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Abstract 12 

The hippocampus (HPC) and medial prefrontal cortex (mPFC) have well-established roles in 13 
cognition, emotion, and sensory processing. In recent years, interests have shifted towards 14 
developing a deeper understanding of the mechanisms underlying interactions between the 15 
HPC and mPFC in achieving these functions. Considerable research supports the idea that 16 
synchronized activity between the HPC and the mPFC is a general mechanism by which 17 
brain functions are regulated. In this review, we summarize current knowledge on the 18 
hippocampal-medial prefrontal cortex (HPC-mPFC) circuit in normal brain function with a 19 
focus on oscillations and highlight several neurodevelopmental and neurological disorders 20 
associated with aberrant HPC-mPFC circuitry. We further discuss oscillatory dynamics 21 
across the HPC-mPFC circuit as potentially useful biomarkers to assess interventions for 22 
neurodevelopmental and neurological disorders. Finally, advancements in brain stimulation, 23 
gene therapy and pharmacotherapy are explored as promising therapies for disorders with 24 
aberrant HPC-mPFC circuit dynamics.    25 
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Introduction 39 

It is well established that the HPC and mPFC are important regions that facilitate cognition, 40 
emotion, and sensory processes (Jin and Maren, 2015; Ruggiero et al., 2021). A growing body 41 

of evidence suggests that information sharing between the HPC and mPFC is required for 42 
cognitive processes and successful execution of behaviours (Harris and Gordon, 2015; 43 
Negrón-Oyarzo et al., 2018; Preston and Eichenbaum, 2013; Salimi et al., 2021; Tang et al., 44 
2021; Wirt and Hyman, 2017). Recent evidence further highlights the importance of 45 
communication between the HPC and mPFC during learning and memory processes (Dickson 46 
et al., 2022; Morici et al., 2022). Efforts to understand the pathophysiology of various disorders 47 
have focused on identifying abnormalities in regions of the HPC and mPFC underlying 48 
symptoms of these disorders. It is becoming increasingly clear that neurodevelopmental and 49 
neurological disorders are not only due to a circumscribed deficit in the HPC and/or mPFC, 50 
but also represent a distributed impairment involving HPC-mPFC connectivity (Bast et al., 51 
2017; Calabro et al., 2020; Colgin, 2011; Godsil et al., 2013; Jones and Wilson, 2005; Li et al., 52 
2015; Sigurdsson and Duvarci, 2016). 53 

Neural oscillations are the fundamental mechanism to enable coordinated activity during 54 
normal brain functioning (Buzsáki and Draguhn, 2004; Singer, 1999). There is abundant 55 
evidence for a close relationship between the occurrence of oscillations and cognitive and 56 
behavioural responses (Fries et al., 2001; Uhlhaas and Singer, 2010). Neural oscillations and 57 
synchronization reflect regional and interregional communication between cortical areas. In 58 
general, there is a correlation between the distance over which synchronization is observed 59 

and the frequency of the synchronized oscillations. Short-distance synchronization tends to 60 
occur at higher frequencies (>30 Hz), and long-distance synchronization often manifests in 61 
the low-frequency range (<20 Hz) (von Stein and Sarnthein, 2000). Recent studies further 62 
suggest that cross-frequency modulation across brain areas may serve a functional role in 63 
neuronal computation and communication (Womelsdorf et al., 2010). While high-frequency 64 
brain activity reflects local domains of cortical processing, low-frequency brain rhythms are 65 
dynamically entrained across distributed brain regions by both external sensory input and 66 

internal cognitive events. Therefore, cross-frequency modulation may serve as a mechanism 67 
to transfer information from large-scale brain networks operating at behavioural timescales to 68 
fast, local cortical processing required for effective computation and synaptic modification, 69 

thus integrating functional systems across multiple spatiotemporal scales (Canolty and Knight, 70 
2010). 71 

In this review, we present recent evidence for anatomical and synchronous activity between 72 
the HPC and mPFC. We detail work revealing that the HPC-mPFC circuitry is essential for 73 
cognitive, emotional, and sensory processes. Based on anatomical and electrophysiological 74 
evidence, we further examine the possible neurobiological causes of impaired HPC-mPFC 75 
oscillations and the involvement of aberrant HPC-mPFC oscillatory activity underlying several 76 

neurodevelopmental and neurological disorders. Finally, advancements in deep brain 77 
stimulation, gene therapy, and pharmacotherapy are explored as useful interventions for 78 

various disorders associated with aberrant HPC-mPFC circuitry.  79 

 80 

 81 

 82 

 83 

 84 
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Animal Models in Neuroscience Research 85 

Animal research has formed vital contributions to understanding neural mechanisms and 86 
disorders. Non-human primates have been at the forefront of research efforts, and rodents 87 

have been the most widely used models in neuroscience research. Despite major differences 88 
in anatomical organization of brains and a 17,000-fold variability in brain volume across 89 
mammalian species, the temporal dynamics within and across brain networks remain 90 
remarkably preserved (Buzsáki et al., 2013; van Heukelum et al., 2020; Laubach et al., 2018). 91 
Furthermore, despite a small variability of individual oscillations across species, frequency 92 
ranges within species and their cross-frequency interactions are supported by the same 93 
fundamental mechanisms and can be adequately characterized across species (Buzsáki et 94 
al., 2013). Therefore, valuable insight from studies involving non-human primates and rodents 95 
help with incorporating findings across species into an integrated field of HPC-mPFC research. 96 

