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Abstract

High-latitude (|b|> 30°) molecular clouds have virial parameters that exceed 1, but whether these clouds can form
stars has not been studied systematically. Using JCMT SCUBA-2 archival data, we surveyed 70 fields that target
high-latitude Planck Galactic cold clumps (HLPCs) to find dense cores with density of 105–106 cm−3 and size of
<0.1 pc. The sample benefits from both the representativeness of the parent sample and its coverage of the densest
clumps at the high column density end (>1× 1021 cm−2). At an average rms of 15 mJy beam−1, we detected
Galactic dense cores in only one field, G6.04+36.77 (L183) while also identifying 12 extragalactic objects and two
young stellar objects. Compared to the low-latitude clumps, dense cores are scarce in HLPCs. With synthetic
observations, the densities of cores are constrained to be nc 105 cm−3 should they exist in HLPCs. Low-latitude
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clumps, Taurus clumps, and HLPCs form a sequence where a higher virial parameter corresponds to a lower dense-
core detection rate. If HLPCs were affected by the Local Bubble, the scarcity should favor turbulence-inhibited
rather than supernova-driven star formation. Studies of the formation mechanism of the L183 molecular cloud are
warranted.

Unified Astronomy Thesaurus concepts: Star formation (1569); Molecular clouds (1072); High latitude field (737)

Supporting material: figure set, machine-readable table

1. Introduction

The high latitude (HL) of the Milky Way, also called the
“underwater iceberg” guards its secrets about molecular gas and
star formation, due in part to the limited scope of previous CO
surveys (Xu et al. 2021). Observational challenges essentially
originate from the large area of the HL, leading to much longer
integration times compared to those required for blind surveys of
the Galactic plane. The Planck satellite provides an unprece-
dented all-sky census of the coldest (6–20 K with a median value
of ∼14K; Planck Collaboration et al. 2011a) Galactic objects by
combining the highest-frequency channels of the Planck survey
353–857 GHz (i.e., 850–350 μm) with the far-infrared IRAS
100 μm data (Neugebauer et al. 1984; Miville-Deschênes &
Lagache 2005). As a result, the Planck team has cataloged
13,188 Planck Galactic cold clumps (PGCCs; Planck Collabora-
tion et al. 2016), including 793 with absolute value of Galactic
latitude higher than 30°, a group we refer to as high-latitude
Planck cold clumps (HLPCs). Benefiting from the unbiased
nature of its parent sample, the 793 HLPCs are the least-biased
sample of HL cold dust clumps, therefore serving as a
foundation for studying the properties of the HL molecular gas
and investigating the initial condition of star formation (Wu et al.
2012; Liu et al. 2013).

Our previous work performed a 12CO/13CO/C18O(1-0)
survey toward 41 early cold cores (ECCs; i.e., most reliable
detections of PGCCs with signal-to-noise ratio >15; Planck
Collaboration et al. 2011b) with the Purple Mountain Observa-
tory 13.7m millimeter-wavelength telescope (Xu et al. 2021).
Although detected CO cores have a typical density of several
times 104 cm−3, consistent with what has been found in nearby
molecular cloud cores (Benson & Myers 1983; Myers &
Benson 1983; Myers et al. 1983; Myers 1983; Benson &
Myers 1989), the turbulent energy is significantly higher than the
gravitational energy, with median virial parameters of ∼35 (Xu
et al. 2021). Therefore, our CO surveys unveiled a highly
turbulent, diffuse molecular gas environment as a first glimpse of
the initial conditions of star formation in the HL clouds.

Stars form in dense cores (Shu et al. 1987) with a typical size
of 0.1 pc and density of 105–106 cm−3 (Ward-Thompson
et al. 1994, 1999; Kirk et al. 2005). The CO(1-0) transitions
suffer from optical thickness and depletion at low temperature,
so it is hard to probe the densest regions of molecular clouds.
For example, a high-latitude cloud L1780 shows a cometary
morphology and a CO core (Toth et al. 1995) but contains no
dense core in our survey (field G358.96+36.81). Furthermore,
the angular resolution of Planck used for the extraction of
PGCCs is ∼5′, corresponding to 0.3 pc at a typical distance of
HL clouds of 200 pc (Xu et al. 2021), which is marginal for
resolving dense cores. Working at 850 μm with an effective
beam FWHM of 14 6, Submillimetre Common-User Bol-
ometer Array 2 (SCUBA-2; Dempsey et al. 2013) provides
∼20 times better resolution than the Planck, pinpointing cold
dense cores inside the molecular clouds.

