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A B S T R A C T   

In a typical forensic investigation, fabric analysis plays a vital role in solving different crimes. Several types of 
textile fibre materials (cotton, polyester, denim, polypropylene, polycotton, and viscose) were analysed in the 
presence of common contaminants (blood, rainwater, seawater, sand and gunshot-residue) to evaluate the 
performance of two NIR spectrometers for in situ analysis of different crime scene conditions. The spectrometers 
used were SCIO® by Consumer Physics and NIRscan Nano by Texas Instruments. The SCIO instrument covers the 
third overtone region (740–1070 nm) and NIRscan Nano instrument covers the first and second overtone regions 
(900–1700 nm). Spectra from both instruments were pre-processed using the PRFFECTv2 software to eliminate 
noise and smooth the data for classification model construction. The models showed high accuracy, sensitivity 
and specificity with a range of 69–100% for binary classification (one class versus others) and range of 76–100% 
for multi-class classification of fibre material. This study shows for the first time the capability of pocket-size 
spectrometers coupled with random forest models for classification of fibre material in the presence of com-
mon contaminants in a rapid and non-destructive manner, and so is suitable for investigation of crime scenes.   

1. Introduction 

In a typical forensic investigation, fabric analysis plays a vital role in 
providing clues and leads. Traditionally, fibre analysis involves a 
microscopic comparison between known and unknown fibre samples 
[1]. This is a slow and tedious task which requires a well-equipped 
laboratory and trained staff to carry out the whole process. Historical-
ly, identification of specific fibre types has provided the key evidence in 
many different types of criminal cases including murder, sexual assault, 
and hit and run. The fibre materials most frequently involved in criminal 
cases are cotton, polyester, polypropylene, polycotton, viscose, and 
denim [2]. Rapid, efficient and precise methods for fibre confirmation at 
the crime scene are highly sought to enable the police, forensic and 
judicial services to benefit from better data sooner. 

In addition to the identification of the fibre, the identification of the 
dye used within the textile is often of interest [3]. Commonly, in the 

forensic examination of dyed fibres, extraction methods are used and 
combined with chromatographic or electrophoretic analysis for dye 
characterisation [4,5]. High performance liquid chromatography 
(HPLC) has been widely applied for dye analysis of fibres in forensic 
science in cases of single and mixed dyes [6]. However, this method 
requires destruction of the forensic sample which is not considered 
favourable during the forensic process. Alternatively, near-infrared 
spectroscopy (NIRS) is a technique which does not contaminate or 
damage the fabric sample during the forensic analysis process and is 
considered to be more advanced and efficient. In NIRS, light is absorbed 
at specific frequencies corresponding to molecular overtones and com-
bination vibrations [7]. 

NIRS has shown promising results in different areas such as the food 
industry, polymer analysis, fuel analysis and textile fibres identification 
[8]. A few studies have explored the use of NIRS coupled with the 
random forest algorithm in different areas, as it has been shown to be a 
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promising algorithm for classification purposes [9-11]. NIRS has been 
investigated for forensic examination of different materials such as illicit 
drugs, faked documents, currency, bloodstains and explosive materials 
[11]. Benchtop NIRS instruments and cameras have been widely 
investigated in the identification of the natural materials that make up 
textile fibres, including those from plants and animals [12-14]. Several 
studies have shown NIRS joined with principal component analysis 
(PCA), partial least squares discriminant analysis (PLS-DA) and 
soft-independent modelling of class analogies (SIMCA) can be used to 
discriminate between textile types with accuracies, sensitivities and 
specificities above 90% [13,15]. Such classification studies have been 
applied to identify animal fibres [16], cashmeres [17], wool-cashmere 
blends [18], cotton fibres [19] and other fibres from different plant 
origins [13,20]. Moreover, accurate classification of four fibre materials 
of plant and animal origin (cotton, flax, silk and cashmere) has been 
achieved by visible-NIRS combined with PCA and least squares support 
vector machines (PCA-LS-SVM) [15]. 

While some previous studies have shown satisfactory results for 
fabric analysis, all of these approaches are laboratory based and time 
consuming. None of these approaches are applicable for in situ analysis 
at a crime scene. The optics industry has recently been revolutionised by 
the commercialisation of miniaturised NIR sensors, and these have 
begun to be used for non-invasive forensic examination. This has 
included the use of miniature NIR instruments for differentiation of 
authentic and counterfeit banknotes [14], and instant identification of 
body fluid stains (blood) at the crime scene [21]. Applications for textile 
analysis are also rising as miniature NIR instruments are low-cost, 
compact, end-user friendly, small in size and have decent performance 
[21-23]. In a previous study, we investigated the use of the pocket-size 
NIR spectrometers (SCIO and NIRscan Nano) for identification of clean 
textile fibres in-situ but that work did not consider the kind of fibre 
contamination that would be expected at crime scenes [22]. 

