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ABSTRACT
Background: Artificial Intelligence (AI) is rapidly transforming healthcare, and there is a critical
need for a nuanced understanding of how AI is reshaping teaching, learning, and educational
practice in medical education. This review aimed to map the literature regarding AI applications in
medical education, core areas of findings, potential candidates for formal systematic review and
gaps for future research.
Methods: This rapid scoping review, conducted over 16weeks, employed Arksey and O’Malley’s
framework and adhered to STORIES and BEME guidelines. A systematic and comprehensive search
across PubMed/MEDLINE, EMBASE, and MedEdPublish was conducted without date or language
restrictions. Publications included in the review spanned undergraduate, graduate, and continuing
medical education, encompassing both original studies and perspective pieces. Data were charted
by multiple author pairs and synthesized into various thematic maps and charts, ensuring a broad
and detailed representation of the current landscape.
Results: The review synthesized 278 publications, with a majority (68%) from North American and
European regions. The studies covered diverse AI applications in medical education, such as AI for
admissions, teaching, assessment, and clinical reasoning. The review highlighted AI’s varied roles,
from augmenting traditional educational methods to introducing innovative practices, and under-
scores the urgent need for ethical guidelines in AI’s application in medical education.
Conclusion: The current literature has been charted. The findings underscore the need for
ongoing research to explore uncharted areas and address potential risks associated with AI use in
medical education. This work serves as a foundational resource for educators, policymakers, and
researchers in navigating AI’s evolving role in medical education. A framework to support future
high utility reporting is proposed, the FACETS framework.
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Background

The use of artificial intelligence (AI) in medicine is expected
to have a significant impact on patient care, medical
research, and health systems (Weidener and Fischer 2023).
The integration of artificial intelligence (AI) and specific
tools or techniques to access it, such as natural language
processing (NLP), machine learning (ML) and generative
pre-trained transformers (GPT), have the potential to trans-
form both medical education content and processes. As
technology continues to advance, it is essential to examine
the impact of these developments on all aspects of medical
education, from admissions to curricula, teaching, and
assessment.

Practice points
� What is the extent of evidence on the use of AI (in all

forms including NLP, ML and GPT) in medical educa-
tion and what methods of study have been employed?

� What are the key content themes and areas of
focus for these works?

� What, if any, areas are appropriate for more in-
depth systematic review?

� What are the gaps in the evidence base currently
that should be considered by future researchers?
To aid consistent and transparent use of terms
throughout this review, Table 1 gives some defini-
tions we have employed throughout.
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Whilst the field is not new, the recent application of AI
based on machine learning and large language models
(LLM), which form the core of AI based chat applications
such as ChatGPT by OpenAI has made the technology
more widely accessible and easy to use. Masters (2023a)
characterised this monumental step as one that could lead
to consideration of a pre and post ChatGPT world.

With the rapid expansion of AI, medical educators have
become increasingly concerned about the associated risks.
A recent piece from a physician defense organization
(Graham 2023) warned of the risks of students employing
these technologies for their assignments. Other works have
cautioned the community concerning AI’s potential to
undermine the integrity of academic publishing (Masters
2023b; Loh 2023). Educators have also become more
excited by AI, as recent landmark works have highlighted
the power of AI to enhance assessment (e.g. Schaye et al.
2022), and make educational processes such as admissions
and selection more efficient (e.g. Burk-Rafel et al. 2021).

A review in 2021 by Lee J et al. found a diverse range
of 22 published studies on what and how to teach AI
within undergraduate medical education (UME), but the
wider fields of graduate medical education (GME) and con-
tinuing professional development (CPD) were outside of
scope. Publications and interest in AI has increased expo-
nentially in the last 12months in response to the launch of
ChatGPT, indicating the need for a new review of the
evidence.

This review aims to provide insights into the current
state of AI applications and challenges within the full con-
tinuum of medical education. We chose a scoping review
methodology, mapping out the landscape of existing litera-
ture, to delineate the evidence base, classify methodologies,
and highlight thematic content areas ripe for systematic
investigation. We aim to provide the path forward, guiding
AI integration into medical education and ensuring that
healthcare professionals are adeptly equipped for the evolv-
ing and increasingly complex healthcare milieu.

Methods

This scoping review was conducted in a rapid timeframe –
completed within 16weeks of its inception. Despite the
expedited process, we ensured systematicity, and maintained
integrity and methodological precision, in line with prior
publications (Gordon et al. 2020; Daniel et al. 2021). Our
methodology was guided by Arksey and O’Malley’s (2005)
scoping review framework, which was refined by Levac et al.
(2010). In terms of reporting, we adhered to the STORIES
statement (STructured apprOach to the Reporting In health-
care education of Evidence Synthesis) (Gordon and Gibbs
2014) and BEME guidance (Hammick et al. 2010). We also
conformed to the PRISMA-ScR reporting standards (Tricco
et al. 2018), drawing on support from Peters et al. (2020,
2022) to offset the absence of specialized reporting stand-
ards for scoping reviews in health professions education. A
protocol is available at the following link (https://clok.uclan.
ac.uk/49900/).

The five stages of a scoping review were followed
(Arksey and O’Malley 2005):

Stage 1: identifying the research aims/questions (as stated above)

Stage 2: identifying relevant studies

Stage 3: study selection

Stage 4: charting the data

Stage 5: collating, summarizing and reporting the results

The sixth stage recommended by Levac et al. (2010),
expert consultation, was not performed, as AI (BK, JC, MS)
and educational experts (CM, DD, JC, JH, MD, MG, MH, ST)
on the author team fulfilled this role.

Stage 2: Search strategy

In conjunction with an experienced information specialist,
we conducted a search of PubMed/MEDLINE, EMBASE, and
MedEdPublish without restrictions on date or language. We

Table 1. AI terminology.

Artificial Intelligence (AI) AI is a concept, the most general of the terms, that spans any process that involves a machine acting
‘intelligent.’ Intelligence is most often defined as ‘human-like’ in its ability to make decisions, learn from
mistakes, generate insights, or understand language (Coppin 2004).

Machine Learning
(ML)

ML is a method and discipline. ML involves the specific mathematical and computational structures which
produce computer programs/algorithms that can make decisions given input data. ML is most frequently the
way in which we achieve (a semblance of) AI (Gopinath and Churiwala 2019).

Traditional Machine Learning Traditional ML involves extensive human-engineered preprocessing of input data to extract salient ‘features’
which are then piped into a mathematical model/equation to produce decisions/results. Examples: logistic
regression, support vector machines, decision trees, K-nearest neighbors, gradient boosted machines
(Gopinath and Churiwala 2019).

Data Mining (DM) DM often borrows basic statistics or algorithms from traditional ML (for example, logistic regression or k-nearest
neighbors), but instead of trying to teach a machine to make a decision, it instead attempts to sort through
large volumes of data to allow humans to make insights and better understand the data itself. Whereas ML
is concerned with assessing the ability of machines to make prospective decisions on heretofore-unseen data,
DM instead tries to glean insights from full, known sets of previously collected data (Islam et al. 2018).