In this Letter, we perform a systematic search for dense cores
within 70 HLPCs using the latest JCMT SCUBA-2 archival
data. The sample selection and distance estimation are
summarized in Section 2. As shown in Section 3, dense cores
are only identified in one HLPC (G6.04+36.77). In Section 4,
we show the robustness of the scarcity of Galactic dense cores
in HLPCs, investigate the upper limit of the dense core density,
and then discuss star formation picture at high latitude. Finally,
we give a brief summary in Section 5.

2. Data

2.1. Sample Selection

A thorough search of the SCUBA-2 850 μm data in the
JCMT Science Archive41 and crossmatching with 793 HLPCs
that satisfy the latitude criterion of |b|> 30° gave 138
observing fields in total. We dismiss six of the fields that have
limited integration time or nonstandard scan modes. Different
scan patterns include constant velocity daisy patterns (CV
Daisy) and rotating curvy Pong patterns (Curvy Pong), so the
field offsets vary significantly between different patterns. We
make sure that the observing fields cover the peak of PGCCs at
353 GHz. We also check superposition or repetition: if two
fields cover the same PGCC, we choose the one with the higher
sensitivity. After the work flow, a total of 70 SCUBA-2 fields
are selected as the sample in this work.

2.2. Sample Properties

Seventy HLPCs are shown with green crosses, overlaid on
the background Planck 353 GHz (850 μm) continuum emission
in Figure 1. White rectangles outline the CO emission regions
defined by Dame et al. (1987). The clump-averaged H2 column
density NH2 was calculated assuming a dust-emissivity model at
857 GHz (Planck Collaboration et al. 2016). The NH2 distribu-
tions of three samples—all the PGCCs, 793 high-latitude
PGCCs, and 70 HLPCs—are plotted as gray, blue, and orange
histograms in Figure 2, respectively. 70 HLPCs has been
evenly sampled in the NH2 space, ensuring a similar distribution
with its parent sample, 793 HL PGCCs. More importantly, the
studied sample includes the clumps at the high-column-density
end (N 2.0 10H

21
2 > ´ cm−2). Considering that the denser

clumps should be more likely to produce dense cores, we have
covered the complete HLPCs where dense cores could form.
Three regions with relatively higher column density, namely

the Orion Frontier, the MBM 12 Complex, and the L134
Complex, are further zoomed in with subpanels in Figure 1.
The HLPCs therein correspond to those at the high-column-
density end as mentioned above. The Orion Frontier contains
the dark cloud L1642, which together with the MBM 12
complex, are two famous HL clouds that have confirmed star-
forming activity (Malinen et al. 2014). The L134 complex is

41 https://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/en/jcmt/
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another region containing several HLPCs, including the widely
studied dark cloud L183 (Lee & Myers 1999; Lee et al. 2001;
Juvela et al. 2002; Pagani et al. 2003).

2.3. Distance Estimation

Distance is always a difficult quantity to estimate in
astronomy. Previous studies have estimated the distances of
HL molecular clouds to be 100 pc from the velocity dispersion

and the scale height of an ensemble of clouds (Blitz et al. 1984;
Magnani et al. 1985). The star counting confirms that the HL
molecular clouds are indeed nearby objects with upper limit
ranges from 125 to 275 pc (Magnani & de Vries 1986). Using
Strömgren photometry, Franco (1989) derives the distances of
several HGaL clouds to be 100–230 pc. Both the small Vlsr and
the lack of a double-sine wave signature in the distribution on
the l− Vlsr (Galactic longitude l) plane demonstrate that HL
molecular gas belongs to the local interstellar medium
(ISM) and is too close to the Sun for Galactic rotation to
modulate the velocities (Magnani et al. 1996).
Recently, the Gaia satellite has provided new photometric

measurements toward galactic stars (Gaia Collaboration et al.
2016). Together with 2MASS and Pan-STARRS 1 optical and
near-infrared photometry, Gaia DR2 parallaxes can help to
infer distances and reddenings of ∼800 million stars. These
stars trace the reddening on a small patch of the sky, along
different lines of sight and different distance intervals, allowing
us to build a 3D dust-reddening map (Green et al. 2014, 2019).
In a given direction, a jump of dust reddening is expected at a
distance where there is a dust clump. Distances are estimated
by this method and are listed in column (9) of Table A1, with
an average value of 200± 60 pc, indicating that HLPCs are
mostly local ISM. Adopting Equation (1) in Xu et al. (2021)
and considering that the Sun is 10 pc above the Galactic
midplane (Griv et al. 2021), the altitude z from the midplane (in
units of parsecs) is calculated from z d bsin 10= +( ) , where d
is the distance and b is the latitude, and listed in column (10).

