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Transcranial Auricular Vagus Nerve
Stimulation (taVNS) and Ear-EEG:
Potential for Closed-Loop Portable
Non-invasive Brain Stimulation
Philipp Ruhnau1,2* and Tino Zaehle1,2*

1 Department of Neurology, Otto von Guericke University, Magdeburg, Germany, 2 Center for Behavioral Brain Sciences, Otto
von Guericke University, Magdeburg, Germany

No matter how hard we concentrate, our attention fluctuates – a fact that greatly affects
our success in completing a current task. Here, we review work from two methods that,
in a closed-loop manner, have the potential to ameliorate these fluctuations. Ear-EEG
can measure electric brain activity from areas in or around the ear, using small and
thus portable hardware. It has been shown to capture the state of attention with high
temporal resolution. Transcutaneous auricular vagus nerve stimulation (taVNS) comes
with the same advantages (small and light) and critically current research suggests that it
is possible to influence ongoing brain activity that has been linked to attention. Following
the review of current work on ear-EEG and taVNS we suggest that a combination of
the two methods in a closed-loop system could serve as a potential application to
modulate attention.

Keywords: attention, ear-EEG, mobile EEG, non-invasive brain stimulation, taVNS

INTRODUCTION

We experience natural lapses of attention in everyday life. These fluctuations are common, and yet
they can have drastic consequences if they occur in situations that require constant high attention.
For instance, a major part of traffic accidents caused by human error are linked to attention lapses.

Imagine, then, if one could make use of a device that is not only capable of detecting changes
in this system, but could also prevent them from occurring altogether. Such a device would have
incredible potential to enhance attention in various demographics – from students learning for a
test, to air-traffic control officers directing pilots safely to the airport – but also offer a variety of
applications for clinical populations with attention deficits.

Current systems can detect early physiological markers of drowsiness (e.g., heart rate, respiratory
activity, and eye movement) and send out warning signals to alert an individual to a lapse of
attention. The fact that many vehicle companies now implement such “drowsiness detectors” or
“attention assist” systems emphasizes how promising this feedback approach is. However, these
approaches are still reactive – acting when the attention system is already fluctuating. Here, we
suggest an approach that has the potential to proactively prevent such fluctuations.

This system needs to be (I) portable, to allow use in everyday life; (II) adaptable to the individual’s
brain state in real time; and (III), able to stimulate the brain’s attention system non-invasively.
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A system with this potential would need to comprise two parts:
first, a method to read out attentive states in real time and second,
a system that is capable of modulating cortical states in or close
to real time. We suggest the use of the electroencephalogramm
(EEG), specifically ear-EEG as a read-out and transcutaneous
auricular vagus nerve stimulation (taVNS) to modulate brain
activity. Combining these two into a closed-loop, would allow the
three points from above to be addressed.

In the following we will provide a brief overview of work on
ear-EEG and taVNS. As marker of attention, we will focus on
cortical alpha oscillations. We think a closed-loop system based
on ear-EEG and taVNS would provide us with a flexible, efficient,
and individually tailored system that could be used to actively
influence participants’ attention in real time.

MOBILE EEG AND RECORDINGS FROM
THE EAR

The first mobile EEG systems where already envisioned in the
first half of the 20th century by a pioneer of EEG research,
Herbert Jasper (see De Vos and Debener, 2014). Today these
visions have become reality and mobile EEG systems allow for
the recordings of brain activity in everyday life situations, with
much greater potential to treat a variety of disorders compared to
lab-based research (Debener et al., 2012). Mobile systems have
been used in highly different settings, such as during physical
activity (Scanlon et al., 2019), in the work space (Wascher et al.,
2016), during driving (Wang et al., 2018), and even while walking
a tightrope (Leroy and Cheron, 2020).

