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Abstract: The implementation of a machine learning approach to predict vibration suppression, as
derived from nanocomposite laminates with piezoelectric shunted systems, is studied in this article.
Datasets providing the vibration response and vibration attenuation are developed using parametric
finite element simulations. A graphene/fibre-reinforced laminate cantilever beam is used in those
simulations. Parameters, including the graphene and fibre reinforcements content, as well as the
fibre angles, are among the inputs. Output is the vibration suppression achieved by the piezoelectric
shunted system. Artificial Neural Networks are trained and tested using the derived datasets. The
proposed methodology can be used for a fast and accurate prediction of the vibration response of
nanocomposite laminates.

Keywords: artificial neural network; graphene nanoplatelets (GPLs); laminated nanocomposites;
piezoelectric shunt circuit; single-mode damping; free vibration; machine learning; neural
network metamodels

1. Introduction

Nanocomposites with nano-scale reinforcements, such as carbon nanotubes (CNTs)
or graphene nanoplatelets (GPLs), have gained significant attention in recent years due to
their excellent properties and potential applications. These materials consist of a matrix
phase reinforced with nanoscale fibres and/or particles, resulting in improved material
qualities compared to macroscale composites [1]. CNTs and graphene are two materials
that possess superior mechanical properties, including high strength and strain to failure,
making them suitable for lightweight structural and ballistic material applications [2].
Additionally, CNTs and graphene exhibit special optical and electronic properties, which
are adopted in various applications in photonics, optoelectronics, nanoelectronics, and
sensors [3].

Several researchers have conducted studies on the free vibration, buckling, and
static bending behaviour of multi-layered composite structures reinforced with graphene
nanoplatelets (GPL) [4,5]. Their findings revealed a significant enhancement in natural
frequencies and buckling loads upon the incorporation of graphene. The study in [6] fo-
cused on investigating the vibration-damping characteristics of GPL-reinforced NR/EPDM
(Natural rubber/ethylene-propylene-diene rubber) composites through free vibration tests.
The results demonstrated a notable increase in damping ratio values (up to 50%) with the
addition of GPLs compared to the blend of NR/EPDM alone.

For many years, there has been growing scientific interest in the use of piezoelectric
materials for active or passive vibration control [7,8]. Piezoelectricity refers to the capacity
of a piezoelectric material to undergo a dual electro-mechanical transformation, achieved
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through either the direct effect (i.e., production of an electrical charge under pressure) or
the inverse effect (i.e., mechanical strain induced when subjected to an electric field) [9].
Many of those studies focus on the passive vibration control of structures by using shunted
piezoelectric elements connected to electric circuits [10–12].

In recent times, there has been increasing attention within the scientific community on
the incorporation of piezoelectric layers into graphene nanoplatelets composite structures
in order to actively control and reduce unexpected mechanical responses. Several studies
have been conducted to investigate the mechanical behaviour of such structures. In [13], the
dynamic response and the active vibration control of functionally graded (FG) multilayer
GPLs reinforced composite plates integrated with piezoelectric layer were studied. Dong
et al. [14] studied the active vibration control and vibration characteristics of a sandwich-
thin cylindrical shell whose intermediate layer is made of graphene-reinforced composite
that is bonded with integrated piezoelectric actuator and sensor layers at its outer and inner
surfaces. Also, parameters like weight fractions, distribution patterns and geometrical sizes
of graphene platelets, temperature variations, thicknesses of layers, the feedback control
gain on the vibration characteristics, and the active vibration control of the novel sandwich
cylindrical shell are discussed. The static and dynamic response of smart FG microplates
reinforced by GPLs and integrated with piezoelectric layers under concurrently mechanical
and electrical loads was studied in [15]. Furthermore, active control of responses for an
intelligent FG microplate, including the structural damping effect under simultaneous
mechanical and electrical loads, was examined. The active control of vibrations of a
nanocomposite microplate reinforced by graphene platelets as host layer bonded with two
piezoelectric layers as sensor and actuator layers in the thermal environment was studied
in [16]. A closed-loop PD controller based on the velocity and the displacement feedback
signals is developed for the active control of vibrations of the piezo-electric functionally
graded (FG) GPL microplate. The effects of the control gain values, the material length scale
parameter, the boundary condition type, the GPL distribution pattern, and the GPL weight
fraction on the dynamic response of the piezoelectric GPL microplate are investigated.
Zhang et al. [17] studied the nonlinear vibration suppression of a piezoelectric functionally
graded graphene-reinforced laminated composite cantilever using a positive position
feedback control strategy.

