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A B S T R A C T   

The present article proposes a multi-objective optimization study aiming at the optimal cost-effective design of 
nano-reinforced laminates. To maximize the fundamental frequency and minimize the cost, a hybrid laminate is 
studied, introducing both conventional fibres and graphene nanoplatelets reinforcement. A multi-objective ge-
netic algorithm optimization is adopted to provide the optimal natural frequency and cost for the laminate. 
Optimization is implemented using the Non-dominated Sorting Genetic Algorithm II (NSGA-II), which converges 
to near-optimal solutions for all scenarios tested. The vibration problem is solved using the finite element method 
and the first-order shear deformation theory. Effective material properties are derived using micromechanical 
equations. Different optimization problems are solved using one to four types of design variables, including 
graphene and fibre distribution along the thickness, layer thickness, and fibre angles. Results indicate that 
increasing the graphene nanoplatelets content and keeping the minimum fibre content leads to cost-effective 
design. A drastic increase in the fundamental frequency and decrease in the cost is obtained for the hybrid 
graphene/fibre-reinforced laminate compared to conventional fibre-reinforced composites.   

1. Introduction 

Nanocomposite laminates are materials incorporating nano-scale 
reinforcements, including carbon nanotubes (CNTs) or graphene nano-
platelets (GPLs), to improve mechanical and physical properties. Gra-
phene has been extensively used in several engineering applications in 
the fields of structural, mechanical and aerospace engineering. Its 
excellent mechanical properties [1] allow for significant improvement 
of the mechanical response of composites, even when only a small 
graphene content is used. This concept of improving the mechanical 
response of conventional composite materials by introducing advanced 
nanomaterials with superior properties has been widely investigated in 
the last few years [2,3]. 

Various optimization methods are often integrated in numerical 
studies to provide optimal solutions for significant engineering problems 
involving vibration, buckling, non-linear static response (damage), 
optimal weight/cost, or optimal stiffness for composite laminates. 
Regarding the search method adopted to provide the optimum solution, 

two main optimization approaches are recognized, namely the gradient- 
based, deterministic and the gradient-free, stochastic approach. The 
gradient-based methods may converge fast to the optimal solution, but 
this will likely be local. The stochastic approaches are appropriate for 
providing a near-global optimum solution. 

Several single-objective optimization studies have been conducted to 
provide the optimal response of fibre-reinforced composite laminates. In 
[4], an advanced differential evolution optimization algorithm is 
adopted to investigate the minimum weight for composite laminate 
plates. An artificial neural network integrated into a differential evolu-
tion optimization scheme is proposed in [5], aiming to investigate the 
optimal material distribution of bidirectional functionally graded beams 
under free vibration. In [6] a particle swarm optimization algorithm is 
adopted to solve a maximum frequency optimization problem for sym-
metrical laminated composites using the classical laminated plate the-
ory. In [7], a combined genetic algorithm-deep neural network 
procedure is proposed to optimize laminated cylinders’ maximum fre-
quency/gaps to improve accuracy and reduce computational cost. In 

* Corresponding author at: Discipline of Civil Engineering, University of Central Lancashire, Preston, United Kingdom. 
E-mail address: gdrosopoulos@uclan.ac.uk (G.A. Drosopoulos).  

Contents lists available at ScienceDirect 

Structures 

journal homepage: www.elsevier.com/locate/structures 

https://doi.org/10.1016/j.istruc.2023.05.118 
Received 1 February 2023; Received in revised form 13 May 2023; Accepted 27 May 2023   

mailto:gdrosopoulos@uclan.ac.uk
www.sciencedirect.com/science/journal/23520124
https://www.elsevier.com/locate/structures
https://doi.org/10.1016/j.istruc.2023.05.118
https://doi.org/10.1016/j.istruc.2023.05.118
https://doi.org/10.1016/j.istruc.2023.05.118
http://crossmark.crossref.org/dialog/?doi=10.1016/j.istruc.2023.05.118&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Structures 54 (2023) 1593–1607

1594

[8], a genetic algorithm is used to optimize the geometry joint param-
eters of a laminated FRP composite-made bonded tubular gap K-joint 
based on failure criteria and ply-stacking sequence. 

More single-objective optimization problems have been studied 
within this framework, emphasizing, among others, in the maximum 
fundamental frequency for composite plates using the Artificial Bee 
Colony algorithm [9], in the maximum buckling load adopting an 
improved, different evolution algorithm [10], in optimizing functional 
graded distributions using a differential evolution algorithm [11] and in 
minimum weight optimization utilizing standard gradient-based non- 
linear programming algorithms [12]. These efforts aim to optimize the 
mechanical response of composite laminates, using as design variables 
the fibre angles, the thickness of layers as well as the content of the fibre 
reinforcement. 

An important requirement for industrial applications of composites is 
the cost-effective design. To achieve this goal, numerical solutions are 
investigated, minimizing the cost and weight of composite materials. 
The critical aspect of this effort is to maintain the structural integrity of 
composites by investigating their response against conventional loading, 
such as buckling and vibration. Thus, the need for optimal solutions 
practically arises, which involve more than one objective functions. 

In [13], a multi-objective optimization scheme applied to a lami-
nated composite beam is proposed. The objective function is to minimize 
the weight of the laminate beam and maximize its natural frequency. 
Design variables are the fibre volume fractions, thickness, and orienta-
tion. In [14], a multi-objective optimization method is discussed to 
achieve high strength and low weight for varying thicknesses. In this 
case, a fracture criterion (strength) and the mean curvature (weight) are 
the objective functions, with design variables the fibre orientation and 
thickness distribution. In [15], a multi-objective design is proposed for 
laminated composite plates, investigating optimal stiffness properties. 
The defined objective functions aim to maximize the fundamental fre-
quency and buckling resistance. Pareto-optimal solutions are provided 
for a range of objective functions, boundary conditions, and load cases. 
A multi-objective particle swarm optimization scheme is proposed in 
[16] to solve problems of lightweight design for bi-directional func-
tionally graded beams considering the maximum fundamental fre-
quency and critical buckling load. The material volume fraction in this 
work is described in both longitudinal and thickness directions. A multi- 
objective uncertainty optimization approach is proposed in [17] for 
hybrid composite structures consisting of multiple materials with 
different types and volume ratios of matrix and fibres. The objective is to 
maximize natural frequency/gap and minimize cost. An adaptive non-
dominated sorting genetic algorithm II (NSGA-II) method is used in this 
study to optimize the stacking sequence and material patches. In [18] 
genetic algorithm is used to solve multi-objective optimization problems 
for hybrid, laminated sandwich panels composed of high-stiffness face 
sheets and low-stiffness core. Pareto-optimal solutions are derived for 
several objective functions, including fundamental frequency, frequency 
gap, buckling load, and cost metrics. 

The concept of introducing some nano reinforcement in the form of 
graphene nanoplatelets or carbon nanotubes has been investigated in 
the last years in several numerical or experimental studies, aiming to 
highlight the effectiveness of nano-reinforced laminates [19]. These 
studies emphasize in the influence of different loading types, focusing, 
among others, on functionally graded distributions of the nano rein-
forcement, along the thickness of the laminate [20,21,22]. In-
vestigations can also be found in vibration analysis of graphene- 
reinforced nanocomposites [23,24,25]. 

However, while for conventional fibre-reinforced laminates, a sig-
nificant amount of published work is dedicated to developing single and 
multi-objective optimization solutions, for these nano-reinforced lami-
nates, fewer optimization studies can be found. In [26], a heuristic 
optimization technique (genetic algorithm) combined with a gradient- 
based one is used to investigate the optimal static and dynamic 
response of bi-directional functionally graded multi-walled carbon 

nanotube-reinforced composites. In [27], a bees algorithm optimization 
scheme is adopted to provide the optimal (maximum) natural frequency 
and the corresponding optimum geometrical and material parameters of 
a smart sandwich plate, consisting of a porous homogeneous core, two 
carbon nanotube-reinforced composite layers, and two piezoelectric 
face sheets. In [28], multi-objective optimization schemes using either 
particle swarm optimization or the non-dominated sorting genetic al-
gorithm II are adopted to minimize the peak crushing force and maxi-
mize the energy absorption for graphene-type multi-cell tubes. In [29], 
the Bees algorithm determines the optimal natural frequency of imper-
fect three-dimensional penta-graphene plates. 

