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Abstract 

 

 It is shown micromagnetic and atomistic spin dynamics simulations can use multiple 

GPUs to reduce computation time, but also to allow for a larger simulation size than is possible 

on a single GPU. Whilst interactions which depend on neighbouring spins, such as exchange 

interactions, may be implemented efficiently by transferring data between GPUs using halo 

regions, or direct memory accesses, implementing the long-range demagnetizing interaction is 

the main difficulty in achieving good performance scaling, where the data transfer rate between 

GPUs is a significant bottleneck. A multi-GPU convolution algorithm is developed here, which 

relies on single-GPU FFTs executed in parallel. It is shown that even for micromagnetic 

simulations where the demagnetizing interaction computation time dominates, good 

performance scaling may be achieved, with speedup factors up to 1.8, 2.5, and 3.1, for 2, 3, 

and 4 GPUs respectively. The code developed here can be used for any number of GPUs in 

parallel, with performance scaling strongly dependent on inter-GPU data transfer rate and 

connection topology. This is further improved in micromagnetic simulations which include a 

spin transport solver, obtaining speedup factors up to 1.96, 2.8, and 3.7, for 2, 3, and 4 GPUs 

respectively. The best case scenario is obtained for atomistic simulations, where the 

demagnetizing interaction is implemented with spin-averaged cells. Using a single workstation 

with 4 GPUs, it is shown atomistic spin dynamics simulations with up to 1 billion spins, and 

atomistic Monte Carlo simulations with up to 2 billion spins are possible, with a near-ideal 

performance scaling. 
 

*SLepadatu@uclan.ac.uk 
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I. Introduction 

 

 Micromagnetic and atomistic spin dynamics simulations have become essential for 

analysis of many experimental results on magnetic materials and samples, as well as design 

and modelling tools for advanced spintronics devices and applications. Examples include 

neuromorphic computing [1], skyrmionic neural networks [2], magnetic data storage and 

processing [3,4], heat-assisted magnetic recording [5], spin wave computing and magnonics 

[6,7], and nano-oscillators [8]. OOMMF [9] was one of the first open-source micromagnetics 

software, implementing finite-difference micromagnetics for computations on central 

processing units (CPU). Graphical processing units (GPU) allowed a significant increase in 

performance due to massive parallelisation [10,11], following which Mumax1 [12] was the 

first GPU-based open-source software implementing finite-difference micromagnetics. 

Currently there are a number of software, including Mumax3 [13], Fidimag [14], but also 

Python-based magnum.np [15] and Ubermag meta-package [16]. For atomistic spin dynamics 

modelling, open-source software include Vampire [17] and Spirit [18], with Fidimag also 

allowing atomistic modelling. BORIS [19] is another finite-difference open-source software, 

allowing both advanced micromagnetic modelling with multi-physics capabilities, as well as 

atomistic and multiscale modelling on CPUs and GPUs, with simulation control done through 

Python scripts, either via network sockets or through the embedded Python interpreter. All 

publically available software currently run on single GPUs, which places a limit on the 

complexity of problems which can be simulated, both in terms of size and performance. The 

step from CPU to GPU computation was important, but equally important is the step from 

single-GPU to multi-GPU computation. Workstations and data servers with multiple GPUs are 

now widely available, and it is imperative for modelling software to unlock the full potential 

of modern hardware. It should be noted that multi-GPU methods have been introduced in other 

fields, notably in computational electromagnetics where Poisson’s equation is solved using fast 

Fourier transforms (FFT) with good scalability up to 16 GPUs [20], and multi-GPU 

parallelization of 3D FFTs was also discussed [21]. 

 

The step from single-GPU to multi-GPU computation however is not trivial. Whilst 

interactions involving differential operators are relatively easy to implement, the biggest 

difficulty is implementing the long-range demagnetizing interaction, particularly since this can 

account for up to 90% of the total computation time. The difficulty arises since every 
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computational cell requires the contribution from all other computational cells be included, 

which is particularly difficult for a multi-GPU implementation where bandwidth is an 

important bottleneck to performance. This problem is solved here by introduction of a multi-

GPU convolution algorithm, allowing the demagnetizing field to be computed efficiently 

across any number of GPUs. The multi-GPU capabilities discussed here, including 

micromagnetics modelling, atomistic spin dynamics and Monte Carlo algorithm, as well multi-

physics capabilities, including a heat equation solver, thermo-elastodynamics solver, and spin 

transport drift-diffusion solver, have been implemented in an upgraded BORIS codebase 

available as open source [22]. 
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II. Multi-GPU Convolution 

 

 The demagnetizing field, Hd, is given by a convolution sum at cell i as: 

 

∑ −−=
j

jid ji MNH )(,   (1)  

 

N is the demagnetizing tensor, computed using the formulas in Ref. [23], and M is the 

magnetization, with the sum running over all points in the magnetic mesh. Whilst Equation (1) 

is straightforward to evaluate directly, both on a single node as well as on multiple nodes – e.g. 

see Ref. [17] for a multi-CPU implementation – its complexity scales as O(N2), where N is the 

number of computational cells, making a naïve evaluation impractical for large mesh sizes 

when using GPUs. Instead, the convolution theorem may be used so that N and M are first 

transformed using a FFT, followed by point-by-point multiplication in the complex transform 

space, and finally obtaining Hd using an inverse FFT (IFFT). The complexity of this approach 

scales as O(NlogN), and is a standard evaluation method for single-GPU and CPU finite-

difference implementations. There are a number of ways such a convolution could be 

implemented across multiple GPUs. Three methods have been implemented and tested here, 

including a method based on the multi-layered convolution algorithm previously introduced 

for multi-mesh single-GPU computation [24], where data is transferred between GPUs in the 

complex transform space before point-by-point multiplication, as well as a simplistic method 

where the M data is fully exchanged between GPUs. The best performing method, in all cases, 

is depicted in Figure 1. Here, the computational workload is equally split between the different 

GPUs, and the code developed in this work is applicable for any number of GPUs from 2 

upwards – Figure 1 exemplifies the algorithm for 3 GPUs, although it has been tested on 2, 3, 

and 4 GPUs. The general case of the algorithm is given in Appendix A in pseudo-code form.  
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Figure 1 – Multi-GPU convolution algorithm outline, exemplified for 3 GPUs. M and Hd are the 

magnetization and demagnetizing field respectively, with mesh dimensions nx×ny×nz. Rows and 

columns of same grayscale shading denote contiguous memory spaces on same GPU, as labelled by G1, 

G2, and G3 respectively. Prior to the x FFT step memory is transferred between GPUs into zero-padded 

(to Nx=2nx) input spaces, In, so that the FFTs are of length Nx, but each GPU performs a third of the 

total number of FFTs. The x FFT output is stored in complex-valued spaces S1, with x dimension nx+1. 

