme levels of mental effort and yet are failing to learn and 

cannot be expected to put in any more effort than they are already doing. The students in 

Mason and Cooper’s (2012) investigation showed very clear distinctions between those who 

are failing due to a lack of effort, and those who are failing despite a significant amount of 

effort being exerted. It would therefore be beneficial to investigate what factors lead to a 
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student becoming a Striver, Idler or Ghost and what can be done to lift them out of the 

bottom 10% of the class, such as the deployment of methods for getting students re-engaged 

with their course (Ghosts and Idlers) or the use of alternative teaching techniques to reduce 

the overall cognitive load on students and help them develop the schemas needed to progress 

within the course.  

 

Additionally, Mason and Cooper’s (2012) investigation could be expanded to include mental 

effort measurements directly from students, thus allowing for a more comprehensive analysis 

on students’ mental effort levels to be undertaken, which is not solely reliant on the views of 

academic staff.  The literature presented clearly indicates that learning to program requires 

significant mental effort on the part of the student, particularly in students who appear to be 

struggling as they are likely to become “swamped” by the mental effort that they are required 

to exert, according to Mason and Cooper (2012), which may limit their progress in the 

course. Furthermore, students who may have little or no prior experience with programming 

may be more likely to experience “programming shock” and, as such, be at risk of cognitive 

overload. This, therefore, supports the inclusion of RQ 2, which allows for the identification 

of any significant relationships between students’ prior experiences, as well as perceptions of 

confidence, and their programming abilities. It should be noted, however, that newer 

formulations of Cognitive Load Theory now consider Germane Load to be a component of 

working memory used to handle information associated with intrinsic cognitive load 

(Berssanette & De Francisco, 2022; Duran et al., 2022), so whilst Mason and Cooper (2012) 

refer to what can be considered ‘Old Cognitive Load’, the implications of their findings 

remain relevant.  
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2.5 Students’ Interpretations of Programming Concepts 
The process of learning to program is a complex, and often daunting one that can require a 

student to re-evaluate their current, albeit naive, understanding of not only the programming 

language itself, but also the computer system as a whole (Cheah, 2020; Guzdial, 2010; Pea & 

Kurland, 1984; Perkins et al., 1986; Rogalski & Samurçay, 1990). The complex cognitive 

changes that are required to develop an understanding of basic programming concepts are, 

according to Pea and Kurland (1984) “unlikely to occur through either spontaneous 

exploration or explicit instruction alone” (p.140), thus requiring a student to be fully engaged 

in both the task and the programming course in general to support their emerging 

understanding of programming concepts.  

 

Linn (1985) provides a chain of potential “cognitive accomplishments” that a student must 

achieve in order to successfully learn to program: 

 

• Learning the language features – the fundamental, non-decomposable concepts of the 

programming language, such as variables, if statements, etc.  

• Learning to design programs to solve problems – by developing a repertoire of 

templates; stereotypical patterns of code used to perform specific tasks or parts of 

tasks, and developing the procedural skills required to combine templates and/or 

features of the language to perform a specific task. Additionally, procedural skills are 

developed to ensure programs accomplish the stated objectives or to redevelop the 

solution until the objectives are met.  

• Learn problem-solving skills, which can be applied to other formal systems – for 

example, being able to solve problems in a different programming language. 

Additionally generalised procedural skills for carrying out planning, testing and 

reformulating problems in a variety of formal systems will also be developed. 

 

Despite Linn’s work being carried out in the mid 1980’s, the cognitive accomplishments she 

describes are still very relevant to today’s introductory programming classes and in fact, 

reflect many of the factors that cause students initially to become overwhelmed, as described 

by Du Boulay (1986). One factor that may create a barrier to students achieving the cognitive 

accomplishments set out by Linn (1985) was identified by Sorva (2013) as the fact that in 

some disciplines, there may be concepts that are not fixed and are open to interpretation by 
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the student. This is not the case when it comes to programming, as concepts such as variable 

assignment, if statements and for loops have all been designed to operate in a particular way. 

However, as Sorva (2013) states, novice programmers may misinterpret these concepts and 

may make mistakes whilst using them, and whilst these mistakes may appear trivial to 

experts, misunderstandings such as these can be widespread amongst novice programmers 

and difficult to overcome.  

 

As noted earlier, students’ interpretations of fundamental programming concepts (correct or 

otherwise) can be described as their mental models, which can be broadly defined as a mental 

representation of the properties and behaviours of a given concept that is based upon an 

individual’s prior knowledge and experiences (Norman, 1983; Sorva, 2013). Johnson-Laird, 

who is cited to be one of the pioneers of Mental Model Theory (Sasse, 1997), suggests that 

humans view and interprets the world in accordance with their pre-existing mental models 

(Johnson-Laird, 1983, 2010). An additional significant contribution to Mental Model Theory 

was a series of observations conducted by Norman (1983), whose study involved observing a 

wide variety of subjects carrying out a diverse selection of tasks ranging from the use of 

everyday technologies. including computers, text editors, calculators, cameras, and digital 

watches, to highly specialised tasks such as piloting aircraft. Norman’s (1983) observations 

resulted in the development of a set of general characteristics of mental models:  

 

1. Mental models are incomplete and simplified due to limited knowledge or experience. 

2. People’s abilities to “run” their models are severely limited. 

3. Mental models are unstable – that is, details of the system can be forgotten if it has 

not been used in a while. 

4. Mental models do not have firm boundaries, leading them to be confused with models 

of other similar systems. 

5. Mental models are “unscientific” as people maintain superstitious behaviour patterns 

even when they are known to be unnecessary. Norman demonstrates this point with 

his observation of calculator usage, as a major pattern amongst participants was the 

belief that the CLEAR function needed to be carried out several times, or even before 

any calculations had been entered on calculators. which did not require the user to do 

so (Norman, 1983, p.10). 

6. Mental models are parsimonious, as people often perform unnecessary actions that 

could be avoided by mental planning. People would rather carry out additional 
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physical actions instead of increasing mental complexity, especially when this allows 

a single simplified rule to be applied to multiple devices, which consequently, reduces 

the chances for confusion. 

 

Norman’s (1983) seminal characteristic set highlights the fact that a person’s mental model 

typically only represents a limited portion of a particular concept (or system) and that 

people’s ability to run through the model is extremely limited, which in turn, limits their 

ability to fully comprehend and utilise the concept to its fullest extent. In terms of learning to 

program, the lack of appropriate mental models makes learning to program especially 

difficult, particularly for students who have not studied programming or computer science 

before, as mental models are constructed from what the student believes to be related prior 

knowledge (Ben-Ari, 2001; Sorva, 2013).  

 

Although students may be able to develop an understanding of the syntax of the language, 

they are likely to lack appropriate models of programming concepts at the beginning of their 

course, which are of critical importance for solving programming problems (Ben-Ari, 2001; 

George, 2000). This initial lack of appropriate models is likely to make the process of 

learning to program more difficult for students, as when faced with unfamiliar scenarios, 

students will attempt to construct models based on superficially similar tasks, which may or 

may not be appropriate (Ben-Ari, 2001; Sorva, 2013). Sorva (2013) gives the example of how 

when faced with an unfamiliar Graphical User Interface (GUI), a person creates an initial 

model based on GUIs they have encountered previously in an attempt to understand how to 

navigate the new system. Similarly, when a student is faced with a programming concept that 

resembles something they are familiar with, confusion can arise. For example, students may 

attempt to use the assignment operator; which is denoted by an equals sign (=), in the same 

way it is used in mathematics, which is to signify equality, whereas in many programming 

languages, equality is in fact signified with a double equals sign (==). These inaccurate 

mental models have been constructed based on inaccurate or irrelevant prior knowledge and 

will likely lead to mistakes being made by the student, which if made repeatedly, will create a 

barrier to learning (Sirkiä & Sorva, 2012).  

 

The process of learning to program can be viewed as students’ development of coherent 

mental models, that represent the actions fundamental programming concepts perform when 

processed by a computer (Ben-Ari, 1998; VanDeGrift et al., 2010). It is therefore vital that 
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teaching staff understand and account for any preconceptions students hold at the beginning 

of a course by explicitly teaching the mental model that students need to develop (Ben-Ari, 

1998), that is, by presenting walkthroughs of how a particular concept operates and 

addressing any commonly held misconceptions directly (Sudol & Jaspan, 2010). If students’ 

mental models are not taken into account within the teaching, it is likely that students will 

construct models that do not fully represent the concepts being taught, which will result in 

misconceptions being developed (Winslow, 1996). As such, RQ 1 focuses on examining the 

mental models that students initially hold at the start of their course, and how they progress 

during the first semester, which ultimately supports RQ 3 through the use of students’ mental 

models when attempting to predict their assessment results.  

 

By the end of their introductory programming module students should have begun to develop 

models that encompass how fundamental concepts operate within a program, typical ways of 

solving common problems, as well as general knowledge about the syntax of the language 

they have learnt (Canes et al, 1994). However, Sorva (2013) cites studies by Tew (2010) and 

Kunkle (2010) as having revealed that the difficulties of introductory programming modules 

to adequately teach students fundamental programming concepts is not limited to a single 

institution or programming language.  

 

Kunkle and Allen (2016) republished Kunkle’s original study from 2010, which revolved 

around the development and validation of an instrument designed to assess students’ 

understanding of both fundamental and object-orientated concepts. In order to develop the 

instrument, Kunkle and Allen (2016) examined differences in teaching approach and the 

language being learnt by students, by conducting two data collection sessions – one at the 

start of the term and one at the end. The sessions consisted of a demographic survey, an 

attitude survey to gauge students’ attitudes towards computer science as a subject and a 

computer concepts survey, which assessed students’ programming knowledge through a 

series of 24 multiple choice questions.  

 

The teaching approaches Kunkle and Allen (2016) examined included objects-first, which 

introduces students to the more advanced topic of object-orientation at the beginning of their 

studies, imperative-first, which introduces students to procedural programming, that is, 

functions, program logic, etc. first, leaving object-orientated concepts until last, and also a 

project-based approach to learning to program. Additionally, the languages students were 
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taught differed between each approach, with students studying the object-first approach 

learning Java, with students studying the imperative-first approach learning C++ and with 

project-based students learning Visual Basic. 

 

Kunkle and Allen’s (2016) analysis revealed differences in student performance using their 

assessment instrument with students who studied the objects-first approach remaining 

consistent in their performance and imperative-first students improving between the two 

tests. However, students who studied the project-based approach were found to be 

performing worse in the second test than the first. Although Kunkle and Allen (2016) attempt 

to explain the drop in performance due to students “forgetting” concepts, it is difficult to 

ascertain whether students’ performance is being affected by the teaching approach or the 

programming language being studied, owing to each teaching approach utilising a different 

programming language. Kunkle and Allen (2016) do admit that they cannot fully explain 

their findings, as well as acknowledging that any claims they make may be debatable due to 

the lack of consistency in introductory programming syllabuses. However, their study does 

identify the fact that students’ performances can differ between introductory programming 

modules, whether this is because of a difference in programming language or a difference in 

teaching approach. As such, they identify the fact that instructors must take care when 

designing their courses in order to extract the most from students.   

 

Tew (2010) also took the approach of performing a language-independent study through a 

series of six experiments that were used to inform and validate the design of a programming 

assessment instrument. Within these studies it was revealed that students exhibited a 

significant number of misconceptions. However, Tew (2010) states that being able to 

determine whether students’ errors are caused by conceptual misunderstandings instead of 

syntactical mistakes was not possible from her study and is unsure whether any further 

studies would be able to reasonably investigate this phenomenon owing to how the syntax 

and semantics of a language are deeply intertwined.   

 

The literature discussed in this section has so far demonstrated the importance of appropriate 

mental model construction for students learning to program. However, during the 

development of these models, students can inadvertently develop misconceptions which 

affect their understanding of the concepts they are trying to learn. Various definitions of what 

constitutes a programming misconception exist, with broad definitions being provided by 
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Sorva (2013) who defined them as “understandings that are deficient or inadequate for many 

practical programming contexts” (p. 4), and Qian and Lehman (2017) who view 

programming misconceptions as conceptual misunderstandings. A more direct approach is 

taken by Chiodini et al. (2021) who state that a “programming language misconceptions is a 

statement that can disproved by reasoning entirely based on the syntax and/or semantics of a 

programming language” (p. 381). Chiodini et al.’s. (2021) definition is tightly focused on 

misconceptions associated with a particular programming language, although they do 

acknowledge that misconceptions can exist across multiple languages. 

 

However, Evans et al. (2023) take the view that misconceptions are the properties of the 

learner, not programs or languages, with Sorva (2012) stating that generic misconceptions 

may lie behind more specific ones. He subsequently provides a comprehensive list of what he 

considers to be generic misconceptions that demonstrate inaccuracies in students' 

understandings of the execution of programs. Given the language-independent nature of this 

investigation, the misconceptions being examined fall in line with the broader definitions of 

programming misconceptions (Qian & Lehman, 2017; Sorva, 2012), with a view being taken 

that the misconceptions students demonstrate are “symptoms” of inaccurate mental models of 

a particular concept. 

 

A significant factor that can contribute to students developing misconceptions is the existing 

knowledge they bring to their programming classes – their “preprogramming knowledge” as 

termed by Bonar and Soloway (1985), hence the need to examine students’ previous 

experiences as part of RQ 2. Despite programming being a drastically different subject from 

what students have studied previously, it is not appropriate to treat it as being isolated from 

the wider world as students are able to intuitively comprehend various programming concepts 

by drawing on content learnt in other subjects, as well as their interactions with the physical 

world (Pea, 1986; Qian & Lehman, 2016, 2017; Robins, 2010, 2019; Smith et al., 1994).  

 

Both Pea (1986) and Bonar and Soloway (1985) suggest that students draw on natural-

language concepts when constructing mental models of programming concepts such as 

looping, decision making and specifying and following instructions in a set order. However, 

in some cases, the analogy of human-like conversations can lead students astray with their 

mental model construction. Bonar and Soloway (1983) demonstrate this point with an 

example of how students can misinterpret “while” loops by assuming that the code contained 
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within the loop is continuously being evaluated for the break condition becoming true, as 

opposed to the actual way while loops operate, which is by evaluating the break condition 

once per iteration. Bonar and Soloway (1983) equate this to how the word “while” is 

commonly used within natural English to describe a continuous condition – that is, “while the 

highway is in two lanes, continue north”. Similarly, Clancy (2004) refers to the mismatch 

between some programming key words, such a “while”, and natural English as linguistic 

transfer when identifying it as a potential source of confusion for students. Simple 

misunderstandings such as these form a barrier to the development of accurate mental models 

and as such, become confounded into stronger misconceptions that can then interfere with 

students’ learning (Cheah, 2020; Smith et al., 1994). These difficulties can be further 

compounded if English is not a student’s first language, as students are required to translate 

concepts into their native language, subsequently increasing extraneous cognitive load and 

creating an additional barrier to learning (Guo, 2018; Qian & Lehman, 2016). 

 

Students’ difficulties in predicting program outputs (mentally tracing through the program 

and processing each instruction) were suggested to still be present after more than a year of 

instruction by Pea (1986). Pea (1986) goes on to state that a number of misconceptions 

students possess arise from a “superbug”, in which they believe that there is a “hidden mind 

somewhere in the programming language that has intelligent, interpretative powers” (p. 5). 

This conceptual superbug is a culmination of three individual classes of bugs 

(misconceptions) which can lead students astray (Pea, 1986), the first of which is the 

parallelism bug. Pea (1986) explains that while it can appear in a variety of contexts, 

fundamentally, the parallelism bug refers to when a student assumes different lines of a 

program can be concurrently active, for example, a student may mistakenly believe that a 

program will continually evaluate an “if statement” such as the following example: 

 

int a = 4; 

if (a > 10) 

{ 

 std::cout << "Hello World"; 

} 
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As the variable “a” has a value of 4, the if statement evaluates to false and as such, the code 

contained within the if statement is not processed. However, if later in the program the value 

of “a” is increased to a value greater than 10 students believe that the program would output 

“Hello World”, thus demonstrating a misunderstanding of the flow of control within the 

program.  

 

The second class of bug identified by Pea (1986) is the intentionality bug, which is where 

students demonstrate the belief that a program has the ability of foresight and can go beyond 

the information explicitly given in the code, in essence, making the program self-aware. Pea 

(1986) goes on to define an additional bug termed as the egocentrism bug, which as Pea 

states, is the opposite of the intentionality bug and represents students’ mistaken belief that 

there is more meaning to the code that has been written than there actually is, consequently 

meaning that students believe that the program can do more than what is has been explicitly 

told to do. This type of inappropriate mental model could prove particularly frustrating for 

students as they struggle to get to grips with the basic syntax and semantics of the language 

they are trying to learn.  

 

Despite Pea’s (1986) work being carried out over thirty years ago, “little has changed” 

according to Simon (2011) when highlighting that students still struggle with issues relating 

to Pea’s (1986) parallelism bug. Furthermore, Kwon (2017) provides a real-world example of 

the egocentrism bug, which was uncovered whilst analysing solutions provided by a group of 

undergraduate students. Kwon (2017) begins by describing a separate misconception amongst 

students where they would declare multiple variables in accordance with the number of 

expected values – that is, students would define variables such as “m” and “f” (male and 

female) instead of declaring a single gender variable which could hold “m” or “f” as a value. 

Kwon (2017) goes on to describe how students demonstrate the egocentrism bug by 

“assuming the computer would be able to tell the gender if they specified the gender in form 

of “if m” or “if f”. This, therefore, shows a misunderstanding of how a conditional statement 

must be used to evaluate an if statement while also showing an assumption that the program 

understands what is being implied by “if male”, which would be acceptable in natural-

language, but not within a computer program.  

 

Pea’s (1986) description of the inappropriate mental models that students use to comprehend 

how the code they write translates into actions being performed by the computer, reflects Du 
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Boulay, O’Shea and Monk's (1999) view that teaching students how to control the machine 

they are using is one of the more difficult aspects of learning to program. As mentioned 

earlier, Du Boulay et al. (1999) suggest that the learning process can be made easier for 

students by introducing them to programming through the use of a notional machine – an 

abstracted model of the computer that is used to understand what happens when a program 

executes, which is influenced by the programming language being used rather than the 

specific computer hardware (Du Boulay et al., 1999; Sorva, 2013). Sorva (2012) highlights 

that many of the misconceptions that students exhibit are as a result of a lack of an 

appropriate mental model of the notional machine, whereby students do not have a clear 

model of how the program is executed. However, Sorva (2012) goes on to state that in 

addition to understanding what actually happens when a program is run, students must also 

recognise what a notional machine (and therefore, a computer) does not do unless explicitly 

instructed to do so by a programmer. Students who fail to recognise what explicitly needs to 

be defined within a program could be seen to be demonstrating elements of Pea’s (1986) 

Superbug.  

 

A potential implementation of a notional machine has been developed by Berry and Kölling 

(2013), although more research is required to evaluate if this approach is truly beneficial to 

students’ learning as there is limited literature available that directly measures the 

effectiveness of teaching introductory programming using a notional machine (Fincher et al., 

2020). Support for the use of notional machines within introductory programming modules 

is, however, provided by Johnson et al.’s (2020) view, that teaching introductory Python 

without use of a notional machine to support students’ comprehension of the underlying 

concepts, can result in students developing misconceptions and subsequently, inadequate 

mental models (Dickson et al., 2020; Johnson et al., 2020).  

 

Whilst Pea’s (1986) work takes a more generalised view of students’ mental models of 

program execution, an alternative research approach has been to examine students’ models of 

individual programming concepts. One rather controversial study that took this approach was 

conducted as part of Saeed Dehnadi’s PhD research in which he explores how mental models 

of variable assignment can be used to predict success within an introductory programming 

module. Dehnadi’s work is presented across a set of papers (Bornat et al., 2008; Dehnadi, 

2006; Dehnadi et al., 2009; Dehnadi & Bornat, 2006) in which students mental models of 

variable assignment were assessed through a series of multiple choice questions. Dehnadi’s 
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(2006) questions asked students to predict the values of each variable after the assignment 

operation(s) have been carried out and ranged from simple one line assignment operations 

such as: 

 

int a = 10; 

int b = 20; 

 

a = b; 

 

to more complex multi-line operations, such as:  

 

int a = 5; 

int b = 3; 

int c = 7; 

 

a = c; 

b = a; 

c = b; 

 

By using multiple choice questions, Dehnadi (2006) was able to map each potential answer to 

a specific mental model. Originally, Dehnadi had predicted eight different mental models but 

three more were uncovered throughout the course of the experiment. The preliminary test 

was administered twice to first year undergraduate students: at the beginning of the course 

and after the students had been taught about variable assignment and sequences. Dehnadi 

(2006) revealed that after the first test, three groups of student responses were identified: 

 

• Consistent – students used a single mental model to answer all (or most) of the 

questions, with 44% of students being classed as consistent. 

• Inconsistent – students used several models to answer questions, with 39% of 

students being classed as inconsistent. 

• Blank – students refused to answer the majority of the questions, with 8% of 

students being classed as blank. 
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Dehnadi (2006) goes on to state that the majority of students became consistent in their 

model usage after the second test. However, he does not provide any exact figures and 

focuses subsequent analysis on the results from the first test. As only 60 students were 

included in Dehnadi’s (2006) preliminary study it is difficult to draw any statistically reliable 

conclusions. However, Dehnadi indicates that a clear “separation of populations” (Dehnadi, 

2006, p. 29) can be observed when correlating the first test results against the official course 

results. Although a visual analysis of Dehnadi’s (2006) results does indeed reveal a 

separation between the consistent and inconsistent/blank groups, no statistical tests are 

provided to corroborates it. Dehnadi (2006) also presents a correlation of the first test results 

against the official in-course exam but does not conduct any further analysis, stating that the 

more “complex picture” should not be analysed at this stage due to the small sample size (p. 

29). 

 

Despite the distinct lack of any in-depth statistical analysis, Dehnadi (2006) documents his 

testing and marking process thoroughly, allowing his experiment to be replicated relatively 

easily. Nevertheless, Dehnadi concludes by saying that he has developed a categorisation 

method that is “more likely to be used as a reasonable predictor of success in introductory 

programming” (Dehnadi, 2006, p. 35), claims which without further statistical analysis, 

appear premature at best. It should be noted that additional claims made by Dehnadi and 

Bornat (2006) regarding their aptitude test’s ability to accurately predict students who are 

likely to fail their introductory programming module were later retracted by Bornat (2014). 

Subsequently, Dehnadi’s (2006) original study has been replicated several times by different 

researchers with mixed results. Bornat et al. (2008) applied the test to 500 students across six 

institutions but their results indicated that the aptitude test failed to live up to the original 

expectations from the promising preliminary study. Bornat et al. (2008) stated that they failed 

to separate the “programming goats from the non-programming sheep” (p. 8) within their 

expanded investigation, although they believed that their results indicate further research into 

the consistency of mental models is warranted. 

 

Additionally, a study by Caspersen et al. (2007) applied Dehnadi’s test to approximately 300 

students and was unable to find a correlation similar to that originally presented by Dehnadi 

(2006) and questions the viability of Dehnadi and Bornat’s interpretation of their results, 

stating that their test instrument “does not measure what it is supposed to” (Caspersen et al., 

2007, p.210). However, a study by Strnad et al. (2009) adds support for Dehnadi’s aptitude 
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test being used as a predictor of success with students who have had no prior programming 

experience.  

 

Dehnadi (2009) later revised his aptitude test design in response to the criticism from PPIG 

members by expanding the total number of models being examined from eight to eleven, as 

well as making the judgment for consistency more explicit and repeatable. Dehnadi et al. 

(2009) also conducted a meta-analysis using the refined test in an attempt to confirm the 

initial findings. The results appear to support claims of a relationship between consistent 

mental model usage and student performance but does not suggest any explanation for it. 

 

Ultimately, Dehnadi’s (2006) aptitude test design presents an intriguing method of examining 

the mental models of students, which has had some mixed success in predicting the abilities 

of students with no prior programming experience. Dehnadi’s methods warrant further 

research, and subsequently inform the research questions at the heart of this study. However, 

the context in which Dehnadi’s methods will be integrated into this investigation will be in a 

far less draconian context than an attempt to separate “programming goats from the non-

programming sheep”. 

 

In addition to Dehnadi’s work in analysing students’ mental models of variable assignment, 

there have been a number of studies that demonstrate students’ difficulties with developing 

appropriate mental models of core programming concepts through an examination of 

students’ misconceptions. Although not all studies explicitly refer to mental models, the 

misconceptions students demonstrate can be a useful indication that the mental model a 

student holds of a given concept is either incomplete or inaccurate. For example, students’ 

difficulties with understanding that a variable can only hold a single value that is not affected 

by the name of the variable have been uncovered (Grover & Basu, 2017; Kaczmarczyk et al., 

2010; Sirkiä & Sorva, 2012). Subsequently, misconceptions relating to variable assignment, 

that is, believing that 5 = A and A = 5, have also been prevalent in a number of studies (Du 

Boulay, 1986; Ma et al., 2008; Qian et al., 2020; Qian & Lehman, 2017; Simon, 2011; Sirkiä 

& Sorva, 2012; Žanko et al., 2019, 2022), thus supporting Dehnadi’s (2006) methodology. 

Furthermore, the fundamental nature of variables to programming means that students who 

struggle to develop an appropriate understanding will face greater difficulties when 

attempting to comprehend more complex topics such as iteration (Corney et al., 2011; Simon, 

2011).  
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Pea and Kurland (1984) state that handling conditional statements (if statements) are a major 

part of programming and as such, it is reasonable to assume that a student who has sufficient 

understanding of conditional logic is more likely to succeed than a student who does not. To 

this end, a number of misconceptions have been identified which indicate students’ 

difficulties with grasping conditional logic. These misconceptions include continuously 

monitoring the if statement throughout the program – identified by Pea (1986) as the 

parallelism bug. Or alternatively, believing that if the if statement condition evaluates to 

false, then the program will stop, or that if the condition evaluates to true, that both the if and 

the else blocks are executed (Sleeman et al., 1986, as cited in Qian & Lehman, 2017; Swidan 

et al., 2018).  

 

Work by Grover and Basu (2017) identified students’ difficulties with grasping Boolean 

operators such as AND and OR. Although most students answered questions involving the 

AND operator correctly, only half of students answered questions about the OR operator 

correctly, some exhibited a misconception where when both conditions are true the statement 

is evaluated to false. Grover and Basu (2017) explain this is an embodiment of the natural-

language use of “or”, as students believe only one of the conditions can be true, which is also 

equivalent to the XOR (exclusive or) condition. Consequently, Grover and Basu’s (2017) 

XOR misconception is an embodiment of Clancy’s (2004) linguistic transfer. 

 

Misconceptions that demonstrate potentially inadequate mental models have also been 

identified for two related programming concepts, namely, iteration and recursion (Kessler & 

Anderson, 1986). Iteration, the simpler of the two concepts, involves repeating a block of 

code until a condition is met. However, students have been known to have difficulties 

identifying which lines of code are being repeated, as well as how many times the loop is 

repeated (Caceffo et al., 2019; Sleeman et al., 1986, as cited in Qian & Lehman, 2017) . In 

some cases students fail to recognise how the iterative loop affects the execution of the code 

(Eckert et al., 2022; Grover & Basu, 2017).  
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For example, the following “while loop” in C++ should produce an output of “0,1,2,3,4,5”: 

 

int num = 0; 

while (num <= 5) 

{ 

 std::cout << num << ","; 

 num++; 

} 

 
 
However, students may predict that the code will repeatedly produce the same output of 

“0,0,0,0,0,” as suggested by Grover and Basu (2017) or may simply not perform any iteration 

at all and produce an output of “0,”. Whilst it is possible that students have misunderstood 

how the variable “num” is being incremented in this example, it is reasonable to assume that 

their difficulties stem from an inadequate mental model of iteration, leaving them unable to 

comprehend that the code inside the while loop is being repeated, and that the value of “num” 

is being increased by one during each loop. 

  

Recursion on the other hand, is a more complex concept, which Kahney describes as a 

“process that is capable of triggering new instantiations of itself, with control passing forward 

to successive instances and back from terminated ones” (Kahney, 1983, p. 235). A non-

programming example of recursion is performing a factorial calculation. One of the most 

profound misconceptions amongst students relating to recursion is that they view a recursive 

function in the same way as they view an iterative loop (Götschi et al., 2003; Kurland & Pea, 

1985). However, the complexities associated with recursion lend itself to varying 

interpretations by students.  

 

Various studies have attempted to gain an insight into students’ interpretations of recursion, 

both in terms of identifying potential mental models to explain students’ understandings 

(Götschi et al., 2003; Kahney, 1983) and also examining how differing teaching methods can 

impact on students’ learning of the concept (Kessler & Anderson, 1986; Kurland & Pea, 

1985; Wiedenbeck, 1989). Interestingly, Kessler and Anderson (1986) and Wiedenbeck’s 

(1989) studies suggest that by allowing students to develop an appropriate and reliable 

understanding of iteration prior to teaching them recursion eases their construction of 
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appropriate recursive mental models and reduces the likelihood of the student becoming 

overwhelmed.  

 

In conducting a study into children’s mental models of recursion, Kurland and Pea (1985) 

identified a number of “general bugs” that were causing students difficulty. These bugs 

included:  

 

• Decontextualized interpretation of commands – Children carried out “surface 

reading” of programs, meaning they attempted to develop an understanding of each 

individual line of the program, thus ignoring the context provided by the previous 

lines. This is similar to the mental model identified by Dehnadi (2006) where students 

do not carry the changes made by assignment operations on to subsequent lines. 

• Assignment of intentionality to program code – An embodiment of Pea’s (1986) 

intentionality bug, whereby children did not differentiate the meaning of a command 

from the meaning of lines of commands they were expected to follow. 

• Overgeneralization of natural language semantics – Children interpreted keywords 

within the LOGO programming language as having their natural language meanings, 

that is, STOP or END would completely stop the program from running rather than 

ending a statement. 

• Overexaggerating of mathematical operators – Kurland and Pea (1985) describe how 

children expressed confusion when using numbers as inputs and when performing 

simple calculations, as well as how numbers were often seen as a source of 

discrepancies between the children’s predicted execution of the program and the 

actual result. Kurland and Pea’s (1986) identification of students’ difficulties when 

mathematics is introduced into a program raises an interesting question about the 

relationship between mathematics and programming skill. Whilst some argue that 

students with a mathematical background are more likely to succeed within a 

programming course (Bergin & Reilly, 2005b; Gomes et al., 2006), others state that 

students’ prior experience of mathematics, especially algebra, can lead to additional 

misconceptions such as assuming that a variable is only a representation of an 

unknown number, or the difference between assignment and equality operations 

(Grover and Basu, 2017). 
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• Mental model of embedded recursion as looping – As discussed previously, the 

children in Kurland and Pea’s (1986) experiment had a fundamental 

misunderstanding of how the concept of recursion works, resulting in them viewing it 

in the same way as they view iteration. 

 

Although Kurland and Pea’s (1985) study was primarily focused around children’s mental 

models of recursion, it does provide an interesting demonstration of a number of general 

mental models of programming that are likely to be detrimental to students’ learning. 

There does, however, appear to be a distinct lack of common approach for categorisation and 

analysis of misconceptions and the subsequent inappropriate and inadequate mental models 

that are constructed across the entirety of the introductory programming syllabus. This can be 

seen in the different ways that mental models and misconceptions are identified and 

presented across many of the studies presented in this section, which in turn, makes 

comparisons between concepts more difficult. 

 

There has been some effort to create a concept inventory for introductory programming by 

Kaczmarczyk et al. (2010) and Caceffo et al. (2016). However, more work is required to 

create and validate a more comprehensive list of misconceptions developed from a larger and 

more varied range of participants. 
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2.6 Summary 
By delving into the literature surrounding the difficulties students face when learning to 

program, this chapter has provided support for the research questions at the heart of the 

investigation. There are clear indications from the literature presented throughout this chapter 

that the teaching and learning of programming is a complex process, where there is a 

significant potential for simple misunderstandings to have a profound impact on students’ 

progression within their introductory programming module. Whilst designing specific 

pedagogic interventions is outside of the scope of this investigation, the issues raised within 

the literature, particularly relating to students’ levels of cognitive load and the 

misconceptions that they can develop, highlight the need for direct support in order to address 

misconceptions by directly teaching the models students need to establish. As such, it is 

hoped that the outcomes of this investigation will be able to guide future work into the 

development and implementation of appropriate early interventions in order to support 

students with their mental model development and, as such, allow them to progress within 

their introductory programming course. 
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3. Investigation Methodology 

3.1 Investigation Scope 
As mentioned previously, there are two distinct parts to this investigation, with the first 

focusing on the development of the aptitude test, and the second being the development of 

the predictive model. The aptitude test acts as the main data collection mechanism for the 

investigation. The purpose of this chapter is to describe the design process underpinning the 

development of the aptitude test, including how pilot studies were used to further refine the 

test, as well as exploring how previous studies that have attempted to predict students’ 

programming abilities have influenced this investigation. The second part of the investigation 

focuses on the development of the predictive model and is the focus of the next chapter. 

 

Given the use of the aptitude test as a means of collecting data to answer the research 

questions at the heart of this work, as well as to support the development of the predictive 

model, this investigation is firmly seated within the realm of quantitative research. Therefore, 

an appropriate research paradigm must be identified in order to support the investigation 

design. Like the educational paradigms discussed in Section 2.2, it is necessary to specify the 

ontological and epistemological orientation of the research. As the investigation is 

quantitative in nature, Bahari (2012) states that Positivism and Objectivism are the 

appropriate epistemological and ontological orientations respectively.  

 

The epistemological orientation of Positivism is centred around the empirical testing of 

hypotheses in a manner that is as independent and unbiased as possible (Bahari, 2012). 

Within positivist research, knowledge is gained through observations of reality, which allows 

for relationships to be established and integrated into theoretical models that can be used to 

make predictions (Bahari, 2012; Flowers, 2009). Furthermore, Objectivism is based around 

the premise that a reality can be established through the examination of relationships and 

although the true depiction of reality may never be established, researchers have the capacity 

to move closer to it through their investigations (Bahari, 2012). Consequently, Positivism and 

Objectivism are clearly appropriate for an investigation of this nature, given that the main 

focus is identifying factors that have significant relationships with students’ programming 

abilities, which can later aid in the development of the predictive model.  
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As discussed in detail throughout this chapter, the aptitude test is designed to collect data on a 

number of factors that could potentially influence a student’s success within the introductory 

programming module. As the aptitude test is issued to students twice, once at the start of their 

course, prior to any teaching taking place (T1), and once at the end of the first semester; 

approximately 12 weeks later (T2), it allows for a holistic review of students at the two 

timepoints. The aptitude test is, therefore, an embodiment of the Positivist research 

philosophy as it enables empirical evidence to be collated, which can be used to help in 

answering the three research questions which guide this work. Subsequently, the analysis of 

the data collected using the aptitude test aligns with the Objectivism philosophy, as I am 

attempting to establish how the factors examined within the test relate to students’ 

performance within their introductory programming module, and by extension, attempting to 

develop a predictive model that can aid in the identification of students who are likely to 

require support. 

 

3.2 Potential Factors for Inclusion in the Aptitude Test 

3.2.1 Aptitude Test Rationale  

There have been numerous studies that have attempted to predict students’ programming 

abilities. A search conducted within the ACM Digital Library using the phrase “predicting 

student programming abilities”, revealed over 500,000 results dating back to the 1970s, with 

a variety of different approaches being taken. For example, Simon et al. (2006) attempted to 

predict the programming abilities of students studying on an introductory programming 

module by using a series of cognitive tasks, including a paper folding test to evaluate their 

spatial visualisation and reasoning, map sketching to assess their design skills as well as their 

ability to make decisions based on these maps and searching a phonebook to assess their 

ability to form searching strategies. In addition, Simon et al. (2006) also used a questionnaire 

to explore the students’ approaches to learning and studying. Similarly, Bergin and Reilly 

(2005a, 2005b) examined students’ motivational and “comfort” levels using a questionnaire, 

which they believed would be able to predict students’ performance within an introductory 

programming module. Alternatively, researchers such as Blikstein et al. (2014) and Watwin, 

Li and Goodwin (2013) took a more automated approach to predicting student performance 

by utilising various machine learning (ML) techniques to analyse data collected from 

students during their introductory programming modules. 
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Although the use of automated methods that track students’ progress to produce predictions 

may be useful for ongoing assessment, this method of performance prediction would not be 

appropriate for attempting to identify students in need of support at the beginning of the 

course due to the time required to collect the necessary data. Similarly, conducting exams, 

whether these involve cognitive tasks or traditional closed-book style tests, needs a 

significant amount of time for the results to be processed (Bergin & Reilly, 2006), making 

this approach impractical. As such, it seems essential to develop a method of prediction that 

is easily automatable and that can readily be used to produce performance predictions at the 

beginning of an introductory programming module.    

 

Dehnadi’s (2006) notion of using an aptitude test, despite the criticisms discussed in Section 

2.5, was seen as an appropriate starting point for this investigation, as an online aptitude test 

would allow for easy distribution to students as well as relatively quick analysis once the 

appropriate software is developed. It was felt that an online aptitude test, combined with a 

statistical model capable of predicting students’ performance, would be a powerful tool for 

Computing educators as it enables students who are likely to need additional support to be 

identified early on the course without the need for time-consuming manual analysis. 

 

The main focus of the aptitude test draws on Dehnadi’s (2006) original methodology of 

exploring students’ misconceptions of fundamental programming concepts. The initial design 

of the test included an adaptation of some of Dehnadi’s (2006) variable swapping questions, 

as well as questions which assess students’ understanding of other fundamental concepts such 

as conditional logic and Boolean operators (AND, OR and NOT), iteration and recursion. In 

addition to these concepts, students’ comprehension of program output statements and flow 

of compilation was also assessed. For each question, students were required to trace a simple 

program that assessed one or more of the concepts listed above and answer a question about 

its output.  

 

As the aptitude test was designed to be used online and at the beginning of an introductory 

programming module, no assumptions could be made about students’ prior knowledge. 

Therefore, students were only required to read and comprehend the code within the questions, 

and not write any code for themselves. This approach to testing is supported by Lister et al.’s 

(2004) belief that the ability to write code relies upon the ability to read code and, as such, is 

appropriate for use at the beginning of the academic year, where it cannot be assumed that 
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students have any relevant prior programming experience. Indeed, such students may become 

overwhelmed when tasked with writing a program, in a similar way to when students 

experience “programming shock” when they first attempt to write programs for real. 

Additionally, limiting the aptitude test to questions that only relate to reading code helps to 

improve the scope for automating the testing process, as expected answers (both correct and 

incorrect) can be predetermined. Allowing students to write their own code would require a 

significant amount of analysis, and whilst it might be possible to develop an algorithm 

capable of analysing students’ code, this was deemed to be beyond the scope of the present 

research programme. Furthermore, all question code was written using pseudocode based on 

the OCR GCSE computer science guide (OCR, 2015), which minimises the amount of 

potentially unfamiliar syntax that is employed, and allows students to logically deduce the 

answers to questions, even if they have never programmed before. The online format of the 

aptitude test also allowed for a number of factors to be explored in addition to students’ 

understanding of fundamental programming concepts. Following on from the literature 

presented in the previous chapter, the following factors were considered for inclusion within 

the aptitude test. 

 

3.2.2 Students’ Previous Experience  

The mental models that students construct are influenced by what they believe to be relevant 

prior knowledge (Ben-Ari, 2001; Sorva, 2013). It is therefore important to establish an 

understanding of students’ previous experiences, as students at university level are likely to 

come from a wide range of backgrounds and have a variety of prior knowledge, which could 

potentially be a help or a hindrance when learning to program. An obvious starting point for 

examining students’ previous experiences is to determine whether they have had any prior 

programming experience, including whether they have studied computer science before and 

also whether they consider themselves to be self-taught. Identifying students who have had 

prior experience with programming is important because if it is to be believed that it takes 10 

years for a novice programmer to become an expert (Winslow, 1996), students who have 

been exposed to programming will have begun to construct their own mental models of 

fundamental programming concepts.  

 

However, it is also important to understand the context in which students have previously 

been learning to program. For example, if a student has been learning to program without the 
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support of a teacher, then it is possible that they have constructed mental models that include 

unrecognised misconceptions. Moreover, although these misconceptions may not currently be 

hampering the student, they may cause issues for them during their subsequent studies. 

Furthermore, Dehnadi’s (2006) test was able to work reasonably well on students who had no 

prior programming experience but did not work at all for students with previous experience. 

Therefore, it is important to identify and explore the differences between students with or 

without prior programming experience, as this may need to be accounted for by the predictive 

model. 

 

In addition to prior programming experience, students’ mathematical abilities, as explored 

throughout Chapter 2, have been cited as a potential influencing factor in students’ 

programming capabilities. Ideally, a mathematical aptitude test could be run alongside the 

programming aptitude test to provide an independent evaluation of students’ mathematical 

abilities; however, the development of such a test was considered to be beyond the scope of 

the current research programme. Nevertheless, it is important to identify students who have 

studied mathematics, or other math-based subjects such as Physics or Engineering, as they 

potentially have stronger mathematical skills than students who have not studied such 

subjects.  

 

Another important consideration that must be taken into account when evaluating students’ 

misconceptions is the fact that not all students’ first language will be English. As the majority 

of programming languages utilise English-like keywords such as “print” in Python 

(Veerasamy & Shillabeer, 2014), there is an increased potential for misconceptions, similar to 

that of linguistic transfer described in Section 2.5 and, as such, this factor should be taken 

into consideration when developing the predictive model. 

 

3.2.3 Students’ Mental Characteristics  

One potential method of predicting students’ programming abilities; which has had 

reasonable success (Bergin & Reilly, 2005a, 2005b; 2006; Quille & Bergin, 2018; Wilson & 

Shrock, 2001), is by using a student’s own estimation of their abilities, including their beliefs 

of how they are performing or will perform within their introductory programming module. 

The term “comfort level” has been used to represent a series of variables that are indicative of 

a student’s level of anxiety surrounding a programming course. These variables include: a 
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student’s ease in asking questions in class and during one-to-one sessions with the tutor; a 

student’s anxiety level while working on assignments; a student’s perceptions of the 

difficulty of the course; a student’s perceived understanding of concepts compared to 

classmates; and a student’s perceived difficulty in completing assignments (Bergin & Reilly, 

2005b; Wilson & Shrock, 2001). These factors can be combined to produce a single 

continuous variable for use in comparative analysis against students’ performance. 

 

Studies by both Bergin and Reilly (2005a, 2005b) as well as by Wilson and Shrock (2001) 

have revealed comfort level to be a significant and relatively powerful predictor of student 

performance, although comfort level questions were ultimately not included within the final 

predictive model developed by Bergin and Reilly (Bergin & Reilly, 2005a, 2005b; 2006; 

Quille & Bergin, 2018). However, some factors that are used to calculate the comfort level 

score, such as students’ levels of anxiety when asking questions in class, would not be 

appropriate for use in an aptitude test, which would be administered prior to any teaching. 

Nevertheless, students’ initial beliefs regarding how difficult the course and learning to 

program are going to be may, in fact, be indicative of their subsequent programming 

performance as students’ fear of programming has been shown to form a “very real, almost 

physical barrier that causes intense emotions, a loss of confidence” and ultimately results in a 

block in students’ learning (Rogerson & Scott, 2010, p.167). 

 

Interestingly, Curzon and Rix (1998) revealed that one of the major motivations for students 

wanting to learn to program at the beginning of their courses was their desire to become a 

professional programmer. However, as students progress through their course, the proportion 

wanting to become a professional programmer dwindles. Additionally, Bergin and Reilly 

(Bergin & Reilly, 2005a) reveal that intrinsically motivated students who are motivated by 

the satisfaction that they can gain from performing well in their course, show increased levels 

of performance as opposed to extrinsically motivated students who are primarily motivated to 

complete tasks by the rewards they can gain, or to avoid punishment.  

 

Although comfort level has been shown to be a strong predictor of programming 

performance, a number of the factors it examines, such as students’ anxiety levels when 

answering questions, can only be measured once a student has been studying the course for a 

period of time, and are therefore, not appropriate for an aptitude test designed to be initially 

distributed to students at the beginning of their course. It should be noted, however, that some 
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factors that are examined within the comfort level rating, such as how apprehensive students 

feel about programming, would be applicable to an aptitude test. A potentially more 

appropriate metric for use within an aptitude test is students’ “self-efficacy”, which is a 

representation of their own judgments of their capabilities (Bandura, 1977, 2006). Bandura 

states that a person’s self-efficacy can influence the activities they choose and how much 

effort they exert, their level of persistence when faced with a problem as well as their overall 

performance level (Bandura, 1977; Ramalingam & Wiedenbeck, 1998). Recent research has 

also revealed significant relationships between students’ levels of self-efficacy and factors 

including their course performance, levels of emotional engagement, occurrence of 

misconceptions (Kallia & Sentance, 2019; Kanaparan et al., 2019; Tek et al., 2018), thus 

making it an appropriate metric for developing a predictive model of students’ performance.  

 

As self-efficacy is not a personality trait that can measured by generic tests (Bandura, 1977, 

2006; Ramalingam & Wiedenbeck, 1998), it is essential that a self-efficacy scale that is 

specific to introductory programming be used when evaluating students’ programming 

abilities. One such scale that has seen widespread use is Ramalingam and Wiedenbeck’s 

(1998) “Computer Programming Self-Efficacy Scale”, which has been cited 300 times at the 

time of writing and has been employed in various studies ranging from investigations of 

students’ computer anxieties  (Doyle et al., 2005) to evaluating alternative pedagogic 

approaches and assessment styles for introductory programming courses (Sharmin et al., 

2019; Ventura & Ramamurthy, 2004; Zingaro, 2014). Ramalingam and Wiedenbeck’s (1998) 

Computer Programming Self-Efficacy Scale consists of 32 questions originally written to be 

used to evaluate self-efficacy in students studying object-oriented C++. The questions in 

Ramalingam and Wiedenbeck’s (1998) scale vary in complexity, with answers being 

recorded using a 7-point scale ranging from 1 (not at all confident) to 7 (absolutely 

confident).  

 

In order to validate their scale, Ramalingam and Wiedenbeck (1998) performed an 

investigation with 421 students enrolled on an introductory computer science course. The 

scale was administered to students twice, once during the first week of the course, to establish 

students’ “pre-self-efficacy”, and also after the thirteenth week of the course, to establish 

“post-self-efficacy”. Ramalingam and Wiedenbeck (1998) reported a Cronbach’s alpha score 

of 0.98 for the first administration of the scale and 0.97 for the second administration, which 

therefore indicates that their scale is a highly reliable measure of students’ programming self-
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efficacy. They go on to report significant gains in self-efficacy between the two tests and 

suggest that students with the lowest levels of self-efficacy are likely to be those who have 

had no prior programming experience, or who have had previous bad experiences with 

programming and therefore may exhibit higher levels of apprehension and fear towards 

programming, which as Rogerson and Scott (2010) state, can cause a barrier to students’ 

learning. 

 

Ramalingam and Wiedenbeck’s (1998) scale was later used by Wiedenbeck et al., (2004) 

when examining how students’ performance in a course is affected by their previous 

programming experience (or lack thereof), their self-efficacy, and the mental models that 

they hold relating to programming. Wiedenbeck et al. (2004) hypothesized that that pre-self-

efficacy should not affect programming performance directly but should instead affect 

performance indirectly through its effect on post-self-efficacy. Using a sample of 75 students 

studying introductory C++, Wiedenbeck et al. (2004) identified that self-efficacy increased 

significantly during the course, thus supporting Ramalingam and Wiedenbeck (1998) original 

findings.  

 

Wiedenbeck et al. (2004) also conducted a Path Analysis that revealed that students’ self-

efficacy prior to teaching (pre-self-efficacy) influences course performance through post-self-

efficacy (the measurement taken after completion of teaching), which acts as a mediator 

variable. In addition to self-efficacy, the strength of a student’s mental models was also found 

to have an effect on their course performance, with strong mental models increasing a 

student’s self-efficacy due to an increase in program comprehension. Additionally, it was 

determined that prior experience of programming is a strong predictor of both pre- and post-

self-efficacy. 

 

The apparent relationship between mental models and self-efficacy as described by 

Wiedenbeck et al. (2004) would suggest that Ramalingam and Wiedenbeck’s (1998) scale 

would be potentially beneficial when used in conjunction with the proposed aptitude test 

design in the present research. However, some modifications may need to be made to bring 

the scale in line with the proposed language-independent philosophy being taken, as has been 

done previously by Zingaro (2014) who modified Ramalingam and Wiedenbeck’s (1998) 

original scale to fit the context of his investigation into peer instruction. The Computer 
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Programming self-efficacy scale has also been modified to be used to assess students’ self-

efficacy within an introductory algorithms course (Danielsiek et al., 2018).  

 

Ramalingam and Wiedenbeck’s (1998) scale provides a measurement of students’ levels of 

self-efficacy associated with programming in general. An alternate approach, which was 

posed by Duran et al. (2019), focused on measuring students’ own estimations of their 

understanding of fundamental programming concepts. In their study, conducted with students 

studying an online course in introductory programming, Duran et al. (2019) found that 

through multiple administrations of their online self-evaluation form at different stages within 

the course, it was possible to identify students growing in confidence as they gained more 

experience through practice, with differences in confidence being reported between the 

concepts. Duran et al. (2019) go on to suggest that there is an ‘overlap’ between self-

evaluation and self-efficacy, which is evident from the increase in students’ perception of 

their programming related abilities as the course progresses. There is, however, need to 

further validate Duran et al.’s (2019) tool outside the context of an online course. 

