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ABSTRACT Polyp segmentation within colonoscopy video frames using deep learning models has the 

potential to automate colonoscopy screening procedures. This could help improve the early lesion detection 

rate and in vivo characterization of polyps which could develop into colorectal cancer. Recent state-of-the-

art deep learning polyp segmentation models have combined Convolutional Neural Network (CNN) 

architectures and Transformer Network (TN) architectures. Motivated by the aim of improving the 

performance of polyp segmentation models and their robustness to data variations beyond those covered 

during training, we propose a new CNN-TN hybrid model named the FCB-SwinV2 Transformer. This 

model was created by making extensive modifications to the recent state-of-the-art FCN-Transformer, 

including replacing the TN branch architecture with a SwinV2 U-Net. The performance of the FCB-SwinV2 

Transformer is evaluated on the popular colonoscopy segmentation benchmarking datasets Kvasir-SEG, 

CVC-ClinicDB and ETIS-LaribPolypDB. Generalizability tests are also conducted to determine if models 

can maintain accuracy when evaluated on data outside of the training distribution. The FCB-SwinV2 

Transformer consistently achieves higher mean Dice and mean IoU scores when compared to other models 

reported in literature and therefore represents new state-of-the-art performance. The importance of 

understanding subtleties in evaluation metrics and dataset partitioning are also demonstrated and discussed. 

Code available: https://github.com/KerrFitzgerald/Polyp_FCB-SwinV2Transformer  

INDEX TERMS Medical image processing, Polyp segmentation, Deep learning, SwinV2, Transformer

I. INTRODUCTION 
 

Colorectal cancer is the second lead cause of cancer-related 

deaths worldwide. In 2020, more than 930,000 deaths 

occurred due to colorectal cancer with more than 1.9 million 

cases being diagnosed. It is estimated that by 2040 there will 

be 3.2 million new cases of colorectal cancer and that the 

number of deaths will increase to 1.6 million [1]. Colorectal 

cancer often arises from small benign polyps which progress 

over time to become malignant. Colonoscopy is widely 

considered as the gold standard among polyp screening and 

removal procedures. The procedure is performed using a 

colonoscope, a long, flexible tube with a camera and light at 

the end. The colonoscope is inserted through the patients 

rectum and into the colon, allowing clinicians to navigate 

through the colon and visually inspect targeted regions for 

abnormalities in real time. Additionally, the colonoscope can 

have an instrument channel which allows surgical tools to 

remove identified polyps, a procedure known as 

polypectomy.  

 

Colonoscopy procedures do have limitations as studies 

estimate that between 17% and 28% of polyps are missed [2] 

[3] [4]. Missed polyps can significantly impact patient health 

and it is predicted that improving polyp detection rates by 

1% would reduce the risk of colorectal cancer development 

by approximately 3% [5]. High demands on healthcare 

systems are also increasing the pressure and workloads 

placed upon colonoscopy clinicians [6]. Computer aided 

systems to support clinicians in improving the detection rate 

and characterization of polyps have therefore undergone 

significant research in recent years. Due to their excellent 

performance, deep learning models now dominate this 

research area. 
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The goal of polyp segmentation in colonoscopy images is to 

accurately identify and delineate polyps from the 

surrounding healthy tissue of the colon. Accurate 

segmentation of polyps allows for a comprehensive 

assessment of a polyp’s texture, shape and relative size 

which can be crucial in assessing the polyp’s malignancy or 

potential to develop into a malignancy. However, variability 

in patients, colonoscopy procedures (e.g. position and angle 

of colonoscope) and polyp morphologies cause images of 

polyps to differ in shape, size, color and texture. The task of 

automatic polyp segmentation using deep learning models 

remains challenging due to this variability and is exacerbated 

by the limited availability of polyp image databases. 

 

In recent years, deep learning models for the semantic 

segmentation of polyps have predominantly been 

composed of Convolutional Neural Networks (CNNs) or 

Transformer Networks (TNs). Subsequently, hybrid 

semantic segmentation models which combine the benefits 

of both CNN and TN architectures have been developed. 

Representative examples of current state-of-the-art models 

for polyp segmentation are the Fully Convolutional 

Branch-TransFormer (FCN-Transformer) [7] and DUCK-

Net [8]. The DUCK-Net model is a Fully Convolutional 

Network (FCN) whilst the architecture of the FCN-

Transformer combines the benefits of both TNs and CNNs 

by running a model of each type in parallel and combining 

the outputs which are then passed onto a prediction head 

for processing. The TN architecture used in the FCN-

Transformer is the Pyramid Vision Transformer Version 2 

(PVTv2) [9].  

 

Motivated by the aim of improving the performance of 

polyp segmentation models and their robustness to data 

outside of the training distribution, we propose a new CNN-

TN hybrid model named the FCB-SwinV2 Transformer. 

This model has been created by making extensive 

modifications to the FCN-Transformer [7]. These include 

changes to the Fully Convolutional Branch (FCB) of the 

FCN-Transformer (including the use of an increased 

number of channel dimensions and a residual post 

normalization approach) and the replacement of the PVTv2 

model within the Transformer Branch (TB) with a SwinV2 

[10] based U-Net. The reasoning behind the TB 

replacement is due to the unique shifted window-based 

self-attention mechanism employed by SwinV2 models. 

This mechanism excels in capturing complex hierarchical 

structures and should help to capture relevant information 

across various polyp morphologies to improve 

segmentation performance. 

 

Our main contributions include: 

• A novel CNN-TN hybrid deep learning model 

named the FCB-SwinV2 Transformer, created by 

making extensive modifications to the previous 

state-of-the-art FCN-Transformer [7]. 

• A performance comparison (including 

generalizability testing where possible) of the 

FCB-SwinV2 Transformer with high performing 

models on popular colonoscopy segmentation 

benchmarking datasets including Kvasir-SEG 

[11], CVC-ClinicDB [12] and ETIS-LaribPolypDB 

[13]. The FCB-SwinV2 Transformer achieves 

state-of-the-art performance. 

• An examination of common issues within polyp 

segmentation literature relating to dataset 

partitioning and averaging methodologies used to 

calculate performance metrics. Experimental proof 

of the critical importance of such issues is provided. 

 
II. Related Work 
 

This section provides an overview of the relevant work on 

the semantic segmentation of polyps. Fully Convolutional 

Networks (FCNs), Transformer Networks (TNs), and CNN-

TN hybrid architectures are described. Summaries on recent 

state-of-the-art models are provided. 

A. Fully Convolutional Networks (FCNs) 

 

One of the most influential deep learning models for medical 

image segmentation is U-Net [14]. The original U-Net model 

was a Fully Convolutional Network (FCN) which consisted 

of an encoder and decoder. The encoder used in the original 

U-Net is a CNN. CNNs consist of various stacked layers, 

each designed to sequentially process the input data. These 

layers apply filters through convolution operations, use 

pooling to reduce dimensions, and employ activation 

functions to introduce non-linearities. This structure 

effectively extracts and refines features at each stage. The 

hierarchical nature of CNNs allows the encoder to synthesize 

abstract representations and patterns, capable of representing 

specific shapes or entire objects. The decoder uses 

transposed convolutions which recover the spatial 

dimensions of the image by up-sampling the compressed 

feature maps from the encoder. Skip connections link 

decoder layers to corresponding encoder layers, thereby 

reintroducing the spatial information lost during down-

sampling. This design enables the decoder to effectively 

utilize both high-level and low-level features from the 

encoder, ensuring accurate reconstruction of segmentation 

maps. U-Net was designed as a ‘one-stage’ model, where 

images are directly processed to produce a segmentation 

map. This contrasts with two-stage [15] models where 

regions are first identified and then further analyzed for 

semantic segmentation. Recent state-of-the-art polyp 

semantic segmentation models follow a one-stage approach 

for efficiency and direct processing capability. 

 

Since the introduction of U-Net, numerous FCNs for 

semantic segmentation of polyps have evolved from the 

original U-Net architecture [8] [16] [17] [18] [19] [20] [21] 

[22] [23]. These models often incorporate advanced 
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ImageNet pre-trained CNNs into the encoder, significantly 

improving the efficiency and accuracy of feature extraction 

by leveraging pre-learned image representations. Examples 

of high performing FCN models are summarized below. 

