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Abstract: In autonomous driving, object detection is considered a base step to many subsequent
processes. However, object detection is challenged by loss in visibility caused by rain. Rainfall occurs
in two main forms, which are streaks and streaks accumulations. Each degradation type imposes
different effect on the captured videos; therefore, they cannot be mitigated in the same way. We
propose a lightweight network which mitigates both types of rain degradation in real-time, without
negatively affecting the object-detection task. The proposed network consists of two different modules
which are used progressively. The first one is a progressive ResNet for rain streaks removal, while
the second one is a transmission-guided lightweight network for rain streak accumulation removal.
The network has been tested on synthetic and real rainy datasets and has been compared with
state-of-the-art (SOTA) networks. Additionally, time performance evaluation has been performed to
ensure real-time performance. Finally, the effect of the developed deraining network has been tested
on YOLO object-detection network. The proposed network exceeded SOTA by 1.12 dB in PSNR on
the average result of multiple synthetic datasets with 2.29× speedup. Finally, it can be observed that
the inclusion of different lightweight stages works favorably for real-time applications and could be
updated to mitigate different degradation factors such as snow and sun blare.

Keywords: autonomous vehicles; weather conditions; object detection; rain removal

1. Introduction

Autonomous driving is considered the next-generation transportation breakthrough
due to its multiple benefits. According to the World Health Organization (WHO), approxi-
mately 1.3 million people die each year as a result of road traffic accidents [1]. Autonomous
vehicles (AVs) have the potential to enhance road safety by applying artificial intelligence
(AI) techniques in its different tasks [2]. The Society of Automotive Engineers (SAE) ranks
autonomous driving from Level 0 (no automation) to Level 5 (full automation under any
operational design domains (ODDs), including adverse weather conditions) [3]. Until
now, Level 5 AVs have not been introduced to the market; they should be reliable in all
challenging conditions in order to gain the public’s confidence that they are worth the
investment. Most AV applications are tested in clear weather conditions. However, adverse
weather conditions cause sensors (ex: camera, LiDAR, etc.) report inaccurate data and limit
their functionality.

Many survey papers have reviewed different algorithms used for object detection in
AVs [4–11]. On the other hand, the performance of object-detection algorithms is greatly
affected by the presence of challenging weather conditions.

Challenging weather conditions that cause images distortions can be classified into
steady and dynamic [12]. Steady weather conditions include fog, mist, and haze. While
dynamic weather conditions include rain and snow. Dynamic weather conditions impose
greater degradations to the scene’s visibility as the droplets are bigger and of a changing
pattern. These conditions reduce scene visibility and contrast, which causes a significant
degradation in the process of objects detection performance by AVs.
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Rain is the most common dynamic challenging weather condition, especially in
the United Kingdom [2]. Even though many researchers have achieved advancements
in developing deraining methods, real-time video deraining for AV tasks have been
largely understudied.

Rain can be described as the presence of countless drops with different sizes, complex
shapes, and varying speeds. Rain causes two different types of visibility degradations. Rain
streaks distort the images by generating specular highlights and distorting background
scene elements. On the other hand, rain streaks may accumulate generating a hazy effect,
similar to fog, hence, reducing the visibility of the scene [13]. Characteristics of rain streaks
and rain streaks accumulation are different; therefore, distortions they impose on images
are different. Eventually, researchers address them as two separate problems.

In this paper we aim to present a lightweight multi-stage network for single image
deraining which mitigates the main two types of rain degradations. Our approach utilizes
different progressively stages to reliably restore images affected by different rain degra-
dations while maintaining low inference time. Additionally, extensive experiments are
conducted to validate the effectiveness of our network on both synthetic and real rainy
datasets. Moreover, despite the existing research towards the development of deraining
frameworks, the effect of deraining on object detection was not sufficiently studied espe-
cially in the context of autonomous driving; therefore, we also apply object detection for
comprehensively evaluating the deraining performance.

The paper is organized as follows. Section 2 we review related deraining work. In
Section 3, we introduce and discuss the proposed network. In Section 4, we evaluate
the proposed network over different synthetic and real rainy datasets, also we perform
sped comparisons between the proposed network and other SOTA networks, experimental
results are quantitively and qualitatively presented. In Section 5, we summarized our
findings. Moreover, we tabulated used abbreviations in Abbreviations section.