 97 

Anatomical Organization of the HPC and mPFC 98 

The HPC, located deep in the medial temporal lobe, is typically classified by several 99 
subregions (subiculum, dentate gyrus, cornu ammonis regions CA1-CA3) (Fogwe et al., 2022; 100 

Nuñez and Buño, 2021) and compartments (ventral-dorsal in rodents corresponding to 101 
anterior-posterior in humans) (Fanselow and Dong, 2010). The mPFC broadly refers to the 102 
cortical region anterior to the premotor cortex, and can be organized into dorsal and ventral 103 
subdivisions in rodents (Heidbreder and Groenewegen, 2003; Jobson et al., 2021; Xu et al., 104 

2019a) and humans (Bzdok et al., 2013; Xu et al., 2019a). Based on cytoarchitectural and 105 
functional differences, the mPFC is also separated into dorsomedial and ventromedial 106 
subregions in rodents, non-human primates and humans (Jobson et al., 2021; Sigurdsson and 107 
Duvarci, 2016). Studies using tractography and neuroimaging techniques such as diffusion 108 
weighted imaging further provide evidence that  HPC-mPFC interactions in humans (Bzdok et 109 
al., 2013; Croxson, 2005; Godsil et al., 2013; Jobson et al., 2021; Seamans et al., 2008) are 110 

similarly observed in rodents (Condé et al., 1995; Eichenbaum, 2017; Ghoshal and Conn, 111 
2015; Hoover and Vertes, 2007; Jin and Maren, 2015). These interactions include  prominent 112 
direct (monosynaptic) and indirect (polysynaptic) HPC-mPFC pathways (Eichenbaum, 2017; 113 
Godsil et al., 2013; Jin and Maren, 2015; Sigurdsson and Duvarci, 2016). Here, we provide a 114 

brief anatomical overview of HPC-mPFC connections in Fig. 1.  115 

Insight from rodents (Adhikari et al., 2011; Binder et al., 2019; Eichenbaum, 2017; Hoover and 116 
Vertes, 2007), non-human primates (Barbas and Blatt, 1995; Shamy et al., 2010) and humans 117 
(Croxson, 2005; Godsil et al., 2013; Li et al., 2015; Preston and Eichenbaum, 2013) reveal 118 
monosynaptic projections from the ventral CA1 HPC and subiculum to the mPFC. Ventral 119 
hippocampal neurons directly innervate three major GABAergic neurons in the mPFC 120 

(parvalbumin-expressing, somatostatin-expressing, and vasoactive intestinal peptide-121 
expressing interneurons) to support contextual and spatial information (Jin and Maren, 2015). 122 

A monosynaptic projection from the mPFC (predominantly anterior cingulate) to the dorsal 123 
CA3/CA1 HPC is also identified in mice, implicated in the regulation of contextual fear memory 124 
generalization (Bian et al., 2019; Rajasethupathy et al., 2015).  125 

Several indirect pathways involving the thalamus, lateral entorhinal cortex (LEC) and 126 
amygdala further connect the HPC and mPFC. Rodent studies reveal that the thalamic 127 
nucleus reuniens (NR) is bidirectionally connected to both the mPFC and HPC, and this 128 
pathway is associated with global synchronization and associative learning (Griffin, 2015; Roy 129 

et al., 2017). The lateral entorhinal cortex (LEC) is also bidirectionally connected to both the 130 
mPFC and HPC in rodents (Agster and Burwell, 2009; Eichenbaum, 2017; Isomura et al., 131 
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2006; Salimi et al., 2021), and this pathway involving the LEC is implicated in memory 132 
encoding and retrieval (Eichenbaum, 2017; Takehara-Nishiuchi, 2020). In rodents, 133 
bidirectional projections between the amygdala and both the vHPC and the mPFC are further 134 
described (Fukushima et al., 2021; Guirado et al., 2016; Hübner et al., 2014; Khastkhodaei et 135 
al., 2021; Kim and Kim, 2019). These findings implicate that emotion and social behaviours 136 
may be regulated by HPC-mPFC pathways through the basolateral amygdala (BLA) (Felix-137 
Ortiz and Tye, 2014; Felix-Ortiz et al., 2013; Qi et al., 2018), and suggests that the mPFC 138 
supports the HPC in reconsolidating inhibitory avoidance memory through the amygdala 139 
(Fukushima et al., 2021).  140 

 141 

Figure 1 General schematic of direct and indirect pathways between the hippocampus (HPC) 142 
and medial prefrontal cortex (mPFC). Insight from rodents (top) and humans (bottom) 143 
demonstrate that the HPC and mPFC are anatomically connected via direct and indirect 144 
(bidirectional) pathways. Arrows indicate direction of projections. Direct pathways involve 145 

monosynaptic projections from the ventral CA1 HPC and subiculum (anterior HPC in humans) 146 
to the mPFC, and monosynaptic projections from the mPFC (predominantly anterior cingulate) 147 
to the dorsal CA3/CA1 HPC are reported in rodents. Indirect HPC-mPFC pathways involve 148 
bidirectional projections between the HPC and mPFC through intermediary regions: the 149 
thalamic nucleus reuniens (NR), lateral entorhinal cortex (LEC) and amygdala (AMY). For 150 
details and supporting references, see main text.  151 

 152 

 153 
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Oscillatory Synchrony in the HPC and mPFC  154 

