

Central Lancashire Online Knowledge (CLoK)

Title	Methods of assessment of zinc status in humans: an updated review and
	meta-analysis
Туре	Article
URL	https://clok.uclan.ac.uk/51331/
DOI	https://doi.org/10.1093/nutrit/nuae072
Date	2025
Citation	Ceballos Rasgado, Marena, Brazier, Anna, Gupta, Swarnim, Moran, Victoria Louise, Pierella, Elisa, Fekete, Katalin and Lowe, Nicola M (2025) Methods of assessment of zinc status in humans: an updated review and meta-analysis. Nutrition Reviews, 83 (3). e778-e800. ISSN 0029-6643
Creators	Ceballos Rasgado, Marena, Brazier, Anna, Gupta, Swarnim, Moran, Victoria Louise, Pierella, Elisa, Fekete, Katalin and Lowe, Nicola M

It is advisable to refer to the publisher's version if you intend to cite from the work. https://doi.org/10.1093/nutrit/nuae072

For information about Research at UCLan please go to http://www.uclan.ac.uk/research/

All outputs in CLoK are protected by Intellectual Property Rights law, including Copyright law. Copyright, IPR and Moral Rights for the works on this site are retained by the individual authors and/or other copyright owners. Terms and conditions for use of this material are defined in the <u>http://clok.uclan.ac.uk/policies/</u> Supplemental Information 3. Summary of the results of the potential biomarkers where meta-analysis could

not be performed.

Note: Reference numbers refer to the reference list in the review

Biomarkers	Outcomes	Conclusions	Reference
Very low-density lipoprotein (VLDL)	Although zinc supplementation for 10 weeks to women with IUGR had beneficial effects on FPG, insulin, HOMA-IR, QUICKI, hs-CRP, TAC, and MDA status; it did not have any effect on the Pulsatility Index and other metabolic profiles including VLDL (Placebo: baseline, 33.9 ± 6.9 mg/dL and endline 33.8 ± 11.2 mg/dL; intervention: 34.4 ± 14.5 mg/dL, endline: 33.3 ± 9.0 mg/dL)	No significant effect of zinc supplementation on VLDL.	94
AA:DGLA ratio (FADS1 activity)	In response to two weeks of zinc supplementation, the PZCs were 18% higher in the group consuming zinc before breakfast (ZWB) compared with the group that consumed supplement with the breakfasts (ZBB) ($105\pm5.88 \mu g/dL$ compared with $88.7\pm2.36 \mu g/dL$, $p = < 0.05$) but FADS1 activity indices were 15% higher in the ZWB than the ZBB participants (ZWB: 6.45 (5.84, 7.13); ZBB: 5.57 (5.05, 6.14); $p < 0.05$).	Lack of congruence between the effects of zinc supplements on PZC and EFA metabolism (FADS1) in response to whether zinc supplement is taken with or without food.	92
ARA, arachidonic acid	Controlling for baseline values, the ARA concentrations were 13.7% higher in the ZWB participants (baseline: 0.825 (0.753, 0.896) mM; end line 0.855 (0.784, 0.926) mM, $p = 0.042$) as compared with ZBB (baseline line: 0.829 (0.760, 0.897) mM; end line: 0.752 (0.683, 0.821) mM) while PZCs levels increased significantly in the ZBB group (baseline: 87.6±2.31 µg/dL; end line: 105±5.88, $p = < 0.05$) but not in ZWB group (Baseline: 84.8±2.34 µg/dL, Endline: 88.7±2.36 µg/dL).	Lack of congruence between the effects of zinc supplements on PZC and ARA in response to whether a zinc supplement is taken with or without food.	92

