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Abstract
Hypovigilance represents a major contributor to accidents. In operational 
contexts, the burden of monitoring/managing vigilance often rests on op-
erators. Recent advances in sensing technologies allow for the development of 
psychophysiology-based (hypo)vigilance prediction models. Still, these models 
remain scarcely applied to operational situations and need better understand-
ing. The current scoping review provides a state of knowledge regarding psycho-
physiological models of hypovigilance detection. Records evaluating vigilance 
measuring tools with gold standard comparisons and hypovigilance prediction 
performances were extracted from MEDLINE, PsychInfo, and Inspec. Exclusion 
criteria comprised aspects related to language, non-empirical papers, and sleep 
studies. The Quality Assessment tool for Diagnostic Accuracy Studies (QUADAS) 
and the Prediction model Risk Of Bias ASsessment Tool (PROBAST) were used 
for bias evaluation. Twenty-one records were reviewed. They were mainly char-
acterized by participant selection and analysis biases. Papers predominantly fo-
cused on driving and employed several common psychophysiological techniques. 
Yet, prediction methods and gold standards varied widely. Overall, we outline the 
main strategies used to assess hypovigilance, their principal limitations, and we 
discuss applications of these models.
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1   |   INTRODUCTION

Sleepiness is a major contributor to many accidents and haz-
ardous situations in several domains (e.g., Lyznicki et al., 1998; 
Philip & Akerstedt, 2006; Tefft, 2010). Estimations point out 
that it is involved in at least 15%–20% of all accidents in trans-
port operations (Akerstedt, 2000; Connor et al., 2002; Horne 
& Reyner, 1999). As such, mental fatigue and sleepiness can 
importantly compromise safety and integrity of individuals 
and infrastructures, especially in high-stake situations such as 
in complex and safety-critical environments. This can be ex-
plained by the consequences of sleepiness and mental fatigue 
on human performance. In fact, mental fatigue and sleepiness 
have important impacts on perception, attention, decision-
making, and judgment, and can lead to slower reaction times, 
misjudgments, and inferior detection of critical elements 
within one's environment (e.g., Carretta & French,  2012; 
Gunzelmann & Gluck, 2009; Guo et al., 2016; Lopez de la O 
et al., 2012; see Abd-Elfattah et al., 2015, for a review).

Although fatigue and sleepiness are sometimes consid-
ered the same phenomenon, some distinctions exist. As out-
lined by Salvati et al.  (2021), sleepiness (or drowsiness) 
represents an intermediate progressive state between an 
awakening state and sleep, which is related to altered aware-
ness and to a desire to sleep (Mehreen et al., 2019; Slater, 2008). 
It is a normal transitional state but it can also be caused by 
sleep-related problems such as lack of sleep, poor sleep qual-
ity, or circadian rhythm disequilibrium (May & Baldwin, 2009). 
Fatigue rather represents a larger phenomenon. It is a conse-
quence of either physical or mental work, and is construed as 
a reluctance—and a difficulty—to pursue and focus on a 
given task (Boksem & Tops, 2008; Brown, 1982). Vigilance is 
“the capability to be aware of relevant, unpredictable changes 
in one's environment, irrespective of whether or not such 
changes occur” (van Schie et al., 2021, p. 178). This scoping 
review aims at providing a portrait of the literature related to 
hypovigilance and, more particularly, on sensing methods to 
assess this phenomenon for operational applications. For the 
sake of parsimony and because the current paper is mainly 
interested in the observable effects of mental fatigue, we here-
after focus on the concept of hypovigilance as an integrative 
concept at the center of fatigue, drowsiness, and sleepiness.1 

It allows increasing the scope to not only discuss biological 
effects induced by homeostatic- and circadian-related phe-
nomena, but also situational consequences of mental effort, 
monotony, and time on task.

In operational contexts, effects of hypovigilance (ei-
ther induced by sleepiness or fatigued mental/physical 
states) can be observed via key domain-specific perfor-
mance indicators. In aviation, studies have outlined that 
hypovigilance can lead to in-flight error-making (Aljurf 
et al., 2018; Gregory et al., 2010), inferior situation aware-
ness, longer reaction times and increased distractibility 
(Miller & Melfi, 2006), visual and auditory perception im-
pairment (Dehais et al.,  2014; Previc et al.,  2009; Russo 
et al., 2005), and to reduced cognitive flexibility and hand-
eye coordination (O'Hagan et al., 2018). In driving stud-
ies, evidence of increase in reaction time (Guo et al., 2016; 
Liu et al.,  2012), reduced time headway (i.e., between-
vehicles duration; Fuller, 1983; Zhang et al., 2016), and in-
creased lateral deviation errors and variability (Brookhuis 
& De Waard,  1993; Matthews & Desmond,  2002; Philip 
et al., 2003) among hypovigilant drivers were also largely 
reported. Hypovigilance is even associated with difficul-
ties in takeover performance in automated driving sit-
uations (Jarosch et al., 2019; Matthews et al., 2019). The 
consequences of hypovigilance can also be observed in 
non-driving domains such as command and control oper-
ations, i.e., occupations entailing providing key informa-
tion and orders for security operations such as emergency 
management, police or firefighting operations, and sur-
veillance (e.g., Carretta & French, 2012). In the last few de-
cades, the role of human operators has constantly evolved 
with the emergence of automation, shifting toward sys-
tems supervision and the management of malfunctions 
and unusual events (Parasuraman, 1986; Sheridan, 1987). 
Consequently, vigilance still remains a key asset for many 
operational domains including but not limited to military 
surveillance, industrial quality control, robot manufac-
turing, seaboard navigation, and transportation (Warm 
et al., 1996). Vigilance is also a key capacity that can be al-
tered by many organic brain syndromes, such as delirium 
(American Psychiatric Association, 2013).

1.1  |  Measuring hypovigilance

Currently, one of the key strategies in the management 
of hypovigilance in operational contexts is sleep (Petrilli 
et al., 2006). An important part of the accountability re-
mains with the operators, which typically have to report—
and manage their performance on task—when they find 
themselves in a hypovigilant state. Nevertheless, this phe-
nomenon is still highly prevalent (e.g., between 68% and 
91% of commercial airline pilots still experience fatigue; 
Aljurf et al., 2018; Jackson & Earl, 2006). To counter this 

 1One could argue that referring to hypovigilance to discuss a large variety of 
phenomena such as fatigue, drowsiness, and sleepiness may represent an 
important generalization. Literature on these subjects is vast and we 
acknowledge that distinctions indeed exist between hypovigilance-related 
phenomena induced, for example, by cognitive resource depletion, circadian 
rhythm, boredom, or sedation. Yet, it still remains unclear how all of these 
concepts are related to each other and to what extent they can be assessed 
using common methods in a real-world setting. Here, the scoping review 
approach allows to address this question without any a priori from a larger 
perspective in order to draw the lines around common observations and gaps 
in the literature on hypovigilance. Since the literature on the subject is broad, 
this allows us to cover a broader initial scope as a first step toward identifying 
best ways to monitor vigilance in several real-world applied situations.
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problem, alternative methods must be developed to help 
individuals better monitor their own vigilance level and, 
ultimately, to reduce potential consequences for the safety 
and integrity of populations and infrastructures. In fact, 
there have been calls for the development of new strat-
egies to better monitor vigilance, such as the European 
New Car Assessment Programme (EuroNCAP). In its 
2025 Roadmap, EuroNCAP recommends that driver-
state monitoring is a key and priority part of safety as-
sessments (EuroNCAP, 2017). According to Schwarz and 
Fuchs (2018), adaptive systems are also essential in better-
supporting operators in human-machine systems to miti-
gate high-risk user states and performance decrements. 
From their standpoint, the different user states useful 
to monitor in complex and safety-critical work environ-
ments include, among others, attention and fatigue.