Deep Learning
(DL)

Deep ML involves relatively little human-engineered preprocessing of input data, which is often input in raw or
near-raw form. In DL, the model itself creates its own internal representations of features, as represented by
the connection strength between mathematical ‘neurons’ within the artificial neural network. Deep neural
networks require significant time/ energy/ money/ data investments to initially train. However, these ‘pre-
trained’ models can be ‘customized’ to new domains, such as MedEd, cheaply (Naylor 2018).

Natural Language Processing (NLP) NLP is any type of computational or mathematical approach that deals with natural human (written or spoken)
language. NLP is almost always paired with one of the approaches above, which is often why you see it
written with a slash (e.g. NLP/ML). ChatGPT, for example, is NLP/ML (specifically deep learning), because it is
a deep machine-learning artificial neural network which processes natural language (Iroju and Olaleke 2015).
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used a comprehensive search strategy with both controlled
vocabulary (e.g. MeSH terms) and keywords. The search
terms were based on keywords related to AI, ML, NLP, GPT,
and medical education. The search strategy evolved through
iterative pilot searches to refine the use of complex termin-
ology. The initial search in July 2023 yielded 1,598 publica-
tions. Reference list screening identified key publications not
captured, prompting further refinement. The final, more
inclusive search was executed in August 2023. The final com-
plete search strategy is detailed in Supplementary
Appendix 1.

We reviewed the bibliographies of included studies for
any missed articles.

Stage 3: Study selection

The screening process was conducted by pairs of authors
(AA, HU, MD, MG, RG) who independently reviewed titles,
abstracts, and full texts. Discrepancies were resolved by
consensus or with a third author’s input. A Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) flow diagram was constructed to outline the pub-
lication selection steps.

Inclusion criteria
� Publications that described the use of AI, ML, NLP, or

GPT in medical education
� Publications that discussed AI, its impact, attitude, know-

ledge or view, regardless of whether they deployed AI
� Publications in undergraduate medical education (UME),

graduate medical education (GME) or continuing profes-
sional development

� Publications with medical students, residents, fellows, or
physicians. If discussing multi-professional learner groups,
medics comprised a significant proportion.

� Publications focused on all relevant areas, including
curriculum, teaching and learning, or assessment

� Publications of all methodological forms
� Publications in any language

Exclusion criteria
� Publications that discussed the use of AI for diagnostic,

clinical, healthcare organizational systems or govern-
ance roles in healthcare

� Publications that employed AI exclusively as a research
tool in health professions education

� Publications employing AI to write their work without
focusing on AI within their work

Stage 4: Charting the data

The approach taken was amended for each of two clear
bodies of literature that were included.

The first category were articles and Innovations. These
include scholarly reports of original studies of the proposed
or actual employment of AI or related issues in medical
education.

The second category were perspectives publications.
These include scholarly pieces that present a point of view
on AI issues in the field of medical education. They are not
original study reports but rather informed opinions that

draw on the authors’ expertise, experience, or review of
the existing literature.

Articles and innovations
A team of eight authors (AA, BK, CJC, HU, MH, MS, NX, RB),
working in pairs, charted the data. They used a predefined
data extraction form, which was piloted and refined, with
the following data extracted from each study:

� Study identifiers (authors, title, publication date, journal)
� Study characteristics (stage of education, country of ori-

gin, medical specialty, study aims, study design)
� AI application or focus of use (e.g. admissions and selec-

tion, curriculum, assessment, etc.)
� AI method (e.g. was AI treated as a general concept, or

were specific methods such as DM, traditional ML, DL,
and/or NLP used?)

� AI use cases
� Name of language model and software programs, if

applicable
� Rationale for AI use
� Categorization per the SAMR technology integration

framework (substitution, augmentation, modification,
redefinition)

� Description of AI implementation
� Summary of results and Kirkpatrick’s outcomes, if

applicable
� Implications for future practice, policy or research

Perspectives
A team of four authors (JC, CM, JH, ST), working in two
independent pairs, charted not only similar metadata from
publications in the Perspective category but also additional
details such as the underlying rationale for using AI, its
applications, frameworks, and recommended topics for cur-
riculum and research. They further considered ethical issues
and the constraints of these applications.

Stage 5: Collating, summarizing and reporting the
results

Articles and innovations
Utilizing data from the extraction forms, all authors collated
the data into a number of tables and figures for easy visu-
alization, to provide a map of the current evidence base.
After charting, we produced a narrative account of our
findings that considers the extent and range of develop-
ments included in the review, as well as the outcomes
assessed. We identified areas where a paucity of research
exists. We also suggested areas for future primary and sec-
ondary studies (i.e. systematic reviews).

Perspectives
Upon familiarizing itself with the data, the team developed
a systematic approach for synthesis. Publications were first
organized into two main categories reflecting the central
themes of their perspectives: ’Importance of Integrating AI
into Medical Education’ and ’Potential Application into
Medical Education.’
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The sub-team then applied a utility-focused approach to
the latter category, highlighting the practical value of
each publication for readers, termed ‘Contributions.’ These
contributions are pivotal for making informed decisions,
designing educational programs, or evaluating AI applica-
tions in medical education, despite the fact that most have
yet to be studied or evaluated. The Contributions are
delineated as follows: 1. Suggested Educational Applications
and Developments, 2. Educational Frameworks, 3.
Recommendations for Curriculum Content, Competencies,
Tools and Resources, and 4. Ethics Considerations.

At each step, team members independently categorized
the publications, followed by discussions to reach a con-
sensus. We produced a narrative synopsis of our findings
as ‘Brief Summary’ and ‘Key Points’ to aid reader compre-
hension and application.

Results

Overview

The database search yielded 2,123 publications, with 2,019
remaining after duplicate removal. Title and abstract
screening narrowed the pool to 310 publications, with a
high inter-rater reliability (j¼ 0.86). Full-text review further
excluded 70 publications, primarily for using AI solely as a
research tool or lacking focus on AI, leaving 241 for inclu-
sion. Hand-searching references added 37 publications,
with 278 publications ultimately included in the review.
The PRISMA diagram is shown in Figure 1. Full appendix
tables with extracted data for all publications have been
uploaded to a repository and can be accessed following
this link (https://clok.uclan.ac.uk/49919/). An infographic
contained in Figure 2 gives much summary detail around
the included studies.

The geographic distribution of studies was predomin-
antly Anglo-North American (n¼ 138, 49.6%), followed by

European (n¼ 51, 18.4%), East Asian (n¼ 22, 7.9%), Middle
Eastern (n¼ 22, 7.6%), and South Asian (n¼ 17, 6.1%) con-
tributions. Other regions produced only a handful of stud-
ies and no studies were identified from Africa. The earliest
publication on AI in medical education was in 1992. The
temporal trend showed a surge in publications from 2018
onwards, with 11 in 2018, 14 in 2019, 18 in 2020, 49
in 2021, 57 in 2022, and 114 as of August 2023 (see Figure
2a,b and Supplementary Appendices 1 (columns E and I)
and 2).