 

The Parallel Reverse Attention Network (PraNet) [22] 

employs a parallel partial decoder to extract high-level 

features and generate a global map for initial segmentation 

guidance. It then uses a reverse attention module to mine 

polyp boundary information and employs a recurrent 

cooperation mechanism which iteratively refines the 

segmentation by aligning the initial predictions with polyp 

boundaries. The Multi-Scale Residual Fusion Network 

(MSRF-Net) [23] employs unique Dual-Scale Dense Fusion 

(DSDF) blocks to allow multi-scale information exchange 

and maintain high resolution. MSRF-Net is therefore able to 

capture both high-level and low-level features which results 

in the prediction of accurate segmentation maps. The current 

state-of-the-art FCN polyp segmentation model is DUCK-

Net [8]. This model uses the innovative DUCK 

convolutional block which can apply various filter sizes in 

parallel. This allows adaptive selection of the most effective 

filter size for each network stage. This allows the general 

localization of polyps whilst precisely  delineating their 

boundaries. In contrast to many other FCN segmentation 

models, DUCK-Net does not use any form of encoder pre-

training, demonstrating the high power of its feature 

extraction capabilities. 

 

FCNs do have inherent drawbacks which can limit their 

performance for polyp segmentation. Due to their limited 

receptive field size, FCNs can have a reduced understanding 

of the global contextual information contained within an 

image. This can cause FCN models to struggle with scale 

variability and can lead to poor generalization performance. 

B. Transformer Networks (TNs) and Hybrid Models 

 

The introduction of the Vision Transformer (ViT) [24] 

revolutionized computer vision research by using a 

Transformer Network (TN) to conduct image classification. 

Like CNNs, TNs are composed of stacked layers that 

sequentially process input data. However, TNs apply self-

attention mechanisms instead of convolution operations. 

TNs typically work by splitting images into a number of 

fixed-size patches. The patches are then flattened and 

positional embeddings are added to ensure the spatial 

relationship between patches is maintained. Layers of the 

transformer network use the self-attention mechanism to 

calculate attention scores for all pairs of image patches. This 

allows the network to assess the relative importance of each 

patch with regard to every other patch, allowing the network 

to capture global contextual information across entire 

images. As information progresses through successive 

layers, the TN is able to focus on different aspects of the 

image patches simultaneously, enhancing its feature 

extraction capability and understanding of relationships 

between image regions. The self-attention mechanisms 

ability to capture global contextual information and examine 

specific image regions enhances the TNs ability to 

understand the shape and texture of  regions which may be 

relevant for polyp segmentation. 

 

Since the introduction of the ViT, numerous polyp semantic 

segmentation models which are composed of fully TN based 

[25] [26] [27] or CNN-TN hybrid architectures  [7] [28] [29] 

[30] [31] [32] have been developed. Many of these models 

employ a U-Net inspired encoder-decoder style structure. 

CNN-TN hybrid models are now commonly used as these 

can help overcome the limitations of using pure TN models. 

The main such limitation of pure TN models is that the lack 

of engineered feature extraction processes (when compared 

to FCNs) means that pure TNs typically require large 

amounts of training data. This is problematic for polyp 

segmentation due to the small sizes and limited availability 

of polyp image databases. Examples of high performing 

CNN-TN hybrid models are summarized below.  

 

Polyp2Seg [33] uses the Pyramid Vision Transformer 

Version 2 (PVTv2) [9] as an encoder for multi-scale feature 

extraction. For each encoder stage, extracted features are 

passed into Compression Modules (CMs) to reduce the 

channel dimensions to a consistent size. The compressed 

features are then passed into Feature Aggregation Modules 

(FAMs) to directly combine lower-level and higher-level 

features. A Multi-Context Attention Module (MCAM) is 

also applied on the lowest-level feature maps to enhance the 

capture of low-level information, such as polyp texture and 

color. ESFPNet uses the Mix Transformer (MiT) [25] as an 

encoder. For each encoder stage, extracted features are 

passed into an Efficient Stage-wise Feature Pyramid (ESFP) 

decoder. The decoder generates linear predictions for each 

output stage and then linearly fuses the processed features 

together. Intermediate processed features are also 

concatenated with the previous decoder layers intermediate 

processed features. This allows the model to progressively 

integrate global features from later layers with local features 

from earlier layers to construct comprehensive feature maps. 

The FCN-Transformer [7] employs the unique approach of 

having a Transformer Branch (TB) and a Fully 

Convolutional Branch (FCB) which run in parallel. The TB 

uses the PVTv2 as an encoder which passes features to an 

enhanced Progressive Locality Decoder (PLD). The PLD  

features advanced local emphasis (LE) and stepwise feature 

aggregation (SFA) modules. The FCB is composed of 

modern residual blocks and encourages the extraction of 

features required for processing outputs of the TB into full-

size (i.e. matching ground truth resolution) segmentation 

predictions. 

 

This paper proposes extensive modifications to the 

FCN-Transformer to further improve polyp semantic 

segmentation performance. 
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III. FCB-SwinV2 Transformer Model Design 

A. Overview of existing SwinV2 Models 
 

The SwinV2 Transformer [10] was developed to tackle issues 

with training stability and resolution gaps between pre-

training and fine-tuning that arose with the original Swin 

Transformer [34]. In the original Swin Transformer, training 

instability was caused by large activation output amplitude 

discrepancies in different layers of the network. To solve this 

problem the authors of the SwinV2 Transformer developed an 

approach called ‘residual post normalization’. In this 

approach, the output of residual blocks is normalized before 

merging into the main branch of the network. This was shown 

by the SwinV2 creators to cause much milder activation 

amplitudes than in the original pre-normalization 

configuration. The authors of the SwinV2 Transformer also 

replaced the original dot product attention mechanism due to 

the finding that learnt attention maps of some blocks were 

frequently dominated by only a few pixel pairs. The dot 

product attention mechanism was therefore replaced by a 

mechanism which computes the attention logit of a pixel pair 

using a scaled cosine function. Since the cosine function is 

naturally normalized, this helps the network become more 

insensitive to the amplitude of activations. 

 

The SwinV2 Transformer network first partitions an RGB 

input image into non-overlapping patches. Each patch is a 

concatenation of the RGB pixel values which are subsequently 

passed to a linear embedding layer which projects them to 

have an arbitrary channel dimension. Patch merging layers 

then concatenate neighboring patches before passing them 

through a linear layer. This reduces the number of patches by 

a factor of 2 and increases the channel dimension by a factor 

of 2. The output of the patch merging layer is then passed 

through several successive SwinV2 transformer blocks. The 

successive SwinV2 transformer blocks are shown in Figure 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

These blocks consist of either window based multi-head self-

attention (W-MSA) (first block) or shifted window partition 

multi-head self-attention (SW-MSA) (second block) layers, 

followed by an MLP with GELU [35] activation layer and 

stages of layer normalization (LN). Residual connections are 

also present within the block. 

B. FCB-SwinV2 Transformer Architecture 

 

The overall architecture of the FCB-SwinV2 Transformer is 

shown in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The TB of the original FCN-Transformer is replaced in this 

work by a SwinV2 U-Net architecture. SwinV2 models apply  

shifted window-based self-attention mechanisms which  

excel in capturing complex hierarchical structures. It was 

hypothesized that this would help extract relevant 

information across various polyp morphologies to improve 

segmentation performance and generalizability to data 

outside of the training distribution. Empirical evidence of 

improved segmentation performance is reflected by the 

ADE20K [36] segmentation benchmark. SwinV2 models are 

capable of achieving 59.9%mIoU [10] whilst PVTv2 models 

achieve 48.7% [9]. This substantial improvement in a general 

segmentation challenge strongly indicates that SwinV2 can 

enhance polyp segmentation, both in terms of accuracy and 

reliability. 

 

The SwinV2 U-Net style architecture used in this work was 

based on a model [37] which used a Swin encoder [34] [38] 

with decoder blocks composed of ‘Spatial and Channel 

Squeeze and Excitation’ (SCSE) modules [39] [40] and 

Figure 2: Overall FCB-SwinV2 Transformer architecture. 