 

An additional area of interest which is believed to be related to self-efficacy (Luxton-Reilly 

et al., 2018) stems from Dweck’s (2000) notion of ‘mindsets’ in relation to how a student 

believes they can grow and develop, with two categories being identified – fixed and growth 

(Cutts et al., 2010; Dweck, 2000). Students who hold a fixed mindset that ability (in this 

context, programming ability) is fixed, will likely give up if they cannot do something as they 

believe that it is not possible to change their abilities  (Cutts et al., 2010; Morales-Navarro et 

al., 2023). On the other hand, students who hold a growth mindset believe that their abilities 

can change through practice, and view failure as an opportunity to grow through feedback, 

suggesting higher levels of resilience and self-efficacy (Cutts et al., 2010; Morales-Navarro et 

al., 2023; Tek et al., 2018). 

 

The difficulties of learning to program can often lead students to adopt a fixed mindset given 

that there are so many ways a student can become stuck (Cutts et al., 2010; Luxton-Reilly et 

al., 2018; Murphy & Thomas, 2008; Simon et al., 2008). Like low levels of self-efficacy, a 

fixed mindset can directly impact on a student’s performance within their introductory 

programming module, which is reflected in students’ levels of self-efficacy being associated 

with the mindset that they possess (Cutts et al., 2010; Morales-Navarro et al., 2023; Quille & 

Bergin, 2020; Tek et al., 2018).  
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Cutts et al. (2010) devised an intervention to support students in developing a growth mindset 

in order to improve their performance in their introductory programming module. The results 

of the study revealed an increase in performance amongst students receiving mindset training, 

which was also confirmed in a similar investigation by Quille and Bergin (2020) designed to 

re-validate Cutts et al.’s (2010) work. However, Quille and Bergin (2020) highlighted that 

mindset training promoted a growth mindset for some students, and a fixed mindset for 

others, suggesting that implementing mindset-based interventions within introductory 

programming modules may be more complex than first thought. 

 

While conducting a series of observations with school students studying introductory 

programming, Perkins et al. (1986) identified a behaviour amongst students that may be 

indicative of their level of confidence with programming. The behaviour Perkins et al. (1986) 

uncovered relates to students’ responses when faced with a problem with their program that 

does not immediately have an obvious solution. Students’ behaviour broadly fell into one of 

two categories: “stoppers” or “movers” (Perkins et al., 1986). When faced with a problem, a 

student who is classified as a stopper will often feel at a complete loss as to what to do to try 

and produce a solution and will inevitably give up at attempting to find a solution (Perkins et 

al., 1986). Perkins et al’s (1986) description of a stopper is highly similar to previous 

descriptions of a student who is holding a fixed mindset (Murphy & Thomas, 2008; Simon et 

al., 2008). On the other hand, when faced with the same problem, a student who is classified 

as a mover will attempt to solve the problem by trying one solution after another until they 

eventually find the correct one (Perkins et al., 1986).  

 

Although the mover category may appear to be the more positive of the two, Perkins et al. 

(1986) identify a further subset called “extreme movers”, which relates to students who 

attempt to fix code in ways which would clearly not work if the student thought carefully 

about what they were doing. Students who are classified as extreme movers are, in essence, 

trying to develop programming solutions by brute force rather than trying to come up with a 

logical solution, which will probably result in them going round in circles. Perkins et al. 

(1986) also explain that students who are classified as stoppers tend to feel unsure about what 

they are doing when attempting to write programs, and harbour such significant levels of fear 

that, in some cases, they have essentially given up trying to learn to program. In addition, 

while extreme movers may have higher levels of motivation than stoppers, extreme movers 
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tend to become emotionally distant from the task and often try to move on to the next task in 

order to avoid an issue they simply cannot fix. 

 

Although Perkins et al. (1986) do not perform any analysis of the relationship between 

students’ behaviour when faced with an issue and course performance, it is reasonable to 

assume that students’ who are classified as stoppers or extreme movers are more likely to 

perform worse as both neglect to address any issues or misconceptions that they develop.  

Further research is required to identify what factors can be used to predict whether a student 

is likely to be a stopper, a mover or an extreme mover. However, Ramalingam and 

Wiedenbeck’s (1998) Computer Programming Self-Efficacy scale was considered to be 

useful for the present research programme as it provides an insight into students’ estimation 

of their own abilities.  

 

An additional measure that may provide insight into programming efficacy is Cacioppo and 

Petty’s (1982) concept of “Need For Cognition”. Need For Cognition is explained by 

Cacioppo and Petty (1982) as being “the tendency for an individual to engage and enjoy 

thinking” (p. 116), which potently makes it useful for determining students who are likely to 

become stoppers or extreme movers (Perkins et al., 1986), as both of these categories relate 

to students exerting less mental effort in attempting to develop solutions to problems. The 

Need For Cognition scale originally advanced by Cacioppo and Petty consisted of 34 

questions, which were validated over a series of four separate studies (Cacioppo & Petty, 

1982), with a shortened version of the scale consisting of only 18 questions later being 

produced and confirmed as equally valid to the original 34 question scale (Cacioppo et al., 

1984). This shortened scale lends itself perfectly for use within an aptitude test, and although 

Need For Cognition has not previously been applied in the context of introductory 

programming, it may provide additional insight into students’ tendencies to seek out answers 

to problems, which in turn may help predict course performance.  

 

An additional factor that has previously been seen to be directly related to cognitive task 

performance is cognitive load (Morrison et al., 2014). Cognitive load is discussed in detail in 

Section 2.4, however, it can be summarised here as the amount of load that performing a 

particular task poses on a person’s cognitive system (Sweller, 1994). Paas and Van 

Merriënboer (1994) describe two primary techniques for measuring cognitive load, that is, 

psychophysiological indices, such as pupil diameter and heart rate, and subjective indices, 
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which primarily take the form of mental effort rating scales. Naturally, the 

psychophysiological indices would not be appropriate for an aptitude test designed to be 

given to all first year computer science students upon entry to their course. Instead, previous 

research has shown that a 9-point Likert scale ranging from very, very low mental effort (1) 

to very, very high mental effort (9) is a highly reliable measurement of mental effort and in 

turn, cognitive load (Paas et al., 1994), making it a viable factor for inclusion within the 

present aptitude test design. 

 

3.2.3 Working Memory Capacity and Spatial Ability 

It has been suggested that because of its complex nature, programming poses a high demand 

on students’ working memory and therefore increases the probability of cognitive overload 

(Yousoof et al., 2007; see Section 2.4). Due to the widespread application of the concept of 

working memory capacity, ranging from measures of intelligence to expanding theories of 

Alzheimer’s disease and reading disabilities (Redick et al., 2012), various techniques have 

been developed to measure a person’s working memory capacity. For example, in their 

seminal paper, Engle et al. (1999) presented a number of standardised techniques for 

measuring working memory capacity, which included the following: 

 

Reading Span (SPAN) – Participants are presented with sentences that have an unrelated 

capitalised word at the end. Participants are tasked with reading the sentence and then the 

capitalised word aloud. When the participant reads the capitalised word aloud the screen 

is immediately changed to the next sentence-word combination. This sequence is repeated 

between two and six times (with three trials of each size) until three question marks are 

displayed, at which point participants are required to recall and write down all of the 

capitalised words which have been displayed in the set in the correct order. An example 

set can be seen below. 

 

For many years, my family and friends have been working on the farm. SPOT 

Because the room was stuffy, Bob went outside for some fresh air. TRAIL 

We were fifty miles out at sea before we lost sight of the land. BAND 

??? 
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After participants record the words, they are asked a random comprehension question 

such as “Did Bob go outside?”. Participants with comprehension scores less than 85% are 

removed from any further testing. 

 

Counting Span (CSPAN) – Participants are shown a display of randomly arranged dark 

blue circles, dark blue squares and light blue circles. Participants are tasked with counting 

the total number of dark blue circles aloud and repeating the digit corresponding to the 

final tally. For example, when there are three dark blue circles a participant should say 

“one, two, three, three”. The light blue circles and dark blue squares act as distractors. 

When the participant repeats the final tally, the display is changed to the next set. After 

between 2 and 8 sets, the message RECALL is displayed on the screen, and the 

participant must recall and write down all of the tallies which have been displayed since 

the last RECALL prompt in the correct order. The number of target shapes (dark blue 

circles) varies between three and nine for each set, whilst the number of distractor 

variables also varies with there being one, three, five, seven or nine dark blue squares and 

between one and five light blue circles being displayed. Any participant whose error rate 

is greater than 15% is removed from any further testing. 

 

Operation Span (OSPAN) – Participants are presented with individual operation-word 

strings and a math problem which they must read aloud. For example, “Is (8/4) - 1 = 1?” 

The participant should answer aloud if the equation is correct or not by answering “yes” 

or “no”. The participant then reads aloud an additional word (e.g., “bear”), which prompts 

the next operation string to be displayed. Similar to the Reading Span method, this 

sequence is repeated between two and six times, with three trials of each. At the end of 

each set, three question marks are displayed, prompting participants to recall and write 

down the words that followed the operation strings in the correct order. An example set 

can be found below. 

 

Is (8/4) - 1 = 1? bear 

Is (6 X 2) - 2 = 10?  beans 

Is (10 X 2) - 6 = 12? dad 

??? 
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Participants who have an error rate on the equations greater than 15% are removed from 

further testing. 

 

Although these popular techniques proposed by Engle et al. (1999) offer a relatively simple 

method for measuring working memory capacity, they would not be appropriate for use 

within an aptitude test in their current form due to the fact that they require students to read 

aloud. Furthermore, as these measures of working memory capacity take at least an hour to 

administer (Engle et al., 1999) they would greatly increase the time needed to complete the 

aptitude test and are therefore unsuitable for this investigation.  

  

An alternative measurement technique that is potentially more suited to use within an 

aptitude test is the Corsi Block Test (Corsi, 1973). Kessels et al. (2000) describe the Corsi 

Block Test as a widely used measurement of visuospatial short-term memory, which is a 

component of working memory. As there are several variations of the Corsi Block Test that 

all differ in their implementation, a standardised testing procedure is provided by Kessels et 

al. (2000) and is as follows. A set of 9 black cubes measuring 30 x 30 x 30 mm are mounted 

on a black board (225 x 205 mm). Each cube has a number between one and nine printed on 

its side so only the examiner can see it. The examiner taps blocks in a sequence, initially 

consisting of two blocks, which the participant then repeats. A second sequence of the same 

length is then demonstrated, and the participant is again given the opportunity to repeat it. If 

the participant successfully repeats at least one of these sequences, then the next two trials of 

sequences of an increased length are administered. Cubes are tapped at a rate of 

approximately one cube per second, and the test is terminated if the participant fails to 

reproduce two sequences of equal length (Kessels et al., 2000). Kessels et al. (2000) also note 

that the Corsi Block Test can either be completed forwards, where the participant repeats the 

sequence in the same order as the examiner, or backwards with the participant reversing the 

examiner’s sequence, although this has been suggested to place additional load on the 

participant’s working memory (Claessen et al., 2015). The relative simplicity of the Corsi 

Block Test, combined with its short administration time and the fact that it has already been 

adapted into an electronic format (Berch et al., 1998; Claessen et al., 2015; Vandierendonck 

et al., 2004) makes it a potentially useful measure for inclusion within the aptitude test. 
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In addition to working memory capacity, another cognitive factor that has been found to have 

an apparently strong relationship with programming skill, which could potentially be 

evaluated within the aptitude test, is students’ spatial ability (Jones & Burnett, 2008; 

Margulieux, 2020; Parkinson, 2022; Parkinson & Cutts, 2018). Halpern (as cited in Jones & 

Burnett, 2008) defined spatial ability as being a measure of a person’s ability to conceptualise 

the spatial relations between objects. It is believed that spatial ability is an important factor in 

determining a person’s capacity to comprehend programs due to the fact that skills similar to 

that of navigation are required to visualise program operations (Cox et al., 2005).  

 

Students’ spatial abilities can be measured by means of them performing a series of mental 

rotation tasks (Jones & Burnett, 2008; Vandenberg & Kuse, 1978), such as the mental 

rotation tests posed by Vandenberg and Kuse (1978) and Shepard and Metzler (1971). 

Vanderberg and Kuse’s (1978) test was originally designed to be conducted on paper and 

requires participants to identify two correct rotations of a 3D object from a list of four 

possible rotations. The test consists of 20 items in five sets of four and requires both correct 

rotations to be identified in order to be marked as correct. Shepard and Metzler’s (1971) 

mental rotation test is somewhat simpler than Vanderberg and Kuse’s test (1978) as only two 

3D objects are displayed side-by-side, with the original implementation stipulating that 

participants should pull levers to indicate whether the two images are of different objects, or 

if they are of the same object in different rotations (Shepard & Metzler, 1971). The simplistic 

nature of both tests lend them well to being converted into computerised versions such as 

Strong’s (2000) implementation of Vanderberg and Kuse’s (1978) test and Wright et al.'s 

(2008) version of Shepard and Metzler’s (1971) test, both of which are viable candidates for 

inclusion within the aptitude test. 
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3.3 Predictive Model Considerations 
Although the main focus of the second phase of this investigation is the development of a 

predictive model to answer RQ 3, it is important that potential approaches are considered 

prior to the development of the aptitude test, which acts as the primary data collection 

mechanism for the model. Two closely related fields of research whose methodologies and 

techniques are appropriate for developing a model capable of identifying students who are 

likely to require support are Learning Analytics (LA) and Educational Data Mining (EDM). 

 

Learning Analytics is seen to be a new and expanding field, which utilises expertise from 

computer science, sociology and psychology to develop and apply predictive models that 

provide actionable information to educators, allowing them to tailor curriculums and 

educational interventions to support both the individual learner and cohorts as a whole 

(Avella et al., 2016; Siemens, & Baker, 2012; Siemens, 2012). Similar, to Learning 

Analytics, Educational Data Mining is also a relatively new area of research, which brings 

together researchers from computer science, learning science and psychology amongst others 

(Siemens & Baker, 2012), and is also focused on developing a better understanding of 

students and how they learn by exploring the unique types of data that are produced in 

education settings (Avella et al., 2016). However, EDM places a greater focus on automated 

discovery, with the models that are produced often being used within automated systems such 

as intelligent tutoring systems (Siemens & Baker, 2012). Siemens and Baker (2012) provide a 

brief comparison of both EDM and LA, which is presented in Table 3.1. 
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Table 3.1 

Comparison between Learning Analytics and Educational Data Mining (derived from 

Siemens & Baker, 2012) 

Focus Learning Analytics Educational Data Mining 

Discovery Leveraging human judgment is key; 

automated discovery is a tool to 

accomplish this goal. 

Automated discovery is key; human 

judgment is a tool to accomplish this goal. 

Reduction and 

Holism 

Stronger emphasis on understanding 

systems as wholes, in their full 

complexity. 

Stronger emphasis on reducing to 

components and analysing individual 

components and relationships between 

them. 

Origins Stronger origins in semantic web, 

“intelligent curriculum”, outcome 

prediction and systemic interventions. 

Stronger origins in educational software 

and student modelling, with a significant 

community in predicating course 

outcomes. 

Adaptation and 

Personalisation 

Greater focus on informing and 

empowering instructors and learners. 

Greater focus on automated adaption (e.g., 

by the computer with no human in the 

loop). 

Techniques and 

Methods 

Social network analysis, sentiment 

analysis, influence analytics, discourse 

analysis, learner success prediction, 

concept analysis, sensemaking models. 

Classification, clustering, Bayesian 

modelling, relationship mining, discovery 

with models, visualisation. 

 

Bienkowski et al. (2014) provided a useful summary of the differences between EDM and 

LA by stating that the focus of EDM is on the development of new tools for discovering 

patterns, whereas LA focuses on applying the tools and techniques at scale. Consequently, 

the outputs of each field differ somewhat, with EDM being positioned to answer questions 

such as “What sequence of topics is most effective for a specific student?” or “What student 

actions indicate satisfaction, engagement and learning progress?”, whereas LA is most suited 

to answering questions such as “When are students falling behind in a course?” or “What 

grade is a student likely to get without intervention?” (Bienkowski et al., 2014). 

 

Although both EDM and LA are interested in predicting students’ performance in some shape 

or form and as such use broadly similar data analysis techniques, there are some techniques 

that are predominately restricted to their respective fields. For example, Social Network 
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Analysis is used within LA to examine the relationships between instructors and learners in 

order to identify influencers or disconnected students (Avella et al., 2016; Bienkowski et al., 

2014). Alternatively, Discovery with Models is a concept primarily used in EDM to support 

in-depth analysis of different factors (e.g., intelligent tutoring system design, types of student 

behaviour, etc.), by developing a model of a phenomenon through processes such as 

prediction or knowledge engineering, which can then be validated and fed into further 

analysis (Baker & Yacef, 2009).  

 

Despite there being some techniques that are field-specific, LA is able to take advantage of 

many of the popular EDM techniques when analysing large datasets (Avella et al., 2016).  

The techniques used in EDM often differ from traditional data mining techniques due to the 

need to account for (and where possible exploit) the multi-level hierarchy and non-

independence in education-related data and, as such, psychometric-based models are not 

uncommon in EDM research (Baker, 2010; Baker & Yacef, 2009). Baker (2010) provides a 

comprehensive overview of the techniques commonly used within EDM, which are set out 

below. 

 

Prediction 

The aim of predictive models is to be able to estimate reliably a value (predicted variable) by 

using a combination of other variables in the dataset (predictor variables; Avella et al., 2016; 

Baker, 2010). Baker (2010) lists the three main types of prediction that are used within EDM 

as being classification, regression, and density estimation. Classification is used when 

attempting to predict binary or categorical data, with common methods including decision 

trees, logistic regression and support vector machines (Avella et al., 2016; Baker, 2010). 

Classification techniques are not suitable for predicting continuous variables therefore, 

regression methods such as linear regression, neural networks, and support vector machine 

regression are employed (Baker, 2010). Finally, density estimation can be used to predict 

both continuous and categorical variables using a probability density function (Baker, 2010). 

 

Clustering  

Clustering is used to split datasets by identifying datapoints that naturally group together, 

which makes it useful when analysing datasets without predefined categories (Avella et al., 

2016; Baker, 2010). Baker (2010) describes how clustering algorithms such as K-Means 

(with randomised restart) can start either with no pre-existing hypothesis or can take into 
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account hypotheses that have been developed through prior research, such as with the 

Expectation Maximization algorithm, thus giving researchers flexibility in their analyses.  

 

Relationship Mining 

Relationship mining is used to uncover relationships between variables in large datasets 

(Avella et al., 2016; Baker, 2010). Baker (2010) describes how different techniques can be 

used to identify different types of relationships within the data. One such technique is 

association rule mining, which is used to identify “if-then” relationships based on the premise 

that if a specific set of variable values is found, another variable will have a particular value, 

with Baker (2010) giving an example of such as rule: 

 

{student = frustrated AND student goal of learning > student goal of performance} →  

{student frequently asks for help} 

 

Correlation mining, on the other hand, attempts to identify any positive or negative linear 

correlations within the data, whereas sequential pattern mining attempts to find temporal 

associations between events, such as what type of behaviour leads to a student losing interest 

in a course (Baker, 2010). The final method that Baker (2010) lists is casual data mining. 

This is focused on attempting to find out whether one event was caused by another, which is 

determined by either measuring their covariance or by using information about how each of 

the events is triggered.  

 

Discovery with Models 

As noted above, Discovery with Models is utilised within EDM research to develop models 

using automated methods such as prediction and classification, or in some cases, using 

human judgment through knowledge engineering. The resulting models are then applied in 

further analysis (Avella et al., 2016; Baker, 2010). 

 

Distillation of Data for Human Judgment 

Distillation of Data for Human Judgment offers EDM researchers an alternative to purely 

automated analysis, as by displaying data with appropriate visualisation techniques, it is 

possible for humans to make valid inferences that may have otherwise been missed by 

automated techniques (Avella et al., 2016; Baker, 2010). This method of analysis is used 



 80 

within EDM for either identification or classification, with Baker (2010) giving the example 

of visualising students’ performance on a learning curve.  

 

The development of prediction models has been the focus of many EDM investigations 

(Baker, 2009). However, the nature of the present research programme limits some of the 

techniques that can be reliably applied. This is due to the relatively small amount of data that 

are available for analysis, as data will be collected from voluntary participation in aptitude 

tests as opposed to the log files obtained from intelligent tutoring systems that are used by 

entire classes, which are commonly deployed in EDM research. Nevertheless, a reliable, 

predictive model developed around students’ responses to an aptitude test specifically 

designed for evaluating their potential for grasping the fundamental concepts of programming 

should still be possible.  

 

In both the fields of EDM and LA, numerous methods have been developed to evaluate and 

predict students’ programming performance. A popular approach has been to analyse 

snapshots of students’ code that are collected each time they attempt to compile their 

programs. Among others, this approach was taken by Blikstein et al. (2014) and Fernandez-

Medina et al. (2013), who attempted to analyse the snapshots to shed light on students’ 

behaviour during their introductory programming modules. Additionally, code-snapshot 

analysis has been incorporated into the development of algorithms designed to evaluate 

students’ performance, such as Jadud’s Error Quotient (Jadud, 2006) and the Watwin 

Algorithm (Watson et al., 2013). 

 

The Error Quotient evaluates students’ performance by producing a score based on the 

number of persistent errors (i.e., errors that are still present after the student is first 

confronted with the error) within their programs. Students’ progress is tracked through an 

extension to the BlueJ IDE on a university computer and an overall score between 0 and 1 is 

computed by averaging the scores from their successful compilations during the session 

(Jadud, 2006). Jadud (2006) notes that a score of 0 does not represent a student making no 

mistakes, rather, it indicates that a student’s program did not contain the same mistake for 

more than one compilation in a row. However, a score of 1 would indicate that every 

compilation included an error. 

 



 81 

The Error Quotient was initially found to be a weak predictor of performance (Jadud, 2006). 

However, Rodrigo et al. (2009) claim to have been the first to demonstrate that the Error 

Quotient can successfully predict students’ achievement on their midterm exam, when using 

a more constrained dataset as opposed to the one used in Jadud’s (2006) original study. 

Additionally, Rodrigo et al. (2009) believe that students with high Error Quotient scores may 

be exhibiting Stopper or Extreme Mover tendencies as defined by Perkins et al. (1986). 

Although the apparent success of the Error Quotient is encouraging, Watson et al. (2013) 

noted a significant methodological flaw in Jadud’s (2006) approach. Watson et al. (2013) 

state that Jadud’s (2006) approach is predicated on the assumption that students only work in 

a single source file or if they are using multiple source files, this is done so linearly. Watson 

et al. (2013) claim that students do not work this way as they often switch between files, thus 

compromising Jadud’s (2006) approach.  

 

Watson et al. (2013) present their own “Watwin” algorithm, which incorporates a scoring 

system that penalises students based upon how long it takes them to resolve specific types of 

error compared to their classmates. Like the Error Quotient (Jadud, 2006), the Watwin 

algorithm analyses compilation snapshots. However, the Watwin algorithm constructs a set of 

compilation pairs for each file a student has worked on during the session, with compilation 

events associated with each file being ordered by timestamp, thus accounting for any students 

working on multiple files simultaneously (Watson et al., 2006). 

 

When compared using the same dataset, the Watwin algorithm significantly outperformed the 

Error Quotient when attempting to predict students’ performance, with the Watwin algorithm 

explaining 30% of the variance in performance on average, and 42.4% by the end of the 

course, compared to 14% and 19%, respectively, for the Error Quotient (Watson et al., 2013). 

Watson et al. (2013) also applied their pairing pre-processing method to the Error Quotient, 

thus negating the methodological deficiencies, which resulted in a slight increase in the R2 

value, albeit with this value still being much smaller than the values obtained from the 

Watwin algorithm. 

 

Other approaches to predicting programming abilities within the fields of EDM and LA have 

utilised methods such as neural networks, support vector machines, decision trees and 

clustering techniques such as K-medoids, which is a variant of the K-means clustering 
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algorithm (Britos et al., 2008; Costa et al., 2017; ElGamal, 2013; Piech et al., 2012). 

Additionally, a method that features heavily within EDM research into Intelligent Tutoring 

System design – despite predating the field by over a decade – is Bayesian Knowledge 

Tracing (Baker et al., 2008; Corbett & Anderson, 1994), which could potentially be adapted 

for use in the design of a predictive algorithm.  

 

Corbett and Anderson’s (1994) Bayesian Knowledge Tracing (BKT) originated from their 

work with their Cognitive Tutor, which was used to teach Lisp and Prolog in introductory 

programming classes at Carnegie Mellon University, as well as to teach Pascal at a Pittsburgh 

high school. BKT was introduced in response to a number of students floundering during the 

course, in order to provide a means of monitoring students’ changing states of knowledge 

while they are practicing a particular topic (Corbett & Anderson, 1994). 

 

BKT examines students’ knowledge as a latent variable and assumes that skills (knowledge 

components) can be represented in a binary fashion by being either mastered (learned) or not 

(not learned; Corbett & Anderson, 1994; Yudelson et al., 2013). This approach to modelling 

students’ knowledge can be represented as a Hidden Markov Model as seen in Figure 3.1 

(Baker, 2020).   

 

Figure 3.1 

Bayesian Knowledge Tracing Hidden Markov Model 

 

 
 

Note. From “Big Data and Education” by R. Baker, 2020, University of Pennsylvania  

 

Not 

Learned 

Learned 

𝑝𝑝(𝐿𝐿0) 

𝑃𝑃(𝑇𝑇) 

Correct Correct 

𝑃𝑃(𝐺𝐺) 1 − 𝑃𝑃(𝑆𝑆) 
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BKT utilises four parameters in order to model students’ knowledge (Baker, 2020; Corbett & 

Anderson, 1994): 

 

• 𝑃𝑃(𝐿𝐿0) – the initial probability that a student knows a particular skill. 

• 𝑃𝑃(𝐺𝐺) – the probability that a student does not know a skill but guesses the answer 

correctly. 

• 𝑃𝑃(𝑆𝑆) – the probability that a student does know a skill but has made a small error (a 

slip).  

• 𝑃𝑃(𝑇𝑇) – the probability that a student will learn the skill and transition from the not 

learned state to the learned state. This is assumed to be a constant value. 

 

As students practice each skill the estimated probability of them knowing the skill,𝑃𝑃(𝐿𝐿), is 

updated by first calculating the probability of whether the student knew the skill before 

answering the question using either Equation 3.1, where they answered correctly, or Equation 

3.2, where they answered incorrectly, and then accounting for the possibility that the student 

has learned the skill whilst completing the task using Equation 3.3 (Baker et al., 2008).  

 

3.1) 𝑃𝑃(𝐿𝐿𝑛𝑛−1|𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛) =  𝑃𝑃(𝐿𝐿𝑛𝑛−1)∗(1−𝑃𝑃(𝑆𝑆))
𝑃𝑃(𝐿𝐿𝑛𝑛−1)∗�1−𝑃𝑃(𝑆𝑆)� + �1−𝑃𝑃(𝐿𝐿𝑛𝑛−1)� ∗ (𝑃𝑃(𝐺𝐺))

 

 

3.2) 𝑃𝑃(𝐿𝐿𝑛𝑛−1|𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑛𝑛) =  𝑃𝑃(𝐿𝐿𝑛𝑛−1)∗(𝑃𝑃(𝑆𝑆))
𝑃𝑃(𝐿𝐿𝑛𝑛−1) ∗ 𝑃𝑃(𝑆𝑆) +�1−𝑃𝑃(𝐿𝐿𝑛𝑛−1)� ∗ (1−𝑃𝑃(𝐺𝐺))

 

 

3.3) 𝑃𝑃(𝐿𝐿𝑛𝑛|𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛) = 𝑃𝑃(𝐿𝐿𝑛𝑛−1|𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛) + �(1 − 𝑃𝑃(𝐿𝐿𝑛𝑛−1|𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛)� ∗ 𝑃𝑃(𝑇𝑇)) 

 

The initial values for the four parameters can be established using the Expectation 

Maximization algorithm (Pardos & Heffernan, 2010). However, work by Beck and Chang 

(2007) has revealed that different combinations of the four parameters can fit the data equally 

well yet yield significantly different predictions. They termed this issue the identifiability 

problem.  

 

Beck and Chang (2007) proposed an alternative method for fitting the parameters using 

Dirichlet Priors in order to overcome the identifiability problem, although issues have also 

been found with this approach. Baker et al. (2008) demonstrated that Beck and Chang’s 
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method (2007) suffers from model degeneracy, which is where guess (G) and/or slip (S) 

parameters are initialised to values greater than 0.5 and are, therefore, deviating from the 

theoretical concept of BKT, which is that correct performance generally implies that a 

student knows the relevant skill. By having a guess parameter greater than 0.5 it is implied 

that a student who does not know a skill is more likely to get the answer correct than 

incorrect. Likewise, a slip parameter greater than 0.5 also implies that a student who knows 

the skill is more likely to get the answer incorrect than correct (Baker et al., 2008). Baker et 

al. (2008) proposed an extension to BKT that overcomes both the identifiability problem and 

model degeneracy, by contextually estimating whether a student has guessed or slipped using 

the responses to the two subsequent questions (n+1 and n+2) in order to provide a more 

comprehensive evaluation of the student’s response at time n. Baker et al., (2010)  also 

proposed a brute-force approach to fitting the four BKT parameters, which they believe 

allows for better fits to be achieved for the parameters than were possible with previous 

approaches. In order to avoid issues relating to model degeneracy, parameter estimates for 

guess and slip were bounded to be below 0.3 and 0.1 respectively (Baker et al., 2008). 

Further extensions to BKT have also been proposed, such as student-specific parameter 

values (Yudelson et al., 2013) or the inclusion of additional parameters to account for 

students’ forgetting material either immediately after being taught it or on separate days, as 

traditional BKT assumes students do not forget a skill once it has been learnt (Qiu et al., 

2011). BKT has also been adapted from its original intended use with Intelligent Tutoring 

Systems for use with Massive Open Online Courses (MOOCs), which do not facilitate real-

time processing of students’ responses and therefore require adaptations to be made to BKT 

in order to evaluate students’ learning (Pardos et al., 2013). 

 

Despite these latter extensions, traditional BKT is still the most popular implementation 

within Intelligent Tutoring Systems (Yudelson et al., 2013), as many of the extensions often 

work well with certain datasets, but not others (Baker, 2020). Although BKT is not designed 

for use with aptitude tests, Pardos et al. (2013) have already demonstrated that it can be 

adapted for use in contexts other than Intelligent Tutoring Systems. BKT is likely to offer a 

useful insight into students’ understandings of fundamental programming concepts when 

analysing their responses to the aptitude test. It can be used to provide an estimate of the 

probability that a student holds an appropriate mental model for a given concept, thus 

allowing for how students’ mental models develop, as per RQ 1, to be analysed. The 
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estimates produced by BKT are also ideal for inputting into a predictive model in order to 

represent students’ understandings of core programming concepts. 

 

3.4 Aptitude Test Design  

3.4.1 Section Outline 

Drawing on the original methodology posed by Dehnadi (2006), the aptitude test designed for 

this investigation was intended to be used for both the research data collection that would 

later be used for development of the predictive model, and also as a means for identifying 

future students who are likely to need support in combination with the proposed model. 

As such, it was important to consider the limited amount of time available for students to 

complete the test and also what platform should be used to distribute the test to students when 

deciding on what factors to include from Section 3.2.   

 

During the research investigation the aptitude test was designed to be issued twice to first 

year Computing students at the University of Central Lancashire (UCLan), once at the start of 

their course and once at the end of the first semester (September – December). This would 

allow for students’ progress to be analysed alongside their introductory programming 

module, which runs during the first semester. 

 

In order to allow greater flexibility with question design and to ease distribution and result 

collation, it was decided to distribute the aptitude test to students online, as opposed to 

Dehnadi’s (2006) paper-based method. The survey platform Qualtrics 

(http://www.qualtrics.com/) was chosen due to the fact that custom HTML questions can be 

created, thus allowing for measures of working memory and spatial ability (discussed later in 

this section) to be easily integrated into the test.   

 

This section presents an overview of the aptitude test design process, which is informed by 

the research questions at the heart of this investigation, and how it has been validated prior to 

commencement of the primary data collection. 

 
3.4.2 Initial Aptitude Test Design 

The initial version of the aptitude test was devised to assess the suitability of various question 

designs in order to ensure the appropriateness of the questions and to evaluate whether it is 

feasible for students to complete the aptitude test within a one-hour timeslot, as whilst 

http://www.qualtrics.com/
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participation was voluntary, time was made available for students to complete the aptitude 

test. However, if the aptitude test was found to be too long, students may become disengaged 

or may not be able to fully complete it within the available time. Therefore, the initial version 

of the aptitude test was trialled with all components that were being considered for inclusion 

in the final test, which could then be refined as required. As such, the initial version of the 

aptitude test consisted of the following sections: 

 

Section 1: Student Details 

This section collates a number of factors relating to the student’s background, which could 

potentially assist with predicting a student’s performance, and aids in answering RQ 2. These 

factors included: 

 

• Gender  

• If the student had previously studied computer science (or computing) at any level 

(yes/no) 

• If the student had studied any post-16 mathematics-based subjects such as 

mathematics, engineering, physics, etc. (yes/no) 

• Whether the student had any prior programming experience (yes/no) 

• Whether the student considered themselves to be a “self-taught programmer” 

(strongly agree – strongly disagree) 

• Whether English was the student’s first language. (yes/no) 

 

A number of additional questions were also included within this section, which draw from 

prior research into students’ motivation and comfort levels (Bergin & Reilly, 2005a, 2005b; 

Curzon & Rix, 1998): 

 

• If the student intends on working in software engineering/programming after 

graduating from university (yes/no/undecided) 

• How difficult they expect their degree to be (1 – 10) 

• How difficult they expect learning to program will be (1 – 10) 

• Whether they fear learning to program (yes/no) 
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Students’ university ID numbers were also recorded in order to allow for their aptitude test 

results to be compared to their introductory programming module grades. It is important to 

stress that participation in this study was optional, and all responses are anonymised in 

accordance with the ethical approval obtained for this research.  Students were incentivised to 

take part by being able to be entered into a prize draw for one of five £10 Amazon gift cards, 

as well as being able to receive feedback on their answers. 

 

Section 2: Modified Programming Self-Efficacy Scale 

The second section of the aptitude test consists of a slightly modified version of 

Ramalingam and Wiedenbeck (1998) Computer Programming Self-Efficacy Scale.  

The original scale analyses students’ programming self-efficacy using a series of 32 

questions relating to object-orientated C++, with a focus on “meaningful programming tasks: 

designing, writing, comprehending, modifying and reusing programs” (Ramalingam & 

Wiedenbeck, 1998, p. 369). Given its widespread use (Zingaro, 2014), Ramalingam and 

Wiedenbeck’s (1998) scale provides a firm foundation for assessing students’ self-efficacy 

levels related to programming in general. However,  Bandura (2006) states, one measure does 

not fit all scenarios, meaning a number of small modifications are required to make 

Ramalingam and Wiedenbeck’s (1998) scale suitable for use within the aptitude test. 

 
Ramalingam and Wiedenbeck (1998) partitioned their original scale questions into four 

factors:  

 

Factor 1: Independence and persistence 

Factor 2: Complex Programming Tasks 

Factor 3: Self-Regulation 

Factor 4: Simple Programming Tasks 

 

Given that the aptitude test is focused towards assessing students’ fundamental programming 

skills, it was decided to omit the Complex Programming Task (Factor 2) questions as the 

majority of the questions bared no relevance to the objectives of the aptitude test. 

Additionally, several of the Factor 2 questions related to object-orientated programming, but 

as this is not currently taught until much later in the introductory programming module that 

students are studying, it would be inappropriate to measure their self-efficacy on this topic. 

The remaining questions were presented in the same order as Ramalingam and Wiedenbeck’s 
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(1998) original scale, with one minor alteration being made through the removal of any 

specific references to C++ and replaced with “any programming language” in order to make 

the aptitude test language independent. The full list of questions can be found in Section 2 

within Appendix A.  

 
Additionally, Ramalingam and Wiedenbeck (1998) provided the following instructions to 

students when completing the scale, which have been replicated in this study, without 

referring to a specific programming language. 

 

Rate your confidence in doing the following C++ programming related tasks using a 

scale of 1 (not at all confident) to 7 (absolutely confident). If a specific term or task is 

totally unfamiliar to you, please mark 1. (Ramalingam & Wiedenbeck, 1998, p.6) 

 

The inclusion of the modified Programming Self-Efficacy scale in the aptitude test allows for 

students’ confidence associated with programming to be examined directly, thus providing 

support in answering RQ 2. 

 
Section 3: Spatial Ability Measurement  

Given the purported links between students’ spatial abilities and success within their 

programming courses (Jones & Burnett, 2008), two different styles of mental rotation test 

designs were considered for inclusion within the aptitude test based on those used by 

Vandenberg and Kuse (1978) and Shepard and Metzler (1971), respectively. Unfortunately, 

due to a lack of availability of high-resolution versions of the testing materials, Vandenberg 

and Kuse’s (1978) version of the mental rotation test was unable to be implemented within 

the aptitude test. 

 

A mental rotation test in the style of Shepard and Metzler’s (1971) original test was created 

using Ganis and Kievit's (2015) 3D object dataset. The mental rotation test was built using 

JavaScript in order to allow it to be integrated into the Qualtrics environment. The test 

followed Ganis and Kievit’s (2015) procedure by displaying the 3D objects side-by-side, to 

which respondents must indicate if the images are of the same object (see Figure 3.2 for an 

example) by pressing the “B” key on their keyboard, and the “N” key if they are different. 

Students had a maximum of 7.5 sec (as specified by Ganis and Kievit, 2015), to provide an 

answer for each of the 48 trials, of which half included the same image in different rotations. 
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Trials occurred in a random order with no more than three trials of four possible rotations of a 

given object occurring consecutively. Unlike Ganis and Kievit (2015), a second block of 48 

trials was not included due to the limited amount of time being available for students to 

complete the aptitude test.   

 
Figure 3.2 

Example of Objects Used in Mental Rotation Test 

 
 

Before students started the mental rotation test, they were presented with written instructions 

specifying what the task involved, what keys to use and that they had 7.5 sec to provide an 

answer for each pair of images. They were then given the opportunity to perform twelve 

practice trials using images that were not included in the main test and were given feedback 

as to whether they had answered correctly or incorrectly. Upon completion of the mental 

rotation test the student’s error rate was passed back as an embedded variable using the 

Qualtrics JavaScript API (Qualtrics, n.d.). Due to the nature of the Mental Rotation Test, any 

student who specified they required a screen reader or other visual aid was permitted to skip 

this task.  

 

After completing the Mental Rotation Test students were prompted to record how much 

mental effort they felt was required to identify which of the pairs of images were the same 

shape using a 9-point Likert scale ranging from very, very low (1) to very, very high mental 

effort (9), as this has previously been shown to be a reliable measurement of mental effort 

(Paas et al., 1994). This allowed for the identification of any significant relationships that 
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exist between the measurement of students’ spatial abilities, the amount of mental effort 

required and their programming abilities, thereby indicating students who are more likely to 

experience cognitive overload. 

 
Section 4: Need For Cognition Scale 

As discussed previously, the Need For Cognition Scale, both in its original and revised 

formats (Cacioppo et al., 1984; Cacioppo & Petty, 1982) has not previously been applied to 

the context of introductory programming. However, the abstract nature of programming 

requires students to be actively seeking out solutions to problems, and there is a risk that 

students who are unable to do so, the stoppers and extreme movers (Perkins et al., 1986), will 

be at a greater risk of falling behind in their course. The Need For Cognition Scale could 

potentially identify students who are likely to become stoppers or extreme movers, which 

links to RQ 2, hence the inclusion of the revised eighteen question version (Cacioppo et al., 

1984) in the aptitude test.  

 

Section 5: Working Memory Capacity 

Given the reported demands that programming places on a student’s working memory 

(Yousoof et al., 2007), a custom implementation of the Corsi Block Test (Corsi, 1973) was 

used to measure students’ Working Memory capacities. The Corsi Block Test was chosen 

due to its relative simplicity, ease of administration and short administration time. A number 

of electronic versions of the Corsi Block Test already exist (Berch et al., 1998; Claessen et 

al., 2015; Vandierendonck et al., 2004), which were used to guide its development in the 

present research.  

 

The Corsi Block Test implementation was constructed using JavaScript in order to allow it to 

be embedded within the Qualtrics environment. Following Vandierendonck et al.'s (2004) 

description of their implementation, nine white blocks were placed in the approximate 

standardised locations as dictated by Kessels et al. (2000), whilst allowing for differences in 

screen size and resolution, on a dark blue background (see Figure 3.3).   
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Figure 3.3 

Corsi Block Test Implementation Screenshot 

 
 

The test sequence was triggered by the student pressing a button labelled “Start” on the left-

hand side of the window. This initiated a five sec countdown being displayed after which, the 

first sequence was presented to the student. As in Vandierendonck et al. (2004), blocks turned 

black for 1 sec with an inter-block time of 0.5 sec and with each block turning black for 0.2 

sec after being clicked. However, instead of using a sound to signify the end of the 

presentation, a green “GO” sign was used to prompt the student to replicate the sequence, as 

headphones/speakers could not be guaranteed to be available for every student completing 

the test. A student indicated that they had finished replicating the sequence by clicking a 

button labelled “Done” on the left-hand side window. If the student entered the correct 

sequence a green “Correct” sign was displayed in the bottom-left portion of the window and a 

red “Incorrect” sign was displayed if an incorrect or incomplete sequence was entered. There 

was a gap of 2 sec between the student signifying they had completed the sequence and the 

start of the next presentation.  

 

Before beginning the Corsi Block Test students were presented with instructions on how to 

complete the test and then were given a chance to practice with randomly generated 

sequences consisting of two and three blocks. After completing the demonstration students 

began the actual test, which used sequences from lengths of three to eight. As per Kessels et 

al. (2000), students had the chance to replicate two sequences for any given length. If the 

student successfully replicated at least one of these sequences, they were allowed to proceed 
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to the next sequence length. If neither of the sequences was replicated the test ended.  

Only the forward direction version of the Corsi Block Test was implemented within the 

aptitude test due to time restrictions.   

  

Once the student had completed the Corsi Block Test, the Qualtrics JavaScript API 

(Qualtrics, n.d.) was used to pass the student’s score (the last completed sequence length) as 

an embedded data variable, allowing it to be included with the student’s responses to the 

other sections in the overall test. After completing the Corsi Block Test, students were also 

asked to record how much mental effort they felt was required to complete the task in order 

to attempt to identify students who are likely to experience cognitive overload (Yousoof et 

al., 2007). Any students who specified that they required screen readers or other visual aids 

were able to skip this section in addition to the Mental Rotation Test.  

 

Section 6: Programming Diagnostic 

The Programming Diagnostic portion of the aptitude test posed a series of questions on a 

number of key topics that students will encounter as part of their introductory programming 

module. These questions were designed to identify any misconceptions held by students and 

would subsequently allow for estimates of how likely they are to be holding appropriate 

mental models for each of the concepts being examined using Bayesian Knowledge Tracing 

(see Section 4.3). The questions within the Programming Diagnostic can therefore be seen to 

be supporting both RQ 1 and RQ 3. 

 

The main topics covered in the Programming Diagnostic within the initial version of the 

aptitude test included: Variable Assignment, Conditional Statements, Iteration and Recursion. 

However, additional areas that may cause misconceptions were also examined alongside the 

main topics, including Program Flow (parallelism misconception), Output Statements, and 

whether the names of variables affect what they can hold. The questions for each of the main 

topics were contained within their own sub-sections, which also included questions on how 

much mental effort students felt was needed to answer the questions as well as how many 

they felt they had answered correctly.  

 

In order to ensure that the aptitude test is language-independent, pseudocode based on the 

OCR GCSE Pseudocode Guidelines (OCR, 2015) was used for all questions within the 

aptitude test, as the test places more emphasis on students’ abilities to logically deduce 
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answers rather than their understanding of the syntax of a particular language. The variable 

assignment sub-section was comprised of six questions derived from Dehnadi’s (2006) 

original study. The questions included both single assignment operations (Figure 3.4) and 

multiple assignment operations (Figure 3.5), thus allowing for the examination of 

misconceptions relating to the direction of the assignment (=) operator and also students’ 

understandings of how variables function.  

 

Figure 3.4 

Example of Single Assignment Operation Question 

 

 

 

  

The variables ‘A’ and ‘B’ are initialised in the lines of code below. 

 

A = 10 

B = 20 

 

What are the values of ‘A’ and ‘B’ after carrying out the following operation? 

 

A = B 
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Figure 3.5 

Example of Multiple Assignment Operations Question 

 
 

Although the assignment questions themselves are similar to those of Dehnadi (2006), 

students were not presented with a list of answers to choose from in the way Dehnadi did. 

Instead, students were prompted to input their own values for each of the variables after the 

statement had been executed.   

 

As Pea and Kurland (1984) state, conditional statements in the form of “if” statements are a 

major part of programming that, if misunderstood, are likely to cause students’ significant 

difficulties when writing programs of their own. As such, the second sub-section consisted of 

eight multiple choice questions which were designed to highlight whether a student is holding 

misconceptions relating to “if” statements, Boolean operators (AND, OR and NOT) (Grover 

& Basu, 2017) and parallelism (Pea, 1986). Simple hints were included to explain any 

elements of syntax that students might have been unfamiliar with.   

 
  

The variables ‘A’, ‘B’ and ‘C’ are initialised in the lines of code below. 

 

A = 5 

B = 3 

C = 7 

 

What are the values of ‘A’, ‘B’ and ‘C’ after carrying out the following operation? 

 

A = C 

B = A 

C = B 
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Figure 3.6 

Example of “If” Statement Question  

 
 
For example, Figure 3.6 would have the following options: 

A) You have passed with a combined score of: 50 

B) You have passed with a combined score of: 110 

C) You have failed 

D) There would be no output 

 

Any student who selected either C or D would be demonstrating a potential inability to 

correctly trace the execution of an “if” statement. Additionally, students who selected D may 

also not fully understand the function of output statements, which in this scenario, are 

indicated with the keyword “print”. Students who selected either A or B are demonstrating 

that they can correctly trace an “if” statement, with option A being the correct answer. 

However, if a student chose option B, they would be demonstrating that they potentially hold 

the parallelism misconception by not recognising that programs flow linearly from top to 

What is the output of the following code? 

Hint: ‘>=’ represents ‘Greater than or equal to’ 

 

Module1 = 30 

Module2 = 20 

PassMark = 100 

 

Total = Module1 + Module2 

 

if Total >= PassMark then 

 print ‘You have passed with a combined score of: ‘ 

 print Total 

else 

 print ‘You have failed’ 

 

Module3 = 60 

Total = Module1 + Module2 + Module3 
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bottom.  Following on from the questions on conditional statements, the two subsequent sub-

sections examine students’ understandings of iteration in the form of “for” and “while” loops. 

Misconceptions relating to the concept of iteration were identified using multiple choice 

questions, with two questions focusing on “for” loops and two focusing on “while” loops, as 

shown in Figures 3.7 and 3.8. 

 

Figure 3.7 

Example of “For” Loop Question  

 

 

Figure 3.8 

Example of “While” Loop Question  

 
 

 

 

What is the output of the following code? 

Hint: ‘++’ increments a variable by 1 

Hint: ‘<’ represents ‘Less than’ 

 

for i = 0; i < 4 

 print i  

 i++ 

 

What is the output of the following code? 

Hint: ‘++’ increments a variable by 1 

Hint: ‘<=’ represents ‘Less than or equal to’ 

 

i = 0 

 

while i <= 5 

 print i 

 i++ 
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The available answers for both “for” and “while” loop questions account for students failing 

to recognise that code contained within the loop is repeated as well as whether a student 

misidentifies when a loop should begin or terminate. The questions on iteration also allow for 

students’ understandings of the flow of control within the program to be examined, for 

example, the subsequent question to that shown in Figure 3.8 is exactly the same but the 

statement “i++” is placed above “print i” instead of below it as shown in Figure 3.8. If a 

student correctly understands the flow of control, then they will recognise that i is now being 

incremented before being outputted and as such, produces an answer of “1 2 3 4 5 6” as 

opposed to “0 1 2 3 4 5” for the original question. Students who hold the parallelism 

misconception will fail to recognise the difference and, assuming they correctly understand 

iteration, would answer “0 1 2 3 4 5” for both questions. 

 

A single recursion question was included in the aptitude test, as shown in Figure 3.9. 

Recursion is an advanced topic not covered within the introductory programming module that 

students taking part in this experiment were studying. However, it was included within the 

aptitude test to investigate claims of its relationship with iteration (Kessler & Anderson, 

1986). 
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Figure 3.9 

Example of Recursion Question  

 
 

Following on from the question shown in Figure 3.9, the same question was posed to students 

using a “for” loop, thus allowing their answers for both iteration and recursion to be 

compared. Students were also asked whether they found either the iteration or recursion 

question easier to answer, the mental effort required, as well as which (if either) question they 

felt they answered correctly.  

 

In order to assess the aptitude test design a pilot study was conducted with first year 

Computing students. Thirty six students volunteered to take part and although this sample 

size is too low to draw strong conclusions, it did allow for the questions and proposed 

analysis technique to be evaluated.   