Different approaches can be taken to monitor human 
states, and more particularly hypovigilance (see, e.g., 
Kerick et al., 2013; Oken et al., 2006). First, measures of 
task performance can be used. This approach relies on 
the identification of signs of hypovigilance, that is, the be-
havioral manifestation of a reduced ability to focus on the 
main task. For instance, in a driving context, missing traf-
fic signals, tailgating, swerving and crossing lanes can be 
used to assess a driver's hypovigilant and distracted state 
(Kashevnik et al.,  2021). Second, performance on a sec-
ondary task can also be used to evaluate hypovigilance lev-
els while performing a primary task (either concurrently 
or in alternation, at given intervals). The Psychomotor 
Vigilance Task (PVT; Dinges et al.,  1997; Dinges & 
Powell, 1985; Doran et al., 2001; Lim & Dinges, 2008) is 
a common way to measure behavioral alertness wherein 
one must react as quickly as possible to the simple pre-
sentation of a stimulus occurring at random interstimulus 
intervals. It is used in laboratory settings but has also real-
life applications (e.g., letters attention test for diagnosing 
delirium; Ely, Gautam, et al., 2001). This task can be used 
as a unique test or added while a person is performing 
another task, hence providing information on how sim-
ple reaction time to the stimulus evolves as a function of 
time/effort on the primary task (e.g., Buckley et al., 2016; 
Dinges et al., 1998). Third, subjective measures have also 
been used in certain contexts, wherein operators report 
their own (self-perceived) level of drowsiness or vigilance 
(e.g., Dorrian et al.,  2008; Luna et al.,  2022). However, 
one of the limitations of these preceding techniques (i.e., 
behavioral and self-reported subjective measures) is that 
they are not specific to hypovigilance. Indeed, behavioral 
measures (e.g., performance disruption from a given task) 
represent the product of processing neural networks from 
task stimulus detection to motor reaction (e.g., Hughes & 
Marsh, 2017). During this process, factors such as motiva-
tion and emotional states can have an impact on behavior 

(Pessoa,  2009). Consequently, although they do relate 
to one's hypovigilance level, both behavioral and self-
reported measures of hypovigilance can lack validity and 
specificity because of the different confounding variables 
that might modulate them.

A fourth strategy to measure hypovigilance concerns 
the collection and analysis of psychophysiological prox-
ies (e.g., Boudaya et al.,  2020; Parasuraman et al.,  1998; 
Rush et al.,  2019; Sahayadhas et al.,  2015). This tech-
nique relies on measures of the physiological activity of 
an operator—either of the central or the peripheral ner-
vous systems—to estimate one's level of sustained atten-
tion (vigilance) deployment. The rationale behind this 
approach lies in the significant implication of the locus 
coeruleus-norepinephrine (LC-NE) system for attention-
related activities. Activity of this system has been largely 
related to vigilance, attention orienting, arousal, and to 
the sleep–wake cycle (e.g., Aston-Jones & Cohen,  2005; 
Bouret & Sara, 2004; Nieuwenhuis et al., 2011; Rajkowski 
et al., 2004; Southwick et al., 1999). NE is secreted across 
the brain in multiple areas including cerebral cortex, lim-
bic structures, diencephalon, midbrain, and spinal cord 
(e.g., Miller & Cohen,  2001; Nieuwenhuis et al.,  2005; 
Sara & Bouret, 2012). Its secretion from the pons-located 
LC in these brain structures makes synapse appositions 
with postsynaptic specializations on target neurons, 
hence generating further electric activity in the brain 
(Marzo et al.,  2014; Papadopoulos & Parnavelas,  1990). 
Consequences of such specialized activity enhance the se-
lectivity of certain neurons to specific targets and increase 
the signal-to-noise ratio to allow preferential processing 
of the stimuli presented to the system (Foote et al., 1975; 
Waterhouse et al., 1998). Peripheral sympathetic activity 
increase (and concurrent parasympathetic activity de-
crease) has also been reported (e.g., Elam et al., 1986; Sara 
& Bouret, 2012; Wang & Munoz, 2015), ensuing from the 
multiple efferent projections of the LC-NE system in the 
brain. Taken together, this means that multiple psycho-
physiological proxies of the (hypo)vigilant state can be 
collected via measures of the central nervous system and 
of the peripheral nervous system.

Multiple models for quantifying hypovigilance or as-
sociated concepts (e.g., drowsiness and fatigue) have been 
developed over the years in laboratory conditions using 
behavioral and/or physiological correlates of the vigilance 
level (e.g., Oken et al., 2006). In fact, as outlined above, it is 
known that a decrease in vigilance is associated with mul-
tiple physiological and behavioral manifestations and that 
measuring such manifestations can provide information on 
the level of vigilance. Drowsiness and vigilance have, for 
example, been assessed by measuring the PERCLOS (per-
centage of eyelid closure over the pupil; e.g., Lin et al., 2012; 
Sommer & Golz, 2010). Heart rate and respiration rate are 
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also associated with the sleep onset period. These phys-
iological responses can thus be integrated into predic-
tive models to detect hypovigilance for safety purposes 
(EuroNCAP,  2017; Schwarz & Fuchs,  2018). Multiple re-
views have been published to summarize methods for assess-
ing hypovigilance and other related concepts from multiple 
perspectives (e.g., Arun et al., 2011; Bafna & Hansen, 2021; 
Bier et al., 2020; Duffy & Feltman, 2022; Larue et al., 2010; 
Mogilever et al., 2018; Mohanavelu et al., 2017; Sahayadhas 
et al., 2012). For instance, Bendak and Rashid (2020) pro-
vide a systematic review of the causes of fatigue observed in 
the aviation industry and the ways to measure it. As a result, 
they outlined many different objective metrics (e.g., fitness-
for-duty tests, physiological monitoring, performance moni-
toring, flight data monitoring) and subjective measures (e.g., 
self-rating scales, air safety reports, and fatigue prediction). 
Literature on the different measures of hypovigilance, how-
ever, is scattered through different approaches (e.g., ergo-
nomics, engineering, cognitive neuroscience) and research 
is thus difficult to reconcile.

1.2  |  The current study

The goal of this review is to map the state of the current 
knowledge about the psychophysiological methods for 
hypovigilance detection. We aim to identify relevant lit-
erature regarding the psychophysiological responses iden-
tified as proxies for human hypovigilance from a broader 
perspective, regardless of the specific domain of applica-
tion, in order to provide the scientific community with a 
better sense of possible ways for investigating/monitor-
ing hypovigilance. To reach this goal, we performed a 
systematic scoping review of empirical studies found on 
several databases that included both diagnostic and pre-
diction studies (with respective detection of hypovigilant 
state on a given dataset/context vs. prediction of hypovigi-
lant levels with measures that could be generalizable to 
other datasets/contexts). We chose to conduct a scoping 
review because of the potentially large scope of the lit-
erature emerging from heterogeneous but interconnected 
disciplines such as medicine, psychology, and engineer-
ing. Also, the key concepts underpinning hypovigilance 
detection from psychophysiological responses remain a 
rapidly emerging area of study (Munn et al., 2018; Peters 
et al., 2015) that would benefit from a scoping review to 
guide future research and development.

2   |   METHOD

We conducted our review using the Levac et al. scop-
ing review methodology (Levac et al.,  2010) and report 

our findings using the Preferred Reporting Items for 
Systematic reviews and Meta-Analyses extension for 
Scoping Reviews (PRISMA-ScR) framework (Tricco 
et al., 2018; see Appendix S1 for the PRISMA-ScR check-
list). We did not register our review protocol.

2.1  |  Eligibility criteria

Inclusion and exclusion criteria were pre-specified for each 
step of the selection of sources of evidence. Inclusion cri-
teria were: (1) studies evaluating vigilance measurement 
tool(s) compared to a gold standard, and (2) studies had to 
report data about either the accuracy, sensitivity, or speci-
ficity of their measurement tools. We had defined a priori 
a list of accepted gold standards prior to the screening of 
titles and abstracts. These gold standards were associated 
with a variety of concepts that are related to hypovigi-
lance. The gold standards were: the Attention Network 
Test, the AVPU scale, the Fatigue Scale, the SAFTE 
Model, the Confusion Assessment Method, the Delirium 
Severity Scale, the Glasgow Coma Scale, the Intensive Care 
Delirium Screening Checklist, the Karolinska Sleepiness 
Scale, the PERCLOS, the Psychomotor Vigilance Task, the 
Psychomotor Vigilance Test, the Ramsay Sedation Scale, 
the Richmond Agitation-Sedation Scale, the Sour Seven 
Questionnaire, the Stanford Sleepiness Scale, the Epworth 
Sleepiness scale, the Maintenance of Wakefulness Test, 
the Confusion Performance Test, the Recognizing Acute 
Delirium as Part of Your Routine (RADAR) tool, and 
electroencephalography studies. We did not a priori de-
termine a specific threshold for each of these gold stand-
ards because of the scoping nature of this review and 
because of lack of consensus in this emerging field of 
study. Besides, some gold standards may not necessarily 
possess clear thresholds for determining episodes of hy-
povigilance (e.g., PERCLOS measures) and this allowed 
us to include a larger set of studies to better scope current 
practices in predicting vigilance levels. Moreover, consid-
ering the scoping nature of our review, we also allowed 
additional new gold standards if the authors defined these 
clearly in the methods of their published manuscripts. 
For example, video recordings using the Wierwille scale 
(Wierwille & Ellsworth, 1994) were accepted. The scoping 
review methodology allows researchers to define post hoc 
inclusion and exclusion criteria based on new familiar-
ity with the subject matter through reading the identified 
studies (Levac et al., 2010).