To the authors’ best knowledge, even though numerous studies have been conducted
about the active control of multilayered GPL reinforced composite structures, nonetheless,
there is no paper relating the passive vibration control of such structures by utilising
shunted piezoelectric elements.

On the other hand, in recent years, machine learning (ML), a sub-category of arti-
ficial intelligence, has provided researchers and engineers with novel methods for en-
gaging with the data collected. In particular, ML techniques have shown great potential
in material design. Transfer learning-based deep neural networks were developed by
Pashmforoush [18] to predict the mechanical properties of various graphene-reinforced
nanocomposites, even with limited data samples. A machine-learning model is utilised
to estimate the temperature-dependent moduli of neat, thermally reduced graphene and
covalently functionalised graphene/epoxy nanocomposites [19]. The governed mathemat-
ical expressions have been used to solve the buckling problem of beams fabricated from
such nanocomposites in the presence of a thermal gradient.

Numerous authors have chosen to utilise ML techniques in addressing the vibration
problems related to composite structures. Anitescu et al. [20] introduced an appropriate
approach for resolving partial differential equations through the employment of artificial
neural networks and an adaptive collocation technique. Guo et al. [21] proposed a novel
deep collocation method for addressing Kirchhoff plate bending by first creating randomly
distributed collocation points.

Very few papers have been reported on the vibration analysis of graphene-reinforced
nanocomposite structures using a machine learning-based approach. An ML-assisted
micromechanics model for the investigation of the buckling response of functionally graded
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hydrogen-functionalised graphene-reinforced beams at different temperatures has been
developed in [22]. A machine learning based probabilistic model is proposed in [23]
to perform the vibration analysis of functionally graded porous plates reinforced with
graphene nanoplatelets with statistical variation in the elastic moduli of constituents,
porosity index, and weight fraction of graphene nanoplatelets.

Based on the preceding literature, we found that the problem of vibrations of
graphene/fibre reinforced (GPLFR) nanocomposite beams with shunted piezoelectric
patches using machine learning based techniques has not been explored to the best of the
authors’ knowledge. Therefore, the objective of the present study is to propose an efficient
Artificial Neural Network (ANN) model in order to investigate the variation in the natural
frequency as well as the vibration-damping performance of a GPLFR nanocomposite beam
considering variation in material properties and electric circuit components. Emphasis
is given to predicting the vibration suppression of the system. A key aspect of the inves-
tigation is to evaluate the level of accuracy that can be achieved. As will be shown, the
accuracy of the trained ANN to predict the vibration response is quite high, indicating that
the proposed approach can safely be adopted. Another goal of the study is to highlight the
benefits of adopting machine learning in this field, to decrease the computational cost and
effort. It is noted that within the traditional path, this problem would normally involve
developing a finite element model, probably in a programming code environment, since
not all commercial finite element packages can offer physics-oriented tools, like the shunted
piezoelectric elements. Instead, calling a trained ANN to predict the response can be used
to drastically reduce the effort to develop and solve the equivalent model.