Figure 1. The sky distribution of 70 high-latitude Planck Galactic cold clumps (HLPCs). The background color map is Planck 353 GHz (850 μm) emission in cylinder
projection. The 70 HLPCs are marked with green crosses. Three foreground subregions are zoomed in toward the Orion Frontier, the MBM 12 Complex, and the L134
Complex. The HLPCs in these regions cover the high column density end (N 1.0 10H

21
2 > ´ cm−2). In the zoomed-in subregions, HLPCs are marked with green

open circles whose sizes are equivalent to the size of the observing fields. The identifiers in each subregion are marked as green text. The names of the subregions and
the number of HLPCs are marked with white text on the upper left. The white rectangles are the CO emission regions.

Figure 2. The gray histogram shows the distribution of 13,188 PGCCs. The
blue histogram is for 793 high-latitude PGCCs, while the orange histogram is
for the 70 HLPCs used in this work. A subpanel zooms in the H2 column
density range of 1020.8–1022.2 cm−2.
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We note that some fields may contain extragalactic objects, so
the distance should be only for foreground Galactic dust.

3. Results

3.1. Source Extraction

We adopt the dendrogram algorithm (Rosolowsky et al.
2008) to extract dense structures and then measure their
integrated flux, peak flux, size, and position by 2D Gaussian
fitting. The details of the algorithm parameter settings and the
source extraction procedure are introduced in Appendix B.
Within the 70 input fields, we have initially detected a total of
20 sources that belong to 15 SCUBA-2 observing fields. The
field names and extracted sources are listed in columns (1)–(2)
of Table 1. Central coordinates, standard deviation of the
deconvolved major and minor axes, integrated flux, and peak
intensity are listed in columns (3)–(7).

3.2. Source Identification and Dense Core Definition

The CV Daisy mode of observation can produce artifacts
(Liu et al. 2018; Eden et al. 2019) that are extracted by the
algorithm as false source detections. Therefore, we additionally
require that both the peak intensity after being smoothed to the
Planck beam and the total flux of the source at 353 GHz are
lower than those of the parent PGCC. This results in two
sources, G50.41-35.40 SMM1 and G197.98+33.10 SMM1,
being classified as artifacts and excluded from further analyses.
We note that the flux given by the PGCC catalog should be

from the cold residual map (Planck Collaboration et al. 2016),
so the original Planck flux at 353 GHz could be even larger.
However, considering the cold nature of dense cores, this
should contribute little to the warm component.
We crossmatch the true detections within 1′ using SIM-

BAD.42 We find that only one field, G6.04+36.77, pointing
toward the molecular cloud L183, contains three resolved (or
marginally resolved) sources, which were previously identified
as low-mass prestellar cores (Dickens et al. 2000; Pagani et al.
2003). Our other detections are unresolved as point sources,
classified as either young stellar object (YSO) or extragalactic
object (point sources)—including gravitational lensed galaxy
(LeG), BL Lacertae object (BLL), protocluster of galaxies
(PClG), active nuclei candidate (AGN), and quasar (QSO). The
determined identifiers and references are given in columns (8)
and (9) of Table 1.
The physical parameters of the L183 dense cores are

calculated in Appendix C. Throughout the paper, we adopt the
empirical definition of dense core with typical size of 0.1 pc
and density of 105–106 cm−3 (Ward-Thompson et al. 1994,
1999; Kirk et al. 2005).

4. Discussion

4.1. Dense Cores Are Scarce in HLPCs

Having only one detection among the 70 HLPCs highlights
the scarcity of dense cores at these latitudes. To further confirm

Table 1
Detected Sources Catalog

Field Source R.A. Decl. maj mins s´ Fint Ipeak Identifier and Reference Classa

(deg) (deg) (arcsec2) (Jy) (mJy beam−1)
(1) (2) (3) (4) (5) (6) (7) (8) (9)

G6.04+36.77 SMM1 238.5361 −2.8732 34.2 × 17.2 3.36 218.4 Position C, (1); Region 3, (2) PSC
SMM2 238.5025 −2.8786 10.2 × 7.4 0.13 57.4 Position W, (1); Region 4, (2) PSC
SMM3 238.5404 −2.8154 13.5 × 10.0 0.35 64.2 Position N, (1); Region 5, (2) PSC

G45.12+61.11 SMM1 225.6511 29.3460 point 0.08 111.2 PLCK G045.1+61.1, (3), (4) LeG
G50.41-35.40 SMM1 321.7839 −2.7151 10.3 × 8.3 0.52 148.5 L Artifact
G53.44-36.25 SMM1 323.7980 −1.0478 point 0.09 111.8 SMMJ2135-0102, (5) LeG
G92.49+42.88 SMM1 242.3232 60.7542 point 0.08 110.4 PLCK G092.5+42.9, (3), (4) LeG
G152.54-47.36 SMM1 32.8050 10.8598 point 0.89 942.0 J021113.1+105134, (6) BLL
G157.44+30.33 SMM1 113.3787 117.2158 point 0.07 74.8 PLCKESZ, (7) ClG
G197.98+33.10 SMM1 128.3946 26.1982 36.8 × 27.7 6.29 176.6 L Artifact
G200.62+46.09 SMM1 143.0981 27.4163 point 0.06 75.1 PLCK G200.6+46.1, (3) LeG
G204.99+30.38 SMM1 127.6930 19.6131 point 0.014 20.5 Planck18p194-0, (8) PClG

