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Abstract: This study presents ATR-FTIR (attenuated total reflectance Fourier-transform infrared)
spectral analysis of ex vivo oesophageal tissue including all classifications to oesophageal adeno-
carcinoma (OAC). The article adds further validation to previous human tissue studies identifying
the potential for ATR-FTIR spectroscopy in differentiating among all classes of oesophageal transfor-
mation to OAC. Tissue spectral analysis used principal component analysis quadratic discriminant
analysis (PCA-QDA), successive projection algorithm quadratic discriminant analysis (SPA-QDA),
and genetic algorithm quadratic discriminant analysis (GA-QDA) algorithms for variable selection
and classification. The variables selected by SPA-QDA and GA-QDA discriminated tissue samples
from Barrett’s oesophagus (BO) to OAC with 100% accuracy on the basis of unique spectral “finger-
prints” of their biochemical composition. Accuracy test results including sensitivity and specificity
were determined. The best results were obtained with PCA-QDA, where tissues ranging from normal
to OAC were correctly classified with 90.9% overall accuracy (71.4–100% sensitivity and 89.5–100%
specificity), including the discrimination between normal and inflammatory tissue, which failed in
SPA-QDA and GA-QDA. All the models revealed excellent results for distinguishing among BO,
low-grade dysplasia (LGD), high-grade dysplasia (HGD), and OAC tissues (100% sensitivities and
specificities). This study highlights the need for further work identifying potential biochemical
markers using ATR-FTIR in tissue that could be utilised as an adjunct to histopathological diagnosis
for early detection of neoplastic changes in susceptible epithelium.

Keywords: oesophageal cancer; ATR-FTIR; tissue; multivariate classification

1. Introduction

Vibrational spectroscopic analysis of human tissue combined with chemometric meth-
ods including principal component analysis (PCA) and successive projection algorithm
(SPA) has been utilised to identify discriminate spectra between benign and malignant tis-
sue [1]. Over the past 10 to 15 years, this technology has identified significant differences in
diagnostic bands between the spectra of malignant and corresponding normal tissues [2,3].

In the gastrointestinal (GI) tract, vibrational spectroscopy techniques have been able
to discriminate between benign and neoplastic pathology in stomach [4] and intestinal
tissue [5,6]. Spectroscopic analysis in oesophageal tissue is gaining momentum in identi-
fying subtle spectral differences between benign and malignant disease. Although using
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vibrational spectroscopy in analysing oesophageal tissue is not new [7–10], it has great
potential moving forwards.

With oesophageal adenocarcinoma (OAC) pathogenesis, the role of dysplastic pro-
cesses in Barrett’s oesophagus (BO) is pertinent. Barrett’s oesophagus (BO) results in
chronic inflammation from gastro-oesophageal reflux disease (GORD) and is the only
known precursor to OAC [11]. Establishing dysplasia in Barrett’s oesophagus at an earlier
stage would enable less invasive treatment options being utilised compared to the high
morbidity and mortality associated with OAC and its subsequent treatment [12].

The gold standard in diagnostics in oesophageal disease is white-light oesophagogas-
troduodenoscopy (OGD) and tissue biopsy. In addition to being an invasive process, other
disadvantages include variability in biopsy harvest, as well as endoscopist sampling er-
rors [13,14]. In the context of malignant disease, the only available, reliable marker which
can sub-select progression to OAC is low-grade dysplasia (LGD) [7]. There is evidence of
significant intra- and inter-histopathologist bias in tissue specimen analysis, resulting in
inaccurate diagnoses of dysplasia [13]. ATR-FTIR spectral analysis of ex vivo tissue could
be utilised as an additional tool to aid histopathologists in confirming dysplasia earlier,
allowing less invasive treatment options to be utilised at this point.

Biomedical point-of-care applications have not been introduced into clinical settings
despite significant FTIR-based improvements. Issues remain related to batch processing
and standardising tissue sections for comparable, reproducible analysis [15]. Lastly, large-
volume spectral dataset analysis is laborious and time-consuming. These processes would
need significant improvement before clinical implementation.