2. Piezoelectric Graphene/Fibre-Reinforced Nanocomposite Beam

In this paper, a GPLFR nanocomposite beam with a shunted piezoelectric system is
considered. The longitudinal cross-section of the laminated composite beam integrated
with two piezoelectric patches on its top and bottom surfaces in a bimorph arrangement is
illustrated in Figure 1. The host beam consists of composite plies made of a polymer matrix
reinforced with graphene nanoplatelets and fibres, which make a three-phase material.
The length, thickness, and width of the beam are denoted by l, h, and b, respectively, and
the thickness of the PZT layer is denoted by hp. The mid-plane of the composite beam
is considered the reference plane. The origin of the laminate coordinate system (x, y, z)
is located on the mid-plane of the host GPLFR beam. The thickness coordinates (z) of
the bottom and top surfaces of any k- th layer of the overall laminated GPLFR beam are
represented by zk and zk+1, k = 0, 1, ..., Nl , respectively. The fibre orientation angle of the
k-th layer is denoted by θk. The piezoelectric patches have opposite poling directions along
the z-axis as indicated by the direction of the arrows in Figure 1. In addition they are
covered by continuous electrodes, which are assumed to be perfectly conductive with
negligible thickness. The electrodes are connected in series to a passive electrical circuit
composed of a resistor R and an inductor L.

Figure 1. The GPLFR nanocomposite beam with the shunted piezoelectric system.
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2.1. Mathematical Description of the GPL-Reinforced Matrix

The Halpin–Tsai model is utilised to determine the material properties of the nanocomposite-
reinforced polymeric matrix. Based on these principles, the effective material properties of
the graphene-reinforced matrix can be computed as [5]

EGM =

(
3
8

1 + ξLηLVGPL
1 − ηLVGPL

+
5
8

1 + ξwηwVGPL
1 − ηwVGPL

)
× EM

vGM = vGPLVGPL + vm(1 − VGPL)

GGM =
EG M

2(1 + vGM)

ρGM = ρGPLVGPL + ρm(1 − VGPL)

(1)

where

ξL = 2
lGPL
hGPL

, ξw = 2
wGPL
hGPL

, ηL =
(EGPL/EM)− 1
(EGPL/EM) + ξL

, ηw =
(EGPL/EM)− 1
(EGPL/EM) + ξw

(2)

The parameters E, v, G, ρ and V in relations (1) and (2) express the Young modulus, Poisson’s
ratio, shear modulus, density, and volume fraction of nano materials, respectively. The
subscripts GPL, M, and GM are used to denote the graphene nanoplatelets (GPL), the
matrix (M), and the graphene-reinforced matrix (GM). Also, lGPL, wDPL and hGPL denote
the geometrical characteristics of the isolated GPLs.

The volume content VGPL of graphene nanoplatelets is calculated in terms of its weight
fraction WGPL as:

VGPL =
WGPL

WGPL + (ρGPL/ρM)(1 − WGPL)
(3)

2.2. Mixture of Fibres and GPL Reinforced Matrix

After specifying the mechanical characteristics of the GPL-reinforced matrix, it is nec-
essary to achieve the mechanical specifications of the multi-phase material that consists of a
mixture of fibres and the GPL-reinforced matrix. According to the Halpin–Tsai hypotheses,
which serve as a micro-mechanic model, the orthotropic mechanical characteristics of the
suggested mixture are provided as follows [5]:

E11 = EF11VF + EGM(1 − VF) (4)

E22 = EGM

(
EF22 + EGM + (EF22 − EGM)VF
EF22 + EGM − (EF22 − EGM)VF

)
(5)

G12 = G12 = GGM

(
GF12 + GGM + (GF12 − GGM)VF
GF12 + GGM − (GF12 − GGM)VF

)
(6)

G23 =
E22

2(1 + v23)
(7)

v12 = vF12VF + vGM(1 − VF) (8)

v23 = vF12VF + vGM(1 − VF)

(
1 + vGM + v12EGM/E11

1 − v2
GM + v12vGMEGM/E11

)
(9)

ρ = ρFVF + ρGM(1 − VF) (10)
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2.3. Constitutive Equations

In this paper, it is assumed that the top and bottom layers are made of the isotropic
piezoelectric material and the host beam is made of the multi-phase GPL/fibre-reinforced
polymer orthotropic composite material. Therefore, for the analysis of a (1D) beam problem,
the constitutive equations can be rewritten in the following form:

for piezoelectric layers:

σ(p) =

{
σx
τxz

}(p)

=

[
Q̃(p)

11 0
0 kscQ̃(p)

55

]{
εx

γxz

}
−
{

ẽ(p)
31
0

}
E(p)

z (11)