 
3.4.3 Subsequent Modifications 

A number of changes were made to the aptitude test following the first pilot study, the most 

notable being how students’ misconceptions were to be analysed. The original intended 

What would the result of the following function be when n = 4? 

Hint: A function is a block of code which can be re-used without the need for it to be 

rewritten. 

Hint: ‘<=’ represents ‘Less than or equal to’ 

Hint: ‘return’ is used to exit the function at a specific point and pass back the result. i.e. 

‘return 3’ will exit a function with a result of 3 

Hint: ‘*’ represents multiplication 

 

n = 4 

 

function fun1(n) 

 if (n <= 1) 

  return 1 

 else 

  return n * fun1(n-1) 
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analysis method was based on Dehnadi’s (2006) mental model approach, where the intention 

was to an establish students’ “dominant mental model” for each concept; essentially how the 

student usually approaches a particular topic. However, it was felt that this approach was too 

restrictive as it does not take into account students who may be exhibiting more than one 

misconception. Instead, it was decided to measure the frequency that each misconception is 

demonstrated by a student, thus allowing for a more complete picture of students’ difficulties 

to be established. Bayesian Knowledge Tracing can be used to assess the likelihood of 

students holding appropriate mental models for each concept by examining the 

misconceptions students demonstrate on a question by question basis (see Section 4.3). A list 

of all misconceptions examined as part of the final version of the aptitude test can be found in 

Appendix B.  

 

It should be noted that it is possible for a student to exhibit more than one misconception in a 

single question. For example, in a question focusing on variable assignment, such as the 

question shown in Figure 3.5, a student can exhibit misconceptions relating to the direction of 

the assignment operator, as well as not correctly carrying values forward when performing 

multiple assignment operations.  

 

In addition to the change in analysis approach, a number of changes to the aptitude test were 

identified as being required. These included replacing the “fear of programming” yes or no 

option with a 1 to 10 scale to allow for a more detailed review of how much students fear 

learning to program. It was revealed that students were spending a significant amount of time 

completing the Mental Rotation Test and as such it was decided to remove it from the 

aptitude test to allow more time to be allocated to identifying students’ programming 

misconceptions.  

 

As a result of the removal of the Mental Rotation Test the number of variable assignment 

questions was able to be expanded from six to nine, and also included questions which 

examined whether students mistakenly believe, through a misconception which is similar in 

nature to Pea’s (1986) Intentionality bug, that the variable names affect the values they can 

hold. For example, a student could mistakenly believe that a variable called “largest” will 

always hold the largest value (Kaczmarczyk et al., 2010; Qian & Lehman, 2017) as shown in 

Figure 3.10. Each of the questions that examines whether a student believes variable names 

influence the values they can hold has an identical counterpart question, which uses single 
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character variable names, therefore, allowing for students’ answers to be compared in order 

to establish whether students hold this misconception. 

 

Figure 3.10 

Example of Variable Assignment with Inferred Meaning Variables Question  

 
 

The pilot study also revealed that the multiple-choice conditional statement questions were 

potentially too easy, as almost all students answered the questions in this section correctly. 

Therefore, it was decided to make the questions open-ended rather than multiple-choice to 

prevent students’ responses being influenced by the presented options, as well as to allow any 

new misconceptions to be identified. The number of conditional statements and iteration 

questions were expanded to take advantage of the removal of the Mental Rotation Test, with 

questions on iteration also being presented as open-ended to allow for additional 

misconceptions to be uncovered. 

 

A second pilot study was conducted in order to evaluate the alterations to the aptitude test. 

Again, the pilot study was open to all first year Computing students, as well as second year 

students studying the Advanced Programming module. Students in the second year were able 

to choose the modules that they were studying so, as such, weaker programming students 

were likely to avoid this module. However, it was decided that opening up the pilot study to 

The variables ‘smallest’, ‘middle’ and ‘largest’ are initialised in the lines of code below. 

 

smallest = 1 

middle = 8 

largest = 11 

 

What are the values of ‘smallest’, ‘middle’ and largest after carrying out the following 

operation? 

 

largest = smallest 

middle = largest 

smallest = middle  
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second year students would allow for a more comprehensive evaluation of the aptitude test, 

as such students should be more familiar with the concepts being examined, and would also 

enable further insight to be gained into the prevalence of the different misconceptions.  

 

As in the first pilot study, students were offered the chance to be included in a prize draw for 

one of five £10 Amazon vouchers, as well as being offered feedback on their answers.  

In total 29 first year students and 20 second year students took part and although the low 

participant number limits the nature of any detailed analyses, it was noted that second year 

students predictably displayed less misconceptions relating to variable assignment and 

conditional statements than first year students. However, the majority of the first year and a 

small number of second year students demonstrated difficulty with iteration questions, 

suggesting this is likely to be a troublesome topic. 

 

The second pilot study revealed a number of additional changes that needed to be made to the 

aptitude test before the commencement of the actual data collection, the most notable being 

the need for the aptitude test length to be reduced further in order to allow it to be completed 

well within an hour timeslot. This was achieved by slightly reducing the overall number of 

programming question and the removal of the Need For Cognition scale and the Corsi Block 

Test.  

 

Upon examination of the results from the pilot study, a significant moderate correlation was 

observed between the Need For Cognition Scale and the modified Computer Programming 

Self-Efficacy scale rs = .49, p < .001, N = 49. A Spearman’s rank coefficient was utilised for 

this analysis as although responses on the Need For Cognition scale were revealed to be 

normally distributed by a Shapiro-Wilk test (W(49) = 0.97, p = .330), scores on the modified 

Computer Programming Self-Efficacy scale were not normally distributed (W(49) = 0.91, p = 

.007). Despite being the longer of the two scales, the modified Computer Programming Self-

Efficacy scale explicitly measures factors relating to students’ programming abilities and has 

previously been shown to be a reliable predictor of students’ performance, whereas the Need 

For Cognition scale is a general scale that has not previously been applied in the context of 

programming. This made it appropriate for the modified Computer Programming Self-

Efficacy scale to be retained in the aptitude test and for the Need For Cognition scale to be 

removed. 
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Additionally, the Corsi Block Test was also removed due to the amount of time required for 

students to complete it and a lack of variation in the data. However, the data collected during 

the pilot study would appear to validate this implementation of the Corsi Block Test for use 

in a future study as the block span results (M = 6.41, SD = 0.99) are comparable to Kessels et 

al.'s (2000) results (M = 6.20, SD = 1.30). 

 

Further to the need to reduce the overall length of the aptitude test, a number of other changes 

were also identified as being necessary. First, a number of questions on iteration required 

small modifications to allow them to be more easily mapped to the misconceptions set out in 

Appendix B. Furthermore, the conditional statement questions were redeveloped to allow for 

a more direct evaluation of students comprehension of the AND, OR and NOT operators 

using multiple choice questions based on Grover and Basu's (2017) assessment design, as 

shown in Figure 3.11. 

 
Figure 3.11 

Example of Boolean Operator Question  

 
 

A minor alteration was also made to the pseudocode style used within the questions, with the 

inclusion of “braces” to denote the scope of statements. Although this is a departure from the 

OCR guidelines (2015), it was decided that their inclusion would make the questions more 

comprehensible, particularly those including iteration as shown in Figure 3.12. Hints were 

also removed in favour of making the code easier for students to logically deduce the 

meaning of statements, for example, by replacing i++ with i = i + 1. 

 

Which of the following words starts with a ‘d’ OR ends with an ‘e’? 

Select all words this applies to. 

 

☐ dance 
 

☐ delicious 

☐ soccer 

☐ share 
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Figure 3.12 

Example of Addition of “Braces” to Questions 

 
 

Additionally, it was decided to remove the recursion question from the aptitude test due to 

the fact the majority of students struggled with this topic that is beyond the scope of first year 

programming, which consequently made it difficult to accurately map students’ answers to 

specific misconceptions. The questions included within the final version of the Programming 

Diagnostic section can be found in Section 3 within Appendix A. 

 

In previous versions of the aptitude test, questions had been grouped together by topic. 

However, students commented that this made the test feel overly repetitive and therefore, 

questions on different topics were mixed together to negate this. Additionally, students were 

asked to rate how confident they were that they had answered each question correctly using a 

0 – 100 scale to provide a more comprehensive evaluation of levels of confidence for each 

concept to aid in answering RQ 2. This is as opposed to using techniques such as Duran et 

al’s (2019) self-evaluation instrument, which focuses on specific concepts, as students’ 

confidence will be measured throughout the aptitude test, as discussed below. Given these 

changes it was necessary to move the mental effort questions to the end of the aptitude test, 

with students being asked to rate the amount of mental effort they felt was required to answer 

questions on each of the concepts. Examples of questions for each of the concepts were 

provided to aid students in making their estimations. 

 

Aside from the alterations made to the Programming Diagnostic portion of the aptitude test, a 

question was added to Section 1 asking students to rate how difficult they find mathematics 

Examine the following code. 

What would be outputted on the screen when it is run? 

 

i = 0 

 

while i <= 5 { 

 print i 

 i = i + 1 

} 
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using a 1 – 10 scale, given the purported link between programming abilities and 

mathematics (Bergin & Reilly, 2005b; Byrne & Lyons, 2001; Gomes et al., 2006; Wilson & 

Shrock, 2001). The aptitude test was also renamed as the “Programming Checkup” to 

alleviate any negative connotations towards the word “test” from the students.  

 

Due to the limited number of students who took part in the two pilot studies, it is not possible 

to draw any statistically reliable conclusions from the results. However, a number of key 

findings within the data encouraged the commencement of the main data collection once the 

changes discussed above had been made. These included how having prior programming 

experience appeared to improve student confidence and also corresponded to a lower number 

of misconceptions being demonstrated, although previously studying computer science did 

not appear to have the same effect. Students who had studied a mathematics-based subject 

after finishing school also appeared to be more confident in their abilities. Furthermore, there 

was evidence to suggest a relationship between students’ levels of confidence; particularly 

their Self-Efficacy levels, and the number of misconceptions that they demonstrate when 

answering questions. As has been mentioned previously, students appear to have significant 

difficulties understanding the concept of iteration (recursion also was identified as causing 

significant difficulty, which was why it was ultimately removed from the Programming 

Checkup), regardless of whether students had prior programming experience or not. Second 

year students who took part in the second pilot study demonstrated significantly less 

misconceptions that first year students, which is to be expected given they have had more 

time to develop appropriate mental models of the concepts, although misconceptions 

associated with iteration were still present in some students’ responses. This provides an 

indication of students’ mental model development progressing over time, the assessment of 

which, is incorporated into the main data collection process. 

 

Commencing in September 2019, for a period of three years, the Programming Checkup was 

presented to all first year Computing students at the University of Central Lancashire 

(UCLan) during the first week (T1) of their degree through an introductory video that set out 

the purpose of the study, what the Programming Check Up involved, and how they could take 

part. It was stressed to students on multiple occasions that participation in the research 

investigation was optional, with the chance to be entered into a draw to win one of five £10 

Amazon vouchers as well as being able to receive feedback on their answers serving as 

encouragement for taking part.  
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The Programming Checkup was also released to students towards the end of the first 

semester (T2), which was approximately 10 weeks after T1, thus allowing for students’ 

progress to be evaluated over the course of the semester in a similar fashion to Ramalingam 

and Wiedenbeck's (1998) pre and post self-efficacy tests. Students were, again, offered the 

chance to win an Amazon voucher, as well as to receive feedback on their answers. 

 

A full account of all questions included within the version of the Programming Checkup used 

for data collection is presented within Appendix A. Subsequently, an analysis of students’ 

responses to the Programming Checkup is discussed within Chapter 5. 
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3.5 Overview of Machine Learning Algorithms  
As mentioned previously, regression is a technique commonly used to estimate a numerical 

outcome (i.e., a dependent variable), based on the values of one or more independent 

variables (Maulud & Abdulazeez, 2020). Therefore, predicting students’ assessment grades is 

a task naturally suited to regression (Nasiri et al., 2012; Strecht et al., 2015; Tomasevic et al., 

2020; Wakelam et al., 2020) as it provides staff with a tangible estimation of what result the 

student is likely to achieve. 

 

An alternative approach to predicting an exact mark for a student using regression 

techniques, is to predict a categorical outcome using a branch of machine learning referred to 

as “Classification” methods (Dietrich et al., 2015; Kotsiantis, 2007). The outcomes predicted 

by classification methods can be either binary or multinomial (Russell & Norvig, 2020; 

Tomasevic et al., 2020) and as such, it is possible to develop models to predict whether a 

student passes or fails an assessment (binary classification), or the grade band they are likely 

to achieve (multinomial classification) (Castro-Wunsch et al., 2017; Tomasevic et al., 2020). 

Although classification lacks the granularity of regression, the categorical output reduces the 

need for interpretation of the results by teaching staff, which could be beneficial when 

directing students towards support interventions. As such, binary classification methods were 

chosen to be evaluated as opposed to multinomial methods in order to maximise the 

interpretability of the outputs.  

 

In sum, both regression and classification approaches to predicting students’ Assessment 1 

results were considered in the present research in order to allow for future pedagogic 

interventions to be developed that may benefit from either the clear-cut nature of binary 

classification, or the more granular predictions produced by regression models. 

 

As this is the first time that the different factors examined by the Programming Checkup have 

been brought together to produce a prediction of students’ abilities, it was felt that a wide 

selection of classification and regression methods should be explored. By drawing on 

previous research within the fields of Educational Data Mining and Learning Analytics 

(Baker & Yacef, 2009; Jacob et al., 2016; Rastrollo-Guerrero et al., 2020; Romero & 

Ventura, 2010; Strecht et al., 2015), a comprehensive analysis and assessment could be 

undertaken to establish what machine learning algorithms work well with the data produced 
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by the Programming Checkup. The following section provides a description of the different 

classification and regression algorithms which were included in the analysis and assessment, 

the process and results of which, is presented within Chapter 4. 

 

OLS (Linear) Regression 

Ordinary Least Squares (OLS) Regression utilises a linear function in order to make 

predictions, as seen in Equation 3.4 (Dietrich et al., 2015; El Aissaoui et al., 2020; James et 

al., 2013): 

 

3.4) 

𝑌𝑌 =  𝛽𝛽0 +  𝛽𝛽1𝑋𝑋1 +  𝛽𝛽2𝑋𝑋2 + ⋯+  𝛽𝛽𝑃𝑃𝑋𝑋𝑃𝑃 

 

The Scikit-Learn (Pedregosa et al., 2011; Scikit-Learn, n.d.-o) implementation of OLS 

Regression was utilised within this investigation. It aims to establish a plane to model the 

multidimensional nature of the data when using multiple predictors. Establishing such a plane 

aims to minimise the sum of squared residual (RSS) between the observed and predicted 

responses, as can be seen in Equation 3.5 (Kuhn & Johnson, 2013): 

 

3.5) 

𝑅𝑅𝑅𝑅𝑅𝑅 =  �(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2
𝑛𝑛

𝑖𝑖 = 1

 

 

Although the simplicity of OLS Regression allows for the effective modelling of linear 

relationships between predictors, it naturally struggles to account for nonlinear relationships 

within the data. Furthermore, it is also suspectable to being influenced by outlying 

observations that do not follow general trends in the data and therefore, have exceptionally 

large residuals, resulting in the model having to be adjusted to account for them (Kuhn & 

Johnson, 2013). 

 

Ridge, Lasso and Elastic Net Regression 

Complex OLS Regression models has a tendency to overfit the training data, whereby they fit 

the training data very well, but do not generalise effectively when attempting to make 

predictions with new, unseen data (Claesen & De Moor, 2015; Kuhn & Johnson, 2013). 

Therefore, a number of penalisation techniques have been developed to improve performance 
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on unseen data compared to OLS Regression by making a bias-variance trade-off (Zou & 

Hastie, 2005). 

 

Within machine learning, bias is the error between the predictions made by the model and 

true values (James et al., 2013; Kuhn & Johnson, 2013). For example, the assumption of a 

fully linear relationship made by OLS Regression is likely to be an oversimplification of the 

relationships between the variables and as such, results in high bias and errors in prediction 

that cannot be accounted for by increasing the number of samples in the training dataset 

(James et al., 2013).  

 

Variance refers to the variability of the error in the predictions made by the model if a 

different training set is used, as a model with high levels of variance will overfit the current 

training data and will likely struggle when applied to new unseen data (Bruce & Bruce, 2017; 

James et al., 2013). The bias-variance trade-off therefore relates to balancing the complexity 

of the model, as a highly complex model will experience a high level of variance and overfit 

the data, whereas an overly simplistic model will show strong levels of bias and underfit the 

data (Claesen & De Moor, 2015). 

 

One example of a penalisation technique that attempts to improve on the performance of OLS 

Regression is Ridge Regression (Zou & Hastie, 2005). Ridge Regression attempts to negate 

the tendency to overfit data, as seen in OLS Regression (Kuhn & Johnson, 2013; Zou & 

Hastie, 2005) by reducing the variance of the model at the expense of bias (Zou & Hastie, 

2005), which consequently often has the effect of reducing the overall error exhibited by the 

model when compared to OLS Regression (Kuhn & Johnson, 2013). Ridge Regression 

reduces variance by adding an 𝐿𝐿2 squared magnitude of coefficients penalty to the parameter 

estimates, which has the effect of only allowing the individual regression parameters to 

become large if there is a proportional decrease in RSS (Kuhn & Johnson, 2013). The size of 

the penalty applied to the parameters is represented with the hyperparameter 𝜆𝜆, as seen in 

Equation 3.6 (Kuhn & Johnson, 2013), which is referred to as “alpha” within the Scikit-Learn 

documentation (Scikit-Learn, n.d.-ab) due to lambda being a reserved keyword in Python: 
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 3.6) 

𝑅𝑅𝑅𝑅𝑅𝑅𝐿𝐿2 =  �(𝑦𝑦𝑖𝑖 −  𝑦𝑦�𝑖𝑖)2
𝑛𝑛

𝑖𝑖 = 1

 +  λ � 𝛽𝛽𝑗𝑗2
𝑝𝑝

𝑗𝑗 = 1

 

 
 

The values of hyperparameters can have significant impacts on the performance of a model, 

for example, 𝜆𝜆 = 0 would make Ridge Regression equivalent to OLS Regression, whereas 

larger values shrink parameter estimates towards 0 (Claesen & De Moor, 2015; Kuhn & 

Johnson, 2013). In order to find the optimal hyperparameter values that minimise the error 

produced by the model it is necessary to examine how different configurations of 

hyperparameter values effect a model’s performance. This process is referred to as 

“Hyperparameter Tuning”, which essentially involves trialling a range of values for each 

hyperparameter in the models and identifying the combination that results in the lowest 

amount of error. However, the testing dataset must remain isolated from this process and 

cannot be used to evaluate the different hyperparameter values (Bengio & Grandvalet, 2004; 

Claesen & De Moor, 2015; Mantovani et al., 2015).  

 

Instead, K-Fold Cross Validation is applied to the training dataset, which involves repeatedly 

splitting the dataset K times, with 1/K of the data being reserved for testing (formally, the 

validation dataset) and the remaining data being used to train the model until each subset has 

been used as the validation set (Bengio & Grandvalet, 2004; Kuhn & Johnson, 2013; Vabalas 

et al., 2019; Wong & Yeh, 2020). Although this is a computationally expensive process, it 

allows for average performance to be estimated. This average performance is formally 

referred to as the Expected value of Predication Error (EPE) of the model with a given set of 

hyperparameter values. The EPE can be computed and subsequently compared with alternate 

hyperparameter configurations, allowing for an optimal configuration to be identified 

(Bengio & Grandvalet, 2004).   

 
Within this investigation, hyperparameter tuning is implemented using Grid Search, which 

exhaustively searches through all possible hyperparameter combinations within a pre-

determined parameter space (Mantovani et al., 2015). Although there are less 

computationally expensive hyperparameter tuning methods available, in this investigation 

Grid Search – and specifically, SciKit-Learn’s GridSearchCV (Scikit-Learn, n.d.-k) – 
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remains a very popular technique, thus making it an appropriate choice as the size of the 

training dataset is not likely to result in excessive processing times (Mantovani et al., 2015).  

 

Given that GridSearchCV (Scikit-Learn, n.d.-k) incorporates K-Fold Cross Validation, a 

value of 10 was set for K, as this has been shown through empirical studies to produce error 

rate estimates that experience neither high levels of bias or variance (James et al., 2013; Kuhn 

& Johnson, 2013), with a range of values on a log-10 scale from 10e-5 to 100 being evaluated 

in order to find the optimal value for 𝜆𝜆. 

 

Additionally, when evaluating techniques such as OLS Regression which do not require 

hyperparameter tuning, traditional K-Fold Cross Validation is used in place of Grid Search 

using SciKit-Learn’s cross_val_score function (Scikit-Learn, n.d.-d). 

 

One of the drawbacks to Ridge Regression is that it is unable to create a “parsimonious” 

model, meaning that whilst Ridge Regression is able to shrink parameter estimates towards 0, 

it cannot set them to absolute 0 and therefore, retains all predictors in the model and does not 

perform feature selection by removing any which are unimportant (Kuhn & Johnson, 2013; 

Zou & Hastie, 2005). A common alternative to Ridge Regression which is able to create a 

parsimonious model is Least Absolute Shrinkage and Selection Operator (lasso) which can be 

seen in Equation 3.7 (Kuhn & Johnson, 2013; Tibshiranit, 1996; Zou & Hastie, 2005). 

 

 3.7) 

𝑅𝑅𝑅𝑅𝑅𝑅𝐿𝐿1  =  �(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2  +  𝜆𝜆 ��𝛽𝛽𝑗𝑗�
𝑝𝑝

𝑗𝑗 = 1

𝑛𝑛

𝑖𝑖 =1

 

 

Lasso is fundamentally very similar to Ridge Regression as it allows parameter estimates 

towards 0 however, as the 𝐿𝐿1 penalty is being applied to the absolute value of the magnitude 

of coefficients thus allowing parameter estimates to be set to absolute 0 (Kuhn & Johnson, 

2013; Zou & Hastie, 2005). This ability to set parameter estimates to absolute 0 allows Lasso 

to perform feature selection and produce simpler, sparse models (James et al., 2013; Kuhn & 

Johnson, 2013). 

 



 111 

Like Ridge Regression, Lasso is sensitive to values of 𝜆𝜆, as an excessively large value will 

result in more parameter estimates to be set to 0, whereas too smaller value of 𝜆𝜆 would 

prevent unimportant variables from being removed from the model (Kuhn & Johnson, 2013). 

Hyperparameter tuning is employed in the same as Ridge Regression in order to 

obtain an optimal value of 𝜆𝜆, which is also denoted as “alpha” within the Scikit-Learn 

documentation for the Lasso function (Scikit-Learn, n.d.-n). 

 

Additionally, a middle ground between Ridge Regression and Lasso can be found within 

Elastic Net Regression which combines both the 𝐿𝐿1 and 𝐿𝐿2 penalties; as seen in Equation 3.8, 

which has been shown to be more effective at dealing with multicollinearity amongst 

predictor variables (Kuhn & Johnson, 2013; Zou & Hastie, 2005). 

 

  
3.8) 

𝑅𝑅𝑅𝑅𝑅𝑅 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  �(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2  +  𝜆𝜆1 � 𝛽𝛽𝑗𝑗2  +
𝑝𝑝

𝑗𝑗 = 1

 𝜆𝜆2  ��𝛽𝛽𝑗𝑗�
𝑝𝑝

𝑗𝑗 = 1

𝑛𝑛

𝑖𝑖 =1

 

 

As with both Ridge Regression and Lasso, Elastic Net requires hyperparameter tuning to be 

carried out in order to find an optimal value of 𝜆𝜆 (alpha). There is an additional 

hyperparameter; “l1_ratio”, which acts as a mixing parameter for the 𝐿𝐿1 and 𝐿𝐿2 penalties 

where a value of 0 indicates only a 𝐿𝐿2 penalty is applied, a value of 1 indicates a 𝐿𝐿1 penalty is 

applied, and any value in between 0 and 1 is a combination of both penalties and therefore, 

requires tuning in order to find an optimal model (Scikit-Learn, n.d.-h). 

 

Bayesian Ridge Regression 

The regression methods described thus far can be considered frequentist methods as 

predictions are made in the form of single values, as opposed to Bayesian methods which 

make predictions based upon a probability distribution (Wakefield, 2013). 

As part of the model evaluation process, the Bayesian variant of Ridge Regression was 

implemented which, unlike traditional Ridge Regression, does not require GridSearchCV to 

be utilised to find the optimal hyperparameter values. Instead, the SciKit-Learn 

implementation of Bayesian Ridge Regression (Scikit-Learn, n.d.-c) estimates 

hyperparameter values during the fitting process, as per the method posed by MacKay (1992) 
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in the description of the algorithm in Appendix A of Tipping (2001), and as such, only 

standard K-Fold Cross Validation is required when comparing Bayesian Ridge Regression to 

the other methods being evaluated.  

 

Ridge Classification 

Scikit-Learn also includes a classification variant of Ridge Regression wherein binary target 

variables are converted to {-1, 1} and then treated as a standard Ridge Regression problem 

(Scikit-Learn, n.d.-ac). Consequently, the Ridge Classifier has the same hyperparameters as 

the Ridge Regressor and are therefore trained in the same way as described previously. 

 

Logistic Regression 

Logistic Regression is an example of a Generalised Linear Model (GLM) which extends 

traditional linear (OLS) regression into new contexts (i.e., classification tasks), therefore 

making Logistic and OLS Regression akin to each other with the exception that Logistic 

Regression produces a binary outcome (Bruce & Bruce, 2017; Kuhn & Johnson, 2013). A 

GLM is characterised by two main components: a probability distribution; which in the case 

of Logistic Regression is a binomial distribution, and a link function to map the response to 

the predictors, which for Logistic Regression is a Logit function (Bruce & Bruce, 2017, p. 

187). Logistic Regression is fit using Maximum Likelihood Estimation (MLE); as opposed to 

least squares used by OLS Regression which iteratively evaluates parameter estimates until 

the model no longer improves and is said to have “converged” (Bruce & Bruce, 2017; Miles 

& Shevlin, 2001).  

 

As with the methods discussed previously, the Scikit-Learn implementation of Logistic 

Regression (Scikit-Learn, n.d.-r) has a number of hyperparameters, which can be tuned to 

optimise performance. In order to reduce the likelihood of overfitting the data the “penalty” 

hyperparameter can be used to determine what regularisation penalty is applied (𝐿𝐿1, 𝐿𝐿2, 

elastic net or none), with the strength of the penalty being controlled with the “C” 

hyperparameter, where smaller values indicate stronger regularisation (Scikit-Learn, n.d.-r; 

Vabalas et al., 2019).  

 

An additional hyperparameter, “solver”, specifies the optimisation algorithm to use whilst 

training the Logistic Regression model (Scikit-Learn, n.d.-r). Although it is possible to use 

GridSearchCV to compare different solver methods, the solver “liblinear” has been chosen as 
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it works well with small datasets however, liblinear is not compatible with the elastic net 

penalty and as such, cannot be included in the parameter grid (Scikit-Learn, n.d.-r; Vabalas et 

al., 2019).  It should be noted that GridSearchCV utilises stratified K-Fold Cross Validation 

when applied to a binary classification problem, which ensures that the distribution of the 

classes is the same in each fold (Scikit-Learn, n.d.-k). 

  

Support Vector Machines 

Support Vector Machines (SVMs) are a set of highly adaptable modelling techniques 

originally developed by Vapnik (2000) as a classification method and were later expanded to 

allow them to also be applied to regression tasks (Kuhn & Johnson, 2013; Vapnik, 2000). 

Briefly, the concept of a Support Vector Machine Classifier (SVC) revolves around the 

concept of a “margin”, which in the context of classification, refers to the distance between 

the decision boundary (hyperplane) that separates two classes and the closest data points 

(Kotsiantis, 2007; Kuhn & Johnson, 2013).  

 

By maximising the margin (i.e., finding the maximum distance between the decision 

boundary and the data points on either side), the generalisability of the model can be 

improved (Bishop, 2006; Kotsiantis, 2007; Kuhn & Johnson, 2013). However, it may not 

always be possible for a decision boundary to be established due to misclassified instances 

(Kotsiantis, 2007). This issue can be accounted for through the use of a “soft margin”, which 

allows some misclassifications of the training data to be accepted (Bishop, 2006; Kotsiantis, 

2007). The soft margin is another example of the bias-variance trade off and is controlled 

using the regularisation hyperparameter “C”, where lower values allow for as wide a margin 

as possible by allowing more misclassifications, and higher values tighten the margin and 

reduce the number of misclassifications being accepted (Bishop, 2006; Hsu et al., 2008; 

Kotsiantis, 2007; Scikit-Learn, n.d.-ae). 

 

One of the advantages of Support Vector Machines is their ability to produce extremely 

flexible decision boundaries through the use of the “kernel trick” (Kuhn & Johnson, 2013). 

The kernel trick works by mapping the original “input space” data into a higher dimensional 

(possibly infinite) “transformed feature space”, thus allowing for an appropriate decision 

boundary to be established (Hsu et al., 2008; Kotsiantis, 2007; Kuhn & Johnson, 2013). 



 114 

This therefore allows SVMs to handle the complexities in relationships between variables, 

which often occur in real-world data and would otherwise make it impossible for a linear 

decision boundary to be established (Kotsiantis, 2007).  

 

Numerous kernel functions are available to transform the data into a higher dimensional 

space (Hsu et al., 2008). However, for this investigation only two kernel functions will be 

evaluated. The first is the Linear Kernel Function, assumes that the classes are linearly 

separable. However, the second kernel function, the Radial Basis Function (RBF) does not 

make any assumptions about the classes being linearly separable and is therefore able to 

handle nonlinear relationships between classes, making it a popular choice for use with 

SVMs (Hsu et al., 2008).  

 

Both kernels require the C hyperparameter. However, RBF requires an additional 

hyperparameter, 𝛾𝛾. This dictates how far each training example’s influence on the decision 

boundary reaches, with lower values of 𝛾𝛾 meaning examples that are further away can 

influence the decision boundary, whereas high 𝛾𝛾 values indicate that only examples that are 

close can influence the decision boundary (Scikit-Learn, n.d.-z, n.d.-ae). In order to optimise 

the model’s performance on new data, values for both C and 𝛾𝛾 should be established using 

cross-validation. 

 

Support Vector Regression (SVR) follows the same principles as Support Vector 

Classification and is designed to be less affected by outliers than OLS by penalising any 

training examples that fall outside of the margin, hence being referred to as the 𝜖𝜖-tube (Awad 

& Khanna, 2015; Kuhn & Johnson, 2013; Zhang et al., 2014). In essence, SVR allows 

predictions to be made within a range of tolerance and as such, requires an additional 

hyperparameter 𝜖𝜖 to be tuned, which dictates the width of the 𝜖𝜖-tube (Scikit-Learn, n.d.-af). 

Like SVC, during the current model evaluation process both Linear and RBF kernels will be 

employed with SVR, with the LinearSVC (Scikit-Learn, n.d.-p) and LinearSVR (Scikit-

Learn, n.d.-q) implementations being used to trial the Linear kernel, as opposed to the 

standard SVC and SVR, due to the increased performance that is offered (Scikit-Learn, n.d.-

ad).  
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K-Nearest Neighbor 

K-Nearest Neighbor (KNN) is a simplistic machine learning algorithm with both 

classification and regression variants (Batista & Silva, 2009; Bruce & Bruce, 2017; Dudani, 

1976; Kuhn & Johnson, 2013). KNN classification works on the premise that data-points that 

are determined to be close together using a distance metric will share the same classification 

(Batista & Silva, 2009; Bruce & Bruce, 2017; Dudani, 1976). Numerous distance metrics are 

available, with the SciKit-Learn implementation of KNN using the Minkowski metric 

(Equation 3.9) with a power (p) value of 2 by default (Scikit-Learn, n.d.-l, n.d.-m). This is 

equivalent to Euclidean distance, which is one of the most commonly used distance metrics 

(Kuhn & Johnson, 2013). 
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The parameter 𝑘𝑘 represents the number of “neighbors” that, according to the distance metric, 

are closest to the element being classified, with its class being established by finding the 

majority class amongst the neighbors (Bruce & Bruce, 2017; Chomboon et al., 2015; Kuhn & 

Johnson, 2013). Similarly, for regression tasks, the average value of the 𝑘𝑘 closest neighbours 

to the datum are used to make predictions.  

 

It is therefore important that an appropriate value for 𝑘𝑘 (n_neighbors within the SciKit Learn 

documentation; Scikit-Learn, n.d.-l, n.d.-m) is selected through cross-validation in order to 

produce an optimal model and minimise the chance of overfitting the data by selecting a 

value of 𝑘𝑘 which is too small, or underfitting by selecting a value of 𝑘𝑘 which is too large 

(Batista & Silva, 2009; Kuhn & Johnson, 2013). Within the standard implementation of KNN 

all of the 𝑘𝑘 closest neighbors are weighted equally (uniform weighting), regardless of how far 

away they are from the datum being classified or predicted (Dudani, 1976). Alternatively, 

Distance-Weighted KNN accounts for the distance of the neighbors by applying a weight 

such that closer neighbours have a greater weight and therefore exert a greater influence 

when making the classification or prediction (Batista & Silva, 2009; Dudani, 1976). Within 

SciKit-Learn the “weights” hyperparameter dictates whether unform or distance weighting 

functions are applied, with the distance weight function weighing points by the inverse of 
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their distance (Scikit-Learn, n.d.-l, n.d.-m). Both variants will be evaluated as part of this 

investigation.  

 

Decision Tree, Bagging Decision Trees and Random Forests 

Tree-based methods are a popular family of machine learning algorithms, which can be 

applied to both classification and regression problems (Bruce & Bruce, 2017; Kuhn & 

Johnson, 2013). Decision Trees are the most basic form of tree-based models, which aim to 

establish smaller and more homogenous groups within the training data by partitioning the 

data into multiple nested if-then statements (Kuhn & Johnson, 2013). This approach enables 

complex relationships to be uncovered within the data, whilst also allowing for a highly 

interpretable model to be produced that can be plotted visually, making decision trees 

extremely useful for carrying out exploratory data analysis (Bruce & Bruce, 2017; Kuhn & 

Johnson, 2013; Myles et al., 2004). 

    

There exist multiple algorithms for constructing Decision Trees, with SciKit-Learn’s 

implementation using an optimised version of the CART (Classification and Regression Tree; 

Scikit-Learn, n.d.-g). Trees are constructed through recursive partitioning in which the data 

are repeatedly partitioned to create increasingly homogeneous segments by a predictor, which 

is found to provide the best separation at that level of the tree (Bruce & Bruce, 2017; Myles 

et al., 2004). This therefore requires a measure of homogeneity, or class impurity, in order to 

establish the most appropriate predictor to perform the partition. The SciKit-Learn Decision 

Tree Classifier allows for one of two different measures of class impurity to be used when 

creating partitions; Gini Impurity (Equation 3.10) and Entropy of Information (Equation 

3.11), where 𝑝𝑝 is the proportion of misclassified results for a partition 𝐴𝐴 (Bruce & Bruce, 

2017; Scikit-Learn, n.d.-f). 
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The method to be used is specified using the “criterion” hyperparameter, with Gini being the 

default choice that will subsequently be used within this investigation. For Regression Trees, 

the default splitting criterion is the squared error of each sub-partition (Bruce & Bruce, 2017; 

Kuhn & Johnson, 2013; Scikit-Learn, n.d.-g). 

 

One of the major drawbacks of the basic Decision Tree is that by default, the tree will grow 

to an extent where it will likely account for the variation within the training set and the 

partitioning rules being used have become overly complex and generally only reflect noise 

within the data. This therefore means the tree has overfit the training data and will as such 

struggle to generalise to new data (Bruce & Bruce, 2017; Kuhn & Johnson, 2013; Myles et 

al., 2004).  

 

There are two ways to minimise the potential for overfitting when training a Decision Tree. 

The first method is to arbitrarily limit the tree’s growth using hyperparameters such as: 

max_depth (maximum tree depth), min_samples (minimum number of samples required to 

split an internal node) and min_samples_leaf (minimum samples needed to be a leaf node) 

(Bruce & Bruce, 2017; Scikit-Learn, n.d.-f, n.d.-g), the values of which are established using 

hyperparameter tuning such as GridSearchCV.  

 

The second approach, which is generally accepted to be a better (Myles et al., 2004), is to 

allow the tree to grow unimpeded and then “pruned back” to produce an overall smaller tree 

that is more generalisable (Bruce & Bruce, 2017; Kuhn & Johnson, 2013; Myles et al., 2004). 

Pruning within Scikit-Learn is achieved through a process known as Minimal Cost-

Complexity Pruning where, as shown in Equation 3.12, a complexity parameter α is used to 

calculate the cost-complexity, 𝑅𝑅𝛼𝛼(𝑇𝑇) for a given tree 𝑇𝑇 with �𝑇𝑇�� representing the number of 

terminal nodes (i.e., leaves), in the tree 𝑇𝑇, and 𝑅𝑅(𝑇𝑇) representing the total misclassification 

rate of the terminal nodes (Hastie et al., 2009; Kiran & Serra, 2017; Scikit-Learn, n.d.-e). 

 

 3.12)  
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Furthermore, Equation 3.13 demonstrates how the cost-complexity can be calculated for an 

internal node, that is, all nodes which are not terminal leaf nodes or a root node (Kiran & 

Serra, 2017; Scikit-Learn, n.d.-e). 

 

3.13) 

 

𝑅𝑅𝛼𝛼(𝑡𝑡) = 𝑅𝑅(𝑡𝑡) + 𝛼𝛼 

 

SciKit-Learn provides the hyperparameter ccp_alpha, which allows the value of α to be set. 

Trees are then pruned by removing a subtree with the largest cost-complexity that is also 

smaller than the value of α (Scikit-Learn, n.d.-e). Consequently, an optimal value for the 

ccp_alpha hyperparameter should be found using a method such a GridSearchCV (Bruce & 

Bruce, 2017; Kuhn & Johnson, 2013). 

 

In addition to the issues relating to overfitting, Regression Trees may have higher error rates 

than other types of regression models, with Kuhn (2013) stating: 

 

By construction, tree models partition the data into rectangular regions of the 

predictor space. If the relationship between the predictors and the outcome is not 

adequately described by these rectangles, then the predictive performance of a tree 

will not be optimal. (p. 181) 

 

This is a fundamental drawback of Regression Trees, as only a finite number of terminal leaf 

nodes can be constructed, limiting the tree’s ability to fully reflect trends within the data.  

 

To overcome the issue of high variance leading to poor performance on unseen data, 

ensemble techniques, which combine predictions from multiple models (Kuhn & Johnson, 

2013), have been developed in an attempt to produce tree-based models that have lower 

levels of variance and as such perform better on unseen data. One such technique is Bootstrap 

Aggregation, commonly referred to as Bagging, which attempts to reduce variance by using 

bootstrapping to construct an ensemble of trees, although bagging can be applied to any 

classification or regression algorithm (Bruce & Bruce, 2017; Dietterich, 2000; James et al., 

2013; Kuhn & Johnson, 2013). 
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Bootstrapping works by taking a random sample of the data with replacement (Efron & 

Tibshirani, 1986) wherein a data point can be selected to be part of the bootstrap sample, and 

still be available to be selected again (Efron & Tibshirani, 1986; Kuhn & Johnson, 2013). 

This selection process is repeated until the sample is the same size as the original dataset, 

which consequently means that some data-points will occur multiple times within the 

bootstrap sample, whereas others will not be included (Efron & Tibshirani, 1986; Kuhn & 

Johnson, 2013). The subset of data-points not selected for inclusion in the bootstrap is 

referred to as the “out-of-bag” sample (Kuhn & Johnson, 2013). 

 

Each of the individual Decision Trees within the ensemble will be fit to a different bootstrap 

sample, with the number of trees being controlled by the n_estimators hyperparameter within 

SciKit-Learn (Bruce & Bruce, 2017; Kuhn & Johnson, 2013; Scikit-Learn, n.d.-a, n.d.-b). 

When making predictions, each individual tree will make its own prediction, which will then 

be averaged in order to produce a prediction for the entire ensemble. This therefore decreases 

the variance of predictions as each of the trees will have a different structure as they will have 

been fit using a different bootstrap sample. However, the individual trees within a bagging 

model are not fully independent of each other as all predictors are available when fitting. 

With a relatively large dataset, this can lead to “tree correlation”, where trees exhibit similar 

structures, particularly at higher levels, due to the underlying relationships within the data 

(Kuhn & Johnson, 2013). 

 

The second ensemble technique, Random Forest, overcomes the issue of tree correlation, and 

therefore reduces the variance further as opposed to Bagging, by using a random subset of the 

available predictors in addition to a bootstrap sample when fitting each tree (Bruce & Bruce, 

2017; Kuhn & Johnson, 2013). The SciKit-Learn implementation of Random Forest 

considers the square root of the number of available predictors by default when partitioning 

data (Scikit-Learn, n.d.-x, n.d.-y). 

 

Like Bagging, Random Forest requires the number of trees in the forest to be specified using 

the n_estimators hypermeter (Scikit-Learn, n.d.-x, n.d.-y), with an optimal number being 

determined with GridSearchCV. Furthermore, hyperparameters such as max_depth, 

min_samples_split and min_samples_leaf can be used to optimise the individual trees in the 

forest. Additionally, the max_features hyperparameter can be used to control the number of 
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features being considered when identifying the best split during the tree growing process 

(Scikit-Learn, n.d.-x, n.d.-y).  

 

Random Forests are more computationally efficient than Bagging on a tree-by-tree basis as 

only a subset of the available predictors need to be evaluated at each partition (Kuhn & 

Johnson, 2013). However, both techniques sacrifice the interpretability of individual Decision 

Trees in favour of a decrease in variance.   

 

Gradient Boost and XGBoost 

Gradient Boost, like Bagging and Random Forests, is an ensemble method commonly used 

with decision trees (Bruce & Bruce, 2017), which can be applied to both classification and 

regression problems. Briefly, Gradient Boost is an additive model that utilises “weak 

learners” in the form of decision or regression trees for their respective problems (Kuhn & 

Johnson, 2013; Ye et al., 2009). The model starts with a “best guess” of the target variable, 

which consists of a single leaf, and the mean of the target variable for regression problems. 

For classification problems, the log odds of the target variable, which can be converted into a 

probability using a logistic function, which is the inverse of the logit function. Subsequently, 

the pseudo-residuals are calculated, as this is for an individual tree as opposed to the entire 

ensemble, and a new tree is fit to the pseudo-residuals as opposed to the target variable 

(James et al., 2013; Kuhn & Johnson, 2013). This process repeats until the specified number 

of iterations has been completed with each successive tree minimising the error of the 

previous one through the use of Gradient Decent. Within SciKit-Learn the maximum number 

of iterations is determined using the n_estimators hyperparameter (Scikit-Learn, n.d.-i, n.d.-

j).  

 

Gradient Boost can be considered a Greedy algorithm as the optimal weak learner is selected 

at each stage such that the overall ensemble cannot be guaranteed to be optimal, which can 

also lead to overfitting (Kuhn & Johnson, 2013). However, the potential for overfitting can be 

reduced by constraining the learning rate through the use of a regularisation parameter, which 

is represented by the hyperparameter learning_rate within SciKit-Learn (James et al., 2013; 

Kuhn & Johnson, 2013; Scikit-Learn, n.d.-i, n.d.-j). Furthermore, it is common to constrain 

the size of trees using the max_depth hyperparameter, which also aids in reducing overfitting 

(Scikit-Learn, n.d.-i, n.d.-j). 
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Stochastic Gradient Boost follows the same process as Gradient Boost with the addition of 

taking a random sample of the training data when training each individual tree (Kuhn & 

Johnson, 2013). XGBoost (eXtreme Gradient Boost) is one of the most widely used 

implementations of Stochastic Gradient Boost due to its scalability and efficiency (Bruce & 

Bruce, 2017; Chen et al., 2018). XGBoost is highly tuneable with a large number of 

hyperparameters, which can be adjusted to optimise performance using GridSearchCV. Two 

particularly significant hyperparameters are “subsample”, which specifies the proportion of 

the training data to be sampled, and “eta”, which controls the learning rate and helps to 

prevent overfitting (Bruce & Bruce, 2017; XGBoost, n.d.). 

 

Neural Networks 

Neural Networks are one of the most popular and flexible machine learning algorithms, 

which have been a focus for researchers dating back to the 1940’s, with modern advances in 

computing power allowing for larger, more complex neural networks to be developed  

(Awad & Khanna, 2015; Russell & Norvig, 2020). Briefly, Neural Networks are modelled on 

the biological brain and comprise a series of nodes (neurons), which have been aggregated 

into layers (Karsoliya, 2012; Russell & Norvig, 2020; Tomasevic et al., 2020). Layers are 

connected together by directed links between nodes, which all travel in the same direction 

within a feedforward Neural Network (Russell & Norvig, 2020), with each link having an 

associated weight which determines the strength of the connection (Russell & Norvig, 2020). 

Neurons within a biological brain receive and process signals; similarly, the nodes within the 

Neural Network sum the weights from all of the incoming links, which with the addition of a 

bias, are applied to an activation function (Awad & Khanna, 2015; Russell & Norvig, 2020). 

Numerous types of activation functions are available to suit different network configurations 

(Awad & Khanna, 2015), but they all serve the same purpose, which is to “activate” the 

connected node(s) in the subsequent layer in the network when a given threshold is exceeded. 

 
There are three main types of layer within a Neural Network (Awad & Khanna, 2015; Géron, 

2022; Karsoliya, 2012):  

 

• Input layer - External data are presented to the network via the input layer. Every 

node represents an independent variable that can influence the output of the network.  

• Output layer – This outputs the results from the network to the external world. The 

number of nodes is proportional to the output of the network (see below). 
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• Hidden layer(s) – The hidden layers lie in between the input and the output layers and 

are where nodes perform different transformations on the input data through the use 

of the activation functions. There is no theoretical basis for the optimal number of 

hidden layers nor the number of nodes, as each network is application-specific and 

must therefore be developed through trial and error (Awad & Khanna, 2015). 

However, the weights and bias within a network can be optimised using 

backpropagation (backwards propagation of error), which utilises the error from the 

output layer and gradient decent in order to maximise the performance of the network 

(Awad & Khanna, 2015; Géron, 2022).  

 

Karsoyila (2012) states that one or two hidden layers are sufficient to solve most complex 

non-linear problems and therefore in the present investigation the Scikit-Learn Neural 

Network implementations for classification (MLPClassifier) (Scikit-Learn, n.d.-t) and 

regression (MLPRegressor) (Scikit-Learn, n.d.-u) will be used to find an optimal network 

topology.Although alternative Neural Network libraries such as Keras (Chollet, 2015) allow 

for greater customisation of complex networks, which goes beyond the focus of this 

investigation, SciKit-Learn makes it easy to compare different basic network configurations 

using the hidden_layer_sizes hyperparameter, which can be optimised using GridSearchCV 

(Scikit-Learn, n.d.-t, n.d.-u). Activation functions for the hidden layers can be set using the 

activation hyperparameter, with ReLU being the default option. The optimizer can also be 

configured using the solver hyperparameter (Scikit-Learn, n.d.-t, n.d.-u).  Furthermore, the 

lbfgs solver will be used for this investigation as it as it has been shown to perform well on 

smaller datasets and the alpha hyperparameter can be used to apply 𝐿𝐿2 regularisation in order 

to minimise the chance of the networks overfitting the data (Scikit-Learn, n.d.-t, n.d.-u). 
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3.6 Summary and Methodology Reflection 
This chapter provides an account of the methodological approach to data collection within 

this investigation, which culminates in the development of the Programming Checkup as a 

means of collecting data to aid in answering the research questions, and to also support the 

development of the predictive model. An overview has also been provided of the different 

machine learning algorithms that form the basis of the analysis presented within the 

following chapter.  

 

As this investigation sits firmly within the realms of quantitative research, it is also important 

to acknowledge the educational context of the investigation and how this influences the 

research design. Reflection, which is defined as “deliberation, pondering, or rumination over 

ideas, circumstances, or experiences yet to be enacted, as well as those presently unfolding or 

already passed” (Alexander, 2017, p. 308), is an important process within the field of 

education as a means of improving practices. Reflection alone does not always translate into 

changes in teaching practice (Feucht et al., 2017).  Feucht et al. (2017) argue that the process 

of reflexivity, which is broadly defined as an internal dialogue leading to transformative 

actions within a classroom (Archer, 2012; Feucht et al., 2017), may support the ideas that 

emerge during reflection being acted upon.  

 

Subsequently, the processes of reflection and reflexivity can be applied to this research 

investigation in a similar way to how they are applied within classrooms. Kamler and 

Thomson (2014) state that a reflective researcher applies the same critical stance towards 

their own work as they do with their research data. However, reflexivity takes this process 

one step further by analysing the researcher’s role in the investigation and challenges the 

perspectives and assumptions of both the researcher and the wider world that the 

investigation is being conducted in (Palaganas et al., 2017; Parahoo, 2014). Reflexivity is 

seen as a continuous process which permeates every aspect of the research investigation and 

allows for the researcher’s values and beliefs, which inevitably influence the research 

process, to be made transparent. Additionally, the researcher’s interactions with the 

participants can be detailed from the first point of contract until the end of the study, thus 

enabling the results to be understood not only in terms of what was discovered, but also in 

terms of how it was discovered (Etherington, 2007; Hertz as cited in Etherington, 2007; 

Parahoo, 2014). 
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Palaganas et al. (2017) claim that a researcher’s personality does not exist independently of 

the research process, nor does it completely determine it, and should therefore be viewed as a 

dialogue for challenging perspectives and assumptions. Nevertheless, the personality or 

rather, the “personal epistemology”, a person’s cognitions about the nature of knowledge and 

the process of knowing (Pintrich, 2002) undoubtedly influence the research investigation. 