This paper presents an ex vivo study of all classifications to OAC including outlining
tissue identification, spectral analysis. The study adds further validation to previous human
studies identifying the potential for ATR-FTIR spectroscopy in differentiating among all
classes in oesophageal transformation to OAC (normal; inflammatory; Barrett’s; low-
grade dysplasia, LGD; high-grade dysplasia, HGD; OAC) and the use of this technology
as an adjunct to aid histopathologists in diagnosing dysplasia accurately. Methods of
tissue acquisition, sample preparation, and tissue analysis using chemometric methods are
described.

2. Material and Methods
2.1. Sample Collection

Ethical approval was granted from both the parent University (STEMH 909 applica-
tion) and by the East of England—Cambridge Central Research Ethics Committee from
2015 (archival gastro-intestinal tissue, blood, saliva, and urine collection; REC reference:
18/EE/0069; IRAS project ID: 242639). Patients were identified prospectively from pathol-
ogy in-house hospital databases, and consent for tissue was taken between October 2017
and June 2019 in a clinic or an endoscopy setting. Paraffin-embedded samples were
coded as normal squamous epithelium, squamous epithelium with inflammation, intestinal
metaplasia, low-grade dysplasia (LGD), high grade dysplasia (HGD), and oesophageal
adenocarcinoma (OAC) according to local departmental protocols. Paraffin wax embedding
ensures durability for long-term storage without biomolecular tissue deterioration [16,17].
Paraffin embedding affects bands at 1465 cm−1 (associated with aromatic structure) [18] in
the fingerprint region and bands at 2850, 2918, and 2956 cm−1 [19]. De-parrafinisation was,
hence, performed after cutting prior to commencing ATR-FTIR measurements using local
hospital protocols using xylene and ethanol as per institution protocol. Nevertheless, the
deparaffination procedure causes alterations in the samples such as paraffin residuals [20];
thus, the models constructed with these samples can only be tested with deparaffined
samples, not fresh or frozen tissues.

Contiguous sections with 4 µm thickness measuring 5 mm × 5 mm were prepared on
FisherBrand™ slides and utilised so that each section closely resembled other sections, thus
ensuring accurate correlation. A separate consultant histopathologist identified sections
of the cut biopsies for an overall accurate representative analytical study of the tissue.
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This was to ensure that spectral measurements would be taken from the appropriate
area. The specimens were compared with H&E (haematoxylin and eosin) specimens
and specific random areas in this field chosen for point spectral analysis. British Society
of Gastroenterology guidelines [21] state that all cases of suspected dysplasia are to be
reviewed by a second GI pathologist. All slides were left to desiccate prior to transportation
to the spectroscopy laboratory for analysis. Tissue samples were stored in a de-humidified
container to prevent condensation and physical damage [22].

2.2. ATR-FTIR Spectroscopy

Sample interrogation was performed at the Biomedical Research Laboratory at the
University of Central Lancashire (UK). Histological diagnoses were unknown to those
who performed spectroscopy. Spectra were obtained using a Bruker TENSOR 27 FTIR
spectrometer with a Helios ATR attachment containing a diamond crystal (Bruker Optics
Ltd., Coventry, UK) and operated using OPUS 6.5 software. Spectra were acquired from
10 independent random sample locations pre-defined after comparing with H. Data ac-
quisition parameters were as follows: 8 cm−1 spectral resolution, 32 scans, 6 mm aperture
setting, and 2× zero-filling factors. The diamond crystal was washed with distilled water
and dried with tissue paper between each sample and before each new slide. A background
absorption spectrum was acquired prior to each new sample for atmospheric correction [22]
(Figure 1).
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Figure 1. Graphical abstract demonstrating how oesophageal tissue is processed through ATR-FTIR
spectroscopy in order to detect oesophageal transformation stages to adenocarcinoma.