The aim of the current study is to investigate NIR nano size spec-
trometers (SCIO and NIRscan Nano) for identifying and classifying 
contaminated textile fibres for potential applications in the crime scene. 
Both instruments are non-destructive, record the diffuse reflectance of 
the sample, and have short scanning times (few seconds). Moreover, no 
sample preparation is needed for fibres (i.e. dye extraction), which make 
the instruments suitable for direct analysis of fibres at the crime scene. 
The SCIO covers the wavelength range of 740 – 1070 nm, which rep-
resents the third overtone in the NIR spectrum [21]. The NIRscan Nano 
comprises the wavelength range of 900 – 1700 nm, corresponding to the 
first and second overtone regions [24]. The data were further refined 

using a variety of spectral pre-processing techniques from which the best 
ones were identified. Classification was performed with random forest 
[25,26]. 

2. Materials and methods 

2.1. Materials 

In this study, the textile fibres classes were the common fibre ma-
terials found at different crime scenes worldwide. The fabrics were 
contaminated with different substances that they might be commonly 
exposed to at the crime scene: blood; gunshot-residue (GSR); sand; rain 
water; and sea water. A total of 210 fabric samples were collected from 
various British and European sources. These comprised 35 samples of six 
different materials that are commonly encountered in forensic work: 
cotton, polyester, denim, polypropylene, polycotton and viscose. 

The contaminants were applied to all samples in each fabric classes 
in a controlled environment in the laboratory. A defibrinated horse 
blood was applied as a 50 µL pipette droplet on to the fabric surface. For 
the gunshot-residue, the fabrics were hung on a board, and were shot 
with a 9 mm shotgun, in an indoor shooting range. For the other 
contamination types, the fabrics were immersed into vessels of sand, 
rainwater or sea water as appropriate. 

2.2. Data collection 

Spectra of textile fabrics were collected using the NIRscan Nano and 
SCIO spectrometers. The materials were placed on a flat benchtop, and a 
shade was used and the curtains were closed for measurements made 
using the SCIO and NIRscan Nano instruments, respectively, to avoid 
any external light source. 

The distance from the SCIO instrument to the fabric sample was 5 
mm for all measurements. Spectra were collected over the 740 – 1070 
nm wavelength range using the SCIO Lab mobile App for iOS and data 
were stored in the cloud. The scan resolution for the SCIO instrument is 5 
– 10 nm and the illumination spot diameter is 1 cm. The NIRscan Nano 
sensor was placed directly in contact with the samples, as this was found 
to be the optimal position after some trials. The NIRscan Nano sensor 
was used to acquire spectra over the 900 – 1700 nm wavelength range 
with a resolution of 6.35 nm and was controlled by PC software (NIR-
scan Nano EVM). A labsphere Spectralon material 99% standard disc 
was used as a reference sample. 

Spectra were acquired of five different areas for each of the 210 

Fig. 1. Workflow for in situ analysis of fabric samples using SCIO and NIRScan Nano sensors: application of the contaminant to the fabric samples; spectral 
acquisition; construction of models; and classification of fabric type. 
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fabric samples using the two NIR sensors, which gave rise to a total of 
1050 spectra for each sensor. A sampling area of 10 cm2 was chosen to 
avoid scanning the same area twice. The spectral acquisition time was 
less than 5 s for both instruments. 

The fabric sample data were categorised first by material, which is 
the mandatory attribute for the identification of each fabric, then colour 
and sample ID. These data categories were chosen as important meta-
data for further modelling and validation. Fig. 1 summarises the data 
collection and analysis workflow of both spectrometers. 

2.3. Data pre-processing and analysis 

Data from the SCIO and NIRscan Nano instruments were pre- 
processed, and classification models were constructed using 
PRFFECTv2, which is a user-friendly software package written for the R 
Statistical Computing Environment. It was initially released for spectral 
analysis using RF classification but has since been extended to incor-
porate over 100 different classification algorithms and many different 
approaches for spectral pre-processing. 