Figure 1: Two successive SwinV2 Transformer Blocks [13]. The 

residual post normalization configuration ensures layer 

normalization is conducted after attention layers and MLP layers. 
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standard convolution modules. The SCSE module is 

composed of a ‘Spatial Squeeze and Channel Excitation’ 

(SSCE) module and a ‘Channel Squeeze and Spatial 

Excitation’ (CSSE) module. The SSCE module takes an input 

tensor and reduces the spatial dimension using global average 

pooling. The resulting tensor is passed through convolutional 

and activation layers before performing element-wise 

multiplication with the original input tensor. This results in an 

output tensor with adaptively re-weighted channel values. The 

CSSE module takes the input tensor and reduces the channel 

dimension using convolution. The resulting tensor is passed 

through an activation layer before element-wise multiplication 

with the original input tensor. This results in an output tensor 

with adaptively reweighted spatial features. The SCSE module 

combines the outputs of the CSSE and SSCE modules using 

element-wise summation, therefore maximizing information 

propagation through the network at a pixel and channel level 

simultaneously. Element-wise summation is chosen over 

concatenation in order to avoid increasing tensor dimensions 

and therefore model complexity. The structure of the decoder 

block and SCSE module is shown in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

The resolution of input images into the SwinV2 encoder 

model (and overall FCB-SwinV2 Transformer model) used 

in this work is 384x384 due to the availability of ImageNet 

[41] pre-trained SwinV2 encoder models available within 

the PyTorch Image Model library [38]. The SwinV2 U-Net 

architecture used as the TB is displayed in Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: (a) The decoder block [35] uses channel wise 

concatenation to combine previous decoder layer output with 

encoder skip connection output. (b) The structure of the SCSE 

module which combines the output of the SSCE and CSSE modules. 

Figure 4: SwinV2-UNET [10] architecture used as the TB of the 

FCB-SwinV2 Transformer. The encoder stages reduce the spatial 

dimensions of feature maps while increasing the number of 

channel dimensions. Skip connections are used to pass feature 

maps generated by each stage of the encoder to decoder stages. 

Figure 5: Changes made to the residual block (RB). Original RB used 

by the FCN-Transformer (left) vs the RB used by the FCB-SwinV2 

Transformer (right) which features residual post normalization. The 

overall structure of the FCB is detailed fully in [7]. 
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Figure 5 shows the minor changes made to the FCB when 

compared to the FCB of the original FCN-Transformer model. 

These modifications included an increased number of channel 

dimensions (to match the number of channel dimensions 

output from the TB) and a change in the order of group 

normalization (GN), convolution (Conv) and activation (Act) 

layers in the FCB residual block (RB) inspired by the residual 

post normalization approach of the SwinV2 Transformer.  

 
IV. Experiments 

A. Dataset Selection and Partitioning 

 

The Kvasir-SEG [11], CVC-ClinicDB [12] and 

ETIS-LaribPolypDB [13] datasets have been used in this work 

to evaluate the performance of the FCB-SwinV2 Transformer. 

These datasets have been chosen because they are open access 

at the time of writing (which is not true for all popular datasets 

reported within literature) and because they are commonly 

used in colonoscopy segmentation literature to evaluate model 

performance and hence allow for comparative analysis 

between models. The Kvasir-SEG dataset consists of 1000 

images of polyps and ground truth binary segmentation masks 

of varying resolutions. The CVC-ClinicDB dataset consists of 

612 images of polyps and ground truth binary segmentation 

masks of standard resolution 384x288. The 

ETIS-LaribPolypDB dataset consists of 196 images of polyps 

and ground truth binary segmentation masks of resolution 

1225x966. However, after examining recent literature on deep 

learning polyp segmentation models which use these datasets 

for evaluation, two important issues have been identified. 

 

Firstly, many authors evaluating polyp segmentation models 

use popular dataset splitting functions (such as the 

train_test_split function from the scikit-learn python module) 

to create random training/validation/test data partitions 

(typically using an 80%/10%/10% ratio). However, for the 

relatively small image datasets used to evaluate colonoscopy 

segmentation models, minor differences in how the data is 

partitioned could cause noticeable performance changes. 

Recently this has been demonstrated for models being 

evaluated on the Kvasir-SEG dataset where performance 

changes greater than 1% were shown to occur for different 

data partitions [42]. This is significant because the current 

highest performing models are now typically separated by less 

than 1% performance differences. Random number seeds are 

often used to control the data partition, but the exact 

methodologies used to create data loaders and the specific 

random number seeds chosen are often not defined in enough 

detail. Differences in computer platforms and hidden random 

number state settings also exacerbate this problem. 

 

Secondly, many authors using colonoscopy datasets which are 

composed of images from multiple video sequences (such as 

the CVC-ClinicDB [12] and ETIS-LaribPolypDB [13] 

datasets) create random training/validation/test data partitions 

but do not provide evidence to suggest they have taken steps 

to avoid data leakage and hence images of the same polyp 

could be present in the different data partitions. Data leakage 

is possible in the CVC-ClinicDB dataset as the 612 images are 

from video frames that have been taken from 29 video 

sequences. Data leakage is also possible in the ETIS-

LaribPolypDB dataset as the 196 images are from video 

frames that have been taken from 34 video sequences. It is 

highly likely that frames from the same video sequences (and 

hence same polyps) are present across the training, validation 

and test data partitions that are evaluated and reported in 

literature when random splits have been used. 

 

To provide comparative assessment and due to noticeable 

performance changes resulting from different data partitions, 

we evaluate our model against other state-of-the-art methods 

on the Kvasir-SEG, CVC-ClinicDB and ETIS-LaribPolypDB 

datasets using the same data partitions as those used in [8] to 

train and evaluate the DUCK-Net model. This is possible 

because the DUCK-Net authors provide information detailing 

exactly which images have been used for training, validation, 

and testing. To further demonstrate the issue of noticeable 

performance changes due to different data partitions we also 

include results obtained for random data partitions of the 

Kvasir-SEG, CVC-ClinicDB and ETIS-LaribPolypDB 

datasets. All data partitions used have training/validation/test 

data partitions with an 80%/10%/10% split. Files containing 

partition information are provided in the GitHub code 

repository of this work. 

 

Due to the issue of data leakage being possible between 

partitions in the CVC-ClinicDB and ETIS-LaribPolypDB 

datasets, additional results are reported for the CVC-ClinicDB 

dataset for five training/validation/test data partitions with 

approximate 80%/10%/10% ratios where no data leakage 

occurs. This has been done to demonstrate the impact of data 

leakage on model evaluation. The data partitions with no data 

leakage were created based on a random selection of videos 

rather than images, preventing the same polyp being 

represented in the training/validation/test subsets. The video 

sequences used for validation and testing for the five data 

partitions with no data leakage are displayed in Table 1. 

 
 

Table 1: Information on the CVC-ClinicDB dataset video 

sequences used to create 5 data partitions with no data leakage. 

Partition 

Number 

Validation 

Sequences 

Validation 

Ratio 

Testing 

Sequences 

Testing 

Ratio 

1 1, 2, 3 10.95% 4, 5, 6 9.64% 

2 7, 8, 9 11.93% 10, 11, 12 8.66% 

3 13, 14, 15 10.62% 16, 17, 18 10.78% 

4 19, 20, 21 10.46% 22, 23, 24 9.15% 

5 25, 26 7.03% 27, 28, 29 10.78% 
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Generalizability tests are also conducted in this work. The 

model trained on the Kvasir-SEG dataset (using the same 

80%/10%/10% training/validation/test as DUCK-Net and 

random data partitions) is evaluated on the full CVC-ClinicDB 

dataset and the model trained on the CVC-ClinicDB dataset 

(using the same 80%/10%/10% training/validation/test as 

DUCK-Net and random data partitions) is evaluated on the full 

Kvasir-SEG dataset. It should be noted that CVC-ClinicDB 

and Kvasir-SEG were collected at different clinical sites and 

countries which further ensures dataset independence as 

different devices and acquisition protocols would have been 

used. Therefore, generalizability tests give an indication of 

how the models perform with respect to a somewhat different 

data distribution and help alleviate the identified issues as they 

greatly reduce the impact of data partition changes and 

eliminate data from the training partition leaking into the test 

partition. Such tests are also more representative of real-world 

scenarios where models are used on data sampled from 

distributions which may be different from the distribution of 

the training data. 