2.3. Data Analysis and Chemometric Methods

The data import, pre-treatment, and construction of chemometric classification models
were implemented in MATLAB R2014a software (MathWorks, Natick, MA, USA) using the
PLS Toolbox version 7.9.3 (Eigenvector Research, Inc., Washington, DC, USA) and custom-
made routines. Raw spectra were pre-processed by cutting between 1800 and 900 cm−1

(235 wavenumbers), followed by rubber-band baseline correction and normalisation to the
amide I peak (1700 to 1600 cm−1) [23]. Monte Carlo cross-validation [24] was employed
to validate the chemometric models. In this validation process, some of the samples were
left out for validation in an exhaustive iterative process with several permutations. In our
case, 20% of samples were left out for validation during 1000 iterations. The multivariate
classification models used were principal component analysis quadratic discriminant
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analysis—PCA-QDA, successive projections algorithm quadratic discriminant analysis—
SPA-QDA, and genetic algorithm quadratic discriminant analysis—GA-QDA. The optimum
number of variables for SPA-QDA and GA-QDA was determined according to an average
risk G of misclassification. Such a cost function was calculated with a random validation
set as follows:

G =
1

NV
∑NV

n=1 gn (1)

where NV is the number of validation spectra, and gn is defined as

gn =
r2
(

xn, mI(n)

)
minI(m) 6=I(n)r2

(
xn, mI(m)

) (2)

In the above definition, the numerator is the squared Mahalanobis distance between
object xn (of class index I(n)) and the sample mean mI(n) of its true class. The denominator
in Equation (2) corresponds to the squared Mahalanobis distance between object xn and
the centre of the closest wrong class, mI(m). The minimum value of the cost function
(maximum fitness) is achieved when the selected variables from the original data are as
close as possible to the true class and as distant as possible from the wrong class according
to the validation samples. The GA routine was carried out with 100 generations with
200 chromosomes each. Crossover and mutation probabilities were set to 60% and 1%,
respectively. The algorithm was subsequently repeated three times from different random
initial populations. The best solution (in terms of the fitness value) resulting from the three
realisations of the GA was employed.

The QDA classification score (Qik) was estimated using the variance–covariance matrix
for each class k and an additional natural logarithm term, as follows:

Qik = (xi − xk)
TΣ−1

k (xi − xk) + loge|Σk| − 2loge πk (3)

where xi is a vector with the input variables for sample i, xk is the mean vector of class
k, Σk is the variance–covariance matrix of class k, loge|Σk| is the natural logarithm of
the determinant of the variance–covariance matrix of class k, and loge πk is the natural
logarithm of the prior probability term of class k. QDA forms a separated variance model
for each class and does not assume that different classes have similar variance–covariance
matrices. This is different to what is assumed by linear discriminant analysis (LDA) [25].

The calculation of figures of merit is a recommended standard practice to test model
performance [26,27]. Furthermore, accuracy, sensitivity (portion of positive samples cor-
rectly classified), specificity (portion of negative samples correctly classified), and the
F-score (a general measurement of the model accuracy) were calculated using the following
equations:

Sensitivity (%) =
TP

TP + FN
× 100 (4)

Specificity (%) =
TN

TN + FP
× 100 (5)

F-score =
2× SENS× SPEC

SENS + SPEC
(6)

where TP is a true positive, TN is a true negative, FP is a false positive, and FN is a false
negative. SENS stands for sensitivity, and SPEC stands for specificity.

Selected wavenumbers derived from SPA-QDA and GA-QDA for oesophageal stages
[i.e., normal vs. inflammatory vs. Barrett’s vs. low-grade dysplasia (LGD) vs. high-grade
dysplasia (HGD) vs. oesophageal adenocarcinoma (OAC)] were confirmed by a two-
tailed non-parametric Mann–Whitney test (95% confidence interval). In addition, model
robustness and uncertainty estimations were calculated for each developed model on the
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basis of misclassification probability estimations according to the bootstrapping method
described in [25].

3. Results

Tissue specimens were categorised into the following groups for spectral analysis:
n = 35 (normal), n = 13 (inflammatory), n = 26 (Barrett’s), n = 4 (LGD), n = 9 (HGD), and
n = 22 (OAC). The average IR spectra for all oesophageal stages of disease appeared to
overlap in the biochemical fingerprint region (1800 cm−1 to 900 cm−1) making it difficult
to distinguish any subtle but significant differences (Figure 2A). Discriminant peaks were
observed at around 1640 cm−1 (amide I absorption—predominantly the C=O stretching
vibration of the amide C=O) [23], 1540 cm−1 (amide II of proteins) [28], and 1393 cm−1

