
Central Lancashire Online Knowledge (CLoK)

Title The Role of the Intestinal Microbiome in Multiple Sclerosis—Lessons to Be 
Learned from Hippocrates

Type Article
URL https://clok.uclan.ac.uk/49839/
DOI https://doi.org/10.3390/biology12121463
Date 2023
Citation El Sayed, Mohamed Mahmoud, Mohak, Sidhesh, Gala, Dhir, Fabian, Reka, 

Peterfi, Zoltan and Fabian, Zsolt (2023) The Role of the Intestinal 
Microbiome in Multiple Sclerosis—Lessons to Be Learned from Hippocrates. 
Biology, 12 (12). p. 1463. 

Creators El Sayed, Mohamed Mahmoud, Mohak, Sidhesh, Gala, Dhir, Fabian, Reka, 
Peterfi, Zoltan and Fabian, Zsolt

It is advisable to refer to the publisher’s version if you intend to cite from the work. 
https://doi.org/10.3390/biology12121463

For information about Research at UCLan please go to http://www.uclan.ac.uk/research/ 

All outputs in CLoK are protected by Intellectual Property Rights law, including Copyright law.  
Copyright, IPR and Moral Rights for the works on this site are retained by the individual authors 
and/or other copyright owners. Terms and conditions for use of this material are defined in the 
http://clok.uclan.ac.uk/policies/

http://www.uclan.ac.uk/research/
http://clok.uclan.ac.uk/policies/


Citation: El-Sayed, M.M.; Mohak, S.;

Gala, D.; Fabian, R.; Peterfi, Z.;

Fabian, Z. The Role of the Intestinal

Microbiome in Multiple

Sclerosis—Lessons to Be Learned

from Hippocrates. Biology 2023, 12,

1463. https://doi.org/10.3390/

biology12121463

Academic Editor: Susana

Sangiao-Alvarellos

Received: 25 October 2023

Revised: 16 November 2023

Accepted: 18 November 2023

Published: 24 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biology

Review

The Role of the Intestinal Microbiome in Multiple
Sclerosis—Lessons to Be Learned from Hippocrates
Mohamed Mahmoud El-Sayed 1,†, Sidhesh Mohak 2,† , Dhir Gala 3,† , Reka Fabian 4, Zoltan Peterfi 5

and Zsolt Fabian 1,*

1 School of Medicine and Dentistry, Faculty of Clinical and Biomedical Sciences, University of Central
Lancashire, Fylde Rd, Preston PR1 2HE, UK; mmelsayed@uclan.ac.uk

2 Department of Clinical Sciences, Saint James School of Medicine, Park Ridge, IL 60068, USA;
smohak@mail.sjsm.org

3 American University of the Caribbean School of Medicine, 1 University Drive, Jordan Road, Cupecoy,
St Marteen, The Netherlands; dhirgala@students.aucmed.edu

4 Salerno, Secondary School, Threadneedle Road, H91 D9H3 Galway, Ireland; rekafabian2024@salerno.ie
5 Division of Infectology, 1st Department of Internal Medicine, University of Pecs, Clinical Centre,

7623 Pécs, Hungary; peterfi.zoltan@pte.hu
* Correspondence: zfabian@uclan.ac.uk
† These authors contributed equally to this work.

Simple Summary: Multiple sclerosis is one of the long-term human diseases that significantly affects
quality of life through the decline of muscle strength, problems in the coordination of muscle functions
leading to disability or the decline of visual and cognitive functions. Although extensive research in
the field of multiple sclerosis identified the abnormal function of the patients’ immune systems as the
primary mechanism underlying the disease, the ultimate cause of the autoimmune nature of multiple
sclerosis, remained unknown. Recent research, however, shed light on the possible role of the bacteria
living in the human gut, termed the human intestinal microbiome, in the development of multiple
sclerosis. In this article, we review our current knowledge on the interplay between the intestinal
microbiome and the immune mechanisms involved in the development of multiple sclerosis.

Abstract: Based on recent advances in research of chronic inflammatory conditions, there is a growing
body of evidence that suggests a close correlation between the microbiota of the gastrointestinal tract
and the physiologic activity of the immune system. This raises the idea that disturbances of the GI
ecosystem contribute to the unfolding of chronic diseases including neurodegenerative pathologies.
Here, we overview our current understanding on the putative interaction between the gut microbiota
and the immune system from the aspect of multiple sclerosis, one of the autoimmune conditions
accompanied by severe chronic neuroinflammation that affects millions of people worldwide.

Keywords: intestinal microbiome; multiple sclerosis; macrophages; regulatory T lymphocytes

1. Introduction

Chronic inflammatory human diseases present a growing medical challenge to the
healthcare systems in developed countries [1]. Despite the diversity of the involved tissues
and organs, one of the possible underlying mechanisms is the disturbed control of the
immune system that develops autoimmunity. Although the molecular details are still not
clear, recent research suggests that the microbiota of the gastrointestinal (GI) tract plays
an important role in the physiologic activity of the immune system, raising the idea that
disturbances of the GI ecosystem contribute to the unfolding of autoimmune conditions.
Here, we overview this putative interaction in the context of multiple sclerosis (MS), one of
the autoimmune conditions accompanied by severe chronic neuroinflammation affecting
millions of people worldwide.
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2. Multiple Sclerosis

Multiple sclerosis (MS) is a common multifactorial chronic neurodegenerative disor-
der involving the central nervous system (CNS) affecting around 2 million people world-
wide [2,3]. The primary symptoms of MS are directly related to the demyelination of
axons, consisting sensory issues and the impairment of motor functions like ataxia and
weakness [4]. Primary symptoms can lead to secondary complications including recur-
rent urinary tract infections due to impaired neuromuscular functions of the bladder or
psychological problems like depression [5,6]. Based on the initial presenting symptoms,
the disease courses are grouped into four major classes including the relapsing–remitting,
primary progressive, secondary progressive and clinically isolated forms [7]. Currently,
there is no cure available for MS, so mainstream therapeutic approaches focus on modifying
disease progression by reducing the number of flareups and treating individual symptoms
to improve patients’ life quality [8].

The pathogenesis of MS is believed to be autoimmune, involving local inflamma-
tion and lymphocytic destruction of oligodendrocytes, the myelinating cells of the CNS
(Figure 1) [9]. Myelin is a protective sheath that covers the neuronal axons and is involved
in the accelerated conduction of the action potential [10]. The autoimmune destruction of
myelin impairs communication between neurons causing sensory, motor and cognitive
dysfunctions [11]. The death of oligodendrocytes in MS occurs via multiple pathways
(Figure 1). One of these is binding of the Fas ligand to its receptor on the surfaces of
oligodendrocytes, leading to their caspase-8-mediated apoptosis. Indeed, immunohisto-
chemistry displayed an increased expression of Fas on oligodendrocytes and Fas ligand
on microglia cells in MS [12]. Another mechanism of oligodendrocyte death is through
TNF-α mediated necrosis [13]. In accordance, a correlation was noted between the TNF-α
concentration in the cerebrospinal fluid (CSF) and the severity of the disease presentation in
MS [14]. The destruction of the oligodendrocytes can also be mediated by IFN-γ activated
caspase-11, as it was demonstrated in caspase-11 knockout mice, where cells remained
resistant to cell death upon IFN-γ treatment [15]. The putative role of pro-inflammatory
cytokines and the extrinsic apoptotic pathway in the destruction of the oligodendrocytes
fuels the idea of the autoimmune nature of MS.
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Figure 1. Pathological hallmark of multiple sclerosis. Multiple sclerosis is one of the demyelinating 
disorders with the leading pathological finding being the destruction of the myelin sheet around the 
axons (A). Oligodendrocytes can engage in apoptosis via the activation of multiple signaling path-
ways in response to the FAS ligand (FASL), Tumor necrosis factor alpha (TNFα) or Interferon gamma 
(IFNγ) (B). Created with BioRender.com. 