2. Related Work

Deraining problem can be addressed as either a video-based problem or a single
image-based one. Video based methods may make use of temporal information present in
subsequent frames. On the hand, single image-based deraining is a more challenging task
as it lacks the temporal redundancy knowledge and less information is available [14,15]. In
order to handle this problem, more research attention has focused on developing different
algorithm designs. Moreover, single image-based approaches can be divided into three
methods [16]:

• Filter-based [17–20]: It is based on identifying different rain properties and designing
appropriate filters to achieve rain-free images;

• Prior-based [21–26]: It uses prior knowledge of rainy and clear images. Prior-based
methods includes, but not limited to, morphological component analysis (MCA) [27],
histogram of oriented gradients (HOGs) [28], structural similarities, and sparse repre-
sentation models [26];

• Deep-learning-based models [29,30].

Several approaches have been proposed to achieve rain detection and removal [31–37].
They have been summarized in Table 1.
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Table 1. Rain detection and removal approaches.

Approach Image/
Video

Addressed
Degradation Method Limitation

Liao et al. [31] Video Rain drops

They used Hough transformation to
detect raindrops in the context of

lane scenes, and Sobel filter to detect
raindrops in the context of a

building scene

It requires the interaction
of a human operator to

process images

Chen et al. [32] Video Rain streaks

They exploited both spatial and
temporal information. For dynamic

scenes, they applied motion
segmentation. Rain removal filters
are applied after photometric and
chromatic constraints are used for

rain detection

Depends on temporal
information

Fu et al. [33] Image Rain streaks

De-rainNet: They used image
processing domain knowledge to

improve deraining with a modestly
sized CNN

Low speed

Yang et al. [34] Video Rain streaks and
accumulation

A rain-free frame is estimated from a
single rain frame and then taken as a

guidance along with previously
recovered clean frames

Makes use of previously
cleared frames to obtain a
more accurate clean one

Li et al. [35] Video Rain streaks Applied a multiscale convolutional
sparse coding for rain removal Low Speed

Yeh et al. [36] Image Rain streaks Frequency division, non-negative
matrix factorization Limited to rain streaks

Chen et al. [37] Video Rain streaks

They applied super pixel
segmentation to perform scene

decomposition into depth
consistent units

Limited to rain streaks.

However, most of them did not consider AVs system requirements, and suffered from
the below listed deficiencies:

• High computation time [33,35,38];
• Only addressed the problem of rain detection;
• Assumes static scenarios [39]; ref. [40]’s approach does not work with highly dynamic

raindrops. The approach of [41] fails to separate dynamic textures and moving objects;
• Not applicable for real-time scenarios:

a. The approach of [31] requires the involvement of a human operator to process
the captured frames, also it is bound by certain scenes (lane and building scenes);

b. The approach of [32,33] exploits temporal information during the recovery process;
c. The approach of [34] makes use of previously cleaned frames;
d. The approach of [35] has high computational time;

• Limited to certain degradation factors: [36–38,42].

2.1. Single Image Deraining

Most of the state-of-the-art algorithms are based on convolutional neural networks
(CNNs). Different modules can be used in deraining networks, for example:

• Residual blocks are used in [43] and in [44–47];
• Dilated convolution is used in [48,49];
• Dense blocks are used in [50];
• Recurrent layers are used in [51,52].
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Some approaches used lightweight networks in either a cascaded or Laplacian pyramid
manner aiming to enhance the computational efficiency [53,54]; however, this degraded
the deraining performance. On the other hand, deep networks are complicated and makes
analyzing single modules harder.

2.2. State-of-the-Art Deraining Networks
2.2.1. PRENET

In 2019, Ren et al. [14] provided a simple baseline for deraining networks. They
proposed a novel network which repeatedly unfolds a shallow residual network (ResNet).
By using a progressive ResNet, they took advantage of recursive computations. Moreover,
they introduced recursive layers which exploits dependencies of deep features across stages.
Due to its simplicity, this model is suitable as a baseline for future deraining research.

2.2.2. MSPFN

In 2020, Jiang et al. [44] addressed single image rain streak removal. They explored
the muti-scale collaborative representation for rain streaks from the perspective of input
image scales and hierarchical deep features in a unified framework. Recurrent calculations
capture global textures of similar rain streaks at different locations.