One great potential in using mobile EEG systems lies in the
chance to report brain activity to the wearer and allowing for
quick adjustments in behavior. This method, termed biofeedback,
has used EEG to allow subjects to change their own state of
mind to, for instance to alleviate stress, since the 1960s (e.g.,
Brown, 1974, 1977). However, this type of research, which
quickly developed into treatment types, was always limited to
the laboratory or clinical setting. Given that our environment
is much more complex than the typical lab setting and what
we can show on computer screens and present via headphones,
the advantage of taking biofeedback out “for a walk” is obvious
(Debener et al., 2012). The mobility of today’s EEG systems
gives us the option to bring them in situations that biofeedback
might be most beneficial, for instance, in anxiety inducing
situations or during work where attention fluctuations can have
the most impact.

A relatively novel type of mobile EEG measures
electrophysiologic brain signals via electrodes connected to
the ear. This can be done by either placing electrodes in the ear
canal or the zymba concha (in-ear-EEG; Kidmose et al., 2012;
Looney et al., 2012; Lee et al., 2014) or the area behind the ear
(around-the-ear EEG/cEEGrid; Debener et al., 2015; Bleichner
and Debener, 2017; Kaongoen and Jo, 2020). Major advantages
of the method are its portability and unobtrusiveness – even
more so than mobile EEG caps – and thereby chance to
study brain activity for extended times. Ear-EEG has been
suggested as a clinical tool, for instance, to diagnose epilepsy

(Zibrandtsen et al., 2017; Gu et al., 2018) or to monitor sleep
quality (Mikkelsen et al., 2017; Tabar et al., 2020). There
are also initial results showing that levels of concentration
could be monitored using ear-EEG (Kaongoen and Jo, 2020).
Finally, ear-EEG has also shown to be able to track the focus of
attention (Mirkovic et al., 2016) even in everyday life situations
(Hölle et al., 2021).

Studies comparing ear-EEG with conventional EEG have
evaluated well-known electrophysiological parameters. It has
been shown that event-related potentials – such as the N1, an
index of auditory sensory processing, and the P300, indexing
the processing of task relevant stimuli – can be measured
reliably (Looney et al., 2012; Debener et al., 2015; Mirkovic
et al., 2016; Krigolson et al., 2017). Many recent developments
improve the data quality that can be captured at the ear by
improving the sensors or data acquisition (Kappel et al., 2019a,b;
Sintotskiy and Hinrichs, 2020). Ear-EEG is most sensitive to
temporal cortex activity (Meiser et al., 2020), which is great
to monitor auditory system activity, such as attention to a
specific sound stream (Fiedler et al., 2017). However, also
dominant parietal activity, particularly neural oscillations in
the alpha frequency range (around 10 Hz) can be detected
well using ear-EEG (Looney et al., 2011; Debener et al., 2015;
Mikkelsen et al., 2015).

Alpha brain activity is particularly interesting because it has
been linked to a number of attention mechanisms and active
inhibition (Jensen and Mazaheri, 2010; Klimesch, 2012; Frey
et al., 2015). Most notably, attended locations are accompanied
by a reduction in oscillatory alpha activity in the contralateral
(compared to the ipsilateral) hemisphere that processes the
location. For instance, focusing on our left hand will reduce alpha
activity in the right somatosensory cortex, compared to the left,
and vice versa (Haegens et al., 2011). Consequently, when alpha
activity increases attention drops and subjects are more likely to
miss information. Thus, an unobtrusive system that can, in real-
time, measure attention drops via alpha activity reduction would
open the gate to its modulation.

TRANSCUTANEOUS AURICULAR VAGUS
NERVE STIMULATION

Transcutaneous auricular vagus nerve stimulation (taVNS) is a
new, non-invasive neuromodulation method. TAVNS is based on
electrical stimulation of cutaneously distributed vagal afferents.
Unlike more established non-invasive brain stimulation methods
such as transcranial direct current stimulation (tDCS) and
transcranial alternating current stimulation (tACS), taVNS does
not directly modulate the reactivity of neurons within specific
cortical target areas. Instead, taVNS aims to promote increased
noradrenergic neurotransmission through indirect stimulation
of the locus coeruleus (LC), which in turn causes systemic
modulation of brain function.