3. Autoimmunity in Multiple Sclerosis 
Data indicate that upon the pathogenesis of MS, both innate and adaptive immune 

cells bypass the highly selective blood–brain barrier and become activated by myelin in a 
type IV hypersensitivity reaction [16]. It is believed that in MS patients, T lymphocytes are 
activated in the peripheral compartment and infiltrate the CNS leading to myelin and ax-
onal damage [17]. The activation of autoreactive immune cells causes the secretion of cy-
tokines, e.g., IL-1, IL-6 and TNF-α, compromising the blood–brain barrier (Figure 2) [18]. 
These pro-inflammatory cytokines upregulate the expression of adhesion molecules on 
vascular endothelial cells [19,20]. Lymphocytes bind to these adhesion molecules, migrate 
out of the vasculature and degrade the blood–brain barrier via matrix metalloproteases 
[21,22]. Early in the disease, macrophages dominate the infiltration followed by CD8+ and 
CD4+ T cells which, eventually, leads to general atrophy of the brain on imaging [23]. The 
majority of the CNS-infiltrating CD4+ T cells fall into the class of TH1 and TH17 cells, skew-
ing the differentiation of CD4+ T cells away from the TH2 phenotype [24]. As the disease 
progresses, B- and plasma cells begin to accumulate in the connective tissue of CNS as 
well forming ectopic follicles [25]. Although it is unclear if the presence of follicles causes 
the severe disease or if it is rather the consequence of disease progression, the association 
between follicle formation and disease progression has been noted, [26,27]. Accordingly, 
immune cells are found to be autoreactive against myelin basic protein and proteolipid 
protein, components of the myelin sheets, and immunohistochemistry analyses identified 
C3d-, C9- and IgG-coated oligodendrocytes in the CNS of MS patients [28–30]. The role of 

Figure 1. Pathological hallmark of multiple sclerosis. Multiple sclerosis is one of the demyelinating
disorders with the leading pathological finding being the destruction of the myelin sheet around
the axons (A). Oligodendrocytes can engage in apoptosis via the activation of multiple signaling
pathways in response to the FAS ligand (FASL), Tumor necrosis factor alpha (TNFα) or Interferon
gamma (IFNγ) (B). Created with BioRender.com.

3. Autoimmunity in Multiple Sclerosis

Data indicate that upon the pathogenesis of MS, both innate and adaptive immune
cells bypass the highly selective blood–brain barrier and become activated by myelin in a
type IV hypersensitivity reaction [16]. It is believed that in MS patients, T lymphocytes are
activated in the peripheral compartment and infiltrate the CNS leading to myelin and axonal
damage [17]. The activation of autoreactive immune cells causes the secretion of cytokines,
e.g., IL-1, IL-6 and TNF-α, compromising the blood–brain barrier (Figure 2) [18]. These
pro-inflammatory cytokines upregulate the expression of adhesion molecules on vascular
endothelial cells [19,20]. Lymphocytes bind to these adhesion molecules, migrate out of
the vasculature and degrade the blood–brain barrier via matrix metalloproteases [21,22].
Early in the disease, macrophages dominate the infiltration followed by CD8+ and CD4+ T
cells which, eventually, leads to general atrophy of the brain on imaging [23]. The majority
of the CNS-infiltrating CD4+ T cells fall into the class of TH1 and TH17 cells, skewing
the differentiation of CD4+ T cells away from the TH2 phenotype [24]. As the disease
progresses, B- and plasma cells begin to accumulate in the connective tissue of CNS as
well forming ectopic follicles [25]. Although it is unclear if the presence of follicles causes
the severe disease or if it is rather the consequence of disease progression, the association
between follicle formation and disease progression has been noted, [26,27]. Accordingly,
immune cells are found to be autoreactive against myelin basic protein and proteolipid
protein, components of the myelin sheets, and immunohistochemistry analyses identified
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C3d-, C9- and IgG-coated oligodendrocytes in the CNS of MS patients [28–30]. The role of
autoreactive immune cells in the pathogenesis of the neuroinflammation in the CNS of MS
patients has been supported by the findings that myelin basic protein-activated CD5+ T
cells are able to provoke experimental allergic encephalomyelitis in healthy mice and that
HLA-DR-positive macrophages are also present in the CSF of MS patients [31,32].
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ent (GM-CSF) proliferation and play essential roles in immunosurveillance [33–35]. Em-
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(EAE), the commonly used in vivo model of MS, was significantly delayed in a condition-
ally “paralyzed” microglial cell model [39]. It is believed that the activation of microglial 
cells leads to an oxidative burst causing free radical injury to the oligodendrocytes [40]. 
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activation and rather dependent on the recruitment of monocytes from the blood [41]. This 
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of MS patients and EAE models but in the absence of CCR2 on monocytes, progression of 
the EAE fails [43–45]. 

Figure 2. Pro-inflammatory macrophages invade the CNS in the initial phase of neuroinflammation
in multiple sclerosis. Autoreactive immune cells (AIC)-released (A) pro-inflammatory cytokines
(PC) induce the expression of adhesion molecules in endothelial cells that trigger recruitment (B)
of lymphocytes (Ly), first, via weak Selectin (C) and, then, via firm, integrin-mediated (D) cell–cell
interactions. The latter ones initiate diapedesis (E) of activated lymphocytes (F) into the interstitial
space of CNS where secretion of matrix metalloproteinases (MMPs) damage lamina basalis of the
blood–brain barrier (BBB). This leads to inflammatory injury of the cellular components of the blood–
brain barrier including the endothelium, peri- and astrocytes alike. The damaged blood–brain barrier
then recruits (G) monocytes (M) and neutrophil granulocytes (N). Following their immigration into
the CNS, monocytes differentiate into pro-inflammatory macrophages (φ) and, with neutrophil
granulocytes (N), initiate neuroinflammation (H). Created with BioRender.com.

3.1. Macrophages

Besides monocytes recruited from the blood stream upon local inflammation, mi-
croglial cells, the tissue-resident macrophages of the CNS, are also believed to be key
elements of MS pathogenesis. Tissue-resident macrophages are found locally in various
tissues from birth where their tissue pools are maintained by in situ, macrophage colony-
stimulating factor (M-CSF)/granulocyte macrophage colony-stimulating factor-dependent
(GM-CSF) proliferation and play essential roles in immunosurveillance [33–35]. Embry-
ologically, microglial cells are derived from primitive myeloid progenitors in the yolk sac,
a distinct lineage compared to the hematopoietic stem cells, prior to the formation of the
blood–brain barrier [36–38].

The putative role of microglial cells in the initial stages was established on the basis of
the observation that the onset of the experimental autoimmune encephalomyelitis (EAE),
the commonly used in vivo model of MS, was significantly delayed in a conditionally
“paralyzed” microglial cell model [39]. It is believed that the activation of microglial
cells leads to an oxidative burst causing free radical injury to the oligodendrocytes [40].
The progression from the initial stage, however, seems to be independent of microglial
activation and rather dependent on the recruitment of monocytes from the blood [41]. This
is mediated by the interaction between the monocyte chemoattractant protein-1 (MCP1)
and the CC chemokine receptor 2 (CCR2) [42]. Indeed, macrophages are found in the CNS
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of MS patients and EAE models but in the absence of CCR2 on monocytes, progression of
the EAE fails [43–45].