Prior to the y and z FFT steps, memory is transferred between GPUs into zero-padded (to Ny=2ny, 

Nz=2nz) complex spaces, S2, so that full length FFTs are performed, but each GPU does a third of the 

work. Following point-by-point convolution kernel multiplications, the IFFT pipeline is similar to the 

forward FFT pipeline, but performed in reverse. Memory transfers are denoted using red arrows, where 

the floating point precision can be halved before transfers in order to reduce the bandwidth used. 

 

The M space of dimensions nx×ny×nz is partitioned equally between the different GPUs 

along the x dimension (approximately, since if the number of GPUs does not integer-divide nx 

the last GPU is required to have a slightly different size along x). The forward FFTs are 

performed first along x, then y, and finally z directions, to full length as in the single-GPU 
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implementation. However, since there are multiple FFTs along each dimension, the workload 

can be split equally between the different GPUs, which for the x FFT step is achieved by 

partitioning the y dimension equally between the different GPUs (again approximately, since 

the number of GPUs may not integer-divide ny) – for the y and z FFT steps the x dimension 

partitioning is used. Thus, before the x FFT step it is necessary to transfer data between the 

different GPUs, as shown in Figure 1, between the M and In spaces – the In spaces are now 

partitioned along the y dimension between the different GPUs, and additionally contain zero 

padding from nx + 1 to Nx = 2nx, which is required due to circular convolution for a finite sum 

when periodic boundary conditions (PBC) [25] are not used. Since the input data are real the x 

FFTs are of real-to-complex (R2C) type, with output stored in the complex space S1 of 

dimension nx + 1 along x. Before the y and z FFT steps may be performed, it is now necessary 

to transfer data between GPUs, from S1 to S2 spaces, so that the x dimension partitioning is 

used instead. The S2 space is also zero padded along the y and z dimensions, up to Ny = 2ny 

and Nz = 2nz respectively. Following forward FFTs, point-by-point multiplication with the 

transformed demagnetizing tensor – termed convolution kernel – is performed. The kernel is 

computed in the initialization stage, as for the single-GPU implementation, however it is 

partitioned between the different GPUs so that only the required data are stored on each GPU 

respectively. The IFFT pipeline is similar to the forward FFT pipeline, but performed in 

reverse. The main difference is after the x IFFT step which, being of complex to real (C2R) 

type, results in real output data in the Out space, of size Nx along the x dimension, and 

partitioned between the different GPUs along the y dimension. Memory transfers are finally 

performed from Out to Hd, also truncating the output since points stored in Out from nx + 1 to 

Nx are not required, resulting in demagnetizing field values stored in the correct place for each 

GPU with x dimension partitioning. 

 

 Since the workload is split equally between the GPUs, good performance scaling could 

be expected. There are 3 main factors which affect this. Latency is introduced when launching 

computational routines on GPUs. The total latency increases with number of GPUs used, 

however this is typically a bigger issue with smaller problem sizes. We also require an overhead 

compared to the single-GPU case, as data must be copied into contiguous memory before 

transfer, then again copied into computational spaces after transfer. The more important factor 

is due to data transfers between GPUs, which is the most significant bottleneck for almost all 

problem sizes. The algorithm of Figure 1 requires that each GPU sends/receives ~18N(NG-

1)/NG
2 floating point numbers each iteration, which scales as O(N/NG), where NG is the number 
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of GPUs. Thus, for a given mesh size, if the GPUs are all interconnected using a point-to-point 

connection topology, e.g. NVSwitch, latency and overhead aside, the algorithm should 

theoretically increase in efficiency by increasing the number of GPUs. At the other extreme, 

for the simpler bus connection topology, the more relevant metric is the total floating point 

numbers transferred over the bus, which is ~18N(NG-1)/NG and thus the total floating point 

numbers transferred is limited to less than 18N in all cases. 

 

 
Figure 2 – Error scaling with time step for the RK4 evaluation method, relative to a reference solution 

computed with 10 fs time step on a single GPU in double precision. (a) Micromagnetic switching 

problem used to compute the error scaling, showing the reference solution using dashed lines, and 

solution computed with 400 fs time step and 4 GPUs in single precision with half precision transfers, 

using solid thick lines. (b) Relative error scaling computed for 1, 2, 3, and 4 GPUs, where the data 

transfer between GPUs is done using halved precision.  

 

One method of reducing the total data transferred between GPUs is to use mixed 

precision. This requires the floating point precision be halved before transfer, e.g. for 

computations done in double precision, single precision transfers are used, and for 

computations done in single precision, half precision transfers are used, which results in a loss 

of precision. It is important to normalize data before transfer in order to avoid reaching the 

exponent limit, particularly for half precision. M data are normalized to MS, the saturation 
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magnetization, whilst complex-valued FFT data are normalized to N×MS. Figure 2 shows the 

relative error computed as a function of time step using the Runge-Kutta 4th order evaluation 

method (RK4) [26], for a micromagnetic switching problem with Zeeman, exchange, and 

demagnetizing interactions. The mesh size is 2.4 µm × 1.2 µm × 10 nm, discretized with a 5 

nm cellsize, where MS = 800 kA/m. The magnetization is initialized in an S state by saturation 

in a 1 MA/m field along the [1, 1, 1] direction, which is gradually reduced to 0. Following this, 

a switching field is applied as H = (-20, 1, 0) kA/m, and the average magnetizing is recorded 

every time step for 1 ns. Figure 2(a) shows the computed switching event, where a reference 

solution is computed in double precision with a 10 fs time step on a single GPU, shown using 

dashed lines. At the other extreme, the solution obtained using 4 GPUs with 400 fs time step 

in single precision, and with half precision transfers, is shown using the solid thick lines. The 

solutions are virtually identical, with R2 > 0.999. The solutions can be quantitatively compared 

by computing a mean relative error, defined as ∑
=

−=
n

i
Sii nMtt

1
)(~)( MMε , where )(~

itM  are 

the points in the reference dataset, and )( itM  are the computed n points over the 1 ns interval. 

This is shown in Figure 2(b) for 1, 2, 3, and 4 GPUs, with computations done in double 

precision and transfers done in single precision. It can be seen the error introduced is negligible, 

particularly for time steps greater than 100 fs. Similar tests were done with computations in 

single precision, and transfers in half precision. In this case the lower precision limits the 

accuracy to which the relative error can be computed, which is ~10-4 for all time steps, both for 

single-GPU and multi-GPU computations, again showing no significant error is introduced by 

use of properly normalized halved precision transfers. Finally, the code developed here also 

includes PBCs, which requires a modified convolution kernel as in the single-GPU 

implementation [25], and no zero padding along the PBC direction. 