Most included publications fall under the category of
articles or innovations (n¼ 191, 68.7%), as defined above,
with the remainder being perspectives (n¼ 87, 31.3%).
Undergraduate medical education (UME) was the focus of
48.6% (n¼ 135), graduate medical education (GME) 22.3%
(n¼ 62), and continuing professional development (CPD)
2.5% (n¼ 7). The remaining publications spanned multiple
levels (UME, GME, or CPD) (n¼ 74, 26.6%) (see Figure 2c,d
and Supplementary Appendix 2 (column H) and 2).

Six basic science disciplines and 24 clinical specialties
were represented in the included publications. Anatomy and
Physiology were the most common basic science disciplines
(n¼ 4, 1.4%, each), whereas radiology (n¼ 31, 11.2%) and
surgery (n¼ 24, 8.7%) were the most common clinical spe-
cialties, followed by ophthalmology (n¼ 8, 2.9%) and neuro-
surgery (n¼ 6, 2.2%). One hundred fifty-seven studies (56.5%)
did not specify a discipline or specialty (see Figure 2e and
Supplementary Appendices 2 (column J) and 2).

Articles and innovations included in the review

This review encompasses a wide range of articles and inno-
vations, systematically cataloged as A1–A191 in
Supplementary Table 2, facilitating cross-reference through-
out this review. Of these studies, seven (3.6%) used AI for
admissions and selection (A1–A7), 34 (17.8%) focused on
teaching about AI or AI-augmented instruction (A8–A41), 50

Figure 1. Prisma flow diagram.
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(26.2%) used AI in assessment (A42–A91), thirteen (6.8%)
used AI to teach or assess clinical reasoning (A92–A104),
and four (2.1%) used AI for automation of case and proced-
ure logs (A105–A108). A substantial portion (n¼ 51, 26.7%)
investigated knowledge or attitudes about AI in medicine
(A109–A159), and the performance of large language mod-
els (LLMs) on medical questions or exams was evaluated in

32 (16.8%) of the studies (A160–A191. (see Figure 2f and
Supplementary Appendix 2, column M).

The technical application of AI varied. In 65 (34%) of the
studies, AI was treated as a general concept without actual
computation. The remainder of studies engaged in various
computations: data mining in 4 (2.1%), traditional ML in 41
(21.5%) and DL in 81 (42.4%). NLP was used in 78 articles

Figure 2. Infographic summarising results.
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(40.8%). (See Figure 2g,h, and Supplementary Appendix 2,
columns N and O. Also refer to Table 1 for AI terminology.)

Employing the SAMR framework to evaluate four levels
of technology integration, this review found that AI primar-
ily served as a substitute in 36 articles (18.8%), enhanced
existing processes through augmentation in 34 (17.8%),
contributed to task redesign or modification in 10 (5.2%),

and facilitated an entirely novel, previously unconceivable
task or redefinition in 11 (5.8%). For a substantial number
of articles (100, 52.4%) the SAMR framework did not apply
(see Figure 2i and Supplementary Appendix 2).

The review also identified a spectrum of AI applications,
described as ‘use cases,’ which included data analytics (n¼ 9),
predictive models (n¼ 17), performance analytics (n¼ 19),

Figure 2. Continued
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sentiment analysis or bias evaluation (n¼ 7), virtual patient
simulators (VPSs) (n¼ 11), personalized learning platforms or
intelligent tutoring systems (n¼ 6), clinical guidance for train-
ees (n¼ 10), procedural guidance for trainees (n¼ 5),
ChatBots (n¼ 2), data labeling (n¼ 2), content generation
(n¼ 5), and summative assessment completion (n¼ 32) (see
Figure 2j and Supplementary Appendix 2, column P).

AI use in admissions and selection for medical school
and residency

In one study (A7), an AI Chatbot was used during recruit-
ment to host a virtual question and answer session. In
another study (A5), sentiment analysis was used to detect
gender bias in letters of reference for a surgery residency
over three decades. This study demonstrated that while

Figure 2. Continued
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gender bias has decreased over time, letters continue to be
positively biased towards men, impacting selection.
Another study (A3) compared faculty scoring of medical
student performance evaluations (MSPEs) to a machine
learning (ML) model’s scores. The ML model was unable to
successfully rank MSPEs using commercially available senti-
ment analysis programs, largely because all MSPEs were

highly positive. A bespoke model may be developed in the
future that can better replicate faculty scores.

In one study (A4), ML was used to develop a predictive
model to identify candidates likely to be ranked and
matched. The predictive accuracy for ranking was outstand-
ing, with an area under the receiver operating characteris-
tic (AUROC) of 0.925. In three studies (2 in UME (A2, A6)

Figure 2. Continued
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and 1 in GME (A1)), ML was used to screen applications.
The ML models were trained on retrospective data sets,
then validated on retrospective or prospective data sets.
The models demonstrated impressive accuracy with AUCs
of 0.925–0.95, and hold promise in the future for partially

automating holistic review of large numbers of applica-
tions. When applied in a restorative fashion that augments
human review, ML models can be used to mitigate bias
and identify applicants who may otherwise have been
screened out and not offered an interview (A1). With

Figure 2. Continued
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further validation and refinement, ML models have the
potential to make application screening more efficient and
equitable, and the ranking process more accurate.

Teaching about AI and AI-augmented instruction

A total of thirty–three articles addressed teaching about or
instruction with AI (A8–41). Of these, 12 focused on AI as a
learning tool, 11 on curriculum development, three on AI
use for personalized education, five on the use of AI in med-
ical simulation, and two on AI educational competencies.

The majority of articles (7 out of 12) focused on AI as a
learning tool, training users to identify findings on images,
including histopathologic identification of glomerulopathies
(A22), neuroanatomic structures (A35), general tissue types
(A31), and melanomas (A25). A few articles emphasized iden-
tification of clinical pathology (e.g. diabetic retinopathy (A26,
A30) and hip fractures on plain radiographs (A24)). One article
described AI–powered, real–time instruction on acquiring
optimal echocardiographic views with point–of–care ultra-
sound (A32) and another trained students to develop AI algo-
rithms for sonographic identification of pulmonary structures
(A33). Another set of articles used the interactive features of
chatbot-style tools for anatomy instruction (A29), delivering
difficult news (A34), and LLM-based summaries of surgical
procedures (A28).

Of the eleven articles that addressed AI curriculum
development, a majority (n¼ 6) described the development
of instructional modules. Four emphasized fundamental
concepts in AI and ML for UME learners (A11, A13, A16,
and A19). The GME/CPD studies largely focused on radiol-
ogists and included AI workshops (A14, A17), a deep-learn-
ing curriculum (A18), a data-science elective (A20) and a
medical DM course (A21). One article described an intro-
ductory AI course for practicing physicians (A12).