Recently, the concept of introducing graphene or carbon nanotubes 
and fibre reinforcement is investigated, leading to three-phase com-
posites. The addition of nano reinforcement, together with fibre rein-
forcement, is expected to improve the mechanical response and, at the 
same time, keep the directional properties of fibres. Only limited liter-
ature is found on single or multi-objective optimization schemes for 
three-phase fibre nano-reinforced composites. In [30], stacking 
sequence optimization of a CNT-fibre-reinforced polymer composite 
plate is proposed, aiming to maximize the fundamental natural fre-
quency of the structure. Optimization is implemented using a 
biologically-inspired meta-heuristic algorithm called firefly. In [31] 
Differential Evolution, Nelder Mead and Simulated Annealing optimi-
zation algorithms are used to determine the optimal frequency and cost 
of graphite-flax/epoxy hybrid laminates. Results highlighted the bene-
fits of introducing natural flax fibres in maximizing frequency and 
minimizing cost for the hybrid laminates. A multi-objective optimization 
scheme is proposed in [32] for hybrid graphite-glass/epoxy and 
graphite-flax/epoxy composite plates. The objectives of this problem are 
to minimize the cost and maximize the frequency gaps. The study pro-
poses that the application of flax fibres can reduce the cost and increase 
the fundamental frequency, as well as the frequency gaps. In [33], this 
investigation is extended to multi-objective optimization for buckling 
load and cost. The simultaneous maximization of fundamental fre-
quency or frequency gap between two consecutive frequencies and cost 
minimization is studied in [34]. The article considers a hybrid scheme of 
high-stiffness, graphite-epoxy outer layers, and low-stiffness glass-epoxy 
core layers. A genetic algorithm scheme is adopted to optimize the 
discrete variables of the problem. In [35], a Sequential Quadratic Pro-
gramming optimization scheme is proposed for a three-phase graphene/ 
nanoplatelets fibre-reinforced composite plate, aiming to maximize the 
fundamental frequency. 

This article proposes an optimization study to maximize the funda-
mental frequency and minimize the cost of a three-phase, graphene 
nanoplatelets/fibre-reinforced composite plate. To the best of the au-
thors’ knowledge, very limited studies are found on multi-objective 
optimization of three-phase nano-reinforced laminates. In the optimal 
design of composite laminates, it is crucial to consider fundamental 
frequency maximization to decrease the risk of resonance caused by 
external excitations. It should also be noted that cost is another crucial 
factor for all engineering problems. Therefore, it must be considered in 
the design and optimization problems of laminated composite materials. 
Thus, this work aims to cover this gap, highlighting the optimal response 
of hybrid, three-phase composites, aiming to increase the fundamental 
frequency and decrease the cost. Emphasis is given on the optimal, cost- 
effective design of laminates, which use the directional properties of 
fibres allowing for the non-uniform distribution of graphene nano-
platelets and fibres, along the thickness of the laminate. A finite element 
analysis code is developed in MATLAB, and a first-order shear defor-
mation theory is used to simulate the vibration response of the laminate. 
The Non-dominated Sorting Genetic Algorithm II (NSGA-II) is adopted 
to implement the multi-objective optimization. The study considers a 
gradually increased number of design variable types from one to four, 
involving the graphene and fibre content, the layer thickness, and the 
stacking sequence angles. 
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2. Finite element model for laminated composite plates 

In this section, the first-order shear deformation theory (FSDT) is 
employed to derive a finite element model for laminated composite 
plates like the one shown in Fig. 1. A single mechanical displacement 
field is considered for all layers (equivalent single-layer theory). The 
plate has length a, width b, total thickness H and consists of N layers with 
the principal material coordinates of the k-th lamina oriented at an angle 
θk to the laminate coordinate x. The xy − plane coincides with the 
midplane of the plate, with the z axis being normal to the midplane. The 
k-th layer is located between the points z = zk− 1 and z = zk in the 
thickness direction. 

2.1. Mechanical displacement and strains 

In this work, the kinematics of the plate are estimated using the first 
order shear deformation theory (FSDT) which is suitable for moderately 
thick and thick plates. According to the FSDT, the displacement fields 
can be written as 

u =

⎧
⎨

⎩

u(x, y, z, t)
v(x, y, z, t)
w(x, y, z, t)

⎫
⎬

⎭
=

⎧
⎨

⎩

u0(x, y, t)
v0(x, y, t)
w0(x, y, t)

⎫
⎬

⎭
+ z

⎧
⎨

⎩

ψx(x, y, t)
ψy(x, y, t)

0

⎫
⎬

⎭
or

u = Hu
(1)  

where 

H =

⎡

⎣
1 0 0 z 0
0 1 0 0 z
0 0 1 0 0

⎤

⎦, u =
{

u0, v0,w0,ψx,ψy
}T 

In Eq. (1), u0, v0 and w0 denote the displacements of a point (x, y) on 
the mid-plane (z = 0) of the plate and ψx,ψy are the normal rotations 
about the y and x-axes, respectively. In addition, a superscript T denotes 
the transpose of a matrix. 

In order to avoid the shear locking effect, the selective integration 
technique should be implemented. Therefore, the strains at any point of 
the composite plate are divided in two strain vectors, the in-plane strains 
εb and the out-of-plane shear strains εs given by 

εb =
{

εxx, εyy, γxy
}T

= εb0 + zκ,

εs =
{

γyz, γxz
}T

= εs0 (2)  

where 

εb0 =

{
∂u0

∂x
,
∂v0

∂y
,

(
∂uo

∂y
+

∂vo

∂x

)}T

,

κ =

{
∂ψx

∂x
,
∂ψy

∂y
,

(
∂ψx

∂y
+

∂ψy

∂x

)}T

,

εs0 =

{
∂w0

∂y
+ ψy,

∂w0

∂x
+ ψx

}T  

2.2. Constitutive equations 

The linear constitutive equations for the k-th orthotropic elastic layer 
with reference to its principal axes are given by: 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

σ1
σ2
σ6
σ4
σ5

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭
k

=

⎡

⎢
⎢
⎢
⎢
⎣

Q11 Q12 0 0 0
Q12 Q22 0 0 0
0 0 Q66 0 0
0 0 0 Q44 0
0 0 0 0 Q55

⎤

⎥
⎥
⎥
⎥
⎦

k

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ε1
ε2
ε6
ε4
ε5

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(3)  

where σi, εi are stress and strain components, respectively. Qij are plane- 
stress reduced stiffness coefficients given by 

Q(k)
11 =

E(k)
1

1 − ν(k)
12 ν(k)

21

, Q(k)
22 =

E(k)
2

1 − ν(k)
12 ν(k)

21

, Q(k)
66 = G(k)

12 ,

Q(k)
12 =

ν(k)
12 E(k)

2

1 − ν(k)
12 ν(k)

21

, Q(k)
44 = ksG

(k)
23 , Q(k)

55 = ksG
(k)
13

(4)  

where E(k)
1 ,E(k)

2 are the longitudinal and transverse moduli, ν(k)12 , ν
(k)
21 are 

the Poisson’s ratios, G(k)
12 ,G(k)

23 ,G
(k)
13 are the shear moduli of the kth layer 

and ks is the shear correction factor taken as 56. For the case of isotropic 
material, two material constants are required, namely Young’s modulus 
E and Poisson ratio ν. In addition, Q11 = Q22, Q12 = Q11 and Q66 = G 
apply with 2G = E/(1 + ν).

After transforming Eq. (3) to the global coordinate system (x,y,z) and 
separating the bending and shear related variables, the constitutive Eq. 
(3) becomes 

σ(k)
b = Q(k)

b εb, σ(k)
s = Q(k)

s εs (5) 

where σ(k)
b =

{
σxx, σxx, τxy

}T
, σ(k)

s =
{

τyz, τxz
}T and 

Q(k)
b =

⎡

⎣
Q11 Q12 Q16
Q12 Q22 Q26
Q16 Q26 Q33

⎤

⎦

(k)

, Q(k)
s =

[
Q44 Q45
Q45 Q55

](k)

(6) 

The detailed expressions for transformed Qij material constants can 
be obtained from [36]. 

2.3. Finite element formulation 

In the present study, the finite element method is utilized to obtain 
the governing equations of motion for the laminated composite plate. 
The essential idea of finite elements is that a structure may be approx-
imated as an assembly of elements connected at nodes along their 
boundaries. The laminated composite plate of this study has been dis-
cretized using a four-noded isoparametric quadrilateral Lagrangian 
element with five mechanical degrees of freedom (DOF) per node, 
namely u0,v0,w0,ψx,ψy. 

Using the considerations described above, the generalized displace-
ment field for any nodal point over the plate domain can be expressed as 

u(x, y, t) = N(x, y)de
(t) =

∑4

j=1

(
NjI5x5de

j

)
(7)  

where de
j =

{
u0j, v0j,w0j,ψxj,ψyj

}T corresponds to the jth node of the 
element and Nj are the Lagrangian shape functions. 

