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Abstract—Optimizing device-to-device (D2D) topologies is
pivotal for enhancing the performance and efficiency of 6G
networks. This paper introduces a novel approach for forming
optimal subnet trees within the 6G networks using BDIx agents
and advanced Minimum-Weight Spanning Tree (MWST/MST)
algorithms augmented by Graph Neural Networks (GNNs) with
the help of feedforward neural networks (FFNN). Our solution
aims to significantly boost network performance, particularly
in high-demand scenarios such as urban areas, large-scale
events, and remote locations. Our approach dynamically adapts
to changing network conditions, user movements, and traffic
patterns by minimizing power consumption and maximizing
throughput. We implement various MWST algorithms, including
Kruskal’s, Prim’s, and Boruvka’s algorithms, and introduce
a GNN model to predict edge weights along with an FFNN
model to select the parents of the tree nodes. Additionally, a
"weighted distance" metric is proposed to analyze network per-
formance comprehensively. The proposed AI/ML-driven solution
integrates BDIx agents with MWST algorithms, focusing on
optimizing subnets under gNodeB in 6G networks, enhancing
data transmission efficiency, reducing latency, and increasing
throughput. This research contributes to developing scalable
and flexible network management solutions suitable for diverse
configurations and architectures.

Keywords—Device-to-device (D2D) communication, 6G net-
works, Minimum-Weight Scanning Tree (MWST), Graph Neural
Networks (GNNs), FedForward Neural Networks (FFNN), BDIx
agents, network optimization, power consumption, throughput,
and dynamic adaptation.

I. INTRODUCTION

Optimizing D2D topologies is essential in the ever-
changing telecommunications industry to improve the per-
formance and efficiency of 6G networks. This research fo-
cuses on the issue of creating optimal subnet trees in these
6G networks. This is crucial for effectively managing the
complex weighted tree structures needed for efficient network
governance. Our proposal involves utilizing BDIx agents
and sophisticated Minimum-Weight Spanning Tree (MWST)
algorithms while employing Graph Neural Networks (GNNs)
with the help of feedforward neural networks (FFNN) called
GNN-FFNN. The objective of this research is to provide a
robust and flexible solution to significantly improve network
performance, particularly in situations with high demand like
densely populated urban areas, large-scale events, and remote
locations where maximizing coverage and connectivity is
crucial [1], [2].

The primary challenge in optimizing D2D topologies is
minimizing power consumption and maximizing throughput,

such as sum rate, by selecting paths with the shortest distances
and highest data rates. Traditional spanning tree methods
often fail to adapt dynamically to changing network condi-
tions, user movements, and traffic patterns, highlighting the
need for a more robust and intelligent solution [3], [4]. Our
research addresses these limitations by introducing a dynamic
and adaptive service to optimize subnet trees in real time.
Utilizing BDIx agents based on the Belief-Desire-Intention
(BDI) framework augmented with machine learning, we pro-
vide a comprehensive depiction of the network’s current state,
including node positions and connection quality, which are
critical for practical MWST algorithm application [5], [2].
This involves creating random trees and DAI framework-
generated trees with BDIx agents, calculating data rates,
and applying various MWST algorithms, including a GNN
model to predict edge weights along with an FFNN to predict
the parent of the investigated node and evaluate the perfor-
mance of Kruskal’s, Prim’s, and Boruvka’s algorithms. Power
consumption and data rates are also calculated, introducing
a "weighted distance" metric for comprehensive network
performance analysis. This AI/ML-driven solution focuses on
optimizing subnets in 6G networks under gNodeB, integrating
BDIx agents with MWST algorithms using GNNs and FFNNs
[6], [2].

The core purpose of our proposed strategy is to manage
the complex weighted tree structures produced by BDIx
agents, which is crucial for the closed-loop governance mod-
ule. By employing innovative MWST algorithms, we aim
to optimize network topology efficiently, considering key
metrics like minimizing delay and maximizing throughput.
Our solution’s dynamic and flexible characteristics allow
it to process new data from the localization submodule,
adjusting to network condition fluctuations, user movement,
and traffic patterns for continuous optimization. Designed
for scalability and flexibility, our approach is compatible
with various gNodeB configurations and 5G architectures,
improving data transmission efficiency, reducing latency, and
increasing throughput. It offers significant advantages in high-
density urban areas, large-scale events, emergency situations,
and remote areas with limited infrastructure [7], [8], [9].
Our strategy, utilizing a GNN with SAGEConv layers, first
learns node embeddings and then uses these embeddings to
predict parent-child relationships in the graph with the use
of FFNNs, optimizing network topology dynamically and



efficiently. The novelty of our approach lies in combining
BDIx agents with GNN-FFNN-based MWST algorithms. This
integration allows dynamic network configuration adjustments
in response to real-time changes or improvements that can be
enabled, ensuring peak network efficiency. The use of GNNs
enhances the capability to handle complex graph structures,
providing a scalable solution for various network sizes and
complexities [10], [11] and the selection from FFNN help
the GNN on node-parent selection.