However, the overall quality and validity of the research can be improved by engaging in the 

process of reflexivity and acknowledging the limitations of the knowledge being produced 

(Etherington, 2007).  

 

In order to ensure the integrity of this research investigation, it is important to acknowledge 

my own personal epistemology and interactions with participants, thus allowing for a 

complete understanding of the methodological decisions which have been made, as well as 

any factors that may influence the outcomes of this research.  

 

It should be noted that I have a background in computer science and as such, was previously 

unaccustomed to conducting in-depth research in an education setting. This has undoubtedly 

influenced the methodology of this investigation, with a primarily quantitative approach 

being taken to the research design, although this is supported by previous more qualitative-

focused research of others, particularly relating to the discovery of students’ misconceptions. 

Although as a science-based researcher I am expected to remain as objective as possible, this 

investigation draws heavily on my own experiences with programming, to the extent that I 

can be considered a “relative insider” (Griffiths, 1998) for two primary reasons:  

 

1. I studied a previous version of the introductory programming module that students are 

currently studying, making me familiar with some of the difficulties of learning to 

program first-hand. However, the experience I had gained in programming prior to 

starting university aided me in my learning, so my own personal experiences do not 

necessarily reflect those of all students, particularly those who come to university 

having never programmed before.  

 

2. I also contribute to the teaching of the introductory programming module that 

participants are studying, and subsequently became the module leader during the 

second year of data collection. 
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Being a relative insider allows me, to an extent, to understand students’ perspectives on 

learning to program. In addition, my involvement in teaching them to program provides me 

with valuable insight into the difficulties that they face, particularly when I can observe 

students demonstrating misconceptions while completing their work. However, it raises the 

issue of how my involvement with the participants influences this research, particularly 

relating to the dual personalities that I must project to students (Etherington, 2007), as both a 

researcher and as an educator. I personally view myself as a practitioner-researcher, whereby 

as the research I am conducting is within my own work setting, a symbiotic relationship 

exists where my research informs my teaching, and my experiences in the classroom inform 

my research direction. However, my students must always remain my main priority on a day-

to-day basis.  

 

In order to carry out a rigorous and credible investigation, I feel I must adopt a clear, 

unbiased and analytical persona towards the participants taking part in the investigation in 

order to prevent my own personal biases from influencing the outcomes of the research. 

Furthermore, it is important that I make students aware that their participation is completely 

voluntary, and all responses are treated with the strictest confidence. However, by being 

involved with the delivery of the introductory programming module to students, I feel that I 

must also project a sense of approachability to students, making it known to them that I am 

there to support them during their weekly classes, as well as outside of the lesson if required. 

I have regular contact with the entire first year Computing cohort through lectures, 

programming labs and also an optional support lecture, supporting the perceived persona that 

I am the person for students to turn to if they are struggling with their programming work. 

Although these two personas do appear to be polar opposites, a series of compromises were 

made throughout the course of this investigation, which both ensured the integrity of the 

research, as well allowing students to be appropriately supported.  

 

The first issue that arose was the potential for students to feel compelled to take part in the 

study due to the fact that I am a member of the teaching staff, and that not taking part may 

negatively affect their grades. Equally, some students; particularly those who are the least 

confident with programming, may be reluctant to take part due to a lack of confidence in their 

abilities. To alleviate these issues students were told throughout the investigation that 

participation was completely voluntary and would in no way affect their grades. Students 

were also told that their responses would be confidential and that they would only receive 
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feedback if they requested it. Given that sizeable numbers of students opted not to participate 

in the investigation, I am confident that efforts to inform students that the Programming 

Checkup was not a mandatory exercise were successful. However, from experience, students 

who are often the most in need of support are also those who do not engage with additional 

activities, such as the Programming Checkup, meaning potentially important data may have 

been missed. 

 

The question of how much the results from students’ first attempt at the Programming 

Checkup should influence my teaching, prior to the students attempting it for a second time 

was also raised during the investigation. An external researcher would be able to collect data 

from participants at the two time points with little or no additional contact with students. 

However, by having regular contact with students there is a greater opportunity for students 

to ask questions about the research. Any general questions about the research process were 

answered as clearly as possible but a number of students had more in-depth questions relating 

to the underlying theories behind the research. Providing students with a detailed description 

of how the Programming Checkup works prior to the completion of data collection could 

potentially influence their responses, and therefore, students were promised an in-depth 

explanation in one of the optional programming support lectures during the second semester, 

thus allowing the data collection to be completed without interference, while also not taking 

up any lesson time in the lead-up to the students’ assessments. Additionally, there is also the 

issue of whether the misconceptions students demonstrate in their first attempt at the 

Programming Checkup should be addressed. Making students explicitly aware of their 

misconceptions may potentially increase the probability of them overcoming them relative to 

what would be the case without intervention.  

 

As examining the probability of a student overcoming their misconceptions with or without 

intervention is beyond the scope of this project, withholding support from students could be 

deemed unethical from a teaching perspective, as students’ misconceptions can become more 

deeply engrained over time if they are not addressed. In order to account for this, students 

who requested feedback on their first attempt at the Programming Checkup were given 

generalised feedback for each concept they demonstrated difficulty with. Furthermore, 

students were advised to attend the optional support lecture where the concepts that had been 

introduced in the main lecture were reinforced through additional examples and in-depth 

explanations. However, the misconceptions identified within the Programming Checkup were 
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not explicitly mentioned during these explanations, although, after completing their second 

attempt at the Programming Checkup, students were provided with additional feedback that 

explicitly addressed their misconceptions in both their direct feedback, and in the support 

lecture.  

 

Students were generally happy with the approach taken for the provision of feedback from 

the Programming Checkup, with a number of students commenting that their main motivation 

for taking part was the feedback that they would receive. The generalised feedback given 

after students completed the Programming Checkup for the first time successfully prompted a 

large number of students to regularly attend the optional support lecture. The Programming 

Checkup results also informed my discussions with struggling students who requested one-to-

one support by allowing me to have an understanding of where the students were likely to be 

struggling prior to meeting with them, which reaffirms my intentions for implementing the  

Programming Checkup, in conjunction with the predictive model, as a formal part of the 

introductory programming module upon completion of this investigation.  
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4. Predictive Model Development  

4.1 Model Objectives 
The second phase of this investigation was the development of a predictive model which, as 

RQ 3 states, can be used to predict students’ introductory programming assessment results. 

Previous research into developing predictive models of programming performance have used 

students’ results in their introductory programming module (sometimes referred to as CS1) as 

the outcome variable to be predicted. For example, in their study of motivation and comfort-

level, Bergin and Reilly (2005a) were able to produce a regression model which was able to 

account for 60% of the variance in students’ overall performance in their introductory 

programming module. An alternative approach taken by some researchers has been to 

dichotomise students’ results into “pass” and “fail” categories, with some placing the 

decision boundary at 50% (Castro-Wunsch et al., 2017) and others at 40% (Liao et al., 2019; 

Tomasevic et al., 2020). Furthermore, an important area of study within both Educational 

Data Mining and Learning Analytics is “Latent Knowledge Estimation”, wherein students’ 

knowledge of specific skills is assessed by their pattern of correctness  (Baker & Siemens, 

2014) using methods such as Bayesian Knowledge Tracing; as described in Section 3.3. 

 

Although the assessments undertaken by students differ across institutions, it was decided 

that the most appropriate dependent variable for this investigation would be the results 

students achieve on their first introductory programming assessment (Assessment 1), which 

is completed at the end of the first semester. This assessment was chosen rather than the 

overall module grade as it focuses on evaluating students’ core programming skills (use of 

variables, text input/output, conditional statements, loops, and functions) all of which; with 

the exception of functions, are examined within the Programming Checkup. Furthermore, the 

grades students achieve in their first assessment are significantly correlated with that of their 

second assessment, which is undertaken at the end of the module, rs = 0.509 p = < .001. This 

therefore makes the results students achieve in their first assessment indicative of their future 

performance and as such, will allow for students who are likely to require support to be 

identified through their responses to the Programming Checkup at the beginning of the 

academic year (T1). 
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Previous research has shown that students who lack the appropriate mental models of 

fundamental programming concepts will generally find the learning process more difficult 

(Ben-Ari, 1998; Sorva, 2013). As such, during the model development process I aimed to 

evaluate the use of Bayesian Knowledge Tracing to estimate the likelihood of students 

holding appropriate mental models for core programming concepts. This evaluation was done 

in conjunction with the other factors examined within the Programming Checkup. The use of 

Bayesian Knowledge Tracing was therefore implemented to support the analysis of students’ 

mental models when answering RQ 1, as well as the identification of students who are likely 

to require support by making predictions based on their responses to the Programming 

Checkup. Having students complete the Programming Checkup at the earliest available 

opportunity would allow for future interventions to be developed and implemented in the 

early stages of a course to directly support students in the construction of their mental 

models; which may otherwise be more difficult at a later stage due to the misconceptions that 

can develop (Omer et al., 2021; Omer & Farooq, 2020; Winslow, 1996). What form these 

interventions might take is outside the scope of the present investigation; however, they are 

being considered for future research stemming from this work. 

 

Data were collected over the course of three years in the form of responses to the 

Programming Checkup at both T1 and T2 together with students’ Assessment 1 results, with 

70% of the data being randomly selected to be used to train and develop the model and the 

remaining 30% being reserved as a testing holdout set (James et al., 2000, p. 176). Using a 

separate testing dataset allows for the model to be evaluated independently of the data used to 

train it, thus giving a closer estimate of the real-world performance of the model (Russell & 

Norvig, 2020). The total dataset contained 285 responses after removal of students who did 

not complete Assessment 1 or who skipped 25% or more of the Programming Diagnostic 

questions within the Programming Checkup, therefore resulting in a training and testing 

dataset sizes of 200 responses and 85 responses, respectively. 

 

It should be noted that Assessment 1 was changed from a written exam to a practical 

assignment after the first year of data collection, due to a change in assessment policy which 

was outside the control of this investigation. The practical assignment which was completed 

by subsequent year groups was written to assess the same learning outcomes as the written 

exam, which tests students’ abilities to construct a structed solution to a simple problem, 

explain the importance of code readability and maintainability, and check the robustness of 
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code using an appropriate testing strategy. A Kruskal Wallis test confirmed that there was no 

significant difference between the results of students who completed the written exam during 

Year 1 of data collection (M = 69.81, SD = 22.57) and those who completed the practical 

assignment in the subsequent years of data collection (Year 2, M = 69.29, SD = 21.87, Year 

3, M = 69.85, SD = 14.22), H(2) = 2.43, p = .296, η2 = .009.  

 

Using a model to predict students’ Assessment 1 results based on their responses to the 

Programming Checkup at the beginning of the academic year allows teaching staff to provide 

dedicated support to aid them with constructing appropriate mental models before moving on 

to more complex topics, which are typically covered in the second semester of teaching. The 

subsequent sections of this chapter intend to detail the steps taken during the development 

and validation of the predictive model in aid of answering RQ 3.   
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4.2 Data Pre-Processing 
A wide variety of potential regression and classification models have been described within 

the section 3.5, each with their own advantages and disadvantages. Although many of these 

models have been utilised in the previously mentioned EDM-based research investigations, it 

is difficult to pre-empt which models will perform the best when attempting to predict 

students’ Assessment 1 results, hence the need to explore a range of potential models.  

 

Before any machine learning models can be applied to the dataset there are several stages of 

pre-processing that must first take place. This section will describe how the raw output from 

the Programming Checkup needs to be prepared in order to allow both classification and 

regression methods to make predictions. It should be noted that the analysis carried out in this 

section was done before and separate to the in-depth analysis of results presented within 

Chapter 5. This was in order to prevent the holdout testing set from having any influence on 

the decisions made during the development of the predictive model. As such, any statistics 

presented within this section only apply to the training dataset. 

 

Stage 1 – Preparation of Data Exported from Qualtrics 

As the Programming Checkup was being distributed via a Qualtrics survey, the first step was 

to extract the required data from the raw export file generated by Qualtrics. In order to reduce 

the potential for human error affecting the dataset, a Python script was utilised to automate 

the extraction process. Much of the data could be extracted directly from the export file, 

including students’ background details, previous experiences, estimations of difficulty, and 

mental effort levels. However, some aspects of the dataset required additional processing 

before they could be included in the final dataset. For example, students’ average values 

needed to be calculated for their confidence level for each of the question concept categories 

(i.e., Variable Assignment, Conditional Statements, and Iteration), as well as for each of the 

three self-efficacy factors examined within the Programming Checkup as described in 

Section 3.4. 

 

Additionally, students’ answers to the Programming Diagnostic questions needed to be 

“coded” in order to indicate what misconceptions students were exhibiting based on their 

answers. This approach was based upon the work conducted by Dehnadi (2006), where a set 

of pre-defined answers for each question was developed using the literature discussed in 
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Section 3.4, to capture one or more misconceptions arising for each question (see Appendix 

A, Section 3). Where a student’s response matched one of the pre-defined answers, the 

student’s response to the question was coded with the corresponding misconception(s).  

If no matching answer could be found then the answer was coded as “NA” and the student’s 

entire response to the Programming Checkup was flagged for review, meaning that the 

unmatchable answer could be investigated. These unexpected answers could range from 

formatting issues (i.e., a student included commas in their answer when none were expected), 

to genuine answers, which did not correspond to any expected misconceptions. Although 

these types of answers were generally infrequent, an attempt was made to determine how the 

student had arrived at their answer and map it to an appropriate misconception (or multiple 

misconceptions, if appropriate). However, if no reasonable mappings could be made, the 

answer was coded as “NA”. To ensure consistency, any mappings made to unexpected 

answers were recorded to ensure that any other responses that included the same answer were 

also coded with the same misconception(s). Additionally, if a student did not answer a 

question, it was coded as “SK” for skip. The VN (Variable Naming) and PL (Parallelism) 

misconceptions also required some extra processing in order to be coded, as both require 

comparisons to be made between two questions, as explained in Section 3.4. Where 

appropriate, the misconception code for VN or PL was appended to any other misconceptions 

already identified within the student’s response. 

 

Aside from ensuring that answers were coded consistently, the script also enabled Bayesian 

Knowledge Tracing to be used to evaluate whether students held appropriate mental models 

(see Stage 3), by recording if a student had demonstrated a misconception associated with the 

mental model(s) being examined within each question, as shown in Table 4.1. If the student 

demonstrated the misconception, then the response for that question was coded as a 0, thus 

showing that the student made an error in answering that particular question and, therefore, 

may not be in possession of an accurate mental model. If a student answered the question 

correctly then the question was coded as 1. However, if the student skipped or provided an 

answer which could not be mapped to a specific misconception (NA) then the response was 

coded as 0. This information was necessary in order for Bayesian Knowledge Tracing to 

evaluate whether a student held an appropriate mental model or not, as well as for training the 

initial hyperparameters for each mental model. 
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Table 4.1 

Associated Misconceptions of Each Mental Model 

Mental Model Associated Misconceptions 

AND  AND 

Conditional Statements AND, OR, NOT, IF 

IF  IF 

Iteration ET, LT, NI, SE, SM, SP 

NOT NOT 

Output OP 

OR OR 

Parallelism PL 

Variable Assignment  AD, EX, MA, NC, REV, SW 

Variable Naming VN 

 

By using the script to process responses to the Programming Checkup, students’ anonymity 

was protected by replacing students’ University ID numbers with participant numbers. 

However, this means it was necessary for students to enter their ID numbers correctly at both 

T1 and T2 in order for their responses to be linked. A text file was used to store each 

student’s ID and participant number, which were checked when processing each response; if 

a matching ID was found then the corresponding participant number was applied to the 

response, otherwise a new number was assigned. Only the participant number of the students 

was used within the dataset with the only record of students’ identity being the text file the 

script used to keep track of existing ID/participant number pairs. 

 

Prior to the development of the automated marking script, the responses to the first data 

collection in September 2019 were initially manually coded. In order to verify the coding 

technique an external marker, who had no prior involvement with the development of the 

Programming Checkup, was asked to independently mark 10% of the responses collected so 

far. This external marker was provided with a list of examples of correct answers and a non-

exhaustive list of incorrect answers, which indicated particular misconceptions for each 

question, complemented by a description of these misconceptions (see Appendix B). Whilst 

these examples were derived from the previously discussed literature relating to students’ 

misconceptions and the answers provided by students, it is likely that they will have been 

unavoidably influenced by my own epistemological viewpoint, particularly when dealing 
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with unexpected answers. Likewise, the coding being carried out by the external marker 

would also be influenced by their own viewpoint.  

 

Time constraints did not allow for a sufficient number of students to be interviewed about 

their responses in order to make any generalisable conclusions about whether the coded 

misconceptions completely reflected the issues they were experiencing. However, this 

approach did still allow for a perception to be established of the mistakes that students were 

making. Going forward, interviews and code walkthroughs should be an essential part of 

future work stemming from this investigation as discussed further in Section 6.4 below.   

 

An interrater reliability analysis between myself and the external marker was conducted on 

each question using the Kappa statistic and was found to be between .67 (p < .001) and 1.0 (p 

< .001). According to Landis and Koch (1977), these Kappa statistics can be interpreted as 

ranging from substantial agreement to almost perfect agreement. Additionally, the outputs 

from the automated marking script were continually checked to ensure the consistency of the 

mapping, as well as to handle any unexpected answers from students. However, it was not 

possible to use Kappa to provide an interrater reliability analysis in this case, as the 

assumption of independence was violated because the script simply matched answer and 

misconception combinations that were provided. 

 

Stage 2 – Dataset Splitting 

In order to effectively evaluate the real-world predictive power of any potential models, the 

next stage involved extracting 30% of the data at random to form the holdout test set (Kuhn 

& Johnson, 2013; Raschka, 2018; Russell & Norvig, 2020). This data subset was completely 

isolated from the training process and was only used to test the final models, thus simulating 

their real-world performance, and making it possible to identify any models which overfitted 

the training data. 

 

The holdout test set was extracted using SciKit-Learn’s train_test_split method (Scikit-Learn, 

n.d.-ag). It was decided to use a randomly selected subset rather than using the results from a 

single academic year in order to produce an un-biased test set that takes into account nominal 

variations in teaching and assessments as well as any effects of the Covid-19 pandemic that 

occurred during data collection. 
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Stage 3 – Bayesian Knowledge Tracing Calculations 

The next step in the data preparation process involved calculating the probabilities of students 

having appropriate mental models of each of the programming concepts being examined 

using Bayesian Knowledge Tracing. As mentioned in Section 3.3, it was necessary to 

establish the initial values of the four hyperparameters for each of the different programming 

concepts: L0, G, S and T, which was achieved using a tool provided by Baker et al. (2010), 

which takes a brute force approach to fitting the hyperparameters. Baker et al.’s tool was 

chosen given the lead author’s prevalence within the field of Educational Data Mining 

(including the use Bayesian Knowledge Tracing; BKT), as well as because of the way that 

the tool provides a simplistic method for establishing the initial values of the 

hyperparameters, which can then be applied to the BKT calculations. Nevertheless, fitting the 

BKT models for each programming concept is a manual process, so future work could 

explore how newer methods such as pyBKT (Badrinath et al., 2021) could be utilised in order 

to streamline the model development process.   

 

To establish the initial hyperparameter values, the binarized responses for each mental model, 

which were mentioned in Stage 1, were converted to a compatible format to be used with 

Baker et al.’s (2010) tool. However, only responses contained within the training dataset 

were used to establish the initial values for each of the programming concepts, thus keeping 

the testing set completely isolated from the training process. Furthermore, any student who 

skipped 25% or more of the Programming Diagnostic questions was removed to prevent them 

from introducing bias into the dataset.  

 

After the initial values for the hyperparameters had been found, the BKT equations shown in 

Section 3.3 were used to calculate the probability that a student had an appropriate mental 

model for each of the programming concepts, with the binarized responses being used to 

indicate whether the student answered questions relating to each concept correctly. The 

responses to each question were ordered in the same way that they were presented to the 

students during the Programming Checkup. This ensured that an appropriate estimation of 

students’ mental models was established. The dataset was also checked for multiple 

responses, ensuring that only the first complete response was retained.      

 

Equation 3.3 within the BKT calculations, accounts for the possibility that a student has 

learned a task whilst answering a question. It was debated whether to exclude this part of the 
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calculation, as when compared to intelligent tutoring systems, where BKT is typically 

employed, the Programming Checkup does not offer students any feedback on their answers. 

However, it was ultimately decided to remain consistent with the original BKT procedure and 

retain Equation 3.3. This decision was based on Corbett and Anderson's (1994) assumption 

that a student can make the transition from being in an unlearned state to being in a learned 

state at any opportunity where they can apply their knowledge, which, in this case, relates to 

their metal models of the concepts being examined.  

 

Stage 4 – Dataset Preparations 

Following the mental model estimations being incorporated into the dataset, several pre-

processing steps were required prior to starting the model training process. These included:  

   

Handling of missing data – Missing data are an unavoidable issue in real-world datasets 

(García et al., 2015; Kotsiantis et al., 2006). As mentioned previously, any student who had 

skipped 25% or more of the Programming Diagnostic questions was removed from the 

dataset. Furthermore, if a student did not provide a response to any of the other sections of 

the Programming Checkup and/or their assessment results were unavailable, they were also 

removed from the dataset. Although it is possible to predict missing values through methods 

such as “Most Common Feature Value” or “Mean Substitution” (García et al., 2015; 

Kotsiantis et al., 2006), it was felt that given the variability in students’ backgrounds and 

behaviours, it would not be appropriate to attempt to estimate missing values. Additionally, 

the Programming Checkup requires students to provide answers to many of the sections 

before they can progress, meaning the number of responses being removed for having 

missing values was relatively low.    

 

Data encoding – In order for different machine learning algorithms to process categorical 

features stemming from questions that could only be answered with either a “yes” or “no” 

(e.g., whether a student has previously studied a math-based subject), the responses needed to 

be binarized with 0 representing “no” and 1 representing “yes”. However, when questioning 

whether students intended to work in a software engineering role after university, three 

answers were possible: “yes”, “no” or “undecided”. Therefore, in order to avoid introducing a 

potentially invalid ordering to the variable, one-hot encoding was used to split responses into 

three separate binarized variables, each representing one of the possible answers (Bruce & 

Bruce, 2017). 
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Feature Normalisation – A number of machine learning algorithms, such as K-Nearest 

Neighbour and Support Vector Machines, are significantly influenced by the scales of the 

input features (Hsu et al., 2008; Kotsiantis et al., 2006). Therefore, features are “normalised” 

using the MinMaxScaler (Scikit-Learn, n.d.-s) which converts all features into the range 0 to 

1 whilst maintaining their original distributions (Esposito & Esposito, 2020; García et al., 

2015).  

 

Dependent Variable Preparation – As both regression and classification algorithms were 

being trialled, it was necessary at this point to duplicate the dataset to allow the dependent 

variables to be prepared for use with the different types of algorithms. As the Semester 1 

assessment result was already a percentage, then no further processing was required for use 

with regression models. However, classification algorithms require continuous variables to be 

dichotomised into groups, and as binary classification was being carried out as part of this 

investigation, only two groups were possible – 0 and 1. 

 

In order to binarize the assessment results, a threshold must first be established. A natural 

choice would be 40%, as was done so by Tomasevic et al. (2020), as this represents the 

minimum pass mark for the assessment. However, given the distribution of the assessment 

results (as shown in Figure 4.1), 50% was chosen as a more appropriate threshold. This is 

because the intended model was designed towards identifying students who are likely to 

require support, rather than to identify students who are likely to pass an assessment. 

Nevertheless, this still leaves a strong imbalance within the classification dataset, the 

consequences of which are discussed in Section 4.4.  
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Figure 4.1 

Assessment 1 Grade Distribution within the Training Dataset 

 

 
 

 

Feature Selection – The Programming Checkup collects data on a wide variety of factors. 

However, in order to reduce the likelihood of overfitting the training data, it is important to 

remove features that do not aid in generating predictions, thus reducing the dimensionality of 

the dataset and allowing for the algorithms to operate more effectively (Jovic et al., 2015; 

Kotsiantis et al., 2006).  

 

Numerous automated methods of feature selection exist (Jovic et al., 2015; Kotsiantis et al., 

2006; Kuhn & Johnson, 2019), but given that a core part of this research investigation was to 

explore how different aspects of the Programming Checkup contribute towards the predictive 

models, an approach was adopted that was inspired by the work of Tomasevic et al. (2020), 

whereby features are placed into categories which are trialled in different combinations to 

find the optimal model. The categories are as follows: 
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• Background Factors (BF) – Students’ gender, prior experiences, whether they intend 

to work in software engineering, whether they consider themselves to be self-taught. 

• Confidence (CO) – Estimations of how difficult students believe learning to program 

to be, how difficult they believe their degree to be, how difficult they find 

mathematics, how much they fear learning to program, their programming self-

efficacy levels, how confident students are in their answers and their mental effort 

levels. 

• Mental Models (MM) – Estimates of holding appropriate mental models of each 

concept established using Bayesian Knowledge Tracing. 

 

Nevertheless, it was still necessary to remove any features that did not appear to be of benefit 

to the model. This was achieved by carrying out a series of statistical tests to examine the 

relationships between each of the individual features and the Assessment 1 results. However, 

this required tests to be carried out on pre-processed datasets for both classification and 

regression, as detailed below, due to the fact the Assessment 1 results were binarized for the 

classification dataset. Figures 4.2 to 4.4 present the distributions of each of the features 

within each category. These plots confirmed that the features were generally not normally 

distributed, and therefore, require the use of non-parametric statistical tests when analysing 

data.  
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Figure 4.2  

Distributions of Results Relating to Students’ Background Factors 

 
 

Figure 4.3 

Distributions of Results Relating to Students’ Confidence Factors 
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Figure 4.4  

Distributions of Results Relating to Students’ Mental Model Estimates Established Using 

Bayesian Knowledge Tracing 

 
 

The Bonferroni correction was considered when conducting these tests, but given its 

overconservative nature, and following Cabin and Mitchell's (2000) recommendations, it was 

decided not to include the correction as to do so would likely exclude most features from the 

model. Most “Background Factors” are dichotomous features, including the one-hot encoded 

“Work in Software Engineering” responses, therefore, a chi-squared test can be utilised to 

examine the relationships between these features and the binarized Assessment 1 results for 

the classification dataset, as shown in Table 4.2. Naturally, a chi-squared test would not be 

appropriate for the regression dataset and therefore, Mann Whitney U tests were employed 

given the non-parametric nature of the data, as shown in Table 4.3.  
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Table 4.2 

Chi-Squared Test Between Binarized Assessment 1 Results and Dichotomous Background 

Factors  

Feature X2 p V 

Prior programming experience 0.80 .777 0.02 

Previously Studied computer science 0.68 .410 0.06 

Previously Studied mathematics-based 

subject 

2.45 .117 0.11 

Intend to work in software engineering – 

No 

0.20 .653 0.03 

Intend to work in software engineering – 

Undecided 

2.96 .085 0.12 

Intend to work in software engineering – 

Yes 

3.58 .058 0.13 

Note. The Chi-squared tests have been performed on the training dataset. 

* “English is student’s first language” violates Chi-Squared expected count assumption 

(Bruce & Bruce, 2017) therefore, a Fisher’s Exact Test is performed yielding a result of p = 

.999. 

* df = 1 

  



 143 

Table 4.3 

Mann Whitney U Tests Between Assessment 1 Results and Dichotomous Background Factors  

Feature U z p r 

Prior programming experience 3752.00 -1.82 .068 0.13 

Previously Studied computer science 3515.00 -1.63 .104 0.12 

Previously Studied mathematics-based 

subject 

3977.00 -2.25 .024 0.16 

Intend to work in software engineering – 

No 

883.00 -1.26 .207 0.09 

Intend to work in software engineering – 

Undecided 

1800.50 -2.12 .207 0.15 

Intend to work in software engineering – 

Yes 

2807.50 -2.67 .034 0.19 

English is student’s first language 2265.00 -0.98 .330 0.07 

Note. The Mann Whitney U tests have been performed on the training dataset.   

 

Students were also asked within the Programming Checkup to state how strongly they agreed 

or disagreed with considering themselves as being a “self-taught programmer” using a Likert 

scale. Subsequently, a Jonckheere-Terpstra test confirmed a significant relationship between 

how strongly a student agreed/disagreed that they were a self-taught programmer and their 

Assessment 1 result within the classification training dataset, TJT = 2770.00, z = 2.19, p = 

.029, r = 0.15. This was then further confirmed within the regression training dataset with a 

significant correlation of rs = .32, p < .001 being identified.   

 

In order to maintain consistency, both classification and regression models used the same set 

of features, and therefore the results from both sets of tests needed to be taken into account 

when deciding what features to drop. Upon reviewing the analysis of the Background Factors 

tests a rather surprising result was that prior programming experience did not appear to have 

a significant influence on the Assessment 1 results. This could be due to the fact only 33.50% 

of students within the training datasets indicated they did not have prior programming 

experience, although several other factors including assessment design and amount of prior 

experience could also affect this result.    
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Furthermore, 71% of students stated that they had previously studied computer science. 

Although data were not collected on exactly what students had studied previously, it is 

possible that the high proportion of students previously studying computer science – and as 

such gaining experience in programming – was due, in part, to the resurgence of computer 

science within schools, as most students within the training set were born after the year 2000 

(see Figure 4.5). As such, these students would have been in secondary school when the new 

computer science curriculum was introduced (Brown et al., 2014).  

 

Figure 4.5 

Year of Birth Distribution within the Training Dataset 

 

 

However, the fact that most students within the training set had previously studied computer 

science and/or had prior programming experience, diminished the predictive powers of these 

features and, as such, meant that they were not included in the model. 

 

More detailed information was required to draw any definitive conclusions as to whether the 

new computer science curriculum is directly influencing students’ success at university level. 

However, questions about whether students have studied computer science at GCSE and/or A 

Level could easily be added to the Programming Checkup. It would also be prudent to ask 
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students to rate how much experience they have with studying computer science and 

programming on a scale, as opposed to simply answering “yes” or “no”. 

 

Interestingly, how strongly students considered themselves to be self-taught did appear to be 

a useful predictor and, as such, was retained for use within the model. Additionally, whether 

a student had previously studied a math-based subject post school level appeared to be a 

useful predictor given its relationship with the continuous Assessment 1 results. This supports 

claims that experience in mathematics aids students when learning to program (Bergin & 

Reilly, 2005b; Byrne & Lyons, 2001; Gomes et al., 2006; Wilson & Shrock, 2001), and was 

therefore retained for use within both the classification and regression models, despite the 

non-significant chi-squared test on the binarized assessment results. This was done to 

maintain consistency between the models.  

 

Students’ gender was deemed not to significantly influence their assessment results through a 

Kruskal Wallis test performed with the regression training set, H(2) = 3.03, p = .220, η2 = 

.005, as well as a Fisher’s Exact Test (p =.543), which was performed with the classification 

training set given the violation of the Chi-Squared expected count assumption (Bruce & 

Bruce, 2017). However, as 90% of students within the training set were male, it is difficult to 

make any reliable conclusions on the influence of gender on students’ assessment results. 

Similarly, it was not possible to draw any reliable conclusions regarding the influence of 

students’ first language on their assessment results, as only 15% of students within the 

training set indicated that English was not their first language. As such, neither of these two 

features were chosen to be included within the model. However, future studies being 

conducted with larger numbers of students, potentially from institutions in different countries, 

should seek to explore the impacts of gender and native language on programming abilities, 

as previous research has highlighted the additional difficulties that non-native English 

speaking students face when attempting to learn to program (Guo, 2018; Raj et al., 2017), as 

well as how female students have been observed to outperform males, despite generally 

having lower levels of self-efficacy (Lishinski et al., 2016; Quille et al., 2017). 

 

As mentioned previously, the responses for “Work in Software Engineering” were one-hot 

encoded in order to avoid introducing a potentially invalid ordering to the variable, 

consequently resulting in three separate features for each of the responses – “yes”, “no” and 
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“undecided”. Both the features representing “yes” and “undecided” appeared to be useful 

predictors, whereas the feature representing “no” did not. However, “no” was not removed 

from the model given that this would “break the symmetry of the original representation and 

therefore induce a bias” into the model (Scikit-Learn, n.d.-v).  

 

To summarise, the features included within the Background Factors category were:  

 

• Whether students have studied a mathematics-based subject after leaving school. 

• Whether students intended to pursue a career in software engineering (all associated 

features). 

• How strongly students considered themselves self-taught programmers. 

 

The features within the Confidence category all yielded continuous results, and therefore 

Mann Whitney U tests could be utilised for examining relationships within the classification 

training set (Table 4.4) and Spearman’s Rank correlation tests could be used with the 

regression training set (Table 4.5). 
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Table 4.4 

Mann Whitney U Tests Between Binarized Assessment 1 Results and Confidence Factors 

Feature U z p r 

Estimation of how difficult learning to 

program is 

1699.00 -1.83 .068 0.13 

Estimation of how difficult they find 

mathematics  

1374.50 -3.04 .002 0.21 

Estimation of how difficult their degree is 2164.50 -0.09 .930 0.01 

How much they fear learning to program 1391.50 -2.97 .003 0.21 

Self-Efficacy Factor 1 (Independence and 

Persistence) 

1931.00 -0.95 .343 0.07 

Self-Efficacy Factor 3 (Self-Regulation) 1708.50 -1.78 .076 0.13 

Self-Efficacy Factor 4 (Simple 

Programming Tasks) 

1364.00 -3.04 .002 0.21 

Confidence – Variable Assignment 1654.00 -1.97 .048 0.14 

Confidence – Conditional Statements 1554.00 -2.34 .019 0.17 

Confidence – Iteration 1571.50 -2.28 .023 0.16 

Confidence – All Questions 1538.00 -2.40 .016 0.17 

Mental Effort – Variable Assignment 1562.00 -2.12 .034 0.15 

Mental Effort – Conditional Statements  1664.00 -1.73 .084 0.12 

Mental Effort – Iteration 1930.00 -0.70 .484 0.05 

Note. The Mann Whitney U tests have been performed on the training dataset.   
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Table 4.5 

Spearman’s Rank Correlation Tests Between Assessment 1 Results and Confidence Factors 

Feature rs p 

Estimation of how difficult learning to 

program is 

-.16 .028 

Estimation of how difficult they find 

mathematics  

-.14 .052 

Estimation of how difficult their degree is .03 .673 

How much they fear learning to program -.31 <.001 

Self-Efficacy Factor 1 (Independence and 

Persistence) 

.24 <.001 

Self-Efficacy Factor 3 (Self-Regulation) .15 .031 

Self-Efficacy Factor 4 (Simple 

Programming Tasks) 

.42 <.001 

Confidence – Variable Assignment .32 <.001 

Confidence – Conditional Statements .31 <.001 

Confidence – Iteration .39 <.001 

Confidence – All Questions .38 <.001 

Mental Effort – Variable Assignment -.11 .123 

Mental Effort – Conditional Statements -.03 .728 

Mental Effort – Iteration -.04 .584 

Note. The Spearman’s Rank tests have been performed on the training dataset.   

 

Upon reviewing the results within Tables 4.4 and 4.5, the vast majority of features appeared 

to be potentially useful predictors, although several features stood out as being prime 

candidates for removal. For instance, students’ estimation of how difficult their degree is 

going to be, performed poorly with both the classification and regression training datasets 

and as such was removed from the model.  
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Features which measure different aspects of students’ confidence in programming were 

observed to have a strong relationship with performance within the Semester 1 assessment, 

thus supporting previous claims that students’ anxiety levels surrounding learning to program 

can have a significant impact on their performance (Bergin & Reilly, 2005b; Wilson & 

Shrock, 2001). Students’ estimations of how difficult they find mathematics also appeared to 

be a useful predictor, adding further support to the claimed relationship between mathematics 

and programming (Bergin & Reilly, 2005b; Byrne & Lyons, 2001; Gomes et al., 2006; 

Wilson & Shrock, 2001). 

 

In order to help reduce the dimensionality of the model, it was decided to drop the category-

specific confidence estimates in favour of an overall estimate, given its good performance 

with both the classification and regression datasets. Additionally, students’ estimations of the 

amount of mental effort required to answer each of the categories of questions within the 

Programming Diagnostic portion of the Programming Checkup did not appear to be a very 

strong predictor, particularly for the Conditional Statement and Iteration categories. 

Consequently, the mental effort estimations were removed from the model. However, it 

should be noted that the poor performance may be due to the fact that students were only 

asked to estimate their mental effort after completing all of the questions rather than after 

each individual question, as was done with their confidence ratings. The features included in 

the Confidence category were therefore: 

 

• Estimation of how difficult learning to program is 

• Estimation of how difficult they find mathematics 

• How much they fear learning to program 

• Self-efficacy Factor 1 (Independence and Persistence) 

• Self-efficacy Factor 3 (Self-Regulation) 

• Self-efficacy Factor 4 (Simple Programming Tasks) 

• Confidence (all questions) 

 

As both Tables 4.6 and 4.7 show, most mental model estimations calculated using Bayesian 

Knowledge Tracing appeared to have strong relationships with the Semester 1 Assessment 

results for both the classification and regression dataset. However, in order to reduce the 

dimensionality of the model it was decided to drop the individual estimations for AND, OR, 
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NOT and IF and retain the estimation for Conditional Statements in their place as this 

accounts for each of the individual concepts within a single mental model. Therefore, the 

features included within the Mental Model category were as follows: 

 

• BKT – Conditional Statements 

• BKT – Iteration 

• BKT – Output 

• BKT – Parallelism 

• BKT – Variable Assignment  

• BKT – Variable Naming 

 
Table 4.6 

Mann Whitney U Tests between Binarized Assessment 1 Results and Mental Model Estimates 

Established Using Bayesian Knowledge Tracing  

Feature U z p r 

BKT – AND  1611.50 -2.31 .021 0.16 

BKT – Conditional Statements 1109.50 -3.98 <.001 0.28 

BKT – IF  1470.00 -2.66 .008 0.19 

BKT – Iteration 1389.00 -3.18 .001 0.22 

BKT – NOT 1760.50 -1.60 .109 0.11 

BKT – Output 1469.00 -2.67 .008 0.19 

BKT – OR 1339.50 3.16 .002 0.22 

BKT – Parallelism 1413.50 -2.87 .004 0.20 

BKT – Variable Assignment  1271.50 -3.45 <.001 0.24 

BKT – Variable Naming 1617.50 -2.22 .026 0.16 

Note. The Mann Whitney U tests have been performed on the training dataset.   
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Table 4.7 

Spearman’s Rank Tests Between Assessment 1 Results Mental Model Estimates Established 

Using Bayesian Knowledge Tracing  

Feature rs p 

BKT – AND  .30 <.001 

BKT – Conditional Statements .40 <.001 

BKT – IF  .33 <.001 

BKT – Iteration .49 <.001 

BKT – NOT .29 <.001 

BKT – Output .41 <.001 

BKT – OR .30 <.001 

BKT – Parallelism .43 <.001 

BKT – Variable Assignment  .47 <.001 

BKT – Variable Naming .23 <.001 

Note. The Spearman’s Rank tests have been performed on the training dataset.    
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4.3 Model Evaluation and Testing 
After completing the pre-processing stages described in the previous section it was then 

possible to begin the model evaluation process. As mentioned previously, the approach taken 

to identify the best classification and regression models was inspired by the work of 

Tomasevic et al. (2020), wherein different combinations of feature categories are trialled in 

order to find an optimal model. However, in addition to the previously described pre-

processing steps, it was also necessary to address the imbalance within the classification 

training set. To account for the class imbalance, SMOTE (Synthetic Minority Over-sampling 

Technique; (Chawla et al., 2002) was utilised to artificially generate instances of the minority 

class (I.e., students who scored less than 50% on the Semester 1 assessment). SMOTE works 

by randomly selecting an existing instance of the minority class to form the basis of the new 

synthetic instances. Subsequently, several nearest neighbors that are of the same class are 

selected and used in combination with the original instance to perform a randomised 

interpolation in order to generate the new synthetic instances (Bruce & Bruce, 2017; 

Fernández et al., 2018). 

 

In addition to oversampling the minority class using SMOTE, under-sampling is also 

performed through the removal of Tomek Links. These are pairs of instances on either side of 

the decision boundary that are nearest neighbors of each other (Batista et al., 2004; Ramentol 

et al., 2012). These are removed to improve the separability between the classes and to 

reduce the chance of overfitting (Batista et al., 2004; Ramentol et al., 2012). 

 

This hybrid approach of performing both over-sampling and under-sampling was 

implemented using the SMOTETomek class within the Imbalanced-Learn Library (Lemaître 

et al., 2017). It should be noted that in order to prevent data leakage SMOTETomek along 

with the MinMaxScaler were implemented using pipelines (Imbalanced-learn, n.d.-a; Scikit-

Learn, n.d.-w), thus ensuring that models were only trained using the training data. 

Furthermore, in order to ensure consistency when training models, an integer seed was used 

in order to set the random_state hyperparameter of SMOTETomek (Imbalanced-learn, n.d.-

b).  
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Ten-fold cross validation was utilised when training the regression and classification models 

as shown in Tables 4.8 and 4.9, respectively. The performance of the regression models 

shown in Table 4.8 was measured using Root Mean Squared Error (RMSE), which is one of 

the most common metrics for comparing regression models (Bruce & Bruce, 2017). RMSE 

uses the same units as the variable being predicted, meaning an RMSE of 0.177 would equate 

to 17.7 marks once multiplied by 100, therefore, models which have a lower RMSE are 

performing better than those with a higher RMSE. 

 

A Receiving Operating Characteristic (ROC) curve is commonly used to summarise the 

performance of a classification algorithm across a range of thresholds, which trade-off 

between the true positive and false positive rates (Bruce & Bruce, 2017; Chawla et al., 2002; 

Swets, 1988). However, ROC curves do not offer a single measurement of performance that 

would allow for direct comparison between algorithms (Bruce & Bruce, 2017). Instead, the 

Area Under the Curve (AUC) metric uses the total area under the ROC curve to evaluate the 

performance of an algorithm.  

 

The AUC of a model represents the probability of accurately identifying the correct classes 

arising when the model is presented with random examples of both classes, thus allowing for 

direct comparisons of performance to be made between different models (Baker, 2020). 

Therefore, an AUC of 1.0 represents a perfect classifier whereas an AUC of 0.5 indicates that 

the classifier is unable to distinguish between the two classes. This metric was subsequently 

used to evaluate the classification algorithms presented in Table 4.9. 
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Table 4.8 

10-Fold Cross Validation Scores of Regression Models (RMSE) 

 

  Feature Combinations 
Regression Model 

BF CO MM BF + CO BF + MM CO + MM 
BF + 

  CO + MM 
OLS Linear Regression 0.1925 0.1862 0.1821 0.1859 0.1829 0.1849 0.1864 
Elastic Net 0.1923 0.1856 0.1796 0.1850 0.1791 0.1788 0.1791 
Lasso Regression 0.1923 0.1862 0.1813 0.1859 0.1816 0.1822 0.1828 
Ridge Regression 0.1924 0.1857 0.1799 0.1852 0.1796 0.1796 0.1801 
KNN Regressor – Uniform Weighting 0.1967 0.1894 0.1779 0.1898 0.1828 0.1796 0.1770 
KNN Regressor – Distance Weighting 0.2077 0.1885 0.1909 0.1889 0.1855 0.1799 0.1776 
Bayesian Linear Regression 0.1930 0.1857 0.1802 0.1857 0.1797 0.1794 0.1795 
SVR - RBF 0.1906 0.1850 0.1772 0.1822 0.1788 0.1790 0.1783 
SVR - Linear 0.1919 0.1854 0.1816 0.1831 0.1802 0.1817 0.1834 
Regression Tree 0.1927 0.1855 0.1868 0.1855 0.1868 0.1965 0.1965 
Random Forest Regressor 0.1872 0.1817 0.1779 0.1841 0.1786 0.1773 0.1782 
Bagging Decision Tree Regressor 0.2053 0.1981 0.1966 0.1918 0.1935 0.1900 0.1902 
Gradient Boost Regressor 0.1919 0.1869 0.1868 0.1871 0.1863 0.1847 0.1850 
XGBoost Regressor 0.1917 0.1867 0.1782 0.1855 0.1774 0.1784 0.1791 
MLPRegressor 0.1931 0.1892 0.1797 0.1868 0.1796 0.1790 0.1822 

 

Note. Lower RMSE values (highlighted green) represent better performance. 

BF = Background Factors, CO = Confidence, MM = Mental Models 
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Table 4.9 

10-Fold Cross Validation Scores of Classification Models (AUC) 

  Feature Combinations 
Classification Model 

BF CO MM BF + CO BF + MM CO + MM 
BF + 

  CO + MM 
Logistic Regression 0.6585 0.7211 0.7454 0.6779 0.7476 0.7420 0.7258 
Ridge Classifier 0.6440 0.6980 0.7250 0.6732 0.7209 0.7252 0.7139 
SVC - Linear 0.6585 0.7065 0.7275 0.6799 0.7167 0.7363 0.7147 
SVC - RBF 0.6665 0.7002 0.7355 0.6822 0.7288 0.7317 0.7150 
Decision Tree 0.6572 0.6663 0.6840 0.6284 0.7185 0.7011 0.7185 
Bagging Decision Tree 0.5621 0.5841 0.6786 0.6038 0.7252 0.6811 0.7350 
Random Forest 0.7167 0.7533 0.7341 0.7297 0.7211 0.7771 0.7783 
KNN - Uniform Weighting 0.5779 0.6552 0.7612 0.6733 0.6454 0.7515 0.6529 
KNN - Distance Weighting 0.5357 0.6449 0.7459 0.6954 0.6348 0.7438 0.6560 
Gradient Boost 0.6551 0.7271 0.7114 0.6688 0.7289 0.7464 0.7663 
XGBoost Classifier 0.6474 0.7058 0.7346 0.7096 0.7258 0.7020 0.6951 
MLPClassifier 0.6022 0.6715 0.7002 0.6770 0.7025 0.7217 0.6956 

 

Note. Higher AUC values (highlighted green) represent better performance. 

BF = Background Factors, CO = Confidence, MM = Mental Models 
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The results presented in Table 4.8 range from an RMSE of 0.2077 (KNN Regressor – 

Distance Weighting, Background Factors) to 0.1770 (KNN Regressor – Uniform Weighting, 

Background Factors, Confidence and Mental Models). Furthermore, the results of the 

classification models shown in Table 4.9 range from an AUC of 0.5357 (KNN Distance 

Weighting, Background Factors) to 0.7783 (Random Forest, Background Factors, Confidence 

and Mental Models). A variety of feature combinations resulted in optimal performance for 

each of the models with almost all of the best performing models incorporating students’ 

mental models as input features, with a significant number of models also including measures 

of confidence and/or students’ background factors. However, it was necessary to estimate the 

real-world performance of the models using the testing dataset before any firm conclusions 

could be made (Russell & Norvig, 2020). This was because the hyperparameter tuning 

process may have produced models that overfitted the training data and, as such, would not 

perform well with new, unseen data. 

 

In order to prevent the test dataset from being overfitted by repeatedly testing different 

models, a single classification model and a single regression model were selected, along with 

a corresponding feature combination, using the training results presented in Tables 4.8 and 

4.9. The classification model chosen to be applied to the testing dataset was Random Forest 

with a Feature Combination of Background Factors, Confidence and Mental Models, given 

that this produced the best performance on the training dataset. Additionally, as Random 

Forest is an ensemble method it is less prone to overfitting (Dietrich et al., 2015; James et al., 

2013), as described in Section 4.2, therefore making it an appropriate choice for testing with 

the holdout test set.   

 

The regression model which performed the best on the training dataset was the KNN 

Regressor using Uniform Weighting and a combination of Background Factors, Confidence 

and Mental Models features, which produced an RMSE of 0.1770. However, two other 

models exhibited similar levels of performance, namely, Support Vector Regressor using the 

RBF Kernel and Mental Model features (0.1772) and Random Forest Regressor using a 

combination of Confidence and Mental Model features (0.1773). Owing to the closeness in 

performance on the training dataset, it was felt that Random Forest Regressor using a 

combination of Confidence and Mental Models features, was the most appropriate choice in 

order to minimise the potential for overfitting, as explained previously, especially given the 

fact that the dataset for this investigation was relatively constrained in size.  
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To evaluate the performance of the models on the test set, the chosen regression and 

classification models were trained on the entire training dataset (i.e., not having a split for the 

validation set), using the optimal hyperparameters that were previously identified by 

GridSearchCV. The same random_state value for SMOTETomek as used previously was 

used again and, as before, SMOTETomek was only applied to the training data and not to the 

test set. Once the models were trained, they could then be tested on the unseen data held 

within the holdout test set, by attempting to make predictions for the samples within the test 

set and comparing the results. Given the random nature of Random Forests this process is 

repeated three times in order to obtain an averaged measure of the performance of the 

models. The results were as follows: 

 

Random Forest Regressor (Confidence and Mental Models) 

Average Training RMSE: 0.1686  SD: 0.0007 

Average Testing RMSE: 0.1687  SD: 0.0009 

 

Random Forest Classifier (Background Factors, Confidence and Mental Models) 

Average Training AUC: 0.7400  SD: 0.0084 

Average Testing AUC: 0.6595  SD: 0.0131  

 

As can be seen, the average training AUC for the Random Forest classifier after being trained 

on the entire training dataset fell from 0.7783 to 0.7400. The performance of the Random 

Forest Regressor, however, improved from an RMSE of 0.1773 to 0.1686 when trained on 

the entire training dataset. 