Oscillations are one of the prominent features of brain activity and play a crucial role in regional 155 
neural integration and inter-regional interactions in the brain. Oscillatory activity in groups of 156 

neurons generally arises from feedback connections between the neurons that result in the 157 
synchronization of their firing patterns. The interaction between neurons can give rise to 158 
oscillations at a different frequency than the firing frequency of individual neurons. These 159 
oscillations typically include Delta (δ, 2-4 Hz), Theta (θ, 5-7 Hz), Alpha (α, 8-12 Hz), Beta (β, 160 
15-29 Hz) and Gamma (γ, low: 30-60 Hz and high: 60-100 Hz) (Cole and Voytek, 2017; Thut 161 
et al., 2012). Oscillations have been observed in brain regions including the HPC (Goyal et 162 
al., 2020), visual cortical areas (Galuske et al., 2019), and olfactory cortex (Salimi et al., 2021). 163 
Inter-regional oscillation coupling could modulate effective connectivity in a given behavioural 164 
period, such as while undertaking cognitive tasks, attentional selection and decision making  165 
(Berger et al., 2019; Doesburg et al., 2012; Gordon, 2011; Guise and Shapiro, 2017). 166 
Considerable evidence (Buzsáki and Draguhn, 2004; Goodman et al., 2018; Wirt et al., 2021) 167 
shows that indirect connectivity through HPC-mPFC oscillatory coupling plays a significant 168 
role across different cognitive domains, such as goal-directed behaviour (Womelsdorf et al., 169 

2010), emotion (Jin and Maren, 2015), context-guided memory (Place et al., 2016), decision-170 
making (Tamura et al., 2017) and spatial/episodic memory (Brincat and Miller, 2015; Igarashi, 171 

2015; Spellman et al., 2015). Synchrony in different frequency bands may play functionally 172 
different roles in neural communication (Fries, 2005; Buzsáki and Draguhn, 2004). See Table 173 
1.  174 

(1) HPC-mPFC δ oscillation: δ-frequency network activity is commonly associated with 175 
sleep, but data from awake-behaving animals show δ-dominated network modes (HPC-mPFC 176 
coupling). Significantly elevated δ power can be observed in stationary animals during brief 177 
pauses between running bouts, whereas synchronization in the delta frequency band was 178 
minimal during locomotion. These findings suggest that HPC-mPFC δ oscillation represents 179 
functionally distinct circuit dynamics that are temporally and behaviourally alternated among 180 
θ-dominated oscillations during navigation. This oscillation is vital to coordinating encoding 181 

and retrieval mechanisms or decision-making processes at a timescale that segments event 182 
sequences within behavioural episodes (Schultheiss et al., 2020).  183 

(2) HPC-mPFC θ oscillation: Modulation of mPFC and HPC oscillatory θ coupling by 184 
mnemonic demands of a working memory task correlated with behavioural performance both 185 
in animals (Brincat and Miller, 2015; Siapas et al., 2005) and in humans (Anderson et al., 186 

2010; Kaplan et al., 2014; Backus et al., 2016), and θ-modulated rhythmic excitability is 187 
essential for long-term synaptic potentiation (Capocchi et al., 1992) and important for gating 188 
information flow and guiding plastic changes (Siapas et al., 2005). In addition, considerable 189 
evidence demonstrates HPC-mPFC θ coupling during spatial navigation when novel 190 
information was encoded and stored information was retrieved (Kaplan et al., 2014). An 191 

increase in HPC-mPFC θ coupling also occurs during active choice decision making (Guitart-192 
Masip et al., 2013) and other memory tasks (Simons and Spiers, 2003).  193 

(3) HPC-mPFC α/β oscillation: A study from macaques demonstrated that α/β-band 194 
synchrony driven by the HPC increased with learning, leading to the hypothesis that rapid 195 
object associative learning occurs in the PFC, whereas the HPC guides neocortical plasticity 196 
via oscillatory synchrony in α/β (success) or θ (failure) bands (Brincat and Miller, 2015). 197 

(4) HPC-mPFC γ oscillation: γ rhythms have received a great deal of attention due to their 198 

relationship to higher brain functions (Buzsáki and Wang, 2012; Csicsvari et al., 2003). 199 

However, the role of HP-mPFC in synchronous γ activity is less explored. γ coupling between 200 
the HPC and mPFC was reported in relation to working memory (Sigurdsson et al., 2010) and 201 
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exploratory behaviour during anxiety (Adhikari et al., 2010). As mPFC fast γ oscillations may 202 
be coherent with fast γ in both the HPC and the entorhinal cortex (Colgin et al., 2009), the 203 
entorhinal–hippocampal–mPFC network could therefore coordinate information flow across 204 
these three regions during processing of information related to the external environment 205 
(Colgin, 2011). 206 

(5) HPC-mPFC ripples: Ripples, discrete bouts of fast oscillations that are strongly associated 207 
with underlying bursts of spiking activity (Buzsáki, 2015), have been implicated in memory 208 
formation, consolidation, and retrieval (Buzsáki, 2015; Joo and Frank, 2018). The identification 209 
of HPC-mPFC ripples coupling with extensive cortico-cortical connections (Khodagholy et al., 210 
2017), reflected either a direct hippocampal–entorhinal cortex–neocortex excitation 211 
(Logothetis et al., 2012; Peyrache et al., 2011) and/or an indirect common drive by cortical 212 
slow oscillations (Isomura et al., 2006; Sirota et al., 2008). HPC-mPFC ripple association 213 
areas support roles in memory consolidation and links to navigational planning (Khodagholy 214 
et al., 2017). 215 