 

A further test is discussed, this time using a perpendicular magnetic tunnel junction 

(MTJ) where the effect of spin torques is simulated. The structure used consists of a 6 nm thick 

antiferromagnetic (AFM) layer, a 3 nm thick permanent magnetic layer (PL), a 1 nm thick 

tunnel barrier (I), and a 7 nm thick free magnetic layer (FL). This is shown in Figure 3(a), 

where an MTJ dot with 100 nm diameter is simulated, discretized using a 1 nm cellsize – the 

RK4 method with 20 fs time-step was used. The layers have magnetic parameters MS = 636 

kA/m, exchange stiffness 10 pJ/m, uniaxial perpendicular anisotropy 318 kJ/m3, and a Gilbert 

damping constant 0.01. Additionally, the layers are coupled using surface exchange coupling, 
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namely exchange bias coupling between PL and AFM with 1 mJ/m2 coupling constant, and a 

weaker surface exchange coupling between FL and PL with 0.1 mJ/m2 coupling constant – the 

same interactions implemented in Ref. [27] are used here, with further details also given in the 

Supplementary Material. 

 

 
Figure 3 – Switching pulsed voltage calculation in a perpendicular MTJ, comparing results obtained 

using 1 GPU in single precision, with 2 GPUs in single precision and half precision transfers. (a) MTJ 

dot with 100 nm diameter, and layer thicknesses AFM (6 nm) / PL (3 nm) / I (1 nm) / FL (7 nm). (b) 

Individual switching events for different voltages, with solid lines showing single-GPU computations, 

and dashed lines showing computations with 2 GPUs. (c) Computed resistance after a voltage pulse for 

both positive (anti-parallel starting state) and negative (parallel starting state) voltages. 

 

A voltage is applied between the top and bottom faces in Figure 3(a) (the bottom face 

is the ground electrode), such that for a voltage of 0.1 V, a current density of Jc = 1011 A/m2 

flows into the ground electrode. This results in a spin torque on the FL, given by 
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( )pmmT ××= ηµ )/)(/( FLcBST dJe , where for simplicity the field-like spin torque is set to 

zero. Here dFL is the thickness of FL, m is the magnetization direction in FL, p is the 

magnetization direction in PL, and η = 0.25 is a spin torque efficiency factor. The tunnelling 

magnetoresistance (TMR) of the MTJ is calculated using Slonczewski’s formula [28] with an 

MTJ RA product of 0.15×10-12 Ωm2 and 200% TMR. A 2 ns voltage pulse is applied – 

examples of dynamic resistance calculations are shown in Figure 3(b), where computations 

using 1 GPU in single precision are compared with computations using 2 GPUs with half 

precision transfers. A relatively large MTJ structure was chosen so that during magnetization 

switching a multi-domain structure emerges, as exemplified in Figure 3(a), which allows for a 

more stringent test of the multi-GPU convolution algorithm with half precision transfers. The 

computed resistance values after a 2 ns voltage pulse are shown in Figure 3(c). Positive voltages 

switch the MTJ from the anti-parallel to the parallel configuration, and negative voltages switch 

it from the parallel to the anti-parallel configuration. Due to the short voltage pulse the 

switching threshold is not abrupt, leading to a transition region as shown in Figure 3(c) – this 

was purposely chosen to allow for a more detailed test. The same transition regions are obtained 

for computations with 1 and 2 GPUs. For most simulations the dynamics are nearly identical 

for 1 and 2 GPUs, however for a few simulations discrepancies can arise, as seen in Figure 3(b) 

for the 0.13 V voltage pulse. Since magnetization switching occurs along an axis with rotational 

symmetry, it is possible that such divergences can occur at local maxima points in the energy 

landscape under the influence of reduced precision and hence different floating point errors. In 

general, it is recommended that the suitability of half precision transfers for the particular 

problem being studied is verified through comparison with fully single-precision calculations, 

before a full set of simulations is performed, and this should only be enabled for bandwidth-

restricted setups. 
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III. Micromagnetic Simulations 

 

 Single-site interactions, such as anisotropy – e.g. Equations (2) and (3) show the 

uniaxial and cubic anisotropy fields respectively – are trivial to parallelize across multiple 

GPUs, and the same x dimension partitioning from Figure 1 is used.  
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In Equations (2) and (3) eA is the uniaxial symmetry axis, m = M / MS, K1 and K2 are anisotropy 

constants, and α = m.e1, β = m.e2, and γ = m.e3, where e3 = e1 × e2, with e1, e2, e3 being the 

cubic symmetry axes. The iteration time for the cubic anisotropy interaction is shown in Figure 

4(a), as a function of number of computational cells, for 1, 2, 3, and 4 GPUs. The computational 

platform used was a single workstation running Ubuntu 20.04, with 4 Nvidia A5000 24GB 

GPUs, connected via PCIe 4.0, each with an x16 slot (32 GB/s total bandwidth) – the CPU 

used, namely Ryzen Threadripper PRO 3955WX, provides a total of 128 PCIe 4.0 control 

lanes. The GPUs are also connected directly in pairs using NVLink bridges, which provides a 

separate higher 56.248 GB/s bandwidth (a comparison of performance with and without 

additional NVLink bridges is given in the Supplementary Material). Computations are done 

here in single precision, as is common practice with micromagnetic modelling (e.g. Ref. [13]). 

For a large enough problem size the iteration time decreases by increasing the number of GPUs 

used, reaching a near ideal speedup efficiency of ~0.97 in all cases. Efficiency is defined as (S 

– 1) / (NG – 1), where S is the speedup, defined as the iteration time for single-GPU 

computation, divided by the iteration time for computation with NG GPUs. This can reach a 

maximum of 1 (ideal efficiency), and can be negative for speedup values less than 1. Plots of 

speedup efficiency for the interactions in Figure 4 are given in the Supplementary Material. 

For small problem sizes it is observed the iteration time reaches a lower limit, which becomes 
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more pronounced by increasing the number of GPUs. This is due to GPU latencies as discussed 

in the previous section. 

 

 
Figure 4 – Iteration time of various interactions as a function of number of computational cells, for 1, 

2, 3, and 4 Nvidia A5000 GPUs, for (a) cubic anisotropy, (b) direct exchange, and (c) demagnetizing 

interaction. For the exchange interaction the halo transfer and UVA methods of computing differential 

operators at GPU partition boundaries are compared. 

