
Central Lancashire Online Knowledge (CLoK)

Title Experimental Research Reproducibility and Experiment Workflow
Management

Type Article
URL https://clok.uclan.ac.uk/45676/
DOI https://doi.org/10.1109/COMSNETS56262.2023.10041378
Date 2023
Citation Demchenko, Yuri, Gallenmüller, Sebastian, Fdida, Serge, Andreou,

Panayiotis, Crettaz, Cédric and Kirkeng, Mathias (2023) Experimental
Research Reproducibility and Experiment Workflow Management. 2023 15th
International Conference on COMmunication Systems & NETworkS
(COMSNETS). ISSN 2155-2487

Creators Demchenko, Yuri, Gallenmüller, Sebastian, Fdida, Serge, Andreou,
Panayiotis, Crettaz, Cédric and Kirkeng, Mathias

It is advisable to refer to the publisher’s version if you intend to cite from the work.
https://doi.org/10.1109/COMSNETS56262.2023.10041378

For information about Research at UCLan please go to http://www.uclan.ac.uk/research/

All outputs in CLoK are protected by Intellectual Property Rights law, including Copyright law.
Copyright, IPR and Moral Rights for the works on this site are retained by the individual authors
and/or other copyright owners. Terms and conditions for use of this material are defined in the
http://clok.uclan.ac.uk/policies/

http://www.uclan.ac.uk/research/
http://clok.uclan.ac.uk/policies/

Experimental Research Reproducibility and Experiment

Workflow Management
Yuri Demchenko

University of Amsterdam

 The Netherlands

y.demchenko@uva.nl

Sebastian Gallenmüller

Technical University of Munich

 Germany

gallenmu@net.in.tum.de

Serge Fdida

Sorbonne University

France

serge.fdida@sorbonne-universite.fr

Panayiotis Andreou

UCLan

Cyprus

PGAndreou@uclan.ac.uk

Cédric Crettaz

Mandat International

Switzerland

ccrettaz@mandint.org

Mathias Kirkeng

University of Amsterdam

The Netherlands

m.kirkeng@gmail.com

Abstract—Research reproducibility is an important factor to support

the full research life cycle; this is especially important for

experimental research, where it is required to also reproduce the

whole experiment environment and equipment setup. This paper

presents the methodology and solution proposed in the SLICES

Research Infrastructure to enable research reproducibility in modern

digital technologies for complex and large scale experimentation. The

paper provides a short overview of existing research and approaches

for experimental research reproducibility, generally including git

based experiments deployment and operation, Jupyter Notebook and

Common Workflow Language (CWL) for workflow management.

The paper describes the framework and approaches taken in the

SLICES-RI that also address research environment provisioning on

demand with the Platform Research Infrastructure as a Service

(PRIaaS) and data management infrastructure to ensure data quality

and support effective data sharing.

Keywords—Reproducibility, Experimental Research, Experiment

lifecycle, Experiment Automation, FAIR data principles, Data

Management Infrastructure, SLICES Research Infrastructure.

I. INTRODUCTION

Modern research is increasingly multidisciplinary and data

driven, emphasizing the need for effective communication between

researchers and data sharing. The Open Science initiative and

movement among research communities can address these needs

and increase the overall efficiency of scientific and technology

research [1]. Open Science is strongly supported by policy

development and funding bodies in Europe and a mandatory

requirement in the current Horizon Europe programme. In recent

years, major initiatives and projects to create the foundation and e-

Infrastructure for Open Science have been funded in Europe (in the

framework of the past Horizon 2020 and current Horizon Europe

programmes). This includes the currently operational OpenAIRE

[2] and Zenodo [3] services, the development of the European Open

Science Cloud (EOSC) [4], all support the FAIR (Findable,

Accessible, Interoperable, Reusable) data principles [5]. The FAIR

data principles were initially proposed for research data

management primarily targeted at consistent metadata

management. However, recent initiatives by the Research Data

Alliance (RDA) [6] are extending FAIR principles to scientific

software as a digital or data object.

Research reproducibility is one of the core principles of Open

Science [7]. However, developments in this area are fragmented and

lacking a common or widely used approach. One of the difficulties

is that reproducible research requires the recreation or provisioning

on demand research environment, even for general Data Science

and Analytics tasks. Reproducibility of experimental research

imposes additional requirements on the reproducible experiment

setup, including resources provisioning, experiment environment

setup, and experiment lifecycle management, which in its own turn

include experimental data lifecycle management.

Reproducibility, according to ACM [9], is defined as a three-

stage process. The first stage, repeatability, is achieved if the same

research group can recreate experiments using the same equipment.

