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Psychophysiological Markers of Auditory Distraction: 
A Scoping Review
Alexandre Marois a,b and François Vachon a

aÉcole de psychologie, Université Laval, Québec, Canada; bSchool of Psychology and Humanities, University 
of Central Lancashire, Preston, UK

ABSTRACT
Short-term memory can be disrupted by task-irrelevant sound. 
Auditory distraction has been globally studied under the lens of 
two main phenomena: the deviation effect and the changing-state 
effect. Yet, it remains unclear whether they rely on common cere-
bral mechanisms and, concomitantly, what psychophysiological 
responses they can trigger. This scoping review provides a state 
of knowledge regarding psychophysiological indices of auditory 
distraction. Records published between 2001 and 2021 on the 
deviation effect and the changing-state effect with psychophysio-
logical measures were extracted from PubMed, ERIC, PsycNet, Web 
of Science, and ScienceDirect. Records investigating task-relevant 
sounds, as well as those that failed to observe performance disrup-
tion, or to include a control condition or a concurrent cognitive 
task, were excluded from the review. The Revised Cochrane risk-of- 
bias tool for randomized trials was used for bias evaluation. Fifteen 
records were reviewed, mainly characterized by randomization, 
measurement and selection of results biases. Some markers were 
specific to the distraction type, but nonspecific responses were also 
found. Overall, we outline the main markers used to index auditory 
distraction, present their meaning for understanding underpinning 
mechanisms, and discuss implications and knowledge gaps that 
need to be filled to fully exploit psychophysiology for auditory 
distraction research.
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Introduction

Literature offers a substantial amount of evidence that cognitive activity can be hindered 
by the mere presence of task-irrelevant sound. This auditory distraction can be observed 
in the lab (e.g., Bell et al., 2010; Campbell et al., 2002; Vachon et al., 2012; for review and 
meta-analysis papers, see; Hughes, 2014; Szalma & Hancock, 2011; Vasilev et al., 2018), 
but also in one’s daily life (e.g., Beaman, 2005; for review papers, see; Banbury et al., 2001; 
Dalton & Behm, 2007; Ferdinand & Menachemi, 2014; Mentis et al., 2016). One explana-
tion of this permeability to extraneous sounds, regardless of their relevance for the 
ongoing action, is the necessity for the organism to remain open to stimuli, even if 
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they are outside the focus of attention. These stimuli may become relevant and signal 
danger or opportunity (Allport, 1989; Neumann, 1987) because of controlled task-related 
goals (top-down processing of behaviorally relevant stimuli; e.g., Folk et al., 1992), or 
because of the automatic analysis of the auditory scene (e.g., bottom-up processing of 
salient or unexpected stimuli; e.g., Theeuwes, 1994).

A wide range of studies highlights the deleterious impact of extraneous sound on 
cognitive activity. Short-term memory is particularly vulnerable to task-irrelevant sound. 
For example, visual serial recall, digit categorization, probed recall, and the n-back task 
have all been shown to be susceptible to irrelevant sound (e.g., Berti, 2013; Chein & Fiez,  
2010; Mahajan et al., 2020; Marois et al., 2019). Reduction in performance on short-term 
memory tasks has been widely observed while to-be-ignored sound is presented, both 
during presentation of the task-relevant stimuli and a retention interval (Colle & Welsh,  
1976; Ellermeier & Zimmer, 1997; Elliott, 2002; Jones et al., 1992; Neath, 2000; Röer et al.,  
2011; Salamé & Baddeley, 1982). Generally, two main forms of auditory distraction 
effects on short-term memory are reported in the literature1:

(1) The changing-state effect, demonstrated through superior performance disruption 
by the presence of sequentially-presented changing sounds (or tokens) that differ 
from one another, such as G W P F S X N T, compared with a condition of steady- 
state sound comprised of a unique repeated sound, such as B B B B B B B B (e.g., 
Beaman & Jones, 1997; Hughes et al., 2007; Jones & Macken, 1993; Klatte et al.,  
2010; Marois et al., 2019; Meiser & Klauer, 1999; Sörqvist, 2010; Tremblay & Jones,  
1999); and

(2) The deviation effect, representing the impairment produced by the unexpected pre-
sentation of a sound deviating from the auditory context in which it is embedded, 
compared with a standard – i.e., no-deviant – condition (B B B B B A B B vs. 
B B B B B B B B; see, e.g., Hughes et al., 2005, 2007; Marois et al., 2019, 2020; 
Marsh et al., 2014; Parmentier, 2008; Vachon et al., 2017, 2018).

Sounds conveying particular meaning, such as conversations (either full dialogs or half-
alogues; e.g., Marsh et al., 2018), emotionally valent and taboo words (e.g., Marsh et al.,  
2018; Röer et al., 2017) or one’s own name (e.g., Röer et al., 2013), can also induce 
performance disruption due to postcategorical (semantic) content analysis (see Marsh & 
Jones, 2010; Vachon et al., 2020). In the current paper, we focus however on precatego-
rical forms of auditory distraction, whereby it is the acoustic properties of the sound that 
disrupt performance. Together, the changing-state effect and the deviation effect outline 
how short-term memory performance can be affected by the low-level properties of 
irrelevant sound.

Underlying Mechanisms of the Distraction Effects

While these phenomena have been widely observed, there is a debate as to the theoretical 
explanations of the changing-state effect and the deviation effect. Indeed, two main 
theoretical positions can be found in the literature. The first one, the unitary account, 
posits that the impact of irrelevant sound – regardless of its nature – triggers exogenous 
reorienting of attention from the ongoing task toward the sound (Bell et al., 2010, 2012,  
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2019a, 2019b; Chein & Fiez, 2010; Cowan, 1995; Elliott, 2002; Rinne et al., 2006). Such 
attention capture, whether it takes place in a transient (e.g., Cowan, 1995) or in a graded 
fashion (e.g., Bell et al., 2019a; Röer et al., 2014), affects performance on the primary task 
because attention is removed from the prevailing mental activity, hence preventing 
processing of task-relevant stimuli. According to this view, the attention-capture power 
of a sound would be determined by the degree of mismatch between a new stimulus and 
recently heard objects (Bell et al., 2019a), which characteristics would be registered in 
a so-called neural model (Sokolov, 1963) containing an aggregation of the stimulus 
sequence or a representation of the sound properties presented earlier. In that regard, 
if a sound is absent from the recent auditory past, its presentation can trigger a call for 
attention and elicit attention reorientation. From this standpoint, any (new) sound has 
potential to capture attention, including changing sound or speech and deviant stimuli as 
well.

Opposed to the unitary account is the duplex-mechanism account of auditory dis-
traction (Hughes, 2014; Hughes et al., 2005, 2007, 2013; Marois et al., 2019; Sörqvist,  
2010). This model distinguishes the deviation effect from the changing-state and pro-
poses different explanatory mechanisms. This distinction is mainly driven by a different 
conceptualization of Sokolov’s (1963) neural model. According to this view, the neural 
model does not register an aggregate of the physical characteristics of the sound, but it 
rather extracts a memory representation – or an algorithm – of the rules underlying any 
structure, pattern or sequence present within the auditory environment (e.g., Bendixen 
et al., 2007; Marois et al., 2020; Vachon et al., 2012; Winkler et al., 2009). Here, a sound is 
endowed with attention-capture power only if it violates implicit predictions that can be 
extrapolated from the regularities of the unfolding auditory stimulation. From this 
perspective, a series of changing tokens (e.g., G W P F S X N T) all differing from each 
other on the same aspects (e.g., voice, pace, intensity) contains no deviant (or irregular-
ity) because no token violates predictions derivable from the sequence (i.e., none is 
predictable at the level of the token identity and none violates this pattern). 
Consequently, each token of such a sequence should not trigger attention reorientation 
because each sound is (equally) unpredictable and cannot be predicted from the history 
of the previous stimulus, hence conforming to the rule that every stimulus changes from 
one another. A deviant sound embedded within a steady-state sequence (e.g., 
B B B B B A B B) should however prompt attention orienting because its presence 
violates the rule extracted from the preceding sounds that the auditory background is 
comprised of repetitions of the letter B.

While the preceding algorithm-based model is used by proponents of the duplex- 
mechanism account to explain the deviation effect (see Hughes et al., 2005), the 
distraction caused by non-deviant, changing irrelevant sound subtends a different 
explanation. Given that (predictable) changing auditory patterns cannot capture 
attention, their disruptive power would rather lie in a processing conflict between 
goal-relevant material and task-irrelevant sound. In fact, changing sound is obliga-
torily and involuntarily segmented into a perceptual stream (Bregman, 1990) and 
information regarding each element would be processed automatically to extract 
cues pertaining to the order of the sounds (Jones & Tremblay, 2000; Jones et al.,  
1993; Macken et al., 1999). Such obligatory seriation process would compete with 
the deliberate seriation processing involved in the focal task. This interference by 

AUDITORY PERCEPTION & COGNITION 3



process would then explain why serial memory performance is specifically disrupted 
by changing sound as opposed to similar tasks that do not involve any seriation 
processes such as the missing item task (Beaman & Jones, 1997; Hughes & Marsh,  
2020; Hughes et al., 2007). Interference-by-process is not limited to serial processing 
and can also be extended to semantic processing, whereby the automatic processing 
of the meaning of task-irrelevant speech interferes with the same processing applied 
deliberately in a focal task (see, e.g., Marsh et al., 2008, 2009; Meng et al., 2020; 
Neely & LeCompte, 1999).

Both unitary and duplex-mechanism accounts have been supported by empirical 
evidence related either to functional similarity or distinctiveness between the deviation 
effect and the changing-state effect. Proponents of the duplex-mechanism account first 
propose that cognitive control can be exerted on the deviation effect, but not on the 
changing-state effect. Indeed, it was shown that contrary to the changing-state effect, the 
deviation effect could be eliminated by increasing task demands, hence precluding 
attention reorientation from the ongoing task (Hughes et al., 2013; Hughes & Marsh,  
2019; Marsh et al., 2020; but see Kattner & Bryce, 2022). Moreover, foreknowledge of the 
incoming deviant sound could reduce the magnitude of the deviation effect, but the same 
was not necessarily observed with the presentation of changing sound (Hughes & Marsh,  
2020; Hughes et al., 2013). Some studies also found that working memory capacity – i.e., 
a measure of individual differences in the amount of attentional resources that can be 
used to inhibit task-irrelevant material (Engle, 2002) – is related to the amplitude of the 
deviation effect but not to that of the changing-state effect (Hughes et al., 2013; Labonté 
et al., 2021; Sörqvist, 2010; Sörqvist et al., 2013).