Transcranial auricular vagus nerve stimulation was derived
from invasive vagus nerve stimulation (iVNS) that is used to treat
a number of neuropsychiatric disorders (Broncel et al., 2020).
IVNS is based on a neurosurgical implantation of electrodes
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FIGURE 1 | Schematic illustration of a closed-loop in-ear stimulator/recorder. Ear-EEG can pick up on attention markers (alpha oscillations, event-related P300), this
information gets fed to a controller that – given a decrease in attention – can start the taVNS which stimulates the NTS-LC system and elevate NE levels. This in turn
should result in an increase of attention (or a reduction of the decrease).

around the left cervical vagus nerve and comes with all
typical side effects associated with an invasive intervention
(Fahy, 2010). The obvious benefit of taVNS over iVNS is
that it is non-invasive, reducing costs and risk, and therefore
having a much broader application field. It is safe and well
tolerated (Redgrave et al., 2018) and has the great potential
to both reduce clinical symptoms in patient populations as
well as to serve basic science gain. Precisely because cost is
typically a major factor that both limits access to medicine
and constrains basic science, taVNS has the ultimate potential
to significantly improve fairness in medical care and use
in basic science.

In the last decade, there is growing evidence for a successful
application of taVNS to reduce symptoms in a wide range
of medical conditions including drug-resistant epilepsy and
depression (Hein et al., 2013; Bauer et al., 2016), but also tinnitus
(De Ridder et al., 2014), schizophrenia (Hasan et al., 2015),
Alzheimer’s dementia (Kaczmarczyk et al., 2018), or chronic
pain (Napadow et al., 2012). Furthermore, taVNS together with
neurorehabilitation has successfully improved motor disorder
symptoms in adults and children (Badran et al., 2020; Cook
et al., 2020). Moreover, in healthy participants, taVNS has been
proven efficient in modulating attention and cognition (Sun et al.,
2017; Fischer et al., 2018; Sellaro et al., 2018). These cognitive
effects of taVNS in healthy subjects and patients are assumed
to be related to concentration shifts of the neurotransmitter
norepinephrine (NE) and gamma-aminobutyric acid (GABA)
(Van Leusden et al., 2015) caused by a stimulation of the
locus coeruleus (LC) via afferent vagal fibers. For that purpose,
taVNS is usually applied via electrodes attached to the cymba
concha of the auricle and intends to stimulate the afferent
vagal fibers of the auricular branch. TaVNS activates Aß-
fibers signaling impulses ascending from the periphery to
the brainstem nuclei and hereinafter to the cortex (Broncel
et al., 2020; Butt et al., 2020). In particular, these vagal fibers

terminate in the nucleus of the solitary tract (NTS) (Knowles
and Aziz, 2009), which has widespread projections to several
forebrain, limbic and brainstem sites, including the LC, the
main source of noradrenaline in the human brain (Aston-Jones
et al., 1991). In accordance to this anatomical connection, the
core mechanism of action for taVNS relies on an activation of
the locus coeruleus-norepinephrine (LC-NE) system (Frangos
et al., 2015; Yakunina et al., 2017). Accordingly, in animal
models and patient data, the direct link between electrical
stimulation of the afferent vagal fibers and increased NE release
via LC activation has been demonstrated (Dorr and Debonnel,
2006; Manta et al., 2013; Hulsey et al., 2017). Strong evidence
for comparable mechanisms underlying the effects of non-
invasive application of VNS in healthy participants stems from
functional neuroimaging studies that consistently demonstrated
taVNS induced activations in brain stem regions, including
the NTS, and the LC (see Badran et al., 2018a for a recent
review). Furthermore, electrophysiological marker of the LC-
NE system such as the P300 component of the event-related
potential (Nieuwenhuis et al., 2005; Chmielewski et al., 2017)
can support the hypothesis that taVNS enhances central NE
levels. Accordingly, the amplitude of the P300 is enhanced during
invasive VNS (Brázdil et al., 2001; Schevernels et al., 2016) as well
as during the application of taVNS (Rufener et al., 2018; Ventura-
Bort et al., 2018; Lewine et al., 2019). A recent comprehensive
study showed that taVNS in healthy participants systematically
affected the LC-NE system indicated by a robust pupil dilation
effect, accompanied by an attenuation of occipital alpha activity
(Sharon et al., 2021). This study demonstrated that taVNS in
healthy participants might well be able to increase attention by
an elevation of noradrenaline.