The second stage, reproducibility, is reached if a different team can

recreate experiments on the same equipment. If an independent

team recreates experiments on their own equipment, the final stage

is reached: replicability. To incentivize reproducible research, the

ACM launched a multi-stage reproducibility award system for

scientific papers based on their definition. A study considered the

results of such a system helpful but time-consuming to implement

[10] and therefore faces a weak adoption.

The focus of our paper is the investigation of a central

component for the reproducible experimental research methodology

- a reproducible workflow to execute experiments. It should also be

supported by a consistent data management infrastructure. This

research is a part of the SLICES Research Infrastructure to support

research on digital infrastructures [8]. We aim to achieve the

following goals:

● Analyze different existing approaches for experimental

workflows

● Identify the benefits and disadvantages of these existing

approaches

● Create guidelines for an ideal experimental workflow to

validate hypotheses in computer science

The paper is structured as follows. Section II provides information

about European Open Science projects and introduces the SLICES

Research Infrastructure for digital infrastructures experimentation.

Section III gives a short overview of existing approaches and

practices on research reproducibility and solutions for experiment

facilities provisioning and workflow description. Section IV

discusses the experiment reproducibility in SLICES-RI. Section V

discusses the Data Management Infrastructure requirements, an

important component of consistent experimental research

reproducibility. The paper concludes with the summary and

suggestions for future research in Section VI.

II. OPEN SCIENCE AND FAIR DATA PRINCIPLES IN EOSC

A. European Open Science Cloud (EOSC)

EOSC is an initiative and programme by the European Union to

provide European researchers, innovators, companies and citizens

with a federated and open multi-disciplinary environment where

they can publish, find and re-use data, tools and services for

research, innovation and educational purposes [4]. So far, the EOSC

projects have created the foundation for research data

interoperability and integration for European RIs. The EOSC

Strategic Research and Innovation Agenda (SRIA) provides a

roadmap to achieve the EOSC vision and objectives, namely to

deliver an operational “Web of FAIR data and services” for science

[11]. The Minimum Viable EOSC (MVE) achieved by the end of

2021 [11], created a starting point for future EOSC development

generally coordinated by the EOSCFuture project [12]. MVE

defines EOSC Core that is designed to provide a federated data

exchange environment for research projects and communities where

data comply with FAIR principles. Ongoing developments aim at

providing a customisable research environment for researchers and

research projects using services provided by the EOSC Portal

Catalog and Marketplace [13].

The ongoing RELIANCE project intends to extend the EOSC

with a set of services for Research Lifecycle Management in

accordance with FAIR principles based on Research Objects (RO),

Data Cubes and Text Mining [14]. ROHub is a service by

RELIANCE for the storage, lifecycle management, and

preservation of scientific research, campaigns and operational

processes via research objects [15].

B. SLICES-RI to support Digital Technologies Research and

Experimentation

The Scientific Large-scale Infrastructure for Computing/

Communication Experimental Studies (SLICES) [8] is a distributed

Digital Infrastructure designed to support large-scale experimental

research focused on networking protocols, radio technologies,

services, data collection, parallel and distributed computing and, in

particular, cloud and edge-based computing architectures and

services. This encompasses the full range of network, computing,

and storage functions required for on-demand services across many

verticals and addresses new complex research challenges,

supporting disruptive science in IoT, networks and distributed

systems. SLICES will integrate multiple experimental facilities and

testbeds operated by partners providing a common services access

and integration platform. SLICES will allow academics and

industry to experiment and test the whole spectrum of digital

technologies whereby the computing, network, storage, and IoT

resources can be combined to design, experiment, operate, and

automate the full research lifecycle management.

III. RELATED WORK

This section analyzes existing approaches related to the

creation of reproducible experiment workflows.

A. Generaal Tools

Experiment results are highly dependent on a system state

during the experiment. To allow for experiment repetition and

replication, the documentation and recreation of this system state

are essential. Bajpai et al. [16] provide several recommendations to

simplify and ensure this process. Based on their recommendations

and our own experience, we recommend the following tools:

Configuration management and deployment frameworks, such as

Ansible [17], help automate this task. At the same time, automation

avoids any impact of the experimenter on the results. Version

control systems such as git [18] help track the version of

investigated source code.

A widely used tool to perform experimental evaluations is

Jupyter [19]. Jupyter provides notebooks, a convenient way to

combine documentation, code, and visual representations within a

single file that can be accessed via a web browser and easily shared

with other researchers.