Advocates of the unitary account however reported opposing results regarding the 
cognitive control of auditory distraction. Bell et al. (2021) showed that both deviation and 
changing-state effects were unaffected by an increase in task engagement induced by 
monetary incentive. Röer et al. (2015) found that specific foreknowledge of an upcoming 
to-be-ignored spoken sentence could reduce its disruptive power, suggesting that the 
changing-state effect could be controlled as the deviation effect. Yet, Hughes and Marsh 
(2020) showed that such foreknowledge effect was in fact driven by the attentional 
diversion caused by the additional properties of a natural sentence that are absent from 
the repeated single word used by Röer et al. in their steady-state condition. Working 
memory capacity is also not systematically related to the amplitude of auditory distrac-
tion. Körner et al. (2017) found no correlation between working memory capacity and 
the size of both the deviation and changing-state effects, arguing in favor of a common 
mechanism between these phenomena. It must be noted however that the magnitude of 
the deviation effect found by Körner and colleagues was particularly small and that 
variability within the sample was relatively low, hence decreasing the odds of finding 
a significant correlation.

Habituation is another phenomenon used to either unite or distinguish how deviant 
and changing sounds can disrupt memory performance. Whereas there is ample evidence 
that the response to acoustic deviations tends to diminish with repeated exposure (e.g., 
Littlefair et al., 2022; Sörqvist et al., 2012b; Vachon et al., 2012), Bell et al. (2012) showed 
that both deviation and changing-state effects could decrease as a function of repetition. 
The authors ascribed this diminution of distraction over time to the habituation of the 
orienting response, hence supporting the idea that both effects would be driven by 
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attention capture. Indeed, this suggests that the repeated presence of either the deviant 
sound or the changing sound could be integrated into the neural model, reducing their 
attention-capture power (see also Banbury & Berry, 1997; Röer et al., 2014). However, 
other studies failed to observe significant decrease over time of – i.e., a “habituation” 
pattern for – the changing-state effect (Jones et al., 1997; Tremblay & Jones, 1998), 
inconsistent with the predictions of the unitary account.

Finally, differences can also be found regarding the nature of the tasks that can be 
impacted by the distracting sound. The deviation effect – which is allegedly driven by 
attention capture – can be observed with a range of memory and non-memory cognitive 
tasks (e.g., serial recall, continuous visual tracking, missing item, speeded discrimination 
judgments; see Hughes et al., 2007; Parmentier, 2008; Sörqvist, 2010; Vachon et al., 2017). 
Yet, it seems that changing-state sounds are mainly disruptive for tasks requiring seria-
tion processes (i.e., serial recall, probe task, and visual statistical learning; see Beaman & 
Jones, 1997; Hughes et al., 2007; Kattner & Ellermeier, 2018; Neath et al., 2009). Such 
a changing-state effect seems generally absent from tasks with no seriation underpin-
nings such as the missing item task (Beaman & Jones, 1997; Hughes et al., 2007; Kattner 
& Ellermeier, 2018). Yet, evidence of performance disruption by irrelevant speech was 
sometimes found for non-seriation tasks. For example, Bell et al. (2021) observed 
a changing-state effect using an item-color binding task, that was assumed not to rely 
on serial order. Samper et al. (2021) also observed that changing sounds hindered 
performance in the running memory span task conducted under conditions that dis-
couraged the use of seriation processes. Overall, behavioral evidence for the support of 
the unitary and the duplex-mechanism accounts is characterized by a range of conflicting 
findings.

Psychophysiological Measures

Using only behavioral evidence to identify the underlying mechanisms of auditory 
distraction may limit the extent of information that can be extracted from each phenom-
enon studied. Behavioral outcomes represent the product of a chain of actions for the 
processing of a stimulus from its reception by the perceptual system to task-relevant 
motor output. For example, in serial recall studies, the disrupting effect of the sound on 
recall performance depends on many internal processes including, but not limited to, 
encoding, maintenance, recollection, while also being affected by contextual factors such 
as the perceptual organization of the auditory environment (Hughes & Marsh, 2017) and 
the level of engagement in the task (Hughes et al., 2013). Moreover, there is sometimes 
some mismatch between the behavioral manifestation of distraction and the timing of the 
distracting event. For instance, disruption of serial recall at encoding can provoke 
a propagation and a back propagation of error through the to-be-remembered list, 
meaning that the disrupting effect of a deviant sound is usually visible across the whole 
serial-recall curve (see Hughes et al., 2005). In the same vein, the deviation effect has been 
restricted to those cases whereby the deviant sound occurred during the encoding of the 
to-be-remembered items (e.g., Hughes et al., 2005), but there is evidence that the effect 
can also arise when a deviant is presented during a retention interval (Körner et al., 2019).

Psychophysiology represents a sound technique to understand the underpinnings of 
psychological phenomena through a more direct lens given the possibility to examine 
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how a phenomenon (e.g., a task-irrelevant distracting sound) may impact specific brain 
processes underlying one’s cognitive activity. Two broad families of physiological mea-
sures can be used for that matter: direct measures of the central nervous system and 
indirect, peripheral measures of the nervous system. On the one hand, direct measures of 
the central nervous system are concerned with directly assessing the activity of the brain, 
e.g., its electrical activity or blood oxygen concentration. This includes event-related 
potentials (ERPs), which are highly used to represent the electrical response over a given 
region of the brain measured with an electroencephalogram (EEG), time-locked on 
a stimulus or an event (see Wetzel & Schröger, 2014, for a review). Showing either 
positive or negative deflections, ERPs provide a sensitive measure of real-time stimulus 
processing at various underlying stages of processing. Literature on auditory distraction 
identified a range of ERPs triggered by deviant sounds such as: a) the N1, a negative wave 
reflecting a first-order change-detection process; b) the mismatch negativity (MMN), 
a negative deflection indexing a sensory memory-based deviance-detection process; c) 
the P3a, a positive component often taken to reflect the process of involuntary attention 
orientation itself; and d) the reorienting negativity (RON), assumed to index the reor-
ientation of attention toward the main task (see Horváth et al., 2008). Direct measures of 
the central nervous system also comprise brain power bands, i.e., the different frequency 
of electric waves measured with an EEG. On the other hand, peripheral measures rather 
represent physiological responses caused by the brain activity in descending pathways 
across the body. For instance, it can include variations in the size of the pupil (e.g., the 
pupil dilation response [PDR], assumed to reflect the attentional response to deviant 
events; e.g., Marois et al., 2018, 2019, 2020), in cardiac activity, in respiration or in the 
electrical conductance of the skin.

Contrary to behavioral measures, psychophysiological measures can be time-locked to 
specific events or stimuli, hence directly representing their effect on the brain/body, and 
not the outcome of a chain of cognitive processes (Marois et al., 2020; Wetzel et al., 2013). 
In the case of ERPs, for instance, a given response can be measured only 100 ms after the 
onset of the stimulus of interest. In some cases, however, delays can be more important, 
especially for peripheral physiological responses (i.e., resulting from a [rapid] chain of 
physiological reactions from the brain to descending body areas) and for measures with 
lower temporal resolution (i.e., with slower biological reactions or measuring techniques 
such as the blood-oxygen-level-dependent [BOLD] signal, detected in functional mag-
netic resonance imaging [fMRI]).

In this regard, psychophysiological measures can be useful to study auditory distrac-
tion and to help understand the underlying mechanisms of the changing-state and 
deviation effects. For example, Bell et al. (2010) as well as Campbell et al. (2007) used 
ERPs to examine brain activity while participants performing a visual serial recall task 
were exposed to changing-state sound. Marois et al. (2019) rather relied on the PDR, 
a proxy for attention orienting, to assess whether both deviant and changing-state sounds 
had the same attention-grabbing power. Although psychophysiology draws on strong 
and objective evidence, this technique still remains rarely used among the auditory 
distraction research community. In this regard, it remains unclear what psychophysio-
logical measuring tools can be used, what specific indices can be exploited from these 
techniques, and what information can emerge from these psychophysiological responses 
regarding mechanisms of auditory distraction.
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Understanding the bases of auditory distraction could be achieved by focusing on 
physiological substrates of attention. As indicated earlier, the main debate concerning the 
underlying mechanisms of auditory distraction relates to whether both deviation and 
changing-state effects ensue from the same attention-orienting mechanism, as suggested 
by the proponents of the unitary account, or from distinct mechanisms, respectively 
attention capture and interference-by-process, as proposed in the duplex-mechanism 
account. Focusing on physiological markers of attention thus represents an interesting 
avenue to challenge these two theoretical explanations.