B. Evaluation Metrics 

 

The performance of the FCB-SwinV2 Transformer is assessed 

using Dice coefficient, Intersection over Union (IoU), 

precision, and recall metrics. These metrics are computed 

using the following formulas: 

 

𝐷𝐼𝐶𝐸 =
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
 (1) 

 

𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
 (2) 

 

𝑃𝑅𝐸𝐶𝐼𝑆𝐼𝑂𝑁 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (3) 

 

𝑅𝐸𝐶𝐴𝐿𝐿 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (4) 

 

Here, TP (True Positive) refers to correctly predicted 

segmentation pixels, FP (False Positive) represents incorrectly 

predicted pixels labeled as polyps, and FN (False Negative) 

denotes incorrectly predicted pixels labeled as non-polyp. 

 

Dice and IoU metrics are positively correlated. The Dice score 

offers a reliable estimate of the average segmentation 

performance across a test partition, while the IoU score serves 

to penalize individual instances of poor segmentation more 

substantially within the test partition. Each image in a test 

partition is input into the FCB-SwinV2 Transformer model to 

generate a binary segmentation prediction, which is then 

compared to the corresponding ground truth binary 

segmentation map to compute Dice, IoU, precision, and recall 

scores. Upon processing all images within a test partition, the 

mean Dice (mDice), mean IoU (mIoU), mean precision 

(mPrec), and mean recall (mRec) scores for the test partition 

are calculated.  

 

However, after examining recent literature on deep learning 

polyp segmentation models an important issue with how 

metrics are reported has been identified.   

 

While many models use standard metrics such as the Dice 

coefficient for model evaluation, there is variance in how these 

metrics are reported across literature. This variance stems 

from the methods used to calculate average metrics for 

datasets. The most frequently used averaging procedures are 

‘image-wise averaging’, ‘batch-wise averaging’, and ‘dataset-

wise averaging’. For image-wise averaging, each individual 

prediction map is compared with its corresponding ground 

truth map to produce a metric score for each image. These 

individual metric scores are then summed up and divided by 

the total number of images in the test set to yield an average 

score. For batch-wise averaging, prediction maps and their 

respective ground truth maps within a batch are merged to 

form larger composite prediction and ground truth maps. The 

metric score is then computed based on these aggregated 

maps. For dataset-wise averaging, all prediction maps in the 

test set are consolidated into a single composite prediction 

map, and similarly, all ground truth maps are combined. The 

metric score is determined by comparing this holistic 

prediction against the complete composite ground truth map 

(this is sometimes referred to as the ‘global score’). For many 

colonoscopy datasets there is a large variation in the pixel-

based size of polyps and corresponding ground truth 

segmentation maps which can cause discrepancies between 

each averaging method. A simple demonstration of this based 

on pixel percentage correctly classified is given in Figure 6. 

 

Figure 6: Demonstration of the discrepancies between image-wise 

averaging (top/green), batch-wise averaging using batch size of 2 

(middle/orange) and dataset-wise averaging (bottom/red). The light 

green circles represent model predictions whilst the white circles 

represent ground truth maps. 
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Many models evaluated within literature do not explicitly state 

which averaging method has been used when reporting final 

scores which can lead to problems when trying to fairly 

compare model performance. A solution would be for all 

authors to use image-wise averaging as this is likely to produce 

the most conservative scores as it captures true individual 

segmentation performance for both large and small polyps. 

 

In this work it has therefore been necessary to use different 

averaging methods to fairly compare model results reported in 

literature and demonstrate the impact of the different 

averaging techniques. To compare against results reported for 

the DUCK-Net model using the DUCK-Net data partitions, 

dataset-wise averaging was used to evaluate performance.  

 

Efforts were also made to replicate the evaluation procedure 

of the DUCK-Net model in this work which also allowed 

image-wise averaged results to be reported for the DUCK-Net 

model. When using random data partitions to compare against 

models reported in literature (excluding the DUCK-Net 

model) image-wise averaging was used as this has been found 

to provide the most conservative estimates of model 

performance. For the FCB SwinV2 Transformer design 

ablation studies and to evaluate model performance when 

ensuring no-data leakage occurs batch-wise averaging was 

used. 

 

An example of how mDice is calculated using dataset-wise 

averaging for a dataset with 𝑁 images is given below: 

 

𝑇𝑃𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑇𝑃𝑖
𝑁
𝑖=1  (5) 

 

𝐹𝑃𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐹𝑃𝑖
𝑁
𝑖=1  (6) 

 

𝑇𝑁𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐹𝑁𝑖
𝑁
𝑖=1  (7) 

 

𝑚𝐷𝑖𝑐𝑒𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑤𝑖𝑠𝑒 =
2𝑇𝑃𝑡𝑜𝑡𝑎𝑙

2𝑇𝑃𝑡𝑜𝑡𝑎𝑙+𝐹𝑃𝑡𝑜𝑡𝑎𝑙+𝐹𝑁𝑡𝑜𝑡𝑎𝑙
 (8) 

 

An example of how mDice is calculated using image-wise 

averaging for a dataset with 𝑁 images is given below: 

 

𝐷𝑖𝑐𝑒𝑖 =
2𝑇𝑃𝑖

2𝑇𝑃𝑖+𝐹𝑃𝑖+𝐹𝑁𝑖
 (9) 

 

𝑚𝐷𝑖𝑐𝑒𝑖𝑚𝑎𝑔𝑒𝑤𝑖𝑠𝑒 =
1

𝑁
∑ 𝐷𝑖𝑐𝑒𝑖

𝑁
1                           (10) 

 

Here 𝑇𝑃𝑖 , 𝐹𝑃𝑖 , 𝐹𝑁𝑖  and 𝐷𝑖𝑐𝑒𝑖 represent the number of true 

positive pixels, false positive pixels, false negative pixels, 

and dice score for the 𝑖𝑡ℎ image respectively. 

C. Computational Implementation Details 

 

The FCB SwinV2 Transformer model was implemented using 

PyTorch. The model was trained and evaluated on images of 

resolution 384x384 and predicted binary segmentation maps 

of resolution 384x384. This resolution was used due to the 

availability of ImageNet [41] pre-trained SwinV2 transformer 

models. For each of the datasets the model was trained for 200 

epochs with the loss function consisting of the sum of the 

Binary Cross Entropy (BCE) loss and dice loss. All training 

was completed using a single NVIDIA 3090 GPU which 

necessitated a batch size of 2. Total training time ranged 

between approximately 3 hours (ETIS-LaribPolypDB) and 12 

hours (Kvasir-SEG). When running in inference mode the 

model was capable of processing approximately 20 images per 

second. The AdamW [43] optimizer was used with an initial 

learning rate of 1e-5. The learning rate was reduced by a factor 

of 0.6 when the training loss did not improve over 10 epochs. 

Model weights were saved each time the validation dice score 

surpassed the previous maximum score. To generate the 

predicted segmentation map, pixel values were assigned a 

value of 1 if the model's output exceeded a threshold value of 

0.5, and 0 if it fell below this threshold. Experimental results 

demonstrated that minor adjustments to the threshold value, 

either increasing or decreasing it, led to modest improvements 

in performance, depending on the specific dataset utilized. 

However, the threshold value was kept at 0.5 so comparison 

against other models within the literature was fair. 

 
Table 2: Summary of training options/parameters used when 

training the FCB SwinV2 Transformer model. 

Training Option/Parameter Selected Option/Value 

Input Resolution 384x384 

Predicted Map Resolution 384x384 

Optimizer AdamW 

Segmentation Threshold 0.5 

Epochs 200 

Initial Learning Rate 1e-5 

Learning Rate Patience 

(epochs) 
10 

Learning Rate Reduction 0.6 

 

The data augmentations used in this work closely follows 

those employed by the authors of the original FCN-

Transformer [7]. Geometrical data augmentations applied to 

the training images and masks included: vertical and 

horizontal flips with a probability of 0.5; transposing with a 

probability of 0.5, scaling with a magnitude sampled 

uniformly from [0.5, 1.5]; shearing with an angle sampled 

uniformly from [-22.5º, 22.5º]; and affine transformations 

with rotations. Note that horizontal and vertical translations 

are sampled uniformly from [-48,48] with rotation angles 

being sampled uniformly from [-180º, 180º]. Color data 

augmentations were applied to the training images only and 
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included: color jitter with brightness factor sampled uniformly 

from [0.6, 1.6], contrast factor sampled uniformly from [0.8, 

1.2], saturation factor sampled uniformly from [0.75, 1.25] 

and hue factor sampled uniformly from [0.99, 1.01]; and 

normalization of RGB images between the interval [-1, 1]. 