Three articles explored ML for personalized learning, includ-
ing an NLP algorithm to support trainee evaluation of geriatric
patients through just-in-time learning (A36), a ML-powered
adaptive learning system for preclinical students (A37), and a
DL model for patient triage in ophthalmology (A38).

Five articles examined AI in medical simulation, covering
topics like the interview of standardized patients about the
use of robotic standardized patients (A39), an AI-assessed
cognitive load in simulation through ECG and galvanic
skin response (A40), a DL model for simulation outcome
evaluation of recorded simulation sessions (A41), a ML-
based multimedia simulation of an individual nephron
(A23), and generative AI for creating images of dermato-
logic lesions (A27).

Lastly, two articles delved into educational competen-
cies in AI, one developing a tool for assessing medical stu-
dent readiness for AI use in clinical settings (A9), and the
other examining the prevalence of AI competencies in GME
and CPD settings in Germany (A10).

AI use in assessment

Of the 50 articles related to AI use in assessment, a focus
on psychomotor skills was prevalent, with 21 articles exam-
ining this area: 18 on surgical skills and 3 on procedural
skills, with the latter group focusing exclusively on intub-
ation techniques (A71–73). Surgical skills assessments

predominantly focused on minimally invasive and robotic
surgery within general surgery (A74–A83, A85, A87–A88,
A91), with a handful addressing neurosurgical (A84, A86,
A89) and pediatric surgery (A90). Fifteen articles focused
on narrative text analysis, 10 on clinical skills, 3 on gener-
ation of multiple choice questions (MCQs), and 1 on pre-
dictive analytics.

A notable trend involved leveraging ML as an alternative
to human observation and feedback (A74, A76–A78, A83,
A86, A88, A90). Many utilized virtual trainers or simulators to
facilitate assessment in simulated environments. A particu-
larly innovative approach involved cloud-based, AI-powered
video analytics to monitor and assess users’ performance in
minimally invasive surgery (A81). A few studies described
the development of algorithms capable of discerning expert-
ise levels or predicting surgical skill (A74–A76, A85, A86) or
learning curves (A80, A84, A87, A91) based on visual or kin-
esthetic inputs. One study developed a ML model, integrat-
ing EEG data analysis of participants, to distinguish expert
from novice surgeons (A89). These studies underscored the
potential of AI to mitigate the resource intensity and inher-
ent bias of traditional assessments.

Narrative text assessment is another area where AI is
gaining ground, with sentiment analysis and NLP being
common tools for extracting insights from textual data.
This application of AI promises an efficient and automated
analysis of extensive narrative information for enriching
and contextualizing quantitative assessments such as rat-
ings. Faculty’s narrative evaluations of residents (A55, A57,
A62-A64, A67-A68, A69) and clerkship students (A55, A56,
A65) were areas where AI was deployed to inform clinical
competency committees (A55), gain insights into compe-
tency development (A57, A68-A69), generate quality ratings
of faculty feedback (A64, A67), facilitate objective interpret-
ation of faculty evaluations (A65), identify learners at risk
(A68), and identify biases within written student evalua-
tions (A56, A66). NLP was further used to parse through
reflective writings of students (A59), assess professionalism
in short answer responses (A61), identify patterns suggest-
ive of professionalism lapses in evaluative feedback among
faculty (A60), and evaluate physician performance as it
related to professionalism and patient safety (A58).

Among studies of clinical skills assessment, seven out of
ten focused on UME applications. Here, VPSs were a main-
stay, reducing logistical demands (e.g. time and resource)
of traditional assessments, and enabling remote examina-
tions (A42, A48–A49, A51). AI’s role extended to virtual
Objective Structured Clinical Examinations (OSCEs) (A42,
A49) and automated grading of OSCEs (A43–A44, A50) or
both (A46, A48, A51). In GME, there were studies describing
the use of a virtual provider simulator for resident training
in communication skills, with automated assessment and
feedback (A47) and NLP for assessment of critical care
trainees’ oral case presentations (A45).

Three studies delved into AI-generated MCQs, harness-
ing DL and NLP to create assessment tools and study aids
(A52–A54). These studies emphasized AI’s capability to
streamline question development, substituting intense
human efforts, though still requiring human verification to
ensure quality. The benefits of AI included speed, and
ChatGPT emerged as the preferred tool. Study results were
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mixed, however, with some skepticism of AI’s readiness to
fully take over the MCQ creation process (A52–54).

The final point to note is that predictive analytics played
a notable role in evaluating surgical skills across multiple
studies. However, only one study (A70) primarily focused
on this aspect. This particular study investigated the predic-
tion of medical student performance on high-stakes exams
through ML. This illustrates a nascent but promising appli-
cation of AI in predicting academic success in high-stakes
environments.

AI to teach and assess clinical reasoning

Thirteen articles examining AI‘s role in teaching and assess-
ing clinical reasoning reveal a promising frontier. Eight
studies focused on the fusion of AI-powered VPSs and
intelligent tutoring systems (ITSs) (A92, A95–A98, A101–
A102, A104). VPSs simulate authentic patient interactions,
where learners ask questions and receive answers from an
avatar or via text, offering dynamic environments for learn-
ers to hone their reasoning through varied clinical scen-
arios. This allows learners opportunities to practice various
components of the clinical reasoning process, from infor-
mation gathering and hypothesis generation, to problem
representation and diagnostic justification.

The ITSs complemented this by delivering personalized
learning and real-time feedback, guiding learning through
correct and incorrect reasoning responses (A92, A95–A97,
A101–A102), and suggesting further study resources(A 95).
When combined with analytics (A92, A96, A101, A102),
these systems could yield nuanced insights for educators
and learners on performance, identifying specific areas for
improvement. Six studies provided Kirkpatrick level 1 (A92,
A98, A101) and/or 2b evidence supporting the use of these
systems (A92, A95-A96, A101–A102).

The creation of VPSs and ITSs cases, a labor-intensive
process, typically involved content experts. However, 2
studies (A101, A 104) demonstrated innovative use of NLP
to automate the creation of extensive case libraries (413
and 2525 cases, respectively) from actual hospital records
and the New England Journal of Medicine Clinical Case
Competition series. Such expansive libraries enhanced the
variety of cases available to learners, addressing common
challenges in teaching and assessing clinical reasoning, like
case variability and the unpredictable nature of clinical
encounters in real-world settings.

Further exploration into AI’s utility is found in three
studies that apply ML to analyze clinical reasoning in writ-
ten notes (A93–A94, A99). These studies assessed different
forms of clinical documentation, including post-encounter
OCSE notes (A93) and diagnostic justification essays (A94)
by medical students, as well as residents’ admission notes
from electronic health records using a standardized rubric
(IDEA tool) for clinical notes (A99). The psychometric prop-
erties and inter-rater reliability of the ML algorithms were
reported as acceptable. One study achieved a kappa statis-
tic of 0.8, meeting the reliability standard for high-stakes
assessment (A93), whereas others met the standard for
lower-stakes assessments. The collective findings of these
studies substantiate the concept of utilizing ML to stream-
line assessment of clinical reasoning, thereby enhancing
efficiency of scoring and significantly enriching formative

feedback through assessment of clinical notes–a largely
underutilized source in clinical reasoning assessment.