Exclusion criteria were also determined before the 
research strategy was initiated. Studies that were not in 
English nor French, that involved irrelevant populations 
(e.g., animal studies or children), editorials, letters to edi-
tor, concepts only, clinical image pieces, and non-scientific 
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publications were excluded. Studies that did not compare a 
new measurement tool to an accepted gold standard were 
also excluded for lack of evidence. Sleep and anesthesia 
studies were also excluded because the subject of interest 
was rather the variation of vigilance in relation to a task. 
Studies evaluating mental workload, muscle fatigue, and 
use of pharmacologic psychostimulants without any mea-
sure of vigilance were also rejected. Non-peer-reviewed 
literature was also rejected. All duplicate publications 
were removed.

2.2  |  Information sources and 
search strategies

In collaboration with two research librarians from 
Université Laval, we selected three databases relevant to 
our study: MEDLINE, PsychInfo, and Inspec, specialized 
in medicine, psychology, and engineering, respectively. 
These domains constitute the three main areas of interest 
for this project. We then built a research strategy with the 
two information specialists. Our strategy had three main 
axes: hypovigilance and associated concepts, gold stand-
ards for hypovigilance measurement, and potential new 
physiological measures of hypovigilance (see an example 
in Table 1). We created an exhaustive list of keywords for 
each of these domains. The research librarians validated 
our keywords and adapted our research strategy to the 
three selected databases.

We thoroughly searched each database for relevant 
articles published from the inception date of each data-
base (MEDLINE: 1966; PsycINFO: 1967; Inspec: 1967) 
until April 22nd, 2021. We repeated the search strategy on 
November 10th, 2021 to make sure our findings were up 
to date. All the references figuring in the selected articles 
were manually checked to make sure no additional article 
was missed. We used the Covidence Systematic Review 
Software to manage all the review steps (Veritas Health 
Innovation, Melbourne, Australia). Table  1 presents the 
full electronic search strategy used for MEDLINE. The 
research strategies used for PsycINFO and Inspec can be 
found in Appendix S2.

2.3  |  Selection of sources of evidence

We proceeded in a three-step manner with the help of the 
Covidence Systematic Review Software. First, two teams 
of reviewers (MHL & AMartel, and MF & MK) indepen-
dently screened abstracts and titles based on inclusion 
and exclusion criteria (first step on April 22, 2021; second 
step on November 10, 2021). To ensure consistency in the 
application of criteria screening, training sessions were 

conducted for a set of approximately 100 citations before 
the reviewers started their independent work. The articles 
had to be approved by the two reviewers to be included 
in the next steps. If reviewers disagreed about sorting an 
article, they met to discuss either in person, by phone, or 
videoconference. If a consensus could not be reached be-
tween the two teams of reviewers, a third reviewer (PMA) 
made the final decision. Second, reviewers proceeded to 
another round of screening by applying exclusion criteria 
to the full texts. The remaining selected studies were then 
thoroughly analyzed for data extraction and risk of bias 
assessment.

2.4  |  Data charting and collation

Data charting was independently executed by two authors 
(MF & MK), and reviewed by a third author (AMarois). A 
calibrated worksheet was set before the data extraction. 
The two researchers then compared their data extraction. 
If reviewers disagreed on quality assessment, a third re-
viewer made the final decision, but this was unnecessary 
in practice. We did not communicate with the authors to 
collect missing data because the aim of the study was to 
evaluate the accessible literature and not the raw data.

For each source, we sought the publication year, arti-
cle type, and source of funding. We identified which con-
cepts related to hypovigilance were studied in each paper 
(e.g., drowsiness, sleepiness, or fatigue). We then looked 
for a definition of the cognitive state studied when avail-
able. We extracted the following data from the included 
studies: (a) number of participants, (b) sex, (c) age, (d) 
health conditions, (e) study approach (either diagnostic or 
prediction model); (f) physiological measuring approach 
employed, (g) domain or context of study, (h) method 
to induce hypovigilance, (i) experimental task, (j) differ-
ences between the two experimental groups, (k) selected 
gold standard and its prespecified threshold(s) if available, 
(l) the specific sensors used to collect physiological mea-
sures, (m) the specific diagnostic/prognostic physiological 
measures, (n) statistical model used, and (o) a summary of 
the main findings. Measures of sensitivity, specificity, and 
accuracy were also collected. Information (a), (b), (e), (f), 
and (g) were first reported for the overall description of 
the records selected for the scoping review. Then, aspects 
pertaining to points (h), (i), (k), (l), (m), (n), and (o) were 
presented in a more specific discussion depending on the 
approach used in each article (i.e., diagnostic vs. predic-
tion model).

Detailed information about the diagnostic/prediction 
models (model/test type, predictors source, number of 
classes, accuracy, sensitivity, and specificity) is reported in 
Appendix S3. In order to summarize each paper with one 
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T A B L E  1   Research strategy for the MEDLINE database.

Search iteration number MEDLINE research request
Number of 
records found

1 (Drowsiness* or Fatigue or Hypovigilance or “Hypo vigilance” or “Loss 
of alertness*” or Tiredness* or Vigilan* or Sleepiness or lassitude or 
Wakefulness* or Arousal* or “Sustained attention” or Delirium).ab,kf,ti

186,311

2 Arousal/ or Sleepiness/ or exp Fatigue/ or Wakefulness/ or Delirium/ 85,774

3 1 or 2 225,160

4 (4AT or “Attention Network Test*” or “AVPU Scal*” or “AVPU Scor*” or 
(Fatigue adj2 Scal*) or “SAFTE Model*” or “Confusion Assessment 
Method*” or “Delirium Severity Scal*” or “Glasgow Coma Scal*” or 
“Intensive Care Delirium Screening Checklist*” or “Karolinska Sleepiness 
Scal*” or “Percentage Eye Closure*” or PERCLOS or “Psychomotor Vigilance 
Task*” or “Psychomotor Vigilance Test*” or “RAMSAY Sedation Scal” or 
“Richmond Agitation-Sedation Scal*” or “Sour Seven Questionnaire*” or 
“Stanford Sleepiness Scal*” or “Epworth Sleepiness scal*” or “Maintenance 
of Wakefulness Test*” or “Continuous Performance Test*” or “Continuous 
Performance Task*” or Electroencephalogram* or “Recognizing Acute 
Delirium as Part of Your Routine”).ab,kf,ti

81,125

Gold standard MeSH—5 Glasgow Coma Scale/ or Electroencephalography/mt [Methods] 29,405

6 4 or 5 99,399

7 (“Consciousness Monitor*” or Electrocardiograph* or Electrodiagnosis or 
Electroencephalogra* or Electromyograph* or EMG or Electrooculograph* 
or “Electro Oculograph*” or EOG or FMRI or FNIRS or “Galvanic Skin 
Response*” or “Heart rate variabilit*” or “Hemodynamic Monitoring” 
or “Gordon Diagnostic System*” or Kinarm* or “Functional Magnetic 
Resonance Imag*” or Magnetocardiograph* or Magnetoencephalograph* 
or “Functional Near-Infrared Spectroscop*” or “Neurologic Examination*” 
or “Neuromuscular Monitoring” or “Neurophysiological Monitoring” or 
Polysomnograph* or “Skin conductance level*” or “Skin conductance 
response*” or “Bispectral Index Monitor*” or ((“Blood Pressure” or 
“Blood Glucose” or “Eye* Movement” or ((Eye* or Visual or Gaze*) adj1 
track*) or “Facial Expression*” or Gait* or “Heart Rate*” or “Respiratory 
rate*” or “Vital Sign*”) adj3 (Analysis or Determination or Monitoring or 
Measurement* or Procedure* or Test*))).ab,kf,ti

332,553

New tech MeSH 8 Blood Glucose Self-Monitoring/ or Blood Glucose/ or Blood Pressure 
Determination/ or Blood Pressure/ or exp Consciousness Monitors/ 
or Electrocardiography/ or Electrodiagnosis/ or Electromyography/ or 
Electrooculography/ or Electroencephalography/ or Exp Eye Movement 
Measurements/ or Exp Neurologic Examination/ or Exp Vital Signs/ or Eye 
Movements/ or Facial Expression/ or Gait/ or Galvanic Skin Response/ 
or Heart Rate Determination/ or Hemodynamic Monitoring/ or Magnetic 
Resonance Imaging/ or Magnetocardiography/ or Magnetoencephalography/ 
or Neuromuscular Monitoring/ or Neurophysiological Monitoring/ or 
Polysomnography/ or Respiratory rate/ or Spectroscopy, Near-Infrared/

1,543,386

9 7 or 8 1,634,829

10 6 and 9 77,985

11 3 and 10 9158

12 (exp Child/ or exp Infant/) not ((exp Adult/ or exp Adolescent/) and (exp Child/ 
or exp Infant/))

1,261,390

13 11 not 12 8772

14 (Animals/ NOT (Animals/ AND Humans/)) 4,658,904

15 13 not 14 7408
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score for each considered metric, the following rules were 
followed. When the classification was not binary (three 
classes and more), sensitivity and specificity were given for 
the class where hypovigilance was prominent (i.e., if the 
classes were “alert”, “slightly drowsy” and “drowsy”, the 
scores are given for the “drowsy” class). When the paper 
presented the performances of more than one model, the 
reported scores are those of the best-performing model, 
based on accuracy (or specificity if accuracy was not avail-
able). A short description and count of the other models 
presented are given in the “Other candidate models” col-
umn. In the case where one metric was not available and 
could not be inferred from the data presented in the paper, 
the corresponding cell was filled with “NA”.