Substituting Eq. (7) into Eqs. (2) gives 

Fig. 1. The composite laminate.  
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εb0 = Bbde =
∑4

j=1

(
Bbjde

j

)
,

κ = Bκde =
∑4

j=1

(
Bκjde

j

)
,

εs0 = Bsde =
∑4

j=1

(
Bsjde

j

)

(8)  

where 

Bbj =

⎡

⎣
∂x 0 0 0 0
0 ∂y 0 0 0
∂y ∂x 0 0 0

⎤

⎦Nj, Bκj =

⎡

⎣
0 0 0 ∂x 0
0 0 0 0 ∂y
0 0 0 ∂y ∂x

⎤

⎦Nj,

Bsj =

[
0 0 ∂y 0 1
0 0 ∂x 1 0

]

Nj

(9)  

and ∂x = ∂
∂x,∂y = ∂

∂y.

2.4. Variational principle 

The equations of motion for the laminate plate are obtained using the 
extended Hamilton’s principle 

δ
∫t2

t1

(T − U +W)dt = 0 (10)  

where t1 and t2 are arbitrary time moments, T is the mechanical kinetic 
energy and U is the mechanical potential energy given by 

T =

∫

Ω
ρu̇T u̇dΩ (11)  

U =
1
2

∫

Ω
εT

b σbdΩ +
1
2

∫

Ω
εT

s σsdΩ (12) 

In the above equations, ρ, Ω are the mass density and the volume of 
the whole plate structure and a dot represents partial derivative with 
respect to time t.

Finally, the virtual work δW done by the external forces is defined by 
the following equation 

δW = δuT f c +

∫

A1

δuT f SdA+

∫

Ω

δuT f V dΩ (13)  

where f c denotes the concentrated forces and f S, fV denote the surface 
and volume forces, respectively. Also, A1 is the surface area where the 
surface forces are applied. 

Using the displacements relations (1) and the discretization of me-
chanical displacements (7), the element kinetic energy can be dis-
cretized as 

Te =
1
2

∫

Ω
ρu̇T HT HudΩ =

1
2
ḋ

eT
(∫

Ω
ρNT HTHNdΩ

)

ḋ
e
=

1
2

ḋ
eT

Me ḋ
e

(14)  

Since the whole structure consists of N layers, the element mass matrix 
Me can be written as 

Me =
∑N

k=1

∫

Ωk

ρ(k)NT HT HNdΩk =

∫

Ae

NT

⎡

⎢
⎢
⎢
⎢
⎣

I0 0 0 I1 0
0 I0 0 0 I1
0 0 I0 0 0
I1 0 0 I2 0
0 I1 0 0 I2

⎤

⎥
⎥
⎥
⎥
⎦

NdA (15) 

where 

Ii =
∑N

k=1

∫ zk+1

zk

ρ(k)zidz, i = 0, 1, 2 (16) 

and Ae is the in-plane area of the element. 

Using the constitutive relations, the mechanical strain energy U can 
be written as 

Ue =
1
2
∑N

k=1

∫

Ωk

(
εT

b0Q(k)
b εb0 + εT

b0zQ(k)
b κ + κT zQ(k)

b εb0 + κT z2Q(k)
b κ
)

dΩk

+
1
2
∑N

k=1

∫

Ωk

εT
s Q(k)

s εsdΩk (17) 

Substituting the relations (8), (9) in the above relation, U can be 
written as 

Ue =
1
2
deT
(∫

Ae

(
BT

b ABκ + BT
b BBκ + BT

κ BBb + BT
κ DBκ

)
dA

+

∫

Ae

(
BT

s EBs
)
dA
)

de

=
1
2
deT Kede (18) 

where the element stiffness matrix can be written as 

Ke =

∫

Ae

[
Bb
Bκ

]Τ[A B
B D

][
Bb
Bκ

]

dA +

∫

Ae

(
BT

s EBs
)
dA (19) 

The material matrices involved in the above relation are given as 

(A,B,D) =
∑N

k=1

∫ zk+1
zk

Q(k)
b (1, z, z2)dz,

E =
∑N

k=1

∫ zk+1

zk

Q(k)
s dz

(20) 

It should be noted that for the last term of stiffness matrix of Eq. (19) 
associated with the transverse shear strains, a selective integration rule 
should be employed in order to avoid the shear locking effect. 

The virtual work done by the mechanical forces is given by 

δW = δdeT NT f c + δdeT
∫

A1

NT f SdA + δdeT
∫

Ω
NT HT f VdΩ = δdeT Fe

m (21)  

2.5. Governing equations 

By substituting the energy terms (14), (18) and (21) into Hamilton’s 
principle Eq. (10) and by assembling the element equations, the overall 
equation of motion of the structure is obtained as 

Md̈+Kd = Fm (22)  

where d is the global vector of mechanical coordinates, M, K are the 
global mass and stiffness matrices and Fm is the global vector of me-
chanical forces. 

2.6. Free vibration analysis 

Free vibration can be treated as a subset problem in Eq. (22). Indeed, 
dropping the force terms and assuming harmonic solution of the form 
u = uoeiωt, the above equation result in the following generalized 
eigenvalue problem 
(
K − ω2M

)
uo = 0 (23)  

where ω,uo are the eigenfrequencies and eigenvectors, respectively. The 
natural frequencies can be found from the nontrivial solution of Eq. (23). 
A MATLAB code has been developed to implement the presented finite 
element model. A reduced integration technique is adopted to avoid 
shear and membrane locking during computation. This method is pre-
viously developed by the authors to solve single-objective problems for 
three-phase graphene/fibre reinforced laminated nanocomposite plates 
[35]. The solution to the eigenvalue problem (23) is also implemented 
within MATLAB using the function “eig”. This function uses Cholesky 
factorization of the mass matrix M to compute the generalized 
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eigenvalues since the stiffness matrix K is symmetric and the mass ma-
trix M is symmetric positive-definite. 

3. Effective material properties for the three-phase laminate 

The optimal response of a three-phase, graphene and fibre reinforced 
polymer nanocomposite is investigated in this work. According to the 
main concept of the study, low content of graphene nanoplatelets is 
added to the conventional fibre-reinforced laminate to improve the vi-
bration response and reduce the cost, contributing to the cost-effective 
design. 

In order to derive the effective material properties of the three-phase 
laminate, a two-phase graphene-reinforced matrix is initially consid-
ered. The graphene-reinforced matrix is then reinforced by fibre rein-
forcement. The effective material properties of the graphene-reinforced 
matrix are obtained using the Halpin-Tsai model and the rule of mixture. 
The same micromechanical homogenization approach is also used in the 
published literature to derive the effective material properties of 
graphene-reinforced laminates [37,38,39]. 

A second set of micromechanics equations is utilized to determine 
the effective material properties of the overall, three-phase graphene- 
fibre reinforced laminate [4,35]. 

3.1. Graphene-reinforced matrix 

The material properties, namely Young’s modulus, Shear modulus, 
Poisson’s ratio, and density, are calculated for the graphene-reinforced 
matrix using micromechanical equations [37,38,39]. Subscripts GPL, 
M, and GM denote graphene nanoplatelets (GPL), the matrix (M), and 
the graphene-reinforced matrix (GM). The effective Young’s modulus 
for the graphene-reinforced matrix is provided by 

EGM =

(
3
8

1 + ξLηLVGPL

1 − ηLVGPL
+

5
8

1 + ξwηwVGPL

1 − ηwVGPL

)

EM (24)  

where VGPL is the volume content of GPLs. The parameters ξL and ξw are 
given in Eq. (25) in terms of the length (lGPL), the width (wGPL) and the 
thickness (hGPL) of GPLs 

ξL = 2
lGPL

hGPL
, ξw = 2

wGPL

hGPL
(25) 

The symbols ηL and ηw in Eq. (24) are calculated in terms of Young’s 
moduli EGPL of the graphene nanoplatelets and EM of the matrix as 

ηL =
(EGPL/EM) − 1
(EGPL/EM) + ξL

, ηw =
(EGPL/EM) − 1
(EGPL/EM) + ξw

(26) 

The volume content of graphene nanoplatelets is computed in terms 
of its weight fraction WGPL as 

VGPL =
WGPL

WGPL + (ρGPL/ρM)(1 − WGPL)
(27)  

where ρGPL and ρM represent the mass densities of graphene nano-
platelets and the polymer matrix, respectively. Poisson’s ratio, Shear 
modulus and the density of the graphene-reinforced matrix are given by 

vGM = vGPLVGPL + vM(1 − VGPL) (28)  