The final two studies in this area highlighted AI’s
expanding role. The first study demonstrated the use of
neural networks to recognize patterns of successful student
problem-solving (A100), further highlighting AIs potential
in clinical reasoning assessment. The second study eval-
uated the effectiveness of three different LLMs at providing
clinical decision support for junior doctors (A103). The
authors noted that more advanced LLMs trained on med-
ical databases, rigorously scrutinized by medical experts,
could result in valuable educational tools in the future.

AI use for automation of case and procedure logs

Four of the publications detailed efforts to utilize AI/ML to
automate documentation of trainee clinical and procedural
experiences. In one (A107), an NLP algorithm–based system
identified clinical concepts in trainee clinical notes and
mapped these onto expert–defined core clinical problems,
with a precision of 92.3%. A similar system based on a
commercial NLP product tracked case experiences for neur-
ology residents, with a tripling of case experiences logged
in a one–month timeframe (A105). A third system (termed
‘Trove’) (A106) used an NLP algorithm to tally classes of
diagnoses based on resident–created imaging impressions
and to populate a dashboard for residents with accuracies
ranging from 93.2 to 97.0%. Finally, a system utilizing a
deep neural network with a reinforcement learning model
provided suggestions for data residents needed to manu-
ally log their surgical case experiences based on EHR data
and surgical case schedules (A108).

Knowledge of AI

Fifty-one of the included articles (26.7%) explored know-
ledge, perceptions, attitudes, hopes, and concerns related
to AI in medical education.

Three studies carried out objective assessments of AI
knowledge. In Spain, a study of 281 medical students used
true/false questions to assess general AI knowledge, with a
65% correct response rate (A117). In Saudi Arabia, another
study of 476 medical students assessed knowledge of DL,
and found that 54% failed to correctly answer any of five
true/false questions (A118). Across Australia, New Zealand
and the United States, a third study of 245 medical stu-
dents evaluated ML knowledge through MCQs, resulting in
an average score of 49.7% (A120).

Self-reported knowledge of AI varied. In Western
Australia, 85% of medical students claimed basic under-
standing of AI (A151), and 91% of pediatric ophthalmolo-
gists reported familiarity with basic AI concepts (A154). In
contrast, only 31% of German medical students reported
basic knowledge of AI technologies (A145), and focus
group discussion showed pediatric radiology trainees at a
large academic hospital struggled with AI terminology and
literature appraisal (A156). A South Korea survey indicated
that medical students’ primary information sources were
news publications and TV (82%), social media (41%), lec-
tures (32%), or friends or family (29%), with academic pub-
lications and books at only 22% (A127). Similarly, in a US
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study, 72% of medical students and 59% of faculty learned
about AI from media sources (A159).

AI-related course availability was inconsistent. In Germany,
71.8% of medical schools offered AI courses, mostly as elec-
tives or extra-curricular activities (A142). However, in a sam-
ple of Canadian medical students, 85% reported no formal AI
education as part of the medical degree curriculum (A146).

Attitudes towards the application of AI in clinical
medicine

The studies reviewed revealed mixed attitudes toward AI in
clinical medicine. Most medical students and doctors
acknowledged AI’s potential benefits, such as enhancing clin-
ical judgment, research, and auditing skills, and streamlining
administrative processes (A111, A117, A141). However,
concerns included the ethical implications, weakened phys-
ician-patient relationships, and AI’s limitations in unexpected
scenarios (A114, A119, A154, A140).

Two studies investigated medical students’ intention to
use AI. One used the Unified Theory of User Acceptance of
Technology (UTAUT) to examine the intention to use AI for
diagnosis support, finding social influence as the only key
factor (A153). In the other study, intention to use AI was
only observed when students had a strong belief in the
role of AI in the future of the medical profession (A157).

Attitudes toward the application of AI in medical
education

Two studies assessed attitudes on the use of AI in medical
education. One study assessed Lebanese medical students’
views about using AI for assessment (A131). While 58%
believed AI would be more objective than a human exam-
iner, only 26.5% preferred AI assessments. Most (71%) pre-
ferred a combination of AI and humans. Another study in a
Caribbean medical school found that 33% of faculty used
ChatGPT, mainly for generating MCQs. The main concerns
about its use were the potential for incorporation of misin-
formation into teaching materials and plagiarism.

Concerns and hopes for AI

Concerns about AI included its potential to reduce the
demand for doctors and influence career choices, especially
in radiology (A113, A115, A124, A135, A137,A147, A150).
Insufficient AI training in medical curricula was another
worry (A128, A143, A151). Three studies assessed aspects
of AI which should be included in medical curricula, includ-
ing clinical applications, algorithm development, algorithm
appraisal, coding, and basics of AI, statistics, ethics, and
privacy (A133, A156, A158).

Performance of LLMs on medical exams

Thirty-two studies assessed various LLMs’ abilities to perform
on medical exams or on test questions drawn from large
question banks (A160-A191). The LLMs tested included
Microsoft’s Bing Chat, ChatGPT, GPT-3, GPT-3.5, and GPT-4,
Google’s Bard, and several other pre-trained language mod-
els. They were tested on multiple choice (A160-A185, A188-
A190), short answer and essay questions (A186-A187, A191),

though questions with images and diagrams were typically
excluded due to LLMs’ current limitations processing visuals.
A few studies asked the LLM to justify its answers (A164,
A168, A175-A176), which were then assessed for accuracy.
LLM performance was compared to varying levels of human
performance (i.e. novice to expert), as well as ‘gold standard’
answers (A160-A191). LLMs scored at or above passing
thresholds on a number of local, university-derived, basic
and clinical science exams (A178, A183, A184), as well as on
national licensure exams (A160, A169, A180, A182, A187,
A189) and specialty licensure exams (A169, A175, A181).
Despite these successes, LLMs performed only modestly or
poorly on other exams (A168, A170, A173-A174, A176, A190).
Newer generation LLMs generally outperformed older gener-
ation models, though this was not universally true. LLMs typ-
ically performed better on general medical exams, compared
to specialty or subspecialty exams, though this was also not
universal. LLM performance was tested on exams from
Australia (A177), Canada (A162, A174), China (A173, A190),
France (A160, A170, A181), Germany (A165, A182), India
(A160, A163, A183-A184, A187), Italy (A160), Japan (A189),
Korea (A171, A180), Netherlands (A179), Saudi Arabia (A178),
Spain (A160), Switzerland (A185), Taiwan (A173), Turkey
(A166), the UK (A160, A167, A191), and the US (A160-A161,
A164, A168-A169, A172-A173, A175-A176, A186, A188). In
most cases, LLMs performed better on English language
questions, or when questions in other languages were first
translated into English. Their performance in other languages
was highly variable (e.g. 22% accuracy in French vs. 73% in
Italian (A160, A170). At this time, learners and educators
should approach use of LLMs with caution due to variable
accuracy (A188), though the notable improvements of newer
LLMs may soon overcome this barrier. As capabilities of
LLMs improve, educators must contend with concerns about
the integrity of formal assessments, as well as their reliability
and validity. Assessments may require redesign, and a para-
digm shift towards open book tests that emphasize learners’
abilities to integrate information, rather than recall facts, may
be warranted (A186).