 

 Another important case is that of local interactions involving neighbours, or in general 

equations involving differential operators. This is the case for the direct exchange interaction, 

which is given in Equation (4) where A is the exchange stiffness: 

 

mH 2

0

2
∇=

S
ex M

A
µ

  
(4)  

 

There are 2 methods used to evaluate differential operators at GPU partition boundaries. One 

method is to define halo regions either side of the partition, and transfer them between relevant 
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GPUs before a computation. A further method involves direct memory accesses, which for 

Nvidia GPUs may be done using the unified virtual addressing (UVA) architecture. 

Computational routines are launched on a target GPU, however through UVA it is possible to 

address memory on other GPUs within the same computational routine. Thus, with UVA, halo 

regions are not required. The iteration times for the direct exchange interaction are shown in 

Figure 4(b). As with the anisotropy interaction, for small problem sizes the iteration time 

reaches a lower limit, which again is largely due to GPU latencies. For large problem sizes the 

efficiency increases (see Supplementary Material), reaching values of 0.97, 0.95, and 0.94 for 

2, 3, and 4 GPUs respectively, both for the halo and UVA methods. Whilst the UVA and halo 

methods provide the same performance for large problem sizes, the UVA method is 

significantly better than the halo method for small problem sizes, as see in Figure 4(b). This is 

due to additional latencies for the halo method, where memory must be copied to contiguous 

memory spaces before transfer, then copied back into computational spaces after transfer. 

There is however a case when the halo method outperforms the UVA method, namely for 3 or 

more GPUs when purely a bus connection topology is used. In Figure 4(b) the GPUs are 

connected via the PCIe bus, but also by NVLink bridges in pairs. When a GPU is required to 

read data from 2 other GPUs via PCIe, with UVA a drop in performance was observed as 

shown in the Supplementary Material. Whilst memory transfers are done directly between 

GPUs over the PCIe bus (peer-to-peer i.e. not via CPU host memory), this is still a serial point-

to-point connection, which requires CPU control to switch contexts. It is likely this additional 

overhead is the cause for poor performance when using UVA over PCIe. 

 

 Finally, the iteration times for the demagnetizing interaction, computed using the multi-

GPU convolution algorithm, are shown in Figure 4(c). As for the exchange interaction GPU 

latencies and memory transfers limit the performance for small problem sizes, however due to 

the much larger cost of memory transfers, the maximum efficiencies are also lower, namely 

reaching 0.54, 0.44, and 0.40 for 2, 3, and 4 GPUs respectively. Nevertheless, the multi-GPU 

convolution algorithm does provide a significant computational speedup (1.54, 1.89, and 2.19 

for 2, 3, and 4 GPUs respectively – lower speedup factors of 1.44, 1.56, and 1.70 respectively 

are obtained when using full precision transfers, and for completeness this is also discussed in 

the Supplementary Material), and efficiencies are expected to improve with greater bandwidth 

in more advanced computational platforms, or when using a point-to-point connection 

topology, as discussed in the previous section. Moreover, the demagnetizing interaction is very 

rarely required on its own, and from a practical perspective more relevant speedup factors and 
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efficiencies are obtained when considering all interactions in typical micromagnetic problems. 

The interaction fields are added to obtain a total effective field, Heff, which is included in the 

Landau-Lifshitz-Gilbert (LLG) equation, where α is the Gilbert damping and γ is the 

gyromagnetic ratio, as: 

 

tt eff ∂
∂

×+×−=
∂

∂ mmHmm αγ   
(5)  

 

For typical micromagnetic problems we have Heff = HZee + Han + Hex + Hd, where HZee is the 

Zeeman term (applied external field). The LLG equation evaluation, as well as the Zeeman 

term, with multiple GPUs is also trivial, as with the anisotropy interaction, since m and Heff are 

already partitioned along the x dimension. The LLG and Zeeman term iteration times added 

together are similar to the cubic anisotropy interaction, thus looking at Figure 4, the 

demagnetizing interaction evaluation time accounts for ~80 to 90% of the total computation 

time. The LLG equation is typically evaluated using a higher order explicit evaluation method, 

e.g. RK4, or for adaptive time stepping the Runge-Kutta-Fehlberg 5th order method with 6th 

order error estimation (RKF56) [29]. There is a method of reducing the overall demagnetizing 

interaction computation time, without decrease in solution accuracy, which is based on 

polynomial extrapolation of the demagnetizing field at sub-steps of the higher order evaluation 

method, using previously computed values. This was discussed in a previous work [30], and in 

particular the RK4 method requires a quartic polynomial, whilst the RKF56 method requires a 

quintic polynomial. This method is particularly beneficial for multi-GPU implementation, 

since by decreasing the time spent on the less efficient demagnetizing interaction computation 

(decrease by a factor between 2 to 2.5 is possible), the overall efficiency can be increased. 

 

To test this, the same magnetization switching problem of Figure 2 is used, but also 

including the cubic anisotropy interaction, and with the LLG equation evaluated using the 

RKF56 method. The speedup factors for 2, 3, and 4 GPUs are calculated as a function of 

number of computational cells, which is achieved by increasing the in-plane mesh dimensions 

in factors of 2. The results are shown in Figure 5. The maximum speedup factors reached are 

1.82, 2.47, and 3.14, for 2, 3, and 4 GPUs respectively (for full precision transfers the speedup 

factors are 1.79, 2.31, and 2.80 respectively). 
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Figure 5 – Computational speedup for 2, 3, and 4 GPUs over single-GPU computation, for a 

micromagnetic problem with Zeeman, direct exchange, cubic anisotropy, and demagnetizing 

interactions, as a function of number of computational cells, showing (a) speedup, and (b) speedup 

efficiency. The LLG equation is solved using the RKF56 method and quintic polynomial extrapolation 

for the demagnetizing interaction. 

  

From Figure 5(b) it is observed the drop in efficiency from 3 to 4 GPUs is less than the 

drop between 2 and 3 GPUs. This is consistent with the increase in total floating point numbers 

transferred by increasing the number of GPUs, which is given by 18N(NG-1)/NG, i.e. 9N, 12N, 

and 13.5N for 2, 3, and 4 GPUs respectively. Thus, whilst the efficiency drops, this is expected 

to converge to a constant efficiency for large problem sizes by increasing the number of GPUs, 

since the total floating point numbers transferred is limited below 18N, although further testing 

is required to confirm this. The largest problem which can be executed on a single GPU has 

~30 million cells, whilst for 4 GPUs the largest possible problem has ~120 million cells 

(speedup factors for problems with more than 30 million cells are calculated by extrapolating 

the single-GPU computation times). Use of multiple GPUs is particularly beneficial for large 

problems (defined here as having more than 10 million cells), with large speedup factors 

possible, but also enabling larger problem sizes which cannot be executed on a single GPU. 