2.5  |  Critical appraisal and risk of 
bias analysis

We identified limitations and risk of bias for each ar-
ticle based on the PRISMA-ScR framework (see item 
12, Liberati et al.,  2009). The Quality Assessment Tool 
for Diagnostic Accuracy Studies (QUADAS-2; Whiting 
et al.,  2011) or the Prediction Model Risk of Bias 
ASsessment Tool (PROBAST; Wolff et al.,  2019) were 
used to evaluate the quality of each article depending on 
the type of tool studied: a diagnostic tool vs. a prediction 
model for the QUADAS-2 and PROBAST, respectively. 
Critical appraisal was independently executed by two 
authors (MF & MK), and reviewed by a third (AMarois). 
Again, both reviewers compared their analysis and, if they 
disagreed, a third reviewer made the final decision. The 
QUADAS-2 method guided our analysis based on the fol-
lowing risk of bias domains: (a) patient selection, (b) index 
test(s), (c) reference standard(s), and (d) flow and timing. 
The PROBAST tool focused on the following domains: (a) 
participants, (b) predictors, (c) outcome, and (d) analysis.

For each included study, an overall risk of bias evalua-
tion was added for both QUADAS-2 and PROBAST anal-
yses. This overall calculation was inspired by the Revised 
Cochrane risk-of-bias tool for randomized trials (RoB2) 
method (see Higgins et al., 2019; Sterne et al., 2019). For 
the overall risk-of-bias judgment, the following rule was 
used: (a) overall low risk of bias was attributed to stud-
ies with low risk of bias classification for all domains, 
(b) “some concerns” about the overall risk of bias was at-
tributed to studies having either one  or two domains for 
which some concerns were found, but without high risks, 
and (c) overall high risk of bias was assigned to studies 
with some concerns found in multiple domains (three or 
more) and for studies with at least one domain at high risk 
of bias. The RoB2 Excel sheet (Higgins et al., 2019), com-
prised of different macros, was then used and adapted to 

collate and generate results to summarize the QUADAS-2 
and PROBAST analyses. It allowed us to display and sum-
marize conclusions of our risk of bias analysis.

3   |   RESULTS

The scoping review conducted in the three online data-
bases yielded a total of 13,686 records (MEDLINE = 7408; 
PsycINFO = 4170; Inspec = 2108). In addition, we added 
231 studies from other sources (total records from all 
sources = 13,917). After duplicate removal (n = 2125), 
11,792 records were kept for initial screening. This ini-
tial assessment removed 10,534 records, leading to 1258 
records that were selected for eligibility analysis. Twenty-
four manuscripts could not be retrieved, therefore re-
sulting in 1234 records that were assessed for detailed 
evaluation. Finally, the detailed assessment for eligibil-
ity removed 1213 records, identifying 21 studies to be in-
cluded for synthesis in the review (note that the 21 studies 
included for synthesis are identified by an asterisk in the 
reference list). Figure 1 presents the PRISMA flowchart of 
the study selection process.

Among the 21 included studies, five were diagnos-
tic studies (i.e., studies aiming at presenting a hypovigi-
lance diagnostic tool) while the other 16 were prediction 
studies (i.e., research on hypovigilance prediction tools 
relying on artificial intelligence algorithms). Table  2 
presents the generic information of each included study, 
depending on the main approach employed (i.e., diag-
nostic vs. state prediction modeling). The main cognitive 
state outcome varied between studies. Studies some-
times focused on sleepiness (n = 1), vigilance (n = 1), 
drowsiness (n = 13), alertness (n = 1), fatigue (n = 3), 
mental fatigue (n = 1), and somnolence (n = 1). Sample 
sizes varied across studies. Studies employing a diagnos-
tic approach had a mean sample size of 18.2 participants 
(SD = 5.9) while those related to state prediction mod-
els had a mean of 20.7 participants (SD = 14.3). Sex and 
gender of participants were sometimes omitted from the 
prediction model studies. As depicted in Table  2, the 
following psychophysiological techniques were stud-
ied: electroencephalography (EEG), electrooculography 
(EOG), electromyography (EMG), electrocardiography 
(ECG), respiration rate (RR) measures, oculometry 
(OCM), pupillometry (PCM), photo-oculography (POG), 
body movement (BM) measures, and near-infrared spec-
troscopy (NIRS). Among the diagnostic papers, three 
(60%) were presented in the context of driving litera-
ture and vehicle accident mitigation while the other two 
(40%) employed more generic approaches. Among the 
prediction studies, 14 (87.5%) addressed hypovigilance 
from a driving perspective while two (12.5%) discussed 
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hypovigilance in a more general, domain-agnostic 
sense, and one (Zhang et al., 2017) studied the context 
of rail transport. In other words, almost all studies were 
related to transportation or a generic investigation of the 
hypovigilant state. This supports the idea that although 
distinctions exist between phenomena such as fatigue, 
somnolence, sleepiness, drowsiness, and other concepts 
related to hypovogilance, these concepts are applied to 
common real-world use cases and analyzed through a 
similar lens.

3.1  |  Risk of bias analysis

3.1.1  |  QUADAS-2 analysis

We analyzed five diagnostic studies with QUADAS-2 
(Akerstedt et al.,  2010; Chua et al.,  2012; François 
et al.,  2016; Maccora et al.,  2018; Nguyen et al.,  2017). 
Figure 2 depicts the overall risk of bias evaluation (panel 
a) as well as the detailed risk of bias analysis for each study 
(panel b). Overall, there were risks of bias concerns about 

the methods employed (with 60% considered concerning 
and 40% with potentially high risk for bias).

Patient selection systematically raised some or high 
concerns for all the studies given that it was unclear for 
all studies whether patients were selected consecutively or 
randomly. In general, insufficient information was given 
about patient selection, such as the exclusion criteria or 
case and control selection criteria. Chua et al.  (2012) re-
ported having studied only male participants, hence repre-
senting high risks of bias. Index test(s) were categorized as 
low risk for all studies. Reference standard(s) used raised 
high concerns for bias in Akerstedt et al.  (2010) because 
the criterion of the gold standard for hypovigilance state 
was high (i.e., KSS score ≥8, related to severe drowsiness). 
Other studies had a low risk of bias for reference standards. 
Finally, four studies out of five were considered as hav-
ing some concerns about bias regarding flow and timing. 
Except for Nguyen et al. (2017), it was unclear for all other 
studies whether flow and timing aspects were correctly 
controlled for. For example, some papers did not pres-
ent any data management reasons such as the absence of 
missing data management information (Chua et al., 2012), 

F I G U R E  1   PRISMA flowchart diagram of the study selection process.
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others only included a subset of participants in their analy-
sis (Maccora et al., 2018), and others had small sample sizes 
(Akerstedt et al., 2010). Overall, Akerstedt et al. (2010) and 

Chua et al.  (2012) had high risks of bias while the other 
studies were considered to have mild concerns (François 
et al., 2016; Maccora et al., 2018; Nguyen et al., 2017).

T A B L E  2   Characteristics of the different included studies depending on their approach (diagnostic, n = 5; state prediction modeling, 
n = 16).