To build and validate the machine learning models, the data were 
subdivided 70%:30% to form the training and test sets, respectively, 
based on sample ID so that spectra from a single fabric sample only 
appeared in one partition of the data. RF hyperparameters were selected 
by a grid search to maximise Cohen’s Kappa statistics computed from 5- 
fold cross-validation on the training data. The best selected model was 
then used to predict the data in the test set. The complete process was 
repeated 51 times using different random seeds to partition the training 
and test sets. The statistics reported below are averages over all 51 
resamples. This process corresponds to nested cross-validation in which 
5-fold cross-validation in the inner loop is used to tune the machine 
learning hyperparameters, and 51-fold Monte Carlo cross-validation in 
the external loop is used as an independent test of the model’s predictive 
accuracy. Both binary (one material versus all others) and multiclass 
classification models were built using random forest. A total of six binary 
classification models were built, one for each of the different fibre types. 
In each case, the fibre of interest was treated as the positive class (e.g. 
cotton) and the union of all other fibre types formed a single negative 
class (e.g. polyester, polycotton, denim, viscose, and polypropylene). 

PRFFECTv2 calculates several different metrics to assess the perfor-
mance of the machine learning models. Accuracy is the fraction of the 
spectra that are classified correctly. Sensitivity is the fraction of the real 
positive class that are classified correctly. Specificity is the fraction of the 
real negative class that are classified correctly. Each of these statistics is 
computed for both cross-validated (e.g. AccuracyCV) and test set (Accu-
racyTE) predictions. The statistics are defined below in terms of the 
number of real positives (P), real negatives (N), true positives (TP), true 
negatives (TN), false positives (FP) and false-negative (FN) [23,27]. 

Sensitivity =
TP

(TP + FN)
=

TP
P  

Specificity =
TN

(TN + FP)
=

TN
N  

Accuracy =
(TP + TN)

(TP + FP + FN + TN)
=

(TP + TN)

(P + N)

PRFFECTv2 provides several different data pre-processing methods, 
including binning with various factors, smoothing with various methods 
and parameters, different normalisation methods and baseline correc-
tions techniques. Binning involves modifying the resolution of the 
spectral data by replacing absorbance values of n neighbouring wave-
length by a single value, their mean; n is referred to as the “binning 
factor”. The binning operation is carried out by stepping through the 
dataset from the low to high wavelength in steps of n such that each of 
the original wavelength only contributes to one bin. Smoothing was 
carried out using Savitzky-Golay filtering, wavelet denoising, and local 
polynomial fitting with gaussian weighting. The baseline correction 
methods included taking first and second derivatives of the spectra, a 
rubberband baseline correction, and a polynomial baseline correction. 

Accordingly, models were created with different pre-processing 
methods in the sequence of normalisation, baseline correction, 
smoothing and binning. As PRFFECTv2 has been investigated previously 
with a similar dataset, the models were created based upon the best five 
pre-processing techniques combinations mentioned in the reference 
[22]. Table 1 shows the combinations of pre-processing techniques used 
with the SCIO and NIRscan Nano data sets in the binary and 

Table 1 
The combinations of pre-processing methods used in the building of binary and multiclass classification random forest models in PRFFECTv2 with the SCIO and 
NIRscan Nano datasets.  

Model Pre-processing method 

Binning Smoothing Normalisation Baseline Correction 

Binary classification of SCIO 
1 5 SG filtering (order 1) Vector Second Derivative 
2 5 Local polynomial fit with Gaussian width 2 Vector Second Derivative 
3 4 SG filtering (order 1) Vector Second Derivative 
4 4 Local polynomial fit with Gaussian width 4 Vector Second Derivative 
5 5 0 min/max Second Derivative 
Binary classification of NIRScan Nano 
1 2 0 Vector Second Derivative 
2 4 0 Vector Second Derivative 
3 0 0 min/max Second Derivative 
4 2 0 min/max Second Derivative 
5 5 0 min/max Second Derivative 
Multiclass classification of SCIO 
1 5 SG filtering (order 1) Vector Second Derivative 
2 5 Local polynomial fit with Gaussian width 2 Vector Second Derivative 
3 0 SG filtering (order 1) Vector Second Derivative 
4 5 SG filtering (order 2) min/max Second Derivative 
5 5 SG filtering (order 1) auto-scaling Second Derivative 
Multiclass classification of NIRScan Nano 
1 5 Local polynomial fit with Gaussian width 2 Vector Second Derivative 
2 2 Wavelet denoising -filter length of 2 Vector Second Derivative 
3 0 Wavelet denoising -filter length of 4 Vector Second Derivative 
4 0 Wavelet denoising -filter length of 4 min/max Second Derivative 
5 4 Wavelet denoising -filter length of 8 min/max Second Derivative 

Additionally, the RF model uses the Gini impurity metric to identify the important peaks in the spectra. 
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multiclass-classification models. 