	No changes were observed in plasma ARA concentrations during the zinc	Arachidonic acid levels in plasma	110
	depletion (baseline: $141.4\pm13.7 \mu\text{g/mL}$, end of depletion: $138\pm6 14.5$	were unaffected by changes in the	
	μ g/mL) or repletion periods (end of depletion: 138.0± 14.5 μ g/mL; end of	dietary zinc intake	
	repletion $139.3 \pm 11.7 \mu\text{g/mL}$		
DNA fragmentation	Dietary zinc depletion was associated with increased DNA strand breaks	Changes in dietary zinc intake	110
(Comet Assay)	in peripheral blood cells (57% increase in average tail moment from	affected DNA single strand breaks.	
	baseline to end of depletion; $P=0.05$), while these changes were	Zinc appears to be a critical factor	
	ameliorated by zinc repletion (decrease in average tail moment by 39.9%	for maintaining DNA integrity.	
	between the end of depletion and end of repletion; $P < 0.01$).		
	There were no significant differences in the calculated tail moment	comet assay was sufficiently	81
	between baseline and endpoint samples of the placebo group ($p = 0.51$)	sensitive to detect changes in zinc	
	while the 17 days of 20 mg zinc supplementation reduced the comet tail	status as a result of	
	moment (baseline: 39.7 ± 2.7 %xµ; Endline: to 30.0 ± 1.8 %xµ; p<0.01)	supplementation despite no	
		significant changes in plasma zinc.	
Cervicovaginal	Daily oral supplementation for two weeks had no significant impact on	Daily Zinc supplementation had no	116
lavage (CVL) zinc	the CVL zinc level in either pre- (baseline: 0.009 ± 0.01 mg/L; endline:	significant impact on CVL zinc	
level	0.004 ± 0.003 mg/L) or postmenopausal women (baseline: 0.004 ± 0.006	level.	
	mg/L; endline: 0.003 ± 0.002 mg/L) regardless of a significant increase		
	seen for PZC in both the groups (pre-menopausal women, baseline: 0.88		
	± 0.17 mg/L; endline: 1.06 ± 0.23 mg/L, p < 0.01 and postmenopausal		
	women, Baseline: 0.83 ± 0.24 mg/L; Endline 0.96 ± 0.33 mg/L, p <		
	0.01).		
DGLA, dihomo-γ -	No change in response to supplementation was observed for DGLA	Daily zinc supplementation either	92
linolenic acid	either among those consuming zinc supplements before breakfast	with or without food did not affect	
	(Baseline: 0.147 (0.128, 0.169) mM; endline: 0.146 (0.128, 0.166) mM)	DGLA concentrations.	
	or those consuming with breakfast (Baseline: 0.142 (0.128, 0.157) mM;		
	endline: 0.149 (0.130, 0.170) mM).		
DGLA:GLA molar	No change in response to supplementation was observed for ELOVL5	Daily zinc supplementation either	92
ratio (ELOVL5)	activity either in the group consuming zinc supplements before breakfast	with or without food did not affect	
	(Baseline: 4.65 (3.99, 5.43); end line: 4.94 (4.22, 5.79)) or those consuming	ELOVL5 activity.	
	it with breakfast (Baseline: 4.70 (3.98, 5.54); end line: 4.02 (3.41, 4.73)).		

DGLA/LA molar ratio	There was no significant difference in the DGLA/LA molar ratio between the ZBB and ZWB group either at baseline (ZBB: 0.109 (0.095, 0.126); ZWB: 0.111 (0.098, 0.126)) or after the supplementation (ZBB: 0.119 (0.107, 0.134); 0.113 (0.100, 0.127))	Supplementing with zinc on a daily basis, whether taken with or without meals, had no impact on the metabolism of essential fatty acids (DGLA/LA molar ratio)	92
GLA, γ -linolenic acid	Consuming zinc supplements before breakfast (ZBB, baseline: 31.7 (25.7, 39.0) nM; endline: 29.6 (25.1, 35.0) nM) had no significant effect on plasma GLA as compared to taking it along with the breakfast (ZWB, baseline: 30.2 (25.4, 35.9) nM; endline: 36.8 (31.0, 43.7) nM).	Daily zinc supplementation, whether taken with or without food, did not alter GLA	92
GLA:LA (FADS2 activity)	There was no significant difference in GLA: LA molar ratio between the ZBB and ZWB group either at baseline (ZBB: 0.025 (0.021, 0.29); ZWB: 0.024(0.020, 0.028)) or at the end of supplementation (ZBB: 0.024 (0.021, 0.028); 0.028(0.024, 0.033))	Daily Zinc supplementation either with or without food did not impact FADS2 activity.	92
LA, linoleic acid	No change in response to supplementation was observed for LA either among those consuming zinc supplements before breakfast (Baseline: 1.35 (1.26, 1.44) mM; end line:1.23 (1.13, 1.33) or those consuming with breakfast (Baseline:1.28 (1.21, 1.36) mM; end line: 1.31 (1.21, 1.42) mM).	Daily zinc supplementation either with or without food did not affect LA.	92
erythrocyte CCS:SOD1 ratio	Zinc supplementation of 5–15 mg/d for 4 months did not alter erythrocytes CCS: SOD1 ratio (baseline for all the groups: 1.00 ± 0.00 ; endline: placebo= -0.05 ± 0.07 , $5 \text{mg/d} = 0.02 \pm 0.07$, $10 \text{mg/d} = 0.08 \pm 0.07$, $15 \text{ mg/d} = -0.02 \pm 0.08$)	zinc supplementation did not affect erythrocyte CCS: SOD1 ratio	49
Erythrocyte osmotic fragility (%) (EOF)	The decrease in erythrocyte osmotic fragility was significantly higher (p < 0.010) in the zinc supplementation group (baseline 28 ± 18 ; endline: 15 ± 13) as compared to the placebo (baseline: 29 ± 12 ; endline: 24 ± 16).	Zinc supplementation decreased the erythrocyte osmotic fragility.	66
fecal sIgA	Changes in fecal sIgA levels of the placebo, probiotic, zinc, and combination of probiotic and zinc groups in the subjects, after 90 days were 13.58 ± 2.26 , 30.33 ± 3.32 , 20.5 ± 1.73 , and $27.55 \pm 2.28 \ \mu g/g$ feces, respectively. The changes in fecal sIgA levels in the subjects after 90 days of zinc supplementation (without probiotics) were statistically not different from placebo, probiotic alone, or a combination of zinc and placebo.	Zinc supplementation alone did not alter the fecal sIgA levels	114