Macrophages that are usually present in acute and active inflammation sites are
characterized by the surface markers MRP14 and 27E10. Monocytes migrate from blood
vessels to sites of inflammation, followed by their differentiation into macrophages or
dendritic cells (reviewed in [46]). Macrophages, then, develop either a pro-inflammatory
M1 phenotype or an anti-inflammatory M2 phenotype [47,48]. Although in chronic MS,
macrophages are typically positive for surface markers characteristic for matured species,
in a relapsing model of EAE, an increase in circulating GM-CSF-activated CD11b+, CD62L+

and Ly6C(hi)+ pro-inflammatory monocytes was observed prior to relapse, suggesting that
proinflammatory cells invade the CNS from extra-CNS reservoirs upon relapses [44,49].
The M1 phenotype secretes pro-inflammatory cytokines such as IFN-γ, TNF-alpha and
IL-6 as well as reactive oxygen species leading to the death of myelinating cells in the
CNS [50]. Since the macrophage-mediated disease progression in MS is, at least in part,
GM-CSF-dependent that produced by a subset of T helper lymphocytes, T cells are believed
to play a central role in MS pathogenesis [51].

3.2. T Lymphocytes

T lymphocytes are derived from hematopoietic stem cells in the bone marrow that
travel to the thymus for maturation [52,53]. This process gives rise to a naïve T cell
pool that does not react to autoantigens but is ready to recognize their cognate foreign
antigens to mediate immune reaction (reviewed in [54]). The central role of autoreactive T
cells in MS emerged from findings that susceptible animals can be prompted to develop
EAE through the active induction or adoptive transfer of autoreactive myelin-specific
lymphocytes [55–57]. These antigen-specific lymphocytes undergo colony expansion in
the regional node before migrating to the central nervous system (CNS) and forming
inflammatory centers, which result in symptoms analogous to those observed in MS. The
concept of the central role of T cells in MS is further underpinned by the International
Multiple Sclerosis Genetics Consortium showing that the strongest association with genetic
risk factors is with the HLA-DRB*1501 and HLA-A*0301 MHC alleles, key mediators of T
cell antigen recognition [58].

The two, apparently, most prominent fractions of T lymphocytes in MS lesions are
the CD4+ Th1 and CD4+ Th17 populations expressing IFNγ and IL-17, respectively [59,60].
The latter one is believed to not only maintain Th17 cells in an autocrine manner but also
to promote pro-inflammatory reactions within the CNS (reviewed in [61]). Besides IL-17,
Th17 cells also secrete IL-21 and -22 which are thought to contribute to the destruction of
the blood–brain barrier, supporting the invasion of the CNS by activated immune cells [62]

Upon thymic education, a subtype of T cells, termed regulatory T cells (Treg) and
characterized by the CD4 and CD25 surface markers and the expression of the nuclear
transcription factor FOXP3, also remain autoreactive, but that allows them to recognize and
bind to autoantigens on the surface of other immune cells [63,64]. Indeed, Treg cells help to
maintain peripheral immunotolerance by inducing apoptosis in autoreactive T cells [65]. In
the context of MS, depletion of Treg cells suppresses the spontaneous recovery from EAE
while an increase in Treg cells is noted upon recovery from EAE [66]. In support of this
concept, the induction of myelin oligodendrocyte glycoprotein-specific Treg cells leads to
the reduction of neuroinflammation in EAE models [67]. Data indicate that the recruitment
of Treg cells from the circulation upon remission in the EAE model is mediated via IL-4 [68].
The suppression of inflammation via Treg cells is mediated via anti-inflammatory cytokines
such as IL-10 [69]. IL-10 inhibits T cells by suppressing the co-stimulatory pathway for
T cell activation via CD28 [70,71]. Indeed, EAE models with IL-10 knockout showed an
increased release of pro-inflammatory cytokines [72]. In accordance, in MS patients, a
functional defect in IL-10 secretion by Treg cells was observed [73]. These observations
fueled the agreement on the leading role of autoreactive T lymphocytes in MS.
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3.3. B Cells

Although MS was considered as a primarily T cell dysregulation-mediated condition
for years, recently this picture has been shifted toward a condition dictated by a disfunction
between T and B lymphocytes. Indeed, the presence of oligoclonal immunoglobulins in the
cerebrospinal fluid of MS patients and the positive effects of anti-CD20 antibodies in the
clinical management of MS shed light on the importance of B cells in the pathogenesis of
MS [74,75]. In secondary lymphoid organs, naïve B cells process antigens and load onto
class II HLA complexes to present them for CD4+ Th lymphocytes, the key players in MS
pathology [76]. Interestingly, the strongest genetic risk factor found in MS is the HLA-
DRB*1501 allele that encodes for a class II MHC molecule [58]. In return, B cells respond
to Th cell-secreted IL-21 which trigger their switch to IgG+ species [77]. It is noteworthy
that this is the same cytokine that is secreted by Th17 cells and is believed to play a role in
the destruction of the blood–brain barrier in MS [78]. Thus, one can speculate whether the
HLA-DRB*1501 allele and/or autoreactive Th17 cells compromise the reciprocal interaction
between B and T cells in MS patients. Indeed, data indicate that, besides the autoreactive T
lymphocytes, MS patients harbor defects in peripheral B cell tolerance checkpoints, leaving
polyreactive B cells behind in the circulation [79]. Although details of the underlying
mechanisms are still to be elucidated, dysregulated B cells eventually begin to express high
levels of CXCR3, enabling them to cross the blood–brain barrier in MS patients [80]. Data
indicate that in the CNS, CXCR3+ species differentiate into antibody-secreting cells that
support the recruitment of further CD4+ T cells to the CNS [81].

3.4. Neutrophil Granulocytes

It is noteworthy, however, that the CD4+ T cell-driven EAE models that established the
T cell-centered view of MS pathogenesis neither reproduce the full-blown human disease
nor necessarily display the potential role of other immune cell subtypes in MS. Indeed,
IL-17, for instance, is one of the cytokines that promotes the migration of IL-1β-producing
neutrophil granulocytes to the CNS lymphatic system [82]. Although they were neglected
initially in the context of this disease, neutrophil granulocytes are, now, believed to be
potentially involved in the pathogenesis of MS as well. Indeed, neutrophil granulocyte
products are detectable in the CSF during the onset of EAE, suggesting that the innate
immune system also plays a role in the pathogenesis of MS [83]. This concept is further
supported by findings that EAE animals show a delayed onset of EAE upon depletion
of neutrophil granulocytes and that granulocyte macrophage-colony stimulating factor
receptor knockout mice are resistant to EAE [84,85]. Moreover, the induction of genes
encoding chemokines CXCL1 and CXCL2, which are known to be upregulated in the CNS
during MS and are believed to orchestrate the chemotaxis of neutrophil granulocytes to
the CSF and CNS in EAE, has been shown to be mediated by encephalitogenic CD4+ TH17
cells, the core players of MS pathogenesis [86]. In accordance, genetic ablation of the major
receptor for CXCL1 and CXCL2 (CXCR2) abrogates EAE in mice, but the transplantation
of CXCR2+ polymorphonuclear leukocytes into CXCR2−/− animals is sufficient to restore
susceptibility to EAE [86]. In humans, markers of the primed state of neutrophil granulocyte
activity, like their elevated number, reduced apoptotic activity, higher expression of TLR-2,
fMLP receptor, IL-8 receptor and CD43, enhanced degranulation and increased levels of
neutrophil extracellular traps in serum, have also been documented, depicting a complex
autoreactive status of the CNS in MS and fueling intensive investigations for factors
involved in the dysregulation of immune cells upon MS [87].