SMM2 127.7268 19.6251 point 0.009 15.4 Planck18p194-1, (8) PClG
SMM3 127.6705 19.6631 point 0.008 14.2 Planck18p194-3, (8) PClG

G210.90-36.55 SMM1 68.7600 −14.2287 point 0.05 64.1 GCVS EW Eri, (9) MJR2015 1752, (10) V* Y*O
SMM2 68.7080 −14.2195 point 0.08 82.1 HH123, (11); MJR2015 1751, (10) HH Y*O

G211.62+32.23 SMM1 131.7098 15.0943 point 0.11 125.8 J084650.1+150547, (12) AGN?
G228.99+30.91 SMM1 137.2924 1.3599 point 0.23 274.9 4C 01.24B, (13) QSO
G343.12+58.61 SMM1 212.5190 2.0516 point 0.04 68.4 J141004.6+020306, (14) BLL

Notes. The HLPC fields are listed in column (1). The extracted sources are named as SMM , as listed in column (2). The equatorial coordinates of R.A. and decl. in
Epoch J2000 are listed in columns (3) and (4). The deconvolved standard deviation along the major and minor axis are listed in columns (5) and marked as “point” if
the source is unresolved as a point source. The integrated flux and peak intensity are listed in columns (6) and (7). Identifier(s) and classifications retrieved from
SIMBAD are listed in columns (8) and (9).
References. (1) Dickens et al. 2000; (2) Karoly et al. 2020; (3) Cañameras et al. 2015; (4) Frye et al. 2019; (5) Swinbank et al. 2010; (6) Healey et al. 2008; (7) Planck
Collaboration et al. 2014; (8) MacKenzie et al. 2017; (9) Samus’ et al. 2017; (10) Montillaud et al. 2015; (11) Reipurth & Heathcote 1990; (12) Truebenbach &
Darling 2017; (13) Wright et al. 2009; (14) Plotkin et al. 2008.
a Classification according to references. PSC– prestellar core. LeG–gravitational lensed galaxy. Artifact–probable artifact by JCMT data reduction pipeline. BLL–BL
Lacertae object. ClG–cluster of galaxies. PClG–proto-cluster of galaxies. V*

–variable star. Y*O–young stellar object. HH–Herbig-Haro object. AGN?–active galactic
nuclei candidate. QSO–Quasar.

42 http://simbad.u-strasbg.fr/simbad/
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this discrepancy compared to the low-latitude (|b|< 30°)
counterpart, 1235 observing fields from the JCMT Large
Project “SCUBA-2 Continuum Observations of Pre-protostellar
Evolution” (SCOPE; Liu et al. 2018; Eden et al. 2019) are used
as a comparison group because of the following two reasons:
(1) twenty-one HLPC fields in this work come from the
SCOPE project so that they can be observed with comparable
sensitivities; (2) the SCOPE observations serve as a represen-
tative sample of PGCCs, with similar distributions in distance,
size, and temperature, and with complete column density
coverage over 1021 cm−2 (Liu et al. 2018).

Considering the beam dilution effects for marginally
resolved sources, the column densities are corrected by a
beam-filling factor B iff

2
PSF
2q q= ( ) , where 4.3PSFq = ¢ is the

Planck beam size at 857 GHz (Planck Collaboration et al.
2016) and θi is the intrinsic size deconvolved from the beam.
For extended sources of which intrinsic size exceeds the beam
size, Bff is set to 1, and no correction is performed. As a result,
the corrected column density NH2

¢ increases by a factor of 1.1 on
average and 9 at maximum.