The contributions of this research are:
1) Leveraging the Distributed Artificial Intelligence (DAI)

framework with machine learning to provide an adap-
tive solution for network management [12].

2) Implementing over the state-of-the-art MWST 1 algo-
rithm based on two stage Deep ML (GNN-FFNN) that
ensures optimal path selection, minimizing latency and
maximizing throughput.

3) The service adapts in real-time to changing conditions,
user movements, and traffic patterns, ensuring consis-
tent performance.

4) The solution is scalable and flexible, suitable for various
network sizes and complexities.

5) Improvements in data transmission efficiency, reduce
latency, increase throughput, and optimize resources
[13], [9].

The rest of this article is arranged as follows: Section
II provides a comprehensive discussion of the related work
and background information that is relevant to our inquiry.
The proposed system description is explained in detail in
Section III. Section IV elaborates on the approach employed,
the deep learning models utilized for the estimation, and the
methodology used. The simulation results of the suggested
system under different settings are presented and analyzed in
Section V. Section VI discusses the results drawn from the
research and outlines potential future directions.

II. RELATED WORK AND SYSTEM DESCRIPTION

A. Related Work

The study in [14] introduces a high-altitude platform (HAP)
assisted communication network for unmanned ship (USV)
formations, using reinforcement learning and the whale op-
timization algorithm (WOA) to optimize network topology,
resulting in improved data transfer rates, reduced D2D delays,
and increased network throughput. Similarly, [15] proposes a
modified Ring All-Reduce (MRAR) architecture to enhance
federated learning (FL) communication efficiency using D2D
wireless networks, with an Ant Colony Optimization-based
algorithm optimizing the ring topology, significantly reducing
transmission time and ensuring robust communication. In
[16], graph-aware deep reinforcement learning (DRL) opti-
mizes UAV swarm control via D2D communication, enhanc-
ing control accuracy and reducing latency through dynamic
topology adjustments. [17] employs multi-agent reinforce-
ment learning (MARL) to optimize mesh wireless network
topologies dynamically, improving connectivity and through-
put while reducing latency. Lastly, [18] presents a topology

1MWST algorithms are called like this because we use the weighted metric.
They are the same as the MST.

learning approach for decentralized, federated learning over
unreliable D2D networks, reducing convergence time and
communication overhead while maintaining high learning
accuracy through dynamic network structure adjustments.
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Figure 1: The System Architecture
B. Background Work

We discuss the background work necessary to understand
the implementation of traditional Minimum Spanning Tree
(MST) algorithms. These algorithms aim to find a subset of
the edges that form a tree, including every vertex, where the
total weight of all the edges in the tree is minimized. Here,
we outline four classical algorithms and one ML approach:
Kruskal’s, Prim’s, and Boruvka’s approaches, along with the
GNN approach, providing detailed explanations and their
respective algorithms.

1) Kruskal’s Algorithm: A greedy method sorting edges
by weight and adding them to the MST without forming
cycles until V −1 edges are included [8], [19].

2) Prim’s Algorithm: Constructs the MST by starting
with one vertex and repeatedly adding the smallest edge
in terms of the metric examined connecting a vertex in
the tree to one outside it [7], [20].

3) Boruvka’s Algorithm: Treats each vertex as a separate
component, merging the closest components iteratively
until a single component remains [21], [22].

4) GNN Approach: Uses SAmple and aggreGatE Con-
volution (SAGEConv) layers to aggregate information
from node neighbourhoods, generating embeddings for
tasks like node classification and MST prediction [13],
[23].

5) FFNN Approach: Utilizes a Feedforward Neural Net-
work (FFNN) architecture with fully connected layers
and ReLU activations [24].

These algorithms have different strengths and weaknesses.
Kruskal’s and Prim’s are general-purpose algorithms, while
Boruvka’s algorithm excels in parallel computing. The GNN
approach leverages learned embeddings for potentially im-
proved MST predictions.