Even for medium-sized problems (defined here as having between 1 and 10 million cells), use 

of multiple GPUs is beneficial, and also for small problems (less than 1 million cells) use of 2 
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GPUs is advantageous. This is particularly important from the user point of view, since for 

modern workstations configurations with 2 GPUs can be easily achieved. As computational 

platforms improve, the code developed in this work should perform with greater efficiencies 

as inter-GPU bandwidth increases. 

 

A simple model of speedup parallelization may be constructed. Using the number of 

floating point values transferred each iteration, and denoting the number of bytes per floating 

point number as B (4 for single precision, 2 for half precision), and the bandwidth as R, the 

time required each iteration to transfer data between GPUs connected using a serial bus is given 

by )/)(1)(/(18)( RBNNNNt GGGR −= . Then, if tI is the time spent evaluating interactions 

which can be parallelized efficiently (Zeeman, anisotropy, exchange, LLG evaluation), and tD 

is the time spent evaluating the demagnetizing interaction, the total time for each iteration is 

DRGDextrapDDIGT rtNrrttNt +++= η/))(()( . Here η is an efficiency factor (<1.0), and rD, rDextrap 

are demagnetizing evaluation time reduction factors introduced when using the polynomial 

extrapolation method. Thus for RKF56 rD = 1/8 since the method contains 8 sub-steps per 

iteration, and rDextrap = 0.1 is an additional factor introduced due to polynomial extrapolation 

computation; for RK4 we have rD = 1/4 and rDextrap = 0.05. The efficiency η can be estimated 

by fitting the measured interaction times for the results up to 4 GPUs. Thus for a problem with 

N = 58,982,400 computational cells, measured interaction times are tI = 26.8 ms, tD = 122.3 

ms, and η = 0.98 is obtained. This model reproduces the speedup factors measured in Figure 

5, which we can then use to extrapolate a speedup factor of less than 5 for 8 GPUs. This shows 

the benefit of using an increasing number of GPUs is limited when bandwidth is restrictive. 

Useful predictions may be obtained for other simulation platforms. For example PCIe 5 allows 

R = 64 GB/s, with a modelled speedup factor of ~7.5 for 16 GPUs, whilst for the upcoming 

PCIe 6 platform with R = 128 GB/s a speedup factor of ~10 for 16 GPUs is predicted. Finally, 

the NVSwitch platform allows full interconnections between all GPUs, which means tR can 

also be parallelized, and is now given by )/)(1)(/(18)( 2 RBNNNNt GGGR −= . The NVSwitch 

3rd generation platform allows for 8 GPUs to be interconnected, each with R = 900 GB/s 

bandwidth (7.2 TB/s aggregate bandwidth), however multiple NVSwitch boards can also be 

interconnected. Using the fully single precision convolution algorithm (B = 4), and no 

polynomial extrapolation for the demagnetizing field evaluation (rD = 1 and rDextrap = 0), a near-

ideal speedup factor of  over 15 is predicted for 16 GPUs (plots of modelled speedup factors 

are given in the Supplementary Material).  
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IV. Atomistic Simulations 

 

 For atomistic modelling we also have the same interactions discussed above, although 

defined differently, and a multi-GPU implementation is similarly achieved. The uniaxial 

anisotropy field is given as: 
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SS ˆ
Sµ=  is the atomistic spin, with direction Ŝ  and magnitude Sµ  (units of Bohr magneton, 

Bµ ). The direct exchange interaction field at a given spin i is obtained by considering nearest 

neighbours, and is given as: 
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Here J is the exchange interaction energy, and the sum runs over the nearest neighbours of spin 

i. Whilst this does not involve a differential operator as with the micromagnetic exchange 

interaction, Equation (4), the multi-GPU implementation is similar, also requiring a halo or 

UVA method. Whilst a simple cubic lattice was used here, with atomistic modelling farther 

neighbours may be included with different exchange energies, and for different crystal 

structures, and the implementation could be easily extended either by use of UVA, or by use 

of larger halo regions – this will be explored in a future work. We also have a long-range 

interaction between spins, termed the dipole-dipole interaction, given as: 
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Here ijijij r rr ˆ=  is the distance vector from spin i to spin j, with the sum running over all spins 

in the atomistic lattice. The dipole-dipole interaction was also implemented using a convolution 

sum since Equation (8) can be re-arranged into the form of Equation (1). Thus, the multi-GPU 

performance scaling of atomistic models which include the dipole-dipole interaction is nearly 
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identical to that obtained for micromagnetic modelling. However, in many cases it is not 

necessary to include the full dipole-dipole interaction, and a coarser spin-averaged cell may be 

used to compute the demagnetizing field of Equation (1). The magnetization is obtained as the 

total spin in a coarser cell which contains an integer number of lattice constants in each 

dimension, divided by the cell volume. This is given as:  

 

∑ ∑==
j j

j
S

ji Nah
SSM 33

11   
(9)  

 

Here Mi is the spin-averaged cell magnetization with cubic cellsize h, and a is the atomistic 

lattice constant such that the spin-averaged cell contains NS spins. Since a coarser cell is used 

to evaluate the demagnetizing field, its share of the total computation time can be reduced by 

over an order of magnitude compared to a full micromagnetic model. The computed 

demagnetizing field is applied equally to all spins in the spin-averaged cell, and as for 

micromagnetic modelling the total effective field is a sum of the separate interaction fields. 

This is included in the stochastic LLG (sLLG) equation, allowing non-zero temperature 

modelling, as: 
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The thermal field, Hth, follows a Gaussian distribution with zero mean and standard deviation 

given by tTkH SBeB ∆= µµγµασ 0/2 . Here Te is the electron bath temperature and  ∆t is the 

evaluation method time step. 

 

 An example large-scale atomistic spin dynamics problem is shown in Figure 6. Here, 

the effect of an ultrafast laser pulse on a 16 nm thick FePt film (µS = 3.6 µB, K1 = 6.4×10-23 J 

with easy axis perpendicular to the film, J = 6.78×10-21 J resulting in a Curie temperature of 

710 K; and α = 0.1) is computed with in-plane dimensions of ~1.4 µm. Using a 0.4 Å lattice 

constant results in a problem size with ~0.5 billion spins. The sLLG equation is solved using 

the RK4 method with 8 fs time step. The demagnetizing field is computed in spin-averaged 

cells with 1.6 nm cellsize. 
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Figure 6 – Ultrafast demagnetization and magnetization reversal under a uniform external field, 

computed using atomistic spin dynamics coupled to the 2-temperature heat equation, with Zeeman, 

direct exchange, uniaxial anisotropy, and demagnetizing interactions, in a 16 nm thick FePt film with 

0.4 Å lattice constant. The sLLG equation is solved using the RK4 method and quartic polynomial 

extrapolation for the demagnetizing interaction. (a) mz component of normalized magnetization as a 

function of time for a problem with ~0.5 billion spins computed using 4 GPUs, in response to an ultrafast 

laser pulse with Gaussian temporal and spatial profiles, with size indicated in the inset with the dashed 

green circle. The electron bath and lattice temperatures are shown using the dashed red line and dash-

dot blue line respectively. The inset shows the spins z components, with red positive and blue negative, 

at 400 ps. (b) Computational speedup for 2, 3, and 4 GPUs over single-GPU computation as a function 

of number of atomistic spins. 