 

Both the classification and regression models experienced a drop in performance when they 

were evaluated using the unseen data held within the testing dataset as compared to the 

training dataset. Although a drop in performance is to be expected (Géron, 2022), there may 

be a degree of overfitting of the training set taking place, particularly for the Random Forest 

Classifier. However, the results do demonstrate a reasonable level of generalisability for both 

the classification and regression models, which would likely be improved by additional data 

being included in both the training and testing datasets.  
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The Scikit-Learn implementations of the Random Forest Regressor and Classifier allow for 

the evaluation of how much each feature contributes to the performance of the model through 

the use of the “Feature Importance” attributes (Scikit-Learn, n.d.-y, n.d.-x). As such, Figures 

4.6 and 4.7 present the feature importance plots for each of the classification and regression 

models respectively. 

 

Figure 4.6 Random Forest Regressor Feature Importance Plots 

 

 
 

Figure 4.7 Random Forest Classifier Feature Importance Plots 
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The importance scores for each model are normalised, subsequently meaning that the 

combined importance scores for all features are equal to 1. As such, features with higher 

importance scores are seen to be having a larger effect on the model (Scikit-Learn, n.d.-y, 

n.d.-x).. However, it is important to note that whilst the feature importance plots provide 

useful insight into which features are contributing to the performance of the models, they are 

specific to a given model and do not allow for any conclusions to be established pertaining to 

the relationship between the feature and the variable being predicted. Given the random 

nature of Random Forests, the level of importance for each feature differs between each trial 

of the model, hence the need for averaging the performance results. However, a number of 

features were seen to be consistently important to the models. For the Random Forest 

Regressor (Figure 4.6), students’ mental model estimates for Conditional Statements and 

Iteration, as well as their levels of Self-Efficacy pertaining to completing simple 

programming tasks (Factor 4), were consistently shown to be important features across all 

three trials of the model. Additionally, the feature importance plots for the Random Forest 

Classifier (Figure 4.7) indicate a substantial reliance on students’ estimates for holding an 

appropriate mental model of Conditional Statements within the classification models. 

Students’ levels of Self-Efficacy associated with completing simple programming tasks also 

appear to relatively important to the classifier models. However, the degree of overfitting 

which has been observed limits the usefulness of the model and the data presented within 

Figure 4.7.  

 

4.4 Summary 
This chapter has described the process by which the classification and regression models 

were developed in response to RQ 3. The steps that were required to take the raw output from 

the Programming Checkup and prepare the data for use in developing the models have been 

systematically detailed in order to aid reproducibility. Furthermore, a selection of regression 

and classification methods have been described and subsequently evaluated using the training 

data, which ultimately culminated in the selection of Random Forest for use in both the 

regression and classification models. The estimate of the real-world performance of the final 

models, produced by using the hold-out test set to test the final models, suggested a 

reasonable level of generalisability, the implications of which, in relation to RQ 3, will be 

discussed in Section 6.2.  
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5. Programming Checkup Analysis 

5.1 Analysis Scope 
In the previous chapter, the testing set was completely isolated from any statistical analysis to 

enable it to inform the model-development process. However, in order to gain a full 

understanding of the trends in students’ responses to the Programming Checkup as well as to 

aid in answering the research questions upon which this investigation was based, the test set 

that was previously isolated from any analysis will now be included with the rest of the data. 

After the removal of any students who skipped 25% or more of the questions within the 

programming diagnostic section of the Programming Checkup, the remaining dataset 

available for analysis consisted of 285 students.  

 

The analysis presented in this chapter will first involve an examination of how students’ 

responses changed between T1 and T2. Subsequently, an examination will be reported of 

how students’ responses relate to their Assessment 1 results, as this is the outcome variable 

being predicted by the model developed in the previous chapter. In addition, an examination 

of students’ Assessment 2 results will be reported as a comparison dataset to investigate how 

students’ responses to the Programming Checkup related to later performance in their 

introductory programming module. It should be noted that all analyses presented in this 

chapter were carried out after the model development process described in the previous 

chapter to prevent any of the results from influencing the decisions being made.  

 
5.2 T1 and T2 Comparison 
Out of the 285 students who completed the Programming Checkup at T1 at the start of the 

academic year, 119 students also completed the Programming Checkup at T2 at the end of 

the first semester. The comparison between students’ performance at T1 and T2 will form the 

focus of the analysis in this section.  

 

5.2.1 Analysis of Students’ Understandings of Core Programming Concepts 

Figure 5.1 present the frequency that each misconception was demonstrated by students at T1 

and T2, respectively (refer to Appendix B for a description of each misconception). To aid in 

the visualisation of the prevalence of each misconception, students were divided into three 

groups based on the number of times they had demonstrated a particular misconception, that 

is, one occurrence, two occurrences or three or more occurrences. This categorisation 
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therefore provides an indication of the strength of students’ misconceptions, as a strong and 

more engrained misconception would likely be demonstrated multiple times when answering 

questions. 

 

Figure 5.1 

 Distribution of Misconceptions and the Frequency of Occurrences Per Student (Who 

Completed Both Programming Checkups) at T1 and T2 

 
 

It is important to note that it is not possible to statistically compare the frequency of each 

misconception due to the variability in the number of opportunities to demonstrate each 

misconception. For example, it is only possible for a student to demonstrate the Multiple 

Assignment (MA) misconception in seven of the nine variable assignment questions, whereas 

the Output (OP) misconception could be demonstrated in almost all of the questions included 

within the Programming Diagnostic section of the Programming Checkup. This is due to 

questions being repeated to examine different misconceptions, such as repeating a Variable 

Assignment question and changing the names of the variables to MAX and MIN to examine 

the Variable Name (VN) misconception. Concepts such as Program Output form a key part in 

the overall design of questions, leading to more opportunities for the associated 

misconception (OP) to be demonstrated than others. However, the design of the 

Programming Diagnostic section ensures each misconception is examined a minimum of five 

times in order for estimations to be made about students’ mental models using Bayesian 

Knowledge Tracing.  

 

When comparing the distributions of misconceptions at T1 and T2 within Figure 5.1, it is 

clear that there has been an overall decrease in the number of misconceptions being exhibited 
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by students. However, prior to any in-depth statistical tests taking place, Shapiro-Wilk tests 

were used to examine the frequency distribution of the misconception occurrences, the results 

of which confirmed that none of the misconception occurrences were normally distributed. 

Therefore, in order to identify whether there had been any significant changes between T1 

and T2, a series of Wilcoxon Signed-Rank tests were carried out, as shown in Table 5.1. 

 

Table 5.1 

Wilcoxon Signed Rank Comparison of Misconception Occurrences at T1 and T2 

Misconception z p r 

AD -0.81 .414 0.08 

AND -2.56 .010 0.24 

ET -0.57 .572 0.05 

EX -1.73 .083 0.16 

IF -3.75 <.001 0.34 

LT -0.22 .826 0.02 

MA -5.52 <.001 0.51 

NC -2.59 .010 0.24 

NI -2.19 .029 0.20 

NOT -2.14 .032 0.20 

OP -4.59 <.001 0.42 

OR -2.45 .014 0.22 

PL -3.03 .002 0.28 

REV -0.93 .355 0.09 

SE -0.28 .782 0.03 

SM -4.04 <.001 0.37 

SP -0.20 .839 0.02 

SW -2.71 .007 0.25 

VN -2.32 .020 0.21 

Note. Given the number of tests being conducted, a Bonferroni correction factor was applied 

to the standard alpha value of .05 to reduce the chance of Type 1 errors. Only significant 

differences at p < .003 (i.e., .05 divided by 19) were deemed to be reliable for the purposes of 

interpretation.    

*n = 119 
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The misconception that showed the most change between T1 and T2 was the Multiple 

Assignment (MA) misconception, z = -5.52, p < .001, r = 0.51, suggesting that whilst this is a 

significant issue at the beginning of the course, most students are able to overcome this 

misconception by the time they reach T2. However, as Figure 5.1 indicates, the vast majority 

of students who still exhibit the MA misconception at T2 do so three or more times, 

suggesting that these students have developed a deeply engrained misconception which 

would require direct intervention to overcome. The other misconceptions associated with 

Variable Assignment do experience a drop between T1 and T2, although none are as 

significant as MA. However, a small number of students do appear to be exhibiting the 

Reverse (REV) misconception, with some demonstrating it three or more times at both T1 

and T2. Although the REV misconception may not be widespread, students who do exhibit it 

frequently might require additional support to overcome it. 

 

The occurrence of the IF misconception also showed a significant decrease between T1 and 

T2, z = -3.75, p < .001, r = 0.34. Furthermore, half of the students who demonstrated this 

misconception at T2 only did so on one occasion. There also did not appear to be any 

significant change in the occurrences of misconceptions associated with Boolean Logic, 

AND, OR and NOT, between T1 and T2, with the occurrences of OR and NOT remaining 

particularly high, giving further credence to Grover and Basu's (2017) claims that Boolean 

Logic is a topic of difficulty for students.  

 

All misconceptions associated with the concept of Iteration did not change significantly 

between T1 and T2, with the exception of Summation (SM), which dropped significantly 

between T1 and T2, z = -4.04, p < .001, r = 0.37. This may indicate that some struggling 

students were beginning to grasp the idea that all lines within the loop are repeated. However, 

the observed improvement may in fact be related to students developing a better 

understanding of program output, as the occurrence of students demonstrating 

misconceptions relating to what is produced by the output statements within the code 

examples (i.e., outputting a variable name instead of the value) decreased significantly 

between T1 and T2 (OP, z = -4.59, p = <.001, r = 0.42). The occurrence of SM 

misconceptions was significantly, albeit weakly, correlated with that of OP at both T1 (rs = 

.19, p = .001) and T2 (rs = .33, p < .001) after a Bonferroni correction had been taken into 

account, which reduced the significance threshold to p < .025. Interviews and think aloud 



 164 

exercises should be conducted as part of a future investigation in order to establish a clearer 

picture as to why students struggle with iteration and exhibit particular misconceptions, as the 

results thus far suggest that iteration is a difficult concept for students to grasp. 

 

There was also a significant drop in the number of occurrences of the Parallelism (PL) 

misconception, wherein students demonstrated a misunderstanding of the flow of control 

within a program, with the majority of students only exhibiting it once at T2. However, 

almost a third of students demonstrated PL three or more times, indicating that some students 

may have been struggling to overcome this misconception. 

 

In addition to the changes in the occurrences of misconceptions, a significant drop in the 

occurrence of incorrect answers that could not be mapped to a specific misconception 

(recorded as NA) was observed and confirmed with a Wilcoxon Signed Rank Test, z = -5.32, 

p < .001, r = 0.49. Although it is possible that some of the unmappable answers provided by 

students were genuine mistakes, they do demonstrate that some students initially struggled to 

appropriately comprehend some of the concepts being examined within the Programming 

Diagnostic questions. This view is supported by the significant reduction in unmappable 

answer occurrences by T2, as although some students might still have been struggling to fully 

grasp the concepts being examined, they were at least making progress towards establishing 

an appropriate mental model. 

 

No significant differences were found in the number of questions being skipped by students 

at T1 and T2, z = -1.58, p = .115, r = 0.01. However, this may be due in part to the fact that 

students who skipped 25% or more of the Programming Diagnostic questions were removed 

from the analysis process. 

 

Aside from examining the frequencies of individual misconception occurrences, it is possible 

to obtain a more direct estimation of whether students hold appropriate mental models of 

each of the concepts examined within the Programming Checkup (see Table 4.1) through the 

use of Bayesian Knowledge Tracing (BKT). As described in the previous section, BKT was 

utilised to provide estimates of students’ mental models at T1 in order to be used within the 

classification and regression models. The same process was used here to produce estimates of 

students’ appropriate mental models at T1, and subsequently at T2. It should be noted that the 

same hyperparameter values for L0, G, S and T were used at both T1 and T2 in order to 
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provide a consistent basis for comparison between the two tests. Furthermore, T2 was treated 

independently from T1, meaning that in terms of the BKT calculations, the first question at 

T2 was treated as n = 0, rather than continuing on from T1. 

 

It is believed that this is the first time BKT has been utilised to analyse an aptitude test (or 

similar) in this way. A future study could investigate how estimates of the appropriateness of 

students’ mental models are affected by examining combined responses at T1 and T2 whilst 

possibly incorporating some of the more recent extensions to BKT such as the KT-Forget 

parameter as suggested by Qiu et al. (2011). The latter parameter accounts for the possibility 

that students forget previously learned knowledge after several days between interactions 

with an intelligent tutoring system. Although the time between T1 and T2 was several weeks, 

during which the concepts being examined were introduced and reinforced, it would be a 

worthwhile exercise to explore if KT-Forget can be adapted for use in such a context. 

Furthermore, a future study could also examine mental model development throughout the 

course of a full academic year. 

 

Figure 5.2 show the proportion of students who are deemed likely (green) or unlikely (red) to 

hold an appropriate mental model of each concept, given a threshold of 0.5, at T1 and T2. 

Additionally, a series of Wilcoxon Signed Rank tests were carried out on the raw 

probabilities established by BKT in order to confirm the significance of any changes between 

T1 and T2, as presented in Table 5.2. 
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Figure 5.2  

Estimates of Whether Students Hold Appropriate Mental Models at T1 and T2, Established 

Using Bayesian Knowledge Tracing with a Threshold of 0.5 

 
 

Table 5.2 

Wilcoxon Signed Rank Comparison of Mental Model Estimates Established using Bayesian 

Knowledge Tracing at T1 and T2 

Mental Model z p r 

AND  -0.70 .481 0.07 

Conditional Statements -2.63 .008 0.24 

IF  -0.09 .929 0.01 

Iteration -5.25 <.001 0.48 

NOT -0.90 .371 0.08 

Output -3.15 .002 0.29 

OR -0.51 .613 0.05 

Parallelism -1.61 .107 0.15 

Variable Assignment  -5.10 <.001 0.47 

Variable Naming -1.62 .106 0.15 

Note. Given the number of tests being conducted, a Bonferroni correction factor was applied 

to the standard alpha value of .05 to reduce the chance of Type 1 errors. Only significant 

differences at p < .005 (i.e., .05 divided by 10) were deemed to be reliable for purposes of 

interpretation.    

*n = 119 

 

One of the most significant changes between T1 and T2 was Variable Assignment (VA), with 

over half of the students being estimated as being unlikely to hold an appropriate mental 
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model. However, by T2 over 75% of students were estimated to hold an appropriate mental 

model, suggesting that many students had been able to overcome their difficulties, in 

particular with the MA misconception, with the significant change being confirmed by the 

Wilcoxon Signed Rank Test as shown in Table 5.2. Additionally, a significant change was 

identified within the estimates produced by BKT for the Output (OP) mental model. 

However, this is likely to indicate the strengthening of students’ models rather than a 

transition from an inappropriate model to an appropriate one, given that the percentage of 

students who are estimated not to be holding an appropriate model only falls from 17% at T1 

to 10% by T2. 

 

Variable Assignment and Output are two mental models that students utilise in almost every 

program they write, so it is not surprising to see that the vast majority of students had 

developed an appropriate mental model by T2. However, those who had not developed an 

appropriate model, particularly for VA, would be likely to require direct support to overcome 

their issues. Additionally, the majority of students were estimated to have an appropriate 

model for Variable Naming (VN) at both T1 and T2, with most students demonstrating a 

potential misconception only once, as per Figure 5.1. The Wilcoxon Signed Rank test within 

Table 5.2 for VN did not reveal a change between T1 and T2. 

 

The probability estimates of students holding appropriate mental models for AND, OR and 

NOT, as well as If Statements, did not change significantly between T1 and T2, with OR 

having one of the highest proportions of students estimated to be unlikely to hold an 

appropriate model. As shown in Table 4.1, the Conditional Statements mental model (CO) 

combines all Conditional Statement questions together, thus providing a broader estimate of 

students’ models by encompassing each of the individual concepts within a single mental 

model. The change in the probability estimates of students holding an appropriate model for 

CO approached significance after applying the Bonferroni Correction. However, 39% of 

students were still estimated to be unlikely to hold an appropriate model for CO. These 

estimates further support claims that Boolean Logic is a difficult concept for students to grasp 

(Grover & Basu, 2017), with OR appearing to the main point of confusion. 

 

A significant change was observed in the estimates that students hold an appropriate model 

for Iteration (IT) between T1 and T2. However, a substantial number of students were still 

classified as being not likely to hold an appropriate model at T2, with 67% at T2 being 
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classified as unlikely to hold an appropriate model due to their estimated probability being 

less than 0.5, compared to 81% at T1. Although this indicated that only a relatively small 

number of students had improved their models sufficiently to cross the 0.5 threshold, students 

did appear to be improving their models but were still struggling with misconceptions, as 

indicated in Figure 5.1. Additionally, there did not appear to be a significant change in the 

estimates of students’ Parallelism (PL) model. Although there was a drop from 53% being 

classified as being unlikely to have an appropriate mental model at T1 to 41% at T2, some 

students appeared to be consistently struggling with this concept, as shown in Figure 5.1, 

suggesting direct support may be needed for them to develop an appropriate model. 

 

To summarise, there was evidence of the development in students’ mental models between 

T1 and T2, with students quickly acquiring appropriate models for concepts such as Variable 

Assignment. However, other concepts, such as Iteration, appeared to be more troublesome for 

students to grasp and develop an accurate model. 

 

5.2.2 Influence of Prior Experiences on Likelihood of Holding Appropriate Mental 

Models 

Given that data collection for T2 took place at the end of the first semester, students were not 

expected to have fully accurate models for all concepts at this stage. For many students, this 

was their first time learning to program and they were therefore constructing their models 

using what they believed to be relevant information, that is, their “pre-programming 

knowledge”, as termed by Bonar and Soloway (1985). Over half (i.e., 63%) of students who 

participated in both T1 and T2 indicated that they had prior programming experience. 

However, 70% of students stated that they had previously studied computer science, whilst 

39% of students considered themselves “self-taught programmers” prior to starting their 

degrees. Interestingly, 14% of students indicated that they had previously studied computer 

science, but did not have any prior programming experience, whereas only 7% of students 

indicated that they had prior programming experience but did not previously study computer 

science. As programming is a core component of computer science courses it would be useful 

for a future study to fully explore students’ prior experiences with studying computer science 

and learning to program, especially with greater numbers of students now passing through the 

new computer science curriculum. It should also be noted that as only 23% of students 
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indicated that English was not their first language, then the sample size is insufficient to 

produce any statistically significant results in relation to this factor. 

 

Tables 5.3 and 5.4 show whether there were significant differences at both T1 and T2 in the 

mental model estimates amongst students who had indicated that they had prior programming 

experience or had previously studied computer science. Perhaps not unsurprisingly, the 

average probability of having an appropriate mental model for each individual model at T1 

was higher amongst students who had previous programming experience, as shown in Table 

5.5.  

 

Although having prior experience of programming had a substantial influence over students’ 

mental models at T1, it did appear to decrease by T2 as the vast majority of mental models 

being evaluated by the Mann Whitney U test showed a slight decrease in influence at T2 

when compared to the corresponding T1 result. However, interestingly, the influence of prior 

programming experience appeared to be significant on the NOT mental model at T2, as an 

increase in significance to the point which surpasses the corrected significance threshold was 

observed when compared to the T1 result.  

 

When considered as independent factors, the influence of previously studying computer 

science on the estimates of students holding appropriate mental models for the concepts 

examined within the Programming Checkup was broadly similar to that of prior 

programming experience, as shown in Table 5.5. However, previously studying computer 

science appeared to have less influence on students’ mental models than having prior 

programming experience, which is reflected in the effect sizes of the Mann Whitney U tests 

presented in Table 5.4. 
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Table 5.3 

Mann Whitney U Tests Between Prior Programming Experience (Yes/No) and Mental Model 

Estimates Established using Bayesian Knowledge Tracing at T1 and T2 

Mental Model 
T1 T2 

U z p r U z p r 

AND 1262.00 -2.39 .017 0.22 1281.50 -2.27 .023 0.21 

Conditional Statements 855.50 -4.37 <.001 0.40 1093.00 -3.07 .002 0.28 

IF 1037.00 -3.41 <.001 0.31 1216.50 -2.44 .015 0.22 

Iteration 897.00 -4.40 <.001 0.40 962.50 -3.87 <.001 0.36 

NOT 1189.00 -2.59 .010 0.24 1131.00 -2.92 .003 0.27 

Output 797.50 -4.71 <.001 0.43 1233.00 -2.32 .020 0.21 

OR 1106.00 -3.01 .003 0.28 1120.00 -2.95 .003 0.27 

Parallelism 892.50 -4.18 <.001 0.38 1011.50 -3.55 <.001 0.33 

Variable Assignment 794.00 -4.83 <.001 0.44 1285.00 -2.176 .030 0.20 

Variable Naming 1293.50 -2.06 .040 0.19 1274.00 -2.29 .022 0.21 

Note. Given the number of tests being conducted, a Bonferroni correction factor was applied 

to the standard alpha value of .05 to reduce the chance of Type 1 errors. Only significant 

differences at p < .003 (i.e., .05 divided by 20) were deemed to be reliable for purposes of 

interpretation.    

*n = 119 
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Table 5.4 

Mann Whitney U Tests Between Previously Studying Computer Science (Yes/No) and Mental 

Model Estimates Established using Bayesian Knowledge Tracing at T1 and T2 

Mental Model 
T1 T2 

U z p r U z p r 

AND  1281.00 -1.23 .218 0.11 1021.50 -2.93 .003 0.27 

Conditional Statements 1008.50 -2.69 .007 0.25 1038.00 -2.52 .012 0.23 

IF  1234.50 -1.39 .166 0.13 1158.00 -1.86 .063 0.17 

Iteration 972.00 -3.11 .002 0.29 951.00 -3.10 .002 0.28 

NOT 1149.50 -1.90 .057 0.17 1041.00 -2.56 .011 0.23 

Output 1060.00 -2.40 .016 0.22 1030.00 -2.91 .004 0.27 

OR 1137.00 -1.95 .051 0.18 1092.00 -2.26 .024 0.21 

Parallelism 956.50 -3.01 .003 0.28 976.50 -2.90 .004 0.27 

Variable Assignment  844.00 -3.74 <.001 0.34 1092.50 -2.38 .017 0.22 

Variable Naming 1305.50 -1.01 .315 0.09 1033.00 -2.82 .005 0.26 

Note. Given the number of tests being conducted, a Bonferroni correction factor was applied 

to the standard alpha value of .05 to reduce the chance of Type 1 errors. Only significant 

differences at p < .003 (i.e., .05 divided by 20) were deemed to be reliable for purposes of 

interpretation.    

*n = 119 
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Table 5.5 

Comparison of Prior Programming Experience, Previously Studying Computer Science and Average Estimates of Having an Appropriate 

Mental Model at T1 and T2 

Mental Model 

T1 T2 

Prior 

Programming 

Exp. - No 

Prior 

Programming 

Exp. - Yes 

Studied CS - 

No 

Studied CS - 

Yes 

Prior 

Programming 

Exp. - No 

Prior 

Programming 

Exp. - Yes 

Studied CS - 

No 

Studied CS - 

Yes 

AND  .903 .928 .912 .922 .826 .905 .761 .924 

Conditional Statements .290 .633 .335 .577 .451 .696 .479 .659 

IF  .824 .908 .863 .883 .797 .872 .747 .885 

Iteration .071 .278 .116 .237 .156 .456 .140 .430 

NOT .762 .832 .776 .818 .641 .816 .605 .812 

Output .663 .926 .687 .888 .869 .918 .807 .939 

OR .349 .522 .338 .508 .318 .569 .334 .535 

Parallelism .306 .611 .345 .862 .410 .663 .411 .635 

Variable Assignment  .268 .615 .290 .568 .678 .842 .650 .836 

Variable Naming .634 .854 .691 .806 .762 .892 .678 .913 

 



 173 

Additionally, Table 5.6 presents the results from a series of Spearman’s Rank correlation 

tests between students’ levels of agreement in considering themselves “self-taught 

programmers” at the beginning of the course, and their estimates of having appropriate 

mental models. The results indicate that at T1, higher levels of agreement significantly 

correlate with students’ being more likely to hold a number of mental models, with strongest 

correlation being with estimates for holding an appropriate model of iteration. However, as 

with prior programming experience, the influence of students’ initially considering 

themselves to be self-taught programmers appeared to reduce by T2, with only estimates for 

Iteration continuing to show a significant effect. 

 

The results presented in Table 5.7 indicate that there was no significant relationship between 

whether students had previously studied a mathematics-based subject after leaving school, 

and the probability of students holding appropriate mental models for each concept at both 

T1 and T2. From the results presented thus far, it can be concluded that when considered as 

independent factors, studying mathematics-based subjects prior to starting their degree does 

not significantly impact the probabilities of students having appropriate mental models of 

concepts examined within the Programming Checkup.  

 

On the other hand, two factors that have been identified as significantly supporting students 

with their mental models at the start of their course were found to be having prior 

programming experience and considering themselves to be a “self-taught programmer”. 

However, the influence of these two factors appeared to be less significant as time 

progressed, given that all students were gaining experience as part of their course. The results 

also suggest that previously studying computer science did exert a degree of influence over 

students’ mental models.   
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Table 5.6 

Spearman’s Rank Correlation Test Between Students’ Agreement in Considering Themselves 

“Self-Taught Programmers” at the Start of Their Course and Mental Model Estimates 

Established Using Bayesian Knowledge Tracing at T1 and T2 

Mental Model 
T1 T2 

rs p rs p 

AND  .10 .273 -.04 .689 

Conditional Statements .34 <.001 .15 .100 

IF  .32 <.001 .14 .144 

Iteration .43 <.001 .34 <.001 

NOT .14 .126 .18 .048 

Output .36 <.001 .24 .008 

OR .21 .021 .14 .132 

Parallelism .42 <.001 .19 .038 

Variable Assignment  .38 <.001 .23 .013 

Variable Naming .21 .022 .05 .622 

Note. Given the number of tests being conducted, a Bonferroni correction factor was applied 

to the standard alpha value of .05 to reduce the chance of Type 1 errors. Only significant 

differences at p < .003 (i.e., .05 divided by 20) were deemed to be reliable for purposes of 

interpretation.    

*Self-taught agreements range from Strongly Disagree (1) to Strongly Agree (7) 

*n = 119 
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Table 5.7 

Mann Whitney U Tests Between Previously Studying a Mathematics-Based Subject (Yes/No) 

and Mental Model Estimates Established Using Bayesian Knowledge Tracing at T1 and T2 

Mental Model 
T1 T2 

U z p r U z p r 

AND  1680.00 -0.41 .680 0.04 1722.00 -0.16 .871 0.01 

Conditional Statements 1406.00 -1.84 .067 0.17 1682.00 -0.36 .720 0.03 

IF  1359.50 -2.10 .036 0.19 1577.70 -0.94 .349 0.09 

Iteration 1416.00 -1.91 .057 0.18 1544.00 -1.12 .262 0.10 

NOT 1704.50 -0.24 .809 0.02 1519.50 -1.25 .210 0.11 

Output 1494.00 -1.37 .172 0.13 1537.50 -1.14 .253 0.10 

OR 1657.00 -0.50 .621 0.05 1619.00 -0.70 .202 0.06 

Parallelism 1582.00 0.62 .370 0.06 1512.50 -1.27 .483 0.12 

Variable Assignment  1494.00 -1.40 .162 0.13 1641.50 -0.62 .533 0.06 

Variable Naming 1678.50 -0.40 .693 0.04 1557.50 -1.13 .257 0.10 

Note. Given the number of tests being conducted, a Bonferroni correction factor was applied 

to the standard alpha value of .05 to reduce the chance of Type 1 errors. Only significant 

differences at p < .003 (i.e., .05 divided by 20) were deemed to be reliable for purposes of 

interpretation.    

*n = 119  

 

5.2.3 Analysis of Students’ Levels of Confidence 

Students’ confidence levels have previously been shown to be a useful predictor of their 

performance within an introductory programming module (Bergin & Reilly, 2005b; 

Ramalingam & Wiedenbeck, 1998; Wilson & Shrock, 2001) and as such, provide additional 

insight into whether a student is likely to struggle with learning to program. Table 5.8 

presents the results of a series of Wilcoxon Signed Rank tests conducted on the different 

confidence related factors examined within the Programming Checkup, thus allowing for any 

significant changes between T1 and T2 to be identified. 
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Table 5.8 

Wilcoxon Signed Rank Comparison of Confidence Factors at T1 and T2  

Factor z p r 

Estimation of how difficult learning to program is -0.12 .905 0.01 

Estimation of how difficult they find mathematics  -1.61 .107 0.15 

Estimation of how difficult their degree is -1.04 .296 0.10 

How much they fear learning to program -1.92 .054 0.18 

Self-Efficacy Factor 1 (Independence and Persistence) -5.95 <.001 0.55 
 

Self-Efficacy Factor 3 (Self-Regulation) -3.23 .001 0.30 

Self-Efficacy Factor 4 (Simple Programming Tasks) -8.51 <.001 0.78 

Confidence – Variable Assignment -5.73 <.001 0.53 

Confidence – Conditional Statements -3.08 .002 0.28 

Confidence – Iteration -5.84 <.001 0.54 

Confidence – All Questions -5.47 <.001 0.50 

Mental Effort – Variable Assignment -2.48 .013 0.23 

Mental Effort – Conditional Statements -1.19 .233 0.11 

Mental Effort – Iteration -3.44 <.001 0.32 

Note. Given the number of tests being conducted, a Bonferroni correction factor was applied 

to the standard alpha value of .05 to reduce the chance of Type 1 errors. Only significant 

differences at p < .004 (i.e., .05 divided by 14) were deemed to be reliable for purposes of 

interpretation.    

*n = 119  

 

Students’ difficulty estimations relating to their degree, to mathematics and to learning to 

program, did not change significantly between T1 and T2, nor did how much they fear 

learning to program.  However, each of Ramalingam and Wiedenbeck's (1998) self-efficacy 

factors that were examined within the Programming Checkup showed a significant change 

between T1 and T2. Students’ average levels of confidence that they had answered the 

questions correctly for each of the question categories, and for all questions, also showed a 

significant change between T1 and T2. Students’ mental effort estimates did not change 

significantly for Variable Assignment and Conditional Statement questions but did for 

Iteration. 

 

Tables 5.9 through to 5.12 explore whether students’ backgrounds significantly influenced 

their confidence levels at T1 and T2. Having prior programming experience significantly 
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benefitted students’ confidence levels at T1, as shown in Table 5.9, with responses to self-

efficacy Factors 1 and 4 from students with prior programming experience being significantly 

higher than those without. Students with prior programming experience recorded an average 

rating of 4.65 out of 7 (SD = 1.33) for Factor 1 (Independence and Persistence), and an 

average rating of 4.96 out of 7 (SD = 1.41) for Factor 4 (Simple Programming Tasks). 

Subsequently, students without prior programming experience demonstrated lower self-

efficacy levels with an average rating of 3.32 out of 7 (SD = 1.58), being recorded for Factor 

1 and average rating of 2.78 out of 7 (SD = 1.57) for Factor 4. There was also evidence of a 

substantial difference in responses to Factor 3 (Self-Regulation), which is nearing the 

Bonferroni corrected threshold (with experience, M = 4.25 SD = 1.25, without experience, M 

= 3.51 SD = 1.32). 

 

Furthermore, there was also a significant difference in students’ confidence in their answers 

being correct at T1 when comparing those with and without prior programming experience, 

as students with prior experiences recorded higher average levels of confidence for questions 

focusing on Variable Assignment (with experience, M = 73.54, SD = 26.70, without 

experience, M = 46.88, SD = 30.59), Conditional Statements (with experience, M = 82.69, SD 

= 19.97, without experience, M = 67.46, SD = 25.14), Iteration (with experience, M = 65.71, 

SD = 29.33, without experience, M = 35.70, SD = 27.70) and for all questions combined 

(with experience, M = 75.93, SD = 22.96, without experience, M = 53.63, SD = 23.66).  

 

Like self-efficacy, students with prior programming experience had more confidence in their 

answers than those without. However, the influence of having prior experience showed 

evidence of decreasing by T2 in a similar way to how it affected the likelihood of students 

having appropriate mental models, given that students were progressing through their course 

and building their confidence levels. This is reflected in the reduction in the effect sizes 

between T1 and T2 for responses to both the self-efficacy scale and in students’ confidence in 

their answers, as can be seen in Table 5.9. Furthermore, the differences at T2 between 

students with and without prior experience are no longer significant at the corrected 

significance threshold for self-efficacy Factor 1 (with experience, M = 5.22, SD = 1.07, 

without experience, M = 4.73, SD = 1.17) and Factor 3 (with experience, M = 4.19, SD = 

1.30, without experience, M = 4.59, SD = 1.29) and their confidence in their answers for 

Variable Assignment (with experience, M = 85.83, SD = 24.61, without experience, M = 

69.79, SD = 33.94) and Conditional Statements (with experience, M = 85.83, SD = 24.61, 
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without experience, M = 69.79, SD = 33.94). However, self-efficacy Factor 4 (Simple 

Programming Tasks) did still show a significant difference at T2, with students who had prior 

programming experience recording an average rating of 5.78 out of 7 (SD = 1.05), whereas 

those without recorded an average rating of 5.04 out of 7 (SD = 1.28). Despite the relatively 

large gap when compared to the other two self-efficacy factors, there was an increase in the 

efficacy levels of students who did not have prior programming experience across all factors 

related to self-efficacy, with the largest being in Factor 4.  
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Table 5.9 

Mann Whitney U Tests Between Prior Programming Experience (Yes/No) and Confidence 

Factors at T1 and T2 

Confidence Factor 
T1 T2 

U z p r U z p r 

Estimation of how difficult 
learning to program is 

1176.50 -2.64 .008 0.24 1056.50 -3.30 <.001 0.30 

Estimation of how difficult 
they find mathematics 

1561.50 -0.50 .620 0.05 1620.00 -0.17 .867 0.02 

Estimation of how difficult 
their degree is 

1480.50 -0.96 .336 0.09 1394.50 -1.46 .145 0.13 

How much they fear 
learning to program 

1222.50 -2.38 .017 0.22 917.00 -3.77 <.001 0.35 

Self-Efficacy Factor 1 
(Independence and 
Persistence) 

867.50 -4.31 <.001 0.40 1193.00 -2.17 .030 0.20 

Self-Efficacy Factor 3 
(Self-Regulation) 

1129.50 -2.87 .004 0.26 1358.00 -1.24 .217 0.11 

Self-Efficacy Factor 4 
(Simple Programming 
Tasks) 

531.50 -6.16 <.001 0.56 1001.00 -3.23 .001 0.30 

Confidence –  
Variable Assignment 

826.00 -4.54 <.001 0.42 1159.50 -2.77 .006 0.25 

Confidence –  
Conditional Statements 

982.00 -3.68 <.001 0.34 1173.00 2.66 .008 0.24 

Confidence –  
Iteration 

756.50 -4.92 <.001 0.45 1067.50 -3.22 .001 0.30 

Confidence –  
All questions 

775.00 -4.82 <.001 0.44 1050.00 -3.31 <.001 0.30 

Mental Effort –  
Variable Assignment 

1287.50 -2.01 .044 0.18 1066.00 -1.17 .243 0.11 

Mental Effort – 
Conditional Statements 

1292.50 -1.99 .047 0.18 1143.50 -0.63 .528 0.06 

Mental Effort –  
Iteration 

1273.00 -2.10 .036 0.19 1101.00 -0.92 .356 0.08 

Note. Given the number of tests being conducted, a Bonferroni correction factor was applied 

to the standard alpha value of .05 to reduce the chance of Type 1 errors. Only significant 

differences at p < .002 (i.e., .05 divided by 28) were deemed to be reliable for purposes of 

interpretation.    

*n = 119 
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Significant differences were also identified at T2 in students’ average confidence in their 

answers for Iteration focused questions (with experience M = 76.40, SD = 28.89; without 

experience M = 57.46, SD = 34.37) and their average confidence across all questions (with 

experience M = 83.62, SD = 24.92; without experience M = 67.39 SD = 32.62) surpassing the 

Bonferroni corrected threshold. However, whilst no longer surpassing the corrected 

threshold, the difference in students’ confidence in their answers for questions focusing on 

Variable Assignment (with experience, M = 85.84, SD = 24.92; without experience, M = 

69.80 SD = 33.94) and Conditional Statements (with experience M = 83.96, SD = 24.92; 

without experience M = 71.80, SD = 33.22) is still at a near-significant level, indicating that 

there still is a sizeable gap between students with and without prior programming experience.  

 

The results thus far demonstrate that having prior programming experience does give 

students an additional boost in confidence. However, the difference between those with and 

without prior experience begins to reduce over time as students progress through the module 

and gain confidence with the new concepts. This, therefore, appears to support Wiedenbeck 

et al.'s (2004) claims that having prior programming experience will eventually lose its 

predictive value, owing to students’ more recent experiences with programming being the 

more important influence on their confidence levels. Nevertheless, the difference in 

confidence with answering questions on iteration at T2, as well as the differences in mental 

model estimates (see Table 5.2) suggests that having prior experience is still benefiting 

students at T2 on a concept that appears to be troublesome for them to grasp.  

 

The insight that having prior programming experience gives students also appears somewhat 

to reduce their anxiety surrounding learning to program , with both estimations of how 

difficult learning to program is at T1 (with experience, M = 5.64, SD = 1.90; without 

experience, M = 6.59, SD = 1.99) and how much students fear learning to program (with 

experience, M = 2.96, SD = 2.28; without experience, M = 4.20, SD = 2.71) demonstrating 

substantial differences between those with and without prior programming experience, which 

is nearing the Bonferroni corrected threshold. There does not, however, appear to be any 

significant difference in how difficult students believe their course to be as a whole (with 

experience, M = 6.77, SD = 1.74; without experience, M = 7.04, SD = 1.60), suggesting there 

may be common causes of anxiety towards their degrees aside from just concerns with 

programming.  
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A notable increase in the influence of having prior programming experience was, however, 

observed between T1 and T2 amongst students’ estimations of how difficult learning to 

program is (with experience, M = 5.49, SD = 2.26; without experience, M = 6.91, SD = 1.80) 

and how much they fear learning to program (with experience, M = 2.48, SD = 2.10; without 

experience, M = 4.11 SD = 2.25), as indicated by the increase in effect size for both factors. 

Subsequently, the differences in the responses to both factors now surpass the Bonferroni 

adjusted threshold at T2. This potentially indicates a slight widening of the gap between those 

with and without prior programming experience in terms of anxiety surrounding learning to 

program. Indeed, students without prior programming experience reported a slight increase, 

on average, in how difficult they believe learning to program to be, suggesting that for some 

struggling students, learning to program continues to get harder as the module progresses. 
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Table 5.10 

Mann Whitney U Tests Between Previously Studying Computer Science (Yes/No) and 

Confidence Factors at T1 and T2 

Confidence Factor 
T1 T2 

U z p r U z p r 

Estimation of how difficult 
learning to program is 

1227.00 -1.44 .151 0.13 1186.50 -1.67 .095 0.15 

Estimation of how difficult 
they find mathematics  

1434.50 -0.21 .833 0.02 1435.00 -0.21 .836 0.02 

Estimation of how difficult 
their degree is 

1400.00 -0.42 .674 0.04 1460.00 -0.06 .952 0.01 

How much they fear 
learning to program 

1229.00 -1.42 .155 0.13 1084.50 -2.27 .023 0.21 

Self-Efficacy Factor 1 
(Independence and 
Persistence) 

1164.00 -1.79 .074 0.16 1375.00 -0.07 .947 0.01 

Self-Efficacy Factor 3 
(Self-Regulation) 

1313.50 -0.92 .360 0.08 1264.50 -0.74 .461 0.07 

Self-Efficacy Factor 4 
(Simple Programming 
Tasks) 

837.00 -3.69 <.001 0.34 1275.00 -0.67 .501 0.06 

Confidence –  
Variable Assignment 

1001.50 -2.74 .006 0.25 907.00 -3.37 <.001 0.31 

Confidence –  
Conditional Statements 

1017.50 -2.64 .008 0.24 1003.50 -2.74 .006 0.25 

Confidence –  
Iteration 

883.00 -3.42 <.001 0.31 911.00 -3.27 .001 0.30 

Confidence – 
All questions 

922.50 -3.19 .001 0.29 884.00 -3.42 <.001 0.31 

Mental Effort –  
Variable Assignment 

1390.50 -0.47 .640 0.04 973.00 -0.58 .564 0.05 

Mental Effort – 
Conditional Statements 

1437.00 -0.19 .846 0.02 925.50 -0.93 .352 0.09 

Mental Effort –  
Iteration 

1424.50 -0.27 .788 0.02 1042.50 -0.06 .955 0.01 

Note. Given the number of tests being conducted, a Bonferroni correction factor was applied 

to the standard alpha value of .05 to reduce the chance of Type 1 errors. Only significant 

differences at p < .002 (i.e., .05 divided by 28) are deemed to be reliable for purposes of 

interpretation.    

*n = 119 
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Previously studying computer science also appears to aid students’ confidence at T1, which is 

evident in students who had previously studied computer science having significantly higher 

average levels of confidence in their answers for questions relating to Iteration (studied 

computer science, M = 61.17, SD = 31.31; did not study computer science,  

M = 38.88, SD = 28.71) and for all questions combined (studied computer science  

M = 71.78, SD = 25.95; did not study computer science, M = 57.85, SD = 21.80), as shown in 

Table 5.10. Substantial differences were also observed in students’ confidence in their 

answers for questions relating to Variable Assignment (studied computer science,  

M = 68.07, SD = 31.09; did not study computer science, M = 51.15, SD = 28.15), Conditional 

Statements (studied computer science, M = 79.88, SD = 23.03; did not study computer 

science, M = 70.28, SD = 22.24) and although these differences did not reach the Bonferroni 

corrected threshold, they still provide evidence of increased confidence amongst students 

with prior experience of studying computer science. Additionally, students’ levels of self-

efficacy for Factor 4 (studied computer science, M = 4.56, SD = 1.65; did not study computer 

science, M = 3.16, SD = 1.81) were significantly higher amongst students who had previously 

studied computer science. Although, this is not reflected in the self-efficacy levels for Factor 

3 (studied computer science, M = 4.07, SD = 1.25, did not study computer science, M = 3.76, 

SD = 1.49) or for Factor 1 (studied computer science, M = 4.35, SD = 1.44; did not study 

computer science, M = 3.70, SD = 1.76). 

 

By T2, previously studying computer science demonstrated a negligible level of influence on 

students’ responses for all three self-efficacy factors: Factor 1 (studied computer science,  

M = 5.04, SD = 1.16; did not study computer science, M = 5.04, SD = 1.05), Factor 3 (studied 

computer science, M = 4.41, SD = 1.29; did not study computer science, M = 4.55,  

SD = 1.36), Factor 4 (studied computer science, M = 5.54, SD = 1.20; did not study computer 

science, M = 5.44, SD = 1.19), clearly indicating that the benefits of previously studying 

computer science are short lived in terms of levels of self-efficacy relating to completing 

simple programming tasks. However, it is evident that students who had previously studied 

computer science remain more confident in their answers at T2, with significant differences 

being evident in students’ average confidence in their answers for questions focusing on 

Variable Assignment (studied computer science, M = 85.44, SD = 24.09; did not study 

computer science, M = 66.62, SD = 36.20), Iteration (studied computer science, M = 74.98, 

SD = 29.73; did not study computer science, M = 55.98, SD = 34.51) and for all questions 

combined (studied computer science, M = 82.90, SD = 24.53; did not study computer science, 
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M = 64.94, SD = 34.77). Additionally, the average confidence levels for questions on 

Conditional Statement (studied computer science, M = 83.90, SD = 25.83; did not study 

computer science, M = 68.81, SD = 36.03) is approaching the Bonferroni Corrected 

threshold. 

 

No significant differences were identified amongst estimates of students’ anxiety levels 

surrounding their degree and learning to program at T1, although students’ levels of fear of 

learning to program do surpass the standard significance threshold of p < .05 at T2, but not 

the Bonferroni corrected threshold. This result, however, could likely be accounted for by the 

experiences students have gained whilst studying the module. 

 

Students’ level of agreement with the notion of considering themselves “self-taught 

programmers" prior to starting their degrees also appeared to influence their confidence 

levels, as shown in Table 5.11. Significant correlations were identified at T1 between 

stronger levels of agreement in considering themselves to be self-taught and higher levels of 

self-efficacy for all three factors examined within the Programming Checkup, with the 

strongest correlation being with Factor 4. Students’ confidence in their answers was also 

significantly correlated with their levels of agreement in considering themselves to be self-

taught, although correlations with their confidence in answering questions focusing on 

conditional statements can only be viewed as approaching the Bonferroni adjusted 

significance threshold. Additionally, students’ estimations of how difficult learning to 

program is, and their levels of fear surrounding learning to program were significantly 

correlated with how strongly they considered themselves to be self-taught programmers at 

T1. 

 

The influence of students considering themselves to be self-taught prior to starting their 

courses appeared to reduce somewhat by T2, with weaker correlations being observed 

between students’ level of agreement of considering themselves to be a self-taught and both 

their self-efficacy levels and their confidence in their answers. However, interestingly, an 

increase was observed in the strength of the correlations with how difficult they believe 

learning to program to be, as well as with how much they fear learning to program, although 

not as strongly as the former. 
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It should also be noted that students’ level of mental effort when answering questions on 

Iteration has a significant, albeit weak, negative correlation with their levels of agreement 

with being “self-taught programmers” at both T1 and T2. However, the poor strength of the 

correlation, combined with the fact that neither students’ mental effort ratings for questions 

relating to variable assignment or conditional statements show significant correlations with 

how strongly they consider themselves to be self-taught, makes it difficult to draw any 

statistically reliable conclusions relating to the broader effects of mental effort. 

 

Additionally, previously studying a mathematics-based subject was found not to aid students’ 

confidence levels as much as other background factors, as shown in Table 5.12, with none of 

the measured confidence factors reaching the Bonferroni corrected threshold at T1 or T2. 

Several factors, however, did surpass the standard significance threshold of p < .05, although 

the effect sizes suggest a weak level of influence at best.   

 

Students’ initial confidence in their answers and their self-efficacy levels do appear to be 

positively influenced by having previous experience of programming and to a lesser extent, 

studying computer science, with students who more strongly consider themselves to be self-

taught programmers also showing greater confidence and self-efficacy, although as all 

students gain experience as they progress through the course the effect of having this prior 

experience on confidence and self-efficacy levels has been seen to decrease. A study 

conducted by Wiedenbeck et al.'s (2004) revealed that students with stronger mental models 

also had higher levels of self-efficacy due to an increased level of program comprehension. 

However, their study analysed students’ mental models of how a given program works rather 

than at an individual concept level, as is done in this investigation.  
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Table 5.11 

Spearman’s Rank Correlation Test Between Students’ Agreement in Considering Themselves 

“Self-Taught Programmers” at the Start of Their Course and Confidence Factors at T1 and 

T2 

Confidence Factor 
T1 T2 

rs p rs p 

Estimation of how difficult learning to program is -.32 <.001 -.43 <.001 

Estimation of how difficult they find mathematics  -.20 .313 -.22 .018 

Estimation of how difficult their degree is -.06 .538 -.18 .057 

How much they fear learning to program -.32 <.001 -.34 <.001 

Self-Efficacy Factor 1 (Independence and Persistence) .49 <.001 .33 <.001 

Self-Efficacy Factor 3 (Self-Regulation) .42 <.001 .23 .014 

Self-Efficacy Factor 4 (Simple Programming Tasks) .61 <.001 .38 <.001 

Confidence – Variable Assignment .31 <.001 .27 .004 

Confidence – Conditional Statements .26 .004 .18 .045 

Confidence – Iteration .48 <.001 .35 <.001 

Confidence – All Questions .37 <.001 .32 <.001 

Mental Effort – Variable Assignment -.05 .569 -.02 .863 

Mental Effort – Conditional Statements -.10 .296 -.04 .691 

Mental Effort – Iteration -.27 .003 -.21 .030 

Note. Given the number of tests being conducted, a Bonferroni correction factor was applied 

to the standard alpha value of .05 to reduce the chance of Type 1 errors. Only significant 

differences at p < .002 (i.e., .05 divided by 28) were deemed to be reliable for purposes of 

interpretation.    