(6) HPC-mPFC cross frequency: The cross-frequency coupling of distinct neural oscillations 216 

act as a mechanism for the dynamic co-ordination of brain activity over multiple spatial scales, 217 
with high-frequency activity within local ensembles coupled to large-scale patterns of low-218 
frequency phase synchrony (Bonnefond et al., 2017). 219 

Cross-frequency coupling is present during a range of cognitive functions and likely affects 220 
the organization of brain rhythms. Current data demonstrates its crucial role in long-range 221 
cross-frequency coupling in HPC–prefrontal circuit function. Hippocampal θ oscillations 222 

modulate mPFC assembly patterns by rhythmically biasing synchrony of local γ oscillations in 223 
behaving rats and mice (Sirota et al., 2008; Tamura et al., 2017), suggesting that oscillations 224 
mediate information flow from the HPC to the PFC. In addition, θ-δ coupling mediates 225 
information transfer from the PFC to the HPC via a relay mechanism through the thalamic NR 226 
(Roy et al., 2017). However, this result has been challenged in light of the possibility that δ 227 
oscillations has been attributed to respiratory-entrained oscillations in both structures 228 
(Lockmann and Tort, 2018).  229 

 230 

 231 

 232 

 233 

 234 

 235 

 236 

 237 

 238 

 239 

 240 

 241 
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Table 1 The physiological roles of oscillatory synchrony between the hippocampus (HPC) and 242 
medial prefrontal cortex (mPFC). Relevant studies with recordings from generalized regions 243 
of the prefrontal cortex and medial temporal lobe are also included in this table. (LFP=local 244 
field potentials; iEEG= intracranial EEG; MEG=Magnetoencephalography) 245 

Oscillation Region Methods 
Used 

Species Frequency 
Range 

Function Reference 

Delta (δ) HPC-mPFC LFPs Rat 1-4 Hz Decision-
making 

Schultheiss 
et al., 2020 

Theta (θ) vHPC-mPFC LFPs Mice 4-12 Hz Anxiety Adhikari, 
2011 

dHPC-mPFC LFPs Mice 6-12 Hz Decision-
making 

Chang, 
2020 

vHPC-
mPFC-dHPC 

LFPs Mice 4-2 Hz Spatial 
working 
memory 

O'Neill, 
2013 

dHPC-mPFC LFPs Rat 4-12 Hz Decision-
making 

Jones, 2005 

dHPC-mPFC LFPs Rat 4-10 Hz Storage of 
information 

Siapas et 
al., 2005 

HPC-PFC LFPs Rhesus 
macaques 

∼2-6 Hz Working 
memory 

Brincat & 
Miller, 2015 

MTL-PFC iEEG Human 4-8 Hz Memory K. L. 
Anderson et 
al., 2010 

HPC-mPFC MEG Human 3-7 Hz Integrated 
memory 

Backus et 
al., 2016 

mPFC-MTL MEG Human 4-8 Hz Spatial 
memory 
retrieval 

Kaplan et 
al., 2014 

mPFC-MTL MEG Human 4-7 Hz Dynamic 
spatial 
imagery 

Kaplan et 
al., 2017 

PFC-MTL MEG Human 4-8 Hz Decision-
making 

Guitart-
Masip et al., 
2013 

Alpha/Beta 
(α/β) 

PFC-HPC LFPs Rhesus 
macaques 

9-16 Hz Learning Brincat & 
Miller, 2015 

Gamma 
(γ) 
 

vHPC-mPFC LFPs Mice 30-100 Hz Anxiety Adhikari, 
2011 

dHPC-mPFC LFPs Mice 30-80 Hz Spatial 
memory 

Sigurdsson 
et al., 2010 

Ripples HPC-mPFC LFPs Rat 100-150 Hz Navigation 
planning 

Khodagholy 
et al., 2017 

Cross-
frequency 

θ (dHPC) - 
γ (mPFC)  

LFPs Rats and 
Mice 

θ (3-5 Hz);  
γ (30-150 
Hz) 

Information 
flow 

Sirota et al., 
2008 

θ (vHPC) - 
γ (mPFC) 

LFPs Mice θ (4-12 Hz);  
γ (30-120 
Hz) 

Working 
memory  

Tamura et 
al., 2017 

δ (mPFC) - 
θ (dHPC and 
vHPC)  

LFPs Rat δ (2-5 Hz);  
θ (4-8 Hz) 

Unknown Roy, 2017 

 246 
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The HPC-mPFC Circuit in Cognition, Emotion and Sensory Processing 247 