(methylene deformation) [29]. Additional significant peaks were found at around 1690 cm−1

(peak of nucleic acids due to the base carbonyl stretching and ring breathing mode) [30],
1225 cm−1 (asymmetric phosphate stretching vibrations, vasPO2

−) [30], and 1745 cm−1

(ester group (C=O) vibration of lipids) [28,31] (Table S1). The spectral dataset was pre-
processed using rubber-band baseline correction and normalisation to the amide I peak
to further categorise and discriminate among all classifications to OAC (Figure 2B). The
spectral noise observed in Figure 2A,B can be experimentally improved by increasing the
number of scans, and the wavenumber differences can be enhanced by increasing the
spectral resolution, which may lead to better elucidation. For the classification purpose,
chemometric techniques (PCA-QDA, SPA-QDA, and GA-QDA) were adopted to classify
normal vs. inflammatory vs. Barrett’s vs. LGD vs. HGD vs. OAC on the basis of their IR
spectra.
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Figure 2. Comparison of normal/inflammatory/Barrett’s oesophagus/LGD/HGD/OAC oe-
sophageal stages using tissue samples for ATR spectroscopy: (A) average raw spectra in the ATR
region of 1800 cm−1 to 900 cm−1, and (B) average pre-processed ATR spectra obtained from all stages
segregated into normal (black colour) vs. inflammatory (blue colour) vs. Barrett’s oesophagus (green
colour) vs. LGD (yellow colour) vs. HGD (magenta colour) vs. OAC (red colour).

The PCA-QDA model using the scores on six PCs (93.5% of the total data variance)
demonstrated an average overall accuracy of 90.9% for all classes, an average sensitivity
>71% for all classes (71.4% for normal and 100% for the other classes), an average specificity
of >89% for all classes (89.5% for inflammatory and 100% for the other classes), and an
average F-score >83% for all classes (83.3% for normal, 94.5% for inflammatory, and 100%
for the other classes) (Table 1). This shows that some samples from the normal class
were misclassified as inflammatory using PCA-QDA, but the remaining samples were all
classified correctly (Table 2). The SPA-QDA model achieved 86.4% overall accuracy for
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all classes using six wavenumbers (Table S1). The model misclassified all inflammatory
samples as normal, but correctly classified all the other samples (sensitivity of 100% for all
classes except inflammatory) (Table 2).

Table 1. Figures of merit (FOM) showing the average accuracy, sensitivity, specificity, and F-scores for
the multivariate classification methods (PCA-QDA, SPA-QDA, and GA-QDA) to distinguish among
normal vs. inflammatory vs. Barrett’s oesophagus vs. LGD vs. HGD vs. OAC tissue samples. Results
were calculated on the basis of a Monte Calo cross-validation with 1000 iterations, leaving 20% of
samples out for validation.

FOM

PCA-QDA (Accuracy = 90.9%)

Normal Inflammatory Barrett’s
Oesophagus LGD HGD OAC

Sensitivity (%) 71.4 100.0 100.0 100.0 100.0 100.0

Specificity (%) 100.0 89.5 100.0 100.0 100.0 100.0

F-Score (%) 83.3 94.5 100.0 100.0 100.0 100.0

FOM

SPA-QDA (Accuracy = 86.4%)

Normal Inflammatory Barrett’s
oesophagus LGD HGD OAC

Sensitivity (%) 100.0 0.00 100.0 100.0 100.0 100.0

Specificity (%) 80.0 100.0 100.0 100.0 100.0 100.0

F-Score (%) 88.9 0.00 100.0 100.0 100.0 100.0

FOM

GA-QDA (Accuracy = 63.6%)

Normal Inflammatory Barrett’s
oesophagus LGD HGD OAC

Sensitivity (%) 28.6 0.00 100.0 100.0 100.0 100.0

Specificity (%) 80.0 73.7 100.0 100.0 100.0 100.0

F-Score (%) 42.1 0.00 100.0 100.0 100.0 100.0

The GA-QDA model based on 25 selected wavenumbers also misclassified most
normal samples as inflammatory and all inflammatory samples as normal (Table 2). All the
other classes were correctly classified with 100% sensitivity and specificity. This confusion
between normal and inflammatory may be caused due to the similarity between these
tissues. The best overall results were obtained for the PCA-QDA model, as shown in Table 1
and in the confusion table of Table 2.