4. Microbiome as a Regulatory Factor of the Immune System

MS epidemiology suggests that these include ethno-genetic factors since MS is more
prevalent in Caucasians compared to individuals of African or Asian descent [88]. The
highest prevalence is observed in Northern Europe, particularly in regions like the British
Isles and Scandinavia, as well as areas initially settled by migrants from these regions,
including North America, Australia, and New Zealand [89]. These epidemiologic data
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suggest a correlation between the prevalence of MS and the amount of winter sunlight,
showing lower MS prevalence in regions with abundant sunlight [90]. This correlation,
however, is not strong enough to consider sunlight exposure as the sole pathogenic factor
of MS. Indeed, regions with very limited sunlight exposure, like the far north of Norway,
show lower incident rates than that of Scotland or England and only half that of landlocked
Oppland further south [91]. This peculiar pattern suggests the role of further ethno-genetic
and/or geographic factors. Since latitude remains the most robustly associated factor
of MS risk, inquiries into the role of photobiology linked vitamin D intake, particularly
through multivitamin supplements, with a lower risk of MS [92–94]. A model that inte-
grates vitamin D into genetic and environmental susceptibility to MS posits that vitamin
D epigenetically modifies genes crucial in brain development, immune system function,
axonal resilience, and immunological tolerance [90]. However, in a study assessing the
effect of vitamin D supplementation on patients with relapsing–remitting multiple sclerosis
(RR-MS), intriguing findings emerged, since vitamin D levels of RR-MS participants turned
out to be very similar to that of the healthy participants both before and after 90 days of sup-
plementation [95]. Instead, it was revealed that MS participants exhibited differential gut
microbiota composition when compared to the healthy controls prior to supplementation
of vitamin D. Specifically, they had lower levels of Bacteroidaceae and Faecalibacterium, and a
higher abundance of Ruminococcus. It is particularly noteworthy that untreated MS subjects
demonstrated a significant increase in the Akkermansia, Faecalibacterium, and Coprococcus
genera following vitamin D supplementation [96]. These findings also raise the question of
whether diet may influence MS incidence and progression, linking increased MS incidence
to populations with high saturated fat intake and low vitamin D levels [90].

The potential involvement of dietary factors in MS pathogenesis naturally raises
questions about the role of the microbiome (Figure 3). Indeed, emerging evidence suggests
that the gastrointestinal microbiome plays an intricate role in shaping both innate and
adaptive immunity, factors that are believed to be critical in the pathogenesis of MS. Studies
on germ-free animals showed fundamental disturbances in the lymphoid tissue architecture
and functions [97]. In the absence of the gut microbiota, IgA-mediated mucosal immunity is
significantly reduced [98]. This is, at least in part, due to dendritic cells of the lamina propria
that have been shown, sampling the mucosal layer of the intestinal lumen for microbial
antigens both directly or through cellular elements of the gut epithelium like the Goblet
cells, regulating immunoglobulin-producing B cells and Treg lymphocytes alike [99–101].
Helicobacter hepaticus colonization in mice has also been shown to support Treg responses
through retinoic acid receptor-related orphan receptor γt-positive (RORγt+) species, a novel
class of antigen-presenting cells [102,103]. The mucosal antigen presenting cells interact
with the common members of the gut microbiome as well. The most immunodominant
zwitterionic bacterial polysaccharide, polysaccharide A, has been shown to be internalized
and presented on MHCII to activate CD4+ T cells [104]. Thus, one can speculate that the
composition of the gut microbiome determines the development of the mucosal immune
system. Indeed, studies involving microbiome isolates from healthy subjects and patients
with inflammatory bowel disease (IBD) have revealed diverse dendritic cell cytokine
responses, driven by differential engagement of host Toll-like receptors (TLRs) [105]. These
characteristic cytokine profiles include interleukin 6 (IL-6), tumor necrosis factor α (TNFα),
IL-10, IL-23 and IL-1β in response to Bacteroidetes and Proteobacteria in mouse myeloid
cells in vitro [105]. Besides dendritic cells, segmented filamentous bacteria have also been
shown to promote the development of antigen-specific Th17 cell responses underpinning
the impact of microbiota on the regulation of the adaptive immune system [106,107].
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ing dendritic cells (DC) and enterocytes (E) by sampling the intestinal lumen directly. In return, 
enteroendocrine cells secrete bioactive peptide hormones (BPH), like serotonin, which, besides reg-
ulation of digestive functions of the enterocytes, affect B-, Th- and dendritic cell activities as well. 
The latter ones (DC), in contrast, can penetrate the intercellular space of the enterocyte lining and 
uptake microbial antigens directly from the mucus for presentation to immunocompetent cells of 
the epithelium. In the case of segmented filamentous bacteria (SFB), enterocytes can also mediate 
antigens to IL-17-producing T lymphocytes (TH17) contributing to the regulation of the functionally 
critical Th17 pool of the intestines. For this effect, SFB need to contact enterocytes by penetrating the 
lower layers of the mucus. This physical barrier primarily consists of mucin produced by Goblet 
cells (G) which also sample the gut microbiota for antigens, e.g., the Helicobcter hepaticus (Hh), and 
delivers them to elements of innate immune cells of the lamina propria like the dendritic species (DC). 
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Figure 3. The gastrointestinal microbiome contributes to the functioning of the immune system.
The gut microbiome and cellular elements of the intestinal epithelium have intricate interactions
to maintain the barrier function of the gut lining. One of the critical components of this function is
mediated by the tight junctions between enterocytes (E). Commensal germ metabolites, like short-
chain fatty acids (SCFA), actively contribute to the upregulation of tight junction proteins. Parallel,
enterocytes secrete cytokines that influence the immune cell population of the lamina propria including
monocytes (M), antigen-producing cells (B) and helper (TH) and regulatory (Treg) T lymphocytes
alike. Microbiota-derived antigens are also detected by enteroendocrine cells (EE), antigen present-
ing dendritic cells (DC) and enterocytes (E) by sampling the intestinal lumen directly. In return,
enteroendocrine cells secrete bioactive peptide hormones (BPH), like serotonin, which, besides reg-
ulation of digestive functions of the enterocytes, affect B-, Th- and dendritic cell activities as well.
The latter ones (DC), in contrast, can penetrate the intercellular space of the enterocyte lining and
uptake microbial antigens directly from the mucus for presentation to immunocompetent cells of
the epithelium. In the case of segmented filamentous bacteria (SFB), enterocytes can also mediate
antigens to IL-17-producing T lymphocytes (TH17) contributing to the regulation of the functionally
critical Th17 pool of the intestines. For this effect, SFB need to contact enterocytes by penetrating the
lower layers of the mucus. This physical barrier primarily consists of mucin produced by Goblet cells
(G) which also sample the gut microbiota for antigens, e.g., the Helicobcter hepaticus (Hh), and delivers
them to elements of innate immune cells of the lamina propria like the dendritic species (DC). Goblet
cells are, at least in certain conditions, under the control of Tuft cells (T) that, in response to luminal
antigens, for instance upon helminth invasion, produce IL-25. IL-25 activates type 2 innate lymphoid
and T helper cells that, in response to IL-25, begin to produce IL-13. IL-13, in return, facilitates the
commitment of epithelial stem cells (S) toward the production of Goblet- (G) and Tuft cells (T) [108].
The mucus also contains antimicrobial peptides (A) secreted by various elements of the epithelium
including Paneth cells (P), which usually present in close vicinity of epithelial stem cells (S) and that,
at least in part, are under the indirect control of dendritic cells via cytokines including IL-22 [109].
Created with BioRender.com.
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Microbiome-produced metabolites, like short chain fatty acids, vitamin D3 or the
trimethylamine N-oxide (TMAO), also seem to have significant effects on the immune
system [110–112]. Of these, the SCFA butyrate is believed to have the highest biological
importance. Acting as an energy source for the intestinal epithelium, butyrate contributes
to the maintenance of the physiologic hypoxia of the intestinal epithelium, stabilizing
the transcription factor hypoxia inducible factor 1 (HIF1) that, in turn, upregulates genes
that maintain integrity of the epithelial barrier [113]. Butyrate also functions as a histone
deacetylase inhibitor, and as such, it is believed to exert anti-inflammatory properties by
modulating pro-inflammatory cytokine production via the inhibition of nuclear factor κB
(NF-κB) [114,115]. Other metabolites, like indole, attenuate the intestinal immune system
by fortifying tight junctions in the epithelium via the upregulation of junction proteins like
Claudin and direct induction of anti-inflammatory cytokines like IL-10 [116].