Cognition: Memory and Learning  248 

Important interactions between the HPC and mPFC support the encoding and retrieval of 249 

episodic memories (Eichenbaum, 2017; Jin and Maren, 2015; Kennedy and Shapiro, 2004; 250 
Weilbächer and Gluth, 2017). Considerable evidence demonstrates that in these interactions, 251 
the HPC organizes contextual memory and the mPFC facilitates retrieval of contextual 252 
memories through suppressing inappropriate memories from differing contexts (Eichenbaum, 253 
2017; Preston and Eichenbaum, 2013). Recent functional MRI (fMRI) studies also 254 
demonstrate that persistent HPC-mPFC interactions promote long-term memory through 255 
context-based differentiation (Dugré et al., 2021; Ezzyat et al., 2018). Evidence from rodents 256 
involving paradigms such as the water maze (Vorhees and Williams, 2006), the T-maze 257 
(Deacon and Rawlins, 2006) and spatial win-shift on the radial arm maze (Taylor et al., 2003) 258 
further support the critical role of HPC-mPFC interactions in facilitating the successful 259 
execution of working memory (Liu et al., 2018; Salimi et al., 2022; Sigurdsson and Duvarci, 260 
2016; Wirt et al., 2021). This is further observed in human studies. Increased HPC-mPFC θ 261 

coherence was predictive of successful memory integration in participants performing an 262 
inference task (Backus et al., 2016), and higher HPC-mPFC θ phase synchronization during 263 
encoding of contextually unexpected information was predictive of later memory performance 264 
in epileptic patients (Gruber et al., 2018).  265 

Evidence from rodents demonstrate that the HPC-mPFC circuit is crucial for learning. Bilateral 266 
or crossed inactivation of the HPC (dorsal or ventral) or mPFC impaired flexible spatial 267 

learning (Avigan et al., 2020), and increased θ-band synchrony between HPC and mPFC 268 
pathways were observed during the transition from retrospective to prospective encoding 269 
(Myroshnychenko et al., 2017). It has also been shown that novel experiences alter vHPC θ 270 
oscillations and vHPC–mPFC connectivity, subsequently contributing to the modulation of 271 
learning-associated plasticity (Park et al., 2021). This implicates the crucial role of the HPC-272 
mPFC circuitry in learning-associated circuit plasticity, where it can be primed for subsequent 273 
learning through novelty-induced changes to its circuit connectivity. It has also been shown in 274 
rhesus monkeys that frequency-specific interactions and oscillatory synchrony underlie 275 
relevant points during associative learning, suggesting that oscillatory signals from the HPC 276 

guides neocortical plasticity in the PFC during associative learning (Brincat and Miller, 2015). 277 
Studies in human further suggest that the HPC-mPFC circuit is not only activated and engaged 278 
in interactions with various brain regions to integrate information during new learning, but also 279 

play an important role in higher-level cognition, such as the acquisition of hierarchical concepts 280 
in category learning (Schlichting and Preston, 2016; Theves et al., 2021). Therefore, the HPC-281 
mPFC circuit plays a crucial role in supporting cognitive processes involving memory and 282 
learning.  283 

 284 

Emotion  285 

The HPC and mPFC are critically implicated in the neurocircuitry of emotion involving the 286 
contextual modulation of fear (Hartley and Phelps, 2010; Ji and Maren, 2007; Kjelstrup et al., 287 
2002), emotional judgment (Perry et al., 2011) and emotional memory (Engen and Anderson, 288 
2018; Holland and Kensinger, 2010; Lovett-Barron et al., 2014; Richter-Levin and Akirav, 289 
2000). The mPFC is implicated in the appraisal and expression of negative emotion (dorsal-290 
caudal mPFC), and regulates limbic regions that facilitate emotional responses (ventral-rostral 291 

mPFC) (Etkin et al., 2011). Increasing evidence suggests that hippocampal-cortical pathways 292 
facilitate the emotional regulation of fear and emotional processing through oscillations (Jin 293 
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and Maren, 2015; Vertes, 2006). Enhanced ripple-δ-spindle coupling across the HPC-mPFC 294 
circuit is observed in mice exposed to exogenous acute stress, providing evidence that 295 
emotional encoding is supported by oscillations across this circuit (Lv et al., 2022). These 296 
findings support evidence from human studies that demonstrate the association between 297 
HPC-mPFC θ synchronization and anxiety-like behaviour (Khemka et al., 2017; Korn et al., 298 
2017).   299 

There is evidence to suggest that indirect HPC-mPFC pathways modulate emotional 300 
processes such as fear extinction and emotion regulation through circuits involving the 301 
amygdala (Hartley and Phelps, 2010; Jin and Maren, 2015; Ramanathan et al., 2018). The 302 
amygdala is a key structure in fear-conditioning and eliciting emotional states, assigning 303 
emotional dimensions to sensory stimuli through constant evaluation and integration of 304 
arousal states (Kim and Cho, 2020; Ressler and Maren, 2019; Šimić et al., 2021). Insight from 305 
studies using projection tracers and optogenetics in rodents have demonstrated that the 306 
amygdala is anatomically connected to the HPC and mPFC (Hintiryan et al., 2021; Orsini et 307 
al., 2011; Yang and Wang, 2017) and oscillatory synchrony between these regions are 308 
implicated in supporting emotional arousal and consolidation of emotional memories 309 

(Hermans et al., 2014; Paré et al., 2002). Further studies have found increased θ 310 
synchronization across the vHPC-BLA-mPFC circuit during heightened anxiety and learned 311 

fear expression, suggesting that oscillatory rhythms across this circuit are engaged during 312 
emotional states (Adhikari et al., 2010; Çalışkan and Stork, 2019). These findings are 313 
supported by studies in humans, providing evidence for unidirectional θ and α oscillations in 314 
the amygdala that modulate hippocampal γ activity during fear processing (Zheng et al., 2017), 315 
and synchronization of θ oscillations in the amygdala and mPFC to facilitate fear learning 316 
(Chen et al., 2021). Altogether, considerable evidence suggests a neurocircuitry of emotion 317 
regulation that involves the HPC-mPFC circuit via the amygdala (Hartley and Phelps, 2010; 318 
Jin and Maren, 2015; Richter-Levin and Akirav, 2000; Yang and Wang, 2017).  319 