Activity of the locus coeruleus-norepinephrine (LC-NE) system is considered a key 
element of such mechanisms. The LC represents one of the main points of origin for the 
secretion of NE into the brain, a neurotransmitter related to vigilance, attention orienta-
tion, selective attention, and arousal. It is secreted in many regions of the brain including 
cerebral cortices, limbic structures, but also midbrain and diencephalon areas as well as 
the spinal cord (e.g., Aston-Jones et al., 1994; Bouret & Sara, 2004; Miller & Cohen, 2001; 
Nieuwenhuis et al., 2005; Sara & Bouret, 2012; Southwick et al., 1999). Its activity would 
mainly facilitate decision making and selection/processing of task-relevant (or potentially 
relevant) stimuli (Aston-Jones & Cohen, 2005; Bouret & Sara, 2004; Nieuwenhuis et al.,  
2005). LC secretion in certain areas of the brain would make synapse-like appositions 
with postsynaptic specializations on target neurons and, in turn, would generate electric 
activity in some regions of the brain (Koda et al., 1978; Olschowka et al., 1981; 
Papadopoulos & Parnavelas, 1990; in Aston-Jones et al., 1991). Through other connec-
tions (e.g., via the nucleus gigantocellularis that possesses direct afferent projections from 
the LC), the spinal cord receives efferences from the LC-NE system (Benarroch, 2009; 
Berridge & Waterhouse, 2003; Sara & Bouret, 2012), eliciting a sequence of descending 
actions of the peripheral pathway for both parasympathetic inhibition (through the 
Edinger-Westphal nucleus) and sympathetic activation (via the superior cervical gang-
lion; Nieuwenhuis et al., 2011; Sara & Bouret, 2012; Steinhauer et al., 2004; Wang & 
Munoz, 2015). Therefore, it seems that activity of the LC-NE system (and the different 
central and peripheral responses produced) is involved when attention-related mechan-
isms of distraction are triggered. Still, it remains unclear to what extent – and how 
specifically – these responses relate to the mechanisms responsible for the deviation and 
changing-state effects. Besides, many different responses related to the inhibition of 
irrelevant stimuli processing, seriation processing and executive control could also be 
relevant for understanding auditory distraction, but the role of these responses needs to 
be better examined.

The Current Study

The goal of this study was to provide a state of the current knowledge about the under-
pinnings of auditory distraction through the study of psychophysiological markers. To 
do so, we conducted a scoping review of empirical studies published between 2001 and 
2021 through several databases following the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses extension for scoping reviews (PRISMA-ScR; Tricco et al., 
2018).2 We sought to identify relevant literature regarding the psychophysiological 
responses elicited by distracting sound in the context of the deviation and changing- 
state effects. The scoping review approach was favored over the traditional and 
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systematic review counterparts due to the larger scope of the paper, i.e., to identify 
potential physiological markers of auditory distraction and how they might contribute 
to better understanding the underpinnings of this phenomenon (see Munn et al., 2018; 
Peters et al., 2015; Verdejo et al., 2021).

Similar to the method employed by Jaén et al. (2021) and Marois et al. (2023, key 
information regarding the psychophysiological responses triggered by irrelevant sound 
was extracted. This enabled to, first, identify markers that can be used to index auditory 
distraction, and, second, to provide further information about the mechanisms under-
pinning the disrupting effects of sound on cognitive performance. Following this analy-
sis, we discuss the implications of using these markers to index auditory distraction. We 
also present some considerations that should be addressed in an agenda of future studies 
to improve the comprehension of the relationship between physiological and behavioral 
effects of distraction.

Method

Search Strategy

No preregistered review protocol existed for the current scoping review. Hence the 
following protocol was developed. An online search of PubMed, ERIC, PsycNet, Web 
of Science and ScienceDirect was conducted on 31 August 2021 by the first author (AM). 
The inclusion criteria were that the document: a) was published between 2001 and 20213; 
b) was an English-written peer-reviewed article; c) presented empirical evidence of 
behavioral auditory distraction in a paradigm related to either the deviation effect or 
the changing-state effect; and d) contained physiological measures triggered by the 
distracting sound. In this regard, the terms combined to carry on the online database 
search were: (“sound” OR “audi*”), AND (“auditory distraction” OR “irrelevant sound” 
OR “attentional capture” OR “attention capture” OR “deviation effect” OR “irrelevant 
sound effect” OR “changing-state effect” OR “interference-by-process”), AND (“psycho-
physiology” OR “psychophysiological measure*” OR “electrodermal activity” OR “gal-
vanic skin response” OR “cardiovascular” OR “cardiac response” OR “heart rate*” OR 
“MEG” OR “EEG” OR “fNIRS” OR “respi*” OR “fMRI” OR “pupil*” OR “brain” OR 
“eye” OR “blink” OR “ERP” OR “event-related potential”). An example of search key-
words among the PubMed and PsycNet databases is provided in the Appendix (see Table 
A1). When possible, the keywords were searched among titles and abstracts of the 
records. The year criterion (i.e., between 2001 and 2021) was systematically used. For 
some databases, the search was split into multiple sets given the number of keywords. 
A few records identified through other sources were also included in the records 
database. These included key sources identified through snowballing, which is deemed 
complementary to the systematic keyword-driven approach (Chapman et al., 2010).

Eligibility Criteria

Eligibility assessment for inclusion was performed first through an initial generic assess-
ment and, in a second step, through detailed assessment of the paper. In the first 
assessment, records were excluded for the following reasons:
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(1) If the task required participants to actively listen to the sound for task-relevant 
goals or if participants were asked to passively listen to sound without any specific 
task. This was to ensure that the observed (psychophysiological) measures were 
really representative of the disruption of an ongoing cognitive task by irrelevant 
sound;

(2) If they contained no measure of the physiological activity of the participants;
(3) If participants were exclusively sampled from a clinical population, a population 

of elders or of children, or if they were non-humans. This exclusion criterion 
aimed at controlling for any potential noise on the autonomic responses ensuing 
from factors (e.g., sampling) other than the acoustic characteristics of the distract-
ing sound;

(4) If no distracting sound was presented.

The second detailed assessment aimed at excluding records that did not fit with the 
irrelevant sound paradigm for the following reasons:

(1) If no evidence of behavioral distraction was observed on performance. The goal of 
this criterion was to make sure distraction truly took place. Note that to avoid any 
bias in the theoretical model it could support, we did not use any exclusion 
criterion regarding whether the ongoing task involved mnemonic processes or 
not4;

(2) If the physiological measures reported were elicited by task-relevant stimuli rather 
than the sound itself (e.g., the P3b of the ERPs triggered by a task-relevant visual 
item; see Cid-Fernández et al., 2016)5;

(3) If no control condition was employed, that is, if the effect of the distracting sound 
was not compared to an appropriate control condition;

(4) If the sound condition of the study could not be ascribed specifically to either the 
deviation effect or the changing-state effect.

Eligibility assessment was conducted by the first author (AM) and reviewed by 
the second author (FV). Then, the final sample of records was established for the 
qualitative synthesis and each of these records were carefully read.

Critical Appraisal and Analysis of Bias

In line with the PRISMA framework (Liberati et al., 2009; Tricco et al., 2018), we 
performed a bias analysis on the different records sought for analysis for the current 
review as a critical appraisal of individual sources of evidence. This analysis allows to 
remain critical on the different studies reviewed and to be transparent on the different 
aspects that can bias the validity of the psychophysiological responses to auditory 
distraction. To do so, we used the Revised Cochrane risk-of-bias tool for randomized 
trials (ROB2; Sterne et al., 2019). This method was deemed appropriate given that 
participants in all these studies were exposed to orthogonal interventions that were 
not ascribed to participants because of their individual characteristics, but rather 
presented randomly (or quasi-randomly) regardless of their nature. The RoB2 tool, 
in the form of an Excel sheet6 containing different macros, was used to collate and 
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analyze information for all the studies. For each of the papers, outcomes of interest 
(i.e., dependent variable) for the review and the main interventions (i.e., the inde-
pendent variable with the levels of factor) were identified. Given the context of 
auditory distraction, factors of the intervention were related to the type of sound 
presented, that is, the distracting sound (either deviant [Dev] or changing-sound 
[CS]) for the experimental condition and the control sound (either steady-state [SS] 
sound or CS) for the comparator.

The method allows analysis of each study on five key domains where biases can be 
observed: a) Randomization process; b) Deviations from intended interventions; c) 
Missing outcome data; d) Measurement of the outcome; and e) Selection of the reported 
result. The technique also provides capacity to compute an overall estimate of bias based 
on the five subdomains. For the overall risk-of-bias judgment, the following rule is used: 
a) overall low risk of bias is related to studies with only low risk of bias classification for 
all domains; b) overall “some concerns” classifications are associated with studies that 
possessed at least one domain for which mild concerns were found; and c) overall high 
risk of bias is ascribed to studies with a majority (≥3) of “some concerns” and for studies 
possessing at least one domain with high risks for bias. More details are presented in the 
documentation of the RoB2 tool regarding the decision flowchart of the bias analysis for 
each domain. Results of the bias analysis and of the aspects inducing biases were 
discussed.

Data Charting and Collating

Key data was first charted by the first author (AM) based on Levac et al. (2010) 
suggestion. The following general information was first extracted from each of the 
records identified: a) study (authors, year of publication); b) sample size of participants 
concerned by the manipulations; c) type of psychophysiological technique; and d) nature 
of the distracting paradigm. This information was presented in a summary table com-
prised of all records. Records were classified per the type(s) of auditory distraction 
phenomena they discussed according to the author(s)’ viewpoint.

Further data was then charted for more elaborate qualitative synthesis and analysis: a) 
specific psychophysiological outcomes of interest; b) focal task; c) type of distracting 
sound; d) study design; e) summary of the main findings; and f) meaning for the auditory 
distraction literature and the debate on the underlying mechanisms. Data from elements 
a) to e) were presented in summary tables and the main conclusions/implications for the 
auditory distraction literature were discussed together within the results section. Note 
that if psychophysiological outcomes were reported both for the task-irrelevant auditory 
stimuli and the processing of task-relevant information, only the former were retrieved to 
keep the focus exclusively on psychophysiological proxies of sound-evoked distraction.

Results

The scoping review conducted in the five online databases with the additional records 
from other sources yielded a total of 580 records (PubMed = 129; ERIC = 8; PsycNet =  
102; Web of Science = 254; ScienceDirect = 87). In addition, nine studies considered 
relevant for the scope of the review were added from key sources through snowballing. 
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This led to a total of 589 records. After removing duplicates and non-empirical records 
(n = 291), 298 records went through the first generic screening. This initial assessment 
removed 233 records. A total of 65 records were sought for retrieval and 64 of them were 
retrieved and deemed eligible for detailed assessment (one full-paper record could not be 
accessed). Finally, the detailed assessment removed 49 records, identifying 15 records to 
be included in the qualitative synthesis of this review. Figure 1 depicts the PRISMA 
flowchart of the study selection process.