GGM =
EGM

2(1 + vGM)
(29)  

ρGM = ρGPLVGPL + ρM(1 − VGPL) (30)  

3.2. Graphene and fibre reinforced matrix 

The three-phase material is obtained by considering unidirectional 
and continuous fibre reinforcement applied to the graphene-reinforced 

matrix. The effective material properties for the three-phase graphene- 
fibre reinforced laminate are determined using the following micro-
mechanical relations [4,35] 

E11 = EF11VF +EGM(1 − VF) (31)  

E22 = EGM

(
EF22 + EGM + (EF22 − EGM)VF

EF22 + EGM − (EF22 − EGM)VF

)

(32)  

G12 = G13 = GGM

(
GF12 + GGM + (GF12 − GGM)VF

GF12 + GGM − (GF12 − GGM)VF

)

(33)  

G23 =
E22

2(1 + v23)
(34)  

v12 = vF12VF + vGM(1 − VF) (35)  

v23 = vF12VF + vGM(1 − VF)

(
1 + vGM + v12EGM/E11

1 − v2
GM + v12vGMEGM/E11

)

(36)  

ρ = ρFVF + ρGM(1 − VF) (37) 

In the above equations, the subscripts GM and F refer to graphene- 
reinforced matrix and fibres, respectively. The fibre volume content is 
represented by VF and the density of fibres by ρF. 

4. Formulation of multi-objective optimization problems 

4.1. Uniform layer thickness 

In this section, the proposed multi-objective optimization approach 
aiming at the optimal vibration response and cost-effective design of a 
graphene-fibre reinforced composite laminate is initially formulated for 
the case of uniform layer thickness. Objectives of this formulation are to 
maximize the fundamental frequency and minimize the cost of the 
laminate, utilizing one or two types of design variables, namely, the 
graphene nanoplatelets and the fibre content. Constraints are also 
applied to the optimization, providing an upper limit to the overall 
contents of graphene nanoplatelets and fibres and limits to graphene and 
fibre volume contents, per layer. 

In the following formulations, the fibre and the graphene volume 
contents are denoted by VFi and VGPLi, for every layer i. For the laminate 
plate of N layers shown in Fig. 1, with dimensions a× b, uniform layer 
thickness h and overall thickness H, the constraint for the upper limit of 
the overall fibre volume content of the laminate is provided by the 
following inequality 

abh
∑N

i=1
VFi⩽abHVFmax⇒

h
H
∑N

i=1
VFi⩽VFmax (38)  

where VFmax is the maximum fibre volume content of the laminate. When 
uniform layer thickness is adopted, Nh = H, indicating that relation (38) 
becomes 

h
Nh
∑N

i=1
VFi⩽VFmax⇒

1
N
∑N

i=1
VFi⩽VFmax

⇒(N = 8),
1
8
∑8

i=1
VFi⩽VFmax

(39) 

As shown in (39), 8 layers are considered in this study (N = 8). A 
similar constraint is formulated for the overall graphene nanoplatelets 
content: 

1
8
∑8

i=1
VGPLi ≤ VGPLmax (40)  

noticing that VGPLmax represents the maximum graphene content for the 
laminate. 
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The multi-objective optimization problem can now be formulated for 
the case of uniform layer thickness as follows: 

max f (VFi,VGPLi) = ω (Fundamental Frequency)
min CL(VFi,VGPLi) = c (Cost)

(41a)  

subject to  

1
8
∑8

i=1
VFi ≤ VFmax (41b)  

1
8
∑8

i=1
VGPLi ≤ VGPLmax (41c)  

VGPLi ≥ 0 (41d)  

0.10 ≤ VFi ≤ 0.60 (41e) 

According to inequalities (41d) and (41e), some limits for graphene 
nanoplatelets and fibre contents are considered for each layer. The 
fundamental frequency for the laminate is determined using the first- 
order shear deformation theory and the finite element method, as pro-
vided in section 2. The cost of the laminate CL is also defined in equation 
(42), as the sum of the cost of fibres CF, graphene nanoplatelets CGPL and 
matrix CM 

CL(VFi, VGPLi) =
∑8

i=1
(CFi + CGPLi + CMi)

= abh
∑8

i=1
[ρF VFicF + ρGPL VGPLicGPL + ρM (1 − VFi − VGPLi)cM ]

(42) 

In relation (42) the cost per unit mass for fibres, graphene nano-
platelets and matrix, is denoted, respectively, by cF, cGPL and cM. An 
expression for the non-dimensional cost is eventually used in the cal-
culations, defined as the ratio of the cost given in (42) over the cost of a 
reference isotropic plate, of dimensions a× b, thickness equal to the 
total thickness of the three-phase laminate (= Nh), density ρ0 and cost 
per unit mass equal to 1: 

c =
CL(VFi, VGPLi)

abNhρ0

=
abh
∑8

i=1[ρF VFicF + ρGPL VGPLicGPL + ρM (1 − VFi − VGPLi)cM ]

abNhρ0

=

∑8
i=1[ρF VFicF + ρGPL VGPLicGPL + ρM (1 − VFi − VGPLi)cM ]

Nρ0

(43)  

4.2. Non-uniform layer thickness 

For a laminate with non-uniform layer thicknesses, each layer may 
have a different thickness, indicating that the layer thickness hi now 
becomes a design variable. Optimization problems with 3 and 4 types of 
design variables, namely graphene nanoplatelets and fibre contents, 
layer thickness and fibre angle, are then formulated. 

For this case, the constraints for the total fibre volume content and 
for the total graphene nanoplatelets content, are provided below 

ab
∑N

i=1
hiVFi ≤ abHVFmax⇒

1
H

∑N

i=1
hiVFi ≤ VFmax

⇒(N = 8),
1
H
∑8

i=1
hiVFi ≤ VFmax

(44)  

1
H

∑8

i=1
hiVGPLi ≤ VGPLmax (45) 

The corresponding optimal design problem is formulated as follows: 

max f
(

VFi,VGPLi,
hi

H
, θi

)

= ω (Fundamental Frequency)

min CL

(

VFi,VGPLi,
hi

H
, θi

)

= c (Cost)
(46a) 

subject to 

1
H
∑8

i=1
hiVFi ≤ VFmax (46b)  

1
H
∑8

i=1
hiVGPLi ≤ VGPLmax (46c)  

VGPLi ≥ 0 (46d)  

0.10 ≤ VFi ≤ 0.60 (46e)  

− 90o ≤ Fibre angles θi ≤ 90o (46f)  

∑N

i=1

hi

H
≤ 1 (46g) 

Similar to the case of uniform layer thickness, the cost of the lami-
nate CL is defined as the sum of the cost of fibres CF, graphene nano-
platelets CGPL and matrix CM    

CL

(

VFi,VGPLi,
hi

H
, θi
)

=
∑8

i=1
(CFi + CGPLi + CMi)

= ab

(
∑8

i=1
[hiρF VFicF ] +

∑8

i=1
[hiρGPLVGPLicGPL] +

∑8

i=1
[hiρM(1 − VFi − VGPLi)cM ]

) (47)   
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The expression for the non-dimensional cost is defined for the case of 
non-uniform thickness, as the ratio of cost of the three-phase laminate, 
over the cost of a reference isotropic plate, of dimensions a × b, thick-
ness equal to the total thickness of the three-phase laminate (= H), 
density ρ0 and cost per unit mass equal to 1:   

5. NSGA II 

NSGA-II [40], which stands for Non-dominated Sorting Genetic Al-
gorithm version II is a famous algorithm with a record of good perfor-
mance in solving several multi-objective optimization problems. NSGA- 
II is a modified genetic algorithm based on the concept of dominance. 

