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Abstract
Ineffective control of dendrite growth and side reactions on Zn anodes
significantly retards commercialization of aqueous Zn‐ion batteries. Un-
like conventional interfacial modification strategies that are primarily
focused on component optimization or microstructural tuning, herein, we
propose a crystallinity engineering strategy by developing highly crystal-
line carbon nitride protective layers for Zn anodes through molten salt
treatment. Interestingly, the highly ordered structure along with sufficient
functional polar groups and pre‐intercalated Kþ endows the coating with
high ionic conductivity, strong hydrophilicity, and accelerated ion diffu-
sion kinetics. Theoretical calculations also confirm its enhanced Zn
adsorption capability compared to commonly reported carbon nitride
with amorphous or semi‐crystalline structure and bare Zn. Benefiting
from the aforementioned features, the as‐synthesized protective layer
enables a calendar lifespan of symmetric cells for 1100 h and outstanding
stability of full cells with capacity retention of 91.5% after 1500 cycles. This
work proposes a new conceptual strategy for Zn anode protection.

K E Y W O R D S
crystalline carbon nitride, crystallinity engineering, long cycling life, uniform Zn deposition,
Zn metal anode

1 | INTRODUCTION

Aqueous Zn‐ion batteries (ZIBs) hold great promise
for large‐scale sustainable energy storage owing to
their low cost, environmental benign and high safety

characteristics.1,2 The Zn metal anode is considered
as one of the most attractive anodes for ZIBs because
of the high theoretical capacity (820 mAh g−1),
low redox potential (−0.76 V vs. standard hydrogen
electrode), and simple scalable configurations.3,4
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However, it strongly suffers from poor cycling sta-
bility during plating/stripping process and unavoid-
able surface corrosion in acidic electrolytes.5,6

Especially, the notorious dendrite growth can punc-
ture the separator and thus cause short‐circuit failure
and severe safety issues. How to achieve the effective
Zn anode protection with rational design is currently
the bottleneck issue for the development of high
performance ZIBs.

Modification of the electrolyte/anode interface is
viewed as the key avenue for achieving the effective
protection of Zn metal anode while several corre-
sponding strategies, including electrolyte engineer-
ing,7 separator modification,8 electrode texture
regulation,9 etc., have been developed. Among them,
introducing the artificial interface layer on the surface
of Zn metal anode for preventing its direct contact
with an electrolyte and limiting dendrite growth is
straightforward with potential high scalability.10

Different coating materials have been attempted for
serving as the interface layer but the performances of
batteries still have a large space for improvement. For
example, inorganic coatings with intrinsic fragile
nature and weak bonding with Zn anode cannot
maintain the mechanical stability during the repeated
plating/stripping and have the peel‐off risk,11 while
organic materials always suffer from low ionic con-
ductivity which sets the significant barriers for rapid
and uniform Zn2þ deposition.12–14 As the emerging
artificial‐polymeric 2D material, graphitic carbon
nitride with intrinsic triangular nanopores, and high
content N sites for interacting with metal ions have
attracted considerable interests in energy storage
fields.15 However, the most commonly reported C3N4

(CN) obtained from polymerization of N‐rich pre-
cursors presents the melon structure composed of
Zigzag chains, which is considered as the amorphous

or semi‐crystalline material.16,17 More importantly, its
low crystallinity with disordered structure hinders the
transfer of metal ions with sluggish kinetics and
causes high polarization with large interface resis-
tance, which will dramatically deteriorate the per-
formances of batteries.18,19 Despite the encouraging
progress for the design of protective layers, there is
still a serious lack of fundamental understandings on
the influence of inherent properties of coating ma-
terials on the microstructural and electrochemical
performances of zinc anodes, which strongly retard
the development of high‐performance ZIBs.