Overview of perspectives publications included in the
review

Eighty-seven perspective publications met inclusion criteria
for this review, labeled P1–P87 in Supplementary Table 3.
These perspectives, encompassing commentaries, editorials,
and letters to the editor, offered insights on the use of AI
in medical education, presenting opinions, recommenda-
tions, or examples of potential use cases of AI. We catego-
rized these perspectives into five groups according to their
primary content—general arguments for the importance of
incorporating AI in medical education (n¼ 42); suggested
educational applications or developments (n¼ 18); frame-
works for curricular development (n¼ 8); recommendations
for curricular content, AI competencies, or resources to sup-
port use of AI (n¼ 15); and ethics considerations (n¼ 4).
Some publications had secondary content in an additional
category (see Supplementary Table 3 and Supplementary
Appendix 2 for additional details).
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Importance of integrating AI into medical education

Many of the perspectives argued that incorporating AI in
medical education is essential to prepare future physicians to
apply AI to patient care (P50, P52–53, P60, P65–67, P70, P79).
AI is already influencing diagnosis and treatment decisions in
health care, and medical students and residents need to be
ready to use AI tools effectively in the health care system.
Additionally, several perspectives advocated for the use of AI
to enhance teaching and learning (P55–56, P58–59, P61, P64,
P69, P71, P84–86) or assessment (P48, P81). Two perspectives
urged medical educators to incorporate teaching about AI’s
influence and ethical and legal considerations (P57, P87).
Some of the perspectives raise cautions about AI’s potential
to compromise or limit clinical learning (P46, P49, P54, P63,
P72–73, P82). The remaining perspectives contained general
statements about the potential use of AI in medical educa-
tion (P47, P49, P51, P54, P62, P68, P74–78, P80, P82–83).

Specific suggestions for educational applications and
ideas for development

The 18 perspectives with specific educational applications
included the following uses of AI tools in medical education:

� Intelligent Tutoring Systems – AI-powered platforms
providing personalized learning experiences to improve
the teaching of decision-making skills (P5)

� AI-assisted learner assessment – Latent Semantic
Analysis to grade students’ clinical case summaries and
provide feedback (P11); NLP to score clinical skills exams
(P15)

� ChatBot (e.g. ChatGPT) – AI processing and understand-
ing of medical literature to teach clinical management
(P10), assist with USMLE (P12) and other exam (P17)
preparation, promote critical thinking, creativity, and
patient communication (P8, P14, P16)

� Personalized Learning Platforms – AI-driven platforms
creating personalized learning paths for students (P1)
and providing personalized feedback (P8)

� Robot-Assisted Surgery Simulations (e.g. Virtual
Reality) – AI-powered simulators for surgical training
and evaluation (P13)

� Enhanced anatomy education – enhancing teaching,
learning, and assessment in anatomy education for
deeper learning and long-term retention (P2)

� AI tools to prepare applications – medical school
applications (with a call for guidelines to ensure fairness
in admissions) (P6) and personal statements for resi-
dency applications (P18)

� AI-generated art – to enhance visual storytelling for
patient encounters (P7)

� Machine learning and intra-operative video analysis
to improve patient care – teaching competency-based
patient assessments (P9)

Frameworks for AI in medical education

Several perspectives provided frameworks to guide the
incorporation of AI into medical education. An AI literacy
framework for medical school described aims, opportuni-
ties, and impact of AI for selection into medical school and
training programs, learning, assessment, and research (P19).

A framework for radiology education described the role of
AI to promote personalized learning and decision support
tools (P20). A framework that emphasized digital skills pro-
vided a structure for teaching data protection, legal aspects
of digital tools, digital communication, data literacy and
analytics (P21). A framework for integrating AI in UME used
a case-based approach with a detailed delineation of what
AI content could be taught through cases (P22). A frame-
work for early and progressive exposure to AI for medical
students provided an analytics hierarchy to scaffold learn-
ing to prepare students to adapt to evolving clinical set-
tings (P23). A framework for utilizing the rapidly expanding
medical knowledge base also incorporated content about
how AI relates to health care economics, regulations, and
patient care (P24). An embedded AI ethics education
framework provided a curricular structure for teaching the
ethical dimensions of medical AI in the context of existing
bioethics curricula. (P25). Finally, a curriculum framework
incorporated ML to build clinicians’ skills in research,
applied statistics, and clinical care (P26).

Recommendations for AI curriculum content or
competency, tools and resources

Fifteen perspectives offered explicit recommendations for cur-
ricular content about AI, AI competencies, and specific tools
and resources that can support curriculum development for
teaching about AI in medical education. Recommended con-
tent included what physicians will need to know to meet
patients’ needs as AI changes the practice of medicine (P31–
32), data science and concepts underlying AI (P33, P35), using
AI to improve surgical outcomes (P41), surgical training for
ophthalmologists (P40), AI model performance, financial impli-
cations, and generation of reports in radiology (P38–39, P37),
data science to support evidence-based medicine (P36), using
AI for diagnostics and prognosis in hematology (P28), con-
cepts underlying machine learning (P34), and ethical uses of
AI in medicine (P27). One publication proposed a curriculum
for a new specialty, Doctor in Medical Data Sciences (P29).
One publication explained six domains of competency for
effective use of AI tools in primary care, in the context of the
Quintuple Aim (P30).

Ethics considerations for AI education

Fourteen perspectives addressed ethics considerations and
reflected a multifaceted view of the ethical landscape AI
introduces to healthcare. Many of these publications
expressed caution about the limitations of AI applications
in medical education. These perspectives also stressed the
importance of educational approaches that equip health-
care professionals with the necessary skills to navigate AI
challenges, emphasizing the irreplaceable value of human
judgment and ethical reasoning in the age of AI.

Recommended focus for ethics education

Many of the perspectives papers raised concerns about the
ethics of using AI in healthcare and medical education, and
discussed the responsibility of physicians to grapple with
the ethical challenges that can compromise education and
health care. These papers emphasize the importance of
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preparing current and future physicians to grapple with
these issues, while acknowledging that we have neither
fully grasped the ethical implications of AI nor learned how
to adequately respond to the ethical challenges. When con-
sidered collectively, these papers contribute important
insights about the topics that must be addressed in med-
ical education. Referring to these papers can provide clear
guidance to medical educators about ethical issues to
include in curricula. The perspectives that addressed ethics
related to AI recommended ethics education on the follow-
ing topics, which are summarized in Figure 3:

� Algorithmic Bias and Equity: Future clinicians must
understand biases in health AI, especially those caused
by training on non-representative data sets, which
might exacerbate healthcare disparities (P42). Through
an AI curriculum, physicians can reflect critically on their
assumptions and the biases in both AI and clinical prac-
tice. This could help them better interpret AI outputs
and recognize the limitations of current medical know-
ledge (P22).