In Figure 3, we present the number distributions of different
samples across a set of NH2

¢ bins, denoted as Ssamp,i where i
indicates bin index. Specifically, the distributions for the low-
latitude SCOPE fields and the HLPC fields are depicted using the
gray and blue histograms, respectively. We also collect the
number distribution of those fields with dense cores detected
Sdet,i{ }. The dense core detection rate (DCDR), defined as
S Si idet, samp,{ }, is shown with connected data points. For the low-
latitude SCOPE, the DCDR experiences a pronounced increase at
a threshold of column density around N 1.0 10H

21
2 ´ cm−2,

reaching 90% at the N 5.0 10H
21

2 ´ cm−2 regime. The
column density threshold for forming dense cores is consistent
with what has been found in Gould Belt clouds (e.g., Johnstone
et al. 2004). The sudden peak at 3× 1020 cm−2 likely results
from the limited sample size. In contrast to the DCDR of the low-
latitude SCOPE clumps, the DCDR for the HLPCs remains zero

for N 1.0 10H
22

2 < ´ cm−2, until dense cores in the HLPC
G6.04+36.77 are detected.
The SCOPE serves as a gauge to tell whether the HLPCs

have significantly scarce dense cores. Given the null hypothesis
that the HLPCs share a DCDR greater or equal to that of the
SCOPE, the number of the HLPC fields containing dense cores
in each bin of N 10H

21
2  cm−2 can be predicted as

Spred,i HLPC{ } . The one-sided Mann–Whitney U test (Mann &
Whitney 1947) is performed between the S ipred, HLPC{ } and
S idet, HLPC{ } , giving a p-value of 4.8× 10−3. This is=0.05, thus
robustly excluding the null hypothesis. In other words, dense
cores are scarce in HLPCs compared to the low latitude.

4.2. What Does “Dense” Mean?

The scarcity of detection does not necessarily indicate the
scarcity of dense cores, primarily due to two factors: (1) the
limited sensitivity of identifying sources and (2) the absence of
large-scale flux in the SCUBA-2 data processing. Therefore, to
understand what the scarcity of dense cores means, it is
essential to clarify what “dense” means.
Prestellar cores are observed to have flat inner-density

gradients that approach ρ∼ r−2 beyond a few thousand
astronomical units (Ward-Thompson et al. 1994, 1999; Kirk
et al. 2005), which can be reproduced by a nonmagnetic and
Plummer-like model (Whitworth & Ward-Thompson 2001) as

n r
n

r R1
, 1c

H
flat

22 =
+

( )
( )

( )

where nc is the central H2 number density and Rflat is the flat
inner radius. The column density profile of such a model core
has the analytical form of

N p
n R

p R

R p

R p

2

1
tan , 2c

H
flat

2
flat
2 1 2

1 out
2 2 1 2

flat
2 2 1 22

⎡
⎣⎢

⎤
⎦⎥

=
+

´
-
+

-( )
( )

( )
( )

( )

Figure 3. The distribution of column density corrected by beam-filling factor NH2
¢ for low-latitude SCOPE fields (gray), HLPC fields (blue), and Taurus SCOPE fields

(orange), respectively. The connected data points in corresponding colors depict the DCDR in various NH2 bins.
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where p is the distance from core center in the plane of the sky
(Dapp & Basu 2009) and Rout= 0.2 pc ;40000 au defines the
boundary of core.

Using the combined ammonia data from the Green Bank
Telescope and Karl G. Jansky Very Large Array, the
temperatures of the three prestellar cores are observed to have
a minor decrease toward the center of the core 2000 au (Lin
et al. 2023). Therefore, we consider a constant temperature
profile as T(r)= T0= 10 K in the following discussion.

Assuming optically thin dust emission, the column density
can be used to synthesize model intensity as

I p
N p m B T

, 3
H H H dust2 2

m k
=

W
n

n n( )
( ) ( )

( )


where 4 ln 2beam
2pqW = measures the solid angle (in unit of

radian) per JCMT beam (with FWHM of θbeam), 2.81H2
m = is

the molecular weight per hydrogen molecule (Evans et al.
2022), mH is the mass of a hydrogen atom, κν= 1.22 cm2 g−1

(Beckwith et al. 1990) is the dust opacity at frequency of
ν= 350 GHz (∼850 μm), Bν(Tdust) is the Planck function at a
given dust temperature Tdust, and 100= is the gas-to-dust
mass ratio.

Now we synthesize the SCUBA-2 image I x y,n ( ) by adding a
high-frequency filter u v2 2 x+ > , where ξ corresponds to
200″ in the frequency space (Mairs et al. 2015),

I x y J u v e u v, , d d , 4
u v

i ux vy2
2 2

=n
x

n
p

+ >

+∬( ) ( ) ( )
{ }

( )

where Jν(u, v)=∬ Iν(x, y)e− i2π( ux+ vy)dxdy is the synthetic
model in the Fourier frequency space. As a result, the synthetic
observed intensity I x y,n ( ) can simulate the observed large-
scale missing flux at the SCUBA-2 data processing.
In Figure 4, the background color map shows observed peak

intensities I I 0, 0
peak =n n ( )  across the 2D parameter space of

flat radius Rflat ä [103, 104.5] au and central density ncä [103.5,
106] cm−3. The prestellar cores have been reported to have
Rflat> 2500 au (Ward-Thompson et al. 1999; Kirk et al. 2005),
which are delineated by the left green dashed line in Figure 4.
The right green dashed line marks 20,000 au, which corre-
sponds to 0.1 pc.
Consistent with the criteria in the source extraction algorithm