Herein, we develop a crystallinity engineering
strategy of Zn anode protection for the first time with
synthesizing the highly crystalline carbon nitride
(CCN) through the molten salt protocol. CCN was
used as the interfacial layer to regulate the electrode/
electrolyte interface for tuning the zinc deposition.
Different from reported peer materials along with
typical C3N4, the as‐synthesized CCN with the
featured structure of poly (heptazine imide) (PHI),
the highly crystalline phase of g‐C3N4,

16,20 combines
the advantages of both inorganic materials for high
ionic/electrical conductivity as the carbonaceous
derivative and organic materials with high flexibility
and mechanical strength as the artificial polymer. The
detailed features of this strategy and our design
principle are presented in Figure 1: (1) owing to its
highly ordered structure and improved conductivity,
the use of CCN is beneficial for homogenizing elec-
trical field distribution and elevating ion diffusion
kinetics with reduced interfacial resistance, which is
crucial for achieving the uniform Zn deposition; (2)
the abundant surface functional polarization grou-
ps can enhance the hydrophilicity with decreased
desolvation barrier and suppressed side reactions for
the formation of even zinc nucleation; and (3) the

F I G U R E 1 The design principle for protecting the Zn anode based on the crystallinity engineering strategy.
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high Zn adsorption capability from its highly crys-
talline structure ensures strong zincphilicity and
high‐strength interactions with Zn2þ for effectively
regulating the ion flux and enhancing the transfer
rate. Profiting from these advantageous features, the
assembled cell delivered an outstanding prolonged
lifespan and excellent Zn plating/stripping revers-
ibility for 1100 h as well as the outstanding full‐cell
capacity retention of 91.5% after 1500 cycles.

2 | RESULTS AND DISCUSSION

2.1 | Prediction of Zn adsorption
capability and microstructural
characterizations

Density functional theory (DFT) calculations were first
conducted to evaluate the adsorption energies of CN
and CCN during Zn deposition process (Figure 2A). It
can be clearly observed that the calculated adsorption
energy of Zn atom adsorbed on CCN (−1.8 eV) is
significantly higher than that of CN (−0.85 eV) and
bare Zn (001) (−0.25 eV), demonstrating that the CCN
presents enhanced adsorption ability for capturing
the Zn atom and thus elevated zincophilicity for
achieving uniform Zn deposition.21 Inspired by this
result, we believe CCN designed from crystallinity
engineering may achieve the effective protection of Zn
anode and thus the corresponding preparation was
conducted subsequently with the detailed morpho-
logical and structural analysis performed. Due to the
stable physicochemical properties, a mixture of LiCl,
KCl, and NaCl was selected as the processing me-
dia.22,23 CCN was prepared through molten salt pro-
cessing of pristine CN, which creates a liquid
environment to induce the structural ordering of CN
intermediates and increases crystallinity.16,24 The
crystallinity enhancement of CCN can be clearly
confirmed by the presence of a peak at 8.1° in the X‐ray
diffraction pattern (Figure 2B), which is the charac-
teristic peak of PHI, the highly crystalline phase of
carbon nitride, with enlarged in‐plane periodicity.25

Meanwhile, its strongest peak at 28.2° that represents
layered stacking of C3N4 shows a right‐shift trend
compared with that in CN, which indicates its con-
tracted interlayer distance and stronger interlayer
interaction.26 The full width at half maximum analysis
also reveals that CCN shows the smaller value, further
demonstrating the crystallinity enhancement of CCN
(Table S1). The extended condensed structure with
narrowed layer spacing arising from crystallinity en-
gineering is beneficial for reducing the interlayer
barrier of protective coating and accelerating its ions
diffusion kinetics. Fourier‐transform infrared spec-
troscopy (FT‐IR) was then conducted to investigate
the structural changes and chemical compositions of

CN and CCN (Figure 2C). The peak of uncondensed
terminal amino group ranging from 3500 to 2900 cm−1

is significantly weakened in the spectrum of CCN,
demonstrating its highly crystalline structure with
complete condensation of adjacent heptazine units.27

Meanwhile, a new peak at 2170 cm−1 due to the
introduction of polar cyano groups along with the
signal of Kþ from molten salt at 1000 cm−1 can also be
found for CCN, which are viewed as featured peaks of
PHI.28 The presence of polar cyano groups is benefi-
cial for decreasing the desolvation energy barrier of
Zn2þ deposition and facilitating Zn2þ diffusion ki-
netics.29 The crystallinity of CN was increased by high‐
temperature molten salt treatment, which induces
structure reconstruction and promotes crystallization
kinetics by facilitating hydrogen bond breaking and
deamination to transform CN with the melon struc-
ture composed of Zigzag chains into CCN with highly
ordered structure. Impressively, the contact angle
measurement is different from the CN layer which
increased the values from 98.2° (bare Zn) to 142.8°
(CN@Zn); CCN@Zn electrode presented a smaller
contact angle (74.3°) with enhanced hydrophilicity,
which is favorable for promoting ion transport
through the protective layer (Figure 2D).30