TMAO, in contrast, directly induces pro-inflammatory mediators like TNFα, NLRP3
inflammasome, mitochondrial reactive oxygen species (ROS), and NF-κB, while reduc-
ing anti-inflammatory regulators such as IL-10 [117–119]. In accordance, TMAO triggers
macrophage polarization toward the immunostimulatory M1 phenotype and enhances
effector T cell functions, key factors of the pro-inflammatory state of the immune sys-
tem [119]. These findings further support the idea of the potential relationship between the
intestinal microbiota and the pathogenesis and progression of disorders associated with a
dysregulation of the immune system like multiple sclerosis.

4.1. The Intestinal Microbiota

The first recognition of the microbial presence in the GI tract of living animals dated
back to the mid-1800s [120]. The microbial taxa present in the special environment of
the human GI tract is a complex ecosystem that presents a collection of microbes and
their genomes referred as the gastrointestinal microbiome [121]. Its characterization began
in the early 20th century leading to the isolation of Escherichia coli by Alfred Nissle and
the ongoing work depicts an intricate ecosystem that includes hundreds of microbial
species [122]. Indeed, microbial communities have been identified along the entire GI tract,
although microbiome composition of distinct sections of the GI tract is differential [123]
(Figure 4). In general, the vast majority (>99%) of the identified species belong to five
bacterial phyla including the Firmicutes, Actinobacteria, Bacteroidetes, Proteobacteria and
Fusobacteria (Figure 4) [124,125]. The microbiota of the throat, that mostly constituted
of the Streptococcus, Prevotella, Actinomyces, Gemella, Rothia, Granulicatella, Haemophilus,
and Veillonella genera, shows the lowest phylotype diversity and inter-individual variety
compared to the microbiota of the stomach or the lower GI tract [126]. Indeed, Streptococcus,
Actinomyces, Prevotella and Gemella are the most abundant in the stomach [127]. In contrast,
in fecal samples, representing the lower GI tract, genomic analyses revealed a minimum of
109 species from 8 phyla, 18 families, 23 classes, 38 orders and 59 genera [128]. According
to current data, in fecal samples of healthy individuals, the phylum Firmicutes dominates
(approx. 40%) [129]. The majority of the Firmicutes belong to the Clostridia class with
frequent representation of the Clostridium, Eubacterium and Ruminococcus genera. The
latter includes the most abundant species, the Ruminococcus bicirculans, that alone makes
up approximately 2.5% of all species in the lower GI tract. The second most dominant
phyla, both with an approximate 20% share in fecal samples, are the Actinobacter, that most
abundantly comprises the species Bifidobacterium longum from the genus Bifidobacterium,
and the Bacteroidetes mostly represented by the species Bacteroides fragilis from the class of
Bacteroidia. At the species level, Escherichia coli (1.87% of total species) and the Enterococcus
faecium (0.04% of total species) of the Enterobacterales and Lactobacillales orders, respectively,
are the overrepresented in the lower GI tract [129].
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ation in the presence of Bacteroidetes/Firmucutes and Actino-/Proteobacteria phyla in a cranio-caudal
manner [129]. Created with BioRender.com.

4.2. Origin of the GI Microbiome

While distinct sections of the GI tract show differential microbiome composition, spa-
tial distribution of the identified species is not the only diversity found in the GI tract
microbiome. Genetic analyses revealed that the GI tract microbiome also shows significant
age-related variability and data indicate that gestational age heavily affects human GI
microbiota composition [130]. Fecal samples of very low birth-weight infants showed that,
between 25 and 30 weeks of postmenstrual age, the lower GI microbiome is primarily dom-
inated by Staphylococci. This population, then, is overtaken by a Bifidobacterium-dominated
microbiota from postmenstrual week 30 onwards, accompanied by a peak in the abundance
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of Enterococci between postmenstrual weeks 30–35 and 45–50. In the case of term-born in-
fants, the mouth flora was predominantly colonized by Streptococci viridans and S. salivarius
by post-natal day 6 while the fecal flora showed the dominance of species from the classes
of Clostridia and Gammaproteobacteria and the two most abundant species found were Ente-
rococcus faecalis and Escherichia coli [130,131]. At the phyla level, it seems that delivery does
not affect the colonization of the lower GI tract, since one month post-natal, fecal microbiota
was found to be dominated by Actinobacteria independently of whether children were born
via caesarean section (CS) or vaginal delivery (VD) [132]. Apparently, this changes at the
later stages of the infant life since children’s fecal samples are dominated by Bacteroidetes
and several genera of the Clostridia class, for example the Ruminococci, by the end of the
first two years of age. At lower taxonomy levels, however, some degree of differential
microbiome composition was observed much earlier post-natal. The Enterococcus genus,
for instance, was found in significantly higher relative abundance in CS infants compared
to their VD counterparts. In contrast, VD infants showed a significantly higher level of
Bacteroidetes during the first 12 months post-natal. Parallel, CS delivery was found to be
associated with a significantly lower overall microbiota diversity, even though the mothers
of the CS and VD children did not show similar differences in their microbiota diversity.
It is noteworthy, however, that the composition of the infant gut microbiota is affected by
the feeding regime as well. Indeed, Bacteroidetes and Clostridia are more prevalent in fecal
samples of weaned children than that of the breast-fed infants, highlighting the complexity
of the determining factors of the gut microbiome [133,134].