*Self-taught agreements range from Strongly Disagree (1) to Strongly Agree (7) 

*n = 119 
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Table 5.12 

Mann Whitney U Tests Between Previously Studying a Mathematics-Based Subject (Yes/No) 

And Confidence Factors at T1 and T2 

Confidence Factor 
T1 T2 

U z p r U z p r 

Estimation of how difficult 
learning to program is 

1284.00 -2.52 .012 0.23 1366.50 -2.07 .039 0.19 

Estimation of how difficult 
they find mathematics  

1305.00 -2.42 .016 0.22 1464.00 -1.54 .123 0.14 

Estimation of how difficult 
their degree is 

1582.00 -0.92 .357 0.08 1668.50 -0.45 .656 0.04 

How much they fear 
learning to program 

1259.00 -2.65 .008 0.24 1359.50 -2.10 .036 0.19 

Self-Efficacy Factor 1 
(Independence and 
Persistence) 

1340.50 -2.19 .029 0.20 1547.00 -0.82 .414 0.08 

Self-Efficacy Factor 3 
(Self-Regulation) 

1307.00 -2.37 .018 0.22 1438.50 -1.41 .158 0.13 

Self-Efficacy Factor 4 
(Simple Programming 
Tasks) 

1471.00 -1.49 .137 0.14 1411.00 -1.56 .118 0.14 

Confidence –  
Variable Assignment 

1557.00 -1.03 .304 0.09 1596.50 -0.84 .403 0.08 

Confidence –  
Conditional Statements 

1617.00 -0.71 .480 0.07 1622.50 -0.68 .496 0.06 

Confidence –  
Iteration 

1527.50 -1.18 .236 0.11 1531.50 -1.17 .244 0.11 

Confidence –  
All questions 

1554.50 -1.04 .298 0.10 1529.00 -1.18 .239 0.11 

Mental Effort –  
Variable Assignment 

1572.00 -0.95 .340 0.09 1121.50 -1.30 .193 0.12 

Mental Effort – 
Conditional Statements 

1576.50 -0.93 .352 0.09 1237.50 -0.52 .600 0.05 

Mental Effort –  
Iteration 

1655.00 -0.51 .611 0.05 1293.50 -0.15 .881 0.01 

Note. Given the number of tests being conducted, a Bonferroni correction factor was applied 

to the standard alpha value of .05 to reduce the chance of Type 1 errors. Only significant 

differences at p < .002 (i.e., .05 divided by 28) were deemed to be reliable for purposes of 

interpretation.    

*n = 119 
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The three self-efficacy factors examined within the Programming Checkup all yielded similar 

results at T1, with responses to Factor 1 (having the highest level on average (M = 4.16, SD = 

1.56), closely followed by Factor 4 (M = 4.15, SD = 1.81) and Factor 3 (M = 3.98, SD = 

1.32). The average self-efficacy levels for all three factors increased at T2, with Factor 4 now 

having the highest average level (M = 5.51, SD = 1.90), followed by Factor 1 (M = 5.04, SD 

= 1.28) and with Factor 3 again having the lowest level on average (M = 4.44, SD = 1.31). 

The significance of the change in self-efficacy levels is confirmed by the Wilcoxon Signed 

Rank tests presented in Table 5.8, although it is not surprising to see such an increase given 

the experiences that students gain whilst studying on an introductory programming module – 

particularly in completing simple programming tasks that are analysed as part of Factor 4. 

 

Table 5.13 examines the correlations between each of the three self-efficacy factors and the 

mental model estimates established using Bayesian Knowledge Tracing at T1. The results 

show that for self-efficacy Factor 1, the strength of the correlation ranges from rs = .10, p = 

.263 for students’ models of NOT, to rs = .42, p < .001, for their models of Iteration. 

Although a number of the correlations surpass the adjusted significance threshold, the 

strength of the correlations can be considered moderate at best, with the majority of models 

exhibiting weak correlations with Factor 1. Additionally, no models were found to have a 

correlation with self-efficacy Factor 3, which surpassed the adjusted significance threshold at 

T1. All but two models were deemed to have correlations with self-efficacy Factor 4, which 

surpassed the adjusted significance threshold at T1. The standard significance threshold of 

.05 was, however, surpassed by the remaining two models. The correlations between the 

models and Factor 4 were much more substantial, with the strongest correlation being with 

students’ models of Iteration, rs = .71, p < .001. The two models with the weakest correlations 

were AND, rs = .21, p = .025, and NOT, rs = .25, p = .007, although, these models along with 

OR, rs = .37, p = < .001, can in fact be substituted for the Conditional Statement model, 

which encompasses all questions related to Boolean Logic and selection statements, and does 

in fact have a moderately strong correlation with self-efficacy Factor 4, rs = .56, p < .001. By 

T2, however, the strength of the correlations between mental model estimates and self-

efficacy levels was found to be noticeably weaker than the equivalents at T1, suggesting that 

students’ progression with developing appropriate mental models and improving their levels 

of self-efficacy does not necessarily progress at the same rate. 
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Table 5.13 

Spearman’s Rank Correlation Tests Between Self-Efficacy Factors and Mental Model Estimates Established Using Bayesian Knowledge Tracing 

at T1 and T2 

Mental Model 

Self-Efficacy Factor 1 (Independence 

and Persistence) 

Self-Efficacy Factor 3 (Self-

Regulation) 

Self-Efficacy Factor 4 (Simple 

Programming Tasks) 

T1 T2 T1 T2 T1 T2 

rs p rs p rs p rs p rs p rs p 

AND  .12 .188 .09 .342 -.05 .553 .05 .584 .21 .025 .06 .540 

Conditional Statements .35 <.001 .27 .004 .23 .013 .14 .125 .56 <.001 .28 .002 

IF  .32 <.001 .18 .047 .25 .006 .10 .298 .48 <.001 .18 .060 

Iteration .42 <.001 .35 <.001 .23 .013 .27 .004 .71 <.001 .46 <.001 

NOT .10 .263 .29 .002 .02 .847 .10 .272 .25 .007 .26 .005 

Output .37 <.001 .20 .031 .20 .027 .11 .240 .62 <.001 .25 .008 

OR .14 .118 .23 .015 .03 .719 .04 .649 .37 <.001 .24 .011 

Parallelism .28 .002 .23 .014 .19 .040 .18 .047 .55 <.001 .32 <.001 

Variable Assignment  .35 <.001 .04 .641 .15 .112 .05 .607 .60 <.001 .05 .583 

Variable Naming .07 0.443 .14 .144 .01 .889 .13 .154 .31 <.001 .17 .065 

Note. Given the number of tests being conducted, a Bonferroni correction factor was applied to the standard alpha value of .05 to reduce the 

chance of Type 1 errors. Only significant differences at p < .003 (i.e., .05 divided by 20 – the number of tests for each Self-Efficacy factor) were 

deemed to be reliable for purposes of interpretation.    

*n = 119 
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Students’ average confidence in their answers to all programming questions demonstrates 

significant relationships with all mental model estimates at T1, with the majority of 

correlations being of moderate strength, as shown in Table 5.14. Again, the strength of these 

correlations decreases at T2, except for AND, NOT and Variable Naming, which experience 

a marginal increase in strength.  

 

Table 5.14 

Spearman’s Rank Correlation Tests Between Average Confidence in Answers for All 

Programming Questions and Mental Model Estimates Established Using Bayesian 

Knowledge Tracing at T1 and T2 

Mental Model 
T1 T2 

rs p rs p 

AND  .32 <.001 .33 <.001 

Conditional Statements .63 <.001 .46 <.001 

IF  .54 <.001 .40 <.001 

Iteration .65 <.001 .56 <.001 

NOT .35 <.001 .37 <.001 

Output .65 <.001 .48 <.001 

OR .43 <.001 .39 <.001 

Parallelism .52 <.001 .48 <.001 

Variable Assignment  .65 <.001 .35 <.001 

Variable Naming .39 <.001 .42 <.001 

Note. Given the number of tests being conducted, a Bonferroni correction factor was applied 

to the standard alpha value of .05 to reduce the chance of Type 1 errors. Only significant 

differences at p < .003 (i.e., .05 divided by 20) were deemed to be reliable for purposes of 

interpretation.   

*n = 119 

 

  



 191 

The average confidence in students’ answers being correct across all questions within the 

Programming Diagnostic section of the Programming Checkup has been used thus far, as 

multiple models are being assessed in each question. However, the questions can be divided 

based on the main concept being examined within the question (Variable Assignment, 

Conditional Statements or Iteration) to allow for further analysis of students’ confidence in 

their answers for these questions.  

 

Interestingly, the correlations between students’ confidence specifically relating to answering 

questions on Variable Assignment and their estimates of having an appropriate mental model 

(T1 rs = .63, p < .001; T2 rs = .32, p < .001) are slightly weaker at both T1 and T2 when 

compared to their average confidence for all questions. Similarly, students’ confidence when 

answering questions on Conditional Statements exhibits a slightly weaker correlation at T1 

and an equal strength correlation at T2, when compared with their equivalents across all 

questions (T1 rs = .59, p < .001; T2 rs = .46 p < .001).  

 

However, when answering questions on Iteration, the correlations between students’ 

confidence in their answers and their mental model estimates are stronger at both T1 (rs = 

.70, p < .001) and T2 (rs = .63, p < .001) when compared to their average confidence for all 

questions. This could be due to the fact that students may find Iteration a much harder topic, 

as discussed previously, which is reflected in a lower average confidence level at both T1 and 

T2 (T1, M = 54.61, SD = 32.11; T2, M = 69.40, SD = 32.26) when compared to when 

students are answering questions on Variable Assignment (T1, M = 63.68, SD = 30.91; T2, M 

= 79.90, SD = 29.33), Conditional Statements (T1, M = 77.06, SD = 23.13; T2, M = 79.47, 

SD = 29.85) and for all questions combined (T1, M = 67.68, SD = 25.52; T2, M = 77.62, SD 

= 28.97). Furthermore, this may also be an indication that the other models being examined 

in the questions (i.e., Variable Naming, Parallelism or Output), may be impacting students’ 

confidence in their answers more for questions focusing on Variable Assignment and 

Conditional Statements, than questions on Iteration, where the concept of Iteration itself is 

the main factor affecting students’ confidence in their answers. 

 

Given the results presented above, it is possible to conclude that students who are considered 

to be more likely to hold appropriate mental models of concepts such as Conditional 

Statements, Iteration, Output and Parallelism, are likely to have greater confidence in their 

answers and also have higher levels of self-efficacy in relation to completing simple 
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programming tasks at T1, although the strength of these relationships does decrease by T2. 

Model estimates for Iteration exhibit stronger relationships with students’ confidence and 

self-efficacy, suggesting that developing an understanding of this key concept significantly 

influences students’ overall confidence and self-efficacy levels. 

 

Upon completion of the questions within the Programming Diagnostic portion of the 

Programming Checkup, students were required to record how much mental effort they felt 

was required when answering questions. As students provided ratings of mental effort for 

each of the main question categories (Variable Assignment, Conditional Statements and 

Iteration), this allows for an examination of the relationship between students’ mental effort 

ratings and their confidence in their answers for each of the categories. As such, students’ 

mental effort ratings at T1 were found to be significantly negatively correlated (significance 

threshold adjusted to p < .008, 0.05/6, due to the Bonferroni correction), with their 

confidence in their answers for questions focusing on the corresponding concepts, with 

Variable Assignment exhibiting the strongest correlation (rs = -.45, p < .001), followed by 

Iteration (rs = -.42, p < .001) and then Conditional Statements (rs = -.41, p < .001). This, 

therefore, provides some evidence to suggest that students’ who are less confident in their 

answers require more mental effort to answer questions. The correlations remain significant 

at T2 (Variable Assignment, rs = -.33, p < .001; Conditional Statements, rs = -.27, p = .006; 

Iteration, rs = -.30, p = .002). However, their strength has now decreased, which makes it 

difficult to establish any firm conclusions about the relationship between students’ 

confidence in their answers and the mental effort they exert.  

 

A similar trend is also evident when comparing students’ mental effort ratings to the 

estimates of having an appropriate mental model of the main concepts being examined within 

the question. Significant correlations (significance threshold adjusted to p < .008, 0.05/6 due 

to the Bonferroni correction) were identified between the corresponding mental effort and 

model estimates for Variable Assignment (rs = -.36, p <.001 ), Conditional Statements (rs = -

.27, p = .003) and Iteration (rs = -.27, p = .003), albeit being much weaker than the equivalent 

correlations between the mental model estimates and students’ confidence in their answers, as 

discussed previously. There were no significant correlations at T2 (Variable Assignment, rs = 

-.15 p = .127; Conditional Statements, rs = -.08, p = .446; Iteration, rs = -0.12, p = .234). 
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Given that students were only asked to provide ratings of their mental effort at the end of the 

Programming Checkup, it may be appropriate for a future study to include a more 

comprehensive measurement of students’ levels of mental effort, as has been done with their 

levels of confidence in their answers, in order to allow for a more robust investigation into 

how mental effort levels relate to students’ prior experiences, their levels of confidence and 

their likelihood of holding appropriate mental models of the concepts being examined.  

 

Curzon and Rix (1998), previously reported that one of the main reasons students want to 

learn to program at the beginning of their course is so that they can pursue a career as a 

professional programmer. However, the number of students still wanting to pursue this career 

path decreases as the course progresses, which is likely due to the difficulties students 

encounter when learning to program.  

 

At T1, 64 of the 119 students who took part in both rounds of data collection stated they 

wished to pursue a career in software engineering, whilst 48 stated they were undecided and 

7 stated they did not wish to pursue this career path. However, by T2 the number of students 

stating that they did wish to work in software engineering had decreased slightly to 61, with 

the number of students who were undecided also decreasing to 41 and those not wanting to 

work in software engineering increasing to 17. A Wilcoxon Signed Rank test confirmed the 

significance of the change in students’ intentions to work in software engineering between T1 

and T2, z = -2.047, p = .041, r = 0.19, which provides a degree of support for Curzon and 

Rix's (1998) claims. As the data collection for T2 was carried out at the end of the first 

semester it would be interesting to see if as large a drop as reported by Curzon and Rix 

(1998) occurs by the time students had completed their first full year.  

 

Students’ intentions for their intended career path upon graduation speaks to their motivation 

and determination for learning to program, as Bergin and Reilly (2005a) go on to state how 

students who were intrinsically motivated perform better than those who were extrinsically 

motivatied. Students who do wish to pursue a career in software engineering at T1, as 

opposed to those who are either undecided or do not want to work in software engineering, 

were significantly more likely, as confirmed by the Mann Whitney U tests presented in Table 

5.15, to have appropriate models at T1 for Conditional Statements (Yes M = 0.60, SD = 0.44; 

No/Undecided M = 0.34, SD = 0.45), If statements (Yes M = 0.93, SD = 0.19; No/Undecided 

M = 0.81, SD = 0.32), Iteration (Yes M = 0.32, SD = 0.45; No/Undecided M = 0.06, SD = 



 194 

0.23), Output (Yes M = 0.87 SD = 0.32; No/Undecided M = 0.78, SD = 0.40), Variable 

Assignemnt (Yes M = 0.62, SD = 0.46; No/Undecided M = 0.33, SD = 0.43) and also 

Parallelism (Yes M = 0.59, SD = 0.40; No/Undecided M = 0.40, SD = 0.36) which is 

approaching the corrected significance threshold. However, by T2, there are signs of the gap 

reducing between those who do want to work in software eingeering and those who do not, or 

are undecided. This is reflected in only estimates for Iteration (Yes, M = 0.47, SD = 0.48; 

No/Undecided, M = 0.21, SD = 0.38) and Conditional Statements (Yes, M = 0.72, SD = 0.40; 

No/Undecided, M = 0.48, SD = 0.48) continuing to demonstrate significant differences. 

Interestingly, the differences in students’ estimates of having an appropriate model for NOT  

has become significant at T2 (Yes, M = 0.83, SD = 0.31; No/Undecided, M = 0.67 SD = 

0.35), although it is difficult to suggest any conclusive reasons for this increase.  

 

Table 5.15 

Mann Whitney U Tests Between Students’ Intentions to Pursue a Career in Software 

Engineering (Yes or Undecided/No) and Mental Model Estimates Established Using 

Bayesian Knowledge Tracing at T1 and T2 

Mental Model 
T1 T2 

U z p r U z p r 

AND  1419.50 -2.03 .042 0.19 1430.50  -2.02  .044  0.19  

Conditional Statements 1207.50 -2.95 .003 0.27 1190.00  -3.08  .002  0.28  

IF  1167.50 -3.19 .001 0.29 1458.50  -1.69  .092  0.15  

Iteration 1084.00 -3.86 <.001 0.35 1141.50  -3.41  <.001  0.31  

NOT 1517.50 -1.32 .188 0.12 1047.50  -3.92  <.001  0.36  

Output 1150.00 -3.26 .001 0.30 1335.50  -2.33  .020  0.21  

OR 1556.50 -1.09 .275 0.10 1303.50  -2.49  .012  0.23  

Parallelism 1243.00 -2.77 .006 0.25 1464.50  -1.63  .102  0.15  

Variable Assignment  1088.00 -3.67 <.001 0.34 1564.00  -1.18  .237  0.11  

Variable Naming 1351.50 -2.28 .023 0.21 1503.00  -1.57  .117  0.14  

Note. Given the number of tests being conducted, a Bonferroni correction factor was applied 

to the standard alpha value of .05 to reduce the chance of Type 1 errors. Only significant 

differences at p < .003 (i.e., .05 divided by 20) were deemed to be reliable for purposes of 

interpretation. 

*n = 119    
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Furthermore, students who do wish to pursue a career in software engineering are generally 

more confident, as shown in Table 5.16, with significant differences being identifited at T1 in 

how difficult students believe learning to program to be (Yes, M = 5.30 SD = 2.034; 

No/Undecided, M = 6.73, SD = 1.65), how much they fear learning to program (Yes, M = 

2.52, SD = 2.085; No/Undecided, M = 4.47, SD = 2.57), their self-efficacy levels for all three 

factors (Factor 1, Yes, M = 4.70, SD = 1.50; No/Undecided, M = 3.53, SD = 1.40; Factor 3, 

Yes, M = 4.46, SD = 1.13; No/Undecided, M = 3.42, SD = 1.32; Factor 4, Yes, M = 4.68, SD 

= 1.73; No/Undecided, M = 3.54, SD = 1.71), and their average confidence in answering 

questions on Variable Assignment (Yes, M = 72.07, SD = 28.51; No/Undecided, M = 53.92, 

SD = 30.96), Conditional Statements (Yes, M = 82.57, SD = 20.56; No/Undecided, M = 

70.64, SD = 24.45), Iteration (Yes, M = 64.37, SD = 30.72; No/Undecided, M = 43.25, SD = 

30.13), and for all questions combined (Yes, M = 75.09, SD = 22.77; No/Undecided, M = 

59.07, SD = 26.03). 

 

The differences remain significant at T2 between those who do wish to pursue a career in 

software engineering and those who are unsure or do not wish to for factors includinng how 

much students fear learning to program, self-efficacy Factors 1 (Yes, M = 5.46, SD = 0.90; 

No/Undecided, M = 4.60, SD = 1.18) and Factor 4 (Yes, M = 5.85, SD = 0.95; No/Undecided, 

M = 5.16, SD = 1.32), and students confidence in their answers (Variable Assignment, Yes, 

M = 87.14, SD  = 25.19; No/Undecided, M = 72.29, SD = 31.58; Conditional Statement, Yes, 

M = 85.39, SD 26.95; No/Undecided, M = 73.234, SD = 31.70; Iteration, Yes, M = 79.39, SD 

= 27.023; No/Undecided, M = 58.88, SD = 34.14; All, Yes, M = 85.46, SD = 24.59; 

No/Undecided, M = 69.37, SD = 31.07). 

 

The results therefore indicate that students who want to pursue a career in software 

engineering are generally more confident in their programming abilities. There is also 

evidence to suggest that students who do initially want to work in software engineering are 

also more likely to be holding appropriate mental models of a variety of conceptions at the 

commencement of their introductory programming module. However, there appeared to be 

less of a difference in terms of the liklihood of holding appropriate mental models by T2. 

This suggests that students’ intentions for wanting to work in a software engineering role 

upon graduation may be influenced, to a greater extent, by how confident they are in their 

abilties, rather than how likely they are to actually be holding appropriate mental models. 
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Table 5.16 

Mann Whitney U Tests Between Students’ Intentions to Pursue a Career in Software 

Engineering (Yes or Undecided/No) And Confidence Factors at T1 and T2 

Confidence Factor 
T1 T2 

U z p r U z p r 

Estimation of how difficult 
learning to program is 

1096.00 -3.59 <.001 0.33 1322.00 -2.40 .016 0.22 

Estimation of how difficult 
they find mathematics  

1453.50 -1.66 .096 0.15 1509.50 -1.40 .163 0.13 

Estimation of how difficult 
their degree is 

1716.50 -0.24 .811 0.02 1524.00 -1.35 .178 0.12 

How much they fear 
learning to program 

986.00 -4.17 <.001 0.38 833.50 -5.02 <.001 0.46 

Self-Efficacy Factor 1 
(Independence and 
Persistence) 

958.50 -4.27 <.001 0.39 959.00 -4.10 <.001 0.38 

Self-Efficacy Factor 3 
(Self-Regulation) 

982.50 -4.15 <.001 0.38 1186.50 -2.86 .004 0.26 

Self-Efficacy Factor 4 
(Simple Programming 
Tasks) 

1116.50 -3.43 <.001 0.31 1151.50 -3.05 .002 0.28 

Confidence –  
Variable Assignment 

1141.50 -3.30 <.001 0.30 1051.00 -3.92 <.001 0.36 

Confidence –  
Conditional Statements 

1163.00 -3.19 .001 0.29 1200.50 -3.04 .002 0.28 

Confidence –  
Iteration 

1085.50 -3.60 <.001 0.33 1088.50 -3.63 <.001 0.33 

Confidence –  
All Questions 

1111.50 -3.46 <.001 0.32 1016.50 -4.01 <.001 0.37 

Mental Effort –  
Variable Assignment 

1489.00 -1.46 .145 0.13 1121.50 -1.36 .175 0.12 

Mental Effort – 
Conditional Statements 

1633.00 -0.68 .494 0.06 1089.00 -1.57 .117 0.14 

Mental Effort –  
Iteration 

1552.50 -1.12 .264 0.10 1207.00 -0.79 .432 0.07 

Note. Given the number of tests being conducted, a Bonferroni correction factor was applied 

to the standard alpha value of .05 to reduce the chance of Type 1 errors. Only significant 

differences at p < .002 (i.e., .05 divided by 28) were deemed to be reliable for purposes of 

interpretation.    

*n = 119 
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5.3 Examination of Relationships with Assessment 1 Results 
The analyses conducted so far have focused on the changes in results between T1 and T2. 

Unfortunately, however, a large number of students decided not to take part at T2, which 

therefore reduces the amount of available data. Although the data collected at T2 are 

important for tracking students’ progress across the first semester, the purpose of this 

investigation was the development of a predictive model that can be used when students first 

start their courses. This means that the relationships between the data collected at T1 and 

students’ assessment results are the most important in terms of contributions towards 

development of the model. 

 

Section 4.3 presents the feature selection process used to select which features to include in 

the model. However, this was carried out with 30% of the data being withheld from the 

analysis in order for it to be used later as the test dataset. Although this is a standard practice 

in machine learning to allow for the real-world performance of the model to be estimated 

(Kuhn & Johnson, 2013; Raschka, 2018; Russell & Norvig, 2020) by fully isolating the test 

set from all stages of model development, it does limit the amount of data available for 

analysis. Therefore, the following analysis includes all available data at T1 (n = 285) and was 

carried out after the model development was completed in order to allow for more robust 

conclusions to be drawn, whilst maintaining the integrity of the model development process 

as described in Section 4.3.  

 

Although many of the tests below were also carried out during the feature selection process, 

they now include all available data, which allows for a much deeper analysis to be carried out 

than was done previously. Furthermore, the Bonferroni correction was not applied during the 

feature selection process due to the fact that its over-conservative nature would likely lead to 

a large number of features being excluded. However, the correction will be applied in this 

section in order to reduce the chance of Type 1 errors when drawing conclusions about the 

significance of the relationships within the data.  

 

As stated previously, students’ results from their first assessment within their Introductory 

Programming module were chosen as the dependent variable of the predictive model as these 

results focus on evaluating students’ core programming skills, which ties in closely with the 

Programming Diagnostic questions within the Programming Checkup. 
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Table 5.17 presents a series of Mann Whitney U tests, which repeats the analysis conducted 

in Table 4.3, whereby the dichotomous features relating to students’ backgrounds are 

examined as to whether they have a significant influence on students’ Assessment 1 results. 

These analyses include the one-hot encoded responses to “Work in Software Engineering”, 

where students’ responses to “Yes” surpassed the Bonferroni corrected significance threshold 

of p < .007. Furthermore a Kruskal Wallis test also confirmed the existence of a significant 

difference between students’ assessment results and the three possible responses – Yes (M = 

72.98 SD = 18.26), Undecided (M = 65.73 SD = 21.95) and No (M = 64.12 SD = 18.61); H(2) 

= 9.270, p = .010, η2 = 0.032. Additionally, students’ level of agreement with how strongly 

they considered themselves to be “self-taught programmers” was confirmed also to be 

significantly correlated, albeit relatively weakly, with their Assessment 1 results, rs = .285, p 

= <.001, when tests were conducted on all available data at T1. 

 

Table 5.17 

Mann Whitney U Test Between Assessment 1 Results and Dichotomous Background Factors, 

Conducted on All Available Data at T1 

Background Factor U z p r 

Prior programming experience 7168.50 -2.26 .024 0.13 

Previously Studied computer science 7270.00 -1.68 .094 0.09 

Previously Studied mathematics-based subject 8083.50 -2.71 .007 0.16 

Intend to work in software engineering - No 1762.50 -1.57 .117 0.09 

Intend to work in software engineering – Undecided 8007.00 -2.25 .024 0.13 

Intend to work in software engineering - Yes 7950.50 -2.95 .003 0.17 

English is student’s first language 5108.50 -0.94 .347 0.05 

Note. Given the number of tests being conducted, a Bonferroni correction factor was applied 

to the standard alpha value of .05 to reduce the chance of Type 1 errors. Only significant 

differences at p < .007 (i.e., .05 divided by 7) were deemed to be reliable for purposes of 

interpretation.    

*n = 285  

 

The Background Features, which were retained following the analysis conducted in Section 

4.3 were: whether students have studied a mathematics-based subject after leaving school, 

whether students intended to pursue a career in software engineering and how strongly 

students consider themselves to be self-taught programmers. The results of the analysis 
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conducted on all available data at T1 support the conclusions drawn in Section 4.3 as to 

which background features should be included in the model. Two features which were not 

included in the models were whether students have previously studied computer science and 

whether students have prior programming experience. However, given that the previously 

discussed literature has suggested that prior experience – particularly prior programming 

experience – can aid students’ performance, it was felt that it would be appropriate to 

examine these factors further. 

 

Previously, when reviewing the results of students who completed the Programming Checkup 

at both T1 and T2, having prior programming experience was found to benefit students at T1 

in terms of their likelihood of holding appropriate mental models for each of the concepts and 

their confidence in general. However, by T2 the differences between those with and without 

programming experience decreases for the majority of the factors examined within the 

Programming Checkup. 

 

Tables 5.18 and 5.19 repeat the Mann Whitney U tests performed in Tables 5.3 and 5.9 in 

order to confirm any significant differences in students’ mental model estimates or 

confidence levels at T1 between those who did and did not have prior programming 

experience. However, these analyses now focus on all available data at T1. 
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Table 5.18 

Mann Whitney U Tests Between Prior Programming Experience (Yes/No) And Mental Model 

Estimates Established Using Bayesian Knowledge Tracing, Conducted on All Available Data 

at T1 

Mental Model U z p r 

AND 6910.00 -2.91 .004 0.17 

Conditional Statements 4980.50 -5.67 <.001 0.34 

IF 5732.00 -4.52 <.001 0.27 

Iteration 4857.00 -6.33 <.001 0.38 

NOT 6510.00 -3.33 <.001 0.20 

Output 4132.50 -7.02 <.001 0.42 

OR 6211.00 -3.77 <.001 0.22 

Parallelism 4675.50 -6.17 <.001 0.37 

Variable Assignment 4397.00 -6.71 <.001 0.40 

Variable Naming 6421.00 -3.61 <.001 0.21 

Note. Given the number of tests being conducted, a Bonferroni correction factor was applied 

to the standard alpha value of .05 to reduce the chance of Type 1 errors. Only significant 

differences at p < .005 (i.e., .05 divided by 10) were deemed to be reliable for purposes of 

interpretation.    

*n = 285 
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Table 5.19 

Mann Whitney U Tests Between Prior Programming Experience (Yes/No) and Confidence 

Factors, Conducted on All Available Data at T1 

Confidence Factor U z p r 

Estimation of how difficult learning to program is 5618.00 -4.73 <.001 0.28 

Estimation of how difficult they find mathematics  8521.50 -0.15 .885 0.01 

Estimation of how difficult their degree is 8439.50 -0.28 .780 0.02 

How much they fear learning to program 6200.00 -3.80 <.001 0.23 

Self-Efficacy Factor 1 (Independence and Persistence) 4241.00 -6.83 <.001 0.40 

Self-Efficacy Factor 3 (Self-Regulation) 6238.50 -3.71 <.001 0.22 

Self-Efficacy Factor 4 (Simple Programming Tasks) 3041.00 -8.70 <.001 0.52 

Confidence – Variable Assignment 4664.50 -6.17 <.001 0.37 

Confidence – Conditional Statements 5539.50 -4.80 <.001 0.28 

Confidence – Iteration 4134.00 -6.99 <.001 0.41 

Confidence – All Questions 4429.50 -6.53 <.001 0.39 

Mental Effort – Variable Assignment 7422.00 -0.89 .375 0.05 

Mental Effort – Conditional Statements 7286.00 -1.11 .266 0.07 

Mental Effort – Iteration 6362.50 -2.65 .008 0.16 

Note. Given the number of tests being conducted a Bonferroni correction factor was applied 

to the standard alpha value of .05 to reduce the chance of Type 1 errors. Only significant 

differences at p < .004 (i.e., .05 divided by 14) were deemed to be reliable for purposes of 

interpretation.    

*n = 285 

 

The Mann Whitney U test in Table 5.17 indicated that having prior programming experience 

does exert some level of influence on students’ Assessment 1 results. However, although it 

surpasses the standard alpha significance threshold of .05, it fails to surpass the Bonferroni 

corrected threshold of p < .006. Similarly, the Mann Whitney U test performed during the 

feature selection process in Table 4.3, fails to surpass the standard threshold of .05, which 

contributed to prior programming experience not being included in the model. 

 

The likelihood of there being a direct link between having prior programming experience and 

success within Assessment 1 appears tentative at best, with students with prior experience 

obtaining a slightly higher result, M = 71.45, SD = 19.39, than those without, M = 65.80, SD 

= 21.00. However, it has been previously stated that there are a number of factors examined 
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within the Programming Checkup where having prior programming experience has proven to 

cause a significant difference in results.  

 

Prior programming experience may therefore, potentially be indirectly affecting students’ 

Assessment 1 results by acting as a moderator variable, which according to Baron and Kenny 

(1986) “affects the direction and/or strength of the relation between an independent or 

predictor variable and a dependent or criterion variable” (p. 1174). Tables 5.20 and 5.21 

present a Moderation Analysis conducted between having prior programming experience and 

students’ mental model estimates and confidence factors, respectively, using the PROCESS 

Macro (Hayes, 2022). However, only mental model estimates and confidence factor ratings 

which were deemed to have significant differences between students with and without prior 

programming experience (as shown in Tables 5.18 and 5.19), were included in the 

moderation analysis. The moderation analysis tables include the full regression results with 

students’ Assessment 1 results being the dependent variable. However, it is necessary to 

review the “Ind. x Mod. Interaction” row in order to examine whether prior programming 

experience does in fact affect students’ assessment results through its influence on each of the 

independent variables.  

 

Prior programming experience was revealed to only have one potentially significant 

interaction with a mental model (i.e., AND). However, this failed to reach the adjusted 

significance threshold. Additionally, a Johnson-Neyman analysis revealed that amongst 

students who did not have prior programming experience, there was a significant relationship 

between students’ estimates of having an appropriate model for AND and their Assessment 1 

results, b = 27.58, t = 3.41, p = < .001. However, the relationship was not significant amongst 

those with prior programming experience, b = 4.58, t = 0.64, p = .525. Given this, and the rest 

of the evidence presented in Table 5.20, prior programming experience should be generally 

viewed as not acting as a moderator on students’ mental model estimates when attempting to 

predict their assessment performance. 
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Table 5.20 

Moderation Analysis Between Prior Programming Experience (Yes/No) and Mental Model 

Estimates When Predicting Students’ Assessment 1 Results, Conducted on All Available Data 

at T1 

Mental Model Regression Model b SE t p 

AND 

R2 = .06 

Constant 41.77 7.36 5.68 <.001 

Independent Variable 27.58 8.10 3.41 .001 

Moderator  25.37 10.10 2.51 .013 

Ind. x Mod. Interaction -23.00 10.84 -2.12 .034 

Conditional Statements 

R2 = .14 

Constant 63.06 2.46 25.60 <.001 

Independent Variable 9.34 4.87 1.92 .056 

Moderator  -2.28 3.3297 -0.68 .495 

Ind. x Mod. Interaction 8.50 5.73 1.48 .138 

IF 

R2 = .05 

Constant 56.39 5.68 9.92 <.001 

Independent Variable 11.96 6.71 1.78 .076 

Moderator  2.65 7.51 0.35 .724 

Ind. x Mod. Interaction 2.11 8.57 0.25 .806 

Iteration 

R2 = .09 

Constant 65.00 2.11 30.68 <.001 

Independent Variable 16.67 9.90 1.68 .093 

Moderator  2.79 2.66 1.04 .295 

Ind. x Mod. Interaction -2.49 10.44 -0.24 .812 

NOT 

R2 = .04 

Constant 67.37 5.36 12.57 <.001 

Independent Variable -2.14 6.76 -0.32 .751 

Moderator  -6.09 7.01 -0.87 .386 

Ind. x Mod. Interaction 14.62 8.57 1.71 .089 

Output 

R2 = .07 

Constant 54.19 3.78 14.35 <.001 

Independent Variable 17.34 4.71 3.68 <.001 

Moderator  6.20 6.90 0.90 .370 

Ind. x Mod. Interaction -5.48 7.64 -0.72 .474 

OR 

R2 = .09 

Constant 62.66 2.68 23.35 <.001 

Independent Variable 9.48 5.19 1.83 .069 

Moderator  1.79 3.41 0.52 .601 

Ind. x Mod. Interaction 4.67 6.11 0.76 .446 
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Parallelism 

R2 = .13 

Constant 58.49 2.80 20.93 <.001 

Independent Variable 24.33 6.44 3.78 <.001 

Moderator  3.32 3.75 0.89 .376 

Ind. x Mod. Interaction -8.13 7.34 -1.11 .269 

Variable Assignment 

R2 = .16 

Constant 61.12 2.37 25.81 <.001 

Independent Variable 18.92 5.22 3.63 <.001 

Moderator  0.34 3.23 0.10 .917 

Ind. x Mod. Interaction -2.62 5.95 -0.44 .659 

Variable Naming 

R2 = .08 

Constant 55.28 3.72 14.85 <.001 

Independent Variable 16.69 4.90 3.41 <.001 

Moderator  6.38 5.52 1.16 .249 

Ind. x Mod. Interaction -5.11 6.68 -0.76 .445 

Note. Independent Variable is the Mental Model being tested.  

Moderator is Prior Programming Experience.   

Given the number of tests being conducted, a Bonferroni correction factor was applied to the 

standard alpha value of .05 to reduce the chance of Type 1 errors. Only significant 

differences at p < .005 (i.e., .05 divided by 10) were deemed to be reliable for purposes of 

interpretation.      
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Table 5.21 

Moderation Analysis Between Prior Programming Experience (Yes/No) and Confidence 

Factors When Predicting Students’ Assessment 1 Results, Conducted on All Available Data 

at T1 

Confidence Factor Regression Model b SE t p 

Estimation of how difficult  

learning to program is 

R2 = .04 

Constant 60.91 8.25 7.38 <.001 

Independent Variable 0.73 1.19 0.61 .540 

Moderator  20.97 9.19 2.28 .023 

Ind. x Mod. Interaction -2.60 1.37 -1.90 .058 

How much they fear learning to 

program 

R2 = .09 

Constant 67.87 4.13 16.45 <.001 

Independent Variable -0.49 0.84 -0.58 .564 

Moderator  11.92 4.68 2.55 .011 

Ind. x Mod. Interaction -2.24 1.02 -2.21 .028 

Self-Efficacy Factor 1 

(Independence and Persistence) 

R2 = .07 

Constant 66.47 4.75 14.00 <.001 

Independent Variable -0.21 1.33 -0.16 .875 

Moderator  -14.57 6.98 -2.09 .038 

Ind. x Mod. Interaction 4.40 1.70 2.59 .010 

Self-Efficacy Factor 3 (Self-

Regulation) 

R2 = .04 

Constant 68.41 5.86 11.67 <.001 

Independent Variable -0.72 1.51 -0.48 .634 

Moderator  -9.66 7.78 -1.24 .215 

Ind. x Mod. Interaction 3.68 1.89 1.94 .053 

Self-Efficacy Factor 4 (Simple 

Programming Tasks) 

R2 = .14 

Constant 58.60 4.05 14.46 <.001 

Independent Variable 2.58 1.26 2.05 .042 

Moderator  -14.00 6.16 -2.27 .024 

Ind. x Mod. Interaction 2.94 1.56 1.89 .060 

Confidence – Variable Assignment 

R2 = .10 

Constant 57.65 3.79 15.20 <.001 

Independent Variable 0.17 .068 2.56 .011 

Moderator  -1.18 5.37 -0.22 .826 

Ind. x Mod. Interaction 0.04 0.08 0.42 .672 

Confidence – Conditional 

Statements 

R2 = .08 

Constant 54.01 6.43 8.40  <.001 

Independent Variable 0.17 0.09 1.94 .054 

Moderator  -5.90 8.76 -0.67 .501 

Ind. x Mod. Interaction 0.11 0.11 1.01 .314 
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Confidence – Iteration 

R2 = .13 

Constant 60.27 3.18 18.95 <.001 

Independent Variable 0.16 0.07 2.24 .026 

Moderator  -4.87 4.47 -1.09 .277 

Ind. x Mod. Interaction 0.09 0.09 1.09 .277 

Confidence – All questions 

R2 = .12 

Constant 53.28 5.07 10.51 <.001 

Independent Variable 0.23 0.09 2.69 .008 

Moderator  -4.52 6.83 -0.66 .509 

Ind. x Mod. Interaction 0.07 0.11 0.68 .495 

Note. Independent Variable is the Confidence Factor being tested.  

Moderator is Prior Programming Experience.   

Given the number of tests being conducted, a Bonferroni correction factor was applied to the 

standard alpha value of .05 to reduce the chance of Type 1 errors. Only significant 

differences at p < .006 (i.e., .05 divided by 9) were deemed to be reliable for purposes of 

interpretation.      

*n = 285 

 

Similarly, only two interactions between prior programming experience and confidence 

factors (how much students fear learning to program and self-efficacy Factor 1), surpassed 

the standard significance threshold, but again failed to reach the adjusted threshold. The 

Johnson-Neyman analysis revealed that the relationship was significant between students’ 

fear of learning to program and their Assessment 1 results amongst those with prior 

programming experience, b = -2.73, t = -4.78, p = <.001, but not amongst those without prior 

programming experience, b = -0.486, t = -0.58, p = .564. Additionally, it was also found that 

the relationship between self-efficacy Factor 1 and Assessment 1 results was significant 

amongst those with prior programming experience, b = 4.20, t = 3.97, p = <.001, but not 

amongst those without prior experience, b = -0.21, t = -0.16, p = .875.  

 

These results suggest that prior programming experience should also not be considered as 

acting as a moderator variable between students’ confidence factors and their Assessment 1 

results. When taking into account that prior programming experience also does not appear to 

be a reliable moderator between students’ mental model estimates and their Assessment 1 

results, this supports the decision to not include prior programming experience within the 

predictive model.  
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A similar analysis was also undertaken in order to establish whether previously studying 

computer science indirectly affects students’ Assessment 1 results indirectly, given that like 

prior programming experience, the likelihood of a direct link does not appear to be very 

strong as the Mann Whitney U test performed in Table 5.17 surpasses the standard 

significance threshold, but not the adjusted one. Additionally, there was only a small increase 

in students’ assessment results between those who did previously study computer science, M 

= 71.12, SD = 19.25, and those who did not, M = 66.29, SD = 21.56.  It should be noted that 

previously studying computer science was not included in the predictive model due to the 

Mann Whitney U test performed in Table 4.3, which did not indicate a significant 

relationship with students’ Assessment 1 results within the training dataset. 

 

As before, mental model estimates and confidence factor ratings that showed significant 

differences between those who did and did not previously study computer science (as shown 

in Tables 5.22 and 5.23), were included in the moderation analysis, which is presented in 

Tables 5.24 and 5.25.   
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Table 5.22 

Mann Whitney U Tests Between Previously Studying Computer Science (Yes/No) And Mental 

Model Estimates, Conducted on All Available Data at T1 

Mental Model U z p r 

AND 7057.00 -2.20 .028 0.13 

Conditional Statements 5537.00 -4.42 <.001 0.26 

IF 6485.50 -2.93 .003 0.17 

Iteration 5297.00 -5.19 <.001 0.31 

NOT 6131.50 -3.53 <.001 0.21 

Output 5524.50 -4.46 <.001 0.26 

OR 6537.00 -2.85 .004 0.17 

Parallelism 5321.00 -4.78 <.001 0.28 

Variable Assignment 4982.00 -5.41 <.001 0.32 

Variable Naming 7591.50 -1.23 .221 0.07 

Note. Given the number of tests being conducted, a Bonferroni correction factor was applied 

to the standard alpha value of .05 to reduce the chance of Type 1 errors. Only significant 

differences at p < .005 (i.e., .05 divided by 10) were deemed to be reliable for purposes of 

interpretation.    

*n = 285 
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Table 5.23 

Mann Whitney U Tests Between Previously Studying Computer Science (Yes/No) and 

Confidence Factors Conducted on All Available Data at T1 

Confidence Factor U z p r 

Estimation of how difficult learning to program is 5874.00 -3.93 <.001 0.23 

Estimation of how difficult they find mathematics  8316.00 -0.01 .991 0.00 

Estimation of how difficult their degree is 7992.50 -0.54 .588 0.03 

How much they fear learning to program 6447.00 -3.01 .003 0.18 

Self-Efficacy Factor 1 (Independence and 

Persistence) 

5171.50 -5.01 <.001 0.30 

Self-Efficacy Factor 3 (Self-Regulation) 6933.50 -2.21 .027 0.13 

Self-Efficacy Factor 4 (Simple Programming 

Tasks) 

3817.50 -7.16 <.001 0.42 

Confidence – Variable Assignment 5018.50 -5.25 <.001 0.31 

Confidence – Conditional Statements 5655.50 -4.24 <.001 0.25 

Confidence – Iteration 4622.00 -5.88 <.001 0.35 

Confidence – All Questions 4756.00 -5.66 <.001 0.34 

Mental Effort – Variable Assignment 7114.50 -1.03 .304 0.06 

Mental Effort – Conditional Statements 7467.00 -0.43 .666 0.03 

Mental Effort – Iteration 7611.00 -0.19 .851 0.02 

Note. Given the number of tests being conducted, a Bonferroni correction factor was applied 

to the standard alpha value of .05 to reduce the chance of Type 1 errors. Only significant 

differences at p < .004 (i.e., .05 divided by 14) were deemed to be reliable for purposes of 

interpretation.    

*n = 285  
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Table 5.24 

Moderation Analysis Between Previously Studying Computer Science (Yes/No) and Mental 

Model Estimates When Predicting Students’ Assessment 1 Results, Conducted on All 

Available Data at T1 

Mental Model Regression Model b SE t p 

Conditional Statements 

R2 = .13 

Constant 62.30 2.58 24.13 <.001 

Independent Variable 12.95 4.98 2.60 .010 

Moderator  -0.87 3.38 -0.26 .797 

Ind. x Mod. Interaction 3.64 5.80 0.63 .530 

IF 

R2 = .05 

Constant 60.28 6.55 9.21 <.001 

Independent Variable 7.27 7.48 0.97 .332 

Moderator  -3.74 7.94 -0.47 .638 

Ind. x Mod. Interaction 9.61 8.96 1.07 .285 

Iteration 

R2 = .08 

Constant 65.14 2.00 29.60 <.001 

Independent Variable 18.32 8.96 2.05 .042 

Moderator  2.47 2.71 0.91 .362 

Ind. x Mod. Interaction -4.13 9.559 -0.43 -.666 

NOT 

R2 = .02 

Constant 60.88 5.30 11.49 <.001 

Independent Variable 7.73 6.88 1.12 .262 

Moderator  5.00 7.038 0.71 .477 

Ind. x Mod. Interaction -1.39 8.72 -0.16 .873 

Output 

R2 =.08 

Constant 53.32 4.21 12.67 <.001 

Independent Variable 18.08 5.05 3.58 <.001 

Moderator  6.22 6.37 0.98 .329 

Ind. x Mod. Interaction -5.33  7.15 -0.75  .456  

OR 

R2 = .09 

Constant 62.06 2.76 22.47 <.001 

Independent Variable 12.56 5.23 2.40 .017 

Moderator  2.60 3.45 0.75 .452 

Ind. x Mod. Interaction 0.67 6.14 0.11 .913 
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Parallelism 

R2 = .12 

 

Constant 59.80 2.96 20.18 <.001 

Independent Variable 18.93 6.15 3.08 .002 

Moderator  1.22 3.80 0.32 0.75 

Ind. x Mod. Interaction -1.24 7.05 -0.18 .860 

Variable Assignment 

R2 = .15 

Constant 61.64 2.51 24.58 <.001 

Independent Variable 15.95 4.97 3.21 .002 

Moderator  -0.50 3.27 -0.15 .879 

Ind. x Mod. Interaction 1.05 5.71 0.18 .854 

Note. Ind. (Independent Variable) is the Confidence Factor being tested.  

Mod. (Moderator) is previously studying computer science.   

Given the number of tests being conducted, a Bonferroni correction factor was applied to the 

standard alpha value of .05 to reduce the chance of Type 1 errors. Only significant 

differences at p < .006 (i.e., .05 divided by 8) were deemed to be reliable for purposes of 

interpretation.     

*n = 285  
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Table 5.25 

Moderation Analysis Between Previously Studying Computer Science (Yes/No) and 

Confidence Factors When Predicting Students’ Assessment 1 Results, Conducted on All 

Available Data at T1 

Confidence Factor Regression Model b SE t p 

Estimation of how difficult  

learning to program is 

R2 = .05 

Constant 53.723 9.50 5.65 <.001 

Independent Variable 1.88 1.39 1.36 .176 

Moderator  28.54 10.26 2.78 .006 

Ind. x Mod. Interaction -3.87 1.53 -2.53 .012  

How much they fear learning to 

program 

R2 = .10 

Constant 66.5 4.16 15.99 <.001 

Independent Variable -0.05 0.88 -0.06 .950 

Moderator  13.59 4.70 2.89 .004 

Ind. x Mod. Interaction -2.79 1.03 -2.70 .007 

Self-Efficacy Factor 1 

(Independence and Persistence) 

R2 =.06 

Constant 63.27 4.82 13.13 <.001 

Independent Variable 0.89 1.26 0.70 .483 

Moderator  -8.83 6.85 -1.29 .198 

Ind. x Mod. Interaction 2.78 1.63 1.71 .089 

Self-Efficacy Factor 4 (Simple 

Programming Tasks) 

R2 =.13 

Constant 57.01 4.23 13.49 <.001 

Independent Variable 3.09 1.23 2.52 .012 

Moderator  -8.85 5.98 -1.48 .140 

Ind. x Mod. Interaction 1.76 1.49 1.18 .240 

Confidence – Variable Assignment 

R2 =.10 

Constant 58.83 4.22 13.94 <.001 

Independent Variable 0.15 0.07 2.04 .042 

Moderator  -2.84 5.47 -0.52 .604 

Ind. x Mod. Interaction 0.07 0.087 0.746 .456 

Confidence – Conditional 

Statements 

R2 =.08 

Constant 53.28 7.15 7.45 <.001 

Independent Variable 0.185 0.10 1.91 .058 

Moderator  -4.27 9.03 -0.47 .636 

Ind. x Mod. Interaction 0.09 0.12 0.74 .458 

Confidence – Iteration 

R2 =.13 

Constant 60.15 3.40 17.71 <.001 

Independent Variable 0.17 0.07 2.29 .023 

Moderator  -4.17 4.50 -0.93 .354 

Ind. x Mod. Interaction 0.08 0.09 0.93 .353 
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Confidence – All Questions 

R2 =.12 

Constant 53.60 5.59 9.59 <.001 

Independent Variable 0.23 0.09 2.45 .015 

Moderator  -4.42 7.01 -0.63 .529 

Ind. x Mod. Interaction 0.07 0.11 0.66 .509 

Note. Independent Variable is the Confidence Factor being tested.  

Moderator is previously studying computer science.   

Given the number of tests being conducted, a Bonferroni correction factor was applied to the 

standard alpha value of .05 to reduce the chance of Type 1 errors. Only significant 

differences at p < .006 (i.e., .05 divided by 8) were deemed to be reliable for purposes of 

interpretation.      

*n = 285 

 

The moderation analysis revealed no significant interactions were found between students’ 

mental model estimates and previously studying computer science when attempting to predict 

students’ Assessment 1 results. However, two confidence factors (how difficult students 

believe learning to program to be and how much students fear learning to program), were 

identified as having potentially significant interactions with previously studying computer 

science.  

 

The interaction between previously studying computer science and students’ ratings for how 

difficult students believe learning to program to be surpassed the standard significance 

threshold of .05, but not the adjusted significance threshold. However, a Johnson-Neyman 

analysis revealed that a significant relationship existed between those who did previously 

study computer science and their rating for how difficult they believe learning to program to 

be, b = -1.984, t = -3.081, p = .002. However, this was not significant amongst students who 

did not previously study Computer Science, b = 1.884, t = 1.358, p = .176.  