Gene expression	There was no difference between the baseline and endpoint for MT1	Zinc supplementation did not change	51
MT1	mRNA abundance in either the Placebo or zinc-supplemented group.	MT1 mRNA expression.	51
Gene expression	For both, the placebo and zinc supplementation groups, there was no	Zinc supplementation did not alter	51
Zip 3*	significant change in the abundance of the zinc transporter Zip3 mRNA	zip 3 mRNA abundance.	
	from baseline to endpoint of the study.		
Gene expression	Baseline mRNA abundance for zinc transporters did not differ	Zip4 mRNA was responsive to zinc	51
Zip 4*	significantly between the placebo and zinc groups. However, after 23	supplementation and requires further	
	days of supplementation, ZIP4 mRNA abundance decreased significantly	investigation	
	(p = 0.036) in the zinc group, but not in the placebo group.		
Gene expression	Analysis of baseline and endpoint samples showed that the Zinc	ZIP8 mRNA displayed	51
Zip 8*	transporter mRNA levels remained unaffected in the Placebo group but	responsiveness to zinc	
1	ZIP8 mRNA significantly decreased in response to zinc supplementation	supplementation, warranting further	
	(p = 0.038).	investigation	
Gene expression	There was no difference between the baseline and endpoint in zinc	Zinc supplementation did not change	51
ZnT1*	transporter, ZnT1, and mRNA abundance in either the placebo or zinc-	ZnT1 mRNA abundance.	
	supplemented group.		
	ZnT1 in the zinc group increased significantly after 8 weeks of zinc	Zinc supplementation led to an	97
	supplementation. The relative change of ZnT1 gene expression after zinc	increase in the expression of the zinc	
	supplementation in the zinc group was 1.3 times higher than the changes	transporter ZnT1	
	in the placebo group ($p < 0.01$)		
HbA1c	The baseline-adjusted mean group difference between the zinc	Zinc supplementation to pre-diabetic	41
	supplement group and placebo for HbA1c -0.06 (-0.19, 0.06) was	individuals had no effect on HbA1c.	
	statistically non-significant (Zinc supplement group, Baseline: 5.87±0.19;		
	endline: 5.84±0.29 Vs. Placebo, baseline: 5.90± 0.20; endline:		
	5.96 ± 0.30). There were no overall differences in HbA1c across the three		
	follow-up time points namely 1, 6, and 12 months.		
IGFBP-3	Two months of zinc supplementation to children with Zn deficiency and	Zinc supplementation did not change	53
	growth retardation but without systemic disease did not have any	IGFBP-3	
	significant effect on IGFBP-3 (Baseline: 2773.5±797. 1 ng/mL; Endline:		
	$2696.4 \pm 818.3 \text{ ng/mL}$		
Kinetics Parameters	All pharmacokinetic parameters studied in serum zinc (SZn), biological	Zinc kinetics showed a positive	86
of venous zinc	half-life of serum zinc ($T_{1/2}$), Elimination constant of serum zinc (K_{el}),	response to	