The scanning electron microscope (SEM) images
show the presence of apparent scratches and pro-
trusions on the surface of bare Zn foil (Figure 2E),
which is prone to cause the uneven distribution of
Zn2þ concentration and accelerate the growth of
dendrites. The coating of CN with large bulk
(Figure S1) is uneven and loose (Figure 2F), which
may cause the “tip effect” for dendrite formation and
the occurrence of side reactions.31 In contrast, the
CCN dense layer composed of continuous nanorods
in the diameter of 60 nm (Figure S2) was coated
uniformly on the Zn foil with great integrity
(Figure 2G), which can offer abundant active sites
with large contact area to electrolytes and is favorable
for achieving even Zn deposition. After molten salt
treatment, the specific surface area of CCN can be
significantly increased due to the microstructure
evolution from CN with sheet/bulk morphology to
CCN with rod‐like morphology.32 The coating thick-
ness of CCN layer is approximately 16.7 μm with the
homogeneous distribution of elements (Figure 2H).
Additionally, no stripping or cracks were observed on
the CCN layer after the repeated bending test,
proving its stable mechanical properties and intimate
contact with the Zn foil (Figure S3).

2.2 | Electrochemical performances of
symmetric and asymmetrical cells

The stability and reversibility of zinc electrodes were
evaluated by assembling Zn||Zn symmetric cells. For
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symmetric cells of bare Zn, a sudden rise in polari-
zation voltage was observed after cycling for 230 h
due to the serious side reactions and dendrite growth
(Figure 3A). Correspondingly, the CN@Zn symmetric

cell can run for 800 h with limited protection at the
moderate current and deposition density of
1 mA cm−2 and 1 mAh cm−2. In contrast, the sym-
metric cell with CCN layer exhibited ultralong

F I G U R E 2 (A) Adsorption energies of the Zn atom on Zn (001), CN and CCN calculated through density functional theory,
respectively. (B) X‐ray diffraction patterns and (C) Fourier‐transform infrared spectroscopy spectra of CN and CCN. (D) Contact angle
measurements of an electrolyte on bare Zn, CN@Zn and CCN@Zn electrodes. SEM images of (E) bare Zn, (F) CN@Zn and (G) CCN@Zn
electrodes. (H) Cross‐sectional SEM image and the corresponding elemental mappings of the CCN@Zn electrode. CCN, crystalline
carbon nitride; CN, carbon nitride; SEM, scanning electron microscope.
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stability even over 1100 h without apparent decay,
unfolding its excellent Zn plating/stripping revers-
ibility. Similarly, when the current densities were
increased to 2 and 5 mA cm−2, CCN@Zn still pre-
sented outstanding cycling stability over 900 h
(Figures S4 and S5). Furthermore, even at the high
current density of 10 mA cm−2 with a deposition ca-
pacity of 5 mAh cm−2, the CCN@Zn symmetric cell
still showed high reversibility and prolonged lifespan
of repeated plating/stripping process over 220 h,
which is much better than its counterparts of CN@Zn
and bare Zn, further highlighting its outstanding in-
hibition capability on the parasitic reactions and
dendrite growth (Figure 3B). To the best of our
knowledge, the performances of CCN surpasses those
of many previously reported peer samples and are
among the highest values in all reported ZIB anode
protection layers (Figure 3C, Table S2).33–39

The role of CCN layer is further analyzed by
evaluating the assembled Cu||Zn asymmetrical cells.
As shown in Figure 3D, long cycling life (800 cycles)

with high average Coulombic efficiency (CE) of 99.5%
was delivered for CCN@Cu||Zn at 2 mA cm−2, which
demonstrates the excellent ability of CCN layer for Zn
flux regulation compared with its reported counter-
parts (Table S3). The diffusion kinetics of Zn2þ is also
significantly improved with a stable voltage fluctua-
tion and low gap achieved (Figures S6 and S7).29 As
the comparison, the bare Cu||Zn cell displayed the
fluctuated CE and then failed due to the internal
short‐circuit even within only 130 cycles. The rate
performance evaluation of symmetric cells at
different current densities was carried out with a fixed
capacity of 1 mAh cm−2 (Figure 3E). It can be
observed the CCN@Zn based cell showed superior
rate performance with lower voltage hysteresis to the
other controls. Even at the high current density of
10 mA cm−2, it displayed the lowest voltage hysteresis
of 107.5 mV, outperforming the samples with CN@Zn
(123.1 mV) and bare Zn (126.2 mV) electrodes
(Figure 3F). The aforementioned results of electro-
chemical performances confirm the crucial role of