Bias Analysis

Per the PRISMA-ScR framework (Tricco et al., 2018), we analyzed the risks of bias in 
each individual study to provide a critical appraisal of the individual sources of evidence 
(see also Item 12, Liberati et al., 2009) using the RoB2 method (Sterne et al., 2019). 
Figure 2 depicts the overall evaluation of the bias for all studies analyzed (Panel A) and 
displays a detailed presentation of the RoB2 analysis for each of the 15 studies (Panel B). 
The overall bias evaluation for these 15 papers yielded mild concerns on the method 
employed by the authors for 86.67% of the papers and high risks for bias for 13.33% of the 
papers.

Figure 1. PRISMA flowchart diagram of the study selection process.
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All studies were considered as having some concerns in regard of the selection of 
reported results. This mainly originated from the fact that multiple methods of analysis 
exist in the literature. For instance, PDR analyses can be performed with or without 
baseline correction, or the PDR in a given condition can be subtracted (or not) from 
another control condition. Similar observations can also be observed for other psycho-
physiological measures (where a response can be measured independently or in relation 
with another response). In that regard, the analysis strategy varied between studies and 
can represent some form of bias. The Measurement of the outcome domain was mainly 
related to low risks (i.e., 86.67%), though some concerns were raised for Chein and Fiez 
(2010, Exp. 1) and high risks identified for Ruhnau et al. (2013). For this study, limita-
tions came from the fact that the analysis strategy was driven by the data rather than 
a priori. While being common, such a strategy might bias the results toward the 

Figure 2. Depiction of the RoB2 bias analysis for the 15 papers included in the review (panel A: global 
overview; panel B: detailed analysis). CS: changing-state; Dev: Deviant; and SS: steady-state.
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identification of significant responses. Yet, in the case of Chein and Fiez, they also ran 
a parallel analysis from an a priori perspective and achieved similar results, thus reducing 
the risk of bias to mild (i.e., “some concerns”).

Domains pertaining to missing data and to derivations from the intended interventions 
did not yield any risks for biases in all records selected for review. However, a majority of 
studies (66.67%) raised some concerns for the Randomization process domain. These 
concerns were related to the quasi-randomization used to generate the auditory sequences 
and their order of presentation. This practice is frequent in the literature on auditory 
distraction, e.g., to augment the deviation potential of a given deviant sound or to improve 
the disrupting power of an auditory sequence given the possibility for habituation (e.g., 
Debener et al., 2002; Friedman et al., 2001; Sörqvist et al., 2012a). Yet, such foreknowledge 
from the experimenter and the absence of a complete randomization process might have 
induced some bias in the outcomes measured. Overall, Ruhnau et al. (2013) and Chein and 
Fiez (2010) were thus related to higher risks of bias (driven by a posteriori analysis for 
Ruhnhau et al. and for a majority of moderate concerns for Chein and Fiez) while all other 
studies were considered having some moderate concerns.

Reviewed Studies Discussion

Among the 15 studies7 sought for qualitative synthesis, nine records were related to the 
deviation effect and seven records to the changing-state effect.8 Note that some studies 
presented more than one type of distracting sound. The mean number of valid participants 
across all the studies was 19.87 (SD = 8.25) with the lowest number being N = 9 (Campbell 
et al., 2007; Escera et al., 2003) and the largest being observed for Bell et al. (2010; N = 34). The 
following psychophysiological methods were found among all the records assessed for 
eligibility: EEG, magnetoencephalography (MEG), fMRI, pupillometry, electrocardiography, 
and electrodermal activity measures. Following records removal after the detailed assessment, 

Table 1. Generic information of the 15 studies selected for review.
Record Type of distraction phenomenon Valid N Psychophysiological method

Bell et al. (2010) CS 34 EEG
Berti (2013) Dev 16 EEG
Campbell et al. (2003) CS 18 EEG
Campbell et al. (2007)a CS 9 EEG
Chein and Fiez (2010, Exp. 1) CS 14 fMRI
Do Vale et al. (2015) Dev 21 EEG
Escera et al. (2001) Dev 10 EEG
Escera et al. (2003) Dev 9 EEG
Little et al. (2010) CS 25 EEG
Mahajan et al. (2020)b Dev 16 EEG
Marois et al. (2019) CS/Dev 30 Pupillometry
Marois et al. (2020) Dev 30 Pupillometry
Marois and Vachon (2018, Exp. 1) Dev 30 Pupillometry
Ruhnau et al. (2013)b Dev 20 EEG/MEG
Schlittmeier et al. (2011) CS 16 EEG

Note. CS: Changing-state effect; Dev: Deviation effect; EEG: Electroencephalography; fMRI: Functional magnetic resonance 
imagery; MEG: Magnetoencephalography. 

aWhile Campbell et al. (2007) also presented deviant sounds, no disrupting effect of the deviant was observed. 
Consequently, this paper is not analyzed under the lens of the deviation effect, but only for the changing-state effect. 

bAlthough two different age populations were studied, we only focus on analyzing the younger adults to stay consistent 
with the population selection criterion, hence the N represents only this group.
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only the first four measures remained (i.e., EEG, MEG, fMRI, and pupillometry). Table 1 
presents the generic information of the 15 records selected for synthesis. A more detailed 
summary for each record included in the review can be found in the Supplementary Material.

Deviation effect

Nine studies included in the current review focused on the deviation effect (see Table 2). 
They either reported measures of EEG, MEG, or pupillometry. The task used varied 
between a visual serial recall task (Marois & Vachon, 2018; Marois et al., 2019, 2020), 
a digit categorization task (Berti, 2013; Escera et al., 2001, 2003), a face recognition task 
(Do Vale et al., 2015), a visual n-back task (Mahajan et al., 2020), and a visuospatial 
alternative forced choice task (Ruhnau et al., 2013). From an electrophysiological per-
spective, the reviewed studies were mainly related to three ERPs evoked by the deviant 
sound: the N1, the MMN, and the P3a. The N1 is often considered an index related to 
preattentional perceptual processing of a sound (Näätänen, 1990). The MNN typically 
reflects the preattentive cerebral mechanisms responsible for detecting irregularities in 
stimulus features and eliciting a “call-for-attention” to prepare the organism to better 
process any stimulus worthy of capturing attention (Escera et al., 1998; Näätänen, 1990; 
Schröger & Wolff, 1998; Winkler, 2007). The P3a is considered a reliable index of the 
actual reorientation of attention triggered by an irrelevant sound deviating from the 
auditory context (Escera et al., 1998, 2000; Friedman et al., 2001; Squires et al., 1975).

The elicitation of a larger N1 by deviant relative to standard sounds was reported by 
Berti (2013), Escera et al., (2001, 2003) and Mahajan et al. (2020) while the deviant- 
elicited MMN was only reported by Escera et al. (2001) and Ruhnau et al. (2013). In this 
context, one could consider the N1 and the MMN to represent an index of the deviation 
effect. It must be noted, however, that the magnitude of both ERPs failed to match the 
size of the observed deviation effects. In Berti (2013), novel sounds were presented both 
within a silent context and among repetitive steady-state sequences. While the amplitude 
of the N1 was larger for deviants presented in silence than embedded in steady-state 
sound, the deviation effect was of similar magnitude across both conditions. In Escera 
et al. (2001), novel environmental sounds (e.g., drill, hammer, or rain noise) induced 
longer response times than deviant (frequency) sounds, suggesting that the former were 
more disruptive than the latter. Yet, these two types of deviant induced an N1 and an 
MMN of similar amplitude. In Escera et al. (2003), both identifiable and unidentifiable 
environmental novel sounds were used and compared to standard sounds. Identifiable 
novels increased response times relative to both unidentifiable novels and standards, 
which showed similar response times. Still, the two types of novel sound provoked an N1 
of similar amplitude, which was larger than that of the standard sounds. Taken together, 
this suggests that whereas deviant sounds are endowed with the power to trigger the N1 
and the MMN, the mismatch between their amplitude and the size of behavioral disrup-
tion casts doubts about the potential of these ERPs to index the deviation effect. At best, 
their presence can indicate that a sound departing from the acoustic context in which it is 
presented has been detected by the auditory system.

The P3a reported in the reviewed literature (Do Vale et al., 2015; Escera et al., 2001,  
2003; Mahajan et al., 2020; Ruhnau et al., 2013) seems to represent a response that is 
closer to the behavioral disruptive effect of deviant sounds. Indeed, there appears to be 
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a correspondence between the magnitude of the detrimental impact of the deviant sound 
on behavioral performance and that of the deviant-elicited P3a component. In the studies 
of Escera et al., (2001, 2003) the type of deviant sound impacted the size of the deviation 
effect on response times and the amplitude of the P3a in a similar fashion. More 
specifically, the longer response times found with environmental deviant sounds com-
pared to deviant tone bursts (Escera et al., 2001) as well as with identifiable (or mean-
ingful) deviant sounds relative to unidentifiable (or meaningless) deviant sounds (Escera 
et al., 2003) were accompanied by a larger P3a. In their study, Mahajan et al. (2020) 
assessed the impact of working memory load on distraction by auditory deviation by 
contrasting the behavioral and electrophysiological effects of a deviant tone across 
a condition requiring working memory (1-back) and a condition that did not (0-back). 
In a group of young adults, the deleterious effect of presenting a novel sound on response 
time was similar across the 1-back and 0-back conditions. The pattern of behavioral 
results also matched the pattern of ERP results; younger adults showed similar amplitude 
of the deviant-elicited P3a in the 0-back and 1-back tasks. Mahajan and colleagues also 
reported data collected from a group of older adults. They outlined a reduction of the 
disruptive impact of the deviant sound on response times in the 1-back condition relative 
to the 0-back condition, indicative of a shielding effect of an increase in the level of task 
engagement against distraction (cf. Hughes et al., 2013; Marsh et al., 2020; SanMiguel 
et al., 2008). Consistently, the amplitude of deviant-elicited P3a was attenuated in the 
1-back task compared to the 0-back task. Despite the difference in the distraction 
shielding effect of working memory load between younger and older adults, findings 
from Mahajan and colleagues revealed that variations in the amplitude of deviant-elicited 
P3a can be found only when the size of behavioral distraction is modulated accordingly. 
Finally, in studying the effects of steroids on emotional processing, Do Vale et al. (2015) 
also reported that the failure to modulate the amplitude of behavioral deviant distraction 
was associated to an absence of change in the size of deviant-triggered P3a. Taken 
together, these findings exposed a correspondence between the magnitude of behavioral 
and electrophysiological distraction by auditory deviations, whereby the amount of 
behavioral impairment induced by deviant sounds and the amplitude of deviant- 
elicited P3a seemed to vary accordingly.