2.2.3. MPRNET

In 2021, Zamir et al. [55] developed a multi-stage network, which progressively learns
restorations for degraded images; therefore, the whole process is broken down into smaller
more manageable sub-processes. In addition to sequentially exchanging information
from early stages to late stages; lateral connections between feature processing blocks are
also deployed to maintain all information. It works on different image restoration tasks
such as denoising, deblurring, and deraining. At earlier stages, encoder–decoders are
used to extract multi-scale contextualized features. Later stages operate at the original
image resolution to generate spatially accurate outputs. Moreover, they used a supervised
attention module (SAM) between every two stages which refines features before passing
them to another stage.

2.2.4. HINET

In 2021, HINet was designed by Chen et al. [56] as a simple and powerful multi-
stage network. It consists of two subnetworks. Each subnetwork is a U-Net [57]. They
introduced a novel block called the half instance normalization block (HIN). The developed
network surpasses SOTA on multiple image restoration tasks, such as denoising, deblurring,
and deraining.

SOTA deraining networks succeeded in achieving deraining of single images; how-
ever, their performance was not evaluated on the performance of object-detection process.
Some of them can process different image restoration tasks, and not limited to deraining.
Moreover, the running time was not the main concern for the reviewed SOTA networks.

To summarize, many deraining networks and approaches have been developed. How-
ever, reviewed approaches suffered from different limitations, such as slow running time,
limited to a single rain degradation, or the requirement of a human operator. These limi-
tations disable their employment on AVs. Therefore, the main objective of this proposed
research is to develop and evaluate a lightweight deraining network that can mitigate dif-
ferent rain degradations in real-time and enhancing the following object-detection process.

3. Materials and Methods

In Figure 1, we elaborate the proposed deraining framework which involves the fol-
lowing main stages: (i) rain streak removal and (ii) rain accumulation removal. Separate
training for both stages has been made as the degradation of rain accumulation is multi-
plicative and its removal will negatively affect the rain streak removal stage causing larger
errors. On the other hand, both stages have been jointly implemented in the testing phase.
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When rain streaks accumulate, they generate a veiling effect, similar to the degradation
fog imposes on image (see Equation (1)) [58]. Therefore, the rain accumulation removal
process is similar to defogging. The first step is performing rain streak removal, followed
by rain accumulation removal, and finally reapplying rain streaks removal.

I(x) = J(x) α(x) + A(1− α(x)),

J(x) = (B + ∑s
tr=1 s̃tr

◦ R),
(1)

where I(x) is the observed hazy image at pixel location x; J is scene radiance; α is the trans-
mission map; A is the global atmospheric light; B is the background layer; s̃tr represents
a layer of rain streaks having the same direction; tr is the index of rain-streak layers; s
is the maximum number of rain-streak layers, and R is a region-dependent variable that
indicates the locations of individually visible rain streaks; finally, ◦ is an element-wise
multiplication operation.

Removal of rain accumulation may lead to strengthening the appearance of existing
rain streaks. Therefore, in the proposed organization, another rain streak removal stage
was re-applied after rain accumulation removal, as the rain accumulation removal stage
will cause the rain streaks that may be missed in the first stage of rain streaks removal to be
more apparent. The proposed deraining framework is shown in Figure 1.

3.1. Evaluation Metrics
3.1.1. Evaluation of Detection

The detection methods generate bounding boxes to identify the detected region. There
are four classification categories, true positive (TP), true negative (TN), false positive
(FP), false negative (FN). Precision can be also called positive predictive values (PPVs),
as it represents the ratio of positive results that are TP (Equation (2)). Moreover, recall
corresponds to the ratio of positive results that are correctly predicted to be positive
(Equation (3))

Precision =
TP

TP + FP
, (2)

Recall =
TP

TP + FN
, (3)

Moreover, intersection over union (IoU) is an evaluation metric which is used to com-
pare the predicted bounding box (detection output area) with the ground truth annotated
area. It is defined in Equation (4):

IoU =
Agt ∩ AP

Agt ∪ AP
, (4)

where Agt is the area of the ground-truth of experts annotation and Ap is the predicted
bounding box from the detetcion method.

3.1.2. Evaluation of Deraining

In order to compare deraining performance, two main assessment indices are used
based on reference rain-free images: peak-signal-to-noise ratio and structural similarity
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index (SSIM) [59]. PSNR is the ratio between the maximum power of a signal and the
power of the noise distorting this signal. In order to calculate the PSNR of a test image
g and a reference image f . Both images are of size M × N, the PSNR between f and g is
defined by Equation (5).