III. SYSTEM DESCRIPTION

This section outlines the problem and system components.
The proposed system comprises a base station (BS), User



Equipment (UE) from multiple users that are forming tree-
style D2D communication subnetworks, and a BS controller
responsible for optimizing the network tree as shown in Figure
1. The BS coordinates the network, while UEs participate
in D2D communications. The BS controller ensures efficient
network management and performance. BDIx agents, based
on the DAI framework enhanced with machine learning,
autonomously form subnetworks under the BS using a trans-
mission selection algorithm that employs the Weighted Data
Rate (WDR) metric. This allows BDIx agents to dynamically
select transmission modes and establish efficient subnets
by considering data rates and UE positions. These agents
provide a comprehensive view of the network’s current state,
including node positions and connection quality, aiding the
application of MWST algorithms for optimizing network
topology. Initially, BDIx agents form a subnetwork under the
BS. Our target is to optimize this subnetwork to enhance
the existing network’s performance (i.e., sum rate and power
consumption). When traffic and user demand increase in a
specific 5G subnetwork, the telecom operator can activate the
BDIx agents to form a D2D communication network targeting
them, increasing data rates, reducing power consumption, and
supporting the required bandwidth.

IV. DEEP LEARNING AIDED TOPOLOGY OPTIMIZATION
METHODOLOGY

In this section, we provide the introduction of the weighted
distance, the methodology, and the steps that are used in the
research. So, this study focuses on creating and analyzing
Minimum Spanning Trees (MST) to minimize the maximum
weighted distance in graphs representing random trees and
trees generated by BDIx agents with coordinates. We use
traditional MST algorithms and a GNN approach to predict
parent-child relationships in the graph, and the FFNN is used
to select the parent of each node. This section details our
methodology, including data generation, algorithmic steps,
training process, hyperparameter search, evaluation, and visu-
alization. Our methodology involves several key steps. First,
we create a structure to track the results for each model,
organizing various metrics such as data rates and power
consumption values in a dictionary. This organization ensures
that all necessary data is easily accessible. We then iterate
through different node sizes, generating sample data for each
size to assess model performance as the network scales.
The current node size being tested is recorded to maintain
clear conditions for each result set. Next, we use Kruskal’s
algorithm to compute the MST for the generated data, finding
the subset of edges that connects all nodes with the minimum
total edge weighted distance. The total weighted distance, data
rate, and power consumption for the MST are calculated and
recorded, serving as benchmark data for training GNN-FFNN-
based models. We then retrieve the necessary parameters for
each model, configure them, and execute them to generate
predictions and construct trees. Performance metrics for these
predicted trees, such as total weight, data rate, and power
consumption, are calculated and recorded to compare each
model’s effectiveness against the benchmark.

Finally, we compile all recorded results into a comprehen-
sive dataset containing performance metrics for each model

across different node sizes. This dataset is returned for further
analysis and comparison, ensuring that all evaluation data is
systematically organized and ready for detailed examination.

A. Formulation of Weighted Distance

In order to calculate the MST towards the root node,
referred to as the BS, we need to introduce a new metric,
the weighted distance. The weighted distance is defined as
the maximum link distance of an edge on a path towards the
root. Specifically, for any two nodes u and v, the weighted
distance (physical distance in meters) w(u,v) is given by the
following formulation (Eq. 1):

w(u,v) = max
e∈P(u,v)

{d(e)} (1)

where P(u,v) represents the path between nodes u and v,
and d(e) is the distance of edge e on this path (as shown in
1). This metric allows us to create a complete graph where
the edge weights reflect the maximum link distance on a
path toward the root. This setup enables a comprehensive
comparison of the performance of different MST algorithms
and our GNN-FFNN-based model and also provides us with
the tool to calculate the minimum spanning tree that its links
have the minimum weighted distance towards the BS. The
weighted distance metric was chosen because it allows for a
comprehensive comparison of MST algorithms and the GNN-
FFNN-based model by reflecting the maximum link distance
on a path towards the root, ensuring the minimum spanning
tree has the minimum weighted distance towards the base
station. This setup is crucial for effectively optimizing device-
to-device communication topologies.

B. Methodology Steps

1) Data Creation: The data creation process involves
generating synthetic data using random trees and complete
graphs, focusing on calculating maximum distance paths and
setting edge weights. Start by creating a random tree with a
specified number of nodes and assign coordinates to each
node for spatial representation. Calculate and assign the
weighted distance between connected nodes as the edge’s
weight, along with the distances of each edge. Designate the
root node (node 0) as the BS and compute the maximum
distance paths from this root to all other nodes, utilizing
the previous weighted distance calculations. Generate a com-
plete mesh graph where every pair of nodes is connected,
representing all possible direct connections. Assign the same
coordinates to each node in the complete graph as in the tree
to maintain spatial consistency. Calculate the distance for each
edge and set its weight to the maximum of the pre-calculated
maximum distances of the connected nodes. Kruskal’s algo-
rithm is used to construct a minimum spanning tree (MST)
from the complete graph, determining the minimum distance
for each edge in the MST. Finally, convert the complete graph
and the MST into an appropriate format, likely an array,
for further analysis or model training. We execute the same
procedure multiple times in order to generate a large dataset
on which our model can be trained.



