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Abstract—Research reproducibility is an important factor to support 

the full research life cycle; this is especially important for 

experimental research, where it is required to also reproduce the 

whole experiment environment and equipment setup. This paper 

presents the methodology and solution proposed in the SLICES 

Research Infrastructure to enable research reproducibility in modern 

digital technologies for complex and large scale experimentation. The 

paper provides a short overview of existing research and approaches 

for experimental research reproducibility, generally including git 

based experiments deployment and operation, Jupyter Notebook and 

Common Workflow Language (CWL) for workflow management. 

The paper describes the framework and approaches taken in the 

SLICES-RI that also address research environment provisioning on 

demand with the Platform Research Infrastructure as a Service 

(PRIaaS) and data management infrastructure to ensure data quality 

and support effective data sharing. 

Keywords—Reproducibility, Experimental Research, Experiment 

lifecycle, Experiment Automation, FAIR data principles, Data 

Management Infrastructure, SLICES Research Infrastructure. 

I. INTRODUCTION 

Modern research is increasingly multidisciplinary and data 

driven, emphasizing the need for effective communication between 

researchers and data sharing. The Open Science initiative and 

movement among research communities can address these needs 

and increase the overall efficiency of scientific and technology 

research [1]. Open Science is strongly supported by policy 

development and funding bodies in Europe and a mandatory 

requirement in the current Horizon Europe programme. In recent 

years, major initiatives and projects to create the foundation and e-

Infrastructure for Open Science have been funded in Europe (in the 

framework of the past Horizon 2020 and current Horizon Europe 

programmes). This includes the currently operational OpenAIRE 

[2] and Zenodo [3] services, the development of the European Open 

Science Cloud (EOSC) [4], all support the FAIR (Findable, 

Accessible, Interoperable, Reusable) data principles [5]. The FAIR 

data principles were initially proposed for research data 

management primarily targeted at consistent metadata 

management. However, recent initiatives by the Research Data 

Alliance (RDA) [6] are extending FAIR principles to scientific 

software as a digital or data object.  

Research reproducibility is one of the core principles of Open 

Science [7]. However, developments in this area are fragmented and 

lacking a common or widely used approach. One of the difficulties 

is that reproducible research requires the recreation or provisioning 

on demand research environment, even for general Data Science 

and Analytics tasks. Reproducibility of experimental research 

imposes additional requirements on the reproducible experiment 

setup, including resources provisioning, experiment environment 

setup, and experiment lifecycle management, which in its own turn 

include experimental data lifecycle management. 

Reproducibility, according to ACM [9], is defined as a three-

stage process. The first stage, repeatability, is achieved if the same 

research group can recreate experiments using the same equipment. 

The second stage, reproducibility, is reached if a different team can 

recreate experiments on the same equipment. If an independent 

team recreates experiments on their own equipment, the final stage 

is reached: replicability. To incentivize reproducible research, the 

ACM launched a multi-stage reproducibility award system for 

scientific papers based on their definition. A study considered the 

results of such a system helpful but time-consuming to implement 

[10] and therefore faces a weak adoption.  

The focus of our paper is the investigation of a central 

component for the reproducible experimental research methodology 

- a reproducible workflow to execute experiments. It should also be 

supported by a consistent data management infrastructure. This 

research is a part of the SLICES Research Infrastructure to support 

research on digital infrastructures [8]. We aim to achieve the 

following goals: 

● Analyze different existing approaches for experimental 

workflows 

● Identify the benefits and disadvantages of these existing 

approaches 

● Create guidelines for an ideal experimental workflow to 

validate hypotheses in computer science 

The paper is structured as follows. Section II provides information 

about European Open Science projects and introduces the SLICES 

Research Infrastructure for digital infrastructures experimentation. 

Section III gives a short overview of existing approaches and 

practices on research reproducibility and solutions for experiment 

facilities provisioning and workflow description. Section IV 

discusses the experiment reproducibility in SLICES-RI. Section V 

discusses the Data Management Infrastructure requirements, an 

important component of consistent experimental research 

reproducibility. The paper concludes with the summary and 

suggestions for future research in Section VI. 