B. Experiment Control

Multiple initiatives maintain and provide testbeds for research,

e.g., Fed4Fire (EU) [20], OneLab (EU) [21], Grid’5000 (France)

[22], Planetlab (global) [23], or GENI (USA) [24]. Though not

explicitly designed for reproducibility, Nussbaum [25] argues that

testbeds, such as Grid’5000 or CloudLab, allow reproducible

experiments if used correctly.

Whereas the previously mentioned approaches mainly focus on

resource allocation, there are also more high-level approaches.

These approaches define the experimental workflow. Examples of

such solutions are OMF [26] or NEPI [27] that allow the definition

and automated execution of experiment workflows. These

controllers may use one of the previously mentioned testbeds as a

backend to execute their experiments. Besides the previously

mentioned solutions, new approaches emerged that combine

resource allocation and experiment control. This integration allows

full control over the entire experiment workflow laying the

foundation to perform reproducible experiments:

1) Chameleon platform for Computer Science Research

The Chameleon cloud platform [28] is a large-scale, deeply

reconfigurable experimental platform built to support an

experimental workflow for Computer Sciences systems research.

The Chameleon Infrastructure (CHI - Cloud++) is a cloud platform

powered by OpenStack with bare metal (re-)configuration (Ironic),

using the OpenStack Blazar reservation service for experimental

resource reservation.

Chameleon uses Jupyter notebooks as an experiment definition,

execution, and sharing format. The testbed can be controlled

through libraries in the Jupyter notebook. A collection of various

experiments is provided via the Chameleon website [29, 30].

The Chameleon/CHI experimental workflow includes stages

related to resource discovery, allocation, dynamic configuration,

orchestration, and monitoring. The workflow management service

is supported by a rich library of orchestration templates and images

created by the research community.

Chameleon provides Jupyter integration for orchestration via

JupyterLab service/portal [31], which allows creating and managing

reproducible experiment workflows via Jupyter Notebooks that can

be created and shared by researchers (or research teams).

2) Plain orchestrating service (pos)

The plain orchestrating service (pos) [32, 33] provides two

components, a testbed controller and an experiment workflow.

The testbed controller takes care of the allocation and management

of experimental resources. It provides bare-metal access to the

experiment nodes. Images for the experiment nodes are provided in

the form of live Linux images. Using live images for experiments

has two benefits: First, rebooting an experiment node helps reset the

system to a well-defined state. Second, testbed users are aware of

the non-permanence of their configuration, gently pushing users

towards documenting and automating experiment configuration.

Figure 1: pos experimental workflow

Figure 1 demonstrates the pos experiment workflow, divided

into the setup, measurement and evaluation phases. Three nodes are

participating in the displayed experiment, a device under test (DuT),

a load generator (LoadGen), and the controller. An experiment can

be started by executing the experiment script on the controller. The

controller reboots DuT and LoadGen. After the reboot, the two

nodes can be configured using a setup script. The pos controller

further provides variables (vars) to parameterize the setup. The

measurement phase starts after the setup phase. There, different

measurement scripts are executed on the experiment hosts.

Measurements are typically parameterized using so-called loop

variables. The number of loop variables determines how often the

measurement script is run. For each run, a separate set of result files

is generated and associated with a specific instance of loop variables

acting as metadata to describe the result files. Result files are

uploaded to the controller for further processing. After all result

files are collected, the evaluation phase begins using an evaluation

script to perform the evaluation. A publication script finally collects

and prepares all experiment artifacts for release. The well-defined

file structure of the experiment allows for an automated collection

and processing of files. A possibility to present the results is a

website thatcan be generated automatically and hosted on GitHub

in conjunction with the other experiment artifacts.

A user can write the different script files in any language of

his/her choice, however, the hosts must be able to execute it. The

setup script, for instance, can be a simple shell script or a more

complex Ansible configuration.

C. Experiment lifecycle and experiment workflow description

1) GitHub

GitHub is widely used for managing scientific code and data

and, in particular, code for running experiments and processing

experimental data. In this case, GitHub is used by scientific

programmers in the same way as software developers, also

benefiting from powerful functionality for code sharing, integration,

and deployment (also referred to CI/CD process of Continuous

Integration and Continuous Deployment).

However, using GitHub for experiment automation is limited by

code portability, which depends on the individual scientific

programmer style and may not provide sufficient code structuring

and formalised interfaces to infrastructure computational and

storage services.

2) Jupyter Notebook

Jupyter Notebooks are widely used in the scientific community

for scientific data analysis and reporting; however, recent

developments and uses are targeting the full scientific research

cycle, including the full cycle of the experiment development and

exploration.