D(p)
z = ẽ(p)

31 εx + ξ̃
(p)
33 E(p)

z (12)

for GPLFR layers:

σ(k) =

{
σx
τxz

}(k)

=

[
Q̃(k)

11 0
0 kscQ̃(k)

55

]{
εx

γxz

}
(13)

where the superscripts p and k are referred to as the piezoelectric and the elastic plies,
respectively. In Equations (11)–(13), σx, τxz denote the normal and shear stress, respectively,
and εx, γxz denote normal and shear strain, respectively. Also, the reduced stiffness coef-
ficients are denoted as Q̃11, Q̃55 . The transverse electric displacement is represented by
Dz, and the electric field is represented by Ez. The piezoelectric constant is denoted by
ẽ(p)

31 and the electric permittivity constant by ξ̃
(p)
33 . Lastly, the shear correction coefficient is

represented by ksc and, in this work, is assumed to be equal to 5
6 . Notably, in this paper, the

employed piezoelectric material is assumed to be of beam type in which only the electric
field through the thickness direction of the piezoelectric patch is dominant. Furthermore, it
is assumed that the electric potential varies linearly in the thickness direction. Therefore,
the electric field of each piezoelectric layer can be expressed as follows:

E(p)
z = −

vp

hp
≡ Bvvp (14)

where hp, vp are the thickness and the difference of electric potential between the electrodes
covering the surface of each side of the piezoelectric layer.

Finally, for the case of cross-ply composite configuration, the parameters Q̃(k)
11 and Q̃(k)

55
can be expressed as:

Q̃(k)
11 = Q̄(k)

11 −
Q̄(k)2

12

Q̄(k)
22

, Q̃(k)
55 = Q̄(k)

55 (15)

with

Q̄(k)
11 = Q(k)

11 cos4 θ + 2(Q(k)
12 + 2Q(k)

66 ) sin2 θ cos2 θ + Q(k)
22 sin4 θ, (16)

Q̄(k)
55 = Q(k)

55 cos2 θ + Q(k)
44 sin2 θ

and

Q(k)
11 =

E(k)
11

1 − v(k)12 v(k)21

, Q(k)
12 =

v(k)12 E(k)
22

1 − v(k)12 v(k)21

, Q(k)
22 =

E(k)
22

1 − v(k)12 v(k)21

, (17)

Q(k)
66 = G(k)

12 , Q(k)
44 = kscG(k)

23 , Q(k)
55 = kscG(k)

13

where E(k)
11 , E(k)

22 are the longitudinal and transverse moduli, v(k)12 , v(k)21 are the Poisson’s

ratios, G(k)
12 , G(k)

13 , G(k)
23 are the shear moduli of the kth layer. For the case of isotropic material,
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two mater l constants are required, namely Young’s modulus E and Poisson ratio v. In
addition Q11 = Q22, Q12 = Q21 and Q66 = G apply with G = E/(2(1 + v)).

3. Governing Equations

The displacement fields are postulated in accordance with Timoshenko’s beam theory
as follow:

u =

{
u(x, y, z, t)
w(x, y, z, t)

}
=

{
u0(x, t)
w0(x, t)

}
+ z
{

ψx(x, t)
0

}
(18)

where t denotes the time, u0 and w0 denote the axial and transverse displacements of the
beam mid–plane, respectively, and ψx is the rotation of the beam cross section about the
positive y-axis.

The composite beam in this study has been discretised through the use of a two-
nodded superconvergent beam element. Each node of this element has three degrees of
freedom. The interpolation of the generalised displacement vector is expressed as follows:

ū = {u0, w0, ψx}T = N(x)de(t) = {Nu, Nw, Nψ}Tde (19)

where de = {u1
0, w1

0, ψ1
x, u2

0, w2
0, ψ2

x}T and Nu, Nw, Nψ are the super convergence shape
functions [12]. Two further degrees of freedom (DOF) per element are incorporated to
represent the electrical voltages of two distinct piezoelectric layers. For each additional
piezoelectric layer, an extra voltage DOF is required per element.