The last two responses raised by the records of the current review relate to 
MEG and pupillometry. Ruhnau et al. (2013) observed both early and late mis-
match magnetic responses to deviant sounds. According to the authors, these 
responses represent deviance-related responses similar to the MMN. These 
responses were mainly observed in the primary auditory cortex and the superior 
temporal gyrus and sulcus. The early response could be found in both hemi-
spheres, but more largely in the left hemisphere while the late response was more 
important in the right hemisphere. The authors considered the late mismatch 
response to represent deviance detection and target discrimination mechanisms. 
These conclusions are consistent with those raised by the literature on MMN and 
the deviation effect where the former would activate a “call-for-attention” that 
may result in the latter (Escera et al., 1998, 2001; Näätänen, 1990; Schröger & 
Wolff, 1998; Winkler, 2007).

As for pupillometric responses, the records sought for review were related to 
three published papers (Marois et al., 2019, 2020; Marois & Vachon, 2018, Exp. 1). 
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In these papers, the PDR – a phasic rapid dilation of the pupil aperture – was used 
to index deviance distraction observed while participants performed a visual serial 
recall task. A PDR was elicited following the presentation of deviant sounds, 
whether they induced an unexpected change in the acoustic properties of the 
auditory sequence (Marois & Vachon, 2018; Marois et al., 2019), or they violated 
a repetitive alternating pattern (Marois et al., 2020). In Marois et al. (2019), 
a deviant sound (pink noise) was inserted among both steady-state and changing- 
state spoken letters. Consistent with previous work (see Hughes et al., 2007), the 
deviation effect observed in both steady-state and changing-state conditions was 
similar in magnitude. Similarly, the amplitude of the deviant-elicited PDR was 
similar across both contexts. In Marois and Vachon (2018, Exp. 1), a significant 
positive correlation was found between the amplitude of the PDR elicited by the 
deviant and the magnitude of the deviation effect; the larger the behavioral disrup-
tion, the larger the PDR. Yet, inconsistent results were found in Marois et al. 
(2020). In this study, performance on the visual serial recall task was hindered to 
a similar extent by deviants breaking the alternation pattern between two spoken 
letters, regardless of whether it was a novel letter absent from the sequence or 
a repetition of one of the two letters forming the alternating pattern. However, the 
PDR elicited by the deviant repetition was smaller than the PDR triggered by the 
deviant novel. Therefore, it seems that the magnitude of PDR does not perfectly 
match that of the deviation effect. Nonetheless, similar to the P3, its elicitation 
seems to indicate the engagement of attention-capture mechanisms.

Regarding the debate around the underlying mechanisms of auditory distraction, 
little information can be extracted from the records identified above. As indicated 
earlier, both proponents of the unitary and duplex-mechanism accounts ascribe the 
deviation effect to attentional capture. A difference between these two theoretical 
positions however lies in what can be construed as a deviant sound. For the unitary 
account, a deviant represents any new sound whose characteristics are absent from 
the neural model, which registers an aggregate of the recent auditory past. From the 
duplex-mechanism viewpoint, a deviant possesses acoustic characteristics that vio-
late the expectations ensuing from any algorithm extracted from the regularities of 
the auditory environment. In the studies reviewed, only Marois et al. (2020) focused 
on comparing two types of deviation and on controlling novelty vs. expectation 
violation. The observation that a repetition deviant is endowed with the power to 
trigger a significant PDR is congruent with the algorithmic view of the neural model 
adopted by the duplex-mechanism account while being incongruent with the aggre-
gate view of the unitary account. Indeed, the PDR was evoked because the unex-
pected repetition of a sound in an otherwise non-repeated auditory sequence 
violated implicit predictions extrapolated from the alternating pattern characterizing 
the irrelevant auditory sequence and registered into the neural model. As predicted 
by the duplex-mechanism account, acoustic novelty is not necessary for attentional 
capture – hence the PDR – to take place. From the unitary account perspective, the 
repetition of a sound just presented should have instead reduced the potential of 
that sound to elicit a PDR because its acoustic properties were already represented 
within the neural model and, therefore, were not registered as novel relative to the 
recent auditory past.
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Changing-state effect

Seven studies identified for synthesis concerned the changing-state effect (see Table 3). 
These studies comprise EEG, fMRI, and pupillometric measures. The bulk of the 
literature identified for synthesis mainly employed EEG measures. The focal task always 
implied seriation processes. Overall, much information can be extracted from the 
literature reviewed in this section. First, it seems that changing-state sound is mainly 
related to the elicitation of the N1, which is particularly potent in frontal areas (Bell et al.,  
2010; Campbell et al., 2003, 2007; Little et al., 2010). Yet, as noted by Campbell et al., 
(2003; see also Little et al., 2010) the elicitation of the N1 does not necessarily map exactly 
the presence of performance disruption by changing sound given that such distraction 
was sometimes absent despite the observation of an N1. Therefore, the presence or 
absence of an N1 response does not contribute to resolving the debate surrounding the 
mechanisms of the changing-state effect. Indeed, this ERP typically reflects preattentional 
perceptual processing of the sound. Even if its amplitude can be increased in the face of 
novelty or predictions mismatch (Näätänen, 1990) as a call-for-attention for generating 
further attention-orienting ERPs, its presence does not systematically incur attention 
switching. Besides, as stated by Little et al. (2010), the frontal distribution of the N1 and 
its association with attention areas can be construed as evidence of an increase in the 
amount of attentional resources necessary to process the order of the to-be-remembered 
material caused by the interference of the to-be-ignored sound (cf. the duplex- 
mechanism account).

While the N1 might not represent a specific proxy for the changing-state effect, 
Schlittmeier et al. (2011) suggested that the target-induced gamma band could serve 
this purpose as such oscillatory activity is deemed reflecting the interruption of task- 
relevant processes. The authors identified seriation processes as a potential victim, in line 
with the duplex-mechanism account, which construes the changing-state effect as 
a consequence of the ineluctable competition between controlled processing of the 
order of the to-be-remembered material and the automatic seriation processing of the to- 
be-ignored sound (Hughes, 2014; Hughes et al., 2005, 2007; Sörqvist, 2010). Still, 
Schlittmeier et al. also stated that the reduction in gamma band could be viewed as 
evidence of attention disengagement. This hypothesis rather serves the unitary account 
and the fact that performance disruption by changing sound would rather incur from 
auditory attentional capture (Bell et al., 2010, 2012; Chein & Fiez, 2010; Cowan, 1995; 
Elliott, 2002; Rinne et al., 2006).

Results from Bell et al. (2010) would also be consistent with this latter viewpoint; 
indeed, they observed P3a responses to the presentation of changing sound, an ERP that 
has been systematically ascribed to attention reorientation (e.g., Demiralp et al., 2001; 
Escera et al., 1998; Gumenyuk et al., 2004). Indeed, the P3a response is considered 
a strong and reliable index of the attention capture triggered by deviant sounds. Yet, 
Bell et al.’s study is the only one reporting this effect; Campbell et al. (2003, 2007) failed to 
observe such a response to changing-state sound. Moreover, the words used by Bell et al. 
to build the irrelevant speech sequences had a mean frequency of 8/1,000,000 in the 
German language (Baayen et al., 1993), which has been shown to possess important 
attention-grabbing power (Buchner & Erdfelder, 2005; but see Elliott & Briganti, 2012). 
One could then argue that the attention capture (and P3a) produced by their changing- 
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state sound rather tapped into processes of attention capture not because of their 
changing nature, but rather because of their scarcity in the German language (Marois 
et al., 2019).

The only study that has looked at the changing-state effect using pupillometry revealed 
the absence of change-elicited PDR (Marois et al., 2019), suggesting that changing sounds 
do not elicit any attentional response, as predicted by the duplex-mechanism account. 
Such a finding is also inconsistent with the position of the unitary account that disruption 
by changing-state sound ensues from a succession of deviants that repetitively capture 
attention from the serial recall task. Yet, Marois et al. (2019) also reported an enlarge-
ment of the pupil diameter throughout changing-state trials relative to their steady-state 
counterparts. Given tonic pupil size is deemed reflecting mental effort, whereby 
increased effort translates into increased pupil size until processing resources are 
exceeded (see Beatty, 1982; Mathôt, 2018), this finding provides support to the unitary 
account, which posits that the processing of changing-state sound consumes a larger 
amount of cognitive resources – hence produces larger disruption – than steady-state 
sound. Since changing sounds failed to triggered attention-orienting PDRs, Marois and 
colleagues, following the precepts of the interference-by-process view of the changing- 
state effect embraced by the duplex-mechanism account, hypothesized that this increased 
tonic pupil size could instead reflect the greater mental effort entailed by the need to 
resolve the conflict between the deliberate seriation processes involved in the serial recall 
task and the automatic ordering of the irrelevant changing sounds, possibly through 
inhibitory mechanisms (cf. Hughes et al., 2007). It must however be noted that Marois 
et al.’s demonstration of larger tonic pupil size during exposure to changing sound has 
not been replicated yet, and so this result must be taken with caution.

The inferior cerebral BOLD activity measured in working memory areas reported by 
Chein and Fiez (2010, Exp. 1) seems inconsistent with the duplex-mechanism account. 
As stated by the authors, such an effect may support reduced attention toward the to-be- 
remembered content supporting that changing sounds can trigger attention reorienta-
tion. BOLD activity in working memory areas has however been previously positively 
correlated with memory performance (e.g., D’Esposito et al., 2000; Jansma et al., 2004; 
Rypma et al., 1999), and more particularly with optimal manipulation and maintenance 
of task-relevant material. Negative correlations between BOLD activity in some memory- 
related areas and level of interference have also been reported (Bomyea et al., 2018; 
Gruber & von Cramon, 2003). Hence, the reduction in working memory areas observed 

Table 4. Summary of the physiological responses observed in the auditory distraction studies 
reviewed.