3. Results and discussion 

The raw spectra obtained from the SCIO spectrometer were pre- 
processed to reduce random variance caused by light scattering and 
enhance signal differences between different fabric types. Fig. 2 shows 
the raw and pre-processed (using baseline correction and smoothing) 
spectra of the fabric classes with the different contaminant types ob-
tained using the SCIO spectrometer. The pre-processed spectra differ in 

appearance from the raw spectra because of the use of a second deriv-
ative to reduce baseline effects. Spectra acquired in the 780 – 1060 nm 
region using the SCIO instrument contain peaks arising from the third 
overtone CH and second overtone OH vibrations. 

Similarly, raw spectra acquired using the NIRscan Nano sensor were 
pre-processed using baseline correction and smoothing as shown in 
Fig. 3. The NIRscan Nano sensor measures spectra in the 900 – 1700 nm 
wavelength range, which contains information on the first and second 
overtones of molecular vibrations. 

The clean fabrics NIR spectra was clearly shown peaks for the fabrics 

Fig. 2. The spectra of the six fabric materials after applying different contamination types obtained using the SCIO sensor. Left column is the raw spectra, and right 
column is the pre-processed with offset spectra. 
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type, as for cellulose base fabrics (cotton, denim and viscose) peaks 
found at 1100 – 1300 nm (second overtone of CH stretching modes), 
1350 – 1400 nm (combination band of the first overtone of CH 
stretching and the CH deformation vibrations) and 1400 – 1675 nm 
(first overtone of OH stretching modes in cotton and moisture) [19, 
28-34]. The NIR spectra of polyester and the polycotton blend, which 
comprises 70% polyester, are comparable consisting of peaks at 1100 – 
1250 nm (second overtone of CH stretching modes), 1350 – 1450 nm 
(combination band of the first overtone of CH stretching and the CH 
deformation vibrations, and first overtone of OH stretching vibration in 

moisture) and the start of a peak at 1600 – 1750 nm (first overtone of CH 
stretching modes) [31,33,34]. The spectrum of polypropylene exhibits a 
broad peak at 1100 – 1300 nm (second overtone of CH stretching 
modes) [35]. The peak at approximately 925 nm in the spectra of all 
fabrics arises from third overtones of CH2 stretching vibrations. 

The NIR peaks of the contaminated fabrics exhibits similar peaks to 
the clean samples, which means it was hard to discriminate contaminant 
substances from the fabric’s material. The NIR region for both spec-
trometers considered as short wavelength, this means that the light 
penetrates on fabrics increased which cause a weak and hard to 

Fig. 2. (continued). 
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discriminate other contamination specially blood. Since only small 
amounts (50 µL) of blood were applied to the fabrics, protein or hae-
moglobin peaks were hard to distinguish in the spectra from both 
spectrometers (Fig. 2) [36]. The rainwater was rapidly absorbed by the 
fabrics, but subsequent drying meant that no significant OH peaks were 
detected. The seawater was absorbed quickly, but here there was a weak 

signal which differed from uncontaminated spectra specially for poly-
ester between 1000 and 1070 nm. Pure sand (Silicon-oxide) and GSR 
were also applied to the fabrics but did not produce any visible effects on 
the spectra. Finally, the water absorption on fabrics depends on the 
material type as its clearly shown by eye in the fabric samples used in 
this investigation. 

Fig. 3. The spectra of the six fabric materials after applying different contamination types obtained using the NIRnano scan spectrometer. Left column is the raw 
spectra, and right column is the pre-processed with offset spectra. 
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3.1. Data analysis and model validation 

The random forest classifier in the PRFFECT v2 chemometric soft-
ware was used to build binary and multiclass classification models for 
the SCIO and NIRscan Nano datasets to differentiate between fabrics 
types. The models were validated internally using 5-fold cross- 
validation on the training data, before predictions of a test set were 
made. The whole process was repeated 51 times on different training 
and test set partitions in order to assess the robustness of the models. The 
best five pre-processing combinations, used in a previous study on the 
identification of uncontaminated fabrics, were used to build the binary 

and multiclass classification models [22]. The software generates 
feature importance plots to show the regions of the spectra that 
contribute to class differentiation as shown in Figs. 4 and 5 [25]. 

3.1.1. Binary classification 
The five combinations of pre-processing methods used for the binary 

classification model are shown in Table 1. Tables 2 and 3 present the 
model statistics for classification “by spectra” and “by sample”. The 
former are computed by treating each spectrum as an independent 
datapoint (although stratified sampling is employed to ensure that all 
spectra of the same sample are in the same training or testing set split, or 

Fig. 3. (continued). 
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the same CV fold). The latter are calculated on a “by sample” basis by 
first taking the consensus (maximum vote) of the predictions of all 
spectra (five spectra per sample) for a given sample. 