 

The interaction between students’ ratings of how much they fear learning to program and 

whether they had previously studied computer science almost reached the adjusted 

significance threshold of p < .006. Follow-up analyses using the Johnson-Neyman test 

revealed a significant relationship between students’ level of fear of learning to program and 

their Assessment 1 results amongst those who did previously study computer science, b = -

2.852, t = -5.191, p = <.001, but not those who did not previously study it, b = -0.055, t = -

0.062, p = .950.  
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Although previously studying computer science appears to indirectly exert a degree of 

influence on students’ Assessment 1 results through the levels of fear associated with 

learning to program, the fact that no significant interactions take place with all mental model 

estimates and the majority of the confidence factors, supports the decision not to include 

whether students have previously studied computer science within the predictive model. Both 

prior programming experience and previously studying computer science cannot generally be 

considered to be moderator variables when attempting to predict students’ Assessment 1 

results. Although both variables have been shown to significantly influence students’ 

responses to the Programming Checkup at T1, the influence of both variables has been seen 

to decrease by T2 and subsequently, their influence over students’ Assessment 1 is also 

limited given that this takes place within a few weeks of the T2 data collection.  

 

Students who exhibit high levels of anxiety towards learning to program and low levels of 

self-confidence in their abilities have been shown to encounter an “almost physical barrier” to 

learning to program  (Rogerson & Scott, 2010, p.167). The results presented in Table 5.26 

depict the relationships between each of the confidence factors examined within the 

Programming Checkup at T1 and students’ Assessment 1 results. This repeats the analysis 

conducted during the feature selection process, as shown in Table 4.5, where the following 

features were retained within the predictive model: 

 

• Estimation of how difficult learning to program is 

• Estimation of how difficult they find mathematics 

• How much they fear learning to program 

• Self-efficacy Factor 1 (Independence and Persistence) 

• Self-efficacy Factor 3 (Self-Regulation) 

• Self-efficacy Factor 4 (Simple Programming Tasks) 

• Confidence (all questions) 
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Table 5.26 

Spearman’s Rank Correlation Tests Between Assessment 1 Results and Confidence Features, 

Conducted on All Available Data at T1 

Confidence Factor rs p 

Estimation of how difficult learning to program is -.15 .012 

Estimation of how difficult they find mathematics  -.09 .133 

Estimation of how difficult their degree is .04 .493 

How much they fear learning to program -.29 <.001 

Self-Efficacy Factor 1 (Independence and Persistence) .22 <.001 

Self-Efficacy Factor 3 (Self-Regulation) .13 .025 

Self-Efficacy Factor 4 (Simple Programming Tasks) .39 <.001 

Confidence – Variable Assignment .34 <.001 

Confidence – Conditional Statements .29 <.001 

Confidence – Iteration .39 <.001 

Confidence – All Questions .38 <.001 

Mental Effort – Variable Assignment -.12 .046 

Mental Effort – Conditional Statements -.09 .119 

Mental Effort – Iteration -.10 .113 

Note. Given the number of tests being conducted, a Bonferroni correction factor was applied 

to the standard alpha value of .05 to reduce the chance of Type 1 errors. Only significant 

differences at p < .004 (i.e., .05 divided by 14) were deemed to be reliable for purposes of 

interpretation.    

*n = 285 

 

The results of the tests conducted on the full dataset are analogous to those of the tests 

conducted during Feature Selection, whereby students’ ratings for how difficult they believe 

their degrees to be as well as their ratings of mental effort when answering questions on 

Conditional Statements and Iteration, showed no significant relationship with their 

Assessment 1 results and, as such, were not included in the predictive model. Although 

students’ mental effort ratings for answering questions on Variable Assignment surpassed the 

standard significance threshold of p < .05 (but not the adjusted threshold), the original 

decision not to include any mental effort ratings in the predictive model is felt to still be 

justified, given that the correlations between students’ mental effort ratings for Conditional 

Statements and Iteration did not surpass the standard significance threshold.   
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Students’ estimations of how difficult they find mathematics was retained in the model due to 

a strong relationship being identified with the dichotomised assessment results used for 

classification, as shown in Table 4.4, despite a non-significant relationship being identified 

with the continuous assessment result used for the regression models. In order to ensure 

consistency, the same features were used for both classification and regression models. 

 

The link between mathematics and programming is evident in the literature (i.e. Bergin & 

Reilly, 2005b; Byrne & Lyons, 2001; Gomes et al., 2006; Kaufmann & Stenseth, 2021; 

Wilson & Shrock, 2001), and a near-significant difference (when applying the Bonferroni 

correction) in Assessment 1 results between students who did or did not previously study a 

mathematics-based subject, has already been identified within the full T1 dataset. However, 

the results in Table 5.26 confirmed that the relationship between students’ estimations of how 

difficult they find mathematics and their Assessment 1 results was not significant. It should 

be noted that students’ estimations as to how difficult it is to learn to program was included in 

the model was as it surpassed the standard significance threshold of  

p < .05 in Table 4.5. However, it fails to reach the adjusted significance threshold when 

evaluated on all data available at T1, with the correlation being too weak to reliably state that 

there is a substantial relationship between students’ views of how difficult learning to 

program will be and their actual performance.  

 

Students’ confidence in their answers for each of the question topics, and for all questions 

combined, were revealed to have some of the strongest correlations with the Assessment 1 

results. Although the assessment takes place nearer to T2 than T1, these results do indeed 

support the link between students’ initial self-confidence and their performance given that 

significant relationships between students’ confidence in their answers and their estimates of 

having appropriate mental models have previously been identified. Additionally, as per 

Rogerson and Scott's (2010) claims, a significant relationship between students’ level of fear 

of learning to program and their Assessment 1 results was reported. 

 

Students’ levels of self-efficacy relating to completing simple programming tasks (Factor 4) 

also demonstrates a comparatively strong correlation with their Assessment 1 results. 

Furthermore, students’ levels of self-efficacy relating to Independence and Persistence also 

exhibit a significant correlation with their Assessment 1 results, albeit weaker than that with 
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Factor 4. However, their self-efficacy levels relating to Self-Regulation (Factor 3) failed to 

produce a correlation that surpasses the adjusted significance threshold.  

 

The results in Table 5.26 do therefore, generally support the decisions being made during the 

feature selection process, although if only a regression model was being considered it would 

be appropriate to not include how difficult students find mathematics within the model. The 

strongest correlations with students’ Assessment 1 grades were found to be with features that 

directly mapped to students’ confidence in the core content of the module and the assessment 

itself, that is, completing simple programming tasks and their understanding of the key 

concepts being taught, which are essential for students to be able to do in order to pass the 

assignment. It is evident that how much students fear learning to program also links to their 

assessment results, suggesting that some students’ learning may indeed be being blocked due 

to a lack of confidence by, for example, not feeling confident enough to ask questions when 

they are struggling (Bergin & Reilly, 2005a; Rogerson & Scott, 2010). 

 

Wiedenbeck et al. (2004) stated that students “pre-self-efficacy” within their study does not 

directly affect their performance; rather, “post-self-efficacy” acts as a mediator variable 

whereby it allows performance to be affected by pre-self-efficacy by passing through post-

self-efficacy (Baron & Kenny, 1986; Hayes, 2022; Wiedenbeck et al., 2004). Hayes (2022) 

provides a conceptual diagram of the “simple mediation model”, as shown in Figure 5.3, 

where X represents an independent variable (i.e., pre-self-efficacy), M represents the mediator 

variable (i.e., post-self-efficacy) and Y represents the outcome variable (i.e., performance). 

 
Figure 5.3 

Conceptual Diagram of a Simple Mediation Model 

 

 
Note. From “Introduction to Mediation, Moderation and Conditional Process Analysis: A 

Regression Based Approach, Third Edition,” by A. F. Hayes, Guilford Publications, 2022. 

X 

M 

Y 
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As the diagram shows, there are two paths from X to Y – either the direct path which passes 

from X to Y without passing through M, thus showing pre-self-efficacy’s direct effect on 

performance, or through the second, indirect, path from X to Y, which passes through M. This 

second path demonstrates the indirect effect where the influence of X on Y is indirect and 

instead is a result of X’s influence on M, which in turn influences Y (Hayes, 2022). This 

captures how Wiedenbeck et al.'s (2004) pre-self-efficacy levels influence post-self-efficacy, 

which consequently influences performance. Wiedenbeck et al.'s (2004) pre- and post-self-

efficacy readings are akin to the T1 and T2 Programming Checkup data collections. As such, 

the subset of responses which were involved in both rounds of data collection was used to 

carry out a Mediator analysis using the PROCESS Macro, in order to evaluate whether self-

efficacy, or any other confidence factor, at T2 is acting as a mediator variable. 

 

The results from the Mediation analysis are presented in Table 5.27, with there being three 

possible conclusions for each factor in the analysis: No significant mediation, Partial 

meditation (whereby the relationships between mediator and outcome variables are 

significant as well as the relationships between the independent and outcome variables), and 

Complete Mediation (where the direct relationship between independent and outcome 

variables is insignificant). However, Hayes (2022) recommends that the results of mediation 

analyses should not be reviewed using these terms given their sensitivity to sample size. 

Therefore, any factor that has been concluded as having either partial or complete mediation 

will be considered to be significant.  
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Table 5.27 

Mediator Analysis Conducted on Confidence Factors When Predicting Assessment 1 Results 

Confidence Factor 
Total 

Effect 

Direct 

Effect 

Indirect 

Effect 

Indirect 

Effect 

CI LB 

Indirect 

Effect  

CI UB 

t Conclusion 

Estimation of how difficult learning to program is -2.05 -0.47 -1.59 -2.95 -0.332 -2.33 Partial Mediation 

Estimation of how difficult they find mathematics  -1.65 -1.75 0.10 -1.118 1.505 0.15 No Significant Mediation 

Estimation of how difficult their degree is 0.81 1.70 -0.89 -2.412 0.159 -1.35 No Significant Mediation 

How much they fear learning to program -2.26 -1.35 -0.91 -2.624 -0.075 -2.50 Complete Mediation 

Self-Efficacy Factor 1 (Independence and Persistence) 2.83 0.88 1.95 0.785 3.364 3.01 Complete Mediation 

Self-Efficacy Factor 3 (Self-Regulation) 2.79 1.81 0.98 -0.004 2.170 1.79 No Significant Mediation 

Self-Efficacy Factor 4 (Simple Programming Tasks) 3.84 2.08 1.76 0.383 3.433 2.28 Partial Mediation 

Confidence – Variable Assignment 0.21 0.16 0.05 0.003 0.101 1.81 Partial Mediation 

Confidence – Conditional Statements 0.20 0.16 0.04 -0.016 0.119 1.24 No significant mediation 

Confidence – Iteration 0.23 0.16 0.07 0.016 0.143 2.21 Partial Mediation 

Confidence – All Questions 0.26 0.21 0.06 -0.011 0.136 1.50 No Significant Mediation 

Mental Effort – Variable Assignment -0.98 -0.67 -0.31 -0.816 0.018 -1.44 No Significant Mediation 

Mental Effort – Conditional Statements -1.00 -0.83 -0.17 -0.664 0.130 -0.86 No Significant Mediation 

Mental Effort – Iteration -0.53 -0.34 -0.20 -0.701 0.083 -3.40 No Significant Mediation 

Note. Mediation analysis conducted on subset of dataset where participants had taken part in both T1 and T2 data collections  

*n = 119 
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Two of the three self-efficacy factors (Factors 1 and 4) were revealed to be mediated by 

students’ responses at T2. Although Factor 3 does not appear to be mediated, this generally 

does support Wiedenbeck et al.'s (2004) claims as they did not break down the self-efficacy 

ratings into the individual factors. Furthermore, a number of other factors appear to be 

mediated by students’ responses at T2 including how difficult students feel learning to 

program is, how much students fear learning to program and students’ confidence in their 

answers for questions on Variable Assignment and Iteration. Although not every factor 

included in the predictive model can be considered to be mediated by students’ responses at 

T2, clear relationships between a number of different variables that are related to students’ 

confidence levels at T1 and success within their first assessment have been established. 

 

All mental model estimates were included within the predictive model, with the exception of 

AND, OR, NOT and IF, given that the Conditional Statements model was found to have a 

stronger relationship with students’ Assessment 1 results whilst also accounting for each of 

the individual concepts within a single model. Table 5.28 presents the Spearman’s Rank 

analysis between students’ mental model estimates and their Assessment 1 results using all 

available data at T1. Although the strength of the correlations range from weak to moderate 

at best, the results do support the original decision to retain the Conditional Statements model 

instead of the models associated with each of the individual concepts, given that Conditional 

Statements again showed the strongest relationship when compared to the individual 

concepts.  

 

A mediation analysis was also carried out in order to examine the causal paths between 

students’ estimates of having appropriate mental models at T1 and T2, and their influence on 

students’ assessment results, as shown in Table 5.29. Consequently, it was necessary to also 

conduct this analysis on the subset of students who completed the Programming Checkup at 

both T1 and T2. 
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Table 5.28 

Spearman’s Rank Correlation Tests Between Assessment 1 Grades and Mental Model 

Estimates Established Using Bayesian Knowledge Tracing, Conducted on All Available Data 

at T1 

Mental Model rs p 

AND .23 <.001 

Conditional Statements .39 <.001 

IF .33 <.001 

Iteration .47 <.001 

NOT .25 <.001 

Output .40 <.001 

OR .31 <.001 

Parallelism .38 <.001 

Variable Assignment .43 <.001 

Variable Naming .23 <.001 

Note. Given the number of tests being conducted, a Bonferroni correction factor was applied 

to the standard alpha value of .05 to reduce the chance of Type 1 errors. Only significant 

differences at p < .005 (i.e., .05 divided by 10) were deemed to be reliable for purposes of 

interpretation.    

*n = 285 
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Table 5.29 

Mediator Analysis Conducted on Mental Model Estimates When Predicting Assessment 1 

Results 

Mental Model 
Total 

Effect 

Direct 

Effect 

Indirect 

Effect 

Indirect 

Effect 

CI LB 

Indirect 

Effect  

CI UB 

t Conclusion 

AND 1.04 0.67 0.37 -1.78 2.60 0.33 No Significant Mediation 

Conditional Statements 12.07 8.86 3.21 0.47 6.66 2.03 Partial Mediation 

IF 22.67 22.66 0.01 -1.65 0.57 0.01 No Significant Mediation 

Iteration 14.65 4.51 10.15 6.15 15.01 4.51 Complete Mediation 

NOT 2.86 -0.29 3.15 0.41 8.47 1.48 Complete Mediation 

Output 8.27 8.63 -0.36 -1.67 0.26 -0.71 No Significant Mediation 

OR 6.46 2.31 4.15 -1.71 10.42 1.36 No Significant Mediation 

Parallelism 14.57 11.92 2.65 0.26 5.97 1.81 Partial Mediation 

Variable Assignment 11.24 9.79 1.44 0.09 3.68 1.56 Partial Mediation 

Variable Naming 14.92 14.71 0.21 -1.33 1.89 0.28 No Significant Mediation 

Note. Mediation analysis conducted on subset of dataset where participants had taken part in 

both T1 and T2 data collections.  

*n = 119 
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Figure 5.4 

Estimates of Whether Students Hold Appropriate Mental Models at T1 (Using All Available 

Data), Established Using Bayesian Knowledge Tracing with a Threshold of 0.5  

 
The strongest correlation presented within Table 5.28 was between students’ Assessment 1 

results and their estimates of holding an appropriate model of Iteration (rs = .47). Figure 5.4 

incorporates the previously isolated holdout-test set, and subsequently presents similar results 

to that of Figure 5.2. Both Figures 5.2 and 5.4 show the vast majority of students were 

deemed unlikely to hold an appropriate model for Iteration, which has previously been shown 

to be a topic of difficulty for students. Despite this, students’ estimates of having an 

appropriate mental model of Iteration at T2 were shown to be a significant mediator between 

their T1 estimates and their Assessment 1 results, thereby supporting the notion that 

development of an appropriate model of Iteration is an important step in students’ learning.   

 

The next strongest correlation is with Variable Assignment, arguably the most fundamental 

of concepts which students are required to develop a model of. Again, a significant portion of 

students were considered to be unlikely to hold an appropriate mental model at T1, mostly 

due to the MA misconception. However, among students who completed the Programming 

Checkup at both opportunities, the vast majority were shown to develop an appropriate 

mental model by T2, which is reflected in their T2 estimates also being considered a 

significant mediator. 
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Two further model estimates which showed correlations of reasonable strength (relative to 

other mental models) with students’ Assessment 1 results were Conditional Statements and 

Parallelism. Both had significant proportions of students who were not considered likely to 

have appropriate models at T1, although they did not have quite as large a drop in the number 

of students being considered unlikely to hold an appropriate model as Variable Assignment. 

However, both were identified as being mediated by students’ responses at T2. 

The only other model estimate which was identified as being mediated by students’ estimates 

at T2 was NOT. However, it had one of the weakest correlations with students’ Assessment 1 

results and was also not included in the predictive model. 

 

Although estimates for other models were not considered to be significant mediators, it is 

expected that students’ models will improve over time if students are able to overcome any 

misconceptions they are holding. Nevertheless, the estimates of how likely that a student is to 

hold an appropriate model for each of the core concepts has previously been shown to aid in 

the prediction of students’ assessment results. All the mental models assessed within the 

Programming Checkup are required to be used within the assessment students undertake. 

However, it is interesting to note that the strongest correlations with students’ Assessment 1 

results were with several of the models that significant proportions of students were 

considered unlikely to hold at T1. 

 

In addition to the mediation analysis conducted between students’ responses to the 

Programming Checkup at T1 and T2, and their Assessment 1 results, an additional mediation 

analysis was carried out in order to examine the casual effect between students’ levels of 

confidence, their mental model estimates and their Assessment 1 results. Only confidence 

factors that were significantly correlated with students’ Assessment 1 results (see Table 5.26) 

were included in this mediation analysis. However, as this mediation analysis only requires 

students’ responses at T1, all available data were used. From the results presented in Table 

5.30 it can be determined that students’ ratings for self-efficacy Factor 3 did not act as a 

mediating variable between their estimates of holding appropriate mental models for each of 

the concepts being examined and their Assessment 1 results. Furthermore, students’ estimates 

of how difficult they believe learning to program to be cannot be considered to be a 

mediating variable given that no significant mediation was determined for the majority of the 

mental model estimates.  
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However, the remaining factors, including how much students fear learning to program, self-

efficacy Factors 1 and 4, and students’ confidence in answering questions focusing on 

Variable Assignment, Conditional Statements, Iteration, and for all questions combined, can 

be considered to be reliable mediator variables. This is because a significant mediation effect 

was established between the majority (or all) of the mental model estimates and students’ 

Assessment 1 results when each of the factors were included as mediators. This, therefore, 

provides evidence of a causal link whereby the likelihood of holding appropriate mental 

models directly influences these confidence factors, which in turn influence students’ 

performance. It should, however, be noted that the direct influence of students’ mental model 

estimates on their Assessment 1 results remains significant.   



 226 

Table 5.30 

Mediator Analysis Conducted on Confidence Factors and Mental Model Estimates When Predicting Assessment 1 Results 

Confidence Factor  

(Mediator) 
Mental Model 

Total 

Effect 

Direct 

Effect 

Indirect 

Effect 

Indirect 

Effect 

CI LB 

Indirect 

Effect  

CI UB 

t Conclusion 

Estimation of how 

difficult learning to 

program is 

 

AND 16.19 15.90 0.29 -1.12 1.88 0.40 No Significant Mediation 

Conditional Statements 15.78 15.07 0.72 -0.47 1.98 1.17 No Significant Mediation 

IF 14.37 13.29 1.08 0.05 2.74 1.56 Partial Mediation 

Iteration 15.27 14.11 1.15 -0.39 2.98 1.15 No Significant Mediation 

NOT 8.12 7.15 0.96 -0.12 2.62 1.33 No Significant Mediation 

Output 16.09 15.03 1.05 0.08 2.49 1.65 Partial Mediation 

OR 13.54 12.64 0.09 -0.02 2.17 0.17 No Significant Mediation 

Parallelism 18.21 17.45 0.76 -1.02 2.53 0.86 No Significant Mediation 

Variable Assignment 16.71 16.54 0.17 -1.46 1.85 0.21 No Significant Mediation 

Variable Naming 14.88 13.99 0.89 0.04 2.18 1.59 Partial Mediation 
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How much they fear 

learning to program 

 

AND 16.19 13.15 3.05 0.64 6.47 2.05 Partial Mediation 

Conditional Statements 15.78 13.35 2.43 0.68 4.52 2.47 Partial Mediation 

IF 14.37 11.73 2.65 0.71 5.14 2.30 Partial Mediation 

Iteration 15.27 12.58 2.68 1.01 4.74 2.80 Partial Mediation 

NOT 8.16 6.28 1.84 -0.13 4.57 1.56 No Significant Mediation 

Output 16.09 13.26 2.82 1.04 5.31 2.60 Partial Mediation 

OR 13.54 10.97 2.57 0.96 4.66 2.69 Partial Mediation 

Parallelism 18.21 15.28 2.94 0.73 5.34 2.53 Partial Mediation 

Variable Assignment 16.71 14.50 2.22 0.18 4.41 2.04 Partial Mediation 

Variable Naming 14.88 12.43 2.45 0.84 4.62 2.54 Partial Mediation 

Self-Efficacy Factor 1 

(Independence and 

Persistence) 

 

AND 16.19 14.48 1.71 -0.45 4.96 1.27 No Significant Mediation 

Conditional Statements 15.78 14.39 1.39 0.15 2.98 1.92 Partial Mediation 

IF 14.37 12.52 1.85 0.13 4.27 1.74 Partial Mediation 

Iteration 15.27 13.29 1.98 0.37 3.98 2.17 Partial Mediation 

NOT 8.12 6.06 2.05 0.41 4.51 1.95 Complete Mediation 

Output 16.09 14.19 1.90 0.32 4.22 1.87 Partial Mediation 

OR 13.54 12.62 0.92 -0.06 2.34 1.48 No Significant Mediation 

Parallelism 18.21 16.48 1.74 0.16 3.79 1.87 Partial Mediation 

Variable Assignment 16.71 15.44 1.27 -0.66 3.47 1.23 Partial Mediation 

Variable Naming 14.88 13.20 1.68 0.28 3.61 1.94 Partial Mediation 
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Self-Efficacy Factor 3 

(Self-Regulation) 

 

AND 16.19 16.36 -0.17 -2.17 1.81 -0.18 No Significant Mediation 

Conditional Statements 15.78 15.26 0.52 -0.27 1.61 1.09 No Significant Mediation 

IF 14.37 13.36 1.01 -0.21 2.92 1.27 No Significant Mediation 

Iteration 15.27 14.56 0.71 -0.25 2.14 1.16 No Significant Mediation 

NOT 8.12 7.84 0.28 -0.74 1.90 0.43 No Significant Mediation 

Output 16.09 15.68 0.40 -0.64 1.79 0.69 No Significant Mediation 

OR 13.54 13.56 -0.02 -0.83 0.81 -0.05 No Significant Mediation 

Parallelism 18.21 17.68 0.53 -0.20 1.76 1.05 No Significant Mediation 

Variable Assignment 16.71 16.25 0.46 -0.25 1.50 1.04 No Significant Mediation 

Variable Naming 14.88 14.40 0.48 -0.27 1.73 0.94 No Significant Mediation 

Self-Efficacy  

Factor 4 (Simple 

Programming Tasks) 

 

AND 16.19 11.02 5.17 1.37 10.19 2.31 Partial Mediation 

Conditional Statements 15.78 11.25 4.53 2.21 7.27 3.46 Partial Mediation 

IF 14.37 9.84 4.53 1.85 7.97 2.88 Partial Mediation 

Iteration 15.27 8.53 6.74 3.66 10.08 4.15 Partial Mediation 

NOT 8.12 3.84 4.28 1.38 7.92 2.57 Complete Mediation 

Output 16.09 9.78 6.31 3.33 10.11 3.67 Partial Mediation 

OR 13.54 9.78 3.76 1.82 6.20 3.35 Partial Mediation 

Parallelism 18.21 12.23 5.98 2.56 9.91 3.22 Partial Mediation 

Variable Assignment 16.71 12.04 4.68 1.29 8.35 2.63 Partial Mediation 

Variable Naming 14.88 9.73 5.16 2.66 8.28 3.60 Partial Mediation 
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Confidence –  

Variable Assignment 

Variable Assignment 16.71 13.56 3.16 0.22 6.18 2.05 Partial Mediation 

Confidence – 

Conditional Statements 

Conditional Statements 15.78 13.01 2.77 0.44 5.48 2.18 Partial Mediation 

Confidence – Iteration Iteration 15.27 7.50 7.77 4.06 11.72 4.02 Partial Mediation 

Confidence – All 

Questions 

AND 16.19 8.70 7.49 3.44 12.72 3.17 Complete Mediation 

Conditional Statements 15.78 10.90 4.89 1.97 7.99 3.18 Partial Mediation 

IF 14.37 7.81 6.56 3.38 10.50 3.60 Complete Mediation 

Iteration 15.27 8.53 6.74 3.41 10.33 3.86 Partial Mediation 

NOT 8.12 3.78 4.34 1.56 8.12 0.94 Complete Mediation 

Output 16.09 10.02 6.07 3.01 9.84 1.73 Partial Mediation 

OR 13.54 9.00 4.54 2.30 7.28 1.77 Partial Mediation 

Parallelism 18.21 12.34 5.88 2.47 9.65 1.35 Partial Mediation 

Variable Assignment 16.71 12.22 4.49 1.07 8.21 0.59 Partial Mediation 

Variable Naming 14.88 8.83 6.05 3.20 9.69 1.91 Partial Mediation 

Note. Mediation analysis conducted on all available data at T1  

*n = 285 
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5.4 Comparison with Assessment 2 Results 
The first assignment that students complete as part of their introductory programming module 

was chosen as the outcome variable given the fact that it primarily focuses on assessing 

concepts which are included within the Programming Checkup. However, given that it is the 

first programming-based assessment students complete then it is relatively simplistic in 

nature. Students are also required to complete a second assessment at the end of the second 

semester (approximately 12 weeks after Assessment 1), which is more complex in nature and 

requires the use of more advanced concepts, such as object-orientation, for higher marks. Of 

the 285 students who took part in the Programming Checkup at T1 and completed the first 

assessment, 244 students also completed their second assessment. Unfortunately, the reasons 

as to why 41 students across the three years of data collection did not take part in their second 

assessment are not available.  

 

Nevertheless, a significant correlation of moderate strength exists between students’ results in 

their first and second assessments, rs = .509 p = < .001. Tables 5.31 – 5.33 utilise the subset 

of students who completed both assessments to examine how students’ results for both 

assessments relate to their responses to the Programming Checkup at T1. The correlations 

between students’ mental model estimates at T1 and their Assessment 1 results, as shown in 

Table 5.31, are very similar in strength and significance when compared to their correlations 

with students’ Assessment 2 results. This gives credence to the notion of assessing students’ 

mental models at the beginning of the course, as whilst there is a significant variability in 

assessment results, they do appear to be an appropriate indicator of how a student is likely to 

progress throughout their course. It is interesting to note how strongly students’ estimates of 

having an appropriate model for Iteration correlates with both their assessment results, as this 

is a seemingly difficult concept and yet is key to writing effective programs.  

 

Additionally, the correlations between students’ confidence factors in Table 5.32 and their 

results in their assessment appear to be relatively consistent between both assessments. 

However, students’ estimations of how difficult they find mathematics has a stronger 

correlation with Assessment 2, which almost reaches the adjusted significance threshold.  

This corresponds to a slight increase in effect size between students who did or did not 

previously study a mathematics-based subject, as shown by the Mann Whitney U tests 

performed in Table 5.33, between Assessments 1 and 2, although despite the increase, 
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previously studying mathematics can only be considered to have a small effect on 

Assessment 2 results. However, it should be noted that the Mann Whitney U tests that were 

performed on the full T1 dataset (as shown in Table 5.17), demonstrated a stronger effect 

between previously studying mathematics-based subjects and students’ Assessment 1 results, 

than was observed within the tests conducted in Table 5.33, suggesting the need for further 

investigation into the relationships between students’ prior mathematics experience and their 

performance throughout the course of an introductory programming module. 

 

Wiedenbeck et al. (2004) claimed that students’ experiences prior to them starting their 

introductory courses lose their predictive value over time, as students’ more recent 

experiences within the course become the more dominant factor in their level of confidence, 

which can also be extended to include the likelihood of students’ possessing appropriate 

mental models of core concepts that aids their confidence levels. The Mann Whitney U tests 

within Table 5.33 revealed a drop in effect sizes in relation to having either prior 

programming experience or previously studying computer science between Assessment 1 and 

Assessment 2, which does provide some support for Wiedenbeck et al.'s (2004) belief in 

terms of students’ computer science and programming related experiences. An additional 

data collection point closer to Assessment 2 would help to further verify these claims. 

 

Students’ intentions for wanting to work in software engineering at the start of their course 

exhibit a stronger relationship with their Assessment 2 results when analysed with a Kruskal 

Wallis test, H(2) = 27.87, p = <.001, η2 = 0.115,  compared to Assessment 1 H(2) = 13.56, p 

= .001, η2 = 0.056. Students who wish to pursue a career in software engineering may 

potentially be more motivated to succussed within their programming module, as previously 

discussed, which is evident in the results for both assessments as students indicating they do 

wish to work in a software engineering role after graduating had higher results on average 

(Ass. 1, M = 76.11, SD = 15.91, Ass. 2, M = 68.28, SD = 24.17) than those indicating that 

they were undecided (Ass. 1, M = 68.03, SD = 19.60, Ass. 2, M = 51.73, SD = 24.89) or that 

they did not want to pursue this career path (Ass. 1, M = 64.06, SD = 19.22, Ass. 2, M = 

57.25, SD = 33.27). Additionally, students’ level of agreement in considering themselves 

self-taught programmers has a slightly stronger correlation with students’ Assessment 2 

results, rs = .29 p = <.001, than with their Assessment 1 results, rs = .27 p = <.001. However, 

the difference is not substantial enough to draw any firm conclusions. 
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Table 5.31 

Spearman’s Rank Correlation Tests Between Assessment Grades and Mental Model 

Estimates Established Using Bayesian Knowledge Tracing, Conducted on All Available Data 

at T1 Where Students Had Completed Both Assessments 

Mental Model 
Assessment 1 Assessment 2 

rs p rs p 

AND .22 <.001 .23 <.001 

Conditional Statements .35 <.001 .32 <.001 

IF .31 <.001 .31 <.001 

Iteration .45 <.001 .45 <.001 

NOT .23 <.001 .24 <.001 

Output .37 <.001 .30 <.001 

OR .26 <.001 .27 <.001 

Parallelism .34 <.001 .26 <.001 

Variable Assignment .38 <.001 .42 <.001 

Variable Naming .24 <.001 .19 <.001 

Note. Given the number of tests being conducted, a Bonferroni correction factor was applied 

to the standard alpha value of .05 to reduce the chance of Type 1 errors. Only significant 

differences at p < .003 (i.e., .05 divided by 20) were deemed to be reliable for purposes of 

interpretation.    

*n = 244  
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Table 5.32 

Spearman’s Rank Correlation Tests Between Assessment Results and Confidence Factors, 

Conducted on All Available Data at T1 Where Students Had Completed Both Assessments 

Confidence Factor 
Assessment 1 Assessment 2 

rs p rs p 

Estimation of how difficult learning to program is -.20 .002 -.22 <.001 

Estimation of how difficult they find mathematics  -.07 .249 -.19 .003 

Estimation of how difficult their degree is .02 .807 -.04 .520 

How much they fear learning to program -.28 <.001 -.32 <.001 

Self-Efficacy Factor 1 (Independence and Persistence) .24 <.001 .22 <.001 

Self-Efficacy Factor 3 (Self-Regulation) .14 .028 .15 .022 

Self-Efficacy Factor 4 (Simple Programming Tasks) .37 <.001 .37 <.001 

Confidence – Variable Assignment .32 <.001 .34 <.001 

Confidence – Conditional Statements .30 <.001 .28 <.001 

Confidence – Iteration .39 <.001 .38 <.001 

Confidence – all questions .37 <.001 .37 <.001 

Mental Effort – Variable Assignment -.14 .034 -.13 .047 

Mental Effort – Conditional Statements -.10 .132 -.12 .073 

Mental Effort – Iteration -.16 .011 -.15 .021 

Note. Given the number of tests being conducted, a Bonferroni correction factor was applied 

to the standard alpha value of .05 to reduce the chance of Type 1 errors. Only significant 

differences at p < .002 (i.e., .05 divided by 28) were deemed to be reliable for purposes of 

interpretation.    

*n = 244 
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Table 5.33 

Mann Whitney U Tests Between Assessment Grades and Dichotomous Background Features, 

Conducted on All Available Data at T1 Where Students Had Completed Both Assessments 

Background Factor 
Assessment 1 Assessment 2 

U z p r U z p r 

Prior programming 

experience 

4929.50 -2.24 .025 0.14 5388.00 -1.31 .190 0.08 

Previously Studied 

computer science 

5179.50 -1.20 .230 0.08 5454.50 -0.63 .528 0.04 

Previously Studied 

mathematics-based 

subject 

6289.00 -1.85 .064 0.12 5609.00 -3.10 .002 0.20 

Intend to work in 

software engineering – 

No 

1285.00 -1.98 .048 0.13 1727.00 -0.36 .722 0.02 

Intend to work in 

software engineering – 

Undecided 

5619.00 -2.63 .009 0.17 4307.00 -5.08 <.001 0.33 

Intend to work in 

software engineering – 

Yes 

5416.00 -3.55 <.001 0.23 4546.00 -5.14 <.001 0.33 

English is student’s 

first language 

3947.50 -0.33 .745 0.02 3930.50 -0.37 .714 0.02 

Note. Given the number of tests being conducted, a Bonferroni correction factor was applied 

to the standard alpha value of .05 to reduce the chance of Type 1 errors. Only significant 

differences at p < .003 (i.e., .05 divided by 14) are deemed to be reliable for purposes of 

interpretation.    

*n = 244 
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5.5 Summary 
This chapter has presented an in-depth statistical analysis of students’ responses to the 

Programming Checkup, through which relationships between factors relating to their 

backgrounds, confidence and estimates of holding appropriate mental models have been 

explored. Furthermore, the decisions taken during the model development process have been 

reinforced through examinations of relationships with students’ Assessment 1 results. 

Additionally, students’ results to Assessment 2 have been used to scrutinize how the factors 

examined within the Programming Checkup at T1 relate to students’ performance over a 

much longer period of time. The subsequent chapter will draw on the results of these analysis 

in order to directly answer the research questions at the heart of this investigation. 
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6. General Discussion and Reflections of Research Outcomes and 

Future Work 

6.1 Scope of Discussion 
This final chapter revisits the research questions that guided the path of this work and 

considers the findings of this research programme in relation to these questions. In addition, 

this chapter discusses the limitations of the present research that constrain the conclusions 

that can be drawn and that also inform future work. 

 

6.2 Responses to Research Questions  
This design of this investigation, and the later analysis, was guided by three key research 

questions. As such, this section draws on the literature and results presented throughout this 

thesis in order to directly address each question. 

 

RQ 1 How do students’ mental models of core programming concepts develop during a 

university introductory programming module? 

 

The use of Bayesian Knowledge Tracing (BKT) to estimate the likelihood of students holding 

appropriate mental models of core programming concepts has proved to be a useful approach. 

It accounts for students making mistakes or guessing answers correctly and produces a 

tangible result, which aids in both the analysis of students’ conceptual understanding of 

programming and the development of predictive models of student performance. 

 

The estimates produced by BKT have revealed that a significant number of students are 

initially not likely to hold an appropriate mental model for Variable Assignment at T1. 

Variable Assignment is arguably one of the most fundamental concepts that students must 

master in order to be successful within their programming course. Students who are deemed 

to be unlikely to hold an appropriate model of Variable Assignment are often demonstrating 

the Multiple Assignment (MA) misconception, whereby they refer to the original values of 

variables, rather than recognising that the original value is overridden when performing an 

assignment operation. This is evident from the observation that MA is the most prevalent 

misconception that is associated with Variable Assignment and that the vast majority of 

students who demonstrate MA do so three or more times.  
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However, many of the students who are initially estimated as being unlikely to hold an 

appropriate mental model for Variable Assignment do in fact go on to develop appropriate 

mental models by the end of the first semester (T2). Again, it appears that students who are 

considered to be unlikely to hold an appropriate model of Variable Assignment are often 

exhibiting the MA misconception. Although it is clear that the vast majority of students are 

able to establish an appropriate model for Variable Assignment by the time they reach T2, it 

is evident that it can be a stumbling block for some. If a student is not able to establish an 

appropriate mental model for Variable Assignment, they may face greater difficulties when 

completing programming tasks, as logical errors could easily be introduced if they do not 

have a clear understanding of how variables and their values are handled within a program.  

 

As previously discussed, the Conditional Statements mental model encompasses the models 

associated with individual Boolean Logic concepts including AND, OR and NOT, as well as 

If Statements. This broader approach to assessing related concepts within a single model has 

shown to have a stronger relationship with students’ assessment results as opposed to the 

individual concepts. At T1, half of students were estimated as not having an appropriate 

Conditional Statements model. It is apparent from the results that the largest area of difficulty 

is with students demonstrating an appropriate understanding of the OR operator, which is 

reflected in a substantial number of students demonstrating it as a misconception three or 

more times, subsequently resulting in more than half of the students being estimated to not 

hold an appropriate mental model of OR at T1. A substantial number of students also 

demonstrated misconceptions relating to If statements, AND and NOT at T1, although for the 

most part, students only demonstrated these misconceptions once or twice, meaning a greater 

proportion of students were considered to have appropriate mental models for these concepts. 

However, as each of the concepts is accounted for within the Conditional Statements model, 

the estimates associated with it are indicative of a more general view of students’ logical 

abilities. None of the individual model estimates change significantly between T1 and T2, but 

Conditional Statements shows a decrease that is approaching significance, although 39% of 

students are still considered to be unlikely to hold an appropriate model at T2. As Grover and 

Basu (2017) suggest, Boolean Logic is a difficult topic for students to grasp, with OR 

appearing to be one of the main points of confusion for students.  

 

It appears that the concept that students struggle to comprehend the most is Iteration, as 81% 

of students were estimated to not be holding an appropriate model at T1, which only reduces 
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to 67% at T2. Students exhibit a wide range of misconceptions associated with Iteration, the 

frequencies of which do not significantly alter between T1 and T2, with the exception of 

Summation (SM). The Summation misconception occurs when a student views an iterative 

loop as a single element, that is, instead of outputting a series of numbers the student 

indicates that only the final number would be outputted. There is a substantial drop in the 

number of occurrences of SM between T1 and T2 and although many of the students who 

demonstrated SM at T1 did so only once, this may be indicative of the fact that students are 

beginning to progress towards more appropriate models by recognising that all lines within 

the loop are being repeated.  

 

However, as mentioned previously, this latter finding could also potentially be attributed to 

students developing more accurate models of Program Output. Most students were estimated 

to be holding an appropriate mental model for program output at T1 and T2, despite the 

seemingly high number of students demonstrating misconceptions relating to output, which 

can be accounted for by the fact that almost all of the questions included print statements. 

There was, however, a significant change in the estimates of how likely students were to be 

holding an appropriate model for Output, which could have supported the reduction in the 

SM misconception. Further work is required to validate this view. Nevertheless, what is clear 

from the evidence is that students generally lack an appropriate mental model for Iteration 

prior to beginning their programming course, and although some are able to develop their 

models independently, the T2 mental model estimates indicate that a significant proportion of 

students are still in need of additional support in order to develop fully accurate models.  

 

An additional area of difficulty for students appears to be with their understanding of flow of 

control within a program, which is represented by the Parallelism model. Around half of 

students were considered to be unlikely to hold an appropriate model at T1, which reduces to 

41% at T2. There is, therefore, still a significant number of students who do not appear to 

have a complete understanding of how the ordering of statements within a program affects 

the output, which could consequently lead to the student experiencing difficulties when 

writing their own programs. These results provide evidence of Pea’s (1986) “parallelism bug” 

being encountered by a substantial number of students, and by extension, can be viewed as 

also giving evidence of the “Superbug”, which Pea describes as being associated with the 

idea that students believe that the programming language is, in some way, intelligent. For the 
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Parallelism bug, this relates to students’ belief that “different lines in a program can be 

somehow known by the computer at the same time, or in parallel” (Pea, 1986, p. 5). 

 

Furthermore, students who may mistakenly believe that the name of a variable affects what it 

can hold, could be viewed as holding Pea’s (1986) “Intentionality bug”, which is also 

associated with the “Superbug”. However, the majority of students demonstrated that they 

held an appropriate mental model associated with Variable Naming and although some 

students were still considered to be unlikely to hold an appropriate model at T2, this can 

generally be considered not to be a widespread issue. Without conducting detailed 

walkthroughs and interviews, it is difficult to ascertain whether students in higher education 

have an implicit belief in the intelligence of the programming language, as proposed by Pea’s 

(1986) notion of the Superbug in the context of younger students. Following up on this 

possibility represents an important avenue for future research.  

 

Students’ mental model estimates have shown to be significantly correlated with the results 

they achieve in their assessments. For the most part, these correlations have been relatively 

weak. However, students’ estimates of having an appropriate model of Iteration have shown 

to exhibit the strongest relationship with students’ assessment results. Iteration could 

potentially therefore be seen as a Threshold Concept, which Meyer and Land (2005) define as 

being transformative, whereby they change how a student looks at the subject, irreversible, 

as they will be difficult for students to forget once they have been mastered, integrative, 

through the way that multiple concepts are drawn together, troublesome, as they can be 

difficult for a student to grasp and can often act as boundary markers which represent the 

limits of a student’s understanding (Boustedt et al., 2007). Previous work has made claims 

that potential programming-related threshold concepts could consist of more advanced 

concepts such as pointers, object-orientation (Boustedt et al., 2007), or more abstract 

principles such as program dynamics, information hiding and object interaction (Sorva, 

2010). However, I believe it is also appropriate to consider more fundamental concepts as 

threshold concepts. For example, Iteration as a concept clearly fits within Boustedt et al.’s 

(2007) criteria and is subsequently one of the core concepts students must master in order to 

be successful within their introductory programming module, although, as the results of this 

investigation suggest, it is a concept that students struggle with. 
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Variable Assignment could also be considered to be a Threshold Concept given that it has a 

comparatively strong correlation with students’ assessment results, although weaker than 

Iteration, and has shown to be potentially troublesome at the beginning of the course. Indeed, 

all of the mental models assessed within the Programming Checkup fall into the category of 

Threshold Concepts. However, Variable Assignment can be viewed as one of the first 

Threshold Concepts students must master in order to progress in their course, whereas 

Iteration is one of the main Threshold Concepts students must master in order to write 

effective programs and be successful within their assessments. Functions and object-

orientation are not covered within the Programming Checkup, but it is likely they would also 

be areas of difficulty for students. Equally, learning to program requires more than simply 

developing an understanding of how each of the concepts works, as highlighted by the five 

areas of difficulty with learning to program identified by Du Boulay (1986). However, the 

findings from this work indicate that Variable Assignment and Iteration are two key concepts 

which can be viewed as milestones in students’ development, and which, are essential for 

students to develop appropriate mental models for in order to be successful within their 

introductory programming module. 

 

RQ 2 Is students’ perception of confidence and their previous experience positively related to 

their mental model development as well as their performance within their first introductory 

programming assessment?  

 

Although students with previous programming experience have been found to be more likely 

to hold appropriate mental models of the concepts examined within the Programming 

Checkup, by the time students have reached the end of the first semester the differences 

between those with and without prior experience have decreased. Most noticeably, students 

with prior programming experience remain significantly more likely to hold appropriate 

models for Conditional Statements, Iteration and for the flow of control within a program 

(Parallelism). It is not unexpected for the difference between students with and without prior 

programming to decrease over time, as all students have the opportunity to develop their 

understanding of the concepts. This can be seen most significantly in the improvements 

students who do not have prior programming experience make with their models of Variable 

Assignment, although some students, particularly those with no prior programming 

experience, would benefit from additional support in developing their mental models 

surrounding Conditional Statements and Parallelism. Furthermore, it is also clear that many 
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students require support to develop appropriate models of Iteration – regardless of whether 

they have prior programming experience or not. 

 

By having prior programming experience, students were in general initially found to be more 

confident, which is reflected in significantly higher self-efficacy levels (for all three factors) 

and also in higher levels of confidence in their answers. Students with prior programming 

experience also are generally less anxious about learning to program than those without prior 

experience, which can be seen in students’ responses to how difficult they believe learning to 

program will be, and how much they fear learning to program. However, like the differences 

in students’ mental model estimates, the difference between students with or without prior 

programming experience generally reduces by the end of the first semester, although a slight 

widening of the gap was observed between those with and without prior programming 

experience in how much they feared learning to program, and how difficult they believed 

learning to program to be. This may indicate that struggling students may be feeling that they 

are falling behind, and as such, they become more anxious. 

 

As has been seen with mental model development, by the end of the first semester the 

difference between students with or without prior programming experience has begun to 

decrease. However, a significant difference remains within students’ levels of self-efficacy 

relating to completing simple programming tasks (Factor 4) despite students’ levels of self-

efficacy for all three factors having increased between T1 and T2, regardless of whether they 

had previous programming experience or not. The additional experience that students have 

gained from programming previously is likely to be the main contributing factor to the 

significant difference in students’ levels of self-efficacy associated with completing simple 

programming tasks. Although a sizeable gap between students with and without prior 

experience remains, there has been a substantial increase in the levels of students with no 

prior programming experience from T1, when they had no prior experience of completing 

programming tasks to draw upon, whereas students who had programmed before are able to 

build on their prior experiences, which helps their confidence to grow further.  

 

Like Factor 4, students’ levels of self-efficacy relating to Independence and Persistence 

(Factor 1) and Self-Regulation (Factor 3) also increase by T2. However, whether students 

have prior programming experience or not no longer results in a significant difference to their 

levels of self-efficacy, as these factors are generally more concerned with students’ 



 242 

approached to working than how confident they feels about performing programming tasks. 

Furthermore, a substantial difference still exists in how confident students are in their 

answers between those with and without prior programming experience, although it has 

begun to reduce by T2 as all students will be becoming more familiar with the different 

concepts and as such, building confidence. Nevertheless, it is evident that having experience 

of programming prior to starting their university course does still have a positive effect on 

confidence levels up until the end of the first semester. The decreasing difference between 

students with and without prior programming experience appears to support Wiedenbeck et 

al.'s (2004) claims that prior programming experience will eventually lose its predictive 

value. 

 

Additionally, the levels of anxiety associated with learning to program, as measured by how 

much students fear learning to program and also how difficult they believe learning to 

program to be, were found to be substantially higher amongst students who do not have 

experience with programming prior to starting their course. Given that the difference in 

anxiety levels between students with or without prior programming experience was observed 

to increase at T2, it could suggest that struggling students, who have no prior programming 

experience, may be becoming more anxious as the module progresses to more difficult topics. 

This could ultimately lead to a student becoming disengaged with the module, which 

potentially could be mitigated through early interventions to support students in overcoming 

their difficulties. 

 

Previously studying computer science has been shown to support students’ initial confidence 

levels, although the difference between those who have or have not previously studied 

computer science is not as substantial as between those with or without prior programming 

experience. By T2, the influence of previously studying computer science does reduce 

somewhat, although it can still be seen to be having a positive effect on students’ confidence 

in their answers. Furthermore, previously studying computer science has also been shown to 

benefit students with the development of appropriate mental models, although it may be 

beneficial to establish exactly what students have studied previously, rather than relying on 

the dichotomous option currently presented in the Programming Checkup, as there is the 

potential that some students may be considering IT-focused courses to be the same as 

computer science, when, in fact, they are not, which may also explain the differences 

between prior programming experience and previously studying computer science.  
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Given that programming is contained, either explicitly or implicitly, within all computer 

science curricula in the UK and Ireland, with the exception of the Irish Primary Level 

Curriculum (Sentance et al., 2022), it is hoped that with the resurgence of computer science 

in schools and the additional subject knowledge support now available for teachers (Brown et 

al., 2014; Sentance et al., 2022), that students will be able to build a solid foundation for their 

mental models of core programming concepts prior to starting university. As such, it would 

be useful for a future investigation to obtain as full a picture as possible about each student’s 

prior learning, by recording whether they studied computer science at GCSE and/or A Level 

prior to their degree, as well as how they have gone about their learning if they consider 

themselves to be a self-taught programmer. This is relevant as a significant positive 

relationship exists between how strongly students consider themselves to be a self-taught 

programmer and how likely they are to hold an appropriate mental model of many of the core 

concepts examined within the Programming Checkup at T1. However, this relationship 

became non-significant for all models, apart from Iteration, by T2. Furthermore, as how 

strongly a student considers themselves to be a self-taught programmer has been shown to be 

significantly correlated with a number of confidence factors at T1 (particularly strongly with 

self-efficacy Factors 1 and 4), it can be concluded that students who previously taught 

themselves to program are likely to be initially more confident in their abilities, although the 

strength of the correlations does typically reduce by T2 given that all students are gaining 

familiarity with programming.  