4.3. Dietary Links

Similar to infants, dietary aspects affect the composition of the gut microbiome in
adults as well. Animal studies revealed that the intake of non-digestible complex carbohy-
drates of plant origin, also known as dietary fibers or microbiome-accessible carbohydrates,
is one of the determining factors of the gut microbiota diversity [135]. In humanized rodent
models, a low microbiome-accessible carbohydrates diet primarily reduces the abundance
of Bacteroidetes, the second most abundant phylum of the healthy human gut microbiome.
The consumption of nutrients, e.g., in broccoli, in contrast, increases the abundance of
Bacteriodetes [136]. The effect of nutrients on the diversity of the gut microbiome, however, is
not uniform. Indeed, while walnut consumption increases the relative abundance of genera
Faecalibacterium, Clostridium, Roseburia, and Dialister of the Firmicutes phylum, it decreases
the abundance of Bifidobacteria of the phylum Acinobacteria [137]. An interesting aspect of
the dietary effects on the gut microbiome is that, according to certain experimental findings,
they can lead to the complete eradication of some species of the gut microbiota. A dietary
supplement of microbiome-accessible carbohydrates to low level microbiome-accessible
carbohydrates-fed animals alone did not reverse gut microbiome diversity if not combined
with fecal microbiota transplants (FMT) [67]. Considering the significant role of nutrients
in its composition, it is not surprising that the gut microbiota also shows seasonal changes.
A long-term dietary survey analyzing the microbiota composition of human fecal samples
showed that members of the phyla Firmicutes and Actinobacteria are more abundant in the
samples collected over wintertime while species from the phylum Bacteroidetes are more
abundant in samples taken in the summer months [70]. This seems to be in accordance with
the findings that the abundance of Bifidobacterium longum, the most abundant species of
Bifidobacteriaceae, positively correlates with the vegetable, protein and soluble fiber intake,
or that Akkermansia, members of the phylum Verrucomicrobia, were shown to be positively
associated with saturated fat intake and negatively correlated with the amount of total
polyunsaturated fatty acids present in the diet [128]. Data also indicate that overall calorie
intake is another important determinant of the gut microbiota diversity, showing a posi-
tive correlation between the body weight, the waist circumference and the abundance of
certain species of the gut microbiota like Bacteriodes ovatus [138]. Indeed, fat-restricted or
carbohydrate-restricted diets were found to increase the relative abundance of Firmicutes
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while decreasing the abundance of Bacteriodetes, underlining the importance of the dietary
factors in the composition of the human gut microbiome [139].

4.4. Microbiome and Disease

Besides dietary factors, data suggest that the host’s genetic background also determines
the gut microbiota composition. Indeed, individuals carrying the HLA-DQ haplotype,
a genetic condition that makes the individuals prone to Type I Diabetes mellitus (T1D), have a
differential development course of their gut microbiome [140]. Indeed, the gut microbiome
is dominated by members of the Bacteroidetes phylum in newborns during the first year post-
natal, while, in children born with the HLA-DQ haplotype, the colonization of the gut by
Bacteroidetes is delayed. In contrast, species representing the Firmicutes phylum peak early
in the post-natal life of T1D-prone children, while they increase in abundance much later in
non-HLA-DQ children. This early peak of colonization by Firmicutes, then, is accompanied
by a depletion parallel with the increase in Bacteroidetes abundance, although, eventually,
an overall reduction in the diversity of the gut microbiome of T1D-prone children by the
age of year two was reported [140]. These data suggest that immune-related haplotypes
interplay with the dynamics of the initial gut colonization, although it is not clear whether
it is the gradually developing auto-immune environment that favors Bacteroidetes or the
HLA-DQ haplotypes is the one that biases the gut microbiota toward Bacteroidetes which
eventually induces the auto-immune condition leading to T1D.

The imbalance of Bacteroidetes and Firmicutes in the gut microbiome was documented
in additional autoimmune pathologies too. In ulcerative colitis and Crohn’s disease patients,
for instance, depletion of species from the Firmicutes phylum was reported to be more
dominant over the depletion of Bacteroidetes [141]. In systemic lupus erythematosus, the
prototype of the autoimmune diseases, similar dysbiosis was observed, indicating that the
interplay of the gut microbiota and the immune homeostasis of the host environment is not
restricted to the gastrointestinal tract [142]. Indeed, depletion of the Firmicutes phylum and
increased abundance of species of the Bacteroidetes was also reported in patients suffering
from rheumatoid arthritis [143]. In addition, imbalanced gut microbiota composition was
reported in patients suffering from the major depressive disorder (MDD) [144]. Moreover,
the depressive condition seemed to be transferrable via the gut microbiome, indicating the
pathogenic importance of the disturbed gut microbiome in neuropsychological disorders.
These observations further support the idea that the complex effects of the gastrointestinal
microbiome affect tissues that were traditionally considered to be functionally independent
of the GI tract.

Indeed, there is a growing body of evidence suggesting that an alteration in the GI
tract microbiota diversity correlates with chronic human pathologies of neuronal tissue as
well. In relation to Parkinson’s disease, for instance, the overall microbiota composition was
found to be shifted with a depletion of butyrate-producing bacteria, and an overabundance
of pro-inflammatory species like the Collinsella, Desulfovibrio, and Oscillospiraceae [145,146].
Even more interestingly, these alterations of the gut microbiome seem to be present in
the long prodromal phase of Parkinson’s disease, suggesting a causality between the two
processes [145]. In addition, a similar trend was found in REM sleep behavior disorder [145].
The predicted functional profile showed an overall increase in fatty acids’ fermentation to
lactate and ethanol, and lower levels of deazapurine biosynthesis in both pathologies [145].
Reduced gut microbiome diversity has been reported in relation to Alzheimer’s disease
as well. A recent meta-analysis of related studies showed an overall decrease in species
richness in the Alzheimer’s disease gut microbiome, fueling the idea of the possible role of
the GI tract microbiome in the pathogenesis of further neurodegenerative disorders [147].

5. The Intestinal Microbiome and Multiple Sclerosis

The regulatory role of the intestinal microbiome in shaping the immune system
sheds light on its putative involvement in the onset and progression of multiple sclerosis.
Accordingly, it turned out that the gut microbiome of MS patients showed dysbiosis mainly
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affecting genera of both Firmicutes and Bacteroidetes (Tables 1 and 2) [148]. Interestingly,
however, the trend of the observed changes seems to be independent of the phylogenetic
classification. While Bacteroidetes genera Pedobacteria and Flavobacterium showed a higher
abundance in patients with MS, other Bacteroidetes genera like the Parabacteroides, Bacteroides,
and Prevotella were rather depleted. Moreover, it also seems that the diversity of the gut
microbiome correlates with the disease course. Indeed, the small intestinal microbiota of
patients suffering from RR-MS have an increase in the phylum Firmicutes and a decrease
in the phylum Bacteroidetes during relapse compared to both healthy individuals and MS
patients in remission [148–150].

Table 1. Genera of gut microbiota with increased abundance in multiple sclerosis.

Phylum Genus

Bacteroidetes Pedobacteria
Flavobacterium

Firmicutes
Dorea
Balutia
Streptococcus

Proteobacteria
Mycoplana
Acinetobacter
Pseudomonas

Actinobacteria Eggerthella
Verrucomicrobia Akkermansia

Table 2. Genera of gut microbiota with decreased abundance in multiple sclerosis.