The CHI uses Jupyter Notebooks for defining and running

experimental workflows. However, in Chameleon, Jupyter

Notebooks are used primarily for running experiments on already

provisioned experimental infrastructure, which is provisioned in the

infrastructure provisioning workflow. A Paper by Beg et al. [35]

describes other cases of using Jupyter Notebooks for supporting

reproducible experimental research.

SLICES-RI will review the Grid’5000 [36] experience to

support using Jupyter Notebooks for different aspects/activities in

the experiment automation and experimental research data

management [37]:

● Notebooks as experiment drivers. These notebooks run the

experiments from their beginning to their end, starting with

resource reservations and going at least to data collection;

● Notebooks as experimental payload. The code contained within

these notebooks is the core of experiments. These notebooks

run on the reserved resources, and either contain or control the

computation that is the subject matter of the experiment;

● Notebooks for post-processing. These notebooks are executed

after an experiment to process the results. Supporting this usage

will be dependent on a testbed infrastructure and the type of

post-processing expected;

● Notebooks for exploratory programming are exploited by users

as an enhanced interactive shell to create new code through trial

and error;

● Notebooks as tutorials. Those are notebooks provided to the

users by teachers that aim to present and explain to the users

some specific concepts.

The usage of Jupyter Notebooks was already put in place in the

context of the Fed4FIRE+ project by several testbeds offering

Jupyter Notebooks to reproduce experiments. These testbeds are

currently included as legacy testbeds in SLICES-RI via partners.

To achieve experiment reproducibility, the experimental

platform must provide well-defined interfaces to experimental

resources and data services that can be connected to the Jupyter

programming environment. This is available in the Chameleon

scientific cloud and provided by the major public cloud and Big

Data infrastructure providers such as AWS with their SageMaker

Studio Notebook [37] and Microsoft Azure Data Studio Notebook

service [38] that is also supported by the Azure DevOps for Data

Science platform [39].

3) Common Workflow Language (CWL)

To achieve experiment workflow portability (in addition to

experiment reproducibility), the scientific community uses

scientific workflow languages. Succeeding a multitude of workflow

languages introduced in the past, the CWL is gaining popularity in

recent times.

The CWL [40] is a specification to describe digital workflows.

It describes how multiple steps in a computational workflow and

their connections should be defined. CWL itself is only a

specification, so a user needs a program to execute workflows called

runner. A reference implementation of such a runner is cwltool [41],

however several workflow management systems implement CWL

support, for example, Apache Airflow [42], StreamFlow [43], and

Toil [44]. Other workflow management systems offer partial or

experimental support, such as Galaxy [45].

The standard defines CWL tools described in ‘.cwl’ files using

a subset of YAML. These tools can execute command line tools,

evaluate javascript expressions, or define abstract operations to be

implemented by a specific CWL runner. For each tool, the inputs

and outputs need to be defined. Requirements can be listed, such

as required software, the ability to process inline Javascript or

certain files or directories to be present during a run time, among

other requirements.

These steps can be combined into workflows, also defined in

‘.cwl' files using a subset of YAML. Each workflow contains a list

of steps, with each step having defined inputs and outputs. These

steps are not necessarily supposed to be executed in order but rather

according to their dependencies on other steps. Independent steps

can thus also be run in parallel. These steps execute CWL tools,

either defined in the workflow itself or referencing a tool defined in

a separate CWL file. The steps can also execute other CWL

workflows, which allows for workflows to be nested. This works

because, for each workflow, the inputs and outputs need to be

defined. Finally, arbitrary metadata and metadata according to

certain schemas can be defined in the workflows as well. The inputs

of a workflow or tool are listed in a separate ‘.yml’ file provided to

the CWL runner at runtime. A tool or workflow step can also be set

to scatter, meaning it runs multiple times for each element of an

array of inputs.

D. CWL for a sample experiment

The data processing step in the sample experiment was

implemented using CWL, specifically using the reference

implementation of a CWL runner. The full workflow requires the

AWS access credentials and the name of the DynamoDB table

containing the sensor data. After execution, the workflow has

produced the sensor data in CSV format sorted by date-time and a

description as well as a line chart of the sensor data. The full details

of the presented here example can be found in the project

deliverable to be published after the project review [46].

The first step of the processing runs a CWL tool that retrieves

the MQTT sensor data from the DynamoDB table using the boto3

python module. This tool uses AWS credentials to authenticate the

client as well as the name of the table from which to retrieve the

sensor data and outputs the sensor data in JSON format. The next

step in the workflow converts the data from the JSON format to a

CSV file using the JQ [47] command line tool. This CSV file is then

sorted by the date-time of the sensor measurements in the next

workflow step. The sorted CSV is one of the outputs of the

workflow as well as the input to a CWL tool that uses the python

pandas [48] library to create a description of the data, including

information such as the mean and standard deviation. This

description is the second output of the workflow. Finally, the sorted

CSV is also used as input to a CWL tool, which uses the gnuplot

[49] application to create a line chart of the sensor data.