In addition, model robustness was calculated on the basis of the misclassification prob-
ability for each model [25]. The average misclassification probability for each model was
0.322 (PCA-QDA), 0.311 (SPA-QDA), and 0.181 (GA-QDA). The misclassification probabil-
ity ranges from 0 to 1, where values above 0.5 indicate higher probability of misclassification
in future predictions (high model uncertainty and overfitting). The results obtained herein
were, therefore, in a good range, indicating that the models are robust. Slightly lower
uncertainty was observed for GA-QDA, confirming the tendency for overlapping between
normal and inflammatory classes in future predictions due to their similarities, with good
separation of the remaining groups of tissues.
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Table 2. Confusion matrices showing the average validation output for the multivariate classification
methods (PCA-QDA, SPA-QDA, and GA-QDA) to distinguish among normal vs. inflammatory vs.
Barrett’s oesophagus vs. LGD vs. HGD vs. OAC tissue samples. Results were calculated on the basis
of a Monte Calo cross-validation with 1000 iterations, leaving 20% of samples out for validation.

Real/Predicted

PCA-QDA

Normal Inflammatory Barrett’s
Oesophagus LGD HGD OAC

Normal (n = 35) 25 10 0 0 0 0

Inflammatory (n = 13) 0 13 0 0 0 0

Barrett’s oesophagus
(n = 26) 0 0 26 0 0 0

LGD (n = 4) 0 0 0 4 0 0

HGD (n = 9) 0 0 0 0 9 0

OAC (n = 22) 0 0 0 0 0 22

Real/Predicted

SPA-QDA

Normal Inflammatory Barrett’s
oesophagus LGD HGD OAC

Normal (n = 35) 35 0 0 0 0 0

Inflammatory (n = 13) 13 0 0 0 0 0

Barrett’s oesophagus
(n = 26) 0 0 26 0 0 0

LGD (n = 4) 0 0 0 4 0 0

HGD (n = 9) 0 0 0 0 9 0

OAC (n = 22) 0 0 0 0 0 22

Real/Predicted

GA-QDA

Normal Inflammatory Barrett’s
oesophagus LGD HGD OAC

Normal (n = 35) 10 25 0 0 0 0

Inflammatory (n = 13) 13 0 0 0 0 0

Barrett’s oesophagus
(n = 26) 0 0 26 0 0 0

LGD (n = 4) 0 0 0 4 0 0

HGD (n = 9) 0 0 0 0 9 0

OAC (n = 22) 0 0 0 0 0 22

4. Discussion

Screening and surveillance in OAC and BO both require a skilled endoscopist for
OGD for mucosal sampling and a pathologist for accurate histopathological examination.
The development of a quick, convenient, and inexpensive method for detecting early
malignancy in these specimens can guide further tissue biopsies and, thus, increase the
yields of dysplasia detection. ATR-FTIR vibrational spectroscopy could be utilised as an
adjunct to histology when the specific diagnosis of dysplasia is unclear/equivocal.

Fourier-transform infrared (FTIR) spectroscopy has been employed to study cancer
in gastrointestinal tissues including stomach and intestinal tissue [26]. The technology is
capable of differentiating between unaffected and malignant tissues by comparing spectra
for changes in an array of diagnostic bands arising from phosphate, C–O, and CH stretching
vibrational modes. Chemometric methods such as principal component analysis (PCA) and
hierarchical clustering analysis (HCA) are commonly used to separate spectra of normal
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and neoplastic regions. Despite these technological improvements, biomedical applications
of the FTIR-based analytical technique have not progressed. The majority of studies in this
field have focused on ex vivo analysis.

The existing literature has explored ATR-FTIR spectroscopy and its use in the diagnosis
and identification of oesophageal pre-malignant and malignant conditions. Wang et al. [27]
identified significant protein, nucleic acid, sugar, and fat cell composition differences
between normal and malignant oesophageal tissues, as a result of content changes in
protein, nuclear acid, sugar, and fat composition in cells. Maziak et al. [9] built on work by
Wang et al. and identified an increase in the nucleus-to-cytoplasm ratio and triglycerides
and proteins from OAC specimens compared to those with squamous mucosa/normal
oesophageal tissue specimens.