Finally, animal and human studies have linked stimulation of
the vagal afferent fibers to Gamma-aminobutyric acid (GABA)
transmission due to activation of the NTS as well. Thus, an
increase in GABA transmission can be assumed as a secondary
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mechanism of action of taVNS (Keute et al., 2018; Broncel et al.,
2019). Alternatively, it has been assumed that taVNS always has a
combined effect on both, NE and GABA (Beste et al., 2016).

Although attention is regulated by several neurotransmitter
systems, noradrenaline is one of the most important.
Accordingly, central noradrenaline is involved in the control
of attention (Woodward et al., 1979), and further plays an
important modulatory role in cognitive processes such as
vigilance, arousal, learning, and memory (Aston-Jones et al.,
1991). It has been consistently shown that reducing central NE
had deleterious effects on attention (Smith and Nutt, 1996), while
elevating central NE improved performance in attention tasks
(Sirviö et al., 1993; Bunsey and Strupp, 1995), indicating that
an increased NE activity facilitates cortical circuit function that
promote alertness and attention (Aston-Jones and Cohen, 2005).

Animal and human data further show that NE maintains an
active role in regulating sustained and flexible attention (Aston-
Jones et al., 1997; Aston-Jones and Cohen, 2005). Analogously, in
healthy humans noradrenergic manipulation impairs sustained
attention (Coull et al., 1995; Smith and Nutt, 1996), as well
as focused and divided attention during dichotic listening
experiments (Clark et al., 1986).

GABA is the main inhibitory neurotransmitter in the adult
mammalian brain, but its role in the regulation of arousal and
attention is less clearly defined. However, several data point to
the notion that GABA plays an important role in the regulation
of attention as well (Paine et al., 2015; Leonte et al., 2018). Animal
data demonstrate a direct link between GABA levels in the brain
and visual attention (Petersen et al., 1987) and relate the activity
of GABAergic neurons to the regulation of attention (Paine et al.,
2011; McGarrity et al., 2017). Consequently, decreasing GABA
functioning impairs visual attention (Paine et al., 2011) while
sub-optimally increasing it impairs attentional processing as well
(Pezze et al., 2014).

Thus, attentional functions are strongly dependent
on noradrenergic and GABAergic transmission. TaVNS
has been demonstrated to be efficient in modulating
these neurotransmitters and, accordingly directly affecting
attentional processes.

COMBINING taVNS AND IN-EAR EEG

We suggest that combining the two mentioned methods offers
a great opportunity for a portable, closed-loop, monitoring,
and non-invasive stimulation device to stabilize fluctuations
of sustained attention in a brain-state dependent manner
(see Figure 1 for a schematic illustration). Here, in-ear EEG
will provide the biomarker-feedback signals that, in turn,
modify stimulation parameters based on the adaptive feedback
signal (closed-loop).

The EEG signal provides reliable markers of attention states;
such as fluctuations in the cortical alpha rhythm that mirror
attentional fluctuations (Fiedler et al., 2017; Jeong and Jeong,
2020). The ear-EEG system gives subjects the opportunity to
move freely and wear the device for long periods of time. At
the same time brain activity can be recorded at high temporal

precision with the opportunity to transmit these data wirelessly
(Bleichner and Debener, 2017; Kaveh et al., 2020). This would
allow for constant monitoring of the participant’s attention state.
The ear-EEG readout can be easily processed by small controllers
which could in turn provide information to the wearer.

Electroencephalogramm brain signals have been used directly
as informative biofeedback in closed-loop systems, for instance,
to reduce an imbalance of brain rhythms in tinnitus (Hartmann
et al., 2014), as a treatment for epilepsy (Tan et al., 2009), or
to improve symptoms in attention deficit disorder (Monastra
et al., 2002). Sending feedback to the participant based on
brain activity is powerful and fast, yet it is only slightly
faster than measuring and reporting peripheral physiology (e.g.,
drowsiness detectors in cars, García et al., 2010; Leonhardt
et al., 2018). The substantial improvement needed is a fast track
to brain activity underlying attention lapses. This fast track
could be provided by non-invasive transcranial brain stimulation,
such as taVNS, which as reviewed above can successfully
modulate brain activity via the LC-NE route. This non-invasive
stimulation technique directly influences the attention network
in the brain (Fang et al., 2016) and is therefore an ideal
partner of ear-EEG. Furthermore, it has been shown that alpha
oscillations can be modulated via taVNS (Sharon et al., 2021).
Therefore, a closed-loop ear system focusing on alpha activity
seems very promising.