II. OPEN SCIENCE AND FAIR DATA PRINCIPLES IN EOSC 

A. European Open Science Cloud (EOSC)  

EOSC is an initiative and programme by the European Union to 

provide European researchers, innovators, companies and citizens 



with a federated and open multi-disciplinary environment where 

they can publish, find and re-use data, tools and services for 

research, innovation and educational purposes [4]. So far, the EOSC 

projects have created the foundation for research data 

interoperability and integration for European RIs. The EOSC 

Strategic Research and Innovation Agenda (SRIA) provides a 

roadmap to achieve the EOSC vision and objectives, namely to 

deliver an operational “Web of FAIR data and services” for science 

[11]. The Minimum Viable EOSC (MVE) achieved by the end of 

2021 [11], created a starting point for future EOSC development 

generally coordinated by the EOSCFuture project [12]. MVE 

defines EOSC Core that is designed to provide a federated data 

exchange environment for research projects and communities where 

data comply with FAIR principles. Ongoing developments aim at 

providing a customisable research environment for researchers and 

research projects using services provided by the EOSC Portal 

Catalog and Marketplace [13].  

The ongoing RELIANCE project intends to extend the EOSC 

with a set of services for Research Lifecycle Management in 

accordance with FAIR principles based on Research Objects (RO), 

Data Cubes and Text Mining [14]. ROHub is a service by 

RELIANCE for the storage, lifecycle management, and 

preservation of scientific research, campaigns and operational 

processes via research objects [15]. 

B. SLICES-RI to support Digital Technologies Research and 

Experimentation 

The Scientific Large-scale Infrastructure for Computing/ 

Communication Experimental Studies (SLICES) [8] is a distributed 

Digital Infrastructure designed to support large-scale experimental 

research focused on networking protocols, radio technologies, 

services, data collection, parallel and distributed computing and, in 

particular, cloud and edge-based computing architectures and 

services. This encompasses the full range of network, computing, 

and storage functions required for on-demand services across many 

verticals and addresses new complex research challenges, 

supporting disruptive science in IoT, networks and distributed 

systems. SLICES will integrate multiple experimental facilities and 

testbeds operated by partners providing a common services access 

and integration platform. SLICES will allow academics and 

industry to experiment and test the whole spectrum of digital 

technologies whereby the computing, network, storage, and IoT 

resources can be combined to design, experiment, operate, and 

automate the full research lifecycle management.  

III. RELATED WORK  

This section analyzes existing approaches related to the 

creation of reproducible experiment workflows. 

A. Generaal Tools  

Experiment results are highly dependent on a system state 

during the experiment. To allow for experiment repetition and 

replication, the documentation and recreation of this system state 

are essential. Bajpai et al. [16] provide several recommendations to 

simplify and ensure this process. Based on their recommendations 

and our own experience, we recommend the following tools: 

Configuration management and deployment frameworks, such as 

Ansible [17], help automate this task. At the same time, automation 

avoids any impact of the experimenter on the results. Version 

control systems such as git [18] help track the version of 

investigated source code. 

A widely used tool to perform experimental evaluations is 

Jupyter [19]. Jupyter provides notebooks, a convenient way to 

combine documentation, code, and visual representations within a 

single file that can be accessed via a web browser and easily shared 

with other researchers.  

B. Experiment Control 

Multiple initiatives maintain and provide testbeds for research, 

e.g., Fed4Fire (EU) [20], OneLab (EU) [21], Grid’5000 (France) 

[22], Planetlab (global) [23], or GENI (USA) [24]. Though not 

explicitly designed for reproducibility, Nussbaum [25] argues that 

testbeds, such as Grid’5000 or CloudLab, allow reproducible 

experiments if used correctly. 

Whereas the previously mentioned approaches mainly focus on 

resource allocation, there are also more high-level approaches. 

These approaches define the experimental workflow. Examples of 

such solutions are OMF [26] or NEPI [27] that allow the definition 

and automated execution of experiment workflows. These 

controllers may use one of the previously mentioned testbeds as a 

backend to execute their experiments. Besides the previously 

mentioned solutions, new approaches emerged that combine 

resource allocation and experiment control. This integration allows 

full control over the entire experiment workflow laying the 

foundation to perform reproducible experiments:  

1) Chameleon platform for Computer Science Research 

The Chameleon cloud platform [28] is a large-scale, deeply 

reconfigurable experimental platform built to support an 

experimental workflow for Computer Sciences systems research. 

The Chameleon Infrastructure (CHI - Cloud++) is a cloud platform 

powered by OpenStack with bare metal (re-)configuration (Ironic), 

using the OpenStack Blazar reservation service for experimental 

resource reservation.  

Chameleon uses Jupyter notebooks as an experiment definition, 

execution, and sharing format. The testbed can be controlled 

through libraries in the Jupyter notebook. A collection of various 

experiments is provided via the Chameleon website [29, 30]. 