2) The Training Features: The dataset used for training
the GNN model consists of several key fields as outlined in
Table I. These fields include the node features, which are
the coordinates of each node in the graph; the edge index,
which defines the connections between nodes; and the edge
attributes, which are the weights of the edges based on node
distances. Additionally, the dataset includes parent indices,
representing the parent-child relationships in the Minimum
Spanning Tree (MST), which are used as labels for training
the model.

Table I: Fields of the Dataset Used for Training the GNN
Model

Dataset Field Description Tensor
Shape

Node Features
(pos)

Coordinates (x, y) of each node (num_nodes,
2)

Edge Index
(edge_index)

Indices of nodes forming each edge (2,
num_edges)

Edge Attributes
(edge_attr)

Weights of edges based on distance (num_edges,
1)

Parent Indices
(parent_indices)

Parent node index in the MST (num_nodes)

For the training of the FFNN, we use the potential parent
nodes given from the GNN. So, the FFNN is trained along
with the GNN.

3) Hyperparameter Search: To optimize the models’ per-
formance, we conduct a hyperparameter search using the
Optuna library over a predefined grid of parameters, selecting
the best combination based on validation loss [25]. The
search process involves exploring various combinations of
hyperparameters to identify the best set for a given model.
This is achieved through a systematic search over a predefined
grid of hyperparameter values, using K-Fold cross-validation
to evaluate each combination. The hyperparameter search
process begins with the initialization step. Next, the grid
search step iterates over all combinations of the hyperparam-
eters, and the process continues until, at the end, the best
hyperparameters of the model are identified.

In the models training and evaluation step, the
models are trained and evaluated using the function
TrainAndEvaluate with K-Fold cross-validation for
each combination of hyperparameters. The average validation
loss, avg_val_loss, is computed from the validation losses
obtained from the K-Folds using the following formulation
(Eq. 2):

avg_val_loss =
1
k

k

∑
i=1

val_lossi (2)

During the best parameters update step, if avg_val_loss <
best_score, the variable best_score is updated to avg_val_loss.
The variable best_params is then set to the current combina-
tion of hyperparameters, which includes hidden_channels1,
hidden_channels2, and output_dim. Finally, after evaluating
all combinations, the best parameters and the best score
are returned. In summary, the hyperparameter search process
systematically explores various combinations of hyperparam-
eters using K-Fold cross-validation to identify the best set
that minimizes the validation loss. This approach ensures the
selection of optimal hyperparameters for the given model.

4) Validation using K-Fold Cross-Validation Approach:
The training process involves K-Fold cross-validation to en-
sure robust evaluation. The models are trained on the dataset
using backpropagation and the Adam optimizer. Evaluation
metrics include mean absolute error (MAE), mean squared
error (MSE), root mean square error (RMSE), and R2 score
[26]. The detailed training procedure is as follows:

First, the number of classes is determined by finding the
maximum parent index in the training data. The K-Fold cross-
validation is initialized with the specified number of splits,
and an empty list is created to store the results from each
fold. For each fold in the K-Fold split, the training and testing
subsets are created from the training data list based on the
indices provided by the K-Fold split. For each batch in the
training loader, the optimizer gradients are zeroed, and the
batch data is loaded. The model computes node embeddings
from the batch data, and the parent predictor produces output
from these node embeddings. The loss is computed using the
criterion on the output and the batch’s parent indices. The loss
is then backpropagated, and the optimizer steps to update the
model parameters. Finally, the training loss for the batch is
added to the total training loss. After processing all batches,
the average training loss is computed. The model is evaluated
on the test loader using the defined evaluation metrics, and
the results are appended to the list of fold results. Finally, the
function returns the accumulated results from all folds, and
the best split of training and test percentage is selected, which
is 80% to 20%.

5) Model Implementation: Graph Neural Networks
(GNNs) have emerged as a powerful tool for learning graph-
structured data along with a feedforward neural network for
parent prediction.