As shown in Table 2, the range of classification accuracies obtained 
using the SCIO method was 74–100%. The best model, Model 2, used 
pre-processing of binning by factor 5, vector normalisation, second de-
rivative baseline correction and local polynomial fit with gaussian width 
2 as the smoothing option. Some fabrics are similar in chemical 
composition, which makes it hard to differentiate between them. Denim 
is mainly cotton but differs in terms of the dye applied and viscose is a 
cotton-like structure material made by regenerated cellulose. Therefore, 
the classification statistics for identification of cotton, denim and viscose 
are lower than some other materials, but sensitivities of above 80% for 
both training and testing sets are still obtained [37,38]. Polyester, pol-
ycotton and polypropylene achieve an average classification accuracy of 
95%, 89% and 86%, respectively. 

The random forest classification models shown in Table 3 for the 
NIRscan Nano data achieved a range of accuracies from 86% to 100%. 
Model 1 was the optimum classification model, for which pre-processing 
was binning by factor 2, vector normalisation, and second derivative 
baseline correction and no smoothing option. As for the SCIO classifi-
cation model, classifying denim from viscose and cotton was found to be 
more challenging than discriminating other fabrics. Polycotton was also 
observed to be misclassified as polyester in some instances. However, 
sensitivities of over 85% for cotton, viscose, polyester and poly-
propylene achieved an average classification accuracy of 88%, 90%, 
95% and 98%, respectively [23,39]. 

The differences in classifying material class with each instrument 
was due to the differences in the wavelength ranges of the two 
spectrometers. 

3.1.2. Multiclass classification 
Multiclass classification models were trained to distinguish between 

cotton, denim, polyester, polycotton, polypropylene and viscose fabric 
materials. The mean classification results obtained for the pre-processed 
training and test sets with the SCIO and NIRScan instruments are shown 
in Tables 4 and 5, respectively. In general, the results obtained for a 
multi-class prediction model are clearly lower than those obtained using 
a binary classification model. 

The optimum pre-processing combination for the SCIO and NIRscan 
Nano data were those employed in model 2 and model 1, respectively, 
which was binning with resolution reduction by five factors, local 
polynomial fit with Gaussian width 2 as smoothing choice, vector nor-
malisation, and second derivative for baseline correction. The NIRscan 
Nano results show higher specificity than sensitivity for several of the 
classes. The only class to record a balanced sensitivity and specificity 
was polypropylene for which classification accuracies in the range of 
98–100% were obtained. The statistics for by-spectra and by-sample 
classification modelling show exceptional performance. Furthermore, 
the results obtained using the SCIO instrument demonstrate higher 
specificity than sensitivity. The average accuracies obtained was 
70–99%, with the lowest classification accuracy obtained for cotton 
65–93%, and surprisingly, the highest classification accuracy was for 
polycotton 88–100%. 

Overall, as expected the binary and multiclass class models show 
lower performance than the previous study due to the contamination but 
still it is in the very good range [22]. The SCIO spectrometer interrogates 
only the third overtone region, which provides limited information 
compared to the NIRscan Nano spectrometer, which interrogates the 
first and second overtone regions. Generally, the SCIO and NIRScan 
Nano spectrometers coupled with the spectral pre-processing and clas-
sification models builder tool (PRFFECTv2) enable rapid and 
non-destructive identification of contaminated textile fibre classes for 

Fig. 4. The SCIO pre-processed spectra with importance features as Gini impurity of the best multiclass-classification model “2”.  

Fig. 5. The NIRScan Nano pre-processed spectra with importance features as Gini impurity of the best multiclass-classification model “1”.  
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instant crime scene comparison. 

4. Conclusion 

This work shows the feasibility of using handheld Near IR spec-
trometers (SCIO® and NIRscan Nano) in conjunction with random forest 
models to classify contaminated fibre materials in a rapid, and non- 
destructive way for forensic comparison purposes at the crime scene. 

The pocket-size spectrometers provide spectra in seconds and are 
non-destructive to the samples. Moreover, the random forest algorithm 
shows the potential of using NIR spectra from both spectrometers for 
textile fibre material classification. The contamination that was applied 
(blood, GSR, sand, rainwater and seawater) didn’t affect the detection of 
the fabrics type on spectra visual comparison. The statistical program 
used was PRFFECTv2, which allowed a built-in algorithm starting from 
data pre-processing with numerous methods, flexibility in creating 
models, and is straight forward for real practical classification. The bi-
nary classification models built using NIR data acquired using the SCIO 
instrument show a prediction accuracy range of 88–99%, a sensitivity 
range of 78–100% and a specificity range of 87%− 100% for all fabric 
types. The multiclass-classification model has a prediction accuracy 
range of 76.9%− 86.7%, sensitivity range of 69.5%− 100% and speci-
ficity range of 92.9%− 100%. The binary classification models built 
using NIR data acquired using the NIRScan Nano instrument show a 
prediction accuracy range of 86–99%, a sensitivity range of 89 − 100% 
and a specificity range of 89–100%. The multiclass-classification model 
demonstrates a predication accuracy range of 82–86%, a sensitivity 
range of 73 − 100% and a specificity range of 94–100%. Overall, the 
scores were slightly less compared to previous work due to the 
contamination, but they still demonstrate the effectiveness of the 