By utilising the extended Hamilton’s variational principle, we can deduce the gov-
erning equations of motion of the piezoelectric composite beam in relation to the global
coordinates by employing the standard procedure of the finite element (FE) method:

Md̈ + Kd + Θ1v1 + Θ2v2 = Fm (20)

−ΘT
1 d + Cp1 v1 = Q1 (21)

ΘT
2 d + Cp2 v1 = Q2 (22)

where d is the global vector of mechanical degrees of freedom, M is the global mass matrix,
K is the global stiffness matrix and Fm is the global vector of mechanical forces. Also,
Θ1, Θ2 are the electromechanical coupling matrices, Cpi and Qi are the capacitance and the
electric charge output of the piezoelectric layer i, respectively. Notice that the enforcement
of equipotentiality in the electrodes is achieved by assigning a single electrical degree
of freedom for each piezoelectric layer. Details regarding the development of this finite
element model can be found in previous works from the authors [12].

3.1. Free Vibrations Analysis

There exist two possible configurations for the patches, namely the short-circuit and
open-circuit configurations. In the open-circuit configuration, which is often denoted as
the sensor configuration, the two patch electrodes are disconnected. In the case where
the piezoelectric layers are shorted, the difference of the electric potentials between their
electrodes vanishes (v1 = v2 = 0). Therefore, the Equation (20) becomes

Md̈ + Kd = Fm (23)

On the other hand, if the piezoelectric layers are open-circuited, then the electric potentials
between their electrodes can be evaluated using the Equations (21) and (22), such that

vi = C−1
pi

ΘT
i d (24)
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Substituting Equation (24) into (20) the following condensed equation of motion is
obtained

Md̈ + Kod = Fm (25)

where
Ko = K + C−1

p1
Θ1ΘT

1 + C−1
p2

Θ2ΘT
2 (26)

Once the global mass matrix M and stiffness matrix K have been generated, the natural
frequencies and mode shape for the short-circuit and open-circuit configurations can be
calculated by solving the following eigenvalue equations:(

K − ω2
s M
)

us = 0 (27)(
Ko − ω2

o M
)

uo = 0 (28)

where ωs, us and ωo, uo are the eigenfrequencies and eigenvectors for the short-circuit and
open circuit configuration, respectively.

3.2. Inclusion of the Passive Shunt Circuit

In the event that a R − L circuit is connected to the piezoelectric patches (as depicted
in Figure 1), the total output charge is equivalent to the individual output charge produced
by each piezoelectric layer, namely Q1 = Q2 = q. Similarly, the total output voltage is the
aggregate of each output voltage, i.e., v = v1 + v2 . Additionally, as the two piezoelectric
layers are identical in terms of material and dimensions and are poled in opposite directions,
Cp1 = Cp2 = Cp. Summing up the Equations (21) and (22), we obtain

Cpv − 2q −
(

ΘT
1 + ΘT

2

)
d = 0 (29)

By employing Kirchhoff’s voltage law, the electrical dynamics is represented by a second-
order equation:

v = −Rq̇ − Lq̈ (30)

Solving the Equations (21) and (22) with respect to v1 and v2, respectively, substituting
into (20) and using (29 ) and (30 ) we obtain the governing equations of the shunted
piezoelectric damping structural system:

Md̈ + Kod + C−1
p (Θ1 + Θ2)q = Fm (31)

LCp q̈ + RCp q̇ + 2q +
(

ΘT
1 + ΘT

2

)
d = 0 (32)

In order to derive the frequency response equation of the above system, a harmonic input
Fm = F0ejωt can be assumed. Therefore, solutions of the mechanical displacement and
electric charge responses can be formulated as d = d0ejωt and q = q0ejωt , where d0 and
q0 are the amplitudes of the displacement and the charge, respectively, and is the driving
frequency. Substituting the assumed solutions in the system Equations (31) and (32) and
doing some mathematical manipulations, the frequency response equation is obtained as:

Hsh(ω)d0 = f 0 (33)

where the analytical frequency response matrix is given by

Hsh(ω) =

[
−ω2M + Ko −

1
Cp(−ω2LCp + jωRCp + 2)

(Θ1 + Θ2)
(

ΘT
1 + ΘT

2

)]−1
(34)