Response Deviation effect (n = 9) Changing-state effect (n = 7)

N1 4 4
P1 1 0
P2 1 1
MMN 2 0
P3 5 1
Theta-band reduction 0 1
Gamma-band reduction 0 1
BOLD activity in working memory areas 0 1
Phasic PDR 4 0
Tonic pupil diameter 0 1
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by Chein and Fiez could also be driven by mechanisms of interference between con-
trolled and automatic seriation processes. Besides, other studies have shown that deviant 
sounds can in fact increase BOLD activity in these regions (Halgren et al., 1998; 
McCarthy et al., 1997; Polich, 2007). This means that a reduction in BOLD activity 
does not necessarily represent attention reorientation (i.e., disengagement from the to-be 
-remembered item followed by reorienting toward the to-be-ignored sound), hence 
challenging the unitary account interpretation.

Discussion

The goal of this scoping review was to outline the literature related to the psychophy-
siological responses elicited by distracting auditory stimuli. To do so, we went through an 
online search of PubMed, ERIC, PsycNet, Web of Science and ScienceDirect databases 
for studies that used psychophysiological measures to assess auditory distraction with 
evidence of behavioral performance disruption. Over the 589 sources found, 15 studies 
were selected for review. This comprised nine studies on the deviation effect and seven on 
the changing-state effect (one study addressed both phenomena). Two studies raised 
higher risks of bias, mainly driven by measurement outcome limitations and a high 
number of moderate concerns, while all other studies raised some concerns, especially 
because of the existence of a large variety of physiological analysis strategies. Overall, the 
main physiological responses elicited by distracting sound that were extracted from the 
literature covered could be measured using EEG, MEG, fMRI, and pupillometry. These 
responses were: a) for the deviation effect, the N1, the MMN, the P2, and the P3 of the 
ERPs, as well as the PDR; and b) for the changing-state effect, the N1, P1, P2, and P3a of 
the ERPs, BOLD activity in working memory areas, gamma-band and theta-band 
activity, and tonic pupil size.

Overall, it seems that some physiological responses seem more specific to certain 
auditory distraction phenomena whereas others seem to be generally present, regardless 
of the type of disrupting stimuli. The N1 response seems to be elicited by all distracting 
sounds irrespective of their nature, that is, in the context of either the deviation effect 
(Berti, 2013; Escera et al., 2001, 2003; Mahajan et al., 2020), or the changing-state effect 
(Bell et al., 2010; Campbell et al., 2003, 2007; Little et al., 2010). This means that the N1 
might be sensitive to auditory distraction but lacks specificity. The MMN seems however 
more specific to the deviation effect as it was observed only in studies employing deviant 
sounds embedded into a steady-state auditory stream (Escera et al., 2001; Ruhnau et al.,  
2013) and absent for all the studies related to the changing-state effect. P3 responses also 
appear mostly related to the deviation effect (Do Vale et al., 2015; Escera et al., 2001,  
2003; Mahajan et al., 2020; Ruhnau et al., 2013; but see Bell et al., 2010). Finally, it seems 
that the PDR is observed for deviant sounds (Marois & Vachon, 2018; Marois et al., 2019,  
2020), but not changing-state sounds (Marois et al., 2019). Other responses (i.e., gamma- 
band increase, theta-band reduction, tonic pupil size, P1, P2 and BOLD activity in 
working memory areas) may lack evidence because they were only observed in single 
studies across the literature collated in the current scoping review. Table 4 presents all the 
responses observed in the studies collated, as well as the number of studies in which they 
were observed for each paradigm.
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From the results collated and their interpretations, only Marois et al. (2019) and 
Marois et al. (2020) possess strong evidence favoring the duplex-mechanism. In fact, 
these are the only studies, to our knowledge, that were tailored-designed to tease apart the 
unitary and duplex-mechanism accounts using psychophysiology. All other studies either 
had no evidence favoring one of the two perspectives (e.g., most of the studies focusing 
only on the deviation effect) or, as presented in each section, their results could also be 
interpreted from the opposite viewpoint. However, from a more general perspective, the 
pattern in physiological responses elicited by the different studies can also shed light on 
the underlying mechanisms of auditory distraction. The fact that the N1 potential could 
be observed in relation with the deviation effect and the changing-state effect supports 
that auditory distraction might be driven by common mechanisms regardless of the 
nature of the disrupting sound. Yet, the fact that the P3 component (Do Vale et al., 2015; 
Escera et al., 2001, 2003; Mahajan et al., 2020; Ruhnau et al., 2013) and the PDR (Marois 
& Vachon, 2018; Marois et al., 2019, 2020) are elicited almost exclusively by deviants 
sounds and not by (non-deviant) changing sounds undermines the unitary account 
perspective. First, it indicates that deviant and changing sounds are functionally distinct. 
Second, since these two biomarkers are deemed reflecting the attentional response to 
a stimulus, it argues against an interpretation of the changing-state effect in terms of 
a succession of orienting responses to attention-grabbing distractors.

Generally, the current scoping review provides evidence favoring the duplex- 
mechanism account given the psychophysiological indices found to be specific to 
certain auditory distraction effects. Indeed, the specificity of the MMN, P3 and PDR 
to the deviation effect (and their general absence among changing-state studies) 
supports the idea that performance disruption from a deviant sound embedded 
within an invariant/predictable auditory stream is underpinned by attention cap-
ture. More studies will be necessary to further confirm whether these responses are 
really specific to the deviation effect. To better contribute to resolving this debate, 
future studies should focus on examining both the deviation and the changing-state 
effects concurrently with the same set of physiological responses (cf. Marois et al.,  
2019). As suggested by Körner et al. (2017), most of the studies interested in the 
unitary and duplex-mechanism account rely on different experiments, across dif-
ferent individuals and designs. This can preclude optimal comparison between the 
effects given that methodological differences may explain how both phenomena 
vary or not.

Implications and Future Directions

Results of the current scoping review outlined the main physiological markers of auditory 
distraction, more specifically those related to the deviation effect and the changing-state 
effect. Some insight could also be found with regard to the debate around the under-
pinnings of auditory distraction. Globally, these results can benefit researchers from the 
auditory distraction community interested in assessing the impact of distracting sounds 
across different experimental setups. While behavioral measures can generally provide 
information about the disrupting power of sound, they can sometimes lack sensitivity. 
For example, the absence of behavioral impairment does not necessarily mean that no 
distraction took place, as there are instances where a deviant-elicited attentional 
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response, as measured by the PDR, was observed in the context of very easy, undisrupted 
behavioral tasks (e.g., Marois & Vachon, 2018; Marois et al., 2018). In other cases, 
deviant-evoked attentional responses of various amplitudes led to a similar amount of 
behavioral disruption (e.g., Marois et al., 2020). Physiological responses can represent 
interesting indices that can complement the information provided by classical behavioral 
measures, or even help studying auditory distraction in contexts where no behavioral 
measurements can take place. Given that the current review focused only on the 
physiological responses observed along with behavioral disruption, this means that the 
indices reviewed herein might have potential to complement behavioral indices, e.g., 
when the ongoing task does not allow proper collection of performance metrics. Such 
could be the case with tasks impervious to auditory distraction or too sensitive to 
performance disruption by sound (e.g., Campbell et al., 2007; Marois & Vachon, 2018; 
Marois et al., 2018).

Outside of the lab, the physiological markers identified in this review could also be 
useful to assess in real time the presence of auditory distraction. The emergence of new 
technologies allows more and more for the development of capabilities that collect 
physiological data and provide information on the state of users. Multiple applied 
domains, including the military (Friedl, 2018; Salvan et al., 2022) or the field of human- 
machine collaboration (Blackhurst et al., 2012; Parnandi et al., 2013; Zhao et al., 2020), 
have become interested by such an approach. Physiological state-driven adaptive systems 
could be of use for operational domains where auditory alarms and other sound-related 
media provide key information to the operator (e.g., in intensive care units, security 
surveillance rooms, air traffic control operation centers, or in aircraft cockpits; Ahlstrom 
& Panjwani, 2003; Dehais et al., 2014; Hodgetts et al., 2017; Momtahan et al., 1993). 
Relying on these proxies, a system could be able to detect whether a particular sound has 
induced any desirable (or undesirable) distracting effect. This capability could serve well 
an automated system responsible for triggering actions designed to promote the con-
scious detection of the alarm or to execute automatically a relevant countermeasure 
related to the alarm. With the increase in portability of several physiological measure-
ment tools such as head caps, glasses, garments and embarked systems (see, e.g., Friedl,  
2018; Marois et al., 2020; Salvan et al., 2022), such an application could become possible 
in the near future.

Nevertheless, multiple considerations still need to be addressed to fully understand the 
full list of physiological markers of auditory distraction. Indeed, several questions related 
to auditory distraction or more generally to physiological measures remain unanswered 
by the current scoping review. These questions, which can be split into three categories, 
should be addressed more comprehensively in future studies.

Cognitive load and mental effort
The first aspect that should be considered is the effect of cognitive load on the measures 
of auditory distraction. As outlined previously, higher cognitive load of the ongoing focal 
task has been shown to reduce the deviation effect (Hughes et al., 2013; Marsh et al., 2015,  
2020; but see Kattner & Bryce, 2022). This means that when task demands increase, the 
difference in performance between deviant and standard trials tends to disappear. 
Previous research outlined that an increase in cognitive load could induce a lower 
brainstem response (Sörqvist et al., 2012) as well as a reduction in the auditory- 
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temporal cortex response (Sörqvist et al., 2016). Such an impact on brain activity would 
be the cause of a cross-modal suppression of the neural activity elicited by the distractor 
modality (i.e., the auditory modality; Weissman et al., 2004). The cognitive control of the 
deviation effect can thus be construed as a by-product of the increase in brain activity 
related to attention and working memory processing for the task-relevant stimuli 
(Sörqvist et al., 2016). Therefore, an increase in cognitive load should modulate the 
amplitude of distraction-related physiological responses. This seems to be the case with 
the P3a, where a high-load context reduces the emergence of the P3 response following 
a deviant (Causse et al., 2016; Giraudet et al., 2015; SanMiguel et al., 2008). To our 
knowledge, however, the sensitivity of the amplitude of deviant-evoked PDR to cognitive 
load has yet to be tested. It is therefore necessary to demonstrate that the size of the PDR 
to deviant sounds should decrease along with behavioral disruption under contexts of 
high cognitive load.