Reference Journal Cognitive state N (F/M)a
Physiological measure 
methodb

Context of 
study

Diagnostic studies

Akerstedt et al. (2010) Journal of Sleep Research Sleepiness 14 (7/7) ECG, EEG, EMG, and EOG Driving

Chua et al. (2012) Sleep Vigilance 24 (0/24) EEG, ECG, and OCM Generic

François et al. (2016) International Journal 
of Environmental 
Research and Public 
Health

Drowsiness 24 (13/11) POG Generic

Maccora et al. (2018) Journal of Sleep Research Alertness 18 (8/10) PPM Driving

Nguyen et al. (2017) Scientific Reports Drowsiness 11 (1/10) EEG and NIRS Driving

Prediction model studies

Awais et al. (2017) Sensors Drowsiness 22 (unknown) ECG and EEG Driving

Choi et al. (2019) IEEE Access Drowsiness 8 (4/4) ECG, EEG, and EOG Generic

Guo et al. (2016) International Journal 
of Environmental 
Research and Public 
Health

Fatigue 20 (8/12) ECG and EEG Driving

He et al. (2016) IET Intelligent Transport 
Systems

Drowsiness 50 (unknown) BM, EEG, and OCM Driving

Hu and Zheng (2009) Expert Systems with 
Applications

Drowsiness/
sleepiness

5 (3/2) EOG Driving

Kudinger et al. (2020) Sensors Drowsiness 30 (14/16) ECG Driving

Leng et al. (2015) IEEE Sensors Journal Drowsiness 20 (5/15) EDA and PPG Driving

Li and Chung (2015) Sensors Drowsiness 6 (unknown) BM and EEG Driving

Li et al. (2015) IEEE Sensors Journal Drowsiness 20 (8/12) EEG Driving

Lopez de la O 
et al. (2012)

Procedia—Social and 
Behavioral Sciences

Somnolence, 
drowsiness, 
and fatigue

23 (2/21) BR Driving

Mehreen et al. (2019) IEEE Sensors Journal Drowsiness 50 (20/30) BM, EEG, and EOG Driving

Mu et al. (2017) International Journal of 
Pattern Recognition 
and Artificial 
Intelligence

Fatigue 15 (7/8) EEG Driving

Salvati et al. (2021) Entropy Drowsiness 3 (0/3) ECG Driving

Vicente et al. (2011) Computing in Cardiology Drowsiness 21 (unknown) ECG Driving

Yamada and 
Kobayashi (2018)

Artificial Intelligence in 
Medicine

Mental fatigue 31 (10/21) OCM and PPM Generic

Zhang et al. (2017) Sensors Fatigue and 
vigilance

10 (3/7) EEG (Train) 
driving

Abbreviations: BM, body movement measures; BR, breathing rate measures; ECG, electrocardiography; EDA, electrodermal activity; EEG, 
electroencephalography; EMG, electromyography; EOG, electrooculography; NIRS, near-infrared spectroscopy; OCM, oculometry; POG, photo-oculography; 
PPG, photoplethysmography; PPM, pupillometry.
aFrom the information available, all participants of these studies self-identified as either male or female, hence the absence of a third category for other 
genders. The total N represents the number of subjects included for analysis.
bThe methods indicated here represent the measures tested in the paper (which was compared with a physiological or non-physiological gold standard 
method).
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3.1.2  |  PROBAST analysis

We analyzed the risk of bias for 16 prediction studies 
(Awais et al.,  2017; Choi et al.,  2019; Guo et al.,  2016; 
He et al., 2016; Hu & Zheng, 2009; Kudinger et al., 2020; 
Leng et al., 2015; Li et al., 2015; Li & Chung, 2015; Lopez 
de la O et al., 2012; Mehreen et al., 2019; Mu et al., 2017; 
Salvati et al.,  2021; Vicente et al.,  2011; Yamada & 
Kobayashi,  2018; Zhang et al.,  2017) using PROBAST. 
Figure 3 displays the overall risk of bias evaluation for all 
included studies (panel a) as well as the detailed analysis 
for each of the 16 studies (panel b). Overall, the 16 stud-
ies had some concerns about bias or high risks of bias be-
cause of the methods used (with 43.8% considered with 
high risks vs. 56.2% with some concerns).

The nature and selection of participants raised some 
risk of bias concerns in 14 (87.5%) studies, except for Choi 

et al. (2019) at low risk of bias for the participant domain, 
and for Salvati et al. (2021) at high risk of bias. The main 
limitations observed were related to the lack of details 
regarding the participant's population and their risk for 
bias (e.g., night shift workers or drivers). In the case of 
Salvati et al.  (2021), all participants were males, which 
can represent an important bias for the generalization of 
physiological prediction models. The predictors domain 
yielded a low risk for bias in every study except for Salvati 
et al. (2021). In this study, predictors were not defined a 
priori, but rather post hoc as determined by variations in 
PERCLOS. Most studies were at low risk of bias for the 
outcome domain (n = 11, 68.8%), but 4 (25%) still raised 
some concerns (Hu & Zheng, 2009; Mu et al., 2017; Salvati 
et al.,  2021; Yamada & Kobayashi,  2018) and one was 
at high risk of bias (6.2%; Choi et al.,  2019). Some con-
cerns about risk of bias were due to lack of details about 

F I G U R E  2   QUADAS-2 bias analysis for the diagnostic studies (Panel a: Global overview; Panel b: Detailed analysis).
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outcome determination and one study was at high risk of 
bias (Choi et al., 2019) because the study outcome (drows-
iness) was determined post hoc based on the model used.

More concerns were found for the Analysis domain 
with 43.7% of the papers ascribed to the high-risk category, 
31.3% associated with some concerns, and a minority of 
25% deemed to be at low risk of bias. In the case of papers 
with “some concerns,” risks for bias were due to the fol-
lowing reasons: (a) only a limited number of participants 

and/or a limited number of data points were included for 
analysis (Awais et al.,  2017; Mu et al.,  2017; Yamada & 
Kobayashi, 2018), (b) risks for overfitting were important 
due to the testing approach (i.e., not using leave-one-out 
approach; Kudinger et al., 2020), and (c) no performance 
measure was reported on the test set (Vicente et al., 2011). 
For the “high risk” papers, combinations of the preceding 
reasons explained this classification (Li & Chung, 2015), 
coupled sometimes with a lack of information on the 

F I G U R E  3   PROBAST bias analysis for the prediction studies (Panel a: Global overview; Panel b: Detailed analysis).
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analysis strategy, the absence of a clearly-defined test set, 
or because the sample size was very low (Choi et al., 2019; 
He et al., 2016; Hu & Zheng, 2009; Leng et al., 2015; Salvati 
et al.,  2021; Zhang et al.,  2017). Overall, we categorized 
nine papers to be at high risk of bias (Choi et al.,  2019; 
He et al., 2016; Hu & Zheng, 2009; Leng et al., 2015; Li & 
Chung, 2015; Mu et al., 2017; Salvati et al., 2021; Yamada 
& Kobayashi, 2018; Zhang et al., 2017) while all the others 
were considered having “some concerns” for bias.

3.2  |  Synthesis of included studies

3.2.1  |  Diagnostic studies

Table 3 presents the summary of the five diagnostic stud-
ies, including their main findings. Hypovigilant states 
were induced by various methods in the five studies. 
Four of the studies relied on sleep deprivation/prolonged 
wakefulness while the other one used a monotonous 
driving task. Most of the studies relied on the same 
hypovigilant state induction technique (i.e., fatigue-
induced hypovigilance). This improves our comparison 
of studies, establishing common bases for hypovigilance 
and, potentially, similar levels. However, the outstand-
ing study that relied on the monotonous driving task 
differs from the other four studies, because it may have 
produced a lower level of hypovigilance. One could in-
deed expect that being importantly sleep deprived (e.g., 
be awake for at least 28 h or having slept less than 4 h) 
may cause different types and ranges of biobehavioral 
manifestations. Two of the studies used a driving simula-
tor as the focal task. Two others used a constant routine 
task, i.e., a sequence of various daily tasks to perform, 
and one study used a PVT repeated at standard testing 
intervals over 2 days. Here, the variability in focal tasks 
can also induce differences in the ways that performance 
on a task may be modulated by the hypovigilance inter-
ventions. Still, task performance did not represent a key 
outcome for the study nor the diagnostic model, so the 
impact of such a difference among the studies reviewed 
may be relatively small. Of interest, however, is the fact 
that only three of the studies were carried out in real-
life or simulation contexts close to real life (i.e., during a 
simulation or during constant routine tasks) that would 
be useful in operational situations.

Gold standards also varied importantly, both in their 
nature and, across similar tools, with respect to the 
thresholds for defining alert vs. hypovigilance states. 
The Karolinska Sleepiness Scale (KSS) and PVT were 
individually used in Akerstedt et al.  (2010) and Chua 
et al.  (2012), respectively, while the other studies pro-
posed combinations of gold standards (e.g., EEG + slow 

eye movements + PVT; Maccora et al., 2018). Thresholds 
were determined by the research teams and varied im-
portantly (e.g., rater's subjective visual inspection of 
EEG signal vs. standardized analysis of the EEG sig-
nal using Rechtschaffen and Kales'  [1968] Karolinska 
Drowsiness Test [KDS] classifications vs. subjective 
evaluation of the variations in PERCLOS, EEG power 
bands and heart rate). This divergence in the gold stan-
dard and thresholds chosen for hypovigilance diagnosis 
complicates comparisons between the different measur-
ing tools. More precisely, this causes variability in the 
classification of the main outcome (e.g., hypovigilant vs. 
vigilant state) across the included studies. The drawback 
of this variability is that some participants may have 
been assigned as hypovigilant from the perspective of 
a given gold standard while, from another, participants 
would be considered vigilant. This variability affects the 
external validity of the models (i.e., the capacity to gen-
eralize among new sets of individuals).