 

A similar trend is also evident amongst students who wish to pursue a career in software 

engineering, whereby students who state they do wish to pursue a career in software 

engineering are typically those who are more confident in their programming abilities. 

Additionally, students intending to work in software engineering are found to be more likely 

to hold mental models of a number of key concepts, although, the differences between those 

wishing to pursue a career in software engineering and those who do not, or are unsure, 

decreases by T2. However, it is interesting to note that a significant difference remains in 

students’ estimates for holding an appropriate model of iteration. 

 

Both students considering themselves to be self-taught programmers or indicating that they 

wish to pursue a career in software engineering speak to the motivations of students. Their 

motivations are likely to be intrinsic in nature given that they are indicating programming is a 

subject that they wish to engage in, rather than what they are forced to be doing as part of 
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their course. As Bergin and Reilly (2005a) previously mentioned, intrinsically motivated 

students were seen to perform better than students who are extrinsically motivated. This is 

reflected in students who wish to pursue a career in software engineering performing better in 

their introductory programming assessments than those who did not want to or were unsure 

about working in software engineering. Furthermore, how strongly a student considers 

themselves to be a self-taught programmer is indicative of their assessment results, as 

evidenced by a significant positive correlation, although it is of relatively weak strength. Of 

course, it is possible for a student to be intrinsically motivated and neither consider 

themselves to be self-taught or to wish to work in a software engineering role. However, the 

results presented provide support for the link between students’ motivations and their 

performance in their introductory programming module. 

 

There is evidence to suggest that having experience of studying a mathematics-based subject 

prior to starting their degree, but after leaving school, can lead to students achieving higher 

results within their assessments, thus supporting previous claims that mathematics experience 

aids students when learning to program (Bergin & Reilly, 2005b; Byrne & Lyons, 2001; 

Gomes et al., 2006; Wilson & Shrock, 2001). However, the Programming Checkup results 

revealed that having previous experience of studying a mathematics-based subject after 

finishing school, does not appear to significantly aid students in terms of being more likely to 

hold appropriate mental models, nor does it substantially aid their levels of confidence when 

compared to other background factors. 

 

The limited direct impact of having previously studied a mathematics-based course on the 

factors examined within the Programming Checkup, raises questions as to how this previous 

experience is actually benefiting students. In particular, there is a lack of any significant 

influence on the likelihood of students holding appropriate mental models of core concepts, 

so it does not appear to be directly influencing students’ understanding of programming 

concepts. Instead, studying mathematics-based subjects allows for the development of skills 

such as logical thinking, abstraction and attention to detail, which are precursor to students’ 

computational thinking abilities  (Curzon et al., 2019; Wing, 2008) that subsequently aid 

students when completing large, independent tasks such as their assessments within their 

introductory programming module (Gomes et al., 2006; Lister et al., 2004).  
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Furthermore, the effects of previously studying a mathematics-based subject on students’ 

assessment results within their introductory programming module continue to aid students 

much later into their course (i.e., within their second assessment at the end of the academic 

year), which suggests that the problem-solving skills gained through the study of 

mathematics and mathematics-based subjects such as Engineering and Physics continue to be 

of benefit to students. However, having previous experience of programming or studying 

computer science exhibit a limited relationships with students’ assessment results, likely due 

to the fact that all students are gaining experience with programming throughout the course 

of their introductory programming module. In sum, it is likely that previously studying a 

mathematics-based course does not directly support students with their understanding of 

programming, rather it is likely supporting them solving problems and completing tasks using 

programming within their assessments. 

 

As mentioned previously, students’ estimates for holding appropriate mental models of the 

concepts examined within the Programming Checkup are significantly correlated with their 

assessment results. Furthermore, it is evident that a relationship exists between the likelihood 

of students holding appropriate mental models for some of the key concepts examined within 

the Programming Checkup, and the confidence students show in their answers, as well as 

their levels of self-efficacy relating to completing simple programming tasks (Factor 4). 

Notably, Iteration demonstrated the strongest correlations with both students’ average 

confidence in their answers, and their self-efficacy levels for Factor 4, thus giving further 

credence to Iteration being considered a Threshold Concept for students learning to program.  

 

A number of variables which measure students’ level of confidence in their own abilities, and 

their levels of anxiety surrounding learning to program, have consistently been identified as 

having a significant positive relationship with students’ assessments results. These included 

how much students fear learning to program, self-efficacy Factors 1 (Independence and 

Persistence) and 4 (Simple Programming Tasks) and students’ confidence in answering 

questions focusing on Variable Assignment, Conditional Statements, Iteration, and for all 

questions combined. Each of these variables have been confirmed through a mediation 

analysis to be influenced by how likely students are to be holding appropriate mental models 

and subsequently, influence students’ performance in their assessments. An overview is, 

therefore, provided, of how confident a student is in applying their knowledge of 

programming concepts to solve simple tasks, which is key in order to progress within their 
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assessments. Additionally, the relationship between students’ assessment results and how 

much they fear learning to program, suggests that their levels of anxiety surrounding 

programming could, as Rogerson and Scott (2010) indicate, be a barrier to their learning, as 

students may, for example, not feel confident to ask questions when they are struggling 

(Bergin & Reilly, 2005a), which, if a student is struggling to aquire appopriate mental models 

of key concepts, will result in the student facing greater difficulties and ultimatly impact upon 

their performance in assessments. 

 

RQ 3 Can students’ initial responses to the Programming Checkup be used to make 

predictions of students’ introductory programming assessment results? 

 

From the outset of this investigation, the aptitude test, which would ultimately become the 

Programming Checkup, was designed with the intention for it to be used to aid in the 

prediction of students’ assessment results, which would enable future support interventions to 

be developed. Although during the research investigation the Programming Checkup was 

issued to students twice, in order to evaluate their progress during their first semester, it was 

always envisaged that students’ T1 responses would be used to predict students’ assessment 

results as identifying students who would benefit from additional support at the earliest 

possible opportunity, allows for interventions to be put in place in order to address 

misconceptions and aid students in their mental model development as they progress through 

their course (Romero & Ventura, 2019). 

 

As has been discussed previously, a number of the factors examined within the Programming 

Checkup revealed significant relationships with the results students achieve within their first 

assessment as part of the introductory programming module. Given this is the first piece of 

assessment students undertake, it naturally ties in well with the concepts examined within the 

Programming Checkup, as well as providing an indication of students’ performance later in 

the module. As such, students’ results for their first assessment were chosen to be an 

indication of whether they would benefit from additional support.   

 

Chapter 4 described the process through which the responses to the Programming Checkup at 

T1 were used to develop methods of predicting students’ assessment results. This culminated 

in two potential approaches being explored, a regression-based approach to predicting the 

result a student obtains, and a binary classification approach which predicts whether a 
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student’s result will surpass a threshold of 50% or not. After trialling a number of different 

machine learning algorithms, along with different combinations of input variables, the 

regression model which was chosen to be evaluated using the hold-out test set utilised the 

Random Forest Regressor, with variables pertaining to students’ confidence levels and their 

estimates of holding appropriate mental models, which had been established using Bayesian 

Knowledge Tracing being inputted into the model. Although this was not the lowest overall 

RMSE obtained during tests on the training data, the fact that Random Forests are less 

susceptible to overfitting made it an appropriate choice for evaluation on the hold-out test set 

when compared to other algorithms of similar performance. This appears to have been an 

appropriate decision given that when trained on the whole training dataset, the model 

achieved an average RMSE of 0.1686, and an average of 0.1687 when evaluated on the hold-

out test set. These results therefore indicate that the model does not appear to be overfitting 

the training set, and when scaled up, represents a predictive error of approximately 17 marks 

(17%). 

 

Although 17 marks is a sizeable margin of error, it is important to note that the aim of this 

investigation is not to predict the exact mark a student would achieve in their assessment, 

rather, it is to provide an indication of whether the student is likely to require additional 

support. Given that making predictions about students’ performance at such an early stage 

can be difficult due to the wide variety of factors that can potentially influence their results 

(López-Zambrano et al., 2021), the margin of error is at a level to be generally acceptable to 

be used as a guide for identifying students who are likely to struggle in the assessment, and as 

such, would benefit from additional support.  

 

The high level of granularity in the predictions made by the regression model provides 

educators with a more nuanced estimation as to whether a student is likely to require support. 

However, it does require a degree of interpretation on the part of the educator. Alternatively, 

the binary classification approach requires very little interpretation; students who are 

predicted a 1 are deemed likely to achieve a mark of 50% or greater, whereas those who are 

predicted a 0 are likely to achieve a mark of less than 50%.  

 

The Random Forest classifier, with variables pertaining to students’ background factors, 

confidence levels and mental model estimates being utilised as input for the model, was 
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deemed to be the most appropriate choice to be evaluated using the hold-out test given that it 

had the highest AUC out of all model and input combinations being trialled. 

  

The classification model achieved an average AUC of 0.7400 when trained on the entire 

training set, which indicates a drop in performance when compared to the average estimate of 

performance obtained through cross-validation during the model evaluation process, which 

produced an AUC of 0.7783. This reduction in performance despite the increased amount of 

training data being available, potentially indicates that the model has high levels of variance 

and as such, may be overfitting the training data. The model achieved an average AUC of 

0.6595 when evaluated on the hold-out test set, which given the difference between this 

result and the average performance on the training set, does indicate a substantial level of 

overfitting within the model.  

 

The results from trialling the model on the hold-out test set can be interpreted as there being 

approximately a 66% chance of the model correctly predicting two examples that are of 

different classes. Although there is still a significant margin for error, the results indicate that 

the classification model does perform significantly better than chance at making correct 

predictions and could still serve as a useful tool for the identification of struggling students.  

 

It is possible that despite the implementation of both over-sampling and under-sampling 

within the training set, the distribution of the Assessment 1 results may be a significant 

contributing factor to the classification model overfitting the training data. Indeed, the 

threshold of 50% was selected due to the distribution of the results making 40% (the standard 

undergraduate pass level) an inappropriate choice. Further work into refining the 

classification model would benefit from investigating whether a different threshold would be 

more appropriate for classifying students who are likely to require support, while also 

allowing for more balanced classes, although this would likely to be both assessment specific 

and institution specific.  

 

Work could also be carried out to further improve both the classification and regression 

models to enhance their performance by performing additional hyperparameter tuning and 

further refining the variables being inputted into the model with the aid of the feature 

importance plots obtained from the regression model, as presented in Figure 4.6, which 

indicated features, including students’ mental model estimates for Conditional Statements 
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and Iteration, as well as their levels of Self-Efficacy pertaining to completing simple 

programming tasks (Factor 4) as consistently being important contributors to the performance 

of the regression model. Unfortunately, the degree of overfitting observed within 

classification model limits the usefulness of the associated feature importance plots presented 

in Figure 4.7. However, the statistical analysis of the Programming Checkup results presented 

within Chapter 5 is, perhaps, a more useful source of information for future refinement of the 

models, as feature importance plots are specific to a given model. 

 

Ultimately, more data are needed to support any further substantial gains in performance. It 

is, however, interesting to note that the best performing input combinations for all of the 

regression models being trialled (with the exception of Regression Trees) as well as all 

classification models being trialled, included students’ mental model estimates within their 

input combinations. This provides support for the use of Bayesian Knowledge Tracing as a 

means of assessing students’ mental models of core concepts and their usefulness in 

predicting students’ assessment results.  

 

In sum, both the classification and regression models produced as part of this investigation 

have demonstrated that it is possible to make predictions of students’ Assessment 1 results by 

using their responses to the Programming Checkup at T1. At present, the regression model 

has been found to be the more robust technique, with predictions being made with an 

acceptable margin of error for educators to gain an indication as to whether a student is likely 

to require additional support or not. The classification model has also been shown to be 

capable of making predictions of students’ assessment results. However, the degree of 

overfitting which has been observed does indicate that the generalisability of the 

classification model in its current state is limited. Nevertheless, this investigation has shown 

that there is merit to this approach, which with further refinement and additional data, could 

yield a model with improved generalisability.    

 

By demonstrating that it is possible to make predictions of the results students are likely to 

achieve in their first assessment based on their responses to the Programming Checkup, the 

ability to identify students who are likely to require additional support within their 

introductory programming module has been evidenced, with students who are predicted to 

achieve low grades likely benefiting the most from the additional support. Although this 
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capability has been demonstrated at a technical level, consideration must be shown as to how 

this could be implemented within a higher education setting.  

 

One proposed method would be to produce an individual report for each student, which 

summarises their estimates of holding appropriate mental models for each concept, 

confidence levels, and the like, alongside the prediction of their Assessment 1 result. Such a 

report would encourage a constructive dialogue between educators and students; however, a 

future investigation should explore whether educators have a preference for the binary output 

of the classification algorithm, which requires very little interpretation as to whether the 

student requires support or not, or the numeric output from the regression model. From a 

personal perspective, I would prefer to utilise the output from the regression model, as it 

would allow for a more nuanced discussion than would be possible with a simpler binary 

output. Discussions around a student’s abilities could also be complemented with other 

factors included within the report, particularly the mental model estimates, in order to 

determine an individualised support plan for the student. 

 

Although the evaluation of different pedagogic interventions falls outside the scope of the 

current investigation, it should be acknowledged that the predictions produced by the models 

could be used to direct students towards targeted interventions. For example, at UCLan, the 

introductory programming module is complemented by an additional, optional, support 

lecture, where concepts are explained in more detail. Attendance of this support lecture could 

be made compulsory for students who have been identified as requiring additional support. 

Furthermore, techniques such as PRIMM (Sentance et al., 2019) could be integrated into the 

support lecture to aid in the development of appropriate mental models. PRIMM stands for 

Predict, Run, Investigate, Modify and Make (Sentance et al., 2019) and aims to address the 

issue of students writing programs before they are able to read and comprehend them (Parry, 

2020; Sentance et al., 2019). As Sentance et al. (2019) state, “PRIMM draws on existing 

research in computer science education, particularly four areas of programming research: 

Use-Modify-Create (Lee et al., 2011), tracing and reading code before writing (Lister et al., 

2004), the Abstraction Transition Taxonomy (Cutts et al., 2012) and the Block Model 

(Schulte, 2008)” (p. 148). 
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Sentance et al. (2019) describe a typical PRIMM class, which in a higher-education context 

would be a practical laboratory session that begins with the Predict and Run phase, where 

students are given a short piece of code for which they must predict and write down the 

expected output, in much a similar way to many of the questions within the Programming 

Diagnostic portion of the Programming Checkup. The predictions students make are 

discussed within the class and then, they are subsequently required to download (not copy) 

the code and run it to check their answers. During the following Investigate phase, students 

undertake scaffolded exercises and answer questions in order to further develop their 

understanding of the topic being taught before moving on to the next phase, Modify and 

Make where students complete structured tasks to modify the existing program (i.e., 

expanding its functionality or fixing bugs), and subsequently make new programs based on 

problem descriptions, thus giving them the chance to apply what they have learnt.  

 

It is believed that PRIMM has not previously been applied as an intervention technique 

within higher education. Given the wide range of abilities students have, it would likely not 

be appropriate to include PRIMM as a main part of the introductory programming syllabus. 

However, it could form a useful part of an intervention to which students are directed to 

based on the predictions made from their responses to the Programming Checkup. 

 

6.3 Limitations of this Investigation 
Although the three research questions at the heart of this investigation have been successfully 

explored, there are nevertheless several factors that limit the conclusions that can be drawn 

from this work. Perhaps the most significant limiting factor is the fact that all of the 

participating students studied at the same institution, which consequently limits the 

generalisability of the results. Although many of the trends observed support those previously 

identified in the literature, further work involving different institutions is required in order to 

validate the results. A second, key limiting factor relates to the relatively small sample size 

with respect to the number of students who successfully completed the Programming 

Checkup. This hampers the performance of the predictive models and is most evident in the 

observed overfitting of the classification model. An expanded dataset, along with a potential 

exploration of differing threshold values for assessment results, as discussed previously, 

would help to reduce the likelihood of the classification model overfitting the training set. 
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Furthermore, additional data would also help to reduce the error seen in the predictions made 

using the regression model. 

 

At the outset of this investigation, it was the intention to carry out data collection using the 

Programming Checkup at multiple institutions, but with the outbreak of the Covid-19 

pandemic, it was ultimately decided to focus on students studying at UCLan. This decision 

ultimately impacts on the generalisability of the overall findings, as although the first 

administration of the Programming Checkup takes place prior to any teaching, the teaching 

and assessment materials are specific to the course students are studying. In particular, the 

choice of C++ as an introductory programming language is not common amongst universities 

in the UK, with Java being seen as the generally more popular language (Simon et al., 2018). 

Although the introductory programming module at UCLan focuses on core concepts, rather 

than specific language details, there is the potential for students’ progression to be influenced 

by the language being taught. For example, whilst Python is viewed as being an easier 

language to learn than the likes of C++ or Java (Simon et al., 2018), there have been 

suggestions that the mental models that students construct are insufficient when Python is 

taught without explicit instruction pertaining to the notional machine (Dickson et al., 2020; 

Johnson et al., 2020). By only carrying out this investigation at a single institution, it is not 

possible to identify whether the use of C++ directly impacts on students’ mental model 

development, nor their levels of confidence when compared to other languages. Future 

studies taking place across different institutions should therefore examine the influence of the 

programming language being on taught on students’ development. 

 

Even though data were collected from only a single institution, no two years can be 

considered the same due to changes in the teaching and assessment being carried out within 

the introductory programming module, which is most notable in the change of assessment 

from an exam to an assignment during the second year of data collection. Teaching on the 

module has also differed each year, which ranged from standard changes in teaching staff and 

updating to content, to classes being carried out online during the pandemic. Although these 

yearly changes were unavoidable, the learning outcomes of the module have remained the 

same, and no significant differences were identified between the results students achieved on 

the exam as opposed to the practical assignment that replaced it. However, any future 

investigations involving multiple institutions must consider the differences in the teaching 

and assessment of their introductory programming modules, particularly when selecting an 
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appropriate outcome variable to predict. An ideal solution would be to have an independent, 

standardised measure of a students’ programming performance, although this would first 

need to be developed and validated. This would also require students to complete extra work, 

which may not be practical, hence why using students’ assessment results was deemed to be 

an appropriate choice for the outcome variable for this investigation. 

Students’ participation within this investigation was voluntary, with a significant number of 

students choosing not to take part in the second round of data collection at T2. Although data 

were not collected as to why they chose not to take part, it is likely that the proximity of the 

second data-collection round to a number of assessment deadlines for other modules 

contributed to the lower uptake. Additionally, as there was no requirement to take part, 

students who had very low levels of confidence may have chosen not to engage with the 

Programming Checkup. Attempts were made to describe the Programming Checkup as an 

opportunity for support, rather than a test; however, the Programming Checkup would need 

to be made compulsory if it were to be implemented formally within the curriculum, rather 

than as part of a research investigation. It was also necessary to constrain what was assessed 

within the Programming Checkup, as making it too long to complete would have led to 

incomplete responses.  

 

Being a part-time PhD student, whilst working full-time, posed restrictions on the time 

available for conducting research. As such, a quantitative methodology was adopted in order 

to maximise the amount of data being collected. However, this has meant that whilst derived 

from literature, the interpretation of students’ misconceptions is based on my own 

epistemological viewpoint, as there was not enough time available to conduct interviews and 

walkthroughs with a sufficient number of students in order to make generalisable 

conclusions. As such, it would be beneficial to include interviews and walkthroughs with 

students as part of a future investigation in order to develop a deeper understanding of the 

misconceptions that students possess. 
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6.4 Future Work 
This investigation has always been situated as a starting point for a continuing line of 

research. The initial focus has been on examining whether it is at all possible to make 

predictions about students’ assessment results from the data collected using the Programming 

Checkup, that can be used to help identify students who are likely to require support. 

Although the proposed approach to identifying students has been shown to be valid, as 

mentioned previously, it is necessary to collect additional data from different institutions in 

order to improve the generalisability of the findings and allow for the performance of the 

models to be improved.  

 

Following on from this investigation, the natural next step would be to explore how the 

Programming Checkup and the predictions made by the models can be formally integrated 

into an Introductory Programming module. This could include studies relating to how the 

data from the Programming Checkup can be used to inform teaching, which could be 

conducted alongside an evaluation to determine whether educators find the outputs from the 

regression or classification models more useful. Furthermore, future studies could focus on 

evaluating different forms of interventions that could be put in place to aid students who are 

identified as being likely to require additional support. As described previously, one potential 

example is the use of PRIMM within dedicated classes to aid students in developing 

appropriate mental models.  

 

Future areas of research could also focus on further refinement of the Programming Checkup 

and of the predictive models. For example, interviews and walkthroughs could be conducted 

to examine the processes students go through when answering questions. This approach 

would be beneficial as it would allow for students to explain their thought processes in their 

own words, and as such, provide a deeper insight into their mental models and any 

misconceptions that they hold, without being driven by my own views and interpretations 

(Holloway, 2005). Additionally, questions within the Programming Diagnostic section of the 

Programming Checkup could be redeveloped, or expanded upon, to focus on individual parts 

of a program in an approach similar to Block Analysis (Schulte, 2008). This would, therefore, 

allow for more nuanced questions to be used to directly assess students’ mental models of 

concepts embedded within larger programs. For example, questions could focus on assessing 
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concepts contained within specific blocks of code, which could be complemented by 

additional questions that would require students to read and comprehend the entire program. 

 

It would also be useful to collect more detailed information about exactly what computer 

science course (if any) students have previously studied and how they have gone about 

learning to program if they consider themselves to be self-taught, as well as more information 

regarding their previous experience of mathematics. It may also be useful to include a 

number of questions which assess students’ mathematical problem-solving abilities, similar 

to that of Gomes et al. (2006), to allow for a more comprehensive evaluation of how they 

relate to their programming abilities. It would also be beneficial for future investigations to 

include a third data collection point during the second semester, thus providing an 

opportunity to examine how students’ mental models and confidence levels develop over a 

longer period of time. Future studies could also focus on factors such as working memory 

capacity, which was ultimately dropped from the Programming Checkup and estimating 

students’ level of cognitive load, given that the placement of the mental effort questions at 

the end of the Programming Checkup failed to allow for any firm conclusions to be drawn.  

 

The emphasis of this investigation was placed on exploring the different types of machine 

learning algorithm which could be utilised to predict students’ assessment results, which 

culminated in Random Forests being selected for both classification and regression models, 

However, with the addition of an expanded dataset, future work could examine methods for 

how the performance of these models could be improved. This could include utilising 

automated feature selection techniques, such as Recursive Feature Elimination (Scikit-Learn, 

n.d.-aa) to identify the optimal combination of features to include in the models, as well as 

further hyperparameter optimisation. 

 

As mentioned previously, the issues surrounding the class imbalance when training the 

classification model could be tackled by exploring alternate thresholds. Although this 

threshold would likely be assessment and institution specific, the process of determining what 

the threshold should be could constitute a significant body of work from both a machine 

learning and a pedagogic perspective. Furthermore, multinomial classification methods could 

also be explored as they would offer a middle ground between binary classification and 

regression, which may appeal to educators, although it would be necessary again to determine 

appropriate levels in students’ results. It would also be beneficial to explore how newer 
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methods for establishing the Bayesian Knowledge Tracing parameters, such as pyBKT 

(Badrinath et al., 2021), could be used to automate what is currently a manual process. 

Furthermore, extensions to Bayesian Knowledge Tracing, such as the Forget parameter (Qiu 

et al., 2011), could also be explored. This would be particularly interesting in order to 

examine students’ progression between their first and second years, where students may 

initially struggle if they had not practiced using their programming skills over the summer 

break.  

 

There is also scope for integrating the Programming Checkup into an intelligent tutoring 

system, whereby it can be utilised to provide an initial assessment of students’ abilities prior 

to them starting the course. The design of such a system and the content within it would 

likely constitute a significant amount of work. However, it would be beneficial in the short to 

medium term, to develop a web-application version of the Programming Checkup. This 

would, therefore, remove the dependency on survey platforms such as Qualtrics, and also 

allow for more direct control over the output files. This would help to streamline the process 

of identifying students who are likely to require support and the generation of individual 

reports for each student that summarise their Programming Checkup responses and include 

the estimates of holding appropriate mental models for each concept. 

 

6.5 Self-Reflection and Concluding Remarks 
The motivation of this investigation has always been to help struggling students overcome 

their difficulties with learning to program. As a lecturer in charge of the introductory 

programming module studied by 200+ students, it is a near-impossible task to know the 

issues each individual student is facing. Therefore, this investigation set out to explore 

whether it was possible to identify students who are likely to require support with learning to 

program at the beginning of their course, so that they could be provided with the guidance 

they need at the earliest possible opportunity.  

 

As such, the Programming Checkup was developed to allow for an examination of how 

students’ background factors, confidence levels and likelihood of holding appropriate mental 

models of core programming concepts, related to their assessment results within their 

introductory programming module. The data collected by the Programming Checkup were 

then used to develop a regression model and a classification model. These models were used 
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as a means of confirming that predicting students’ first introductory programming assessment 

result from their responses to the Programming Checkup at the start of the course is a viable 

approach, and as such, could be utilised to identify students who would likely benefit from 

additional support. 

 

The investigation provides an original contribution to knowledge through how students’ 

responses to the factors examined within the Programming Checkup, particularly prior to the 

commencement of their course, relate to their performance in their introductory programming 

module. Furthermore, the approach of assessing students’ mental models of core concepts 

through the use of Bayesian Knowledge Tracing also represents an original contribution to 

knowledge, as it is the first time it has been used within the context of an aptitude test, such 

as the Programming Checkup. Consequently, this is the first-time students’ mental models of 

programming concepts have been assessed in this way. 

 

This investigation has laid the foundations for a significant body of future work, including 

how the outputs from the Programming Checkup and the model predictions can be integrated 

into the teaching of an introductory programming module, as well as how the predictive 

models can be refined to further improve their performance. There is, however, a clear need 

for future work to focus on improving the generalisability of the findings through the 

inclusion of multiple institutions. Nevertheless, this investigation can be seen as a first step of 

many, toward a more individualised learning environment for introductory programming 

classes within higher education, where students’ misconceptions can be addressed directly 

before they become engrained and hamper progress. 

 

From a personal perspective, I am pleased with the outcomes of this investigation, although 

at times it has been challenging to undertake a longitudinal study such as this, whilst 

balancing the demands of a full-time academic role, particularly during the Covid-19 

pandemic. I do believe that the findings of this investigation highlight the potential in the 

proposed approach for identifying students who are likely to require support with learning to 

program and give clear directions for future research. As an educator, I believe that all 

students, regardless of their previous experience, have the ability to learn to program. 

However, the experience I have recently gained as the module leader for introductory 

programming at the University of Central Lancashire, has shown me that there is a very 

difficult balancing act required within the teaching in order to meet the needs of students who 
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are completely new to programming, whilst also keeping students who have more experience 

engaged. Therefore, any information that can be used to better understand students and guide 

them towards the support they need would be beneficial to me as a module leader. It has 

always been my intention to utilise the findings from this investigation within the 

introductory programming module, both in terms of using the predictions from the 

Programming Checkup to identify students who are likely going to struggle, and also 

ensuring my teaching directly addresses the misconceptions that may be preventing students 

from obtaining appropriate mental models. I am, therefore, hopeful that the implementation 

of the findings from this work, and future investigations stemming from it, will help students 

to overcome the difficulties they face when learning to program. 
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Appendices  
Appendix A 

 

Final Programming Checkup Questions 

Section 1: Student Details 

 

1. Please enter your student ID number (located on the back of your UCLan card - i.e. Reg 

no. 20627219 / CE). 

2. Please enter your year of birth. 

3. Please select your gender: 

• Male 

• Female 

• Other (please specify) 

4. Have you studied Computer Science (or Computing) at any level prior to beginning this 

course? 

• Yes 

• No 

5. Have you studied any Mathematics based subjects after leaving school but prior to 

beginning this course (I.e., Mathematics, Engineering, Physics, etc.)? 

• Yes 

• No 

6. Is English your first language? 

• Yes 

• No 

7. Did you have any programming experience prior to starting university? 

• Yes  

• No 
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8. Would you consider yourself a self-taught programmer? 

• Strongly agree 

• Agree 

• Somewhat agree 

• Neither agree nor disagree 

• Somewhat disagree 

• Disagree 

• Strongly Disagree 

9. Do you intend to work in a software engineering/programming role after graduating 

university? 

• Yes 

• No 

• Undecided 

10. Do you intend to work in a software engineering/programming role after graduating 

university? 

11. On a scale of 1 to 10 (with 1 being very easy and 10 being very difficult), how difficult 

do you expect your degree to be? 

12. On a scale of 1 to 10 (with 1 being very easy and 10 being very difficult), how difficult 

do you expect learning to program to be? 

13. On a scale for 1 to 10 (with 1 being very easy and 10 being very difficult), how difficult 

do you find mathematics?  

14. On a scale for 1 to 10 (with 1 being no fear and 10 being very fearful), how much do 

you fear learning to program? 
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Section 2: Modified Computer Programming Self-Efficacy Questions 

 

Students were instructed to rate their current confidence using a scale of 1 (not at all 

confident) to 7 (absolutely confident). 

 

1. I could write a syntactically correct statement (line of code). 

2. I could understand the language structure (of any programming language) and usage of 

reserved words. 

3. I could write logically correct blocks of code. 

4. I could write a program that displays a greetings message. 

5. I could write a program that computes the average of three numbers. 

6. I could use built-in functions that are available in various libraries.  

7. I could write a small program given a small problem that is familiar to me. 

8. I could write a reasonably sized program that can solve a problem that is only vaguely 

familiar to me.  

9. I could debug (correct all the errors) a long and complex program that I have written, and 

make it work. 

10. I could complete a programming project if someone shows me how to solve the problem 

first. 

11. I could complete a programming project if I had only the language reference manual for 

help. 

12. I could complete a programming project if I can call someone for help if I got stuck. 

13. I could complete a programming project once someone else helps me get started.  

14. I could complete a programming project if I had a lot of time to complete the program. 

15. I could complete a programming project if I had just the built-in facility for assistance.  

16. I could find ways of overcoming the problem if I got stuck at a point whilst working on a 

programming project.  

17. I could come up with a suitable strategy for a given programming project in a short time.  

18. I could manage my time efficiently if I had a pressing deadline on a programming project. 

19. I could find a way to concentrate on my program, even when there are many distractions 

around me. 

20. I could find ways of motivating myself to program, even if the problem area is of no 

interest to me. 
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Section 3: Programming Diagnostic Questions (with Example Answers) 

 

The example answers provided for each question include the correct answer, as well as a non-

exhaustive list of incorrect answers which demonstrate how the misconceptions described in 

Appendix B can influence students’ responses. If necessary, It is also possible to combine 

relevant misconceptions when coding students answers. 

 

Only answers which match the specified correct answer can be coded as correct. 

 

1.  

The variables 'A' and 'B' are initialised in the lines of code below. 

 

A = 10 

B = 20 

 

What are the values of 'A' and 'B' after carrying out the following operation? 

 

A = B 

 

Example Answers Code 

A = 20 

B = 20 
Correct 

A = 10  

B = 10 
REV 

A = 20 

B = 0 
EX 

A = 30 

B = 20 
AD 

A = 20 

B = 10 
SW 

A = 10 

B = 20 
NC 
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2. 

Examine the following code. 

What would be outputted on the screen when it is run? 

 

Height = 0 

Width = 0 

 

Area = Height * Width 

  

print Area 

  

Height = 5 

Width = 3 

 

Example Answers Code 

0 Correct 

15 PL 

Area OP 

Height*Width OP 

Print OP 
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3.  

Examine the following code. 

What would be outputted on the screen when it is run? 

 

Largest = 20 

Smallest = 40 

 

print Largest 

 

Example Answers Code 

20 Correct 

Largest OP 

Smallest OP 

40 VN 
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4. 

The variables 'A' and 'B' are initialised in the lines of code below. 

 

A = 10 

B = 20 

 

What are the values of 'A' and 'B' after carrying out the following operation? 

 

A = B 

B = A 

 

Example Answers Code 

A = 20 

B = 20 
Correct 

A = 20  

B = 10 
MA 

A = 10 

B = 10 
REV 

A = 0 

B = 20 
EX 

A = 30 

B = 50 
AD 

A = 10 

B = 20 
NC 

A = A 

B = B 
OP 
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5. 

Examine the following code. 

What would be outputted on the screen when it is run? 

 

for i = 0; i <= 3 { 

      print i 

      i = i + 1 

 } 

 

Example Answers Code 

0123 Correct 

012 ET 

i OP 

123 SP 

12 SP + ET 

0 NI 

1 NI 

01234 LT 

1234 SP + LT 

3 SM 

4 SM + LT 

2 SM + ET 
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6. 

The variables 'big' and 'small' are initialised in the lines of code below. 

 

big = 30 

small = 70 

 

What are the values of 'big' and 'small' after carrying out the following operation? 

 

big = small 

small = big 

 

Example Answers Code 

big = 70 

small = 70 
Correct 

If answer is incorrect and different 

to Q4 

Include VN alongside any other 

misconceptions 

big = 70 

small = 30 
MA 

big = 30 

small = 30 
REV 

big = 0 

small = 70 
EX 

big = 100 

small = 170 
AD 

big = 30 

small = 70 
NC 

big = big 

small = small 
OP 

 

  



 297 

7. 

Examine the following code. 

What would be outputted on the screen when it is run? 

 

for i = 0; i <= 3 { 

      print i 

      i = i + 1 

 } 

print "10" 

 

Example Answers Code 

012310 Correct 

01210 ET 

i OP 

12310 SP 

1210 SP + ET 

0123410 LT 

123410 SP + LT 

0 NI 

1 NI 

30 SM 

0123 SE 

10101010 PL 
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8.   

The variables 'A' and 'B' are initialised in the lines of code below. 

 

A = 10 

B = 20 

 

What are the values of 'A' and 'B' after carrying out the following operation? 

 

B = A 

 

Example Answers Code 

A = 10 

B = 10 
Correct 

A = 20 

B = 20 
REV 

A = 0 

B = 10 
EX 

A = 10 

B = 30 
AD 

A = 20 

B = 10 
SW 

A = 10 

B = 20 
NC 

A = A 

B = B 
OP 
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9. 

Which of the following words starts with a 'd' AND ends with an 'e'? 

Select all words this applies to. 

• dance 

• delicious 

• soccer 

• share 

 

Example Answers Code 

dance Correct 

delicious AND 

share AND 

soccer AND 

 

10. 

Which of the following words starts with a 'd' OR ends with an 'e'? 

Select all words this applies to. 

• dance 

• delicious 

• soccer 

• share 

 

Example Answers Code 

dance, delicious, share Correct 

soccer OR 
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11. 

Which of the following words starts with a 'd' AND does NOT end with an 'e'? 

Select all words this applies to. 

• dance 

• delicious 

• soccer 

• share 

 

Example Answers Code 

delicious Correct 

dance AND 

soccer AND 

share NOT 

 

 

12. 

Which of the following words starts with a 'd' OR does NOT end with an 'e'? 

Select all words this applies to. 

• dance 

• delicious 

• soccer 

• share 

 

Example Answers Code 

dance, delicious, soccer Correct 

dance OR 

delicious OR 

share NOT 
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13. 

What is the value of 'Total' after the execution of the following code? 

 

Total = 0 

 

for i = 1; i <= 4 { 

      Total = Total + i 

      i = i + 1 

} 

Total = Total + 2 

 

Example Answers Code 

12 Correct 

8 ET 

17 LT 

11 SP 

0 NI 

1 NI 

10 SE 

Total OP 

i OP 

1234 OP 
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14. 

Examine the following code. 

What would be outputted on the screen when it is run? 

 

num = 0 

 

for i = 0; i <= 4 { 

      num = i * 2 

      print num 

      i = i + 1 

} 

num = 15 

 

Example Answers Code 

02468 Correct 

0246 ET 

024681012 LT 

0 NI 

2 NI 

15 PL 

0246815 PL 

2468 SP 

20 SM 
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15. 

Which of these words would result in the following program outputting False? 

Select all words this applies to. 

 

if word.firstLetter == c AND word.lastLetter == r then { 

      print "True" 

} 

else { 

      print "False" 

} 

• computer 

• cycle 

• tale 

• tear 

 

Example Answers Code 

cycle, tale, tear Correct 

tale AND 

tear AND 

cycle AND 

computer IF 
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16. 

The variables 'A', 'B' and 'C' are initialised in the lines of code below. 

 

A = 5 

B = 3 

C = 7 

 

What are the values of 'A', 'B' and 'C' after carrying out the following operation? 

 

A = C 

B = A 

C = B 

 

Example Answers Code 

A = 7 

B = 7 

C = 7 

Correct 

A = 7  

B = 5 

C = 3  

MA 

A = 7 

B = 7 

C = 3 

MA 

A = 3 

B = 5 

C = 5 

REV 

A = 0 

B = 0  

C = 7 

EX 

A = 12 

B = 15 

C = 22 

AD 
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A = 3 

B = 5  

C = 7 

SW 

A = 5 

B = 3 

C = 7 

NC 

A = A 

B = B 

C = C 

OP 

 

17. 

Examine the following code. 

What would be outputted on the screen when it is run? 

 

i = 0 

 

while i <= 5 { 

      print i 

      i = i + 1 

} 

 

Example Answers Code 

012345 Correct 

01234 ET 

0123456 LT 

12345 SP 

5 SM 

i OP 
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18. 

The variables 'A', 'B' and 'C' are initialised in the lines of code below. 

 

A = 12 

B = 4 

C = 6 

 

What are the values of 'A', 'B' and 'C' after carrying out the following operation? 

 

C = B 

A = C 

B = A 

 

Example Answers Code 

A = 4 

B = 4 

C = 4 

Correct 

A = 6 

B = 12 

C = 4 

MA 

A = 4 

B = 12 

C = 4 

MA 

A = 6 

B = 6 

C = 12 

REV 

A = 0 

B = 4 

C = 0 

EX 

A = 22 

B = 26 

C = 10 

AD 
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A = 6 

B = 4 

C = 12 

SW 

A = 12 

B = 4 

C = 6 

NC 

A = A 

B = B 

C = C 

OP 
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19. 

Which of these words would result in the following program outputting False? 

Select all words this applies to. 

 

if word.firstLetter == r OR NOT word.lastLetter == e then { 

      print "True" 

} 

else { 

      print "False" 

} 

• rain 

• rotate 

• compute 

• cold 

• exceed 

• space 

 

Example Answers Code 

compute, space Correct 

rain, rotate, cold, exceed IF 

rain OR 

space OR 

compute OR 

rotate OR 

cold OR + NOT 

exceed OR + NOT 

cold, exceed NOT 
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20.  

The variables 'smallest', 'middle' and 'largest' are initialised in the lines of code below. 

 

smallest = 5 

middle = 15 

largest = 10 

 

What are the values of 'smallest', 'middle' and 'largest' after carrying out the following 

operation? 

largest = middle 

smallest = largest 

middle = smallest 

 

Example Answers Code 

smallest = 15 

middle = 15 

largest = 15 

Correct 

if answer is incorrect and different 

to Q18 
Include VN alongside any other 

misconceptions 

smallest = 1 

middle = 10 

largest = 15 

VN 

smallest = 10 

middle = 5 

largest = 15 

MA 

smallest = 15 

middle = 10 

largest = 15 

MA 

smallest = 10 

middle = 10 

largest = 5 

REV 

smallest = 0 

middle = 15 

largest = 0 

EX 



 310 

smallest = 30 

middle = 45 

largest = 25 

AD 

smallest = 10 

middle = 15  

largest = 5 

SW 

smallest = 5 

middle = 15 

largest = 10 

NC 

smallest=smallest 

middle=middle 

largest=largest 

OP 
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21.  

Examine the following code. 

What would be outputted on the screen when it is run? 

 

i = 0 

 

while i <= 5 { 

      i = i + 1 

      print i 

} 

 

Example Answers Code 

123456 Correct 

12345 ET 

1234567 LT 

012345 

(If Q17 has been answered 

correctly) 

PL 

0 NI 

1 NI 

23456 SP 

0123456 SP 

6 SM 

i OP 

 

Note. If Q17 has been answered incorrectly, and the same answer is provided for this 

question, then the response should be coded as PL. 
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22. 

Which of these words would result in the following program outputting False? 

Select all words this applies to. 

 

if word.firstLetter == t AND word.lastLetter == s then { 

      print "True" 

} 

else { 

      print "False" 

} 

• tongue 

• trains 

• goal 

• guitars 
 

Example Answers Code 

tongue, goal, guitars Correct 

goal AND 

guitars AND 

tongue AND 

trains IF 
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23. 

Which of these words would result in the following program outputting False? 

Select all words this applies to. 

 

if word.firstLetter == t OR word.lastLetter == s then { 

      print "True" 

} 

else { 

      print "False" 

} 

• tongue 

• trains 

• goal 

• guitars 

 

Example Answers Code 

goal Correct 

tongue OR 

guitars OR 

trains OR 

tongue, trains, guitars IF 
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24. 

Which of these words would result in the following program outputting False? 

Select all words this applies to. 
 

if word.firstLetter == t AND NOT word.lastLetter == s then { 

      print "True" 

} 

else { 

      print "False" 

} 

• tongue 

• trains 

• goal 

• guitars 

 

Example Answers Code 

trains, goal, guitars Correct 

guitars AND  

goal AND 

trains AND + NOT 

tongue IF 
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25. 

Which of these words would result in the following program outputting False? 

Select all words this applies to. 

 

if word.firstLetter == t OR NOT word.lastLetter == s then { 

      print "True" 

} 

else { 

      print "False" 

} 

• tongue 

• trains 

• goal 

• guitars 

 

Example Answers Code 

guitars Correct 

trains, goals, guitars OR 

goal, tongue  NOT 

goal, trains, tongue IF 
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26. 

Examine the following code. 

What would be outputted on the screen when it is run? 

 

A = 5 

B = 10 

 

while B >= A { 

      B = B - 1 

      print B 

 } 

  

if A <= B { 

      A = 10 

      B = 10 

} 

 

Example Answers Code 

987654 Correct 

98765 ET 

9876543 LT 

10 PL + NI 

10976510 SP + PL 

9 NI 

5 SM 

A OP 

B OP 
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27. 

The variables 'smallest', 'middle' and 'largest' are initialised in the lines of code below. 

 

smallest = 8 

middle = 1 

largest = 11 

 

What are the values of 'smallest', 'middle' and 'largest' after carrying out the following 

operation? 

 

largest = middle 

smallest = largest 

middle = smallest 

 

Example Answers Code 

smallest = 1 

middle = 1 

largest = 1 

Correct 

smallest = 11 

middle = 8 

largest = 1 

MA 

If answer is incorrect and different 

to Q18 
Include VN alongside any other 

misconceptions 

smallest = 1 

middle = 8 

largest = 11 

VN 

smallest = 1 

middle = 11 

largest = 8 

REV 

smallest = 0 

middle = 1 

largest = 0 

EX 
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smallest = 20 

middle = 21 

largest = 12 

AD 

smallest = 11 

middle = 1 

largest = 8 

SW 

smallest = 8 

middle = 1 

largest = 11 

NC 

smallest=smallest 

middle=middle 

largest=largest 

OP 
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28. 

Examine the following code. 

What would be outputted on the screen when it is run? 

 

A = 55 

B = 65 

Val = 100 

Total = A + B 

 

if Total >= Val then { 

      print "True: " 

      print Total 

} 

else { 

      print "False: " 

      print Total 

} 

C = 40 

Total = A + B + C 

 

• True: 120 

• True: 160 

• True: Total 

• False: 120 

• False: 160 

• False: Total 

 

Example Answers Code 

True: 120 Correct 

True: 160 PL 

True: Total OP 

False: 120 IF 

False: 160 IF + PL 

False: Total IF + OP 
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29. 

Examine the following code. 

What would be outputted on the screen when it is run? 

     

A = 5 

B = 0 

for i = 0; i <= 2 { 

      B = B + i 

      i = i + 1 

      print B 

} 

if B > A then { 

      print "Success" 

} 

else { 

      print "Failed" 

} 

 

Example Answers Code 

013Failed Correct 

01Failed ET 

0136Success LT 

A OP 

B OP 

Failed OP 

Success OP 

3Failed SM 

13Failed SP 

0Failed NI 

013 SE 

Answer contains incorrect 

evaluation of If statement  

i.e., B = 6 Failed, B = 1 Success 

IF 
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30. 

The variables 'A', 'B' and 'C' are initialised in the lines of code below. 
 

A = 3 

B = 2 

C = 9 

 

What are the values of 'A', 'B' and 'C' after carrying out the following operation? 

 

B = A 

C = B 

A = C 

 

Example Answers Code 

A = 3 

B = 3 

C = 3 

Correct 

A = 9 

B = 3 

C = 2 

MA 

A = 2 

B = 9 

C = 2 

REV 

A = 3 

B = 0 

C = 0 

EX 

A = 17 

B = 5 

C = 14 

AD 

A = 3 

B = 9 

C = 2 

SW 

  



 322 

A = 3 

B = 2 

C = 9 

NC 

A=A 

B=B 

C=C 

OP 
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31. 

Examine the following code. 

What would be outputted on the screen when it is run? 

    

MAX = 7 

MIN = 0 

for i = 2; i <= 4 { 

      MIN = MIN + i 

      i = i + 1 

      print MIN 

} 

if MIN > MAX then { 

      print "Success" 

} 

else { 

      print "Failed" 

} 

 

Example Answers Code 

259Success Correct 

25Failed ET 

25914Success LT 

MIN OP 

MAX OP 

Failed OP 

Success OP 

9Success SM 

259 SE 

013610 SP 

Answer contains incorrect 

evaluation of If statement i.e.,  

MIN = 9 Failed, MIN = 1 Success 

IF 

If answer is incorrect and different 

to Q29 

Include VN alongside any other 

misconceptions 
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32. 

Examine the following code. 

What would be outputted on the screen when it is run? 

A = 30 

B = 20 

Val = 100 

 

Total = A + B 

if Total >= Val then { 

      print "True " 

      print Total 

} 

else { 

      print "False: " 

      print Total 

} 

C = 60 

Total = A + B + C 

• True: 50 

• True: 110 

• True: Total 

• False: 50 

• False: 110 

• False: Total 

Example Answers Code 

False: 50 Correct 

True: 50 IF 

True: 110 IF + PL 

True: Total IF + OP 

False: 110 PL 

False: Total OP 
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Section 4: Mental Effort Ratings 

 

Students were instructed to rate how much mental effort they felt was required on each of the 

concepts they had encountered during the Programming Checkup using a scale of 1 (very 

very low mental effort) to 9 (very very high mental effort). Examples of questions associated 

with each concept were provided. 

 

1. Variable Assignment 

e.g., 

B = A 

C = B  

A = B 

 

2. Conditional Statements  

e.g., 

if word.firstLetter == t AND word.lastLetter == s then { 

      print "True" 

} 

else { 

      print "False" 

} 

 

3. Iteration 

e.g., 

for i = 1; i <= 6 { 

      num = num + i 

      i = i + 1 

} 
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Appendix B 

 

Misconceptions Examined by the Programming Diagnostic Questions Within the 

Programming Checkup 

 

Code Misconception Description Concept 

AD Addition Right-hand value added to left (a<-a+b; b unchanged)  

Can be combined with EX if b becomes 0. 

Variable 

Assignment 

AND AND Statement including AND operator is not evaluated 

correctly, i.e., a statement is incorrectly evaluated to be 

true when only one operand is true, instead of both 

operands. 

Conditional 

Statements 

ET Early 

Termination 

Loop does not iterate enough times. Iteration 

EX Extraction Values extracted from right to left, right value becomes 

0 (a<-b; b<-0). 

Variable 

Assignment 

IF If Statement 

Evaluation 

If/ if else statements evaluated incorrectly. I.e., 

statement is believed to be false when it should be true. 

Conditional 

Statements 

LT Late 

Termination 

Loop iterates too many times. Iteration 

MA Multiple 

Assignment 

Refers to original variable values instead of carrying 

changes across to subsequent lines. Applies to answers 

where this has occurred on at least 1 line. 

Variable 

Assignment 

NC No Change No change to original variable values. Variable 

Assignment 

NI No Iteration Original values returned /statement passed through 

once. 

Iteration 

NOT NOT Statement including NOT operator incorrectly 

evaluated, i.e., failure to recognise that the NOT 

operator inverts the expression being evaluated. 

Conditional 

Statements 

OP Output Misconception of program outputs - i.e., outputting a 

variable name instead of the value or outputting an 

incrementor value. 

Output 
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OR OR Statement including OR operator is not evaluated 

correctly, i.e., a statement is incorrectly evaluated 

to be false despite one of the operands being true. 

Conditional 

Statements 

PL Parallelism Misconception related to the understanding of the 

flow of the control within a program. There may be 

the assumption that all lines of the program are 

continuously being monitored. i.e., not recognising 

the difference in output when a variable is 

incremented either before or after an output 

statement.  

Parallelism 

REV Reverse Assignment operator applied from left to right. Variable Assignment 

SE Scope Error Misunderstanding of how the execution of the 

program continues after a loop has been completed. 

Iteration 

SM Summation Views procedure as single element - i.e., does not 

display all iterations - just outputs final result.  

Must be > 1 iteration 

Iteration 

SP Start Point 

Error 

Iterative loop starts at the wrong index. Iteration 

SW Swapping Variables swap values. Variable 

Assignment 

VN Variable 

Naming 

Answers are affected by the name of the variable - 

i.e., MAX will always hold the largest value.  

Variable Naming 
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