Dominance is defined for solutions x1 and x2 as follows. Solution x1 
dominates solution x2 if either x1 is no worse than x2 in all objectives or 
x1 is strictly better than x2 in at least one objective. All non-dominated 
solutions form a set of solutions known as the Pareto set (or Pareto 
Front). NSGA-II tries to find solutions as close as possible to the optimal 

Pareto Front and simultaneously as diverse as possible. This is achieved 
by performing non-dominated sorting of solutions while exploiting the 
crowding distance metric, which is the Manhattan Distance of solutions 
in the n-dimensional objective space. In each generation, new candidate 
solutions are generated by combining existing solutions. Iteratively, 
non-dominated solutions are kept for the next generation and removed 
from the current generation until the size of the new generation is 
reached, or no more new solutions can be generated. Each batch of non- 
dominated solutions is sorted according to the crowding distance, giving 
infinity values to extreme points to be kept for the next generation. 
NSGA-II, as its name suggests, is the successor of the simpler algorithm 
NSGA, which lacks the concepts of crowding and has a less efficient 
procedure for computing the sorted list of non-dominated solutions. The 
success of NSGA-II led to many variations of the algorithm, including R- 
NSGA-II, U-NSGA-II, and NSGA-III [41]. It should be noted that many 
other multi-objective optimization algorithms exist that can be used 
instead of NSGA-II, such as MOEA/D (Multi-Objective Evolutionary 
Algorithm with Decomposition), SPEA2 (Strength Pareto Evolutionary 
Algorithm 2), and others. MOEA/D is a family of algorithms that de-
composes the problem into simpler single or multi-objective sub-
problems, which are then optimized concurrently and cooperatively. 
SPEA2 uses an elitism approach that assigns fitness to solutions based on 
the strength values of the solutions that dominate them and breaks 
fitness ties based on density information. The wealth of multi-objective 
optimization algorithms becomes apparent through software packages 
like PlatEMO [42], which in its 4.0 release, supports more than 200 
evolutionary algorithms. Most of these algorithms aim at multi-objective 
problems. 

6. Verification of the proposed approach 

6.1. Verification of the vibration analysis 

To validate the finite element model which is used for the vibration 
analysis, the natural frequencies of a CNT-reinforced laminated plate 

Table 1 
Comparison of non-dimensional frequency Ω = ωa2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ρm/(EmH2)

√
derived from 

this study with published research, for the case of laminated [0/90/0/90/0] 
CNT-reinforced plates, with simply supported (SSSS) boundary conditions and 
thickness/length ratio 0.1 (H/a = 0.1)

Pattern Method Mode 

1 2 3 4 

Uniformly 
distributed CNT 
with volume 
fraction VCNT =

0.11 

Present/ 
Mesh 5x5  

14.6364  19.7484  19.7484  30.2317 

Present/ 
Mesh 
10x10  

14.3104  19.5075  19.5075  28.0341 

Present/ 
Mesh 
12x12  

14.2772  19.4830  19.4830  27.8178 

Ref. [43]  14.2952  19.4565  19.4589  27.1005 
Ref. [44]  14.2773  19.4141  19.4191  27.0981  

Uniformly 
distributed CNT 
with volume 
fraction VCNT =

0.14 

Present/ 
Mesh 5x5  

15.7050  20.1010  20.1010  31.9455 

Present/ 
Mesh 
10x10  

15.3773  19.8557  19.8557  29.7699 

Present/ 
Mesh 
12x12  

15.3438  19.8308  19.8308  29.5539 

Ref. [43]  15.2954  19.7801  19.7842  28.6689 
Ref. [44]  15.2702  19.7613  19.7666  28.6659  

Uniformly 
distributed CNT 
with volume 
fraction VCNT =

0.17 

Present/ 
Mesh 5x5  

18.1351  24.7090  24.7090  37.5627 

Present/ 
Mesh 
10x10  

17.7265  24.4075  24.4075  34.8013 

Present/ 
Mesh 
12x12  

17.6850  24.3769  24.3769  34.5299 

Ref. [43]  17.7233  24.3158  24.3201  33.6782 
Ref. [44]  17.7087  24.2906  24.2908  33.6735  

Table 2 
Material properties of GPLs, matrix, and glass fibres.  

Material E11(GPa) E22 

(GPa) 
G12 (GPa) ν12 Density (kg/ 

m3) 

GPL 1010 1010 E11/(2(1 +
ν))  

0.186 1060 

Matrix 3 3 E11/(2(1 +
ν))  

0.34 1200 

Glass fibres 72.4 72.4 E11/(2(1 +
ν))  

0.20 2400  

c =

CL

(

VFi,VGPLi,
hi

H
, θi
)

abHρ0

=
ab
(∑8

i=1
[hiρF VFicF ] +

∑8

i=1
[hiρGPLVGPLicGPL] +

∑8

i=1
[hiρM(1 − VFi − VGPLi)cM ]

)

abHρ0

=

∑8

i=1
[hiρFVFicF ] +

∑8

i=1
[hiρGPLVGPLicGPL] +

∑8

i=1
[hiρM(1 − VFi − VGPLi)cM ]

Hρ0

(48)   
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with SSSS boundary conditions are calculated and compared with the 
results reported in [43,44]. Geometric properties of the plate are a = b =

1m and thickness H = 0.1m. The lay-up stacking sequence of the plate is 
[0/90/0/90/0]. For the CNT-reinforced plate, the material properties of 
the matrix are given as Em = 2.5 GPa, vm = 0.34 and ρm = 1150 Kg/m3 at 
room temperature 300 oK. Material properties of single-walled CNTs 
(SWCNTs) are given as ECNT

11 = 5.6466 TPa, ECNT
22 = 7.08 TPa, GCNT

12 =

1.9455 TPa, GCNT
13 = GCNT

23 = GCNT
12 , vCNT

12 = 0.175 and ρCNT = 1400 Kg/
m3. For the different volume fractions of CNTs that are tested, param-
eters ηi are η1 = 0.149, η2 = 0.934, η3 = η2 for VCNT = 0.11, η1 = 0.15,
η2 = 0.941, η3 = η2 for VCNT = 0.14 and η1 = 0.149, η2 = 1.381, η3 = η2 
for VCNT = 0.17. Table 1 shows the comparison of the first four non- 

dimensional frequencies (Ω = ωa2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ρm/
(
EmH2

)√

) of (uniformly distrib-
uted) CNT-reinforced plates for different VCNT values. As shown in 
Table 1, frequencies obtained from the finite element model used in this 
article are close to the ones provided in published literature. 

6.2. Verification of the optimization approach 

To verify the optimization approach which is presented in this 
article, comparisons of the results obtained from the proposed formu-
lation and results presented in literature are conducted. The material 
properties which are used in this and subsequent sections, are given in 
Table 2. Furthermore, the following values are adopted for graphene 
nanoplatelets dimensions: lGPL = 2.5 μm, wGPL = 1.5 μm, hGPL = 1.5 nm. 

For the results which are presented in this section, as well as the 
results which are discussed in the following sections of the article, the 
fundamental frequency ω is provided in the form of the non-dimensional 
frequency Ω: 

Ω = ωH
̅̅̅̅̅̅
ρM

EM

√

(49) 

where EM and ρM denote the Young’s modulus and mass density of 
the polymer matrix and H is the total thickness of the laminate. It is 
noted that the number of the design variables which are considered for 
each problem solved in the article, indicates the number of design var-
iable types. Each design variable is assigned a different value over the 
layers, by the solution of the optimization problem. 

An initial comparison of the natural frequencies obtained by the 
proposed method and those found in published literature is presented in 
[35] for both an isotropic plate and a two-phase, graphene 
nanoplatelets-reinforced laminate with uniform GPLs content and layer 
thickness. As discussed in [35], this comparison between the proposed 
method and published results is satisfactory. 

Furthermore, to verify the natural frequencies derived from the 
proposed method for the case of a three-phase graphene nanoplatelet/ 
fibre-reinforced laminate, a comparison is conducted in [35] between 
the natural frequencies derived from the present work and the ones 
determined using commercial finite element software (ABAQUS). 
Several models have been considered for this comparison, including 
laminates with different layer numbers, stacking sequences, and 

boundary conditions. For the implementation in the commercial soft-
ware, 4-node shell elements have been used. Results presented in [35] 
indicate a satisfactory agreement between the proposed method and the 
commercial software. 

To further validate the multi-objective optimization approach of the 
present study, a comparison with the results provided in [35] is con-
ducted for a three-phase GPLs/glass fibre-reinforced composite lami-
nate. Since in [35] a maximum frequency single-objective optimization 
scheme is proposed, the comparison is conducted using the maximum 
(optimal) frequency derived from the multi-objective approach of the 
current work. It is noted that in [35] a Sequential Quadratic Program-
ming algorithm (SQP) is used to implement the single-objective opti-
mization scheme. An alternative multi-objective optimization approach 
is adopted in the present study, which uses the NSGA-II (Non-dominated 
Sorting Genetic Algorithm version II), relying on the concept of 
dominance. 

Results are compared for the case of one and two design variables, 
namely, the GPLs and glass fibre content. It is noted that the results 
which are shown in [35], provide the distribution of graphene nano-
platelets as weight fraction for every layer. In Tables 3 and 4, these 
values have been converted to GPLs volume content, using equation 
(27). 