The Chameleon/CHI experimental workflow includes stages 

related to resource discovery, allocation, dynamic configuration, 

orchestration, and monitoring. The workflow management service 

is supported by a rich library of orchestration templates and images 

created by the research community. 

Chameleon provides Jupyter integration for orchestration via 

JupyterLab service/portal [31], which allows creating and managing 

reproducible experiment workflows via Jupyter Notebooks that can 

be created and shared by researchers (or research teams).  

2) Plain orchestrating service (pos)  

The plain orchestrating service (pos) [32, 33] provides two 

components, a testbed controller and an experiment workflow.  

The testbed controller takes care of the allocation and management 

of experimental resources. It provides bare-metal access to the 

experiment nodes. Images for the experiment nodes are provided in 

the form of live Linux images. Using live images for experiments 

has two benefits: First, rebooting an experiment node helps reset the 

system to a well-defined state. Second, testbed users are aware of 

the non-permanence of their configuration, gently pushing users 

towards documenting and automating experiment configuration. 



 
Figure 1: pos experimental workflow 

Figure 1 demonstrates the pos experiment workflow, divided 

into the setup, measurement and evaluation phases. Three nodes are 

participating in the displayed experiment, a device under test (DuT), 

a load generator (LoadGen), and the controller. An experiment can 

be started by executing the experiment script on the controller. The 

controller reboots DuT and LoadGen. After the reboot, the two 

nodes can be configured using a setup script. The pos controller 

further provides variables (vars) to parameterize the setup. The 

measurement phase starts after the setup phase. There, different 

measurement scripts are executed on the experiment hosts. 

Measurements are typically parameterized using so-called loop 

variables. The number of loop variables determines how often the 

measurement script is run. For each run, a separate set of result files 

is generated and associated with a specific instance of loop variables 

acting as metadata to describe the result files. Result files are 

uploaded to the controller for further processing. After all result 

files are collected, the evaluation phase begins using an evaluation 

script to perform the evaluation. A publication script finally collects 

and prepares all experiment artifacts for release. The well-defined 

file structure of the experiment allows for an automated collection 

and processing of files. A possibility to present the results is a 

website thatcan be generated automatically and hosted on GitHub 

in conjunction with the other experiment artifacts. 

A user can write the different script files in any language of 

his/her choice, however, the hosts must be able to execute it. The 

setup script, for instance, can be a simple shell script or a more 

complex Ansible configuration. 

C. Experiment lifecycle and experiment workflow description 

1) GitHub 

GitHub is widely used for managing scientific code and data 

and, in particular, code for running experiments and processing 

experimental data. In this case, GitHub is used by scientific 

programmers in the same way as software developers, also 

benefiting from powerful functionality for code sharing, integration, 

and deployment (also referred to CI/CD process of Continuous 

Integration and Continuous Deployment).  

However, using GitHub for experiment automation is limited by 

code portability, which depends on the individual scientific 

programmer style and may not provide sufficient code structuring 

and formalised interfaces to infrastructure computational and 

storage services. 

2) Jupyter Notebook 

Jupyter Notebooks are widely used in the scientific community 

for scientific data analysis and reporting; however, recent 

developments and uses are targeting the full scientific research 

cycle, including the full cycle of the experiment development and 

exploration. 

The CHI uses Jupyter Notebooks for defining and running 

experimental workflows. However, in Chameleon, Jupyter 

Notebooks are used primarily for running experiments on already 

provisioned experimental infrastructure, which is provisioned in the 

infrastructure provisioning workflow. A Paper by Beg et al. [35] 

describes other cases of using Jupyter Notebooks for supporting 

reproducible experimental research. 

SLICES-RI will review the Grid’5000 [36] experience to 

support using Jupyter Notebooks for different aspects/activities in 

the experiment automation and experimental research data 

management [37]:  

● Notebooks as experiment drivers. These notebooks run the 

experiments from their beginning to their end, starting with 

resource reservations and going at least to data collection;  

● Notebooks as experimental payload. The code contained within 

these notebooks is the core of experiments. These notebooks 

run on the reserved resources, and either contain or control the 

computation that is the subject matter of the experiment; 

● Notebooks for post-processing. These notebooks are executed 

after an experiment to process the results. Supporting this usage 

will be dependent on a testbed infrastructure and the type of 

post-processing expected; 

● Notebooks for exploratory programming are exploited by users 

as an enhanced interactive shell to create new code through trial 

and error; 

● Notebooks as tutorials. Those are notebooks provided to the 

users by teachers that aim to present and explain to the users 

some specific concepts. 