(see Appendix B), a threshold of 3σ is adopted to constrain the
upper limit of I

peak
n
 . As a result, the gray shaded region traces

the permissible parameter interval for an undetected core in our
observations. In other words, if such cores exist, they should
have nc< 105 cm−3, which is considerably less dense than
those that have been identified in nearby low-mass cloud cores
(Ward-Thompson et al. 1999; Kirk et al. 2005).
To further demonstrate this upper limit of density, we smooth

the images to a resolution of 20″. With better sensitivity, two new
cores (on in HLPC G159.41-34.37 and one in G161.87-35.76) are
identified by the same algorithm and parameter input, which are
called weakly detected cores. They have radii of about 6700 and
7500 au and averaged density of 2.8× 104 and 3.1× 104 cm−3,
respectively. The two cores are labeled as orange rectangles in
Figure 4. We also retrieve Herschel cold cores in L134 (HLPCs

Figure 4. The peak intensity I
peak
n observed by SCUBA-2 across parameter space defined by the flat radius Rflat ä [103, 104.5] au and the central density nc ä [103.5,

106] cm−3. The white curves mark 1σ, 3σ, and 9σ levels, while the black curves trace the same loci of synthetic model (no large-scale flux filtered out). The green
dashed lines delineate the flat inner radius limits Rflat ä [2500, 20000]. The shaded gray region indicates the permissible parameter interval of undetected prestellar
cores should they exist. Blue and red stars show the L183 prestellar cores and other previously detected prestellar cores (Ward-Thompson et al. 1994, 1999; Kirk
et al. 2005). The orange rectangles show two weakly detected cores in our fields. The green triangles show cores detected by Herschel in several HLPCs (Montillaud
et al. 2015), but undetected by SCUBA-2.
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G4.13+35.75 and G4.17+36.67 in our survey), MBM12
(G159.21-34.28, G158.51-33.99, G159.14-33.79, G159.23-34.51,
G159.41-34.37, G159.66-34.31), L1642 (G210.90-36.55), and
LDN1780 (G358.96+36.81, G359.21+36.89) from Montillaud
et al. (2015), which are labeled as green triangles. As they all lie in
the gray region below our sensitivity limit, these cold cores are not
dense enough for detection and are consistently below the density
limit of 105 cm−3. As noted by Ward-Thompson et al. (2016),
SCUBA-2 selects the densest cores from a population at a given
temperature, which makes SCUBA-2 ideal for identifying those
cores in Herschel catalogs that are closest to forming stars. So it is
of great interest to study how these low-density cores form and
whether they can still form stars or are transient objects.

As indicated by the black curves, peak intensity of a
synthetic model I peak

n is always below the corresponding I
peak
n


outlined by white curves. The difference reflects the missing
large-scale flux, which increases in importance from 0.06 to
0.31 dex with Rflat from 2500 to 20,000 au. Therefore, if we do
not consider missing flux, the density limit can be even lower,
especially for those cores with larger flat radius.

4.3. Star Formation at High Galactic Latitude

Low density and high virial parameter lead to a challenge for
direct gravitational collapse and then star formation of HL
clouds. Observationally, it is consistent with infrared cirrus,
which is thought to be hostile to star formation (Low et al. 1984)
and the dispersed populations of pre-main-sequence stars (see
review by McGehee 2008). Recently, a clear decreasing trend of
N2H

+(1−0) and C2H(1−0) detection rates with latitude was
found by Xu et al. (2021). In addition, HCN(1−0) and
HCO+(1−0) line survey by Braine et al. (2023) reveals that
HL molecular clouds have lower dense gas fractions compared
to those in the Galactic plane. Theoretically, based on Jeans
mass arguments, these low-density turbulent clouds have
molecular gas mass lower than the turbulent Jeans mass (see
Table 5 in Xu et al. 2021), therefore unable to fragment into
dense dust cores, or protostellar embryos, which agrees with the
scarcity of dense cores observed by SCUBA-2.