tolerance test (VZnTT)	and the total body clearance of zinc (CZn) were significantly different before and after zinc supplementation (SZn: baseline $102 \pm 10.1 \mu g/dL$ Vs.endline $122 \pm 19.5 \mu g/dL$, p<0.0001; T _{1/2} : baseline 2.73 ± 0.597 hrs Vs. endline 2.39 ± 0.261 hrs, p = 0.0006; K _{el} : baseline 0.265 ± 0.051 kel/h Vs. endline 0.294 ± 0.033 kel/h, p = 0.0004; CZn: baseline: 5.52 ± 1.20 mL/kg/h Vs. endline 6.22 ± 1.05 mL/kg/h p= 0.0002, except the distribution volume (baseline: 0.0209 ± 0.0028 ; Endline: 0.0211 ± 0.0022 , p = 0.6432).	supplementation and even maybe a sensitive parameter in children without a deficiency of this mineral.	
Plasma conjugated dienes (nmol g-1 total lipid) (PCD)	The increase in the plasma conjugated dienes was significantly lower (p < 0.010) in the zinc supplementation group (baseline 1.1 ± 0.2 nmol/g total lipid; endline 1.3 ± 0.2 nmol/g total lipid) as compared to the placebo (Baseline 1.1 ± 0.3 nmol/g total lipid; Endline 1.7 ± 0.3 nmol/g total lipid).	Zinc supplementation led to lower levels of plasma conjugated dienes compared with the control group.	66
Plasma Zn: Cu ratio (Pl Zn:Cu)	Plasma Zn/Cu ratio was significantly increased at the end of zinc supplementation (day 30) and on discontinuing supplementation (and instead continuing placebo) for the next 30 days $(0.7\pm0.1 \text{ at day } 30 \text{ and } 0.8\pm0.2 \text{ at day } 60$, respectively), compared to baseline (0.6 ± 0.2) (p=0.04).	Plasma Zn/Cu ratio responded to zinc supplementation but not to its discontinuation.	91
Renal zinc clearance (Note this is not total body zinc clearance)	The increase in Renal zinc clearance in response to supplementation was not significant (before 0.45 ml/kg/h; after 0.51ml/kg/h; p=0.0732).	Renal clearance was non-responsive to zinc supplementation	120
secretory phospholipase (sPLA)	Six months of zinc supplementation did not change the plasma sPLA (Baseline 73.3 \pm 34.6 U/mL; Endline: 70.0 \pm 32.2 U/m; p=0.314) while a significant increase was reported for the placebo group (Baseline: 76.0 \pm 25.8; Endline: 100.6 \pm 28.8; p= 0.001)	Zinc supplementation led to a reduction in sPLA after 6 months compared with placebo in elderly participants.	45
Serum retinol	There was a significant increase in the serum retinol level in the group receiving zinc plus vitamin A supplementation as compared to the group receiving placebo with vitamin A ($p < 0.03$) for six days a week for a total of six months.	Zinc supplementation led to increase in Serum retinol level	38
Total body zinc clearance (CZn)	The total body clearance of zinc (CZn) increased significantly after zinc supplementation (CZn: baseline: 5.52 ± 1.20 mL/kg/h Vs. endline 6.22 ± 1.05 mL/kg/h p= 0.0002).	Total body Zinc clearance responded to zinc supplementation	86

	Total body zinc clearance increased significantly in response to supplementation (Median, before 5.20 ml/kg/h; after 5.93; $p=0.002$ ml/kg/h). CZn was more effective (P=0.0002) more effective than systemic clearance (P=0.6028) and renal clearance (P=0.0732) in detecting small variations in body zinc status	Zinc supplementation led to increase in total body zinc clearance	120
Total glutathione (GSH)	The change in GSH levels was not significantly different (p=0.71) between the placebo (Baseline: $708.3 \pm 138.7 \text{ mmol/L}$; Endline $700.7 \pm 136.8 \text{ mmol/L}$) and zinc-supplemented group (baseline: $671.2 \pm 144.8 \text{ mmol/L}$; Endline: $703.6 \pm 171.4 \text{ mmol/L}$)	Zinc Supplementation did not have an impact on GSH	94
ZnT2	The change in ZnT2 gene expression after zinc supplementation in the zinc group was similar to change in the placebo group.	Zinc supplementation did not alter ZnT2 mRNA expression	97
ZnT5	ZnT5 in the zinc group increased significantly after 8 weeks of zinc supplementation. The relative change of ZnT5 gene expression after zinc supplementation in the zinc group was 1.2 times higher than the changes in the placebo group ($P < 0.01$)	Zinc supplementation led to an increase in the expression of the zinc transporter ZnT5	97
ZnT6	Although the relative change of ZnT6 gene expression after zinc supplementation in the zinc group was 1.3 times higher than the changes in the placebo group, it was not significantly different.	Zinc supplementation did not alter ZnT6 mRNA expression	97
ZnT9	While the zinc group exhibited a 1.2-fold increase in ZnT6 gene expression following zinc supplementation compared to the placebo group, this difference did not reach statistical significance.	Zinc Supplementation did not change ZnT9 mRNA expression	97