D. Estimation of Model Uncertainty  

 

Uncertainty estimation in deep learning models can be broadly 

categorized into two types: epistemic and aleatoric. Epistemic 

uncertainty arises from the model's lack of knowledge due to 

limited training data and it can be potentially reduced with 

more data or changes in model architecture. In contrast, 

aleatoric uncertainty originates from the inherent noise in the 

data and remains irreducible even with additional data or 

model refinements. For polyp segmentation comprehensive 

uncertainty analysis would be ideal. This could be achieved by 

employing methods like varying random number seeds to 

induce small alterations in the model (e.g., weight 

initialization, dropout) and utilizing diverse data partitions 

(e.g., K-fold cross-validation). However, the constraints of 

computational resources often render comprehensive 

uncertainty evaluations infeasible. As such, there is a clear 

need for methods that efficiently approximate uncertainties. 

Epistemic uncertainty is particularly relevant for polyp 

segmentation, especially given the likelihood of models 

encountering out-of-distribution data when used in real-world 

clinical scenarios. Monte Carlo (MC) dropout presents a 

viable solution for approximating epistemic uncertainty. 

Dropout is a widely used regularization technique in deep 

learning models which involves the random omission of 

neurons during training to prevent model over-reliance on 

specific neurons and reduce overfitting [44]. MC dropout [45] 

[46] takes advantage of the standard dropout mechanism by 

enabling dropout during inference. This allows slightly 

different versions of the model to make predictions on images 

within the test set. By recording performance metrics across 

multiple inference runs with MC dropout, we can assess the 

variance in model outputs hence allowing approximate 

estimations of epistemic uncertainty. However, it should be 

noted that when using MC dropout, the entire capacity of the 

model is not utilized and predictions can often be less accurate 

when compared to single deterministic run values where the 

whole capacity of the network is available. In this work 100 

MC dropout model runs on selected test sets have been 

conducted to provide uncertainty estimates. 

E. FCB-SwinV2 Transformer Ablation Study 

 

In order to investigate other design architectures and help 

provide some insight into how modifications impact 

performance, additional FCB-SwinV2 Transformer model 

architectures were also developed and tested. The 

additional FCB-SwinV2 Transformer models were 

evaluated against the Kvasir-SEG [11] dataset using a 

random data partition and metrics have been calculated 

using batch-wise averaging.  

 

The first additional model tested used Convolutional Block 

Attention Modules (CBAMs)  [40] [47] within decoder 

blocks in the TB instead of SCSE modules. CBAMs are 

similar to SCSE modules as they aim to produce refined 

feature maps to maximize information propagation through 

the network. CBAM contains two sequential component 

modules called the Channel Attention Module (CAM) and 

the Spatial Attention Module (SAM). The structure of the 

CBAM is shown in Figure 7. 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The CAM first produces two tensors with reduced spatial 

dimensions from an input feature map by using parallel 

average pooling and max pooling layers. The two tensors 

are then passed through a shared MLP layer before being 

combined using element-wise summation. The resulting 

tensor is passed through an activation layer and it is then 

combined with the original feature map using element-wise 

multiplication. The new feature map is then passed to the 

SAM which produces two tensors with reduced channel 

dimensions using parallel average pooling and max pooling 

layers. The two tensors are then combined using 

concatenation before being passed through a convolution 

Figure 7: Structure of the CBAM which combines 

sequentially combines the output of the CAM and SAM. The 

mechanisms used are like that of the SCSE module. 
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layer. The resulting tensor is passed through an activation 

layer and it is then combined with the feature map produced 

by the CAM using element-wise multiplication.  

 

The second additional model tested had a TB that was based 

very closely on the original, fully-attention based Swin 

U-Net [34]. The only modifications were related to the 

replacement of the original Swin Transformer blocks with 

SwinV2 Transformer blocks.  

 

The final additional model tested used the original RB (pre-

normalization approach) of the FCN-Transformer in the 

FCB (see Figure 5). 

 
V. Results and Evaluation 

A. Results of FCB-SwinV2 Transformer Ablation 
Study 

 

Results for the additional investigated FCB-SwinV2 

Transformer model architectures evaluated against the 

Kvasir-SEG [11] dataset using a random data partition are 

displayed in Table 3. 

 
Table 3: FCB-SwinV2 Transformer model variation tests on the 

Kvasir-SEG dataset using the same random data partition. Scores 

reported here were calculated using batch-wise averaging. 

 mDice mIoU mPrec mRec 

FCB-SwinV2 

Transformer  

(Selected architecture) 

94.30 89.82 93.77 95.73 

CBAM Decoder in TB 94.10 89.44 93.73 95.26 

Fully Attention based 
SwinV2 U-Net TB 

93.25 88.87 93.56 94.90 

Original RB of FCN-

Transformer 
93.84 89.08 95.51 93.15 

 

The Fully Attention based SwinV2 U-Net TB model was 

found to perform worse than the selected FCB-SwinV2 

Transformer design (using SCSE modules in the TB 

decoder) and the FCB-SwinV2 Transformer using CBAMs 

in the TB decoder. This provides evidence that 

convolutional based decoders making use of squeeze-excite 

style mechanisms perform better than when using attention 

only mechanisms for the small data set sizes used in this 

study. The drop in performance when using the original RB 

of FCN-Transformer provides evidence that the residual 

post normalization approach within the modified RB of the 

FCB helps to improve segmentation performance. 

 

Since the additional models did not perform as well as the 

FCB-SwinV2 Transformer architecture design (described 

in Section III), they are not investigated further in this 

study. 

 

 

B. DUCK-Net Data Partitioning Results 

 

The performance of the FCB-SwinV2 Transformer using 

both image-wise averaging and dataset-wise averaging is 

assessed using DUCK-Net data partitions across the Kvasir-

SEG, CVC-ClinicDB, and ETIS-LaribPolypDB datasets, 

with results presented in Tables 3-8. Comparative analysis 

was possible owing to the DUCK-Net authors providing 

folders containing the distinct training, validation, and test 

partitions employed for each respective dataset. Where 

applicable, comparisons are made against the DUCK-Net-34 

and FCN-Transformer model results, both from prior works 

[8] and those derived from executing the readily available 

DUCK-Net-34 code base and pre-trained models, with no re-

training or fine-tuning, in the present study (this work). This 

was necessary to generate results using image-wise 

averaging during evaluation not included in the original 

paper [11]. 
 

Table 4 and Table 5 demonstrate the model’s performance 

on the Kvasir-SEG DUCK-Net data partition, employing 

dataset-wise and image-wise averaging, respectively. Both 

tables illustrate comparisons against DUCK-Net-34 results 

reported in [8] and those obtained in the current study. 
 
 

Table 4: Comparison of model performance using dataset-wise 

averaging on the Kvasir-SEG dataset against the 34 filter DUCK-

Net model and FCN-Transformer model using the DUCK-Net data 

partition. 

 mDice mIoU mPrec mRec 

FCN-Transformer 92.20 85.54 92.38 92.03 

DUCK-Net-34 95.02 90.51 96.28 93.79 

DUCK-Net-34 
 (This work) 

94.71 89.93 95.54 93.87 

FCB-SwinV2 

Transformer 
95.77 91.88 96.78 94.78 

 

 

Table 5: Comparison of model performance using image-wise 

averaging on the Kvasir-SEG dataset against the 34 filter DUCK-

Net model using the DUCK-Net data partition. 

 mDice mIoU mPrec mRec 

DUCK-Net-34 
(This work) 

93.91 89.38 94.81 94.22 

FCB-SwinV2 

Transformer 
94.88 90.82 95.61 94.90 

 

Tables 6 and 7 extend this analysis to the CVC-ClinicDB 

DUCK-Net data partition, adhering to the same averaging 

methods and comparative benchmarks. 
 