 

It is known that an ultrafast laser pulse can cause rapid demagnetization, followed by a 

subsequent magnetization recovery [31]. On the ultrafast timescale (femtosecond timescale) it 

is known the conduction and lattice electrons respond on very different timescales, which is 

modelled through different specific heat capacities [32], and a two-temperature model is used, 

given as: 
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Here Ce and Cl are the electron and lattice specific heat capacities, Ge is the electron-lattice 

coupling constant, typically of the order 1018 W/m3K, ρ is the mass density, and K is the thermal 

conductivity. The electron and lattice temperatures are Te and Tl respectively. Equation (11) is 

evaluated using the forward time centred-space scheme with 2 fs time step and 1.6 nm cellsize. 

We have Ce = 40 J/kgK, Cl = 430 J/kgK, K = 46.4 W/mK, and ρ = 8740 kg/m3. Since Equation 

(11) only involves differential operators and local contributions, its multi-GPU implementation 

is straightforward, with temperature memory spaces also using an x dimension partitioning 

between the different GPUs. The ultrafast laser pulse is introduced through the heat source S 

in Equation (11), which has spatial and temporal Gaussian profiles as: 
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Here S0 = 2.5×1021 W/m3 is the power density, 02r = 0.5 µm is the spot size, and  τ  = 400 fs is 

the pulse width. The effect of the laser pulse is seen in Figure 6(a): the electron bath temperature 

increases rapidly on a fs timescale, with temperatures far exceeding the Curie temperature. 

After the laser pulse the electron bath temperature decreases rapidly as it equilibrates with the 

slower changing lattice temperature. The temperature then decreases slowly on a much longer 

timescale as heat is lost to the ambient room temperature. The initial increase in temperature 

results in a rapid demagnetization, as seen in Figure 6(a), where the average mz component of 

normalized magnetization (computed from the atomistic spins in the laser spot region) is 

plotted. After the laser pulse the magnetization is recovered as the temperature decreases. Here 

a uniform external field of 1 MA/m is applied into the plane, which results in magnetization 

switching on a longer timescale as seen in Figure 6(a). Note, this is similar to the mechanism 

used for heat-assisted magnetic recording (HAMR) [5], although for magnetic recording 

granular films are used, rather than a continuous film, and the external field is also localized. 

Here, in the continuous FePt film magnetization switching is obtained as a reverse domain is 

nucleated in the laser spot region, which then slowly grows under the action of the external 

magnetic field. The speedup factors are plotted in Figure 6(b) as a function of number of spins 
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used (varied by changing the in-plane FePt film simulated dimensions). The maximum speedup 

efficiencies obtained are ~0.95 to 0.97 for 2, 3, and 4 GPUs. The maximum problem size which 

could be simulated on a single GPU had ~0.25 billion spins, whilst for 4 GPUs the maximum 

problem size was close to 1 billion spins. From a performance point of view, the simulation of 

Figure 6(a) was completed in ~24 h with the 4 Nvidia A5000 GPUs, and looking at the 

efficiency factors it is clear such large-scale problems could benefit from additional GPUs. 

Using the speedup parallelization model introduced in the previous section, with 

)/)(1)(/(18)( RBNNNNt GGGR −=  (NS = 64 here due to use of spin-averaged cells for the 

demagnetizing interaction) a near-ideal speedup factor of ~7.5 is predicted for 8 GPUs. This 

potentially allows micromagnetic sized problems [33,34] to be simulated using atomistic 

resolution. 

 
Figure 7 – Computational speedup for 2, 3, and 4 GPUs over single-GPU computation, for an atomistic 

Monte Carlo problem with Zeeman, direct exchange, and cubic anisotropy interactions, as a function of 

number of computational cells. 

 

As a final note, multi-GPU implementation of Monte-Carlo simulations is 

straightforward, with the relevant interactions already discussed in this section. The multi-GPU 

implementation uses the red-black checkerboard decomposition scheme [35], previously used 

to implement the Monte Carlo algorithm on a single GPU [36], and such a scheme has already 

been implemented for multi-GPU acceleration of the 2D Ising model [37]. The same method 

is used to implement the micromagnetic Monte Carlo method [38] on multiple GPUs, which 

additionally includes the demagnetizing interaction. The speedup factors obtained for the 

atomistic Monte Carlo method are shown in Figure 7, where maximum efficiency factors 

between 0.94 to 0.98 are obtained for 2, 3, and 4 GPUs. The maximum problem on a single 

GPU was ~0.5 billion spins, whilst 4 GPUs allow problem sizes up to 2 billion spins.  
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V. Multi-Physics Simulations 

 

 Another area where use of multiple GPUs is beneficial, is for simulations which include 

a relatively computationally expensive multi-physics model. The heat equation was used in the 

previous section for atomistic modelling, however iterating Equation (11) is cheap, comparable 

in computational cost to the exchange interaction. Another possibility is the use of a thermo-

elastodynamics solver, recently introduced into BORIS [39], which is more computationally 

expensive, but since it only involves single-site and nearest-neighbour interactions is 

parallelized using multiple GPUs efficiently. A more computationally expensive model is the 

spin transport drift-diffusion model [40,41], particularly since this typically requires cellsize 

values smaller than the magnetic cellsize, and with the successive over-relaxation (SOR) 

method multiple spin transport solver iterations are required for each LLG equation iteration. 