� Resource Allocation: AI in healthcare brings to the fore
issues of just resource allocation and equity, challenging
students to consider how AI can be designed and used
to promote justice in healthcare (P42).

� Safety and Quality Assurance: AI necessitates agree-
ment among healthcare professionals to use AI tools
responsibly and in alignment with professional obliga-
tions, such as practicing medicine safely and effectively
(P25). With AI’s integration into clinical practice, stu-
dents must understand regulatory efforts, gaps in AI

safety, and the ethical implications of using such tech-
nologies (P42).

� Human Interaction and Compassionate Care: AI-
based ethics training might be less likely to instill com-
passion in students compared to traditional methods.
One publication argued that compassion can indeed be
taught and that positive role models in medical educa-
tion can deepen students’ understanding of compas-
sionate practice (P44).

� Data Privacy and Security: The use of AI in medicine
necessitates a strong understanding of data privacy, the
ethical handling of patient data, and the legal dimen-
sions associated with AI (P42, P43). The large number of
available data sets and increased power of AI capabil-
ities make data de-anonymization (or reidentification)
highly possible through cross-referencing with other
data sets (P43).

� Automation Bias and Skill Preservation: Clinicians
must be wary of automation bias, where undue reliance
on AI could lead to errors, highlighting the need for bal-
anced trust and skepticism (P25). Ethics education must
ensure AI complements, not replaces, the clinician’s role
in compassionate care (P25). Training should focus on
preserving clinical skills and human interactions that AI
cannot replicate (P42), leveraging ‘hybrid intelligence’
systems to strengthen therapeutic patient-provider rela-
tionship and empathy (P44).

� Transparency and Informed Consent: The deployment
of health AI raises critical questions about informed
consent and the physician’s duty to inform patients
about AI’s involvement in their care decisions,

Figure 3. Ethical considerations for AI in medical education.
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highlighting the need for medical students to engage in
these discussions (P42). Proficiency in medical AI is
intertwined with ethical competency, where ethical con-
siderations significantly influence clinical decisions and
vice versa. As future practitioners, students need to
learn to identify AI’s potential consequences and how
to discuss them with patients in light of ethical princi-
ples (P25). In medical education, students must be
made aware of data collection, provide consent, and
understand the extent and implications of their con-
sent (P43).

Proposed educational approaches for ethics education

One recommended approach to teaching ethics about AI is
the incorporation of real-life case studies in medical curricula
to elucidate the multifaceted ethical issues presented by
health AI, such as informed consent, bias, and transparency
(P42). This case-based methodology not only enriches the
theoretical understanding but also hones practical decision-
making skills. An Embedded AI Ethics Education Framework,
which is an incremental approach that integrates AI ethics
within existing medical ethics courses, addresses the poten-
tial harms of technology misuse and equips students to con-
duct risk-benefit analyses fundamental to patient care (P25).
A third approach uses AI scenarios currently employed in
clinical practice as examples for case-based learning to pre-
pare students to critically evaluate the technical aspects of
AI alongside ethical implications (P22). This approach fosters
critical reflection and encourages interdisciplinary dialogue
essential for the application of AI in patient-centered care.
Another approach emphasizes the limitations of AI through
human-led ethics teaching, much like ethics teaching that
has become commonplace in medical school curricula.
This approach maintains an emphasis on human interaction
and the cultivation of moral reasoning over reliance on tech-
nology, while remaining open to the potential for ‘hybrid’
intelligence systems, in which humans and machines learn
from each other, resulting in superior performance in ethical
decision-making. Collectively, these educational strategies
underscore the necessity of equipping healthcare professio-
nals with both technical skill and ethical discernment to
navigate the complexities introduced by AI in healthcare
and health professions education.

Discussion

This review embarked on a journey to map the explosion
of interest in AI across the medical education landscape
through the lens of published works. The detailed tables of
articles and perspectives papers, summary infographics and
associated narrative clarify the current state of the evi-
dence. The first published study on AI in medical education
dated back three decades to 1992, though AI has existed
much longer than this. A steady flow of publications has
been seen since, a testament to the enduring fascination
and steady evolution of AI in medical education. The recent
surge in publications may at first appear to be a growth
spurt associated with maturation in the field, though our
analysis suggests it is more likely a contemporaneous
response to the public release of ChatGPT.

The recent advancements in AI technology have led to
rapid, widespread and in many ways limitless distribution
of accessible, cost-effective AI tools globally. This techno-
logical democratization is mirrored in the diverse origin of
publications with almost a third from regions outside of
the traditional North American or European academic hubs,
more than found in most recently published BEME reviews
(Daniel et al. 2022; Doyle et al. 2023; Hamza et al. 2023; Li
S et al. 2023). This review reflects a shift from centralized
to distributed perspectives in AI research and development,
offering a more inclusive and comprehensive understand-
ing of AI’s role in shaping medical education worldwide.

This scoping review, in charting the course of AI in med-
ical education, reveals not just the peaks and troughs of
evidence, but also an expansive change that has perme-
ated every facet of the educational environment. When
considering the impact at such a broad environmental
level, our analysis, viewed through the conceptual lens of
Oberg’s theory of ‘culture shock’ (Oberg 1960; Zhou et al.
2008), aligns with the theory’s four phases: Honeymoon,
Frustration, Adaptation, and Acceptance. Each phase repre-
sents a distinct emotional, psychological, and behavioral
response to AI integration manifesting variably, across dif-
ferent areas and individuals.

The initial ‘Honeymoon’ phase is characterized by a mix-
ture of fascination and idealism, often reflected in perspective
and innovation pieces. These works, often written by experts,
provide valuable insights, useful resources and some direc-
tions or foundations to move the field forward. These some-
times portray an overtly optimistic view of AI’s potential,
lacking detailed exploration of challenges and ethical
considerations.

In contrast, the ‘Frustration’ phase has been seen in evi-
dence of attitudes of feeling overwhelmed, fear related to
lack of understanding, and feeling lost and out of place.
These concerns are not only valid but a necessary step in
progressing towards acceptance of such a shock in the sys-
tem. The ethical considerations and challenges related to
specific applications of AI are key to consider. Balancing
these aspects is crucial for sustainable implementation
before the next phase.