Once demonstrated, the PDR and the P3a could then be used as markers of attentional 
capture in studies designed to investigate the impact of cognitive load on both the 
deviation and changing-state effects. The duplex-mechanism account predicts the effects 
of cognitive load to be restricted to forms of distraction underpinned by attentional 
capture. Hence, under high load, the magnitude of both the deviation effect and the 
deviant-elicited biomarkers (i.e., the P3a and the PDR) should be reduced while that of 
the changing-state effect should remained unaffected. From the unitary account view-
point, the decrease in the size of the deviation effect and of the P3a and/or PDR under 
high load should also take place for the changing-state effect. Besides, if an increase in 
cognitive load decreases background sound processing (Sörqvist & Marsh, 2015; Sörqvist 
et al., 2012, 2015, 2016), one would expect that high cognitive load could also reduce the 
magnitude of the changing-state effect as it attenuates the peripheral processing of the 
acoustical change within the irrelevant auditory channel. While this hypothesis has been 
generally challenged at the behavioral level (Hughes & Marsh, 2019; Hughes et al., 2013; 
Kattner & Bryce, 2022; Marsh et al., 2020), no study has yet examined the impact of 
cognitive load on the elicitation of physiological markers of the changing-state effect. As 
such, measures such as EEG theta bands or fMRI BOLD response in working memory 
areas could be used to investigate how cognitive load might affect the cerebral activity 
induced by changing sound. Overall, the moderating impact of cognitive load on the 
physiological markers of auditory distraction needs to be better understood in order to 
anticipate any variations in the physiological signal measured and to correctly ascribe it 
to variations in load, and not to the sole effect of auditory distraction.

Fundamental to the unitary account is how the processing of irrelevant sound may 
draw cognitive resources away from the ongoing task and result in performance costs. 
Accordingly, changing-state distractors tend to recruit more processing resources than 
steady-state distractors because of their larger mismatch with the content of the neural 
model, which leaves less resource available to execute the focal task and leads to more 
performance disruption (e.g., Bell et al., 2019a). Given that tonic pupil size is an index of 
mental effort, that is, the deployment of cognitive resources, pupillometry could become 
a tool to test the predictions of the unitary account. Consistent with an attentional view of 
the changing-state effect, Marois et al. (2019) reported larger tonic pupil diameter in 
changing-state trials relative to steady-state trials. Of course, this sole demonstration 
would need to be replicated. The addition of appropriate controls such as a silent 
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condition could also help to determine to what extent repeated sounds consume proces-
sing resources to produce a “steady-state effect” (cf. Bell et al., 2019a). Pupillometry could 
also enable testing the proposition of Bell et al. (2021; see also Bell et al., 2013) that the 
absence of changing-state effect in the context of the missing-item task (e.g., Beaman & 
Jones, 1997; Hughes et al., 2007) is not due to the fact that this task does not require 
memory for serial order, as suggested by the duplex-mechanism account, but simply 
because the task is less cognitively demanding than serial recall, making it less sensitive to 
resources being drawn away by changing-state sound. From that viewpoint, tonic pupil 
diameter should be smaller during the encoding phase of the missing-item task than 
during the same phase of a task known to be susceptible to disruption by changing-state 
auditory distractors such as the serial recall task or the probe task. Moreover, this account 
predicts that increasing the demand for processing resources in the context of the 
missing-item task, as indexed by an enlargement of tonic pupil size, should increase 
the likelihood to observe a changing-state effect.

Postcategorical auditory distraction
Postcategorical processing represents a second component that must be addressed in 
future studies. Analysis of the semantic properties of the distracting sound – added to 
those related to precategorical acoustic properties – can sometimes induce further 
performance disruption and might need to be considered when trying to measure the 
distracting effects. For example, there is evidence that performance can be disrupted by 
the insertion in the auditory stream of a spoken item that deviates from the semantic 
context characterizing the auditory sequence, such as a change in semantic category (e.g., 
a spoken letter inserted within a series of spoken digits; Labonté et al., 2021; Littlefair 
et al., 2022; Vachon et al., 2020) or a word that is semantically unexpected (Röer et al.,  
2019, 2022). In both the categorical deviation effect and the semantic mismatch effect, 
respectively, it was not the individual meaning of the mismatching item that entailed it 
with distracting power, but rather a violation of the expectations derived from the 
semantic content of irrelevant sound. Logically then, these forms of distraction were 
first ascribed to attentional capture. Yet further investigation challenged this assumption. 
For instance, both phenomena are not subject to habituation (e.g., Littlefair et al., 2022; 
Röer et al., 2019), which is at odds with the attenuation of the attention-grabbing power 
of deviant sounds over time (e.g., Marois et al., 2018; Vachon et al., 2012). Contrary to 
attentional capture, the categorical deviation effect seems immune to top-down cognitive 
control. Indeed, the magnitude of the phenomenon remained unaffected by top-down 
control manipulations (Vachon et al., 2020) and was not predicted by individual differ-
ences in the ability to control attention, as measured through working memory capacity 
(Labonté et al., 2021). Another potential candidate mechanism is the semantic version of 
interference-by-process, whereby the semantic activation of the to-be-ignored sound 
competes with the semantic representations activated through the deliberate semantic 
processing of the task-relevant items, hence disrupts focal task performance (e.g., Marsh 
et al., 2008, 2009; Sörqvist et al., 2010). However, since the categorical deviation effect was 
found regardless of the processes involved in the focal task and of the type of stimuli used 
as task-relevant items and irrelevant speech (Vachon et al., 2020), it is unlikely that this 
form of distraction is underpinned by interference-by-process.
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Hitherto, behavioral data has been insufficient to identify the origins of the categorical 
deviation effect and the semantic mismatch effect. Hence psychophysiological markers 
could be of good help in uncovering the mechanisms underlying these postcategorical 
forms of auditory distraction. For example, if precategorcial and postcategorical devia-
tion effects are underpinned by distinct mechanisms, one might expect biomarkers of the 
response to acoustic deviations to differ from those that would index the response to 
semantic deviations. And yet postcategorical deviation effects have been shown to be 
particularly resistant to several manipulations, hence the report of numerous statistically 
null effects, leaving the door open to various alternative explanations. In such a context, 
markers of attentional orienting as sensitive as the PDR and the P3a could serve useful to 
determine with more certainty whether the disrupting impact of semantic deviants is 
driven by attentional capture or not. Literature in language processing also reveals 
a range of ERPs that are sensitive to the semantic context in which stimuli are embedded, 
but that were not addressed by the current scoping review. For instance, the N400 
component has been shown to be sensitive to semantic anomalies (see Kutas & 
Federmeier, 2011, for a review) while the P600 component can be found in response to 
syntactic violations (see Kutas et al., 2006, for an overview). There is also the semantic 
prediction potential (SPP), which exhibits greater amplitudes in the interval preceding 
expected versus unexpected critical words (Pulvermüller & Grisoni, 2020). Despite the 
existence of different theories of these components’ functional significance (e.g., Brouwer 
et al., 2017; Grisoni et al., 2021; Kutas & Federmeier, 2011), assessing the potency of 
semantic auditory deviants to elicit such components could help to better understand the 
mechanisms underlying their distractive power.

Physiological and behavioral correspondence
While auditory distraction can be considered as an “all-or-nothing” phenomenon (e.g., 
whether a deviant sound has captured or not captured attention from the ongoing task; 
but see the graded view of attention capture, Bell et al., 2019a), performance disruption 
can in fact be of different amplitude according to the magnitude of interference from the 
distracting sound. For instance, deviant sounds of different degrees of divergence accord-
ing to the auditory context may elicit physiological responses of different amplitudes with 
larger divergences related to larger physiological responses (Liao et al., 2016; Marois 
et al., 2018). This amplitude has sometimes been associated with the magnitude of 
performance disruption (e.g., Marois & Vachon, 2018, Exp. 1), while it is sometimes 
unrelated (e.g., Marois & Vachon, 2018, Exp. 2).

The distinction between the behavioral impact of sound as opposed to the elicita-
tion of the physiological response may be mainly driven by the specific mechanisms 
involved in that response. For example, Näätänen (1990) proposed that the brain 
activity responsible for generating the N1 is closely related to the conscious detection 
of onsets, energy changes or transitions within a sequence of sound. Yet, even if 
attention is not necessarily oriented toward said sound (e.g., if the sound is not 
characterized by sufficient attention-grabbing power), the population of neurons 
related to the emergence of the N1 may still be engaged to a certain level (i.e., to 
process a “call-for-attention” that is subsequently denied as the threshold is not 
exceeded). In this situation, evidence for a certain level of brain activity (i.e., via 
the N1) may be recorded, but no specific performance disruption may be observed 
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given that the sound is successfully ignored (cf. Campbell et al., 2003). Other situa-
tions of misalignment between behavior and physiology can also be caused by the 
focal task. For example, in Marois and Vachon (2018, Exp. 2), deviant sounds 
successfully elicited significant PDRs as opposed to control, steady-state sounds 
while participants were performing a reading comprehension task. Yet, despite that 
significant PDRs were elicited by the deviants (thus suggesting that they captured 
attention), no performance disruption on the focal task was observed. This could be 
explained by factors inherent to the task (e.g., participants had time to recover from 
attention being momentarily drawn away from the text and re-read disrupted pas-
sages) and to the properties of the sounds (e.g., a lack of meaningfulness of the 
deviants with respect to the text to read).