 320 

Sensory Processing 321 

Sensory processing (SP) plays an important role in daily life as it synthesizes information from 322 
multiple sensory channels in response to the external environment into coherent behavioural 323 

and emotional patterns. Studies in rodents (Le Merre et al., 2018; Martin-Cortecero and 324 
Nuñez, 2016) and humans (Acevedo et al., 2014; Zucchella et al., 2018) demonstrate the 325 
involvement of a large network of brain areas including the sensory cortices, motor cortices 326 

and associative areas in SP. Rodent studies further reveal that the HPC and mPFC are 327 
involved in multisensory integration and sensory discrimination (Engel et al., 2012; Grion et 328 
al., 2016; Martin-Cortecero and Nuñez, 2016; Pereira Antonio et al., 2007). Insight from rodent 329 
models of classical eyeblink conditioning further demonstrates that HPC-mPFC pathways can 330 
dynamically modulate SP of conditioned stimulus as part of a secondary modulatory system 331 
(Zhang et al., 2019).  332 

The influence of HPC-mPFC pathways on SP is further highlighted in studies where sensory 333 
signals are evaluated for learned motor output. In a study, mice were trained for a whisker-334 
dependent detection task, and correct “licks” following whisker stimulation correlated with 335 
increased sensory-evoked signals in the dorsal CA1 HPC and mPFC (Le Merre et al., 2018). 336 
Inactivation of neural activity in the HPC and mPFC further impaired behavioural performance, 337 
corroborating studies in contextual learning that demonstrate the crucial role of HPC-mPFC 338 

interactions in translating sensory signals to relevant motor behaviour (Martin-Cortecero and 339 

Nuñez, 2016; Ong et al., 2019), and that HPC-mPFC oscillatory synchrony underlie sensory 340 
gating deficits (Dickerson et al., 2010). In addition, studies in humans provide evidence that 341 
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HPC-mPFC oscillatory synchrony at various frequencies including increased θ coherence 342 
supports auditory predictive processing and multisensory attention (Friese et al., 2016; 343 
Grunwald et al., 2003; Recasens et al., 2018). HPC-mPFC interactions are further 344 
demonstrated to be crucial for supporting SP during postnatal development, as the HPC 345 
provides excitatory signals to drive functional mPFC maturation during the sensitive period of 346 
tactile development in rodents (Xu et al., 2020). These include HPC θ oscillations that boost 347 
prefrontal oscillations in the neonatal mouse, and the emergence of θ-γ oscillations during 348 
maturation across the hippocampal-prefrontal network (Ahlbeck et al., 2018; Bitzenhofer et 349 
al., 2017; Brockmann et al., 2011; Xu et al., 2020). Thus, oscillations across the HPC-mPFC 350 
circuitry are not only important for cognition and emotional processes, but also facilitates 351 

normal SP. As rodent studies increasingly implicate the involvement of HPC-mPFC pathways 352 
in modulating SP, future work in humans is warranted to elucidate distinct oscillatory 353 
contributions across the HPC-mPFC network in response to various stimuli.  354 

 355 

The Impact of Abnormal HPC-mPFC Circuit Dynamics in Neurodevelopmental and 356 

Neurological Disorders 357 

The HPC-mPFC circuit supports cognition, emotion, and sensory processing. These regions 358 
are anatomically and functionally intertwined, and oscillations regulate communication and 359 
information flow to support cognitive and behavioural processes. In this section, we discuss 360 
relevant disorders involving dysfunctional neural dynamics with a focus on the HPC-mPFC 361 
circuit. See Table 2.  362 

 363 

Abnormal HPC-mPFC Circuit Dynamics in Neurodevelopmental Disorders 364 

Abnormal brain development affects the structural and functional connectivity across the HPC-365 
mPFC circuit, resulting in alteration at different spatial scales from cellular levels to network 366 

level. Neurodevelopmental disorders have been associated with maladaptive formation of 367 
cortical networks and faulty programming of synaptic connections, as neural oscillations and 368 
synchrony may have crucial roles in synaptic modifications (Galuske et al., 2019; Zarnadze et 369 

al., 2016). In this section, we highlight aberrant oscillations within and across the HPC-mPFC 370 
network associated with a variety of cognitive and behavioural deficits in several 371 
neurodevelopmental disorders.  372 

 373 

Autism Spectrum Disorder 374 

Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder characterized by 375 
impairments in memory, executive function, and social skills (Hodges et al., 2020). Disruptions 376 
in oscillatory synchronization are core deficits in ASD, occurring at frequencies involving long 377 

range (δ, θ, α, β) and short range (β, γ) connectivity (Simon and Wallace, 2016). Altered neural 378 
circuitries in numerous brain regions including the orbitofrontal and sensory-motor networks 379 
are observed in ASD individuals, suggesting that cortical asynchronization during sensory and 380 
perceptual processing is a pathological hallmark of ASD (Hull et al., 2017; Oldehinkel et al., 381 
2019; Xu et al., 2019b).  382 