F I G U R E 3 Cycling performance of symmetrical cells with bare Zn, CN@Zn and CCN@Zn electrodes at (A) 1 mA cm−2 and
1 mAh cm−2; and (B) 10 mA cm−2 and 5 mAh cm−2. (C) Comparison of lifespan of the CCN@Zn electrode with recently reported peer
samples at different current densities. (D) Coulombic efficiencies of Zn plating/stripping on bare Zn and CCN@Zn electrodes at
2 mA cm−2 and 1 mAh cm−2. (E) Rate performance of symmetric cells at different current densities from 1 to 10 mA cm−2, and (F) the
corresponding voltage hysteresis.
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CCN layer for ensuring superior rate capability and
excellent cycling stability during the repeated Zn
plating/stripping process. Electrochemical imped-
ance spectroscopy was performed to further investi-
gate the ionic conductivity of CCN, while a lower
charge‐transfer resistance (Rct) demonstrates more
rapid Zn2þ diffusion kinetics and superior ionic
conductivity.10 As shown in Figure S8, the CCN@Zn
symmetric cell delivered a lower Rct value of 534.4 Ω
than that of CN (749.1 Ω) and bare Zn (1061.1 Ω)
counterparts, indicating the enhanced ion diffusion
kinetics and robust ionic conductivity of the CCN
layer.

2.3 | Investigation of electrochemical
stripping/plating behaviors

To visually evaluate the dendrite inhibition ability
endowed by CCN layer, in situ optical microscope
was conducted to monitor the behaviors of Zn
deposition at 10 mA cm−2 (Figure 4A). It can be
clearly observed that the heterogeneous protrusions
gradually appeared on the surface of bare Zn elec-
trode through test duration with the formation of
uneven deposits and then the dendrites. As a com-
parison, a uniform and smooth Zn deposition
without dendrite growth was found for CCN@Zn
electrode throughout the whole 60‐min plating pro-
cess, demonstrating the excellent Zn2þ flux regulation
capability of CCN layer. Meanwhile, CCN layer is
firmly bonded with Zn foil without coating loss or
stripping observed, which also confirms its high
chemical stability and outstanding resistance to the
volume expansion during the repeated plating/strip-
ping. The 3D laser confocal scanning microscope
further intuitively compared the different surface
situations between bare Zn and CCN@Zn electrodes.
The apparent protrusions with uneven Zn deposition
(Figure 4B) were observed on bare Zn while smooth
surface with effectively suppressed Zn dendrites were
presented for its CCN@Zn counterpart (Figure 4C).
The subsequent SEM investigation for the cycled
electrodes reveal that a mass of flaky by‐products
with uncontrolled dendrites in different dimensions
were generated on the surface of bare Zn electrode,
which tends to cause short‐circuit of ZIBs (Figure 4D,
F). In sharp contrast, the surface of CCN@Zn elec-
trode after cycling is dense and flat without any
dendrite and rupture, confirming the strong regula-
tion capability of CCN layers for plating/stripping
behaviors and their excellent mechanical stability
during the long‐term cycles (Figure 4E,G). Moreover,
as shown in Figure 4E, no Zn deposits can be
observed on the surface of the CCN layer after
cycling, indicating that Zn deposition occurs below
the layer due to its high ionic conductivity, which can

effectively prevent Zn dendrite growth and mitigate
the corrosions (Figure 4E). Chronoamperometry with
an applied overpotential of −150 mV was employed
to explore the nucleation behavior and deposition
mode of electrodes (Figure S9). Bare Zn anode
showed disordered 2D planar diffusion mode with
the current increasing directly during the testing,
which indicates that Zn2þ tends to diffuse laterally
along the electrode surface to a specific location with
low nucleation barrier and thus preferably form the
dendrites.40 Alternatively, Zn2þ presented a transitory
2D diffusion on the surface of CCN@Zn electrode
within the initial 40 s, following with a new 3D
diffusion process at the later time that indicates the in
situ deposition of diffused Zn2þ. This result is
consistent with the aforementioned microscopic ob-
servations and also demonstrates the diffusion ki-
netics changes with the presence of CCN layers for
controlling the even distribution of Zn2þ.