Another consideration lies in the fact that participants, in some studies, may try to 
overcome or compensate for distraction by being more engaged and trying harder to 
inhibit the distracting sounds (see Sörqvist & Marsh, 2015, for a discussion). More 
deliberate task-engagement could maintain task performance at a high level in the 
presence of irrelevant sound (e.g., Marsh et al., 2020), sometimes to a level as high as 
in silence. In such cases, the absence of disruption relative to a control condition could 
then be confounded with a lack of distraction. The sensitivity of tonic pupil diameter to 
mental effort (cf. Beatty, 1982) could enable detecting the effects of deploying further 
engagement – or effort – in the focal task, hence promoting a better comprehension of 
the processing dynamics between task engagement and auditory distraction. 
Understanding the relationship between behavioral and physiological responses (or 
absence thereof) could give more granularity to using certain physiological responses 
at the profit of others potentially unrelated to the extent of performance disruption.

Limitations

While the current review provides a general portrait of the literature on the physiological 
markers of auditory distraction, it contains some limitations that must be addressed. 
First, the type of distraction was sometimes difficult to define and, for that reason, some 
studies were removed from the review. For example, some authors consider virtually any 
distraction by sound as the irrelevant sound effect. Changing sounds are sometimes 
considered by proponents of the unitary account as deviant sounds presented repeti-
tively. This can mitigate comparisons of physiological markers across the diverse audi-
tory distraction phenomena.

Second, some physiological responses were not reported in the current review 
because of the exclusion criteria. This means that the list proposed herein is not 
exhaustive and is influenced by the criteria of the scoping review. For example, Potter 
et al. (2018) reported variations in electrocardiographic measures following the pre-
sentation of irrelevant sound during a task. However, the study possessed no control 
condition and was thus excluded. Another example relates to a study conducted by 
Berti et al. (2017) where the authors measured skin conductance response while 
participants remained passive or did a task without any behavioral performance 
measure. Many papers used an auditory discrimination task where participants 
must attend to the auditory stimuli and react on specific properties of the sound 
(e.g., Horváth et al., 2009; Jankowiak & Berti, 2007; Steiner & Barry, 2011, 2014; 
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Wetzel et al., 2013). However, in this case, the sound was considered task-relevant 
and, hence, the study was not considered for review. All these physiological markers 
could still potentially represent psychophysiological indices of auditory distraction 
and could ultimately inform on the underpinnings of auditory distraction. Future 
studies should try to evaluate their potential in a context more typical of auditory 
distraction paradigms.

Third, all task-specific responses were excluded from the review. Electrophysiological 
markers not related directly to the emergence of the distraction were also excluded. For 
instance, this is the case of the RON, which represents the subsequent disengagement of 
attention from the distractor toward the focal stimuli (e.g., Munka & Berti, 2006; Scheer 
et al., 2016). As briefly stated earlier, literature on auditory distraction and EEG has 
considered the MMN, P3a and RON to be the triumvirate of ERPs related to the 
deviation effect (see Horváth et al., 2008, for a discussion). Our choice not to address 
findings related to the RON may thus seem surprising. However, this type of ERP was 
excluded from the scoping review given its particular relationship with the focal task. 
More specifically, literature suggests that the RON component is comprised of two 
subcomponents: an early subcomponent reflecting the fast reorientation of attention 
on the level of working memory, followed by a later component reflecting more general 
allocation of attention (Berti, 2008; Munka & Berti, 2006), with a focus on task-relevant 
information in working memory (and not solely disengagement from task-irrelevant 
stimulus). For this reason, we did not address the RON and other task-relevant responses 
in this review. While these measures are neither solely nor specifically related to the 
actual distraction from a task-irrelevant stimulus, they could still represent useful mar-
kers that would give insight on the distraction effects.

Finally, the choice of year (2001–2021) and keywords may have influenced the papers 
identified and screened. In fact, some papers respecting the inclusion and exclusion 
criteria may have been missed (e.g., SanMiguel et al., 2008). Overall, these limitations 
may reduce the scope of the current review and in turn add some blind spots to the list of 
physiological markers defined herein. However, the inclusion and exclusion criteria 
defined aimed at avoiding confound within the studies selected and at ensuring that 
the physiological markers reviewed would be solely representative of auditory distrac-
tion, unaffected by other context considerations or cognitive state. Nonetheless, further 
studies with a larger scope could eventually be conducted, although risks of reduced 
validity of the markers found could arise from having a less constraining list of eligibility 
criteria.

Conclusions

The current scoping review aimed at identifying the main physiological markers of 
auditory distraction and at giving new perspective on the debate of the underlying 
mechanisms of auditory distraction. From the 15 studies reviewed, we found that the 
deviation effect has been associated with the N1, the MMN, the P2, and the P3 of the 
ERPs, as well as the PDR. The changing-state effect sometimes triggered the N1, P1, P2, 
and P3a of the ERPs, reduced and later BOLD activity in working memory areas, gamma- 
band and theta-band reduction, and increase in tonic pupil size. While the studies 
collated differed and could be challenged in their interpretation of the underpinnings 
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of auditory distraction, the fact that the P3, the MMN and the PDR were mainly triggered 
by deviant sounds while changing sounds were more related to theta-band activity 
reduction favored the duplex-mechanism account. However, the unitary account could 
also be supported by the elicitation of the N1 irrespective to the type of distraction. 
Although further studies are still needed to provide a larger and more comprehensive 
portrait of the psychophysiological markers of auditory distraction and to better under-
stand its underlying mechanisms, the current review could still define a list of responses 
that can serve the auditory distraction research community. It also opens for the 
integration of new tailored sensing intelligent technologies allowing to assess in real 
time the distraction level of human operators from online physiological measures.

Notes

1. Auditory distraction has been historically studied under the umbrella of the irrelevant sound 
effect, which initially referred to the idea that the effect of unwanted speech or sound could 
disrupt serial recall (Colle & Welsh, 1976; Jones et al., 1990; Salamé & Baddeley, 1982). 
However, since the changing nature of the sound has been identified as the main cause of the 
irrelevant sound effect (see Jones et al., 1992), the changing-state effect has been considered 
as the empirical signature of the irrelevant sound effect. For that reason, and to avoid any 
confusion, we chose to disregard studies that used the expression “irrelevant sound effect” in 
reference to distraction effects for which the role of acoustic change cannot be established. 
Hence, we refer to any performance disruption caused by changing tokens to the changing- 
state effect and others related to attention diversion to the deviation effect.

2. The PRISMA-ScR checklist can be found in the Supplementary Material.
3. This year criterion was established given that the bulk of the literature on differences 

between the changing-state effect and the deviation effect was published after the year 
2000. It also allowed us to make sure that the physiological responses reviewed would be 
reliable and valid, employing most recent psychophysiological methods of analysis.

4. Although the changing-state effect has been widely related to visual serial recall, other tasks 
such as the missing item task and probed recall have also been studied along with this effect. 
In a different vein, the deviation effect – again widely related to visual serial recall – has also 
been observed while participants carried out digit categorization, visual n-back, probed 
recall, or the missing item task. For that reason, we did not restrict eligibility to visual serial 
recall as the focal task.

5. Such a criterion led to the exclusion of any result related the RON, a negative deflection 
associated to the reorienting of attention toward the focal task (e.g., Munka & Berti, 2006; 
Scheer et al., 2016). While this response is often measured following the presentation of 
a deviant, we decided to exclude it given that it is mostly ascribed to the task-relevant stimuli 
rather than the irrelevant sound. We provide more discussion about this in the Limitations 
section of the paper.

6. The tool, documentation and Excel sheet can be found on the following link: https://sites. 
google.com/site/riskofbiastool/welcome/rob-2–0-tool/current-version-of-rob-2

7. For the sake of transparency, note that the authors of the current review (AM and FV) 
authored three of the reviewed papers.

8. The 15 studies included for synthesis are identified by an asterisk in the reference section.
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Appendix

Table A1. Example of full electronic search strategy for the PubMed and PsycNet databases.
Database Keywords

PubMed ((“sound”[Title/Abstract]) OR (“audi*”)) AND ((“auditory distraction”[Title/Abstract]) OR (“irrelevant 
sound”[Title/Abstract]) OR (“attentional capture”[Title/Abstract]) OR (“attention capture”[Title/ 
Abstract]) OR (“deviation effect”[Title/Abstract]) OR (“irrelevant sound effect”[Title/Abstract]) OR 
(“changing-state effect”[Title/Abstract]) OR (“interference-by-process”[Title/Abstract])) AND 
((“psychophysiology”[Title/Abstract]) OR (“psychophysiological measure*”[Title/Abstract]) OR 
(“electrodermal activity”[Title/Abstract]) OR (“galvanic skin response”[Title/Abstract]) OR 
(“cardiovascular”[Title/Abstract]) OR (“cardiac response”[Title/Abstract]) OR (“heart rate*”[Title/ 
Abstract]) OR (“MEG”[Title/Abstract]) OR (“EEG”[Title/Abstract]) OR (“fNIRS”[Title/Abstract]) OR 
(“respi*”[Title/Abstract]) OR (“fMRI”[Title/Abstract]) OR (“pupil*”[Title/Abstract]) OR (“brain”[Title/ 
Abstract]) OR (“eye”[Title/Abstract]) OR (“blink”[Title/Abstract]) OR (“ERP”[Title/Abstract]) OR (“event- 
related potential”[Title/Abstract])) AND (2001:2021[pdat])

PsycNeta ((“sound”) OR (“audi*”)) AND ((“auditory distraction”) OR (“irrelevant sound”) OR (“attentional capture”) 
OR (“attention capture”) OR (“deviation effect”) OR (“irrelevant sound effect”) OR (“changing-state 
effect”) OR (“interference-by-process”)) AND ((“psychophysiology”) OR (“psychophysiological 
measure*”) OR (“electrodermal activity”) OR (“galvanic skin response”) OR (“cardiovascular”) OR 
(“cardiac response”) OR (“heart rate*”) OR (“MEG”) OR (“EEG”) OR (“fNIRS”) OR (“respi*”) OR (“fMRI”) OR 
(“pupil*”) OR (“brain”) OR (“eye”) OR (“blink”) OR (“ERP”) OR (“event-related potential”))

aNote that the year filter was added manually through the user interface.
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