methodology. 
This study investigated the ability of the two micro-spectrometers to 

examine textile fibres and classification in-situ. However, further 
research is required to study those instruments in real-life crime scenes 
scenarios with different scenes, e.g. variations in weather and time of 
day, to investigate the possibility of taking good measurements with 
external light source. It is also recommended to investigate the timing of 
the contamination residues on the fibres which may have a different 
effect on the spectra. 
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Table 2 
The optimum binary classification models of the SCIO data. Accuracy, sensitivity and specificity are reported for 5-fold cross-validation (CV) and test set (TE) pre-
dictions calculated as means over 50 repeated experiments each using different stratified training and test set splits. The model numbers correspond to those given in 
Table 1.  

Model Class By Spectra  By Sample  

Acc CV Sens CV Spec CV Acc TE Sens TE Spec TE Acc 
CV 

Sens CV Spec 
CV 

Acc TE Sens TE Spec TE 

1 Cotton 0.837 0.868 0.831 0.807 0.79 0.81 0.871 0.925 0.859 0.83 0.828 0.831 
PE 0.865 0.855 0.868 0.849 0.835 0.853 0.885 0.89 0.88 0.871 0.887 0.868 
Denim 0.941 0.826 0.964 0.936 0.759 0.964 0.949 0.832 0.972 0.942 0.758 0.972 
PP 0.917 0.912 0.918 0.911 0.841 0.92 0.936 0.947 0.934 0.915 0.849 0.925 
PC 0.92 0.928 0.918 0.917 0.915 0.917 0.924 0.941 0.921 0.923 0.947 0.919 
Viscose 0.906 0.92 0.904 0.902 0.869 0.907 0.922 0.935 0.92 0.918 0.875 0.924 

2 Cotton 0.904 0.928 0.9 0.884 0.87 0.886 0.92 0.955 0.914 0.899 0.875 0.903 
PE 0.842 0.863 0.838 0.801 0.788 0.804 0.874 0.919 0.864 0.818 0.819 0.818 
Denim 0.859 0.864 0.858 0.861 0.851 0.864 0.876 0.913 0.865 0.883 0.906 0.877 
PP 0.946 0.834 0.969 0.936 0.699 0.974 0.957 0.854 0.978 0.945 0.693 0.985 
PC 0.905 0.917 0.903 0.886 0.884 0.886 0.924 0.963 0.916 0.896 0.889 0.896 
Viscose 0.919 0.931 0.917 0.927 0.856 0.938 0.924 0.943 0.919 0.929 0.869 0.939 

3 Cotton 0.817 0.857 0.807 0.802 0.767 0.809 0.839 0.888 0.828 0.819 0.779 0.829 
PE 0.845 0.859 0.842 0.843 0.851 0.84 0.858 0.9 0.846 0.857 0.917 0.844 
Denim 0.937 0.823 0.959 0.928 0.773 0.952 0.946 0.841 0.968 0.936 0.765 0.964 
PP 0.905 0.909 0.904 0.89 0.848 0.896 0.923 0.941 0.919 0.906 0.869 0.912 
PC 0.925 0.933 0.923 0.897 0.874 0.9 0.929 0.945 0.927 0.897 0.895 0.897 
Viscose 0.914 0.937 0.911 0.915 0.839 0.926 0.941 0.96 0.939 0.938 0.876 0.948 

4 Cotton 0.826 0.842 0.823 0.786 0.758 0.792 0.854 0.873 0.851 0.801 0.765 0.809 
PE 0.854 0.878 0.847 0.848 0.817 0.856 0.87 0.919 0.856 0.861 0.843 0.866 
Denim 0.937 0.82 0.96 0.937 0.77 0.96 0.947 0.839 0.969 0.945 0.77 0.973 
PP 0.907 0.922 0.904 0.9 0.86 0.906 0.926 0.961 0.919 0.914 0.895 0.917 
PC 0.919 0.929 0.918 0.917 0.855 0.927 0.921 0.943 0.917 0.918 0.869 0.926 
Viscose 0.911 0.926 0.909 0.904 0.846 0.912 0.937 0.96 0.934 0.927 0.889 0.934 