The following code shows the contents of the CWL workflow

used for the data processing step of the sample experiment with

comments explaining the code. The tools used in each of the steps

are defined in separate CWL files and referenced in the workflow

code.

#!/usr/bin/env cwl-runner

cwlVersion: v1.0
class: Workflow

The inputs of the workflow as a whole
These are referenced in the first workflow step
inputs:
 AWS_ACCESS_KEY_ID: string
 AWS_SECRET_ACCESS_KEY: string
 table_name: string

In the following list the workflow steps are defined
steps:
 # the first step, called "get_data" gets the sensor data from the

DynamoDB table
 get_data:
 run: ../tools/get-dynamodb-data.cwl # the CWL tool is defined

in this file
 # the following list defines the inputs to the CWL tool
 in:
 AWS_ACCESS_KEY_ID: AWS_ACCESS_KEY_ID
 AWS_SECRET_ACCESS_KEY: AWS_SECRET_ACCESS_KEY
 table_name: table_name
 # the output of this workflow step is defined as "dynamodb_data"
 out: [dynamodb_data]

 # the second step of the workflow converts the sensor data from

JSON to CSV
 convert_to_csv:
 run: ../tools/json-to-csv.cwl
 in:
 # the input is the output of the previous step,

"dynamodb_data"
 json_file: get_data/dynamodb_data
 out: [csv_file]

 # the third step sorts the sensor data in CSV format
 sort_csv:
 run: ../tools/sort.cwl
 in:
 file_to_sort: convert_to_csv/csv_file
 sort_field:
 default: 2 # which column to sort by
 out: [sorted_file]

 # the 4th step creates a description of the data
 describe_data:
 run: ../tools/describe-csv.cwl
 in:
 # the input is the sorted CSV file from the previous step
 csv_file: sort_csv/sorted_file
 out: [data_description]

 # the 5th step generates a line plot
 generate_graph:
 run: ../tools/graph-csv.cwl
 in:
 # the input is also the sorted CSV file from the 3rd step
 csv_to_plot: sort_csv/sorted_file
 out: [plot]

the outputs of the workflow as a whole are the sorted CSV file

from the third
step, the data description from the 4th step and the line chart

from the 5th
step
outputs:
 data_csv:
 type: File
 outputSource: sort_csv/sorted_file
 description:
 type: File
 outputSource: describe_data/data_description
 plot:
 type: File
 outputSource: generate_graph/plot

The deployment and execution of the experiment is done with

Ansible playbooks and CloudFormation infrastructure component

templates. The solution has been deployed and tested on the AWS

cloud and proved that the use of templates both for cloud resources

and infrastructure and for experiment workflow provides an

effective instrument and platform for the SLICES experiments

automation for the whole experiment lifecycle.

IV. EXPERIMENTAL RESEARCH REPRODUCIBILITY IN SLICESI

A. Adopting pos and Chameleon in SLICES

In the following, we discuss how different approaches for

experimental workflows can be integrated in SLICES.

Therefore, we selected the previously discussed approaches for

reproducible experiment workflows offered by the Chameleon and

pos testbeds. Chameleon achieves that by using Jupyter notebooks

to provide a single file to document and describe the experiment

workflow and evaluation. The collection of all experimental

artifacts within a single file allows for easy sharing of experiments.

The pos framework uses Linux live images and a structured

collection of scripts to run and describe experiments. Both

approaches offer enough flexibility to be combined. The previously

separate scripts of the pos approach can be converted to code cells

allowing the pos workflow structure within Jupyter notebooks. To

demonstrate the integration of pos/chameleon, we created a Jupyter

notebook [33] representing an experiment combining both

approaches. We see the combined workflow as a prototype for

future SLICES experiment workflow, providing reproducibility,

easy sharing, and flexibility for researchers

B. PRIaaS to support RI services provisioning for Experiments

Reproducibility

The Platform Research Infrastructure as a Service (PRIaaS)

proposed by the authors in the research paper [50] is proposed as an

architectural solution to provide on-demand fully functional

environment for experimental research on SLICES-RI to deliver

specialised and community-oriented services. The main component

of PRIaaS is the Actualisation platform that leverages the

TeleManagement Forum Digital Platform Reference Architecture

[51] and allows the composition and instantiation of a fully

operational Virtual RI (VRI) configured for specific customer

research purposes.