The usage of Jupyter Notebooks was already put in place in the 

context of the Fed4FIRE+ project by several testbeds offering 

Jupyter Notebooks to reproduce experiments. These testbeds are 

currently included as legacy testbeds in SLICES-RI via partners. 

To achieve experiment reproducibility, the experimental 

platform must provide well-defined interfaces to experimental 

resources and data services that can be connected to the Jupyter 

programming environment. This is available in the Chameleon 

scientific cloud and provided by the major public cloud and Big 

Data infrastructure providers such as AWS with their SageMaker 

Studio Notebook [37] and Microsoft Azure Data Studio Notebook 

service [38] that is also supported by the Azure DevOps for Data 

Science platform [39]. 

3) Common Workflow Language (CWL)  

To achieve experiment workflow portability (in addition to 

experiment reproducibility), the scientific community uses 

scientific workflow languages. Succeeding a multitude of workflow 

languages introduced in the past, the CWL is gaining popularity in 

recent times. 

The CWL [40] is a specification to describe digital workflows. 

It describes how multiple steps in a computational workflow and 

their connections should be defined. CWL itself is only a 

specification, so a user needs a program to execute workflows called 



runner. A reference implementation of such a runner is cwltool [41], 

however several workflow management systems implement CWL 

support, for example, Apache Airflow [42], StreamFlow [43], and 

Toil [44]. Other workflow management systems offer partial or 

experimental support, such as Galaxy [45]. 

The standard defines CWL tools described in ‘.cwl’ files using 

a subset of YAML. These tools can execute command line tools, 

evaluate javascript expressions, or define abstract operations to be 

implemented by a specific CWL runner. For each tool, the inputs 

and outputs need to be defined.       Requirements can be listed, such 

as required software, the ability to process inline Javascript or 

certain files or directories to be present during a run time, among 

other requirements. 

These steps can be combined into workflows, also defined in 

‘.cwl' files using a subset of YAML. Each workflow contains a list 

of steps, with each step having defined inputs and outputs. These 

steps are not necessarily supposed to be executed in order but rather 

according to their dependencies on other steps. Independent steps 

can thus also be run in parallel. These steps execute CWL tools, 

either defined in the workflow itself or referencing a tool defined in 

a separate CWL file. The steps can also execute other CWL 

workflows, which allows for workflows to be nested. This works 

because, for each workflow, the inputs and outputs need to be 

defined. Finally, arbitrary metadata and metadata according to 

certain schemas can be defined in the workflows as well. The inputs 

of a workflow or tool are listed in a separate ‘.yml’ file provided to 

the CWL runner at runtime. A tool or workflow step can also be set 

to scatter, meaning it runs multiple times for each element of an 

array of inputs. 

D. CWL for a sample experiment  

The data processing step in the sample experiment was 

implemented using CWL, specifically using the reference 

implementation of a CWL runner. The full workflow requires the 

AWS access credentials and the name of the DynamoDB table 

containing the sensor data. After execution, the workflow has 

produced the sensor data in CSV format sorted by date-time and a 

description as well as a line chart of the sensor data. The full details 

of the presented here example can be found in the project 

deliverable to be published after the project review [46]. 

The first step of the processing runs a CWL tool that retrieves 

the MQTT sensor data from the DynamoDB table using the boto3 

python module. This tool uses AWS credentials to authenticate the 

client as well as the name of the table from which to retrieve the 

sensor data and outputs the sensor data in JSON format. The next 

step in the workflow converts the data from the JSON format to a 

CSV file using the JQ [47] command line tool. This CSV file is then 

sorted by the date-time of the sensor measurements in the next 

workflow step. The sorted CSV is one of the outputs of the 

workflow as well as the input to a CWL tool that uses the python 

pandas [48] library to create a description of the data, including 

information such as the mean and standard deviation. This 

description is the second output of the workflow. Finally, the sorted 

CSV is also used as input to a CWL tool, which uses the gnuplot 

[49] application to create a line chart of the sensor data. 

The following code shows the contents of the CWL workflow 

used for the data processing step of the sample experiment with 

comments explaining the code. The tools used in each of the steps 

are defined in separate CWL files and referenced in the workflow 

code. 