5 Cotton 0.786 0.836 0.775 0.75 0.759 0.747 0.798 0.849 0.787 0.756 0.745 0.759 
PE 0.892 0.877 0.896 0.891 0.863 0.897 0.917 0.934 0.911 0.911 0.906 0.913 
Denim 0.945 0.858 0.962 0.942 0.786 0.967 0.953 0.871 0.969 0.949 0.791 0.974 
PP 0.899 0.893 0.9 0.897 0.815 0.911 0.918 0.925 0.916 0.917 0.83 0.931 
PC 0.975 0.998 0.971 0.97 0.983 0.968 0.981 1 0.978 0.977 1 0.973 
Viscose 0.895 0.856 0.9 0.887 0.77 0.906 0.908 0.88 0.912 0.905 0.81 0.919 

*In bold, the optimum model scores. 
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Table 3 
The optimum binary classification models of the NIRscan Nano data. Accuracy, sensitivity and specificity are reported for 5-fold cross-validation (CV) and test set (TE) 
predictions calculated as means over 50 repeated experiments each using different stratified training and test set splits. The model numbers correspond to those given 
in Table 1.  

Model Class By Spectra  By Sample  

Acc CV Sens CV Spec CV Acc TE Sens TE Spec TE Acc 
CV 

Sens CV Spec 
CV 

Acc TE Sens TE Spec TE 

1 Cotton 0.944 0.844 0.955 0.913 0.880 0.941 0.957 0.908 0.968 0.928 0.902 0.939 
PE 0.891 0.904 0.892 0.867 0.808 0.879 0.902 0.933 0.901 0.874 0.802 0.884 
Denim 0.894 0.879 0.891 0.912 0.932 0.915 0.901 0.899 0.902 0.932 0.927 0.939 
PP 0.999 1 0.992 1 1 1 0.997 1 0.997 1 1 1 
PC 0.881 0.831 0.9 0.877 0.788 0.893 0.896 0.879 0.893 0.89 0.845 0.891 
Viscose 0.965 0.978 0.943 0.933 0.892 0.954 0.832 0.994 0.954 0.944 0.898 0.954 

2 Cotton 0.927 0.922 0.931 0.907 0.843 0.914 0.943 0.952 0.942 0.913 0.854 0.932 
PE 0.881 0.934 0.865 0.876 0.864 0.876 0.9 0.952 0.876 0.899 0.873 0.893 
Denim 0.934 0.923 0.911 0.9 0.849 0.916 0.922 0.935 0.915 0.904 0.832 0.922 
PP 0.99 0.998 0.991 0.991 0.965 0.992 0.998 1 0.998 0.992 0.973 0.995 
PC 0.867 0.801 0.887 0.864 0.801 0.866 0.89 0.854 0.891 0.866 0.833 0.862 
Viscose 0.954 0.99 0.959 0.951 0.934 0.943 0.965 0.99 0.954 0.943 0.942 0.944 

3 Cotton 0.931 0.9 0.921 0.922 0.912 0.943 0.946 0.92 0.955 0.942 0.923 0.955 
PE 0.903 0.946 0.9 0.887 0.904 0.881 0.93 0.957 0.91 0.887 0.905 0.888 
Denim 0.925 0.922 0.916 0.917 0.876 0.927 0.93 0.938 0.925 0.919 0.855 0.93 
PP 0.99 1 0.991 0.991 0.982 1 0.999 1 0.999 0.999 0.986 1 
PC 0.9 0.833 0.911 0.901 0.785 0.921 0.919 0.858 0.927 0.911 0.79 0.925 
Viscose 0.961 0.992 0.955 0.952 0.943 0.951 0.954 1 0.959 0.952 0.926 0.953 

4 Cotton 0.942 0.909 0.959 0.922 0.874 0.943 0.954 0.928 0.958 0.938 0.876 0.95 
PE 0.905 0.948 0.893 0.877 0.895 0.87 0.92 0.966 0.908 0.885 0.892 0.883 
Denim 0.931 0.906 0.935 0.923 0.819 0.94 0.936 0.911 0.94 0.922 0.803 0.942 
PP 0.991 0.99 0.99 0.987 0.961 0.991 0.991 1 0.991 0.992 0.965 0.987 
PC 0.9 0.822 0.901 0.845 0.8 0.899 0.905 0.855 0.904 0.9 0.826 0.908 
Viscose 0.954 0.982 0.958 0.96 0.865 0.955 0.954 0.989 0.96 0.961 0.878 0.977 