Quaroni and Casson [32] performed pilot work on BO tissue as a precursor to OAC
using FTIR. The study published in 2009 found that intestinal metaplasia in BO tissues dis-
played characteristic IR absorption spectra of glycoproteins. Additionally, they established
that these glycoprotein regions were more fragmented compared to OAC tissue specimens.

Wang et al. [33] analysed premalignant (dysplastic) mucosa in BO using FTIR. The
authors were able to classify normal squamous samples from ‘abnormal’ samples (any
stage of Barrett’s) with a total accuracy of 92%, a sensitivity of 80%, and a specificity
of 92% in 38 specimens. This also led to a better interobserver agreement between two
gastrointestinal pathologists for dysplasia (κ = 0.72) vs. histology alone (κ = 0.52).

Old et al. [8] mapped 22 oesophageal tissue samples from 19 patients using FTIR. This
group was able to classify between normal squamous samples and ‘abnormal’ samples
(any stage of Barrett’s) with 100% sensitivity and specificity. The authors further concluded
that FTIR could classify any grade of dysplastic Barrett’s (dysplasia or adenocarcinoma)
with 95.6% sensitivity and 86.4% specificity. This highly accurate pathological classification
can be achieved with FTIR measurement of frozen tissue sections in a clinically applicable
timeframe.

This paper reports the use of ATR-FTIR coupled multivariate classification techniques
(PCA-QDA, SPA-QDA, and GA-QDA) in identifying oesophageal stages of disease to
adenocarcinoma has achieved excellent accuracy, sensitivity, and specificity, encouraging
investigation of screening for other cancers with known markers in an ex vivo setting. Clas-
sification of normal squamous samples versus ‘abnormal’ samples (any stage of Barrett’s)
was performed with 100% sensitivity and specificity using the classification models. These
findings compare with the previous literature [8,33].

A significant finding from this study highlights the use of PCA-QDA, SPA-QDA, and
GA-QDA in defining BO, LGD, HGD, and OAC with 100% sensitivity and specificity. This
appears more accurate than previous studies [8,32,33].

A diagnosis of LGD is difficult to distinguish from inflammation histopathologically
due to subtle cellular differences. The overall risk of progression of LGD to HGD is
approximately 9% [11]. Given the large inter-observer variability in histopathological
diagnosis in these groups, this highlights the need for a distinct method of categorisation.
As a clear diagnosis of LGD is the only current reliable marker which can sub-select those at
higher risk of progression to malignancy [7], using ATR-FTIR could be a crucial diagnostic
adjunct in a histopathologist’s armoury.

ATR-FTIR spectroscopy has been utilised to identify neoplasia in ovarian [34], skin [35],
and pancreatic tissue [36]. Over the past 20 years, there has been a large shift towards
biofluid sampling to identify biomarkers of malignancies. Paraskevaidi et al. [37] used
ATR-FTIR to analyse urine samples from women with endometrial and ovarian cancer,
as well as from healthy individuals. The authors found high levels of accuracy for both
endometrial (95% sensitivity, 100% specificity) and ovarian cancer (100% sensitivity, 96.3%
specificity). ATR-FTIR spectroscopy has also been used in conjunction with specific serum
assays to stratify brain tumour histological subtypes [38]. In the field of oesophageal
disease, Maitra et al. [22] utilised ATR-FTIR spectroscopy to predict six oesophageal stages
in four different biofluids (plasma, saliva, serum, and urine). PCA-QDA and GA-QDA
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models were found to give the best class differentiation compared to the SPA-QDA. The
GA-QDA model utilised in plasma samples was able to predict all stages of disease to
OAC with 100% accuracy, sensitivity, and specificity. For this model, several selected
wavenumbers appeared to be of particular interest, especially at 999 cm−1 and 1381 cm−1,
representing the ring stretching vibrations mixed strongly with CH in-plane bending and
C–O stretching, respectively.