#!/usr/bin/env cwl-runner 
 
cwlVersion: v1.0 
class: Workflow 
 
# The inputs of the workflow as a whole 
# These are referenced in the first workflow step 
inputs: 
  AWS_ACCESS_KEY_ID: string 
  AWS_SECRET_ACCESS_KEY: string 
  table_name: string 
 
# In the following list the workflow steps are defined 
steps: 
  # the first step, called "get_data" gets the sensor data from the 

DynamoDB table 
  get_data: 
    run: ../tools/get-dynamodb-data.cwl # the CWL tool is defined 

in this file 
    # the following list defines the inputs to the CWL tool 
    in: 
      AWS_ACCESS_KEY_ID: AWS_ACCESS_KEY_ID 
      AWS_SECRET_ACCESS_KEY: AWS_SECRET_ACCESS_KEY 
      table_name: table_name 
    # the output of this workflow step is defined as "dynamodb_data" 
    out: [dynamodb_data] 
   
  # the second step of the workflow converts the sensor data from 

JSON to CSV 
  convert_to_csv: 
    run: ../tools/json-to-csv.cwl 
    in: 
      # the input is the output of the previous step, 

"dynamodb_data" 
      json_file: get_data/dynamodb_data 
    out: [csv_file] 
 
  # the third step sorts the sensor data in CSV format 
  sort_csv: 
    run: ../tools/sort.cwl 
    in: 
      file_to_sort: convert_to_csv/csv_file 
      sort_field: 
        default: 2 # which column to sort by 
    out: [sorted_file] 
 
  # the 4th step creates a description of the data 
  describe_data: 
    run: ../tools/describe-csv.cwl 
    in: 
      # the input is the sorted CSV file from the previous step 
      csv_file: sort_csv/sorted_file 
    out: [data_description] 
 
  # the 5th step generates a line plot 
  generate_graph: 
    run: ../tools/graph-csv.cwl 
    in: 
      # the input is also the sorted CSV file from the 3rd step 
      csv_to_plot: sort_csv/sorted_file 
    out: [plot] 
 
# the outputs of the workflow as a whole are the sorted CSV file 

from the third 
# step, the data description from the 4th step and the line chart 

from the 5th 
# step 
outputs: 
  data_csv: 
    type: File 
    outputSource: sort_csv/sorted_file 
  description: 
    type: File 
    outputSource: describe_data/data_description 
  plot: 
    type: File 
    outputSource: generate_graph/plot 

The deployment and execution of the experiment is done with 

Ansible playbooks and CloudFormation infrastructure component 

templates. The solution has been deployed and tested on the AWS 

cloud and proved that the use of templates both for cloud resources 



and infrastructure and for experiment workflow provides an 

effective instrument and platform for the SLICES experiments 

automation for the whole experiment lifecycle. 

IV. EXPERIMENTAL RESEARCH REPRODUCIBILITY IN SLICESI 

A. Adopting pos and Chameleon in SLICES  

In the following, we discuss how different approaches for 

experimental workflows can be integrated in SLICES. 

Therefore, we selected the previously discussed approaches for 

reproducible experiment workflows offered by the Chameleon and 

pos testbeds. Chameleon achieves that by using Jupyter notebooks 

to provide a single file to document and describe the experiment 

workflow and evaluation. The collection of all experimental 

artifacts within a single file allows for easy sharing of experiments. 

The pos framework uses Linux live images and a structured 

collection of scripts to run and describe experiments. Both 

approaches offer enough flexibility to be combined. The previously 

separate scripts of the pos approach can be converted to code cells 

allowing the pos workflow structure within Jupyter notebooks. To 

demonstrate the integration of pos/chameleon, we created a Jupyter 

notebook [33] representing an experiment combining both 

approaches. We see the combined workflow as a prototype for 

future SLICES experiment workflow, providing reproducibility, 

easy sharing, and flexibility for researchers 

B. PRIaaS to support RI services provisioning for Experiments 

Reproducibility  

The Platform Research Infrastructure as a Service (PRIaaS) 

proposed by the authors in the research paper [50] is proposed as an 

architectural solution to provide on-demand fully functional 

environment for experimental research on SLICES-RI to deliver 

specialised and community-oriented services. The main component 

of PRIaaS is the Actualisation platform that leverages the 

TeleManagement Forum Digital Platform Reference Architecture 

[51] and allows the composition and instantiation of a fully 

operational Virtual RI (VRI) configured for specific customer 

research purposes.  