Previous studies have reported that the virial parameters of the
PGCCs in the Taurus region (Taurus clumps hereafter) are
predominantly greater than 1, with a median value of
approximately 9 (Meng et al. 2013). This value is considerably
lower than the median virial parameter of HLPCs, which stands at
about 35. The Taurus clumps covered by the SCOPE project are
designated as the Taurus SCOPE subsample. Figure 3 displays
the number distribution and the DCDR for the Taurus SCOPE in
orange. In the same way as above, the Mann–Whitney U test
gives a p-value of 0.042< 0.05, thus supporting the idea that the
DCDR of the Taurus clumps is statistically larger than that of
HLPCs. Interestingly, the Taurus clumps also exhibit a
significantly smaller DCDR compared to the low-latitude SCOPE
clumps, as evidenced by a Mann–Whitney U test p-value of
5.4× 10−3. This indicates that dense cores within the Taurus
clumps are relatively rarer compared to other SCOPE clumps.
Consequently, the Taurus clumps occupy an intermediate position
between the HLPCs and low-latitude SCOPE clumps in terms of
DCDR and virial parameter. The observed trend of decreasing
DCDR with increasing virial parameter further substantiates the
link between core formation efficiency and the dynamic state of
the gas, as previously suggested (Eden et al. 2019).

HLPCs have a distance of 200 pc, which is highly consistent
with the radius of the Local Bubble (LB) created by supernovae

(Zucker et al. 2022). The LB is reported to expand and sweep
up the ambient interstellar medium into a shell that has now
fragmented and collapsed into the most prominent nearby
molecular clouds. Interestingly, Zucker et al. (2022) also found
that the Taurus star formation region is very likely being
compressed by two super bubbles: the local super bubble and
the smaller Per-Tau super bubble. If so, it is probable that the
formation of dense cores can be hindered by supernova shocks
in the solar neighborhood. If the HLPCs and the Taurus clumps
were on the shell of LB, the scarcity of dense cores should
favor turbulence-inhibited rather than supernova-driven star
formation.
On the other hand, the scarcity itself is what gives the only

detection (L183) in our survey, as well as a few other clouds
(such as MBM 12 and 20), unique status. The capacity of these
high-latitude clouds to form cold molecular cores and young
stars could arise from a confluence of conditions including
variations in the interstellar radiation field, changes in dust
grain size and chemistry, the occurrence of shocks, and
transient events in the ISM (McGehee 2008). Consequently, in-
depth explorations of the physical and chemical processes
within these high-latitude dense cores, for example the L183
dense cores, are merited.

5. Conclusion

We performed a JCMT SCUBA-2 archival investigation of
70 fields toward HLPCs to search for dense cores. The sample
benefits from being representative of the total HLPC population
at low column density (<2× 1021 cm−2) and covering
the densest clumps at the high column density end
(>1× 1021 cm−2). Using dust reddening in a 3D map, the
distances of the HLPCs are estimated to be 110–410 pc with a
mean value of 200(±60) pc. A total of 17 SCUBA-2 sources
are identified from a mean noise rms of 15 mJy beam−1. Only
one field G6.04+36.77 (L183) contains three dense Galactic
cores. The other 14 unresolved sources include 12 extragalactic
objects and two Galactic YSOs.
Compared to the low-latitude SCOPE clumps and the Taurus

clumps (at a distance similar to those of HLPCs), the DCDR of
HLPCs is significantly lower at the high column density end
(>1× 1021 cm−2). Statistical tests verify the scarcity of dense
cores in HLPCs. With synthetic observations of known dense
cores, the central density of any undetected dense cores is
constrained to be nc 105 cm−3, should they exist in HLPCs.
The observed scarcity of dense cores aligns with the low-
density turbulent environment in HLPCs, as proposed in
previous far-infrared and CO line surveys. If the HLPCs and
the Taurus clumps were on the shell of the LB, the scarcity of
dense cores should favor turbulence-inhibited rather than
supernova-driven star formation. Furthermore, the scarcity also
calls for further study on the formation mechanism of L183
dense cores.
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Appendix A
SCUBA-2 Observation Archive

Table A1 presents the information for JCMT SCUBA-2
observations toward 70 HLPCs. We sort the observations by
Galactic longitude and number the fields from 1 to 70. The
serial number and the name of HLPC are listed in columns (1)
and (2). The equatorial coordinates R.A. and decl. of the field
center in Epoch J2000 are listed in columns (3) and (4). The
project ID and scan pattern of the JCMT SCUBA-2 observation
are listed in columns (5) and (6). The angular offset, which is
defined by the angular distance from the field center to the
center of the corresponding PGCC, is listed in column (7). The
rms noise of the field is listed in column (8). As mentioned in
Section 2.3, the estimated distances and altitude are listed in
columns (9)–(10).