Algorithm 1 GNN Model

1: function GNNMODEL(hidden_channels1,
hidden_channels2, output_dim)

2: sel f .conv1← SAGECONV(2, hidden_channels1)
3: sel f .conv2 ← SAGECONV(hidden_channels1, hid-

den_channels2)
4: sel f .conv3 ← SAGECONV(hidden_channels2, out-

put_dim)
5: sel f .linear← LINEAR(output_dim, output_dim)
6: end function
7: function FORWARD(data)
8: x,edge_index← data.x,data.edge_index
9: x← RELU(self.conv1(x, edge_index))

10: x← RELU(self.conv2(x, edge_index))
11: x← sel f .conv3(x,edge_index)
12: x← sel f .linear(x)
13: return x
14: end function

Specifically, we implemented a GNN using SAGEConv
layers to learn node embeddings for predicting MST-related
properties [13]. The SAGEConv layer, or GraphSAGE convo-
lution, aggregates features from a node’s local neighborhood
to generate its embedding. This method allows for efficient
computation and scalability to large graphs. The key steps in



our Graph Neural Network (GNN) implementation involve
a specific process. The process begins by initializing the
SAGEConv layers, which are essential for aggregating infor-
mation from neighboring nodes. Next, forward propagation is
performed through the network to generate node embeddings,
capturing the structural and feature-based information of
the nodes. Finally, these embeddings are utilized to predict
properties related to the minimum spanning tree (MST),
leveraging the learned representations to infer relevant MST
characteristics.

In the process, we utilized the Parent Predictor model
as shown in Algorithm 2, which is an integral component
within the graph neural network (GNN) framework designed
to predict parent nodes for each node in a graph, essential for
tasks like constructing minimum spanning trees (MSTs). It
operates alongside an Enhanced GNN model, which processes
node features and edge connections to generate embeddings.
The Parent Predictor, a feedforward neural network with fully
connected layers and ReLU activations, uses these embed-
dings to predict parent nodes by outputting logits for each
possible parent. During training, both the GNN and the Parent
Predictor are optimized using a cross-entropy loss function to
minimize the discrepancy between predicted and actual parent
nodes. This combined approach leverages the GNN for rich
feature extraction and the Parent Predictor for hierarchical
relationship prediction, which is crucial for evaluating MST
properties and ensuring efficient and accurate graph represen-
tations. The parent prediction predicts the correct parent of a
node base on the list of parents that the GNN model will
provide.

Algorithm 2 Parent Predictor Model

1: function PARENTPREDICTOR(input_dim, hidden_dim,
num_classes)

2: sel f .lin1← LINEAR(input_dim, hidden_dim)
3: sel f .lin2← LINEAR(hidden_dim, hidden_dim)
4: sel f .out put← LINEAR(hidden_dim, num_classes)
5: end function
6: function FORWARD(x)
7: x← RELU(self.lin1(x))
8: x← RELU(self.lin2(x))
9: return sel f .out put(x)

10: end function

6) Train and Evaluation: The GNN implementation using
SAGEConv layers takes a data object as input, which contains
node (network device) features and edge (connection) indices.
A sequential model is created, and it consists of a SAGEConv
layer that takes the input channels and transforms them into
hidden channels, followed by a ReLU activation function.
Another SAGEConv layer takes the hidden channels and
transforms them into output channels. An optimizer is created
using the Adam optimization algorithm, with the model’s
parameters and a learning rate of 0.01. The training process
runs for a specified number of epochs. During training, the
model is set to training mode, and the gradients of the
optimizer are zeroed. Forward propagation is performed on
the input data to generate node embeddings, using the node

features and edge indices as inputs to the model. The loss is
calculated using a specified loss function, which compares the
model’s output with the target labels. Backward propagation
is performed to compute the gradients, and the optimizer
steps to update the model parameters. After completing the
training epochs, the function returns the trained model. This
model learns node embeddings and uses a fully connected
neural network to predict parent-child relationships. The ar-
chitecture of the GNN model is described in Algorithm 1.
The GNNModel function is called to initialize the model
with the specified layers and dimensions. The Forward
function is called during the forward pass to compute the
node embeddings. Thus, the GNNModel function is called
during model initialization to set up the convolutional layers
(conv1, conv2, conv3) and the linear layer (linear).
The Forward function is executed during each forward pass
through the network, where it takes the input data, applies the
convolutional layers with ReLU activations, and then applies
the final linear transformation to produce the output node
embeddings. To predict parent nodes, we implemented a Par-
ent Predictor model (Algorithm 2). The ParentPredictor
function initializes the model with the specified dimensions
for the input, hidden layers, and output. The Forward
function is called to compute the predictions for the parent
nodes. The ParentPredictor function is called during
model initialization to set up the linear layers (lin1, lin2,
output). The Forward function is executed during each
forward pass, where it takes the input node embeddings,
applies the linear transformations with ReLU activations, and
then produces the final output, which is the predicted parent
indices for each node. These models work together first to
learn the node embeddings using the GNN with SAGEConv
layers and then use these embeddings to predict the parent-
child relationships in the graph. The execution steps are as
follows: First, the model is initialized by defining a sequential
model with SAGEConv layers, where the first SAGEConv
layer transforms the input features into hidden representations,
followed by a ReLU activation function to introduce non-
linearity, and the second SAGEConv layer transforms the
hidden representations into output features. Next, an Adam
optimizer is initialized with the model’s parameters and a
learning rate of 0.01, which will be used to update the
model parameters during training. The training loop iterates
over a predefined number of epochs, wherein each epoch,
the model is set to training mode to ensure correct layer
behavior, the optimizer’s gradients are reset to zero to prevent
accumulation from previous iterations, forward propagation
is performed to compute the output embeddings from the
input node features and edge indices, the loss is calculated
using a loss function that measures the difference between
the model’s output and the true labels, backward propagation
is performed to compute the gradients, and the model’s
parameters are updated based on the gradients using the
optimizer. After completing all training epochs, the trained
GNN and FFNN models are returned. These trained models
can then be used to predict MST-related properties based on
the node embeddings generated during forward propagation.
We evaluate the performance of our models on a range