The different measurement tools used for hypovig-
ilance diagnostics were: ECG, EOG, EEG, EMG, HRV, 
PERCLOS, POG, PUI, and NIRS. One of the studies ex-
plored only the variation of the pupillographic sleepiness 
test (Maccora et al.,  2018), while the others proposed 
combined measures (e.g., EOG + EEG + EMG + ECG, 
EEG + PERCLOS + HRV frequency metrics + ECG 
power density). Many of the possible physiological mea-
sures reflecting hypovigilance are characterized by im-
portant between-individual variation due to difficulty 
to capture specific information on the state of the user, 
of interference from confounding variables, and more. 
Hence, combining multiple physiological measures 
seems appropriate to enhance sensitivity and specificity 
of diagnostic tools. However, the determined threshold 
varied for the same measure and was frequently decided 
empirically. This may have led to bias.

Different measures seemed to correlate with the level 
of hypovigilance, including blink duration, blink ampli-
tude, peak closing velocity, and variability in lateral gaze 
position. PVT, ECG power density, EEG power density, 
NIRS oxyhemoglobin, POG, and PUI also had a good cor-
relation. Four out of five studies included oculographic 
measures, whether it was pupillometric measures, per-
centage of eye closure, blink duration, lateral deviation of 
gaze, etc. This is probably because oculographic measures 
are relatively simple and cost-effective compared to EEG, 
which necessitate a skilled individual to install electrodes 
and can sometimes be invasive and/or uncomfortable. 
The important range of physiological measures that can 
be related to hypovigilance stresses the relevance of adopt-
ing a validated approach to detect this state. It also raises 
the potential of not only varying measures among a single 
technique (e.g., different spectral power bands of EEG), 
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but also multiplying the sensors included in a diagnostic 
model (e.g., combining measures of EEG and ECG).

3.2.2  |  Prediction model studies

Table 4 presents the summary of the 16 prediction stud-
ies. Several techniques to induce a hypovigilant state 
are found across the different studies. These techniques 
comprised long time on task in a monotonous context, 
sleep deprivation or prolonged wakefulness, manipula-
tion of the time of the day where testing occurred, re-
cruitment of sleep-deprived participants (i.e., night shift 
workers after their shifts), and performing a cognitively-
demanding task. This variability in the techniques 
chosen for inducing hypovigilance could have exerted 
different hypovigilance levels and, consequently, dif-
ferent outcomes for its prediction. Some physiological 
measures may be more or less sensitive than others and 
so prediction could have been enhanced or worsened for 
certain physiological responses if a different technique 
was used. Important variability can also characterize 
the hypovigilant vs. aroused participants across all stud-
ies. Records characterized by less severe hypovigilance-
inducing techniques (e.g., time on task on a driving 
simulation) may incorrectly categorize alert individuals 
as hypovigilant compared to studies employing more se-
vere manipulations (e.g., with subjects sleep deprived for 
26 h). This limitation can, however, be mitigated by hav-
ing more than two hypovigilance levels (e.g., fully awake 
vs. drowsiness vs. fatigue; cf. Lopez de la O et al., 2012). 
Here, having a third category may allow more precision 
in the categories and more important homogeneity in 
the cases ascribed to each state. In turn, the reduced 
variability can lead to better state prediction.

The ongoing task during which hypovigilance was 
measured varied to a lesser extent, the majority focusing 
on driving (10 studies employed a driving simulation and 
four a real driving task). Other studies relied on a series 
of recurring and continued routine tasks, on monotonous 
single-object tracking, and an alternation between video 
watching and cognitive tasks. The fact that most of the 
studies discussed and evaluated hypovigilance under a 
transportation/driving perspective speaks to the impor-
tance of such a cognitive limitation for this specific con-
text. This also means that most of the studies aimed at 
developing a hypovigilance prediction model that would 
be applicable to/deployable in real-life settings such as in 
a car or on a train. In that regard, most of the sensors used 
to measure the physiological responses and in turn pro-
vide data to the hypovigilance state prediction model were 
mobile (commercial-off-the-shelf or homemade) sensing 
technologies.

The gold standard used varied between several phys-
iological and behavioral outcomes. Physiological out-
comes comprised measures of facial features, EOG, eye 
movements, ECG, body movements, and mostly, EEG 
spectral bands. The thresholds to label vigilance levels 
from these metrics often changed across studies, even 
when a common physiological signal was analyzed (e.g., 
PERCLOS evaluation in Li et al. [2014] and Lopez de la O 
et al. [2012]; or EEG power bands assessment based either 
on Rechtschaffen and Kales' [1968] KDS classifications or 
not in He et al. [2016], Hu and Zheng [2009] and Lopez de 
la O et al.  [2012]). Behavioral outcomes included results 
on self-rated scales (e.g., Borg's CR-10 scale, Karolinska 
Sleepiness Scale, Li's Subjective Fatigue Scale, Stanford 
Sleepiness Scale, or homemade mental fatigue, physical 
fatigue, sleepiness, and motivation numerical scales), 
performance on a task to measure fatigue (e.g., PVT, and 
reaction time on a simple task), and performance on the 
focal task (steering wheel adjustments on the driving sim-
ulation). Sometimes information on the thresholds used 
to label vigilance was absent (Mu et al.,  2017; Vicente 
et al., 2011; Yamada & Kobayashi, 2018) and, in other sit-
uations, label derived only from experimental manipula-
tions (Mehreen et al., 2019; Zhang et al., 2017). Here, the 
diversity in gold standard measures and thresholds com-
promises between-studies comparisons. In fact, having 
different gold standard measures necessarily leads to hav-
ing different thresholds for determining the hypovigilance 
state of a user. For example, some studies employed the KSS 
and used several threshold points for identifying different 
hypovigilance levels (e.g., KSS classes 0–4: Alertness; KSS 
classes 5–8: Hypovigilance; KSS classes 9–12: Drowsiness; 
Salvati et al., 2021). Yet, these categories can be difficult 
to compare with physiological-based thresholds, e.g., on 
measures of PERCLOS (e.g., Li et al.,  2015; Lopez de la 
O et al., 2012) or variations in the PVT performance (e.g., 
Choi et al., 2019).

Common information on the measure of hypovig-
ilance can be deduced from the main findings of the 
studies concerned with prediction models. Mainly, the 
studies relied on EEG-related measures (50% of the 
studies) and on ECG features (43.8% of the studies) to 
predict the hypovigilance level of participants. EEG fea-
tures mainly reported spectral power bands (α, β, γ, δ, θ, 
and φ) and power density. Regarding the ECG features, 
frequency bands of the HRV were mainly used, but also 
some time-domain features such as raw HR, HRV, or RR 
intervals. Some papers were also interested in predicting 
a hypovigilant state with measures of body movement, 
including aspects related to the adjustments of the body 
and to head movements/nodding. These latter aspects 
can be processed and interpreted through many out-
comes, as shown by the 21 features of head movement 
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collected by Mehreen et al.  (2019). Some authors also 
relied on eye movement/behavior features leading to 
multiple types of measures including pupillometric 
data, eye fixations and saccades, and blink data. Again, 
all these types of measures could be processed into sev-
eral outcomes of time and frequency domains (see, e.g., 
Hu & Zheng,  2009; Mehreen et al.,  2019; Yamada & 
Kobayashi,  2018). Measures related to breathing were, 
however, scarcely used (only in two studies). Taken to-
gether, these results outline that hypovigilance can be 
successfully predicted using a wide range of physiologi-
cal measure techniques and features.

The data originating from these outcomes can be 
processed using different machine learning algorithms. 
Techniques such as support vector machines (SVM), ar-
tificial neural network, genetic algorithms, decision trees, 
K-nearest neighbor, linear discriminant analysis, and ex-
treme gradient boosting were used for the prediction of 
the hypovigilant state using ensembles of psychophysio-
logical and behavioral features. While most of the studies 
used SVM models, the variability in modeling techniques 
is consistent with the variability already reported be-
tween studies for the selection of the gold standard, the 
hypovigilance-inducing techniques and the predictors. 
The nature of the technique may vary, among other 
things, depending on the type of predictor included in the 
models, but also according to the number of outcomes to 
predict (i.e., hypovigilance classes). Appendix S3 provides 
more details on the different models used in the 16 hypo-
vigilance prognostic studies, and on the performance they 
reached with their sample.