Table 6: Comparison of model performance using dataset-wise 

averaging on the CVC-ClinicDB dataset against the 34 filter 

DUCK-Net model and FCN-Transformer model using the DUCK-

Net data partition.  

 mDice mIoU mPrec mRec 

FCN-Transformer 93.27 87.40 97.28 89.58 

DUCK-Net-34 94.78 90.09 94.68 94.89 

DUCK-Net-34 

(This work) 
94.64 89.82 94.42 94.86 

FCB-SwinV2 
Transformer 

94.89 90.28 95.43 94.36 
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Table 7: Comparison of model performance using image-wise 

averaging on the CVC-ClinicDB dataset against the 34 filter 

DUCK-Net model using the DUCK-Net data partition. 

 mDice mIoU mPrec mRec 

DUCK-Net-34 

(This work) 
92.65 87.44 93.75 92.64 

FCB-SwinV2 

Transformer 
93.32 88.09 93.71 93.38 

 

The model’s performance is also examined using the ETIS-

LaribPolypDB DUCK-Net data partition with results 

detailed in Tables 8 and 9. 
 

Table 8: Comparison of model performance using dataset-wise 

averaging on the ETIS-LaribPolypDB dataset against the 34 filter 

DUCK-Net model and FCN-Transformer model using the DUCK-

Net data partition. 

 mDice mIoU mPrec mRec 

FCN-Transformer 91.63 84.55 96.33 87.36 

DUCK-Net-34 93.54 87.88 93.09 94.00 

DUCK-Net-34 

(This work) 
92.77 86.52 91.76 93.81 

FCB-SwinV2 

Transformer 
95.03 90.54 94.73 95.34 

 
Table 9: Comparison of model performance using image-wise 

averaging on the ETIS-LaribPolypDB against the 34 filter DUCK-

Net model using the DUCK-Net data partition. 

 mDice mIoU mPrec mRec 

DUCK-Net-34 

(This work) 
81.76 75.98 82.10 82.48 

FCB-SwinV2 

Transformer 
91.70 85.40 91.93 92.10 

 

The generalizability performance of the FCB-SwinV2 

Transformer (using dataset-wise averaging to allow for 

comparisons against [8]) when trained on the Kvasir-SEG 

dataset using the DUCK-Net data partitions and evaluated on 

the CVC-ClinicDB dataset and when trained on the 

CVC-ClinicDB dataset using the DUCK-Net data partitions 

and evaluated on the CVC-ClinicDB dataset are displayed in 

Table 10 and Table 11 respectively. Note that the same data 

partitions are used (rather than re-training using all available 

data within a dataset) as this approach is used by other 

models within literature and hence allows fair comparison 

between models. 

 
Table 10: Comparison of model generalizability performance 

using dataset-wise averaging when trained on the Kvasir-SEG 

dataset using the DUCK-Net data partitions and evaluated on the 

CVC-ClinicDB dataset against the 34 filter DUCK-Net model and 

FCN-Transformer model. 

 mDice mIoU mPrec mRec 

FCN-Transformer 83.14 71.14 88.39 78.48 

DUCK-Net-34 82.11 69.65 88.60 76.50 

FCB-SwinV2 

Transformer 
88.11 78.74 91.19 85.22 

 

Table 11: Comparison of model generalizability performance 

using dataset-wise averaging when trained on the CVC-ClinicDB 

dataset using the DUCK-Net data partitions and evaluated on the 

Kvasir-SEG dataset against the 34 filter DUCK-Net model and 

FCN-Transformer model. 

 mDice mIoU mPrec mRec 

FCN-Transformer 88.00 78.58 96.59 80.82 

DUCK-Net-34 82.51 70.23 77.40 88.34 

FCB-SwinV2 
Transformer 

88.64 79.59 94.23 83.67 

 

A visual comparison of mDice scores across all datasets and 

generalizability tests using dataset-wise averaging for the 

DUCK-Net data partitions used is presented in Figure 8. This 

visualization highlights that the FCB-SwinV2 Transformer 

consistently achieves the highest mDice scores. 
 

As demonstrated through Tables 4-9, the FCB-SwinV2 

Transformer consistently surpasses the DUCK-Net-34 and 

FCN-Transformer models with respect to mDice and mIoU 

scores across all datasets when using the DUCK-Net data 

partitions for both types of averaging techniques used.  

 

As evidenced in Tables 10-11, The FCB-SwinV2 

Transformer also outperforms the previous state-of-the-art 

models FCN-Transformer and DUCK-Net on mDice and 

mIoU scores for both generalizability tests. This is an 

important result as the impact of random seed variations on 

data partitioning are minimized and potential data leakage is 

Figure 8: 

Figure 8: Visual comparison of mDice scores across all datasets 

and generalizability tests using dataset-wise averaging for the 

DUCK-Net data partitions. 
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eliminated (due to the training and test data being from two 

separate datasets/distributions). This means that these 

generalizability results provide a reliable evaluation of true 

relative performance between models. 

 

Whilst maintaining high mDice and mIoU scores, the FCB-

SwinV2 Transformer also typically achieves the highest 

mRec scores. In a clinical setting where the primary goal 

would be to identify and map every potential polyp and 

ensure nothing is missed, having high mRec scores (whilst 

maintaining high mDice and mIoU scores) would be 

desirable. 

 

As expected, the comparison between dataset-wise 

averaging and image-wise averaging demonstrates that 

image-wise averaging consistently produces more 

conservative results for both the 34 filter DUCK-Net and 

FCB-SwinV2 Transformer models. For the Kvasir-SEG 

dataset, the DUCK-Net model witnesses a marginal decrease 

in mDice and mIoU scores, namely 0.80% and 0.55% 

respectively, compared to a 0.89% and 1.06% reduction for 

the FCB-SwinV2 Transformer. A slightly larger impact is 

seen for the CVC-ClinicDB dataset with the DUCK-Net 

model witnessing a 1.99% decrease for the mDice score and 

2.38% decrease for the mIoU score whilst for the FCB-

SwinV2 Transformer there is a 1.57% decrease for the 

mDice score and 2.19% decrease for the mIoU score. For the 

ETIS-LaribPolypDB dataset, the impact of the different 

averaging techniques is much more pronounced with the 

DUCK-Net model experiencing a sharp 11.01% and 10.54% 

fall in mDice and mIoU scores respectively whilst there is a 

3.33% and 5.14% downturn for the FCB-SwinV2 

Transformer. It's postulated that this divergence could be 

caused by considerable variations in relative polyp sizes 

within the ETIS-LaribPolypDB, as visualized in Figure 9. 

Figure 6 also serves as a reminder of how variations in 

relative polyp sizes impact different averaging techniques. 

C. Random Data Partitioning Results 

 

To generate further comparisons of relative model 

performance, the FCB-SwinV2 Transformer is assessed 

using random data partitions across the Kvasir-SEG, CVC-

ClinicDB, and ETIS-LaribPolypDB datasets with results 

presented in Tables 12-14. Results for the FCB-SwinV2 

Transformer have been calculated using image-wise 

averaging to provide a more conservative estimate of 

performance. Where possible, comparisons are made 

against results reported in literature for recent high 

performing models. However, it is unknown which 

averaging techniques have been used when reporting mean 

scores for these other models. 

 

The performance of the FCB-SwinV2 Transformer for the 

Kvasir-SEG [11] dataset is reported in Table 12 for a 

random data partition. Comparisons to FCN-Transformer 

model performance from the original paper [7] and from 

[42] with the advanced data augmentation technique named 

‘Spatially Exclusive Pasting’ (SEP) are provided. Note that 

Results for the Meta-Polyp model reported in [48] 

(95.90mDice and 92.10mIoU) are not included in Table 12. 

This is because the Meta-Polyp authors report results for 

the Kvasir-SEG dataset after using a training dataset which 

merged 900 images from Kvasir-SEG with 550 images 

from CVC-ClinicDB. 

 
Table 12: Comparison of model performance using image-wise 

averaging on the Kvasir-SEG dataset against using random data 

partitioning.  

 mDice mIoU mPrec mRec 

PraNet [22] 90.11 84.03 90.34 92.72 

MSRF-Net [23] 92.17 89.14 96.66 91.98 

Polyp2Seg [33] 92.90 88.20 - - 

ESFPNet-L [30] 93.10 88.70 - - 

FCN-Transformer 
[7] 

93.85 89.03 94.59 94.01 

FCB-SwinV2 

Transformer 
94.04 89.49 93.95 95.16 

FCN-Transformer 
+ SEP [42] 

94.11 90.02 - - 

 

The performance of the FCB-SwinV2 Transformer for the 

CVC-ClinicDB dataset is reported in Table 13 for a random 

data partition. Comparisons to FCN-Transformer model 

performance and other high performing models are 

included for comparison. 