of node sizes, comparing the GNN-FFNN-based approach
with traditional MST algorithms in terms of total weighted
distance, data rate, and power consumption. The detailed
evaluation procedure is structured to ensure a comprehensive
assessment of each model’s performance across different node
sizes. To thoroughly evaluate the performance of our models
on varying node sizes, we compared the GNN-FFNN based
approach with traditional MST algorithms. The focus was
on metrics such as total weighted distance, data rate, and
power consumption. The evaluation process systematically
tests each model across a range of node sizes and compares
their performance against the Kruskal MST algorithm, serving
as a benchmark.

Algorithm 3 Evaluate Models

1: function EVALUATEMODELS(models, best_params,
num_nodes_range)

2: test_results← dictionary of result lists
3: for all model_class ∈ models do
4: model_name← model_class.__name__
5: Initialize test_results lists for model_name data

rate and power consumption
6: end for
7: for all num_nodes ∈ num_nodes_range do
8: data, initial_BDIx_tree, f ull_graph,kruskal_mst←

CREATESAMPLEDATA(num_nodes)
9: test_results[′num_nodes′].append(num_nodes)

10: mst,kruskal_weight ←
KRUSKALMST(full_graph)

11: kruskal_data_rate,kruskal_power_loss← CAL-
CULATEMSTMETRICS(full_graph, kruskal_mst)

12: Append kruskal_weight, kruskal_data_rate, and
kruskal_power_loss to test_results

13: for all model_class ∈ models do
14: model_name ← model_class.__name__

which is GNN
15: Retrieve model-specific parameters and instan-

tiate model
16: Construct predicted_tree from

predicted_parents with the use of FFNN
17: end for
18: end for
19: return test_results
20: end function

The entire evaluation procedure is encapsulated in Algo-
rithm 3. This algorithm outlines the step-by-step process for
evaluating the models, ensuring a systematic and repeatable
method for performance assessment. Our proposed methodol-
ogy combines traditional and modern machine learning tech-
niques to tackle the problem of optimization of MSTs, lever-
aging both approaches’ strengths for comprehensive analysis
and comparison. The two-stage Deep ML model from now
and on it will be called GNN-FFNN.

V. SIMULATED RESULTS AND ANALYSIS

This section provides a description of the metrics that are
used in the examination. It also evaluates the performance

of the proposed deep learning-enhanced optimization of the
D2D communication model with traditional approaches using
specific network metrics. Moreover, it examines the impact
of NN and GNN-FFNN estimation over the ML metrics
(i.e., Train Loss, Validation Loss, MAE, MSE, RMSE, R2,
adj R22) measured in terms of weighted distance in various
scenarios. The training and testing sets consist of 8000 and
2000 samples, respectively. The simulation parameters are
presented in Table II.

Table II: Simulation Parameters

Parameter Value
Frequency 2.4 GHz

Transmit Power 20 dBm
Gain 2 dB

Noise Figure 10 dB
Bandwidth using WiFi Direct 1 MHz

Path Loss Exponent 2
Noise Floor Level -174 dBm/Hz

A. Results and Analysis Regarding Network Metrics

This section presents an in-depth analysis of the network
metrics for optimizing D2D communication topologies using
various algorithms, including a novel GNN-FFNN-based ap-
proach. The metrics include time of execution, total weighted
distance, data rate, and total power consumption. The results
are based on the number of nodes in the network.
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Figure 2: Comparison of network metrics for different algo-
rithms as the number of nodes increases.