Open- and closed-loop behaviour of the laminated GPLFR beams is studied by the fre-
quency response function (FRF) for the transverse displacement at the free end of the
laminated GPLFR beam. Since the study focuses on the passive vibration damping of the
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second mode, a range of frequencies only around the second mode of vibrations is used.
Thus, the performance of the shunt damping control for the laminated GPLFR beam can
be evaluated as the percentage reduction between the maximum amplitudes of the FRF
(resonance peak) for short-circuit and shunt-circuit conditions as

PI =
maxω |Ho

ii(ω)| − maxω |Hsh
ii (ω)|

maxω |Ho
ii(ω)| (35)

where Ho
ii(ω) and Hsh

ii (ω) denote, respectively, the frequency response of the open-loop
(short circuit) and closed-loop (shunt circuit) system at the tip ( i node) for excitation at the
same point ( i node).

4. Machine Learning

During the last few years, increasing effort has been made to use accumulated data, ei-
ther numerically or experimentally derived, in the investigation of the mechanical response
of various structural systems. In this framework, several machine learning methodologies
have been adopted, using tools such as artificial neural networks, decision trees, support
vector machines, image recognition, and others [24].

Artificial neural networks (ANNs) are machine learning algorithms which are devel-
oped by mimicking the human brain structure. Thus, neurons are interconnected to imitate
thinking, recognition, and decision-making. Among various types of neural networks,
the feedforward artificial neural network is probably the most widely used system due
to its simplicity and robustness in solving engineering (among other) problems. A sketch
providing the general layout of an ANN is provided in Figure 2. Briefly, an ANN adopts
a supervised training mode, where input and output parameters are used to determine
optimal weight values that minimise the error between the prediction and the real (dataset)
values. Different activation functions are also used, such as the nonlinear continuous
sigmoid, the tangent sigmoid function, and others [24].

Figure 2. Layout of an artificial neural network.

In this work, two ANN models are developed in Matlab and used to predict the
vibration response and attenuation of a shunted piezoelectric beam. Details for the archi-
tecture of the ANN models are presented in Section 5 of the article. To train the ANNs, the
Levenberg–Marquardt backpropagation algorithm is chosen in Matlab [25].
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5. Results and Discussion
5.1. Preliminary Investigation

In this section, a preliminary investigation is presented, focusing on the influence
of significant parameters, such as the R, L values or the graphene and fibre volume con-
tents, VGPL, VF, on vibration reduction that can be achieved by the shunted piezoelectric
composite beam.

Two parametric simulations are conducted, the first adopting a range of values for
the R and L parameters, while the graphene and fibre reinforcement VGPL, VF, as well as
the fibre angles θ are constant. In the second parametric simulations, constant R, L and
fibre angle values θ are considered, and the graphene-fibre reinforcements VGPL, VF vary.
In both simulations, the output is the vibration reduction index (PI).

In the first group of parametric simulations, graphene volume content VGPL is equal
to 1%, fibre volume content VF is 30% and stacking sequence θ is 45◦ per layer, for all layers.
According to Figure 3, optimal R, L parameters leading to maximum vibration suppression
are derived for R = 10, 000 Ohm, L = 39H.

Figure 3. Vibration suppression for varying R, L parameters.

In the second group of parametric simulations, R and L are constant and equal to
R = 10, 000 Ohm, L = 39H, respectively, and the fibre angle θ is 45◦ for all layers. The influ-
ence of varying graphene and fibre reinforcement VGPL, VF on the vibration suppression is
shown in the graph of Figure 4. To better visualise this graph, labels with graphene content
(X), fibre content (Y), and vibration attenuation (Z) values are added to chosen points of
the graph. According to Figure 4 the optimal vibration attenuation is obtained for graphene
volume content VGPL equal to 0.012(1.2%). For increasing graphene volume content above
this value, no improvement in the vibration response is derived.
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Figure 4. Vibration suppression for varying graphene nanoplatelets (X), and fibre volume (Y) contents.