In the drift-diffusion model we have charge and spin currents, CJ  and SJ  respectively: 
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Here σ is the electrical conductivity, V−∇=E  is the electric field with V the electric potential, 

θSHA is the spin Hall angle in a heavy metal (HM) which leads to the spin Hall effect (SHE) 

[42], De is the electron diffusion constant, P is the current spin polarization, and ε is the rank 3 

unit antisymmetric tensor. The spin accumulation, S, follows the equation of motion, where λsf 

is the spin-flip length, λJ is the exchange rotation length, and λϕ is the spin dephasing length: 
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On the timescale of magnetization processes we are interested in the steady-state solution of 

Equation (14), thus by setting this to zero and by using Equation (13) with the condition of zero 

charge current divergence, we obtain 2 Poisson equations in V and S (e.g. see Ref. [41]) which 

are solved here using the SOR method to a set convergence factor (10-5 normalized 
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convergence error for V and S equations is used). Using the computed spin accumulation we 

can calculate bulk and interfacial spin torques which can be included in the LLG equation as 

additional torque terms. In particular, the bulk spin torque in a ferromagnetic (FM) layer is 

given as: 
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The interfacial spin torque is obtained using the complex spin mixing conductance, ↑↓G , as: 
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Here hF is the discretization cellsize in the ferromagnetic layer of a FM/HM interface, and SV∆  

is the spin chemical potential change at the interface computed using boundary conditions for 

the charge and spin currents (see Refs. [41,43] for further details). The self-consistently 

computed total spin torques in Equations (15) and (16) contain 3 important different types of 

spin torques, among others. One of them is the bulk spin-transfer torque (STT) [44], which 

results from Equation (15). Two other spin torques are of interfacial type, arising from Equation 

(16). The first is the spin-orbit torque (SOT) which arises due to the SHE. In a HM layer the 

SHE gives rise to a pure spin current in a direction orthogonal to a charge current. Thus, for a 

FM/HM bilayer, a spin current flows from the HM layer into the FM layer, carrying spin 

angular momentum which results in a spin torque on the magnetization in the FM layer. When 

magnetization gradients are present a local spin accumulation is generated in the FM layer, 

which results in an imbalance in spins between the FM and HM layers. This results in a 

diffusive vertical spin current, this time flowing from the FM to the HM layer. As spin angular 

momentum is carried away from the FM layer, due to conservation of total angular momentum 

a spin torque arises on the FM layer, termed the interfacial STT (ISTT), which has been shown 

experimentally by studying the motion of skyrmions [45]. Experimental studies on current-

induced Néel skyrmion motion – disk-like topological objects in magnetization textures [46] 

which can be stabilized using the interfacial Dzyaloshinskii-Moriya interaction (DMI) [47,48] 

at FM/HM interfaces – typically involve large sample sizes and multilayers [49-51], which can 

make associated computational studies expensive and could benefit from multi-GPU 
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acceleration. An example is shown in Figure 8, where a multilayer structure consisting of 

Pt(2.8)/[Co(0.8)/Ir(0.4)/Pt(0.6)]×8/Pt(2.2) – thicknesses in nm – is used, similar to the 

experimental samples in Ref. [45]. With an experimental track width of 2 µm, an 8 µm track 

length requires ~0.4 billion cells for the spin transport solver (2 nm in-plane cellsize, but a 0.2 

nm cellsize is required along the z direction to resolve spin accumulation gradients), which 

requires 3 or more A5000 GPUs.  

 

 
Figure 8 – Skyrmion motion computed using a micromagnetic model with Zeeman, interfacial DMI, 

direct exchange, uniaxial anisotropy, surface roughness, and demagnetizing interactions, coupled to the 

drift-diffusion spin transport solver in a Pt(2.8)/[Co(0.8)/Ir(0.4)/Pt(0.6)]×8/Pt(2.2) multilayer. (a) The 

multilayer track with 2 µm width and 8 µm length, with charge current along the track. A number of 

spin torques are present, namely SOT due to a z-direction spin current originating in the HM layers, 

ISTT due to a spin current originating at magnetization gradients in Co, as well as bulk STT in Co. (b) 

Computational speedup for 2, 3, and 4 GPUs over single-GPU computation as a function of number of 

computational cells. 

 

The simulated track in Figure 8(a) contains a skyrmion collection, stabilized using the DMI 

with effective field shown below, where D is the DMI constant: 
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Thus, the micromagnetic model contains the following interactions: Zeeman, uniaxial 

anisotropy with easy axis perpendicular to the track, direct exchange, DMI, and demagnetizing 

field. Additionally, surface roughness with 2 Å depth is introduced using an effective field 

model [52] as shown in Equation (18) – roughness is known to produce important effects on 

current-induced skyrmion motion, resulting in a variation of the skyrmion Hall angle with 

charge current density [53,54].  
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Here ),( jiG  is a function which models the surface roughness, with N being the usual 

demagnetizing tensor – for further details see Refs. [45,52]. A skyrmion collection is initialized 

in Figure 8(a) using an out-of-plane field of 2kA/m, following which a current density of 1011 

A/m2 is applied by setting a potential drop across the track, and the skyrmion motion is recorded 

under the influence of self-consistently computed spin torques. For a full list of material 

parameters for Co, Ir, and Pt see Ref. [45]. The computed skyrmion motion can then be 

compared with experimental results, as was done in Ref. [45] for a simpler Pt/Co bilayer with 

a smaller simulation space. With the multilayer track dimensions of Figure 8(a) such a 

comparison was not previously possible using single-GPU computation. However, this requires 

a separate publication and is left for a future work. Of interest here is the speedup factors which 

can be achieved by using such a multi-physics model. The demagnetizing interaction is now 

no longer the most expensive computational term, with the spin transport solver iteration 

dominating. Indeed, the speedup factors computed in Figure 8(b) as a function of number of 

spin transport solver cells (varied by changing the track in-plane dimensions) exceed those of 

the basic micromagnetic model, with efficiency factors reaching 0.96, 0.92, and 0.92 for 2, 3, 

and 4 GPUs respectively. 
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VI. Conclusions 
 

 Here it was shown how micromagnetic and atomistic spin dynamics modelling can be 

accelerated using multiple GPUs, with the upgraded BORIS codebase available as open source 

[22]. Whilst the step from CPU to single-GPU computation provided a significant boost to 

performance, the step from single-GPU to multi-GPU computation unlocks the potential of 

modern hardware, allowing unprecedented performance both in terms of simulation size and 

speed. Key to this is a multi-GPU convolution algorithm, which has been introduced here to 

implement the long-range demagnetizing and dipole-dipole interactions efficiently. The 

algorithm splits the work equally between all available GPUs, with performance limited mostly 

by inter-GPU bandwidth. Even with a relatively cheap platform utilizing the PCIe 4.0 interface 

with 32 GB/s bandwidth, it was shown micromagnetic simulations can achieve speedup factors 

of 1.8, 2.5, and 3.1, for 2, 3, and 4 GPUs respectively, whilst atomistic spin dynamics can 

achieve speedup factors of 1.97, 2.9, and 3.9 for 2, 3, and 4 GPUs respectively. With 4 GPUs 

the maximum problem size is almost 4 times larger compared to the single-GPU case, and 

using 4 GPUs with 24 GB memory each, these were over 0.1 billion cells for 3D micromagnetic 

simulations, ~1 billion spins for atomistic spin dynamics, and ~2 billion spins for atomistic 

Monte Carlo simulations. It is important to stress the performance is only limited by the 

hardware used, with multi-GPU speedup efficiency largely limited by GPU latencies and inter-

GPU bandwidth. The upcoming PCIe 6 platform with 128 GB/s bandwidth is predicted to allow 

over an order of magnitude speedup with 16 GPUs, compared to single-GPU computations. 