Phylum Genus

Bacteroidetes
Bacteroides
Prevotella
Parabacteroides

Firmicutes

Coprobacillus
Lactobacillus
Clostridium
Anaerostipes
Faecalibacterium

Proteobacteria Haemophylus
Sutterella

Actinobacteria Adlercreutzia
Collinsella

Although results on the gut microbiome diversity of MS patients are not entirely
consistent, altering these ratios in animal models has been shown to influence disease phe-
notype. Susceptible animals develop EAE through the active induction or adoptive transfer
of autoreactive myelin-specific lymphocytes [151]. These antigen-specific lymphocytes
undergo colony expansion in the regional node before migrating to the CNS and forming
inflammatory centers, which results in symptoms analogous to those observed in MS. The
relapsing–remitting model of spontaneously developing experimental autoimmune EAE
has been used to demonstrate the involvement of microbiota in disease development [152].
In mice, the transfer of intestinal microbiota from individuals with MS has been linked to
the spontaneous development of EAE (Figure 5). Additionally, when mice are colonized
with the gut microbes of MS patients, the resulting experimental disease is much more se-
vere [153,154]. Interestingly, human alterations in gut microbiome in MS include a decrease
in Prevotella and an increase in Streptococcus mitis (S. mitis) and S. oralis, all believed to
have roles in shaping the immune system. Indeed, the Prevotella reduction is accompanied
by the expansion of TH17 cells, while strains of the S. mitis group is known to positively
affect the differentiation of TH17 cells, key players in cell-mediated tissue damage and
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autoimmunity in RR-MS patients [155,156]. Although the mechanistic relationship between
these bacteria and the expansion of pro-inflammatory cell types like the TH17 cells are not
fully understood, one may speculate that their immunological effects are mediated by the
metabolites they produce.
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Figure 5. Dysbiosis of the gastrointestinal microbiome facilitates the proinflammatory state of
multiple sclerosis. Alterations in the composition of the gastrointestinal microbiome influence the
immunological status in multiple mechanisms in multiple sclerosis (MS). On one hand, MS-type
microbiome directly facilitates differentiation and the expansion of TH17 lymphocytes (TH17) that
play a central role in the maintenance of the inflammatory state of MS patients. Parallel, MS-type
microbiome directly blocks the activity of anti-inflammatory species like the CCR9+ memory T cells
(Tm) or tissue-resident dendritic cells (DC). Blockade of the latter results in the failure of differen-
tiation of Foxp3+ regulatory T cells (Treg) which results in the accumulation of pro-inflammatory
cytokines and cellular species alike. On the other hand, the MS-type intestinal microbiome exerts
pro-inflammatory effects via various microbial metabolites by blocking the physiologic metabolisms
of compounds like the phytoestrogens, short-chain fatty acids (SCFA) or microbial lipids (Lipid 654).
Created with BioRender.com.

Indeed, it is widely believed that the anti-inflammatory effects of bacteria like Faecal-
ibacterium or Coprococcusi are primarily mediated by their butyrate production [157–159].
Similarly, Prevotella is a known propionate producer, that, along with acetate and butyrate,
is a characteristic compound of the gut microbiome-produced short-chain fatty acids (SCFA)
and is believed to be involved in the regulation of Treg cells in peripheral compartments
and the increase in the anti-inflammatory cytokine IL-10 [160–163]. To support this concept,
dysbiosis of the gut microbiome in RR-MS patients has been observed to include the reduc-
tion of the Clostridia cluster XIV and IV accompanied by the reduction in the short-chain
fatty acid production, also suggesting a widespread involvement of gut microbiota species
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in the unfolding of the pro-inflammatory state of MS via, at least in part, the reduction in
short-chain fatty acid production [149].

Lipid 654, another bacterial metabolite typically produced by Bacteroidetes species
that acts as a Toll-like receptor-2 ligand, was also found to be significantly lower in MS
patients [164,165]. According to recent data, lipid 654 alters the microglial response to
pro-inflammatory cytokines like IFNβ via shifting the microglial polarization to the rather
anti-inflammatory M2 activation state [166]. Thus, the depletion of Bacteroidetes species in
the MS gut microbiome might contribute to neuroinflammation via a reduction in lipid 654
production as well.

Besides the extensively studied Firmicutes and Bacteroidetes phyla, Adlercreutzia of
the Actinobacter phylum has also been reported to be disturbed in MS patients’ micro-
biomes [148]. Adlercreutzia is known to play a role in influencing anti-inflammatory
responses by way of its connection to phytoestrogen metabolism. Phytoestrogens are
plant-derived molecules that possess a chemical structure and biological activity similar to
estrogen. Legumes (especially soybeans), fruits, whole grains, and other vegetables are the
primary sources of these compounds. Bacteria, such as Adlercreutzia, through β-glucosidase,
are responsible for converting phytoestrogens into monomers. In patients with RR-MS,
a reduction in Adlercreutzia leads to a decrease in the conversion capacity of phytoestrogens.
Consequently, the decrease in this bacterium results in an increase in oxidative stress and
inflammatory cytokines, such as the monocyte chemo-attractant protein-1 (MCP-1/CCL2)
and IL-6, which are normally elevated in MS [167].

The compromised MS gut microbiome has been reported to have an impact on another
chemokine–receptor interaction between the T-cell C-C chemokine receptor type 9 (CCR9)
and its ligand CCL25 [168]. This interaction is important for CD4+ memory T cell homing
to the gut and, thus, the immunity of the small intestinal epithelium [169]. CCR9+ CD4+

T cells belong to the intraepithelial cohort of T cells that has been found to be protective
against EAE [170]. Disruption of the CCR9-CCL25 interaction by the MS gut microbiota
results in a depleted population of CCR9+ CD4+ T cells, suggesting another potential
mechanism involved in the exacerbation of neuroinflammation in SP-MS patients.

The putative link between the immunologic mechanisms and the gut microbiota in MS
has been indirectly supported by findings in MS patients treated with glatiramer acetate
(GA) [95]. Although GA was originally developed to provoke experimental autoimmune
encephalitis as an animal model of human MS, it turned out to be acting as an immunomod-
ulator and has been approved by the FDA as a first line drug to treat remitting MS [171]. GA
is believed to reduce the secretion of pro-inflammatory cytokines (IL-2, IL-12, IFNγ, TNF)
released by TH1 cells, activate TH2 suppressor cells to express anti-inflammatory cytokines
(IL-4, IL-5, IL-13, IL-10, TGF-β) in the CNS and increase the enrichments of Tregs [172,173].
GA, however, has also been shown to modulate the composition of the gut microbiota in
MS patients elevating the proportion of Janthinobacterium while decreasing the presence of
Eubacterium and Ruminococcus, suggesting the a putative bidirectional interplay between
the gut microbiota and the immune mechanisms involved in MS [95].

These observations inevitably raise the question of the causality in the interplay
between the intestinal microbiome and the immune system in MS. The two main hypotheses
of the pathogeneses of MS allows differential interpretation of the role of the intestinal
microbiome in the development of the disease. The inside-out concept posits that MS is
initiated by a primary lesion in the CNS, potentially triggered by factors like infection or
primary neurodegeneration. This event leads to the release of self-antigens, provoking a
response from autoreactive T and/or B cells. In this concept, one could speculate that the
differential composition of the gut microbiome observed in MS patients is a consequence of
a preexisting pro-inflammatory state of the immune system.

Conversely, the extrinsic or outside-in concept suggests that peripheral stimuli like
microbial antigens resembling CNS molecular signatures, bystander activation of immuno-
competent cells, novel autoantigen presentation, or recognition of secluded CNS antigens
activate escaped autoreactive T cells, eventually leading to a neuroinflammatory state [174].
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In this concept, disturbances in the gut microbiome might play the role of the initial antigen
stimulus. This idea is, apparently, strongly supported by animal studies in EAE models.
Indeed, the administration of differential combinations of antibiotics inhibits the devel-
opment of EAE in susceptible animals. This disruption is linked to an increase in Foxp3+

regulatory T cells in the mesenteric and cervical lymph nodes which appear to be influenced
by an elevated presence of the co-localized CD11chighCD103+ dendritic cells. These specific
DCs promote the transformation of naïve CD4+ T cells into Foxp3+ Treg cells [175]. Parallel,
an increased presence of IL-10-producing CD5+ B cells has also been observed in cervical
lymph nodes. When splenic CD5+ B cells from antibiotic-treated mice were transferred
to naïve recipient mice, and the recipients were immunized with MOG35–55 one day
post-transplantation, a significant reduction in EAE disease score was noted. In addition,
this reduction seems to be associated with a shift from a Th1/Th17 cytokine profile to a Th2
cytokine profile [176]. To further support the role of the gut microbiome in the extrinsic
model of MS, the transplantation of the intestinal microbiota of MS patients into susceptible
mice has been observed to be associated with the spontaneous onset of EAE. Moreover,
when mice are colonized with microbes sourced from the gut of MS patients, the resultant
experimental disease manifests with increased severity, suggesting a causative role of the
microbiome in the development of MS in susceptible individuals [153,154].