 
Table 13: Comparison of model performance using image-wise 

averaging on the CVC-ClinicDB dataset against using random 

data partitioning.  

 mDice mIoU mPrec mRec 

Polyp2Seg [33] 92.90 88.10 - - 

PraNet [22] 93.58 88.67 93.70 93.88 

MSRF-Net [23] 94.20 90.43 94.27 95.67 

FCN-Transformer 
[7] 

94.69 90.20 95.25 94.41 

ESFPNet-L [30] 94.90 90.70 - - 

FCB-SwinV2 

Transformer 
95.19 91.00 94.79 95.82 

 

Figure 9: Demonstration of the large differences in relative 

polyp sizes contained within the ETIS-LaribPolypDB 

dataset [14]. 
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The performance of the FCB-SwinV2 Transformer when 

trained and evaluated using the ETIS-LaribPolypDB. The 

results are displayed in Table 14. 

 
Table 14: Comparison of model performance using image-wise 

averaging on the ETIS-LaribPolypDB using a random data 

partition. 

 mDice mIoU mPrec mRec 

PraNet [22] 62.80 56.70 - - 

Polyp2Seg [33] 82.00 73.80 - - 

ESFPNet-L [30] 82.30 74.80 - - 

FCB-SwinV2 

Transformer 
91.88 85.63 92.97 91.95 

 

The generalizability performance of the FCB-SwinV2 

Transformer (using image-wise averaging to ensure 

conservative values) when trained on the Kvasir-SEG dataset 

using a random data partition and evaluated on the CVC-

ClinicDB dataset and when trained on the CVC-ClinicDB 

dataset using a random data partition and evaluated on the 

Kvasir-SEG dataset are displayed in Table 15 and Table 16 

respectively. Note again that the same data partitions are 

used (rather than re-training using all available data within a 

dataset) as this approach is used by other models within 

literature and hence allows fair comparison between models. 

 
Table 15: Comparison of the model generalizability performance 

using image-wise averaging when trained on the Kvasir-SEG 

dataset using a random data partition and evaluated on the 

CVC-ClinicDB dataset. 

 mDice mIoU mPrec mRec 

PraNet [22] 79.12 71.19 81.52 83.16 

MSRF-Net [23] 79.21 64.98 70.00 90.01 

FCN-Transformer 

[7] 
87.35 80.38 89.95 88.76 

FCB-SwinV2 
Transformer 

87.77 80.78 89.83 89.29 

 
Table 16: Comparison of the model generalizability performance 

using image-wise averaging when trained on the CVC-ClinicDB 
dataset using a random data partition and evaluated on the 

Kvasir-SEG dataset against other high performing models. 

 mDice mIoU mPrec mRec 

PraNet [22] 79.50 70.73 76.87 90.50 

MSRF-Net [23] 75.75 63.37 83.14 71.97 

FCN-Transformer 

[7] 
88.48 82.14 93.54 87.54 

FCB-SwinV2 
Transformer 

89.35 83.34 94.26 88.15 

 

A visual comparison of mDice scores across all datasets and 

generalizability tests using image-wise averaging for the 

random data partitions is presented in Figure 10. This 

visualization highlights that the FCB-SwinV2 Transformer 

once again consistently achieves the highest mDice scores. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The FCB-SwinV2 Transformer achieves the highest mDice 

and mIoU scores for both the CVC-ClinicDB and ETIS-

LaribPolypDB datasets. For the Kvasir-SEG dataset, the FCB-

SwinV2 Transformer achieves the second highest scores for 

the mDice and mIoU metrics behind only the FCN-

Transformer trained using the advanced SEP data 

augmentation technique. When compared to baseline models 

(i.e. those only using standard data augmentation techniques) 

the FCB-SwinV2 Transformer achieves the highest scores for 

the mDice and mIoU metrics.  

 

The FCB-SwinV2 Transformer also outperforms all previous 

high performing models on mDice and mIoU scores for both 

generalizability tests conducted using image-wise averaging. 

Once again, the importance of this result should be stressed as 

the effects of potential data leakage are eliminated. For future 

generalizability tests the impact of random seed variations 

could be reduced further by training using 90% or 95% of 

images within a dataset. Once again, the FCB-SwinV2 

Transformer typically achieves the highest mRec scores 

(when still maintaining high mDice and mIoU scores) which 

could be desirable in clinical settings where the main aim is to 

identify and map every polyp present. 

 

When comparing results for image-wise averaging for each 

dataset, model performance varies noticeably between the 

Figure 10: Visual comparison of mDice scores across all datasets 

and generalizability tests using image-wise averaging for random 

data partitioning. 
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DUCK-Net and random data partitions. This demonstrates the 

issue of noticeable performance changes due to differences in 

data partitioning. Since the FCB-SwinV2 Transformer 

outperforms other models across each dataset, using both the 

DUCK-Net and random data partitions, this provides further 

confidence that the model achieves state-of-the-art results. 

D. CVC-ClinicDB No Data Leakage Partitioning 
Results 

 

The results for the FCB-SwinV2 Transformer for the 5 

training/validation/test data partitions with no data leakage are 

reported in Table 17 and displayed in Figure 11. The mean 

scores for the partitions with no data leakage were calculated 

using batch-wise averaging. 

 
 Table 17: FCB-SwinV2 Transformer model performance on CVC-

ClinicDB dataset using training/validation/test data partitions 

with no data leakage.  

 

When no data leakage occurs the performance of the FCB-

SwinV2 Transformer model, whilst still strong, drops across 

all metrics for each of the five partitions. It is also expected 

that there would be a slight reduction in scores if image-wise 

averaging was used. For partitions 1 and 5 the performance 

drop is larger. This is likely due to the test images within 

partitions 1 and 5 being unusual when compared to the whole 

dataset. For example, partition 1 contains a video sequence 

where multiple small polyps are present which is unique when 

compared to other video sequences within the CVC-ClinicDB 

dataset. The significant reduction in scores demonstrates the 

impact of data leakage artificially increasing model 

performance for datasets like CVC-ClinicDB and ETIS-

LaribPolypDB. It is extremely likely that this behavior would 

be replicated by any other deep learning model given that the 

training and testing partitions no longer contain images of the 

same polyps.  

E. Qualitative Mask Comparisons 

 

A visual comparison of predictions made by the FCB-

SwinV2 Transformer for an image from the Kvasir-SEG 

dataset when trained on Kvasir-SEG and when trained using 

the CVC-ClinicDB dataset (i.e. generalizability test) are 

provided in Figure 12. 

Qualitative inspection of the predicted binary segmentation 

maps generated when trained using the CVC-ClinicDB 

dataset show that the model generalizes well for regular 

polyps but suffers a performance drop for large, irregular 

polyps within the Kvasir-SEG dataset (which are 

considerably different to any of the polyps within the CVC-

ClinicDB dataset). Another interesting finding of the visual 

inspection is that some ground truth maps of the Kvasir-SEG 

dataset contain sharp edges (highlighted using red arrows 

within Figure 12) when the polyp contained within the input 

image appears to have smooth edges. The segmentation 

predictions made by the FCB-SwinV2 Transformer typically 

contain smoother edges. This may suggest that predictions 

made by the FCB-SwinV2 Transformer (and other recent 

state-of-the-art models) may be approaching the maximum 

achievable performance when trained and evaluated on 

available polyp segmentation datasets particularly when 

considering intra- and inter-observer variabilities in 

generating ground truth segmentation masks. This further 

highlights the importance of generalizability tests. 

 

A comparison of predictions made by the FCB-SwinV2 

Transformer for images from the test set of the Kvasir-SEG 

dataset when trained and evaluated using the DUCK-Net 

Partition 

No. 
mDice mIoU mPrec mRec 

1 83.16 73.26 87.81 81.95 

2 85.61 78.03 91.23 81.74 

3 92.50 86.35 90.91 94.96 

4 93.65 88.26 95.10 92.63 

5 81.86 71.17 91.04 78.23 

Figure 11: FCB-SwinV2 Transformer model performance on the 

CVC-ClinicDB dataset using training/validation/test data partitions 

with no data leakage. 