Modern GPU data servers allow 8, 16, or more GPUs interconnected using NVSwitch boards 

with 900 GB/s bandwidth for each GPU-to-GPU connection, which will increase in future 

generations. This potentially allows near-ideal speedup factors over 15 for 16 GPUs, as well 

as larger problem sizes. 
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Data Availability 
 

The data that support the findings of this study are available from the corresponding author 

upon reasonable request. The code discussed in this work is available in Ref. [22]. 

 

Supplementary Material 
 

The supplementary material contains additional information and technical details on 

micromagnetic interactions speedup efficiencies, effect of halved precision transfers, and use 

of additional NVLink bridges on performance. 
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Appendix A 

 

The multi-GPU convolution algorithm is presented in pseudo-code below. The implementation 

using C++17 is available as open source in Ref. [22]. 

 

DATA: 
 
G : number of GPUs 
nx,. ny, nz : number of cells along x, y, and z dimensions respectively 
Nx = 2nx, Ny = 2ny, Nz = 2nz 
 
Data partitioning Xij

(g) denotes memory stored on GPU g (where g is in the range 1, …, G), with i denoting 
an equal partition along x dimension, and j denoting an equal partition along y dimension (i and j are in the 
range 1, …, G). 
 
Magnetization space M of dimensions nx × ny × nz, stored on G GPUs as: 
M(1) : M11

(1), …, M1G
(1) 

… 

M(G) : MG1
(G), …, MGG

(G) 

 
Demagnetizing field space H of dimensions nx × ny × nz, stored on G GPUs as: 
H(1) : H11

(1), …, H1G
(1) 

… 

H(G) : HG1
(G), …, HGG

(G) 

 
FFT input real space In of dimensions Nx × ny × nz, zero padded from nx + 1 to Nx, stored on G GPUs as: 
In(1) : In11

(1), …, InG1
(1) 

… 

In(G) : In1G
(G), …, InGG

(G) 

 
FFT output real space Out of dimensions Nx × ny × nz, stored on G GPUs as: 
Out(1) : Out11

(1), …, OutG1
(1) 

… 

Out(G) : Out1G
(G), …, OutGG

(G) 

 
FFT complex space S1 of dimensions (nx + 1) × ny × nz, stored on G GPUs as: 
S1(1) : S111

(1), …, S1G1
(1) 

… 

S1(G) : S11G
(G), …, S1GG

(G) 

 
FFT complex space S2 of dimensions (nx + 1) × Ny × Nz, zero padded from ny + 1 to Ny and nz + 1 to Nz, 
stored on G GPUs as: 
S2(1) : S211

(1), …, S21G
(1) 

… 

S2(G) : S2G1
(G), …, S2GG

(G) 
 
Convolution kernel K of dimensions (nx + 1) × (ny + 1) × (nz + 1), packed using y and z axis symmetries 
[24], and stored on G GPUs as: K(1), …, K(G) 
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PROCEDURES: 
 
procedure Transfer_M_to_In(M, In) 

for i in range 1, …, G do 
for j in range 1, …, G do  

  if i ≠ j transfer Mij
(i) to Inij

(j), optionally halving precision before transfer 
end if 

end for 
end for 

end procedure 
 
procedure Transfer_Out_to_H(Out, H) 

for i in range 1, …, G do 
for j in range 1, …, G do  

  if i ≠ j transfer Outij
(j) to Hij

(i), optionally halving precision before transfer 
end if 

end for 
end for 

end procedure 
 
procedure Transfer_S1_to_S2(S1, S2) 

for i in range 1, …, G do 
for j in range 1, …, G do  

  if i ≠ j transfer S1ij
(j) to S2ij

(i), optionally halving precision before transfer 
end if 

end for 
end for 

end procedure 
 
procedure Transfer_S2_to_S1(S2, S1) 

for i in range 1, …, G do 
for j in range 1, …, G do  

  if i ≠ j transfer S2ij
(i) to S1ij

(j), optionally halving precision before transfer 
end if 

end for 
end for 

end procedure 
 
procedure ZeroPad(S2) 

for i in range 1, …, NG do 
Refresh zero padding of S2(i) from ny + 1 to Ny and nz + 1 to Nz 

end for 
 
procedure xFFT_R2C(In, S1) 

for i in range 1, …, NG do 
ny × nz real to complex FFTs with length Nx of In(i) to S1(i) 

end for 
end procedure 
 
procedure xFFT_C2R(S1, Out) 

for i in range 1, …, NG do 
ny × nz complex to real IFFTs with length Nx of S1(i) to Out(i) 
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end for 
end procedure 
 
procedure yFFT(S2, direction) 

for i in range 1, …, NG do 
if direction is forward (nx/G) × nz FFTs with length Ny of S2(i) 

else (nx/G) × nz IFFTs with length Ny of S2(i) 
end if 

end for 
end procedure 
 
procedure zFFT(S2, direction) 

for i in range 1, …, NG do 
if direction is forward (nx/G) × Ny FFTs with length Nz of S2(i) 

else (nx/G) × Ny IFFTs with length Nz of S2(i) 

end if 
end for 

end procedure 
 
procedure KernelMultiplication(S2, K) 

for i in range 1, …, NG do 
Point-by-point complex multiplication of S2(i) with K(i), result stored in S2(i) 

end for 
end procedure 
EXECUTION: 
 
Transfer_M_to_In(M, In) 
xFFT_R2C(In, S1) 
Transfer_S1_to_S2(S1, S2) 
if in-place FFT ZeroPad(S2) 
endif 
yFFT(S2, forward) 
zFFT(S2, forward) 
KernelMultiplication(S2, K) 
zFFT(S2, inverse) 
yFFT(S2, inverse) 
Transfer_S2_to_S1(S2, S1) 
xFFT_C2R(S1, Out) 
Transfer_Out_to_H(Out, H) 

 
In the above algorithm the y and z FFTs may be executed in-place (same input and 

output memory spaces), which requires refreshing the zero padding. For improved 

performance, at the cost of extra memory, the FFTs may be executed out-of-place, which does 

not require refreshing the zero padding – this is the default option, with the code reverting to 

in-place FFTs when the GPU memory limit is reached. Additionally, it is beneficial to perform 

an xy transposition of the S2 spaces to avoid use of strided y FFTs. This is not necessary for z 

FFTs since the z dimension is typically smaller, and due to use of pipelined convolution where 

the z FFTs, kernel multiplications and z IFFTs are done in the same routine (see Ref. [19]).  
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