As shown in Tables 3 and 4, this comparison results in a good 
agreement between the maximum (optimal) natural frequencies ob-
tained by the proposed multi-objective optimization approach and the 
ones provided in [35], for the problems with one and two design vari-
ables. It is observed that the distributions of the GPLs and fibre re-
inforcements along the thickness of the laminate, as obtained by the two 
approaches, are also similar. 

7. Results and discussion 

Results derived from the proposed multi-objective optimization 
study, aiming to maximize the fundamental frequency and minimize the 
cost of an 8-layered, three-phase, graphene nanoplatelets/fibre- 
reinforced composite laminate, are discussed in this section. In the 
developed models, uniform layer thickness, using one and two design 
variables (GPLs and fibre volume content), and non-uniform layer 
thickness, using three and four design variables (GPLs and fibre volume 
content, thickness ratio and fibre angle) are considered. It is noted that 
all the design variables which are used in this study are continuous. 

For the results presented in the following sections for the problems 
with one, two, and three design variables, namely GPLs content, fibre 
content, and thickness ratio, an antisymmetric angle-ply ([0/90/0/ 
90]anti-s) stacking sequence has been adopted for the laminate. In 
addition, a square plate is considered, with an aspect ratio a/b = 1 and 
simply supported boundary conditions (SSSS). The total thickness over 
the edge length ratio H/a is chosen as equal to 0.1. The thickness ratio 
h/H, which is one of the design variables for the case of non-uniform 
layer thickness, is defined as the ratio of the thickness of each layer 
over the overall thickness of the laminate. For all simulations, the 
following limits are assigned: GPLs weight fractions WGPLi ≥ 0 and 

Table 3 
Comparison of maximum fundamental frequencies Ω obtained from the pro-
posed multi-objective optimization approach and from reference [35] for an 8- 
layered, GPLs/glass fibre-reinforced square laminate with VGPL content as the 
design variable, subject to GPLs weight fractions WGPLi ≥ 0 and WGPLmax =

1.25%, thickness/length ratio 0.1, and SSSS boundary conditions.  

Stacking 
sequence 

Fibre 
contents 

Method Optimal VGPL per 
layer 

Ω 

[0/90/0/90]anti-s Glass 30% Ref. [35] [0.0540/0.0025/0/ 
0]s  

0.1766 

Present [0.0545/0.0020/0/ 
0]s  

0.1766  

Table 4 
Comparison of maximum fundamental frequencies Ω obtained from the pro-
posed multi-objective optimization approach and from reference [35] for an 8- 
layered, GPLs/glass fibre-reinforced square laminate with GPLs and fibre vol-
ume content as the design variables, subject to GPLs weight fractions WGPLi ≥ 0 
and WGPLmax = 1.25%, fibre volume contents 0.1 ≤ VFi ≤ 0.6, VFmax = 30%, 
thickness/length ratio 0.1, and SSSS boundary conditions.  

Stacking 
sequence 

Method Optimal VGPL per 
layer 

Optimal VF per 
layer 

Ω 

[0/90/0/ 
90]anti-s 

Ref.  
[35] 

[0.0394/0.0169/ 
0/0]s 

[0.6/0.4/0.1/ 
0.1]s  

0.1864 

Present [0.0383/0.0182/ 
0/0]s 

[0.6/0.17/0.1/ 
0.1]s  

0.1848  
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WGPLmax = 1.25%, fibre volume contents 0.1 ≤ VFi ≤ 0.6 and VFmax =

30%. 
To derive the results, which are provided in the following sections, a 

set of numerical experiments were executed on a workstation equipped 
with an Intel Core i7 7700 K @4.2 GHz CPU and 32 GB DDR4 RAM. The 
implementation of the NSGA-II algorithm provided by the PlatEMO 
software [42], which operates over MATLAB 2018b, was adopted. Ten 
runs were performed for each experiment. Each run took about 5000 s 
and used a set of 100 individuals that evolved for 100 generations. The 
solutions of the last generation of each run were used for calculating the 
Base Pareto Front (BPF), which served as a substitution for the unknown 
Optimal Pareto Front (OPF). 

7.1. Optimal results for the case of uniform layer thickness 

Results from the models with one and two design variables, namely 
the GPLs and fibre content, obtained for uniform layer thickness, are 
discussed in this section. Fig. 2 shows the evolution of the Pareto of a 

Fig. 2. Multi-objective optimization using GPLs content as single design variable and 30% uniform fibre content.  

Table 5 
Selected pareto optimal solutions yielding low, medium and high objective 
values for the multi-objective optimization problem with GPL content as design 
variable.  

Fibre 
contents 

Pareto optimal 
VGPL per layer 

Total 
VGPL 

Ω (non- 
dimensional 
frequency) 

c (non- 
dimensional 
cost) 

Glass 30% [0/0.004/0/ 
0]s  

0.008  0.0905  22.45 

[0.0078/0/0/ 
0]s  

0.0156  0.1115  22.59 

[0.017/0.002/ 
0/0]s  

0.038  0.1320  22.81 

[0.021/0/ 
0.0005/0]s  

0.043  0.1370  22.87 

[0.0545/ 
0.002/0/0]s  

0.113  0.1766  23.55  

Fig. 3. Multi-objective optimization using two design variables, namely, GPLs and fibre contents.  

G.A. Drosopoulos et al.                                                                                                                                                                                                                        



Structures 54 (2023) 1593–1607

1602

single run alongside the BPF for the multi-objective optimization prob-
lem with one design variable, the GPLs content. It can be seen that the 
solutions of even early generations (10, 20, 30) almost coincide with the 
BPF. This also occurs for the rest of the runs, suggesting that the 
approach can identify high-quality Pareto optimal solutions. 

In Table 5, some Pareto optimal solutions of the 100th generation of 
the same run are depicted. Optimal solutions that correspond to extreme 
frequency values and some solutions for intermediate frequencies are 
shown in this table. For each frequency, different values of the design 
variables are obtained from optimization, noticing that more GPL rein-
forcement is needed to accommodate higher frequencies. The results 
provided in this and subsequent sections, represent a set of solutions that 
are non-dominated with respect to both objectives (i.e., frequency and 
cost). This means that it is not possible to find another solution that 
improves one objective without worsening the other. So, a human de-
cision maker should be responsible for determining the relative impor-
tance of each objective, and identify solutions that should be judged as 
most suitable. 

According to these results, a pattern of solutions is recognized, which 
is also expected for the subsequent optimization problems. Thus, as 
higher optimal frequencies are derived from multi-objective optimiza-
tion, an increasing optimal cost arises due to the increase of the GPLs 
reinforcement (design variable). This increase in the GPLs content is 
attributed to the demand for higher frequencies, enabling the optimi-
zation algorithm to increase the nano-reinforcement content to accom-
modate this demand. On the contrary, when low optimal cost values are 
approximated, the frequencies which are obtained from optimization 
are significantly reduced, leading to a lower content of nano- 
reinforcement. 

Therefore, for the lowest frequency and cost values of Table 5, a 
limited content of nano-reinforcement arises. As the frequency in-
creases, the GPLs content also increases, with more GPLs reinforcement 
assigned to the outer layers of the laminate. Since the outer layers 
contribute more than the middle layers to the laminate’s stiffness, the 
vibration response is improved in this case. 

For the case that two design variables are defined in multi-objective 
optimization, namely the graphene and fibre contents, a new Pareto 
solution is derived, as shown in Fig. 3. It is observed that for an 
increasing number of generations (20, 30, 100), solutions approach the 
BPF. The sharp turn on the top left corner shown in Fig. 3 (and in some of 
the subsequent Pareto diagrams) denotes that at the higher end of fre-
quency values, very small increases have the adverse effect of sending 
the cost values to a much higher range. 

To further investigate the provided results, the optimal design vari-
ables and values of the objective functions are given in Table 6 for the 
case of low, middle, and high frequencies. It is observed that for the 
lowest frequency (and cost), no graphene reinforcement is assigned, and 
only the minimum content of fibre reinforcement per layer is used. As 
optimal frequencies gradually increase, non-zero GPLs content is ob-
tained, with more reinforcement assigned to the outer layers. 

Table 6 
Selected pareto optimal solutions yielding low, medium and high objective 
values for the multi-objective optimization problem with GPL and fibre contents 
as design variables.  

