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Introduction

• There are still many limitations with AVs despite several decades of earlier research,

• Many years to come for A-UAVs to become completely self-sufficient,

• HITL  telemanipulation to build the required trust in A-UAVs.

• This technical report examines the telemanipulation schemes between two smart agents: 

– human telemanipulators (HTMs) and A-UAVs.



Components of human haptic close-loop telemanipulation of A-UAVs

A tight communication 
channel with high 
bandwidth capabilities 
(i.e., ultra-reliable and 
low-latency 
communication 
(URLLC))



Telemanipulation Schemes with A-UAVs



Telemanipulation Schemes with A-UAVs

• The involvement of 
HTMs minimised.

• A high degree of 
freedom for A-UAVs.

✓ HTM assists A-UAVs by setting short-range subtasks for the agent to achieve independently.



Telemanipulation Schemes with A-UAVs

• co-activity
• master-master
(i.e. more equal co-worker) 
• combined task 

performance

✓ Roles and responsibilities may not be distinctively assigned.
✓ Human and robot skills combined.
✓ The combined system can outperform both agents.



Telemanipulation Schemes with A-UAVs

✓ Humans and robots converge to exchange ideas and settle disagreements rather than a superior 
giving orders to a subordinate.

✓ The robot has more freedom in execution.

• sub-tasks traded back 
and forth

• sub-tasks performed 
individually

• joint task performance



Telemanipulation Schemes with A-UAVs

• Onboard sensor 
failures

• failures of primary 
actuators

✓ Complete tasks may need to be performed by HTMs alone under extreme conditions in this scheme. 
✓ HTMs, as leading agents, take over the control and lead A-UAVs as follower agents.



Telemanipulation Schemes with A-UAVs

• Swarms of A-UAVs
• multiple 

telemanipulation 
schemes

• Common goal as a 
teamwork

• one-to-many or 
many-to-many 
human-robot 
coordination

✓ to accomplish a specific task faster than a single A-UAV or to solve difficult tasks that are beyond a 
single A-UAV’s capability, e.g.

-search and rescue missions,
-transportation of a hefty payload.



Main properties of the telemanipulation schemes

Transitional responsibilities of the HITL and AITL agents during the switching



Conclusion

HITL telemanipulation modes described in this report can

• play a key role in enabling A-UAVs to instantly handle a multitude of uncertainties and

• expedite the integration of A-UAVs into mixed air traffic.
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