To date, only a few studies have focused on HPC-mPFC pathways in ASD. Cytoskeleton 383 
anomalies including fewer dendrites, smaller dendritic processes, and shorter dendritic 384 
processes in pyramidal neurons of the HPC and mPFC are associated with ASD (Barón-385 
Mendoza et al., 2018). These morphological changes implicate altered synaptic connections, 386 
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aberrant HPC-mPFC connectivity and contribute to autistic-like behaviours including impaired 387 
social behaviour (Barón-Mendoza et al., 2019). In addition, they affect pyramidal-mediated 388 
excitatory transmission and disturb the balance of excitation/inhibition (E/I) signals that 389 
support social behaviour. A study found reduced θ synchronization between the vHPC-mPFC 390 
and loss of excitatory signalling from the vHPC to prefrontal GABAergic interneurons in mice 391 
heterozygous for Pogz (high confidence autism gene) with anxiety-related avoidance 392 
behaviour (Cunniff et al., 2020). This corroborates evidence for the crucial role of vHPC-mPFC 393 
in aberrant social behaviour (Sun et al., 2020), where dysfunctional interactions across this 394 
circuit may alter GABAergic circuits and impair long-range communication between the HPC 395 
and mPFC in the pathophysiology of ASD (Nelson and Valakh, 2015; Sohal and Rubenstein, 396 

2019; Zhao et al., 2022).   397 

In addition, social deficits associated with hyperactivity of the vHPC-mPFC signalling were 398 
observed and long-term inhibition of mPFC pyramidal neurons rescued social memory deficits 399 
in a mouse model of Rett syndrome (classified as an ASD disorder) (Phillips et al., 2019). 400 
Another study revealed monosynaptic connections from HPC pyramidal neurons to mPFC 401 
GABAergic neurons, and inhibition of this pathway negatively impacted social behaviour in 402 

mice (Sun et al., 2020). Importantly, activation of mPFC parvalbumin-positive (PV+) neurons 403 
rescued social memory impairments caused by inhibition of vHPC (Sun et al., 2020). Deficits 404 

in hippocampal PV+ interneurons, circuit changes (altered γ oscillations, sharp wave-ripples, 405 
and θ-γ coupling), and impaired spatial discrimination were further found in a mouse model of 406 
ASD, Cntnap2 mice (Paterno et al., 2021). Altered oscillatory θ and α activity associated with 407 
increased memory load have also been demonstrated in individuals with ASD (Larrain-408 
Valenzuela et al., 2017). In addition, studies have shown substantially reduced hippocampal 409 
functional connectivity with frontal regions during episodic memory retrieval (Cooper et al., 410 
2017), as well as rest-associated functional abnormalities in the mPFC correlating with social 411 
impairment in individuals with ASD (Kennedy et al., 2006).  412 

These findings from animal models and ASD individuals suggest that ASD phenotypes may 413 
result from HPC cellular and circuit changes that disrupt proper HPC-mPFC communication 414 

during cognitive and behavioural processes (Schmidt and Redish, 2021). Future research 415 
investigating HPC-mPFC interactions will provide insight into the mechanistic links between 416 
aberrant oscillations across the HPC-mPFC network and ASD-associated behaviours.  417 

 418 

Fragile X Syndrome  419 

Aberrant HPC-mPFC connectivity is characteristic of Fragile X Syndrome (FXS), the most 420 
common form of inherited disability and leading cause of ASD. FXS develops from a mutation 421 
to the Fragile X mental retardation-1 gene (FMR1) located on the X chromosome, resulting in 422 

loss or heavy reduction in the Fragile X Mental Retardation Protein (FMRP). The absence of 423 
FMRP is concurrent with characteristic social impairments, learning disabilities and cognitive 424 

dysfunction including memory dysfunction and abnormal sensory processing (Berzhanskaya 425 
et al., 2016; Ciaccio et al., 2017; Huddleston et al., 2014; Razak et al., 2020). These 426 
impairments have been linked to changes in synaptic plasticity and circuitry involving 427 
excitatory and inhibitory activity in Fmr1-KO mice (Gibson et al., 2008; Morin-Parent et al., 428 
2019; Sidorov et al., 2013; Contractor et al., 2015). Evidence from rodents and humans 429 
suggest that abnormal HPC-mPFC oscillatory dynamics are associated with FXS. Major 430 
electrophysiological observations from recordings in the HPC CA1 pyramidal cell layer 431 

included abnormally greater power of θ oscillations associated with increased slow γ, and 432 

decreased spike-count correlations of interneurons hyper-synchronized with θ and slow γ 433 
oscillations in the FXS mouse model (Fmr1-KO) during free exploration (Arbab et al., 2018). 434 
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In FXS patients, abnormal oscillatory dynamics including enhanced global θ connectivity and 435 
reduced α and β connectivity between wider network have been characterized (Molen et al., 436 
2014). Deficits in social and sensory processing in FXS patients were further correlated with 437 
abnormal oscillatory activity, including increased γ power and θ-γ coupling (Wang et al., 2017). 438 
This suggests that altered oscillations such as changes to γ,  are putative substrates for global 439 
and HPC-mPFC circuit hyper-excitability underlying social deficits in FXS (Arbab et al., 2018; 440 
Goswami et al., 2019; Kozono et al., 2020; Liu et al., 2022; Wang et al., 2017).   441 