The VRI provisioning process is based on well-known and

commonly used DevOps tools and is supported by the management

and operation functions. As the PRIaaS platform progresses, the

repository of the design patterns, templates and containerized

applications and functions will grow. PRIaaS will allow natural

integration with the EOSC Portal and Catalog services, sharing

resources and experiment templates.

V. DATA MANAGEMENT INFRASTRUCTURE AND DATA

LIFECYCLE

A. Experimental Data Management stages

Management of experimental data is an important aspect of

SLICES-RI, and it includes several services that must support all

stages of the experimental data lifecycle. As illustrated in Figure 2,

SLICES-RI operates Data Storage and Management Infrastructure

to support activities typical for experimental research, such as

experiment planning and deployment (as explained in the previous

sections), the discovery of data from internal data archives and

external sources that are needed for correct experiment planning and

setup as well as data publication and sharing. SLICES Data

Management Infrastructure establishes policy for data governance

and management, including data security and quality assurance, that

are supported by corresponding infrastructure tools for data

curation. Figure 2 indicates that the SLICES Data Management

infrastructure should be inter-connected with the EOSC Scientific

Data Infrastructure for data sharing and access.

Figure 2 – SLICES Data Management stages and supporting infrastructure

components.

Each Data Lifecycle stage, i.e., experiment setup, data

collection, data analysis, and finally, data archiving - typically

works with its own data sets, which are linked and their

transformation must be recorded in the process that is called lineage

(that can also be extended to provenance for complex linked

scientific data). All staged datasets need to be stored for the purpose

and possibly reused in later processes.

Many experiments require already existing datasets that will be

available in the SLICES data repositories or can be

obtained/discovered in EOSC data repositories

B. Infrastructure components to support the experimental data

management

The following are requirements for robust data management

infrastructure (DMI) for experimental data that follows from best

practices and use cases analysis in the SLICES-DS project [8, 45]:

RDM1. Distributed data storage and experimental data(set)

repositories should support common data and metadata

interoperability standards, in particular common data and metadata

formats. Outsourcing of data storage to the cloud must be protected

with appropriate access control and compliant with the SLICES

Data Management policies.

RDM2. SLICES DMI should support the whole data lifecycle. It

should provide interfaces to experiment workflow and staging

RDM3. SLICES DMI shall provide PID (Persistent IDentifier) and

FDO (FAIR Digital Object) registration and resolution services to

support linked data and data discovery that should be integrated

with EOSC services.

RDM4. SLICES DMI must support (trusted) data exchange and

transfer protocols that allow policy-based access control to comply

with the data protection regulations.

RDM5. SLICES DMI must enforce user and application access

control and identity management policies adopted by SLICES

community that can be potentially federated with the EOSC

Federated AAI

RDM6. Procedures and policies must be implemented for data

curation and quality assurance.

RDM7. Certification of data and metadata repositories should be

considered at some maturity level following certification and

maturity recommendations by RDA

Strategy for practical SLICES DMI deployment must include

well-defined procedures for distributed data storage integration and

linking to ensure data is discoverable/findable and accessible across

all SLICES-RI. This should also relate to using external community

and cloud-based storage, and a clear procedure should be developed

for data migration.

SLICES will consider connecting to and using EOSC

community services to build a hybrid data management

infrastructure that may include both its own data storage, as part of

the private cloud, and external data storage offered by EOSC and

EGI community. The use of public cloud storage and file sharing

services will be regulated by data management policies.

VI. CONCLUSION AND FURTHER DEVELOPMENTS

Methodologies and tools for experimental research

reproducibility still have a long way to go to achieve the maturity

level to be widely adopted by different scientific disciplines.

Following the experience and best practices in recent projects and

ongoing research will facilitate the development of commonly

accepted standards, specific to their respective field and will

increase scholarly communication and research data sharing. Our

paper presented ongoing research and developments in the SLICES-

RI related projects and proposed solutions and important building

blocks toward experimental research reproducibility and

automation for digital technologies and computer science. The

proposed solution brings together tools and practices used in

DevOps, cloud native and platform design as well as research data

management and Open Science.

A lot remains to be done in future work in order to make

reproducibility practical and more widely adopted. Important

developments will be undertaken in the course of the SLICES-RI to

provide valuable services for the research community.

ACKNOWLEDGMENT

The research leading to these results has received funding from

the Horizon 2020 and Horizon Europe projects SLICES-DS

(951850), SLICES-SC (101008468), SLICES-PP (951850).