Table A1
Parameters of 70 High-latitude Planck Galactic Cold Clumps

No. Field R.A. Decl. Project ID Scan Patterna Offset rms Distance Altitude
(deg) (deg) (arcmin) (mJy beam−1) (pc) (pc)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

1 G4.13+35.75 238.3879 −4.6406 M14AU35 Curvy Pong 2.17 6.2 140 90
2 G4.17+36.67 237.6817 −4.0717 M15AI05 CV Daisy 0.55 13.8 130 87
3 G4.55+36.73 237.8058 −3.7993 M15AI05 CV Daisy 1.55 14.1 130 88
4 G4.80+37.02 237.7933 −3.4799 M15AI05 CV Daisy 4.53 13.7 130 88
5 G5.70+36.84 238.31 −3.0125 M16AL003 CV Daisy 0.01 15.9 120 83
6 G6.04+36.77 238.5362 −2.8793 M16AL003 CV Daisy 2.38 9.6 120 83
7 G27.31+37.33 246.8812 11.9261 M15AI57 Curvy Pong 2.73 13.7 190 128
8 G37.52+44.57 242.6992 21.7625 M15AI57 Curvy Pong 1.61 24.8 120 96
9 G45.12+61.11 225.65 29.3475 M13AC22 CV Daisy 1.03 13.0 180 170
10 G45.16-36.19 320.2862 −6.7184 M15AI57 Curvy Pong 0.64 15.9 370 −206

Notes. The serial number and the name of HLPC are listed in columns (1) and (2). The equatorial coordinates R.A. and decl. of the field center in Epoch J2000 are
listed in columns (3) and (4). The project ID and scan pattern of the JCMT SCUBA-2 observation are listed in columns (5) and (6). The angular offset, which is
defined by the angular distance from the field center to the center of the corresponding PGCC, is listed in column (7). The rms noise of the field is listed in column (8).
The distance derived from dust map is listed in column (9). The altitude from the Galactic midplane is listed in column (10).
a CV Daisy = constant velocity daisy; Curvy Pong = rotating curvy Pong.
b The rms noise within the “cutoff radius.”

(This table is available in its entirety in machine-readable form.)
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Appendix B
Source Extraction

To avoid large marginal noise features masquerading as sources,
we set a “cutoff radius” within which we estimate noise and extract
sources for each field. The “cutoff radius” depends on the field of
view (FoV). For the CV Daisy observation mode, the radius is set
to 5′. For Curvy Pong, the radius is set to 10′. One exception is the
field 63 with FoV 90~ ¢, so we set the diameter to be ∼67′. We

carefully select emission-free pixels and take the rms as a uniform
noise σ in each field (i.e., column (8) of Table A1). An intensity
threshold of 3σ, a step of 2σ, and a minimum number of pixels (12
in our case) slightly larger than those contained in a JCMT beam,
are used for the input of the algorithm. In the output, “leaves” are
the smallest structures and then defined as detected sources or
sources hereafter.
Figure B1 displays all of the SCUBA-2 fields toward

HLPCs. The “cutoff radius” utilized for source extraction is

Figure B1. Full atlas for 70 HLPCs in SCUBA-2 observations. The “cutoff radius” utilized for source extraction is demarcated by the black dashed circles. The red
contours demarcate the mask of extracted sources, while the outcomes of the 2D Gaussian fitting are visualized through orange ellipses.

(The complete figure set (6 images) is available.)
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demarcated by the black dashed circles. The red contours
demarcate the mask of extracted sources, while the outcomes of
the 2D Gaussian fitting are visualized through orange ellipses.

Appendix C
L183 Prestellar Cores

Assuming that total emission Fint in column (6) of Table 1 is
dust blackbody emission, then the mass of the three prestellar
cores in L183 can be derived from

M
F D

B T
, C1int

2

dustk
=

n n ( )
( )

where D is distance of 120 pc and Tdust is estimated from the
temperature map, which is derived from pixelwise spectral
energy distribution fitting by Karoly et al. (2020). As a result,
M1= 1.8Me,M2= 0.055Me, andM3= 0.19Me. The mass of
SMM1 is consistent with what has been derived in Karoly et al.
(2020), but the masses of SMM2 and SMM3 are much smaller.
The reason is likely the 6 times better sensitivity in Karoly et al.
(2020) than ours, resulting in more extended emission being
included.

The physical radius R can be derived from deconvolved size
by Dmaj minh s s ´ , where η= 2.4 (Rosolowsky et al. 2010).
We obtain R1= 7000 au, R2= 2500 au, and R3= 3300 au. And
the averaged volume density of molecular hydrogen can be
calculated assuming a sphere as

n
M

R m
iH

3

4
, 1, 2, 3. C2i

i
2 3

H H2
p m

= =¯ ( ) ( )

So we derive n 1.7 101
5= ´¯ cm−3, n 1.0 102

5= ´¯ cm−3,
and n 1.6 103

5= ´¯ cm−3, which are all consistent with values
in Karoly et al. (2020).
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