Figure 12: Comparisons of predictions made by the model for the 

Kvasir-SEG dataset when trained using the Kvasir-SEG and when 

trained using the CVC-ClinicDB dataset. Red arrows highlight 

sharp edges found within ground truth segmentation maps which 

do not appear to match polyp edges within the image.  
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partition are displayed alongside predictions made by the 

DUCK-Net [8] and FCN-Transformer [7] in Figure 13.  
 

Qualitative inspection of the predicted binary segmentation 

maps generated shows that each model performs strongly. 

Across the three images presented the FCB-SwinV2 

Transformer and DUCK-Net model produce marginally 

more accurate segmentation maps than the FCN-

Transformer.  

 

Visual comparisons of predictions made by the FCB-SwinV2 

Transformer for a uniquely shaped polyp from the CVC-

ClinicDB dataset are provided in Figure 14.  

These predictions are from when the model had been trained 

using the CVC-ClinicDB random data partition and the CVC-

ClinicDB data partition which ensured no data leakage. 

Qualitative inspection of the predicted binary segmentation 

maps generated when using the random data partition shows 

that it matches the ground truth extremely well. When 

compared to the segmentation map generated ensuring no data 

leakage occurred (partition 4) we see a large drop in 

performance. This strongly demonstrates the artificially high 

performance when using a random data partition as, although 

the model has been trained and evaluated on different images, 

both training and test datasets contain images of the same 

polyp.  

F. Evaluation of Model Uncertainty 

 

The average results of the 100 MC dropout runs conducted for 

each dataset using the DUCK-Net data partitions and random 

data partitions are presented in Table 18 and Table 19 

respectively.  

 
 Table 18: Mean and standard deviation (displayed using ± 

notation) of the 100 MC dropout conducted for each dataset using 

the DUCK-Net data partitions. Image-wise averaging has been 

used during evaluation.  

Metric Kvasir-SEG CVC-ClinicDB ETIS-LaribDB 

mDice 93.46 ± 0.32 91.72 ± 0.45 84.43 ± 1.61 

mIoU 89.00 ± 0.44 86.08 ± 0.54 76.18 ± 1.47 

mPrec 94.40 ± 0.42 92.21 ± 0.56 81.83 ± 1.51 

mRec 94.32 ± 0.23 92.62 ± 0.43 90.20 ± 2.07 

 

Table 19: Mean and standard deviation (displayed using ± 

notation) of the 100 MC dropout runs conducted for each dataset 

using random data partitioning. Image-wise averaging has been 

used during evaluation. 

 

The average mDice and average mIoU scores of the 100 MC 

Dropout runs conducted for each dataset using the DUCK-Net 

data partitions and random data partitions are visualized as 

boxplots in Figure 15 and Figure 17 respectively. The single 

deterministic run values for each dataset partition (see Tables 

5, 12, 7, 13, 9 and 14) are also displayed using ‘+’ markers. 

For both the DUCK-Net and random data partitions the 

Kvasir-SEG dataset MC Dropout results exhibited high 

performance. The average mDice and average mIoU scores 

for the DUCK-Net and random partitions represented a less 

than 2% drop in performance when compared to the single 

deterministic run values (dropout deactivated during 

evaluation) reported in Table 5 and Table 12 respectively. The 

standard deviations across all metrics are small (< 0.5%), 

suggesting that the model's performance is stable across 

different Kvasir-SEG runs. 

 

For both the DUCK-Net and random data partitions, the CVC-

ClinicDB dataset MC Dropout results again exhibited high 

performance. The average mDice and average mIoU scores 

for the DUCK-Net and random partitions represented a less 

than 2.5% drop in performance when compared to the single 

deterministic values reported in Table 7 and Table 13 

respectively. With standard deviations still less than 0.6%, the 

model demonstrates stable performance across different CVC-

ClinicDB runs. However, potential data leakage (due to 

Metric Kvasir-SEG CVC-ClinicDB ETIS-LaribDB 

mDice 92.73 ± 0.39 94.29 ± 0.35 80.82 ± 1.62 

mIoU 87.59 ± 0.45 89.62 ± 0.48 71.53 ± 1.88 

mPrec 92.92 ± 0.42 93.70 ± 0.46 76.19 ± 1.91 

mRec 94.07 ± 0.32 95.43 ± 0.24 91.76 ± 1.48 

Figure 14: Comparisons of predictions made by the model for the 

CVC-ClinicDB dataset when trained using the random data 

partition and when trained using a data partition which ensured 

no data leakage. When using a random data partition, the model 

has been trained and evaluated on images of the same polyp from 

a video sequence resulting in artificially high performance. 

Figure 13: Predictions made by the FCB-SwinV2 Transformer for 

images from the test set of the Kvasir-SEG dataset when trained 

and evaluated using the DUCK-Net data partitions.  
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randomness in the data partitioning process) in the CVC-

ClinicDB dataset warrants caution in interpreting these results. 

 

The ETIS-LaribDB dataset shows a noticeable drop in 

performance for both the DUCK-Net and random data 

partitions compared to the other two datasets. Average metric 

scores fall by as much as 16% when compared to the single 

deterministic values reported in Table 9 and Table 14 

respectively. The larger standard deviations (>1.5%) suggest 

a more variable performance across different runs. The 

reduced dataset size (196 images) likely contributes to this 

increased variability and reduced performance. It is possible 

that the smaller dataset size leads to the model overfitting and 

when dropout is applied the removal of over-specialized 

neurons significantly impacts performance. 

 

The boxplots presented in Figure 15 and Figure 16 also 

provide a useful visualization of the impact of dataset 

partitioning on both the deterministic and MC Dropout results 

as for each dataset model performance varies noticeably 

between the DUCK-Net and random data partitions. 

 

 

 

 

 

 

 
VI. Conclusion 

 

This paper proposes a novel deep learning model for colon 

polyp segmentation called the FCB-SwinV2 Transformer. The 

performance of this model has been extensively investigated 

through rigorous quantitative and qualitative comparison 

against previous state-of-the-art models reported in literature. 

In addition, ablation studies and epistemic uncertainty analysis 

(estimated by MC dropout) were conducted to provide further 

insights into the performance of the FCB-SwinV2 

Transformer. The FCB-SwinV2 Transformer achieved the 

highest mDice and mIoU scores in each of the respective test 

sets used when compared to baseline models reported in 

literature. In addition, generalizability tests which followed 

the same methodology reported in literature [7] [8] [22] [23], 

were conducted with results being compared against previous 

state-of-the-art models. These generalizability tests showed 

that the FCB-SwinV2 Transformer outperformed previous 

models on mDice and mIoU scores. These results demonstrate 

the state-of-the-art performance of the FCB-SwinV2 

Transformer and its improved adaptability and applicability to 

data outside of the training distribution.  

 

The critical importance of dataset partitioning and averaging 

methodologies used to calculate performance metrics have 

also been demonstrated experimentally. It has been observed 

Figure 15: Boxplot visualization of mDice score statistics from the 

100 MC dropout runs conducted for each dataset using the 

DUCK-Net and random data partitions. 

Figure 16: Boxplot visualization of mIoU score statistics from the 

100 MC dropout runs conducted for each dataset using the 

DUCK-Net and random data partitions. 
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that data leakage can artificially increase model performance 

and that general data partitioning differences (even when there 

is no data leakage) can cause fluctuations in model 

performance. It has also been shown that when calculating 

performance metrics, image-wise averaging consistently 

yielded lower mean scores than dataset-wise averaging and is 

therefore believed to capture true individual polyp 

segmentation performance. The colonoscopy research 

community could therefore benefit from expert clinicians 

defining standardized reporting metrics and creating 

standardized K-Fold cross validation data splits on popular 

colonoscopy benchmarking datasets. 

 

Some further incremental improvements to the FCB-SwinV2 

Transformer and training process could also be made which 

may enhance model performance. Examples include: using 

more advanced data augmentation techniques; replacing the 

FCB branch with an ImageNet pre-trained FCN model or 

DUCK-Net based architecture [8], and larger ImageNet pre-

trained SwinV2 encoders. 
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