Pareto 
optimal 
VGPL per 
layer 

Pareto 
optimal 
VF per 
layer 

Total 
VGPL 

Total 
VF 

Ω (non- 
dimensional 
frequency) 

c (non- 
dimensional 
cost) 

[0/0/0/0]s [0.1/0.1/ 
0.1/0.1]s 

0  0.8  0.0724  8.28 

[0.00514/ 
0/0/0]s 

[0.1/0.1/ 
0.1/0.1]s 

0.0103  0.8  0.0909  8.40 

[0.01524/ 
0/0/0]s 

[0.1/0.1/ 
0.1/0.1]s 

0.0305  0.8  0.1116  8.58 

[0.023/0/ 
0/0]s 

[0.1/0.1/ 
0.1/0.1]s 

0.0460  0.8  0.1320  8.73 

[0.026/0/ 
0/0]s 

[0.1/0.1/ 
0.1/0.1]s 

0.0520  0.8  0.1370  8.79 

[0.0517/0/ 
0/0]s 

[0.1/0.1/ 
0.1/0.1]s 

0.1034  0.8  0.1766  9.29 

[0.0558/ 
0.0006/ 
0.0001/ 
0]s 

[0.46/ 
0.1/0.1/ 
0.1]s 

0.1130  1.52  0.1828  15.81 

[0.0383/ 
0.01817/ 
0/0]s 

[0.6/ 
0.17/0.1/ 
0.1]s 

0.1129  1.94  0.1848  19.38  

Fig. 4. Multi-objective optimization for a two-phase fibre-reinforced laminate, using one design variable, namely, the fibre volume content.  

Table 7 
Selected pareto optimal solutions yielding low, medium and high objective 
values for the multi-objective optimization problem of a two-phase fibre-rein-
forced laminate with fibre content as design variable.  

Pareto optimal VF 

per layer 
Total 
VF 

Ω (non-dimensional 
frequency) 

c (non-dimensional 
cost) 

[0.1/0.1/0.1/0.1]s  0.8  0.0724  8.29 
[0.46/0.1/0.1/0.1]s  1.52  0.0907  14.76 
[0.6/0.4/0.1/0.1]s  2.4  0.1079  22.44  
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Fig. 5. Multi-objective optimization for the three-phase laminates with one (GPLs content) and two design variables (GPLs and fibre contents) and for the two-phase 
fibre-reinforced laminate with one design variable (fibre content). 

Fig. 6. Multi-objective optimization using three design variables, namely, GPLs content, fibre content and thickness ratio.  
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Comparison between Table 5 (GPLs content as single design variable, 
uniform fibre distribution equal to 30%) and Table 6 (GPLs and fibre 
contents as design variables) can then be conducted to highlight the 
beneficial influence of the three-phase material, which is studied in this 
article. To allow for this comparison, approximately equal optimal fre-
quencies are provided in Tables 5 and 6. 

In particular, for the same optimal frequencies derived from the 
problem with one design variable (Table 5), a significantly reduced non- 
dimensional optimal cost arises when two design variables are consid-
ered (Table 6). This is observed for all frequencies of Table 5, which 
correspond to frequencies from row 2 to row 6 of Table 6. The optimal 
cost is almost three times lower than the cost obtained at the same fre-
quencies when only one design variable is used. 

As observed in Table 6, the solution of the optimization problem 
provides the minimum content of fibre reinforcement (10% per layer) 
and gradually increases the graphene content as optimal frequencies 
increase. The excellent mechanical properties of graphene increase the 
optimal fundamental frequency even for a low overall GPLs content. For 
the highest optimal frequencies (the last two frequencies of Table 6), the 
fibre volume content is also gradually increased. This is accompanied by 
a significant increase of the optimal cost. 

To highlight the contribution of GPLs reinforcement on the optimal 
vibration response, results of the proposed optimization study are pre-
sented next, for the case of a two-phase, fibre-reinforced laminate with 
no graphene reinforcement. Fig. 4 indicates a good convergence to the 
optimal Pareto front for an increased number of generations. 

In Table 7, optimal results derived for the two-phase laminate are 
provided in frequency values similar to the ones recorded from the 
optimization of the three-phase laminate with non-uniform GPLs and 
fibre content (Table 6). According to the second row of Table 7, the 
optimal cost is higher by 75.7% than the one obtained for the GPLs/ 
fibre-reinforced laminate (Table 6), at approximately the same 
maximum frequency. In addition, the maximum optimal frequency that 
can be achieved for the two-phase laminate (last row of Table 7) is 
41.6% lower than the one derived for the three-phase laminate 
(Table 6). This maximum frequency of the two-phase laminate is ob-
tained at a cost 15.8% higher than that obtained at the maximum fre-
quency of the three-phase laminate (Table 6). 

To provide a holistic representation of the optimal solutions for the 
cases of one and two design variables, the corresponding Pareto solu-
tions derived from 100 generations are given in the diagrams of Fig. 5. It 
is clearly shown that the diagram representing the solutions from the 
problem with two design variables (GPLs and fibre contents) is located 
upper and left in the cartesian coordinate system, compared to the di-
agram derived from the problem with one design variable (GPLs con-
tent). Thus, considering two reinforcing materials (GPLs and fibres) 
drastically improves the optimal response since lower optimal costs and 
higher optimal frequencies are derived in this case. 

The comparison of the results obtained from the three-phase lami-
nate with two design variables (GPLs and fibre contents) and the two- 
phase fibre-reinforced laminate with one design variable (fibre 

content) is also shown in Fig. 5. It is observed that at the same optimal 
costs, optimal frequencies are significantly higher for the three-phase 
laminate, highlighting the contribution of GPLs reinforcement to the 
optimal vibration response. 

7.2. Optimal results for the case of non-uniform layer thickness 

When non-uniform layer thickness is considered, the thickness ratio 
is a new design variable. Optimization problems with three and four 
design variables, namely, the GPLs and fibre contents, the thickness ratio 
and the fibre angles, are then formulated. 

For the problem with three design variables (GPLs content, fibre 
content, thickness ratio), simulations converge to the BPF for an 
increased number of generations, as shown in Fig. 6. To further inves-
tigate the results of this multi-objective optimization study, the design 
variables and the corresponding optimal frequency and cost functions 
are provided in Table 8. Frequency values close to the ones presented in 
Tables 5 and 6 are given in Table 8, to allow for a comparison of the 
optimization output. It is observed that as the maximum frequency 
gradually increases in Table 8, the GPLs content of the outer layers also 
increases. On the contrary, the fibre volume content remains constant 
and equal to the minimum content, for all simulations shown in Table 8. 

By comparing the first 6 rows of Tables 6 (two design variables and 
uniform thickness) and 8 (three design variables and non-uniform layer 
thickness), it is noted that for approximately the same maximum fre-
quency values, Table 8 provides only marginally reduced optimal costs, 
comparing to costs shown in Table 6. However, a significant difference 
in the optimal costs arises for the seventh and eighth rows of Tables 6 
and 8, which correspond to the highest maximum frequency values. 

In particular, for the case of two design variables (Table 6) the 
optimal costs shown in the seventh and eighth rows increase more than 
50% and 100%, respectively, compared to the cost given in the sixth row 
on the same table. It is also observed that this sharp increase in the 
optimal cost is accompanied by increased fibre volume content in these 
rows of Table 6. This means that since the maximum graphene content 
has been reached in the seventh and eighth row of Table 6, the opti-
mization algorithm attempts to increase also the fibre volume content. 
Although the cost of fibres is significantly lower than the cost of gra-
phene, the overall cost still increases sharply since significant quantities 
of fibre volume content are involved. 

On the contrary, for the problem with non-uniform thickness and 
three design variables, the optimal cost does not significantly increase 
for the seventh and eighth rows of Table 8. Thus, for the highest optimal 
frequencies, the solution with three design variables manages to keep 
the cost significantly lower, about 50% and 100%, than the one obtained 
at the same frequency values from the problem with two design vari-
ables (Table 6). It is also observed that there is no increase in the fibre 
volume content in this case (Table 8). This highlights the beneficial in-
fluence of using non-uniform layer thickness within optimization with 
more design variables. 

Next, four design variables are introduced, the GPLs and fibre 

Table 8 
Selected pareto optimal solutions yielding low, medium and high objective values for the multi-objective optimization problem with GPLs content, fibre content and 
thickness ratio as design variables.  