5.2. Results

Next, two Artificial Neural Networks (ANNs) have been trained, using as input
parameters the R and L properties of the shunted piezoelectric beam, as well as the graphene
nanoplatelets volume content VGPL, the fibre volume content VF , and the fibre angle θ . In
the first ANN output is the vibration reduction (PI) that can be achieved by the shunted
piezoelectric beam. This output is provided as the absolute value of the difference between
the maximum response from the short-circuit condition (no damping) and the open-circuit
condition (damping) (see Equation (35)).

In the second ANN, 5 output parameters are considered, namely, the first and sec-
ond natural frequencies for the short-circuit, the first and second natural frequencies for
the open-circuit, as well as the shunt damping performance PI, also considered in the
first ANN.

For the parametric simulations, which are considered to develop the dataset that
is then used for the training, 16,807 simulations leading to respective dataset points are
considered. For the input parameters, the following range of values have been considered
in the parametric simulations:

1000 ≤ R ≤ 37000

33 ≤ L ≤ 39

0 ≤ VGPL ≤ 0.036

0.1 ≤ VF ≤ 0.70

0 ≤ θ ≤ 90

After the dataset points are generated from the parametric finite element simulations, which
are conducted in Matlab, all input parameters are normalised to be in the range [0, 1]. All
datasets generated by the aforementioned procedure are available upon request (the dataset
format is described in the Appendix A).

Next, the two ANNs are developed, trained, and validated. The data are split to
75% of the overall dataset points for training, 15% for validation and 15% for testing. The
Levenberg–Marquardt backpropagation training function is adopted in Matlab. Before
concluding the final ANN architecture, some numerical tests are conducted in the first
ANN, the one with five input and one output parameter. Thus, to investigate the optimal
number of neurons per hidden layer, a parametric training is implemented varying between
1 and 20 neurons per hidden layer, and the corresponding Root Mean Squared Error (RMSE,
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%) derived from each training is recorded. The process is repeated for one and two hidden
layers, and the corresponding results are shown in Figure 5.

Figure 5. Parametric investigation on the influence of the number of neurons per hidden layer for the
ANN model (a), one hidden layer (b), and two hidden layers.

Both figures show that the RMSE tends to decrease as the number of neurons increases.
A low number of neurons in both cases leads to a significant error attributed to underfitting.
Though some error picks are shown for an increased number of neurons per hidden layer,
mainly for the case of two hidden layers (Figure 5b), the error is less than 10% for more than
5 neurons and occasionally is close to zero, for the case with two hidden layers (Figure 5b).
It is noted that though it is not clearly depicted for the tested number of neurons per
hidden layer, it is expected that for a significant increase in the neurons number, overfitting
resulting in poor performance and high RMSE may also arise.

As shown in Figure 5, the lowest values of error arise in the ANN with two hidden
layers and various numbers of neurons, such as 8, 9, 10, 12, 13, 15, 16, 18, 19 (Figure 5b).
Thus, for the subsequent results, training of an ANN with two hidden layers and 13 neurons
per hidden layer is considered.

For the first ANN, thus the one with five input parameters and one output (the
percentage of vibration reduction achieved by the shunted piezoelectric system PI), the
error derived from the training, validation, and testing of the model with two hidden layers
and 13 neurons per layer, is shown in Figure 6.
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Figure 6. Error obtained from the training, validation, and testing of the ANN with two hidden
layers, 13 neurons per hidden layer and one output parameter in the form of (a) mean squared error
derived for increasing epoch number, (b) error distribution

For the same ANN, the regression plots are provided in Figure 7. As shown in this
figure, results indicate that the accuracy of the mentioned regression is pretty high. Thus,
the trained ANN can be used to provide a fast and accurate prediction of the vibration
reduction for the considered system.
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Figure 7. Regression plots obtained from the ANN model with 2 hidden layers, 13 neurons per
hidden layer and one output parameter.

The second ANN uses as input the same five parameters (R, L, graphene content
VGPL, fibre content VF, fibre angle θ) and five output parameters (first and second natural
frequencies for the short-circuit, first and second natural frequencies for the open-circuit,
shunt damping performance index PI. According to Figure 8 the error derived from
training, validation, and testing of the ANN with two hidden layers and 13 neurons per
layer is acceptable.