PSNR( f , g) = 10 log10(
2552/

MSE( f , g)), (5)

where

MSE( f , g) =
1

MN

M

∑
i=1

N

∑
j=1

(
fij − gij

)2, (6)

As the mean square error (MSE) approaches zero, the PSNR value approaches infinity;
therefore, high PSNR value corresponds to a better image quality, on the other hand, a
small PSNR value implies big numerical differences between images.

Another well-known evaluation metric that is used to measure the similarity between
two images is the SSIM. It was developed by Wang et al. [60], It is correlated with the
quality perception of the human visual system (HVS). SSIM models image distortion in
terms of three factors: loss of correlation, luminance distortion, and contrast distortion. It is
defined in Equation (7)

SSIM( f , g) = l( f , g)c( f , g)s( f , g), (7)

where l( f , g) corresponds to the luminance comparison, c( f , g) corresponds to the contrast
comparison, and finally s( f , g) corresponds to the structure comparison.

However, in order to evaluate the performance of the deraining process on real rainy
images, where their corresponding clear images are not available, we used two other
different evaluation metrics: the naturalness image quality evaluator (NIQE) [61] and
spatial spectral entropy-based quality (SSEQ) [62].

3.2. Architecture
3.2.1. Rain Streaks Removal

The rain streak removal step is based on residual networks (ResNets) [43]. In order to
maintain real-time performance and not adding to the computational complexity of the
object-detection framework The base architecture of progressive residual networks has
been adopted. So, instead of utilizing deeper and complex networks, rain streak removal
is performed in multiple stages, such that ResNet is used at each stage. Additionally, in
order to avoid the increase in the number of network parameters and the susceptibility of
overfitting, recursive computations have been applied by sharing same network parameters
with multiple stages.

A basic ResNet has three parts: (i) a convolutional layer fin, (ii) multiple ResBlocks fres
to extract deep representations, and (iii) a convolutional layer fout, as shown in Figure 2.
Inference of the PRN at stage t is shown in Equation (2).

xt−0.5 = fin(xt−1, y),

xt = fout( fres(xt−0.5)),
(8)
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Network parameters are reused across different stages, as fin, fres, and fout are stage in-
variant. As shown in Equation (2), fin takes the concatenation of the current estimation xt−1

and rainy image y as input, the inclusion of y further improves the deraining performance.
The progressive network architecture is shown in Figure 3:

• Filter sizes 3× 3, padding 1× 1;
• fin is a convolutional layer with ReLU non-linearity [63], due to the concatenation of

3 channels from y and another 3 channels from xt−1, the convolution of fin has 6 input
channels and 32 output channels;

• fres includes 5 ResBlocks;
• fout is a single-layer convolution, it takes the output of fres with 32 channels as input

and outputs a 3-channel RGB image.
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3.2.2. Rain Accumulation Removal

Rain streaks and rain accumulation impose different visual distortion effects on cap-
tured images. Distant rain streaks accumulate and impose a distortion similar to fog,
which also causes visibility degradation and leads to further hiding of image and present
objects’ features, thus should also be removed. Since its distortion effect caused by rain
accumulation is similar to fog (Equation (1)), then removal of rain accumulation may follow
same algorithm (e.g., [13,58,64]).

The rain accumulation removal network is based on a transmission-guided lightweight
neural network (TGL-Net) [65]. In this network, instead of producing simulated trans-
mission maps from both depth data and clear images, guided transmission maps are
automatically computed using a filter-refined dark-channel-prior (F-DCP) method which
facilitates network training on both synthetic and natural images.

The architecture is based on the very deep residual encoder–decoder network (RED-
Net) [66] which owns a symmetric architecture and employs skip connections; however,
TGL-Net has fewer layers and parameters and is very lightweight. TGL-Net is composed
of three stages: (i) downsampling, (ii) encoder–decoder, and (iii) upsampling, as shown in
Figure 4 [65].
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The downsampling phase includes a convolutional layer (3× 3) then a max pooling
layer. The convolutional layer extracts images features, and then the max-pooling layer
reduces the total amount by 25 times by using a stride of 5. This leads to improving the
computational efficiency of the network.