The VRI provisioning process is based on well-known and 

commonly used DevOps tools and is supported by the management 

and operation functions. As the PRIaaS platform progresses, the 

repository of the design patterns, templates and containerized 

applications and functions will grow. PRIaaS will allow natural 

integration with the EOSC Portal and Catalog services, sharing 

resources and experiment templates.  

V. DATA MANAGEMENT INFRASTRUCTURE AND DATA 

LIFECYCLE 

A. Experimental Data Management stages 

Management of experimental data is an important aspect of 

SLICES-RI, and it includes several services that must support all 

stages of the experimental data lifecycle. As illustrated in Figure 2, 

SLICES-RI operates Data Storage and Management Infrastructure 

to support activities typical for experimental research, such as 

experiment planning and deployment (as explained in the previous 

sections), the discovery of data from internal data archives and 

external sources that are needed for correct experiment planning and 

setup as well as data publication and sharing. SLICES Data 

Management Infrastructure establishes policy for data governance 

and management, including data security and quality assurance, that 

are supported by corresponding infrastructure tools for data 

curation. Figure 2 indicates that the SLICES Data Management 

infrastructure should be inter-connected with the EOSC Scientific 

Data Infrastructure for data sharing and access.  

 

Figure 2 – SLICES Data Management stages and supporting infrastructure 

components. 

Each Data Lifecycle stage, i.e., experiment setup, data 

collection, data analysis, and finally, data archiving - typically 

works with its own data sets, which are linked and their 

transformation must be recorded in the process that is called lineage 

(that can also be extended to provenance for complex linked 

scientific data). All staged datasets need to be stored for the purpose 

and possibly reused in later processes. 

Many experiments require already existing datasets that will be 

available in the SLICES data repositories or can be 

obtained/discovered in EOSC data repositories  

B. Infrastructure components to support the experimental data 

management  

The following are requirements for robust data management 

infrastructure (DMI) for experimental data that follows from best 

practices and use cases analysis in the SLICES-DS project [8, 45]: 

RDM1. Distributed data storage and experimental data(set) 

repositories should support common data and metadata 

interoperability standards, in particular common data and metadata 

formats. Outsourcing of data storage to the cloud must be protected 

with appropriate access control and compliant with the SLICES 

Data Management policies. 

RDM2. SLICES DMI should support the whole data lifecycle. It 

should provide interfaces to experiment workflow and staging 

RDM3. SLICES DMI shall provide PID (Persistent IDentifier) and 

FDO (FAIR Digital Object) registration and resolution services to 

support linked data and data discovery that should be integrated 

with EOSC services. 

RDM4. SLICES DMI must support (trusted) data exchange and 

transfer protocols that allow policy-based access control to comply 

with the data protection regulations. 

RDM5. SLICES DMI must enforce user and application access 

control and identity management policies adopted by SLICES 

community that can be potentially federated with the EOSC 

Federated AAI 

RDM6. Procedures and policies must be implemented for data 

curation and quality assurance. 

RDM7. Certification of data and metadata repositories should be 

considered at some maturity level following certification and 

maturity recommendations by RDA 

Strategy for practical SLICES DMI deployment must include 

well-defined procedures for distributed data storage integration and 

linking to ensure data is discoverable/findable and accessible across 

all SLICES-RI. This should also relate to using external community 

and cloud-based storage, and a clear procedure should be developed 

for data migration.  



SLICES will consider connecting to and using EOSC 

community services to build a hybrid data management 

infrastructure that may include both its own data storage, as part of 

the private cloud, and external data storage offered by EOSC and 

EGI community. The use of public cloud storage and file sharing 

services will be regulated by data management policies. 

VI. CONCLUSION AND FURTHER DEVELOPMENTS 

Methodologies and tools for experimental research 

reproducibility still have a long way to go to achieve the maturity 

level to be widely adopted by different scientific disciplines. 

Following the experience and best practices in recent projects and 

ongoing research will facilitate the development of commonly 

accepted standards, specific to their respective field and will 

increase scholarly communication and research data sharing. Our 

paper presented ongoing research and developments in the SLICES-

RI related projects and proposed solutions and important building 

blocks toward experimental research reproducibility and 

automation for digital technologies and computer science. The 

proposed solution brings together tools and practices used in 

DevOps, cloud native and platform design as well as research data 

management and Open Science.  

A lot remains to be done in future work in order to make 

reproducibility practical and more widely adopted.  Important 

developments will be undertaken in the course of the SLICES-RI to 

provide valuable services for the research community. 
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