5 Cotton 0.952 0.906 0.957 0.922 0.88 0.932 0.953 0.917 0.965 0.932 0.906 0.938 
PE 0.902 0.936 0.9 0.888 0.898 0.885 0.911 0.943 0.905 0.9 0.891 0.91 
Denim 0.915 0.893 0.931 0.928 0.809 0.953 0.931 0.897 0.939 0.936 0.803 0.955 
PP 0.992 0.992 0.992 0.99 0.983 0.999 0.993 1 0.993 0.991 0.976 1 
PC 0.91 0.826 0.924 0.9 0.781 0.915 0.921 0.845 0.924 0.9 0.776 0.913 
Viscose 0.954 0.988 0.958 0.959 0.954 0.957 0.965 1 0.958 0.961 0.946 0.958 

*In bold, the optimum model scores. 
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Table 4 
The optimum SCIO data multiclass classification results output, the mean accuracy, sensitivity and specificity scores across six different fabric materials with different 
pre-processing data methods used for random forest model method. The model numbers correspond to those given in Table 1.  

Model Class By Spectra  By Sample  

Acc 
CV 

Sens CV Spec CV Acc TE Sens TE Spec TE Acc 
CV 

Sens CV Spec 
CV 

Acc TE Sens TE Spec TE 

1 Cotton 0.789 0.72 0.942 0.801 0.742 0.945 0.819 0.765 0.951 0.834 0.799 0.953 
PE 0.769 0.912 0.806 0.914 0.802 0.921 0.838 0.922 
Denim 0.81 0.973 0.816 0.973 0.834 0.976 0.823 0.979 
PP 0.839 0.976 0.835 0.979 0.867 0.982 0.895 0.986 
PC 0.805 0.955 0.752 0.965 0.839 0.956 0.778 0.964 
Viscose 0.809 0.982 0.872 0.98 0.823 0.992 0.882 0.992 

2 Cotton 0.788 0.727 0.937 0.787 0.787 0.934 0.819 0.758 0.944 0.816 0.784 0.978 
PE 0.768 0.912 0.754 0.901 0.813 0.922 0.863 0.983 
Denim 0.826 0.976 0.779 0.976 0.804 0.979 0.764 0.97 
PP 0.842 0.975 0.818 0.975 0.874 0.984 0.856 0.992 
PC 0.792 0.96 0.753 0.969 0.843 0.962 0.941 0.97 
Viscose 0.817 0.98 0.831 0.984 0.832 0.986 0.909 0.992 

3 Cotton 0.792 0.707 0.941 0.808 0.726 0.943 0.821 0.727 0.949 0.843 0.799 0.948 
PE 0.781 0.914 0.824 0.929 0.82 0.93 0.853 0.941 
Denim 0.829 0.979 0.804 0.964 0.852 0.979 0.816 0.968 
PP 0.832 0.973 0.873 0.976 0.876 0.977 0.915 0.987 
PC 0.803 0.958 0.803 0.972 0.843 0.959 0.816 0.97 
Viscose 0.817 0.979 0.844 0.981 0.818 0.987 0.869 0.993 

4 Cotton 0.783 0.707 0.937 0.808 0.762 0.941 0.819 0.757 0.945 0.836 0.779 0.946 
PE 0.771 0.912 0.808 0.926 0.81 0.928 0.853 0.941 
Denim 0.8 0.974 0.853 0.972 0.819 0.977 0.882 0.97 
PP 0.844 0.975 0.863 0.968 0.884 0.981 0.915 0.978 
PC 0.785 0.958 0.779 0.977 0.83 0.958 0.797 0.976 
Viscose 0.808 0.978 0.793 0.981 0.821 0.987 0.804 0.989 

5 Cotton 0.781 0.722 0.952 0.789 0.712 0.939 0.819 0.796 0.958 0.837 0.779 0.952 
PE 0.774 0.901 0.827 0.91 0.808 0.908 0.863 0.923 
Denim 0.793 0.976 0.782 0.972 0.823 0.979 0.817 0.973 
PP 0.831 0.968 0.873 0.972 0.832 0.982 0.895 0.987 
PC 0.777 0.957 0.779 0.969 0.834 0.962 0.849 0.972 
Viscose 0.799 0.977 0.772 0.981 0.829 0.987 0.83 0.993 

*In bold, the optimum model scores. 

H.S. Rashed et al.                                                                                                                                                                                                                               



Vibrational Spectroscopy 123 (2022) 103464

12

Data Availability 

Data will be made available on request. 

References 

[1] R. Palmer, Identification and Comparsion, in: M.M. Houck (Ed.), Materials Analysis 
in Forensic Science, Elsevier, UK, 2016, pp. 195–204. 

[2] R. Palmer, The Forensic Examination of Fibers, in: N.N. Daéid (Ed.), Interpols 
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