The regression plots obtained from this ANN are shown in Figure 9. According to
this figure, the plots provide high accuracy of the adopted ANN to predict the five output
parameters.
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Figure 8. Error obtained from the training, validation, and testing of the ANN with two hidden
layers, 13 neurons per hidden layer and five output parameters in the form of (a) mean squared error
derived for increasing epoch number, (b) error distribution.
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Figure 9. Regression plots obtained from the ANN model with 2 hidden layers, 13 neurons per
hidden layer and five output parameters.

6. Conclusions

A data-driven machine learning methodology is adopted in this article, aiming to
investigate the vibration response of a shunted piezoelectric composite beam. A dataset is
first developed using parametric finite element simulations, considering various input and
output parameters. Input parameters are the R and L properties of the shunted piezoelectric
beam, the graphene nanoplatelets volume content VGPL, the fibre volume content VF, and
the fibre angles θ. Output parameters are the vibration reduction achieved by the shunted
piezoelectric beam (PI), as well as the first and second natural frequencies for the short-
circuit and the first and second natural frequencies for the open-circuit conditions.

Those input and output parameters are used to train, validate, and test two artificial
neural networks in Matlab. After a parametric investigation, an optimal architecture of two
hidden layers and 13 neurons per hidden layer is chosen for this study.

Results of the investigation indicate that the accuracy of the trained ANNs to predict
the vibration response of the composite beam is high. In addition, relevant regression dia-
grams provide high values for the correlation factor (close to 1), indicating a high correlation
between the predicted parameters by the trained ANNs and the real dataset values.

The methodology offers the opportunity for a fast and accurate prediction of the
mechanical response of composite beams under vibration analysis. It is noted, that though
a single finite element simulation of this type has a relatively low computational cost, the
effort, time, knowledge, and expertise needed to develop relevant numerical models in a
programming code (like Matlab or Python) are pretty demanding. This further increases the
impact of the proposed approach in evaluating the mechanical response of those systems.



Signals 2024, 5 341

Future studies can include the investigation of different beam geometries involving
potentially varying numbers of input and output parameters, incorporating, for instance,
the geometric parameters of the beam, the piezoelectric patch thickness, etc.
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Abbreviations

The following abbreviations are used in this manuscript:
CNT Carbon nanotube
GPL Graphene nanoplatelet
ML Machine Learning
GPLFR Graphene/fibre reinforced
DOF Degree of freedom
FE Finite element
ANN Artificial neural networl
RMSE Root Mean Squared Error

Appendix A. Datasets Information

The datasets generated and/or analysed during the current study will be made avail-
able to researchers upon request. In particular, the available files are in Matlab format
(“.mat” files) providing all input and output parameters of the datasets. The name of each
“.mat” file, the corresponding Matlab variable and the related input-output parameter are
described below:

• input_all.mat: ’ann_input’ variable, 16807 dataset lines of all input parameters (R-first
column, L-second column, VGPL-third column, VF-fourth column, fibre angle θ -fifth
column of the .mat file)

• output_frequency_1_SC.mat: ’ann_output_frequency_1_SC’, 16807 dataset lines of
first frequency for the short-circuit configuration

• output_frequency_2_SC.mat: ’ann_output_frequency_2_SC’, 16807 dataset lines of
second frequency for the short-circuit configuration

• output_frequency_1_OC.mat: ’ann_output_frequency_1_OC’ variable, 16807 dataset
lines of first frequency for the open-circuit configuration

• output_frequency_2_OC.mat: ’ann_output_frequency_OC’, 16807 dataset lines of
second frequency for the open-circuit configuration

• output_PI.mat: ’ann_output_PI’, 16807 dataset lines of the shunt damping perfor-
mance PI

• output_all.mat: ’ann_output’, 16807 dataset lines of all output parameters (first fre-
quency (short-circuit), second frequency (short-circuit), first frequency (open-circuit),
second frequency (open-circuit), PI
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