A major advantage of the closed-loop system is that it respects
state-dependent efficacy of non-invasive brain stimulation
(Bergmann, 2018). It has been shown that transcranial electric
stimulation of a specific neuronal population is more effective
when applied when the region is active. For instance, stimulation
is much more successful when targeting a region engaged in a
task (Alagapan et al., 2016; Li et al., 2018) while stimulation
efficacy of highly active regions is limited (Ruhnau et al., 2016).
So far this has not been evaluated for taVNS and further the
mechanism of action is rather global, instead of region specific
for tACS or tDCS, therefore future research is essential to uncover
state-dependent efficacy of taVNS.

There are a number of attention trainings that improve
attention function and generalize to other cognitive functions
(for a review see Tang and Posner, 2009; for a meta-analysis see
Peng and Miller, 2016). It is important to compare effects of
a closed-loop system to those of training programs to evaluate
the benefit of such a system. Furthermore, a combination of
taVNS and ear-EEG with attention trainings could be a fruitful
avenue that might improve the benefit from the training. As
mentioned before, brain stimulation depends on the brain state,
thus applying stimulation during a training of attention might be
even more beneficial.

In our view, alpha activity fluctuations are the best candidate
at the moment to read out attentional states, they can be
extracted in real time, and can be directly modulated non-
invasively via taVNS. Consequently, groups that are affected
by reduced alpha activity are ideal targets for the proposed
closed-loop system. There are a number of disorders that can
be linked to dysfunctional alpha activity compared to healthy
control groups (for a review see Başar, 2013), such as depression
(Jiang et al., 2016; Alexander et al., 2019), attention deficit
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disorder (Hasler et al., 2016), Alzheimer’s (Jafari et al., 2020), and
Parkinson’s disease (Zhu et al., 2019).

Furthermore, closed-loop EEG-VNS system can be of use in
healthy populations in situations where a high and constant level
of attention is required, for instance during aviating or driving.
The great potential of this closed-loop system is the ongoing and
extremely fast measurement of the brain state and immediate
intervention when an attention lapse is approaching.

It is important to mention that research on brain stimulation
has shown long-term plasticity effects due to stimulation. That
means a permanent application of the closed-loop system
is neither necessary nor intended, because stimulation-based
functional and anatomical changes will improve attention
abilities and reduce symptoms in patients following short-
term application.

A NEED FOR PARAMETRIZATION OF
taVNS SETTINGS

We want to take this opportunity to point out that taVNS
results have recently shown variable efficacy of the method.
There have been a number of studies providing inconsistent
results of efficacy of taVNS, either absent effects or even inverted
effects (e.g., Keute et al., 2018, 2019; Borges et al., 2021). One
reason for this might be the variability of taVNS stimulation
parameters in use. There have been a number of different
stimulation frequencies (between 0.5 and 30 Hz), pulse width
(50–500 µs), intensities (0.5–50 mA) and stimulation locations
(see Burger et al., 2020 for a list of parameters). Very few studies
aim to evaluate the role of taVNS parameters on efficacy. For
instance, recently a study (Sharon et al., 2021) showed that taVNS
when applied for a short time (3 s) can influence the pupil
size – an index of LC driven NE level modulation – which has
not been found for a more typical long-interval (30 s on/off)
taVNS protocol (Keute et al., 2019). Unfortunately, there are
no studies as of yet that evaluate which parameters influence
taVNS efficacy systematically. Thus, at the moment we have no
knowledge whether it is the duration of taVNS as suggested
by Sharon et al. (2021) or any other of the parameters such as
intensity, pulse width, or electrode size, which were all different
in the two studies.