2Train Loss: Measures how well the model fits the training data. A lower
value indicates a better fit. Validation Loss: Evaluates model performance
on unseen validation data. Lower values signify better performance. MAE
(Mean Absolute Error): Averages the absolute differences between predicted
and actual values. Indicates model accuracy in terms of average error.
Lower values are better. MSE (Mean Squared Error): Averages the squared
differences between predicted and actual values. Penalizes larger errors more
than smaller ones. Lower values are preferable. RMSE (Root Mean Squared
Error): Square root of the MSE. Maintains the same unit as the target variable.
R2 (R-squared): Represents the proportion of variance in the target variable
explained by the model. Ranges from 0 to 1. Higher values indicate better
explanatory power. Adj R2 (Adjusted R-squared): Adjusts the R2 value for
the number of predictors in the model [26].



1) Time of Execution: Figure 2a shows the time of ex-
ecution for different algorithms as the number of nodes
increases. The GNN-FFNN model consistently demonstrates
lower execution times compared to most other algorithms,
particularly for larger networks. This efficiency is crucial for
real-time applications where rapid computation is necessary.
The GNN-FFNN model’s ability to quickly compute opti-
mal topologies stems from its deep learning-based approach,
which effectively generalizes from training data to make fast
predictions during inference. Kruskal’s algorithm shows a
similar trend but slightly higher execution times, making
it another viable option for real-time applications. Prim’s
algorithm, however, has the highest execution time among all
the compared algorithms, indicating it may not be suitable for
real-time applications in large networks. Both Boruvka and
Random Tree algorithms have higher execution times than
the GNN-FFNN model but are still lower than Prim’s. The
BDIx algorithm shows competitive execution times, although
not as low as the GNN-FFNN model.

2) Total Weighted Distance: Figure 2b illustrates the total
weighted distance for different algorithms. The GNN-FFNN
model maintains a lower total weighted distance compared
to the Random Tree algorithm, indicating its effectiveness
in optimizing the paths within the network. This metric is
crucial for minimizing latency and ensuring efficient data
routing. The GNN-FFNN model’s ability to learn from graph
structures allows it to make intelligent decisions about path
optimization, leading to lower weighted distances. Kruskal
and Prim algorithms perform comparably well, with slightly
higher total weighted distances than the GNN-FFNN model.
Boruvka also performs well but is not as consistent as
the GNN-FFNN model. The Random Tree algorithm shows
significantly higher weighted distances, indicating poor path
optimization. The BDIx algorithm performs better than Ran-
dom Tree but not as well as the GNN-FFNN model.

3) Sum Rate: Figure 2c presents the data rate for different
algorithms. The GNN-FFNN model achieves a high data
rate, close to that of Boruvka’s algorithm, and significantly
better than the Random Tree algorithm. This high data rate
indicates the GNN-FFNN model’s efficiency in maximizing
network throughput, which is essential for supporting high-
bandwidth applications. The model’s capability to understand
and optimize the network’s data flow patterns contributes
to this high performance. Boruvka’s algorithm achieves a
slightly higher data rate than the GNN-FFNN model, but both
are very close in performance. Kruskal and Prim algorithms
perform well but have lower data rates compared to the
GNN-FFNN model. The Random Tree algorithm, on the
other hand, shows a lower data rate, reflecting its inefficiency
in optimizing data transmission paths. The BDIx algorithm
performs comparably to the GNN-FFNN model, indicating
efficient data routing.

4) Total power consumption: Figure 2d depicts the total
power consumption for different algorithms. The GNN-FFNN
model exhibits lower power consumption compared to the
Random Tree algorithm, demonstrating its energy efficiency.
Minimizing power consumption is critical for extending the
lifespan of network devices and reducing operational costs.

The GNN-FFNN model’s optimization process takes into
account not only the network’s connectivity but also its power
consumption patterns, resulting in lower total power con-
sumption. Kruskal and Prim algorithms perform comparably
to the GNN-FFNN model in terms of power consumption,
indicating similar levels of energy efficiency. Boruvka has
a slightly higher power consumption but remains efficient.
The Random Tree algorithm shows the highest power con-
sumption, indicating inefficiency in power management. The
BDIx algorithm performs well, with power consumption close
to the GNN-FFNN model, highlighting its effectiveness in
minimizing energy consumption.