REFERENCES

[1] Open Science [online] https://www.fosteropenscience.eu/content/what-open-

science-introduction

[2] OpenAIRE [online] https://www.openaire.eu/en/home
[3] Zenodo. [online] https://zenodo.org/

[4] EOSC Association [online] https://eosc.eu/about-eosc

[5] FAIR Data Principles [online] https://www.go-fair.org/fair-principles/

[6] Research Data Alliance [online] https://www.rd-alliance.org/

[7] What are reproducibility and replicability? [online]

https://www.surrey.ac.uk/library/open-research/reproducibility

[8] S. Fdida, N. Makris, T. Korakis, R. Bruno, A. Passarella, P. Andreou, B.
Belter, C. Crettaz, W. Dabbous, Y. Demchenko, and R. Knopp, “Slices, a
scientific instrument for the networking community,” Comput. Commun.,
vol. 193, pp. 189–203, 2022.

[9] ACM, “Artifact Review and Badging Version 1.1,” 2020.

[10] D. Saucez, L. Iannone, and O. Bonaventure, “Evaluating the artifacts of
SIGCOMM papers,” Comput. Commun. Rev., vol. 49, no. 2, pp. 44–47, 2019

[11] Strategic Research and Innovation Agenda (SRIA) of the European Open
Science Cloud (EOSC), Version 1.0, 21 June 2021 [online]
https://op.europa.eu/nl/publication-detail/-/publication/f9b12d1d-74ea-
11ec-9136-01aa75ed71a1

[12] EOSC Future Project [online] https://eoscfuture.eu/

[13] EOSC Portal Catalog and Marketplace [online] https://marketplace.eosc-
portal.eu/

[14] RELIANCE Project [online] https://www.reliance-project.eu/

[15] ROHub [online] http://reliance.rohub.org

[16] V. Bajpai, A. Brunstrom, A. Feldmann, W. Kellerer, A. Pras, H. Schulzrinne,
G. Smaragdakis, M. Wählisch, and K. Wehrle, “The dagstuhl beginners guide
to reproducibility for experimental networking research,” Comput. Commun.
Rev., vol. 49, no. 1, pp. 24–30, 2019.

[17] Redhat Ansible, https://www.ansible.com/. Last accessed: 2022-11-16.
[18] GetHub [online] https://github.com/. Last accessed: 2022-11-16.
[19] Jupyter [online] https://jupyter.org/. Last accessed: 2022-11-16.
[20] Fed4Fire [online] https://www.fed4fire.eu/. Last accessed: 2022-11-16.

[21] OneLab [online] https://onelab.eu/. Last accessed: 2022-11-16.
[22] Grid’5000 [online] https://www.grid5000.fr/. Last accessed: 2022-11-16.
[23] Planetlab [online] https://www.planet.com/. Last accessed: 2022-11-16.
[24] Geni [online] https://portal.geni.net/. Last accessed: 2022-11-16.

[25] L. Nussbaum, “Testbeds support for reproducible research,” in Pro- ceedings

of the Reproducibility Workshop, Reproducibility@SIGCOMM 2017, Los
Angeles, CA, USA, August 25, 2017, pp. 24–26, ACM, 2017.

[26] T. Rakotoarivelo, M. Ott, G. Jourjon, and I. Seskar, “OMF: a control and
management framework for networking testbeds,” ACM SIGOPS Oper. Syst.
Rev., vol. 43, no. 4, pp. 54–59, 2009.

[27] A. Quereilhac, M. Lacage, C. D. Freire, T. Turletti, and W. Dabbous, “NEPI:
an integration framework for network experimentation,” in 19th Int Conf on
Software, Telecommunications and Computer Networks, SoftCOM 2011,
Split, Croatia, September 15-17, 2011, pp. 1–5, IEEE, 2011.

[28] Chameleon Cloud: Experiment in the Edge to Cloud continuum
https://www.chameleoncloud.org/media/filer_public/8d/a8/8da8b517-fd99-
46ce-94ea-61d4edd94531/cluster.pdf, [Last accessed 26 August 2022].

[29] K. Keahey, J. Anderson, Z. Zhen, P. Riteau, P. Ruth, D. Stanzione, M. Cevik,
J. Colleran, H. S. Gunawi, C. Hammock, J. Mambretti, A. Barnes, F.
Halbach, A. Rocha, and J. Stubbs, “Lessons learned from the chameleon
testbed,” in 2020 USENIX Annual Technical Conference, USENIX ATC
2020, July 15-17, 2020 (A. Gavrilovska and E. Zadok, eds.), pp. 219–233,
USENIX Association, 2020.

[30] Chameleon Trovi Sharing Portal, https://chameleoncloud.readthedocs.io/en/
latest/technical/sharing.html. Last accessed: 2022-11-16.