A promising approach might be to relate other physiological
parameters that have been connected to vagal stimulation
to neurostimulation efficacy. As such, the taVNS efficacy in
modulating the heart rate (Badran et al., 2018b) and coupling of
cardiac to neural activity seem promising (Keute et al., 2021) but
warrant further investigation as well.

As with any new approaches in neuromodulation there is
an urgent need to evaluate how to set the stimulations to yield
maximal effects. This is not just an issue for taVNS but for the
whole field of transcranial brain stimulation (Parkin et al., 2015;
Frohlich and Townsend, 2021). One way to evaluate the effects
of different parameters is to study efficacy of taVNS in a closed-
loop as we proposed here. It would allow us to monitor effects
in real time and adjust the stimulator accordingly, homing in to
maximal efficacy.

LIMITATIONS AND CHALLENGES

An obvious challenge for a combination of taVNS and ear-EEG
are their close proximity in the (most likely same) ear. For the
EEG this means that there is unlikely a recordable signal, while
the stimulation is running. Thus, the impact on the stimulation
on brain activity can only be measured with a delay. Designs
similar to Sharon et al. (2021) that use short taVNS trains
followed by no-stimulation intervals will help investigate the
stimulation effects in the closed-loop system.

Another challenge is posed by the size of the ear, which
limits space for electrodes. It remains to be tested whether
similar locations can be used for stimulation and recording (in
the ear canal, for instance) or which placements of recording
and stimulating electrodes is the most feasible, following space
constraints, and the most effective. A combination of taVNS
and cEEGrids (Bleichner and Debener, 2017; Meiser et al.,
2020) seems promising because sensors and stimulator electrodes
would be apart by design.

It is, furthermore, critical that the link between the measured
alpha activity with ear-EEG and a potential attention drop is
further investigated. Previous research showed that alpha power
preceding weak visual stimuli can predict detection performance
(e.g., Hanslmayr et al., 2007; van Dijk et al., 2008; for a review
see Ruhnau et al., 2014). The causal involvement of alpha
power in visual attentive states has been further confirmed using
transcranial magnetic stimulation (Romei et al., 2011). However,
how well ear-EEG can pick up these alpha fluctuations linked to
(dominantly visual) attention, remains an open question. Thus,
before a closed-loop system can leave the lab, an evaluation in the
lab is essential. For instance, future studies should evaluate if ear-
EEG signals in the alpha range can predict visual perception in
near-threshold cases (such as in Hanslmayr et al., 2007; van Dijk
et al., 2008). Given that alpha power lateralization is often a good
predictor (Thut et al., 2006), ear-EEGs on the left and right ear
might be essential to test this lateralization properly.

Moreover, it is important to emphasize that keeping attention
at a high level for an extended time is not beneficial, nor intended
with the system we propose. There are time limits how long
people in different professions are allowed to work before they
are required to take a break. For instance, in the EU professional
drivers are not allowed to drive a vehicle longer than 9 h per
day (with few exceptions), or interpreters working for the United
Nations are required to take at least one and a half hour breaks
between maximally 2.5–3 h work sessions. Maintaining high
levels of focus is tiring and requires rest. Hence, an application
that we suggest, should not aim to increase the duration on a task
but rather normalize attention fluctuations while on the task.

Typical mobile stimulators contain constraints as to the
specific settings of the stimulation (tailored to the individual user)
and the daily dose. These factors also need to be investigated
and kept in mind when using taVNS and ear-EEG together.
Given that taVNS is still a relatively novel non-invasive brain
stimulation tool, it is important to properly record and monitor
short term as well as long term side effects and adjust protocols
to avoid them as well as possible. Similar standards as suggested
for other transcranial stimulation techniques might be chosen as

Frontiers in Human Neuroscience | www.frontiersin.org 5 June 2021 | Volume 15 | Article 699473

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-699473 June 8, 2021 Time: 16:52 # 6

Ruhnau and Zaehle taVNS and Ear-EEG

a baseline (for comprehensive guidelines see Rossi et al., 2009;
Antal et al., 2017) but data on unwanted effects needs to be
carefully collected and monitored.