In the encoder–decoder phase, three convolutional and three deconvolutional layers
are connected through a condensed encoder–decoder connection. This stage performs
feature extraction and transmission estimation. The convolutional layers extract further
image features and also clear noise. On the other hand, the deconvolutional layers recover
the details of transmission maps. In the encoder, the sizes of the convolutional kernel are
3× 3, 5× 5, and 5× 5 sequentially, which are equal to the corresponding deconvolutional
kernels in the decoder, but in reverse.

The symmetric structure of the convolutional and deconvolutional links retains the
benefits from the residual network characteristics [43], including rapid convergence and
high accuracy. Using skip connections that directly propagate signals to subsequent layers
reduces the common problem of vanishing gradients which commonly happens in deep
neural networks (DNNs) [67]. Moreover, using skip connections helps maintain useful
image features and details.

After the encoder–decoder layers, another convolutional layer is used, it combines a
three-channel feature map into a single-channel transmission map. Additionally, a non-
linear sigmoid activation function has been applied, it reaches a saturation region when the
input is either too small or too big (i.e., larger than 5 or smaller than −5), which increases
the risk of vanishing gradient when adding more layers. However, the employment of ELU
units and skip connections in the encoder–decoder layers prevent the vanishing gradient
problem. The non-linear sigmoid function outputs a preliminary estimation of a reduced
transmission map which is fifth the size of the input image.

In order to enlarge the transmission map to the same size as the input image, the
upsampling stage is applied. The upsampling stage is composed of two steps. First,
image expansion is performed using bilinear interpolation to maintain the computational
efficiency of the network. Second, a convolutional layer is used to further refine the output
of the transmission map.

4. Experimental Results
4.1. Experimental Setting

Both rain streak removal and rain accumulation removal stages were trained separately.
However, they were tested progressively. The rain streak removal network (PRN) was
trained on 1800 images of the Rain100H dataset, while the rain accumulation removal
network was trained on a synthetic set of hazy images generated from the NYU dataset
and augmented real hazy data generated from the NTIRE 2018 dataset. Both networks
used the ADAM algorithm optimizer for training with an initial rate of 0.001. The full
proposed network was tested and evaluated using a computer equipped with NVIDIA
GTX 1050Ti GPU.

4.1.1. Number of Progressive Stages in the Rain Streak Removal Stage

The charts in Figure 5 show that the effect of the number of PRN stages (T) on the
PSNR and SSIM evaluation metrics on the Rain100H dataset. It can be noted that the more
stages in the network, the higher the values of both PSNR and SSIM. However, when T > 8,
both PSNR and SSIM stop improving. Additionally, Figure 6, lists the average running
time when tested on the Rain100H dataset on models with stages T = 2, 3, 4, 5, 6, 7, 8, 9,
and 10 on a computer equipped with NVIDIA GTX 1050Ti GPU. Considering the trade-off
between efficiency and deraining performance, we set T to 8 in the following experiments.
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4.1.2. Effect of Integrating Different Stages Progressively

Two experiments were made to correctly choose the right organization of the net-
work’s components. The first suggestion was to apply rain accumulation removal as an
initial pre-processing step; however, as shown in Figure 7, this has negatively affected the
whole deraining process. This is because the rain accumulation removal step alters the
quality of rain streaks, it boosts their contrast and appearance, this makes rain streaks look
different compared with their original appearance in both real-world and synthetic datasets.
Therefore, the second proposed suggestion was to apply rain accumulation removal pro-
gressively in combination with rain streak removal, shown in Figure 8. Additionally, the
corresponding PSNR and SSIM values for both suggestions are shown in Table 2.

Table 2. Effect of applying rain accumulation removal as pre-processing vs. applying it progressively.

Approach PSNR SSIM

Rain accumulation removal as an initial stage 15.683 0.683
Rain accumulation removal performed progressively with

rain streak removal 33.01 0.901
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4.2. Experimental Results
4.2.1. Evaluation on Synthetic Datasets

Our proposed network is evaluated on five synthetic datasets, i.e., Test100 [68],
Rain100H [48], Rain100L [48], Test2800 [42], and Test1200 [50]. Both PSNR and SSIM
values have been compared and tabulated in Table 3. It can be seen that our proposed
model achieves remarkable improvement over SOTA deraining algorithms.
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Table 3. Average PSNR and SSIM comparison on the synthetic datasets Test100, Rain100H, Rain100L,
Test2800, and Test1200.