2.4 | Discoloration phenomenon
investigation and theoretical analysis

Homogenized Zn2þ flux with high transference
across the protective layer is essential for achieving
the uniform deposition of zinc ions. As the organic
polymeric semiconductor, CCN with sufficient polar
surface cyano (—C≡N) groups, as confirmed by the
FT‐IR results shown in Figure 2C, can lower the
desolvation energy of Zn2þ for reducing its combi-
nation with H2O and homogenize Zn2þ flux.41 More
interestingly, the presence of intercalated Kþ derived
from molten salt in CCN can exchange with the
desolvated Zn2þ to reduce the direct access of H2O to
zinc anode surface, thus effectively decreasing its
side reactions while maintaining high Zn2þ trans-
ference. To confirm this, a typical discoloration
experiment with CCN@Zn electrode immersed in
different electrolytes was designed. The color of
electrodes changed from yellow to blue (Figure 5A) in
the 2 M ZnSO4 electrolyte while no color change of
electrodes was observed in water (Figure S10),
demonstrating the occurrence of ion‐exchange be-
tween Kþ and Zn2þ. Furthermore, the inductively
coupled plasma optical emission spectroscopy was
conducted to detect changes in content of K element
before and after soaking the CCN@Zn electrode in
the 2 M ZnSO4 electrolyte, where the result shows
that the content of K element increases, validating
aforementioned hypothesis of ion‐exchange
(Table S4). Correspondingly, no color change was
observed for CN@Zn or bare Zn electrode when it
was immersed in the ZnSO4 electrolyte (Figure S10).
The discoloration phenomenon of the CCN@Zn
electrode can even be observed through the sepa-
rator when assembling the coin cells (Figure S11).
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The cross‐sectional SEM analysis along with EDS
mappings for the soaked CCN@Zn electrode shows
that Zn element is uniformly distributed through the
CCN layer (Figure 5B), confirming the critical role of

CCN as ion‐distributor for homogenizing Zn ion flux
and regulating its deposition kinetics. The theoretical
analysis based on DFT calculations reveals that CCN
presents the strongest adsorption capacity for Zn2þ

F I G U R E 4 (A) In situ optical microscopy observation of Zn plating on bare Zn and CCN@Zn electrodes at 10 mA cm−2. (B, C) Laser
confocal microscope images, (D, E) top‐view SEM images, and (F, G) cross‐sectional SEM images of bare Zn and CCN@Zn electrodes
after 50 cycles at 1 mA cm−2 and 1 mAh cm−2. SEM, scanning electron microscope.
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(−1.80 eV) compared with CN (−0.85 eV) (Figure 5C,
D) and bare Zn (Figure S12), which can effectively
prevent the transfer of deposited Zn2þ to the favor-
able nucleation sites for the formation of dendrites.
This result is consistent with the experimental phe-
nomenon that the CCN‐based electrode shows the

highest zincophilicity. COMSOL Multiphysics soft-
ware was used to simulate the effect of the protective
layer on controlling the distribution of Zn ions. It can
be clearly observed that a gradient ion distribution
was formed for bare Zn (Figure 5E), which promotes
ion aggregation and is liable to form the dendrites. In

F I G U R E 5 (A) Digital images of CCN@Zn electrodes for immersion into the 2 M ZnSO4 electrolyte to check the color change.
(B) Cross‐sectional scanning electron microscope image and the corresponding elemental mapping of immersed the CCN@Zn electrode.
(C, D) Optimized density functional theory calculation models with the adsorption energy of Zn atom adsorbed on CN and CCN marked
as well as the corresponding differential charge density distribution. Zn2þ ion field simulation for (E) bare Zn and (F) CCN@Zn
electrodes. (G) Schematic illustration of the Zn2þ deposition process on bare Zn and CCN@Zn electrodes. CCN, crystalline carbon nitride;
CN, carbon nitride.
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contrast, the CCN@Zn electrode shows the even
distribution of zinc ions without apparent gradient
patterns (Figure 5F), which is consistent with the
uniform deposition of Zn2þ as obtained through the
experimental evidences. A schematic of Zn deposi-
tion on the surface of the CCN@Zn electrode was
illustrated in Figure 5G. The protective layer with
high chemical stability prevents direct contact be-
tween water and the electrode, which inhibits the
water‐induced side reactions and corrosion. Mean-
while, the effective ion‐exchange between Kþ and
Zn2þ along with the abundant surface polar group
allows CCN as the ion‐distributor to regulate the
diffusion of zinc ions with accelerated desolvation
process while maintaining the high flux for uniform
deposition. High crystallinity with high ionic con-
ductivity can also facilitate the deposition kinetics.
The aforementioned characteristics explain the
excellent protection of Zn metal anodes based on
CCN, which may lead to the performance elevation of
full‐cell performances.