The ambivalence observed in a large group of studies
examining NLP, mostly ChatGPT, for medical exams [A160–
191], exemplifies the non-linear and individual nature of
cultural adaptation. This straddling of both Honeymoon
and Frustration phases reflects a duality – awe of AI’s capa-
bilities juxtaposed with apprehension about its implica-
tions, particularly in reducing the need for traditional
medical education methods. We draw attention to this
group of publications not just as an interesting example,
but to highlight that it is clear that without an innovative
or different perspective, no further studies of this form
appear justified.

As the initial frustrations and challenges of AI integra-
tion begin to crystallize, we transition into the ‘Adaptation’
phase. Educators begin to find practical and effective ways
to incorporate AI tools. This phase is marked by the prag-
matic ‘use cases’ of AI, showing a shift from initial awe and
skepticism towards AI to a more balanced and functional
integration of these technologies. However, discussions
around these use cases in perspective pieces often lack
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depth in building a longitudinal or iterative understanding,
which is critical for effective integration.

Finally, in the ‘Acceptance’ phase, we witness a trans-
formation in the educators’ relationship with AI, evolving
from mere adaptation to a state of genuine integration
and comfort. This phase signifies a shift where AI is no lon-
ger viewed as an external, disruptive force but as an inte-
gral part of the educational blueprint. The subset of
publications exhibits a deep understanding and skillful util-
ization of AI, seamlessly incorporating these technologies
into their wide-ranging educational developments, charac-
terized by a blend of creativity, critical thinking, and a for-
ward-looking perspective that acknowledges the potential
of AI while remaining cognizant of its limitations and eth-
ical considerations. This mature phase of acceptance is not
merely about recovery from the initial ’shock’ of AI integra-
tion; it represents a proactive, thoughtful embrace of these
technologies. These educators have become pioneers in a
true sense, setting benchmarks for how AI can be harmoni-
ously and innovatively integrated into medical education.
Their experiences and practices offer valuable insights for
the broader educational community, illustrating a roadmap
from apprehension to acceptance, a journey that is as
much about personal and professional growth as it is
about technological adoption.

In the process of extracting and charting the data, we
have identified critical gaps in how a study is reported – with
a need for a ‘compass’ to navigate the roadmap in AI applica-
tions in medical education. Here, addressing gaps involves a
shift from mere reporting of disparate items, such as educa-
tional contexts, stages, or AI technologies, to a comprehen-
sive framework that supports dissemination, replication, and
innovation through several elements. We propose the FACETS
framework, presented in Figure 4, as a structured approach
for future AI studies in medical education, focusing on key
elements: form, use case, context, education form, technol-
ogy, and SAMR framework for technology integration. Our
review reveals that these elements are commonly present in
the literature, but they are typically reported in isolation, not

cohesively in a single publication. Bringing together these dis-
parate elements in a more systematic and unified manner is
valuable in explaining to both educators and education
researchers the specific details of the AI being employed,
their relevance to past practice, and how they can be inte-
grated into the educational context. It is designed to not only
guide authors in conceptualizing their works but also to help
readers to grasp the full scope and impact of AI in medical
education. This approach is essential for advancing under-
standing and innovation in the field, forming a core recom-
mendation from the author team for future research.

This framework cannot be applied to perspective pieces
or attitudes surveys, but the use of this framework by
authors of works published regarding any AI use-case or
broader innovation will be of significant benefit. The
FACETS framework may aid in identifying converging areas
of research and serve as a useful guide for more focused
syntheses in the future.

As this review was rigorous, systematic, and wide rang-
ing in true alignment with the scoping tradition, we do not
believe further scoping reviews are indicated. However,
given the velocity of output, more in-depth systematic
reviews will soon be indicated in the areas of admissions,
teaching, assessment, and clinical reasoning. Another area
where a systematic review may be warranted was out of
scope for this review, namely, AI use in medical education
research. Given the huge untapped potential of big data in
educational institutions, this is a key area for further work.

Limitations of this review include the limitations of the
scoping tradition, which by definition, does not synthesise
evidence (Levac et al. 2010). Further limitations include
subjectivity in categorizing studies (e.g. some studies could
be classified as both teaching and assessment), as well as
issues with consistent terminology, which underscore the
complexity of navigating a rapidly advancing field like AI in
medical education. The review iterated the search on a
number of occasions in the early phases, reflecting the vast
and evolving scope of AI literature. In light of this, studies
may have been missed, despite systematic and rigorous

Figure 4. FACETS framework to report future AI innovations in medical education.
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methods. The inclusion of perspective articles, while uncon-
ventional for BEME reviews, offers a diverse perspective on
AI in medical education. However, this inclusion may be
perceived as diluting the empirical strength of the review.
Thus, a decision was made to present their synthesis trans-
parently as a separate parallel data set within the results,
as there was much value in clarifying what these articles
offered (and did not offer). We did not perform the sixth
stage of the Arksey and O’Malley scoping review frame-
work. While we had AI and education experts on the
author team who fulfilled this role, skipping the external
expert consultation step could be viewed as a limitation.

Implications for practice and policy

This review underscores the transformative role of AI in med-
ical education, necessitating an integration of AI into various
aspects like curriculum development, teaching methodologies,
and learner assessment to maintain alignment with techno-
logical advancements. It calls for updating competency frame-
works and establishing standardized guidelines for AI usage
in education. The need for collaborative efforts between edu-
cators, policymakers, and AI developers is highlighted to
ensure effective integration and address equity and accessibil-
ity issues, ensuring AI tools are available to all without bias.
Continuous investment in resources and time is essential to
transition from initial fascination with AI to its profound adop-
tion in educational settings. The review also stresses manag-
ing risks associated with AI, including ethical concerns and
potential misuse. Crucially, while leveraging AI for new
insights and efficiencies, the irreplaceable human element in
healthcare must be preserved. Ethical education is vital,
ensuring AI enhances rather than replaces the healthcare pro-
vider’s role, upholding patient-provider relationships,
empathy, and respect for patient autonomy. This approach
prevents the dehumanization of care and ensures AI’s use
bolsters rather than undermines the core human skills and
values central to the medical profession.

Implications for future research

The review highlights several key areas for future research and
educational development. It underscores the need for compre-
hensive studies on the long-term impacts of AI, both on the
overall landscape of medical education and specific learning
outcomes. Additionally, there is a call for research addressing
potential risks associated with AI, such as automation bias,
over- and under-skilling, exacerbating disparities, and the pres-
ervation of essential clinical skills. It also recommends employ-
ing the FACETS framework for future AI studies in medical
education. This comprehensive approach to research and
development will ensure that AI is integrated into medical edu-
cation in a manner that is ethically sound, educationally effect-
ive, and cognizant of the potential risks and challenges.

Conclusions

The landscape of AI in medical education, as charted in this
review, spans a wide array of stages, specialties, purposes,
and use cases, primarily reflecting early adaptation phases–
only a few describe more in-depth employment for longitu-
dinal or deep change. The proposed FACETS framework is a

key outcome, offering a structured approach for future
research and practice. While no immediate areas for system-
atic review are identified, the dynamic nature of AI in educa-
tion necessitates ongoing vigilance and adaptability.
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