Method
Test100 [68] Rain100H [48] Rain100L [48] Test2800 [42] Test1200 [50] Average

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

HINet [56] 30.29 0.906 30.65 0.894 37.28 0.970 33.91 0.941 33.05 0.919 33.036 0.926

MPRNet [55] 30.27 0.897 30.41 0.890 36.40 0.965 33.64 0.938 32.91 0.916 32.726 0.921

MSPFN [44] 27.05 0.876 28.66 0.860 32.40 0.933 32.82 0.930 32.39 0.916 30.726 0.903

PreNet [14] 24.81 0.851 26.77 0.858 32.44 0.950 31.75 0.916 31.36 0.911 29.426 0.897

PRN [14] 23.51 0.761 28.07 0.884 36.98 0.977 23.79 0.812 19.73 0.709 26.417 0.829

Proposed 32.43 0.930 33.01 0.901 38.21 0.969 33.89 0.932 34.23 0.953 34.154 0.937

Qualitative results on different datasets, shown in Table 3, are shown in Figure 9.
Our proposed model exhibits improved restoration performance especially on Test100,
Rain100H, and Test1200 datasets, as these datasets include diverse raining conditions
including rain streaks and rain streaks accumulation. Moreover, our proposed network
showed equally improved performance on Rain100L and Test2800 datasets. Other networks
tend to either blur the images by over-smoothing or leave some rain streaks visible in
the images.
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4.2.2. Evaluation on Real-World Datasets

Additional experiments have been performed on real-world rainy datasets RID and
RIS [69] in order to evaluate the generalization capabilities of our proposed model. More-
over, due to the absence of ground truth (clear with no rain) images, no-reference metrics
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are required to evaluate the performance of deraining (NIQE and SSEQ). Quantitative
results are shown in Table 4.

Table 4. Comparison results of average NIQE/SSEQ on real-world dataset (RID and RIS). The smaller
scores indicate better perceptual quality.

Dataset Evaluation Metrics HINet MPRNet MSPFN PreNet Proposed

RID
NIQE ↓ 4.985 4.856 6.518 7.007 4.562
SSEQ ↓ 81.162 50.648 40.47 43.04 48.213

RIS
NIQE ↓ 6.887 6.045 6.135 6.722 6.148
SSEQ ↓ 52.983 51.689 43.47 48.22 52.681

4.2.3. Time Performance Evaluation

Due to the tight real-time constraints of AVs tasks—in our case, object detection—any
additional processing should not impose high computational complexity that may affect
the real-time performance. Therefore, deraining process should take this into consideration.
Moreover, another challenge imposed by the nature of AVs, is that both Avs and the sur-
rounding objects are in a dynamic/moving state. Since computational efficiency is crucial
for autonomous driving which requires real-time performance. Table 5 lists the running
time of different methods based on a computer equipped with an NVIDIA GTX 1050Ti GPU.
Our proposed model achieves competitive performance compared with other models.

Table 5. Comparison of running time (sec) on NVIDIA GTX 1050Ti GPU.

Image Size HINet MPRNet MSPFN PreNet Proposed

500 × 500 0.574 0.792 0.415 0.464 0.251
1024 × 1024 2.065 2.782 1.538 1.578 0.843

Authors of these SOTA deraining algorithms have evaluated the inference time in
their research on different GPUs; therefore, we had to re-evaluate their running times on
the same image sizes on a unified computer to produce valid comparisons.

4.2.4. Effect on Object-Detection Performance

Deraining of images captured by AVs in real driving scenarios is considered an ef-
fective enhancement of images quality which subsequently enhances the performance of
object-detection task performed by AVs, which is the main objective of our work. There-
fore, we investigated the effect of applying deraining algorithms, including our proposed
network, on the accuracy of object detection.

In order to perform this evaluation, we used samples collected by Jian et al. in [44].
They have collected samples from datasets that include driving scenes with diverse con-
ditions (850 samples from COCO and BDD datasets to create new synthetic rain datasets:
COCO350, and BDD350), such as diverse rain orientations and magnitudes, in addition to
complex scenes (e.g., night scenes). First, we applied our proposed deraining algorithm, as
well as other SOTA deraining algorithms in order to restore rain-free images. Afterwards,
we apply the object-detection framework—YOLOv3—to assess the detection efficiency on
de-rained images. Quantitative results of both the deraining performance as well as the
detection efficiency are shown in Table 6. In addition, visual comparisons are shown in
Figure 10.
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Table 6. Comparison results of joint image deraining and object detection on samples of COCO and
BDD datasets.