2.5 | Full‐cell performances

The full‐cell was then assembled with the as‐
prepared CCN@Zn as the anode and typical MnO2

(Figures S13 and S14) as the cathode. Based on the
cyclic voltammetry (CV) curves at a scan rate of
0.1 mV s−1 (Figure 6A), two pairs of redox peaks
corresponding to the two‐step reverse oxidation/
reduction between MnO2 and MnOOH can be
observed.41 The shape similarity of these two peaks
demonstrates that CCN only serves as the functional
protective layer but does not get involved into the
electrochemical reactions, which is highly preferred
for surface modification related strategies.42 Mean-
while, compared with the bare Zn‐related full cell
counterpart, the CCN@Zn||MnO2 presented a
smaller voltage polarization for oxidation/reduction
peaks, confirming its expedited ion diffusion kinetics
which was also confirmed in the half‐cell configu-
ration.43 The corresponding discharge–charge pro-
files showed the platforms at 1.57, 1.39, and 1.25 V,

F I G U R E 6 Electrochemical performance comparison of Zn||MnO2 full cells with bare Zn and CCN@Zn anodes: (A) CV curves at
0.1 mV s−1, (B) charge/discharge curves at 0.1 A g−1, (C) rate performances, and (D) cycling stability at 1 A g−1. (E) Charge/discharge
curves of CCN@Zn||MnO2 full cells with different cycles at 1 A g−1. (F) Electrochemical impedance spectroscopy spectra of full cells with
bare Zn and CCN@Zn anodes. (G) Illustration of the bare Zn and CCN@Zn related full cells during long‐term plating/stripping. CV, cyclic
voltammetry.
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which is consistent with the CV curve (Figure 6B). It
also delivered a full‐line lifted rate capacities ranging
from 0.1 to 2 A g−1 compared with bare Zn
(Figure 6C) and CN related full cell (Figure S15).
CCN@Zn||MnO2 can also maintain a high capacity
retention of 133.8 mAh g−1 (91.5%) after 1500 cycles,
which is superior to the control bare Zn||MnO2 that
only delivered 69.5 mAh g−1 with a capacitance
retention of 78.7% (Figure 6D). Its lower voltage
polarization (Figure 6E) than the bare Zn||MnO2

counterpart (Figure S16) within 1500 cycles along
with the smaller charge transfer resistance (Rct:
311.3 Ω (CCN@Zn) versus 1972.2 Ω (bare Zn))
(Figure 6F, Figure S17, Table S5) further reveals the
stabilized electrochemical performances with fast
Zn2þ diffusion kinetics of CCN related batteries.44 A
schematic diagram of bare Zn and CCN@Zn related
full cells during long cycling process to highlight the
critical role of CCN for electrode protection and
performance enhancement was presented in
Figure 6G.

3 | CONCLUSION

In summary, we developed a crystallinity
engineering‐related strategy for Zn anode protection.
Highly crystalline C3N4 with the structure of PHI and
strong Zn2þ adsorption capacity was used as the
interfacial layer. Compared with the bare Zn and
commonly reported polymeric C3N4, its highly or-
dered structure with fully condensed network and
reduced layer spacing ensures rapid Zn2þ diffusion
kinetics and high ionic conductivity while the abun-
dant polar surface cyano groups and pre‐intercalated
Kþ also endow CCN with the ion‐distribution capa-
bility for dendrites regulation and side reaction in-
hibition. The CCN@Zn symmetric cell therefore
achieved the ultralong stability for 1100 h at
1 mA cm−2, 1 mAh cm−2, and 220 h even at
10 mA cm−2 and 5 mAh cm−2 with the average CE of
99.5% after 800 cycles, which are among the highest
values for reported Zn protection layers. When
assembling as the full cell of CCN@Zn||MnO2, it can
deliver outstanding rate capability and superior
cycling stability with capacity retention of 91.5% after
1500 cycles. This work provides a new strategy by
designing an advanced dendrite‐free interface layer
for the ultra‐stable Zn metal anode based on crys-
tallinity engineering and extends the use of C3N4

related materials for high‐performance batteries.
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