Pareto optimal VGPL per layer Pareto optimal VF per 
layer 

Pareto optimal thickness ratio 
h/H 

Total 
VGPL 

Total 
VF 

Ω (non-dimensional 
frequency) 

c (non-dimensional 
cost) 

[0/0/0/0]s [0.1/0.1/0.1/0.1]s [0.05/0.15/0.15/0.15]s 0  0.8  0.0728  8.28 
[0.007/0/0/0]s [0.1/0.1/0.1/0.1]s [0.06/0.15/0.15/0.15]s 0.014  0.8  0.0909  8.38 
[0.029/0/0/0]s [0.1/0.1/0.1/0.1]s [0.05/0.15/0.15/0.15]s 0.058  0.8  0.1116  8.52 
[0.052/0.001/0/0]s [0.1/0.1/0.1/0.1]s [0.05/0.15/0.15/0.15]s 0.106  0.8  0.1325  8.71 
[0.052/0/0/0]s [0.1/0.1/0.1/0.1]s [0.06/0.15/0.14/0.15]s 0.104  0.8  0.1378  8.76 
[0.1/0.00014/0.00058/ 

0.00021]s 

[0.1/0.1/0.1/0.1]s [0.06/0.15/0.15/0.14]s 0.202  0.8  0.1766  9.24 

[0.124/0/0/0]s [0.1/0.1/0.1/0.1]s [0.05/0.15/0.15/0.15]s 0.248  0.8  0.1840  9.32 
[0.121/0/0/0.000143]s [0.1/0.1/0.1/0.1]s [0.06/0.15/0.14/0.15]s 0.242  0.8  0.1879  9.39  
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Fig. 7. Multi-objective optimization using four design variables, namely, GPLs content, fibre content, thickness ratio and fibre angle.  

Table 9 
Selected pareto optimal solutions yielding low, medium and high objective values for the multi-objective optimization problem with GPLs content, fibre content, 
thickness ratio and fibre angles as design variables.  

Pareto optimal VGPL 

per layer 
Pareto optimal VF 

per layer 
Pareto optimal thickness 
ratio h/H 

Pareto optimal stacking 
sequence 

Total 
VGPL 

Total 
VF 

Ω (non-dimensional 
frequency) 

c (non-dimensional 
cost) 

[0/0/0/0]s [0.1/0.1/0.1/0.1]s [0.05/0.14/0.15/0.15]s [42/46/-39/-41]s 0  0.8  0.0790  8.28 
[0.0067/0/0/0]s [0.1/0.1/0.1/0.1]s [0.06/0.14/0.15/0.15]s [50/41/-45/-56]s 0.0134  0.8  0.0920  8.34 
[0.022/0/0/0]s [0.1/0.1/0.1/0.1]s [0.06/0.14/0.15/0.15]s [48/-38/-40/-54]s 0.044  0.8  0.1116  8.49 
[0.043/0/0.0001/0]s [0.1/0.1/0.1/0.1]s [0.06/0.15/0.15/0.15]s [59/38/-38/-35]s 0.0862  0.8  0.1333  8.68 
[0.053/0/0/0]s [0.1/0.1/0.1/0.1]s [0.05/0.15/0.15/0.15]s [31/47/-52/-45]s 0.106  0.8  0.1385  8.73 
[0.109/0/0.0001/0]s [0.1/0.1/0.1/0.1]s [0.05/0.15/0.15/0.15]s [28/46/-44/-25]s 0.2182  0.8  0.1775  9.19 
[0.108/0/0.0003/0]s [0.1/0.1/0.1/0.1]s [0.06/0.14/0.15/0.15]s [27/47/-45/-29]s 0.2166  0.8  0.1847  9.30 
[0.129/0/0/0]s [0.1/0.1/0.1/0.1]s [0.05/0.15/0.15/0.15]s [42/47/-38/-45]s 0.258  0.8  0.1890  9.36 
[0.133/0.0001/0/0]s [0.1/0.15/0.1/0.1]s [0.05/0.15/0.15/0.15]s [42/47/-40/-31]s 0.2662  0.9  0.1919  10.48  

Fig. 8. Multi-objective optimization for the cases of one, two, three and four design variables.  
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content, the thickness ratio, and the fibre angles. Fig. 7 indicates a good 
convergence of the optimization simulations to the BPF. Similar to the 
previous discussions, the optimal frequency and cost values, and the 
optimal design variables, are given in Table 9. To compare with previous 
results, the optimal frequencies in Table 9 are similar to the ones pro-
vided in the simulations with one, two, and three design variables. 

For the first eight rows of Table 9, slightly lower optimal costs are 
obtained compared to the costs derived from the case of three design 
variables shown in Table 8. In the last row of Table 9, a higher optimal 
frequency is achieved, reaching a 2.1% increase, compared to the 
maximum possible frequency that can be derived for the case of three 
design variables and shown in the last row of Table 8. According to 
Table 9, the fibre contents start increasing in this case, leading to a 
significant increase almost equal to 12% of the optimal cost, compared 
to the previous row of Table 9 with minimum fibre content. 

A similar trend is observed in the case of two design variables 
(Table 6), thus, denoting increase of the fibre content accompanied by a 
sharp increase of the optimal cost at maximum frequency levels. How-
ever, the maximum optimal frequency achieved in the last row of 
Table 9 is 3.8% higher than the corresponding of Table 6, obtained at 
45.9% lower optimal cost. In all cases, optimization results indicate that 
increasing the content of GPLs reinforcement is more effective in 
keeping the cost low than increasing the content of fibre reinforcement. 
This highlights the beneficial influence of graphene nanoplatelets on 
cost-effective design. 

To summarize the solutions which are derived from the multi- 
objective optimization problems with one to four design variables, di-
agrams of the Pareto solutions (100 generations) are provided in Fig. 8. 
It is indicated that for the highest optimal frequencies, the solution of the 
problem with non-uniform thickness and three design variables is ach-
ieved at significantly lower cost compared to the solution of the problem 
with uniform layer thickness and two design variables. According to 
Fig. 8, slightly lower costs at the same frequencies arise for the case of 
four design variable, compared to the case of three design variables. In 
addition, a small increase of the highest frequency is achieved for the 
problem with four design variables, accompanied by a significant in-
crease in the optimal cost. 

Fig. 8 also highlights the gradual improvement of the optimal solu-
tions as the number of the design variables increases. It is clear that the 
problem with the GPLs content as the single design variable, uniform 
fibre content and layer thickness, results in the solution with the highest 
optimal costs, compared to the cases of non-uniform fibre reinforcement 
and layer thickness. Significantly improved response in terms of optimal 
costs-frequencies is also obtained from the problem with four design 
variables, with respect to the one with two design variables (non-uni-
form GPLs and fibre contents). 

8. Conclusions 

A multi-objective optimization study is presented in this article for a 
hybrid graphene/fibre-reinforced composite laminate. The work aims to 
predict the optimal solution that maximizes the frequency and mini-
mizes the cost of the laminate. Optimization is implemented using the 
Non-dominated Sorting Genetic Algorithm II (NSGA-II). To simulate the 
vibration response of the laminate, first-order shear deformation theory 
is adopted in a finite element model developed in MATLAB. Cost- 
effective optimal design is achieved by solving four optimization prob-
lems introducing one to four types of design variables, namely, the 
graphene nanoplatelets and fibre content, the layer thickness, and the 
fibre orientation. The goal of the research is to quantify the improve-
ment of the vibration response and the cost reduction, for the increasing 
number of design variables. 

When no graphene reinforcement is considered, the maximum 
optimal frequency of the conventional two-phase fibre-reinforced 
laminate is 41.6% lower than the one derived for the three-phase gra-
phene/fibre-reinforced laminate, with non-uniform graphene and fibre 

volume contents. The optimal cost, which is obtained at the maximum 
frequency for the two-phase composite, is higher by 15.8% than the one 
of the graphene/fibre-reinforced laminate. Therefore, a small content of 
graphene reinforcement drastically increases frequencies and reduces 
the cost compared to conventional fibre-reinforced laminates. 

All results showed that that increasing the graphene volume content 
and keeping the minimum fibre volume content lead to the most cost- 
effective design. When the limit for the maximum graphene content is 
reached, and the optimization solution increases the fibre volume con-
tent to achieve higher optimal frequencies, a sharp increase in the cost is 
obtained. In addition, by increasing the number of design variables from 
one (graphene nanoplatelets content) to two (graphene and fibre con-
tents), three (graphene, fibre contents, layer thickness) and four (gra-
phene, fibre contents, layer thickness, and fibre angles), optimal 
frequencies gradually increase, and costs decrease. The highest optimal 
frequency is obtained from the problem with four design variables, 
resulting in an increase equal to 2.1% compared to the maximum 
optimal frequency derived from the model with three design variables. 

This research can be extended by introducing more objective func-
tions, like maximum buckling load, providing a more holistic repre-
sentation of the optimal response. Extensions to optimal functionally 
graded distributions are also left for future investigation. 
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