4   |   DISCUSSION

The goal of this scoping review was to map the current 
knowledge about the psychophysiological methods to de-
tect human hypovigilance and to highlight strengths and 
gaps in the literature. The selection process and analysis 
of the 21 studies selected for the current scoping review 
highlight important trends for the scientific community 
interested in the detection of impaired cognitive states 
such as hypovigilance. First, the large number of papers 
assessed for eligibility (1234) confirms that this topic is in-
deed of interest for many researchers and that synthesis 
efforts such as our scoping review are needed to better un-
derstand the current state of the literature. The important 
diversity in journal scopes from which the papers were se-
lected (including neuroscience, behavioral sciences, sleep 
research, transport systems, and sensors journals) reflects 
the overall interest of many different scientific communi-
ties. Interestingly, the detection of hypovigilance does not 
only apply to the medical or psychological domains, but 

also to applied sciences such as transport and engineer-
ing journals. The selection criteria chosen for the current 
scoping review were purposely focused on the cognitive 
aspect of hypovigilance detection. As a result, an impor-
tant number of papers focused on the engineering side 
were excluded: most of them did not necessarily include 
an established gold standard (155 out of 1213) or focused 
on signal processing technologies. Although the technolo-
gies presented in these papers are necessary to develop ro-
bust systems in real situations, they were not the objective 
of our research and did not meet the inclusion criteria. 
The automobile industry is at the heart of the research for 
hypovigilance detection. Not all of the selected papers re-
lied on a driving-related task, but they almost all aimed 
to be applied to the transport industry. As a result, most 
of the experiments conducted, either inside or outside the 
lab, investigated embedded or at least portable systems 
with low invasiveness (wearables such as wrist bands, 
contactless cameras for eye tracking, or sensors integrated 
in the driver's seat).

Throughout the selected papers, the physiological mea-
sures used to detect hypovigilance were relatively con-
sistent. Indeed, out of the 21 studies considered, almost 
all papers relied on at least one of the following signals: 
ECG/PPG, EEG, EOG, and eye tracking. This conclusion 
is interesting given the small diversity observed in the 
specific phenomena assessed in these papers (vigilance 
vs. drowsiness vs. fatigue and so forth). This outlines that 
hypovigilance-related measures found in these studies 
may be underpinned by common mechanisms even if, 
from a semantic point of view, studies may have referred 
to this concept in different ways. Interestingly, other 
measures were also used, including body temperature, 
breathing rate, NIRS, body movement-based data, and, 
sometimes, behavioral measures. The combination of 
techniques may be motivated by the idea that physiologi-
cal monitoring devices (e.g., heart rate monitors) are sub-
ject to several artifacts such as movement noise (Kranjec 
et al., 2014). Therefore, combinations allow for the possi-
bility to collect state information when data from a given 
sensor or a group of sensors may comprise too much 
noise. Considering that hypovigilance measures of the 
central nervous system seem important, a great challenge 
is to transfer the usually bulky and sensitive sensors out of 
the laboratory (e.g., Awais et al., 2017; Choi et al., 2019; Li 
et al., 2015), but also to pinpoint proper cerebral indices of 
the (hypo)vigilant state.

The important diversity of gold standards (and some-
times thresholds) observed across studies is also notewor-
thy. Although common assessment measures were found 
across studies, gold standards were not used in the same 
way. The KSS was often used, but could be interpreted 
differently using, e.g., different number of categories. 
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Measures focused on observable behaviors or on physio-
logical signals (e.g., PERCLOS, EEG power bands, heart 
rate variations, or body movements) that were analyzed 
differently. Sometimes, these measures relied on stan-
dardized/a priori-defined techniques (e.g., Rechtschaffen 
and Kales'  [1968] KDS classifications, Wierwille and 
Ellsworth's  [1994] video-based criteria, or PERCLOS 
percentage categories). Yet, in other situations, raters 
provided subjective evaluations based on their own obser-
vations, and the criteria they relied on were not explicitly 
discussed. This outlines that literature on hypovigilance is 
highly scattered and that, although common techniques 
can be pinpointed, between-studies comparisons are diffi-
cult to perform. Nevertheless, this information can still be 
of high use to help defining better ways to predict hypovig-
ilance and guide future studies to compare different diag-
nostic tools and thresholds. Our results will be helpful in 
guiding standardized approaches to define proper ground 
truth labels to use to develop new prediction models. 
These approaches should ultimately all rely on common 
gold standards and thresholds to ensure that prediction 
models all rely on a common view of hypovigilance and to 
make between-model comparisons feasible.

Petersen and Posner (2012) suggest that the brain has 
three distinct attentional networks: alerting, orienting, 
and executive control. The alerting system is deemed to 
condition the general level of arousal and is influenced 
among other things by subcortical activity of the locus 
coeruleus (LC) (Foote et al.,  1991). The LC generates 
norepineprhine (NE) and spreads it through the brain, 
in particular in the right thalamic, frontal, and parietal 
regions. Many papers used EEG or NIRS to measure ac-
tivity in these cortical regions as downstream cortical in-
dicators of the LC-NE system activity. Some focused on a 
generic approach with electrodes in every region of the 
brain, whereas others reduced the number and locations 
of electrodes (e.g., the frontal and temporal lobes or over 
the occipital lobe). Overall, the best cerebral locations 
from which to collect brain activity do not seem to have 
reached consensus in the studies we included. The neural 
pathways associated with hypovigilance still seem under-
investigated (Li & Chung, 2022) and rarely corresponded 
with attention-related brain areas. Moreover, the place-
ment of the electrodes was rarely justified. This could ex-
plain why several—rather than a single—regions of the 
brain were used to detect hypovigilance.

The approaches used to process and aggregate data 
are manifold, although the use of the spectral domain 
to process EEG and ECG is dominant. The level of de-
tails provided by each paper varies greatly, and it is not 
always stated: (a) how the data was processed, (b) which 
features were actually used as predictors for the detection 
of hypovigilance; and (c) what thresholds have been used 

specifically for labeling the vigilance level. Among others, 
the lack of transparency increased the concerns for some 
papers during the bias assessment, and more precisely the 
Outcome domain with PROBAST. Moreover, since the 
majority of the models investigated used machine learn-
ing techniques, the “black box” effect remains important, 
as the models and the between-variables relationships 
can be either difficult or impossible to fully interpret (e.g., 
Lipton, 2018). More precisely, the effect of each predictor 
on the target metric and their interactions were not neces-
sarily explained. Unlike statistical analyses, the direction 
and values of one physiological parameter cannot be di-
rectly associated with specific variations of hypovigilance, 
which affects the interpretability of the models. Work fo-
cusing on predicting hypovigilance states with large va-
rieties of psychophysiological features should integrate 
techniques to understand such a black box effect. Machine 
learning techniques exist to increase the explainability of 
models (i.e., methods of explainable artificial intelligence 
[XAI]; e.g., Antoniadi et al.,  2021; Gunning et al.,  2019; 
Tjoa & Guan,  2021), and efforts should be deployed to 
make use of them to better understand the mechanisms 
underlying hypovigilance detection.

In terms of algorithms, the selected papers reflect the 
recent advances of machine learning and its potential for 
human-centered applications (many prediction models 
were based on machine learning). The use of deep learn-
ing was not found to be dominant. Different techniques 
were utilized using algorithms that are well-established 
in the machine learning community for supervised learn-
ing such as Random Forest, XGBoost, LDA, and SVM. 
Interestingly, all of the proposed models were classifiers, 
discriminating between two and sometimes three classes 
(increasing levels of hypovigilance). None of the papers 
seem to have considered regression to infer vigilance lev-
els (prediction of a continuous output such as an interpo-
lated KSS score). At this stage, it is unclear whether using 
regressors is not efficient, or if it has not yet been consid-
ered sufficiently. This approach, if proven efficient, could 
be a way to introduce more granularity in the predictions. 
Moreover, a continuous prediction might make more 
sense than simply classification given that hypovigilance 
is not a binary state and progressively grows as time on 
task/difficulty increases (Robertson & O'Connell,  2010). 
Such an approach would however require defining and 
operationalizing a continuous ground truth equivalent, 
i.e. a measure representative of the normal level of vigi-
lance over a certain time window, to ensure the constant 
validity of the new continuous physiological models.

Modeling a cognitive state based on psychophysiologi-
cal data requires training a model that is sensitive enough 
to take into account intra-individual variability. Moreover, 
in order to be used in a large variety of applied situations, 
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prediction models should ideally run in real time, and fol-
low a “one size fits all” approach. This suggests that mod-
els must be robust enough to provide relevant predictions 
on different individuals, even if no prior information is 
available on specific individuals. Several methods in the 
training, validation, and testing phases of a machine-
learning model can be used to quantify its generalization 
capacity. It is the case of the “leave-one-participant-out” 
cross-validation approach (de Rooij & Weeda,  2020), 
with which the validation phase happens on unknown 
participants’ data. Similarly, performances of models on 
the test set should be evaluated on independent, isolated 
individuals. These methods usually lead to models that 
generalize better, but might show lower cross-validation 
performances (Drew et al., 2014; Suresh & Guttag, 2019; 
see also Gronau & Wagenmakers, 2019, for considerations 
of “leave-one-participant-out” cross-validation models). 
In the current state of the literature, the methods of train-
ing and evaluation of the models are manifold and het-
erogeneous. More generally, the differences in evaluations 
and hypotheses resulted in certain papers having higher 
bias estimations than others, more particularly in the 
Analysis domain of the PROBAST. Performances as re-
ported by the authors are given in Appendix S3. However, 
they should be interpreted with caution, rather than used 
for comparison between two systems. Indeed, the variabil-
ity of the techniques used to train and evaluate the mod-
els, as well as the discrepancies observed between papers 
during the bias assessment, would not lead to a fair and 
objective comparison.