Methods Rainy Input HINet MPRNet MSPFN PreNet Proposed

Deraining; Dataset COCO350/BDD350

PSNR 14.79/14.13 18.068/15.61 18.01/16.65 18.23/17.85 17.53/16.9 18.879/17.98
SSIM 0.648/0.470 0.786/0.567 0.786/0.779 0.782/0.761 0.765/0.652 0.801/0.823

Object Detection; Algorithm: YOLOv3; Dataset: COCO350/BDD350

Precision (%) 23.03/36.86 32.87/41.52 31.45/40.05 32.56/41.04 31.31/38.66 33.54/41.97
Recall (%) 29.6/42.8 39.54/50.21 38.21/49.32 39.31/50.40 37.92/48.59 40.12/50.67

IoU (%) 55.5/59.85 60.57/62.53 62.54/62.21 62.54/62.21 60.75/61.08 62.34/61.23
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BDD350 dataset. The third and fourth rows shows the results of object detection performed on the
first and second rows sequentially. YOLOv3 has been used for object detection.

The object-detection accuracy is greatly degraded by the presence of unclear weather
conditions, especially rain. Rain drops cover and distort underlying visual features of
surrounding objects, which are used by detection methods to classify and localize objects.
Figure 10 demonstrates the performance of object detection with and without draining
in advance.

Not all deraining algorithms boosts the performance of object detection; however,
Hnewa et al. in [70] and Li et al. in [69] have shown that some deraining algorithms [43,51]
may degrade the detection performance when compared with directly using the rainy
images as input to the corresponding detection frameworks, as they are not optimized
towards the end goal of object detection. One factor for this degradation is that the tested
deraining algorithms tended to smooth out the images, and hence, distorts important visual
features of a scene, and smooths out edges of objects leading to missing detecting them.

Therefore, in our research it is crucial to evaluate the performance of our proposed
deraining model by jointly evaluating the object-detection performance on the de-rained
output. As shown in Table 6, the detection precision of the produced de-rained images
by our proposed model shows noticeable improvement compared with that of original
rainy inputs by 68%. Additionally, when compared with other SOTA deraining models, the
de-rained images generated by our proposed model shows more dependable contents with
clearer features, which efficiently boosts the detection performance.
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5. Conclusions

A novel deraining network is presented; it mitigates different rain effects—rain streaks
with different directions and intensities and rain accumulations—and targets images cap-
tured under rainy driving scenes. The proposed network comprises of three main phases.
The first phase performs rain streak removal to remove most visible rain streaks in an
image; the second phase is rain accumulation removal which is similar to a defogging
operation; lastly, we perform a second rain streak removal operation in order to remove any
left rain streaks that could be boosted by the previous rain accumulation removal phase.

The network is based on baseline lightweight network in order to maintain real-time
computational performance, as this is a crucial constraint for the performance of deraining
networks along with other subsequent operations performed by AVs.

Experiments showed that the proposed network has higher efficiency when compared
with SOTA deraining networks, regarding both qualitative and quantitative evaluation
metrics, and running time. Moreover, we evaluate the proposed network in addition to
the SOTA deraining networks regarding object-detection performance. The presented
methodology is considered to be the first to deal with both real-time efficiencies and
enhanced performance.

Further research direction includes the investigation of enhancing the model to miti-
gate more diverse weather conditions such as snow, sun glare, and lightning. Moreover,
the proposed network performs removal of both rain streaks and rain streaks accumulation
even if only one of these degradations exist. Therefore, another direction to our research
is to add initial step of detecting the type of degradation exists in the captured images.
Additionally, we plan to test the network on different hardware in order to evaluate the
speedup enhancement that could be achieved using more powerful hardware.
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Abbreviations

Abbreviation Full Description
AI Artificial Intelligence
AV Autonomous Vehicle
HINet Half Instance Normalization Network
MPRNet Multi-Stage Progressive Image Restoration Network
MSPFN Multi-Scale Progressive Fusion Network
NIQE Natural Image Quality Evaluator
ODD Operational Design Domain
PReNet Progressive Recurrent Residual Network
PSNR Peak Signal to Noise Ratio
ResNet Residual Network
SAE Society of Automotive Engineers
SOTA State of the art
SSEQ Spatial-Spectral Entropy-based Quality
SSIM Structural Similarity Index Measure
WHO World Health Organization
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