5) Detailed Comparison with Traditional Algorithms and
GNN-FFNN: The GNN-FFNN model’s performance is com-
pared with traditional algorithms like Kruskal, Prim, Boru-
vka, and Random Tree. The GNN-FFNN model excels in
execution time, making it ideal for large-scale real-time
applications, while Kruskal’s algorithm follows with slightly
higher times. Prim’s algorithm, with the highest execution
time, is less suitable for real-time use. Both Boruvka and
Random Tree algorithms have higher execution times than the
GNN-FFNN model but are still lower than Prim’s, with the
BDIx algorithm being competitive but not as efficient as the
GNN-FFNN model. In terms of total weighted distance, the
GNN-FFNN model outperforms the Random Tree algorithm,
indicating better path optimization, with Kruskal and Prim
performing slightly worse but comparably well. Boruvka is
less consistent, and the Random Tree algorithm shows poor
optimization, while the BDIx algorithm is better than Random
Tree but not as good as the GNN-FFNN model. Regarding
data rate, the GNN-FFNN model achieves high data rates
similar to Boruvka’s, indicating efficient throughput, with
Kruskal and Prim having lower rates. The Random Tree algo-
rithm shows inefficiency in data transmission, while the BDIx
algorithm performs comparably to the GNN-FFNN model.
In terms of power consumption, the GNN-FFNN model is
energy-efficient compared to the Random Tree algorithm,
with Kruskal and Prim performing similarly well. Boruvka
has slightly higher consumption but remains efficient, while
the Random Tree algorithm is the least efficient. The BDIx
algorithm shows close performance to the GNN-FFNN model,
indicating effectiveness in minimizing energy use.

B. Results and Analysis Regarding ML Metrics

The dataset provided includes various metrics for evaluat-
ing a machine learning model. Here is an in-depth analysis
of the results:

Table III: Model Evaluation Metrics

Train
Loss

Val
Loss

MAE MSE RMSE R2 Adj
R2

0.0338 0.0044 0.0143 0.9855 0.9928 0.9661 0.9661

According to Table III, the training loss is 0.0338, while
the validation loss is significantly lower at 0.0044. This
indicates that the model performs better on the validation
dataset than the training dataset. The MAE is 0.0143, which
shows the very low average magnitude of errors in a set
of predictions without considering their direction. The MSE



is 0.9855, indicating relatively low average squared errors.
The RMSE of 0.9928, derived from the MSE, indicates the
model’s error magnitude is just below 1. The R2 value is
0.9661, indicating that 96.6% of the variance in the dependent
variable is predictable from the independent variables. The
adjusted R2 value is nearly identical at 0.9661, reinforcing
the model’s high explanatory power. The model exhibits
excellent performance on both the training and validation sets,
as indicated by the low loss values and high R2 values. The
error metrics (MAE, MSE, RMSE) suggest that the model’s
predictions have very low errors. The high R2 and adjusted R2

values indicate that the model explains a significant portion of
the variance in the target variable, showcasing its robustness
and predictive power.

VI. CONCLUSIONS AND FUTURE WORK

This paper evaluates a deep learning-enhanced optimization
of the D2D communication model against traditional methods.
Results indicate that the GNN-FFNN model, along with
Kruskal and BDIx algorithms, generally outperforms Prim,
Boruvka, and Random Tree algorithms across various metrics.
The GNN-FFNN model and Kruskal algorithm offer balanced
performance with low execution times, optimized weighted
distances, high data rates, and reduced power consumption,
making them ideal for real-time applications in large D2D net-
works. The GNN-FFNN model achieves the lowest execution
times, making it highly efficient for real-time applications.
It also excels in path optimization, significantly reducing
latency and ensuring efficient data routing. The GNN-FFNN
model consistently achieves high data rates, demonstrating its
ability to maximize network throughput, which is essential for
high-bandwidth applications. Additionally, the GNN-FFNN
model shows lower power consumption compared to other
algorithms, emphasizing its energy efficiency and suitability
for large-scale deployments where minimizing power con-
sumption is critical. These findings suggest that the GNN-
FFNN model is highly effective and efficient for modern
communication networks requiring real-time data processing
and energy efficiency. Its promising performance indicates
that it can be a key component in future D2D communication
systems.

Future research should focus on several areas to further
enhance the capabilities of the GNN-FFNN model. Scala-
bility studies are needed to assess its performance in larger
network scenarios, ensuring robustness and reliability. Real-
world deployments in D2D communication systems will help
validate its practical applicability and effectiveness. Inves-
tigating hybrid models that combine the GNN-FFNN with
other techniques or traditional algorithms could lead to even
better performance and efficiency. Additionally, future work
should explore adaptive methods to dynamically adjust to
network topology changes, develop techniques to handle envi-
ronmental factors such as interference and mobility, conduct
extensive testing in diverse real-world scenarios to ensure
broad applicability and resilience and examine the integration
of additional performance metrics like latency, packet delivery
ratio, and network robustness under different failure scenarios
to provide a more comprehensive evaluation of the model’s
effectiveness.
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