4.1  |  Practical implications

The aim of this scoping review was to describe the vari-
ous tools available to detect and predict hypovigilance. 
As it was previously stated, this is of great importance in 
the transport industry, but also in aerospace, command 
and control, and other such complex and dynamic do-
mains. Many attention-demanding tasks (such as traffic 
control, supervising military operations, vehicle driving, 
or piloting) with critical outcomes could eventually be as-
sisted by a device designed to detect hypovigilance, with 
the aim of preventing hazardous events (see, e.g., Bendak 
& Rashid, 2020; Bier et al., 2020; Duffy & Feltman, 2022; 
Mogilever et al., 2018).

The ability to monitor the physiology of individuals to 
infer their mental states is already seen as highly valuable 
in a variety of contexts such as the monitoring of soldiers 
in military operations (Friedl,  2018; Salvan et al.,  2022) 
and different kinds of adaptive systems have been devel-
oped for such purpose (Blackhurst et al.,  2012; Marois 
et al.,  2020; Parnandi et al.,  2013; Zhao et al.,  2020). 

Consequently, the potential uses of hypovigilance detec-
tion technologies are extensive. Industries like automobile 
and aerospace are evidently involved in this research field 
to prevent accidents, as inattention is a key human factor 
that can be monitored and supported to prevent casual-
ties. Moreover, isolated, confined, and extreme environ-
ments (often referred to as ICE; Mogilever et al.,  2018; 
Palinkas, 2003) could also benefit from such technologies, 
since they are known to induce mental health challenges 
with attention-related symptoms evolving into vigilance 
challenges (e.g., depressive states, anger, and anxiety; see, 
e.g., Haney, 2003; Palinkas et al., 2004). For all those cases, 
the information extracted from the literature reviewed in 
the current paper can represent a great asset from both re-
searchers' and decision makers' point of view. The different 
physiological techniques identified (with their advantages 
and drawbacks) as well as the prediction/modeling ap-
proaches raised could contribute to the development and 
integration of such systems for real-life applications.

Another interesting field of research is the detection 
of hypovigilance in hospitalized patients. Artificial in-
telligence opens wide possibilities in the medical field, 
where multiple clinicians' decisions could be supported 
by machine learning (e.g., radiologic automated analy-
sis). One of the main challenges in medicine is identify-
ing patients at risk for and with actual delirium, especially 
for hypoactive-type delirium characterized by reduced 
vigilance (e.g., Gual et al.,  2019; Hosker & Ward,  2017; 
Inouye, 1994). Delirium is defined in the DSM-5 as a state 
of “disturbance in attention (i.e., reduced ability to direct, 
focus, sustain, and shift attention) and awareness (reduced 
orientation to the environment)” (American Psychiatric 
Association,  2013, p. 596). Clinical diagnostic criteria 
are well-defined and helped develop a clinical tool used 
at the bedside by clinicians to diagnose delirium, called 
the Confusion Assessment Method (CAM). Its applica-
tion in the intensive care unit (ICU) is possible through 
the CAM-ICU (Ely, Margolin, et al., 2001). The diagnosis 
requires both acute onset and fluctuating course, and the 
presence of either disorganized thinking or altered level 
of consciousness. While the CAM-ICU administration 
can take less than 1 min (Guenther et al., 2010), it needs 
to be carried out frequently while a patient is hospital-
ized. Consequently, efforts must be invested to integrate 
this tool into the patient's follow-up workflow and into 
the routine of the busy and overburdened ICU personnel. 
Developing automated tools that would help identify hy-
povigilant situations for the diagnostic of delirium and/or 
identify patients more at risk could be a way to increase 
delirium detection in understaffed ICUs. Such tools would 
be useful given that ICU delirium is associated with worse 
patient-oriented outcomes, including increased ICU/hos-
pital length of stay, more frequent mortality, and worse 
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cognitive outcomes among ICU survivors (see, e.g., Ely, 
Margolin, et al., 2001; Fiest et al., 2021; Salluh et al., 2015).

Of all the studies screened, only one concerning de-
lirium met all the inclusion criteria in the first steps of 
inclusion assessment, but it was later removed. This study 
by Oh et al. (2018) was not included in the scoping review 
because it focused only on the hypovigilance experienced 
by ICU patients diagnosed with delirium and did not fit 
well with the scope of the other selected papers. Other 
studies are currently in progress to evaluate EEG vari-
ation analysis to identify delirium in ICU patients (e.g., 
Ducharme-Crevier,  2021). One could also suggest that 
automated measures with machine learning could open 
doors to diagnose many medical conditions, for example, 
sepsis and psychosis. This could represent a great asset 
for health systems, given that human factors and lack of 
time represent important practical limitations (Goodie & 
Crooks, 2004; Weinger & Slagle, 2002).

4.2  |  Limitations

While the current review provides a comprehensive 
portrait of the literature on hypovigilance detection 
and prediction models, it still possesses some caveats 
that must be addressed. First, the imposition of a finite 
list of gold standards might have reduced the number 
of papers selected for review. Although this list was 
flexible through the source selection step, it still ex-
cluded potentially relevant papers that presented other 
(unique or sets of) psychophysiological proxies related 
to hypovigilance. While imposing the presence of a gold 
standard can help to ensure better validity of the mod-
els presented, some models that we missed could still 
be highly relevant. Yet, to prevent reducing, even more, 
our capacity to include papers in the review, we did not 
include preimposed thresholds for these gold standards. 
Second, the fact that all the studies selected raised con-
cerns for bias—and sometimes high concerns—reduces 
the scope of interpretation and, potentially, the gener-
alizability of the conclusions reached by these studies. 
Indeed, the results discussed herein might only be ap-
plicable to certain groups of persons, or specific to given 
contexts, tasks, or vigilance level states. This might be 
especially true for studies characterized by training/
test approach limitations. As indicated earlier, optimal 
generalizability should subtend a “one size fits all” ap-
proach as much as possible, but this was not necessar-
ily achieved by the studies selected for review. Third, 
we did not attempt to distinguish the different sub-
conditions under the general term hypovigilance (e.g., 
such as fatigue vs. sleepiness) that may have different 
physiological manifestations. These different states 

may potentially need different diagnostic or prediction 
models given that their mechanisms of origin may vary 
(e.g., circadian rhythm vs. cognitive resource depletion 
vs. homeostasis). Having considered all the models to-
gether to investigate for potential methods to measure 
hypovigilance was relevant for the context of this scop-
ing review, which aimed at defining the general state 
of the literature regarding hypovigilance and outlining 
existing gaps. Still, before providing more specific sug-
gestions as to the best ways to measure hypovigilance 
induced by, for example, fatigue, sedation, and cogni-
tive overload, a more granular analysis of the literature 
is needed. Finally, more detailed information about the 
performances of the models would have been useful 
to collect. Indeed, understanding whether the models 
found here can outperform gold standard prediction 
and diagnostic models could represent a key tool for 
researchers and developers interested in applying the 
techniques reviewed in real-life settings. However, be-
cause of the heterogeneity in the studies, this informa-
tion was not always available and/or comprehensively 
collected. Parts of this information can be found in 
Appendix S3, but it must be regarded with caution given 
the lack of consensus about defining hypovigilance and 
the heterogeneity in the choice of performance metrics 
and ways to measure them.

5   |   CONCLUSION

Hypovigilance is considered an important cause of many 
accidents and hazardous situations in several fields. 
Therefore, improved hypovigilance detection capacities 
could help to facilitate how it is managed and, in turn, to 
increase safety and security of people and infrastructures. 
In the current scoping review, we identified the main 
techniques used to assess hypovigilance using sensor-
based models. As outlined, the choice of sensors to infer 
hypovigilance was relatively similar between all papers. 
Indeed, many focused on the central nervous system via 
EEG (or NIRS) and/or the peripheral nervous system with 
eye-tracking technologies and/or ECG/PPG-based meas-
ures. Among the selected papers, a majority relied on a 
prediction approach and used machine learning, rather 
than a diagnostic approach. Although the training and 
feature computing methods remained unclear in most 
of the papers, some common methods such as the use 
of SVM for model training were highlighted. However, 
certain gaps remain, in particular concerning the differ-
ent training and performance evaluation methods used. 
For example, some models were trained using a leave-
one-out approach, whereas other models were trained for 
each participant individually. Overall, the ability to infer 
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hypovigilance (possibly in real time) with a reduced inva-
siveness has great potential in many contexts from mili-
tary to medical, and the current state of the literature on 
this topic is likely to show important progress in the up-
coming years.
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