Biofluid analysis has been a favourable technique in vibrational spectroscopy for its
high throughput. Measurement conditions can be controlled, and the required sample
volume is small. Major limitations are of measurement variations due to post-collection
procedures such as sample dilution, storage at cold temperatures, drying effects, and the
addition of anticoagulants [39].

The morphological classification of certain tumours is still challenging even with the
advent of staining and other histopathological adjuncts. The recent literature suggests
that vibrational spectroscopy has molecular sensitivity towards biochemical changes in
tissue rivalling immunohistochemistry [40]. Vibrational spectroscopy detects changes in
the metabolome and proteome. The techniques of ATR-FTIR and Raman spectroscopy are
quick and cheap, and they require little tissue material.

The literature highlights only a few studies on identifying benign disorders of the
oesophagus using ATR-FTIR spectroscopy. We propose that an earlier diagnosis of dys-
plasia in BO patients using ATR-FTIR in tissue as an adjunct would lead to less invasive
intervention and may subsequently reduce the number of endoscopies patients undergo in
the future, thus being cost-effective.

5. Conclusions

The use of ATR-FTIR spectroscopy of oesophageal tissue coupled with multivariate
classification algorithms (PCA-QDA, SPA-QDA, and GA-QDA) results in a powerful
alternative approach to accurate histopathological diagnosis. Classification of normal
squamous samples versus ‘abnormal’ samples (any stage of Barrett’s) was performed with
100% sensitivity and specificity using the classification models. These findings complement
findings from previous literature.

This study was performed using standard operating protocols with tissue sample
preparation, as well as ATR-FTIR spectroscopy measurement [16]. Furthermore, standard-
ised chemometric evaluation and analysis techniques for predictive categorisation were
utilised [17]. The major limitation of this thesis is the relatively small number of tissues
analysed. This would need further multicentre, multi-laboratory analysis for validation,
repeatability, and reproducibility of spectral datasets.

The technology has been Importantly accurate in diagnosing BO, LGD, HGD, and
OAC with high values of accuracy, sensitivity, and specificity (100%). Making an accurate
diagnosis of dysplasia earlier in the oncogenic process would mean less invasive treatments
and reduce the burden of morbidity and mortality associated with OAC.

Standard operating protocols have been utilised in the pre-processing stage of biofluid
analysis with vibrational spectroscopy. Non-modifiable biological factors and patient
lifestyle factors would need to be considered when performing future spectroscopic analy-
sis. It is unclear as to how individual factors such as a patient’s diet, comorbidities, and
lifestyle factors would have a pre-analytical influence on laboratory parameters and sub-
sequently affect IR spectral data in human tissue. This would warrant substantial further
investigation.

The cost-effectiveness of surveillance in Barrett’s oesophagus is often questioned be-
cause the rate of conversion from Barrett’s oesophagus to adenocarcinoma is only 0.5%
per year [14]. Nevertheless, arguments for frequent surveillance include that most ade-
nocarcinomas result within Barrett’s oesophagus segments, and the risk of OAC is about
30–40 times higher in patients with Barrett’s oesophagus compared to those without [14].
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Vibrational spectroscopy identifies molecular data that can be rapidly acquired without
the need for specialised sample preparation. This could potentially streamline analyses for
interventions in many fields in the modern-day National Health Service.

An earlier diagnosis of dysplasia in Barrett’s oesophagus patients would ultimately
enable fewer invasive and more expensive surgical options. Optical techniques combined
with vibrational spectroscopy could not only aid in differentiating grades of dysplasia in
tissue but also identify potential future biomarkers.

Translational studies moving vibrational spectroscopy into the clinical field have been
preliminary. Relying on vibrational spectroscopy as a definite diagnostic or prognostic tool
requiring further directive imaging is up for deliberation. Limitations of using vibrational
spectroscopy include the need for sensitive and highly optimised instrumentation, as well
as theoretical heating effects with analysis. A clinician needs to weigh the advantages
with the disadvantages of using this technology prior to advising further direct invasive or
non-invasive testing.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/jpm13081277/s1: Table S1. Category-distinguishing wavenumbers
for normal vs. inflammatory vs. Barrett’s vs. LGD vs. HGD vs. OAC using spectral tissues samples
obtained for the SPA-QDA model. Refs [41,42] are cited in the Supplementary Materials.
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