Considering its complexity, one can speculate that the intestinal microbiome can
provide a generous source of non-self biocompounds that could serve by triggering anti-
gens for autoreactive species. Research identifying the guanosine diphosphate-L-fucose
synthase as an autoantigen for CD4+ autoreactive T cells supports this idea [177]. This
enzyme is involved in the nucleotide–sugar biosynthesis and catalyzes the conversion
of GDP-4-dehydro-6-deoxy-D-mannose to GDP-fucose which serves as substrate for fu-
cosyltransferases to the mediated fusosylation of oligosaccharides, glycoproteins, and
glycolipids [178]. Although, in mammals, fucosylation plays a critically important role in a
number of physiologic processes, in prokaryotes fucosylation is less common. Still, it has
been demonstrated that certain bacteria of the gastrointestinal tract, like oral commensals
that are associated with infected endocarditis, such as Porphyromonas gingivalis, Actinobacil-
lus actinomycetemcomitans and Eikenella corrodens or the gastric Helicobacter pylori, exploit
fucosylated structures on bacterial lipopolysaccharides (LPS) [179]. Indeed, in the latter, for
instance, molecular mimicry through fucosylated LPS enhances H. pylori adhesion to the
gastric epithelium and modulates hosts’ immune responses to aid adaptation effectively to
its niche and maintain a persistent infection [180]. Interestingly, the fucosylated polysaccha-
ride chains of H. pylori LPS induce the production of auto-antibodies, causing antigastric
autoreactivity and, consequently, tissue damage in the gastric mucosa [181].

Thus, one can speculate that the CD4+ T lymphocyte-mediated immune reaction
against the guanosine diphosphate-L-fucose synthase is, primarily, a protective measure
against potentially pathogenic invading microbes in the gastrointestinal tract that, even-
tually, turns into autoreactivity either due to partial molecular homology between the
microbial and host guanosine diphosphate-L-fucose synthase or the genetic constellation of
the host. The latter concept seems to be supported by the findings that there are significant
associations between the reactivity to GDP-L-fucose synthase peptides along with reactivity
against an immunodominant myelin basic protein peptide and the HLA-DRB3*02:02 haplo-
type, one of the MS-associated genetic constellation found by the International Multiple
Sclerosis Genetics Consortium [58].

Interestingly, fucosylated glycans are highly expressed in brain tissue and human CNS
myelin compared with other tissues and support recognition by microglia and dendritic
cells [182,183]. Thus, one can speculate that the absence of this tolerogenic signal upon
reduced fucosylation due to the potentially intestinal microbiome-mediated occurrence of
GDP-L-fucose synthase-reactive CD4+ T cells contributes to the neuroinflammatory state of
the CNS of MS patients.
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6. Conclusions

The prevalence of multiple sclerosis has significantly increased over the past three
decades, putting a huge economic burden on healthcare systems worldwide [184,185]. The
increase in prevalence is attributed to increased incidence, improvement in patient care
leading to an increased survival of patients and better diagnostic tools [186,187].

Despite the great efforts made in the research of the disease, details of the pathogenesis
remain elusive. Although there is a wide consensus on the autoimmune nature of MS, little
is known of the stimuli that trigger the disease or the conditions that make individuals
prone to MS. Indeed, although the correlation between certain genotypes or pathogens and
the risk of MS has been postulated, the nature of the role of these putative risk factors is
still not clear. Advances in the identification of key players in the symptomatic phases of
MS, however, could take us closer to answering this question.

Th17 cells have been identified as one of the key players in the pathogenesis of MS.
Their hallmark cytokine product, IL-17, however, was found to be protective in both
K. pneummoniae infections and in asthma models, where it reduced the eosinophilia and
bronchial hyper-reactivity alike, suggesting a bone fide role of Th17 cells in these immune
situations [188,189]. Moreover, IL-17 was shown to control the integrity of tight junctions
in the intestinal epithelium by influencing the subcellular localization of occludin, a critical
component of zonula occludens [190]. These interactions immediately provoke the question
of whether similar microbial-Th17 links give rise to the myelin-reactive populations of Th17
cells via, for instance, molecular mimicry and, if so, whether analogous interplays exist
between members of the gastrointestinal microbiome and Th17 lymphocytes.

Indeed, data on the gut microbiome diversity in monozygotic twins discordant to
MS, for instance, suggest that the proposed genetic background is not sufficient for the
development of the disease, modulating the picture on the importance of genetic risk
factors in MS further [153]. Moreover, the microbiomes of MS-twins can provoke autoim-
munity accompanied by paralyzed production of the anti-inflammatory IL-10 following
transplantation in susceptible animal models, fueling the idea of the pathogenic role of the
gut microbiome mediated via immunological elements in MS.

High individual diversity of gut microbiomes may prove the identification of
pathogenic species to be particularly difficult, suggesting that research on the role of
the human microbiome in diseases like MS should, perhaps, be focused on the characteris-
tics of the protective microbiome composition. Observations that increasing the abundance
of Adlercreutzia in the gut microbiome of RR-MS patients leads to a decrease in the inflam-
matory state and consequently delays the progression of MS apparently support this idea,
and raise the question of whether therapeutic alteration of the gut microbiome could be
useful in the treatment of MS patients.

Indeed, fecal microbiota transplantation (FMT) has been successfully used in diverse
conditions including severe dysbiosis due to refractory and recurrent C. difficile infec-
tions [191]. Although concerns of FMT include the invasiveness of the intervention, the
modest but significant risk of infection transmission, thorough donor screening or transplan-
tation of bacteria-free filtrates have already been demonstrated as measures to minimize the
risk factors of FMT [192,193]. Following this logic, the use of FMT in MS has been recently
tested in a small scale pilot study demonstrating its safety and tolerability, suggesting a
new avenue in the treatment of multiple sclerosis [194].

Due to its apparently overwhelming complexity, one can speculate that a great pro-
portion of the mechanism underlying the pathology of MS is highly individual. If that
complexity exists, it calls for further investigations to identify mechanisms common in MS
patients that could serve as potential targets for developing successful treatment regimes.
It is believed that Hippocrates, the forerunner of modern evidence-based medicine, said
that “People think that epilepsy is divine simply because they don’t have any idea what
causes epilepsy. But I believe that, someday, we will understand what causes epilepsy, and
at that moment, we will cease to believe that it’s divine. And so, it is with everything in the
universe”. Indeed, life sciences have been on a great journey since the era of Hippocrates
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and solved several mysteries woven together with the human body, achievements Hip-
pocrates could not even have dreamed of. Still, we, perhaps, did not pay enough attention
to his observation when he said, “All disease starts in the gut”. In the light of advances in
the field of intestinal physiology in recent years, it seems that another Hippocrates’ quote,
“Let food be thy medicine and medicine be thy food”, perhaps, has never been timelier.
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