[31] JupyterLab Documentation,
https://jupyterlab.readthedocs.io/en/stable/index.html,

[32] S. Gallenmüller, D. Scholz, H. Stubbe, and G. Carle, “The pos framework: a
methodology and toolchain for reproducible network experiments,” in
CoNEXT ’21: The 17th Int Conf on emerging Networking EXperiments and
Technologies, Virtual Event, Munich, Germany, December 7 - 10, 2021 (G.
Carle and J. Ott, eds.), pp. 259–266, ACM, 2021.

[33] S. Gallenmüller, A pos Experiment in a Jupyter-Notebook
https://github.com/gallenmu/pos-jupyter/blob/main/pos-experiment.ipynb

[34] Marijan Beg, Juliette Taka, Thomas Kluyver, Alexander Konovalov, Min

Ragan-Kelley, Nicolas M. Thiéry, Hans Fangohr, Using Jupyter for
reproducible scientific workflows [online]

https://arxiv.org/ftp/arxiv/papers/2102/2102.09562.pdf

[35] Grid’5000 a computer science testbed based in France -

https://www.grid5000.fr/w/Grid5000:Home, [Last accessed 26 August 2022].

[36] Luke Bertot, Lucas Nussbaum, Leveraging Notebooks on Testbeds: the

Grid’5000 Case, Proc IEEE INFOCOM 2021 - IEEE Conf on Computer

Communications Workshops (INFOCOM WKSHPS), 2021 [online]
https://ieeexplore.ieee.org/document/9484501

[37] AWS SageMaker Studio Notebook [online]

https://docs.aws.amazon.com/sagemaker/latest/dg/notebooks.html

[38] Azure Data Studio [online] https://azure.microsoft.com/en-

gb/services/developer-tools/data-studio/, [Last accessed 26 August 2022].

[39] Team Data Science Process for data scientists, Article, 2022, [online]

https://docs.microsoft.com/en-us/azure/architecture/data-science-
process/team-data-science-process-for-data-scientists

[40] CWL: Common Workflow Language [online]

https://www.commonwl.org/v1.2/, [Last accessed 26 August 2022].

[41] CWL Tools [online] https://github.com/common-workflow-language/cwltool

[42] https://github.com/Barski-lab/cwl-airflow, [Last accessed 26 August 2022].

[43] https://streamflow.di.unito.it/, [Last accessed 26 August 2022].

[44] https://github.com/DataBiosphere/toil, [Last accessed 26 August 2022].

[45] https://galaxyproject.org/, [Last accessed 26 August 2022].

[46] SLICES-DS Deliverable D4.5: SLICES infrastructure and services integration

with EOSC, Open Science and FAIR: Recommendations and design patterns

(final report). August 2022. To be published Feb 2023

[47] jq JSON processor, https://stedolan.github.io/jq/, [online]

[48] Pandas, https://pandas.pydata.org/, [Last accessed 26 August 2022].

[49] Gnuplot, http://www.gnuplot.info/, [Last accessed 26 August 2022].

[50] Y. Demchenko, C. de Laat, W. Los, and L. Gommans, “Defining platform

research infrastructure as a service (priaas) for future scientific data
infrastructure,” in Designing Data Spaces: The Ecosystem Approach to

Competitive Advantage (B. Otto, M. ten Hompel, and S. Wrobel, eds.), pp.

241–260, Springer, 2022.

[51] IG1157 Digital Platform Reference Architecture Concepts and Principles

v5.0.1, 21 July 2020 [online]
https://www.tmforum.org/resources/reference/ig1157-digital-platform-

reference-architecture-concepts-and-principles-v5-0-0/

	I. Introduction
	II. Open Science and FAIR data principles in EOSC
	A. European Open Science Cloud (EOSC)
	B. SLICES-RI to support Digital Technologies Research and Experimentation

	III. Related Work
	A. Generaal Tools
	B. Experiment Control
	1) Chameleon platform for Computer Science Research
	2) Plain orchestrating service (pos)

	C. Experiment lifecycle and experiment workflow description
	1) GitHub
	2) Jupyter Notebook
	3) Common Workflow Language (CWL)

	D. CWL for a sample experiment

	IV. Experimental Research Reproducibility in SLICESI
	A. Adopting pos and Chameleon in SLICES
	B. PRIaaS to support RI services provisioning for Experiments Reproducibility

	V. Data Management Infrastructure and Data Lifecycle
	A. Experimental Data Management stages
	B. Infrastructure components to support the experimental data management

	VI. Conclusion and Further Developments
	Acknowledgment
	References