CONCLUSION

In summary, the use of a closed-loop system consisting of ear-
EEG and taVNS holds the promise of a potential therapeutic
option in neuropsychiatric patients as well as a supportive device
in healthy populations. Therefore, we highly encourage to explore
the usability of such a closed-loop system.

Further research is needed to determine the exact
parameters of optimal taVNS to fully exploit its potential.
Research efforts will need to focus on the systematic
investigation of suitable parameter settings, especially

stimulation duration, to maximize efficacy as well as long-
term effectiveness.

AUTHOR CONTRIBUTIONS

PR and TZ wrote the manuscript and prepared the artwork.
Both authors contributed to the article and approved the
submitted version.

FUNDING

This study was supported by the Federal State of Saxony-Anhalt
and the European Regional Development Fund (ERDF) in the
Center for Behavioral Brain Sciences (CBBS, ZS/2016/04/78113).

REFERENCES
Alagapan, S., Schmidt, S. L., Lefebvre, J., Hadar, E., Shin, H. W., and Fröhlich,

F. (2016). Modulation of cortical oscillations by low-frequency direct cortical
stimulation is state-dependent. PLoS Biol. 14:e1002424. doi: 10.1371/journal.
pbio.1002424

Alexander, M. L., Alagapan, S., Lugo, C. E., Mellin, J. M., Lustenberger, C.,
Rubinow, D. R., et al. (2019). Double-blind, randomized pilot clinical trial
targeting alpha oscillations with transcranial alternating current stimulation
(tACS) for the treatment of major depressive disorder (MDD). Transl.
Psychiatry 9:106. doi: 10.1038/s41398-019-0439-0

Antal, A., Alekseichuk, I., Bikson, M., Brockmöller, J., Brunoni, A. R., Chen, R.,
et al. (2017). Low intensity transcranial electric stimulation: safety, ethical,
legal regulatory and application guidelines. Clin. Neurophysiol. 128, 1774–1809.
doi: 10.1016/j.clinph.2017.06.001

Aston-Jones, G., Rajkowski, J., and Kubiak, P. (1997). Conditioned responses
of monkey locus coeruleus neurons anticipate acquisition of discriminative
behavior in a vigilance task. Neuroscience 80, 697–715. doi: 10.1016/S0306-
4522(97)00060-2

Aston-Jones, G., Shipley, M. T., Chouvet, G., Ennis, M., van Bockstaele, E.,
Pieribone, V., et al. (1991). “Afferent regulation of locus coeruleus neurons:
anatomy, physiology and pharmacology,” in Progress in Brain Research
Neurobiology of the Locus Coeruleus, eds C. D. Barnes and O. Pompeiano
(New York, NY: Elsevier), 47–75. doi: 10.1016/S0079-6123(08)63799-1

Aston-Jones, G., and Cohen, J. D. (2005). Adaptive gain and the role of the locus
coeruleus–norepinephrine system in optimal performance. J. Comp. Neurol.
493, 99–110. doi: 10.1002/cne.20723

Badran, B. W., Dowdle, L. T., Mithoefer, O. J., LaBate, N. T., Coatsworth, J., Brown,
J. C., et al. (2018a). Neurophysiologic effects of transcutaneous auricular vagus
nerve stimulation (taVNS) via electrical stimulation of the tragus: a concurrent
taVNS/fMRI study and review. Brain Stimulat. 11, 492–500. doi: 10.1016/j.brs.
2017.12.009

Badran, B. W., Jenkins, D. D., Cook, D., Thompson, S., Dancy, M., DeVries,
W. H., et al. (2020). Transcutaneous auricular vagus nerve stimulation-paired
rehabilitation for oromotor feeding problems in newborns: an open-label pilot
study. Front. Hum. Neurosci. 14:77. doi: 10.3389/fnhum.2020.00077

Badran, B. W., Mithoefer, O. J., Summer, C. E., LaBate, N. T., Glusman, C. E.,
Badran, A. W., et al. (2018b). Short trains of transcutaneous auricular vagus
nerve stimulation (taVNS) have parameter-specific effects on heart rate. Brain
Stimulat. 11, 699–708. doi: 10.1016/j.brs.2018.04.004
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