In Fmr1-KO mice,  changes in mPFC GABAergic signalling were further observed during 442 
crucial time points of postnatal development (Kramvis et al., 2020). At prepubescence, there 443 
was increased inhibition of the mPFC with decreased inhibitory synaptic depression. This 444 
contrasted prolonged synaptic kinetics with reduced inhibition of the mPFC at adolescence, 445 
and dynamic changes to mPFC pathways in Fmr1-KO during development is functionally 446 
relevant for downstream impairments (Kramvis et al., 2020). Since the regulation of social 447 
behaviour relies on long-range GABAergic projections from regions such as the vHPC and 448 
basolateral amygdala (BLA) to the mPFC (Yang et al., 2021), these abnormalities reflect an 449 
imbalance in GABAergic signalling persisting throughout development with consequential 450 

phenotypes in FSX (Van der Aa and Kooy, 2020). D’Hulst et al. (D’Hulst et al., 2015) 451 
demonstrated an average of 10% reduction in GABAA receptor availability and binding 452 

potential throughout the brain in FXS patients. Using FXS human pluripotent stem cells 453 
(hPSCs), Zhang et al., (Zhang et al., 2022) further found delayed maturation of human 454 
GABAergic neurogenesis in hPSCs, and at later stages of GABAergic neurogenesis, including 455 
(1) increased neuronal networks activity, (2) increased proliferation of neuroblast progenitors 456 
and (3) a downregulation of gene expression associated with neuronal GABAergic maturation. 457 
Thus, a delay in GABAergic neuron differentiation may contribute to recognized deficits in the 458 
GABAergic system in FXS patients (Van der Aa and Kooy, 2020), resulting in altered inhibitory 459 
signals and abnormal homeostatic development of excitatory/inhibitory circuits (Paluszkiewicz 460 
et al., 2011). Consequently, altered local and long-range GABA-dependent HPC-mPFC 461 
interactions expressed in the θ and γ ranges (Molen et al., 2014; Wulff et al., 2009; Contractor 462 

et al., 2015) may further lead to impairments in learning (Gao et al., 2018), social behavior 463 
(Black et al., 2021), fear expression (Yang et al., 2021) and working memory (Lanfranchi et 464 
al., 2009). Future work exploring how GABAergic circuit impairments influence oscillations at 465 

various frequency bands across the HPC-mPFC network will provide insight into mechanisms 466 
linking circuit level to behavioural changes in FSX.  467 

 468 

Down Syndrome  469 

Down syndrome (DS) is a complex genetic disorder characterized by altered HPC and mPFC 470 
neural dynamics associated with cognitive deficits in rodent models (Cramer and Galdzicki, 471 
2012; Witton et al., 2015; Zorrilla de San Martin et al., 2020). We have previously 472 
demonstrated in DS mouse models atypical neural circuitry involving altered θ frequency, 473 
altered hippocampal phase-amplitude coupling, modulation of hippocampal high γ, and altered 474 
HPC-mPFC θ coherence (Chang et al., 2020). These abnormalities were segregated with 475 
behavioural changes associated with impaired spatial working memory and prolonged 476 
decision-making (Chang et al., 2020). Recent evidence further demonstrates increased 477 
hypersynchrony, altered θ oscillations, altered cross-frequency coupling, and reduced HPC 478 
SPW-Rs in the Ts65Dn mouse model of DS (Alemany-González et al., 2020). As HPC SPW-479 

Rs are coupled to cortical networks including the mPFC to facilitate cognitive processes 480 

(Buzsáki, 2015; Schmidt and Redish, 2021), a reduction in HPC SPW-Rs potentially disrupts 481 
proper communication between the HPC and mPFC to mediate memory impairments and 482 
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intellectual disabilities (Martin-Cortecero and Nuñez, 2016). These findings suggest that 483 
atypical neural circuitries associated with aberrant HPC-mPFC pathways are important 484 
mechanisms in the pathophysiology of DS (Chang et al., 2020).  485 

Abnormal brain synchrony is well established in people with DS. Notably, enhanced 486 
synchronization between adjacent brain regions and widespread alterations in default mode 487 
network (DMN) connectivity including weakened long range connections are largely 488 
characterized (Anderson et al., 2013; Rosas et al., 2021; Wilson et al., 2019). Recently, 489 
reduced long-range DMN connectivity associated with cognitive decline were found in DS 490 
individuals, providing evidence that altered connectivity between the HPC and prefrontal 491 
cortices underlie cognitive impairments in DS (DiProspero et al., 2022). In addition, the 492 
attenuation of early exploratory behaviour associated with developmental delays in DS (Fidler 493 
et al., 2019) may be the consequence of abnormal HPC-mPFC interactions. A recent study 494 
demonstrated that direct long-range GABAergic projections from the PFC regulate 495 
disinhibitory HPC microcircuits to facilitate object-related spatial encoding and exploratory 496 
behaviours (Malik et al., 2022). Long-range GABAergic projections promoted network 497 
oscillations that facilitate object exploration such as increased PFC-HPC low-γ synchrony and 498 

greater high-γ and θ power (Malik et al., 2022). These findings implicate that dysfunctional 499 
GABAergic innervation may alter HPC-mPFC oscillatory synchrony and mediate cognitive and 500 

behavioural deficits in DS (Alemany-González et al., 2020; Chang et al., 2020). Therefore, 501 
aberrant HPC-mPFC connectivity may be a potential biomarker predicting clinical conversion 502 
to Alzheimer’s Disease (AD)  in people with DS (DiProspero et al., 2022; Koenig et al., 2021; 503 
Liang et al., 2020).  504 

 505 

Abnormal HPC-mPFC Circuit Dynamics in Neurological Disorders  506 

Aging is associated with alterations in cognitive processing and brain neurophysiology. 507 
Studies demonstrate that physiological aging represent  a global alteration in oscillation and 508 

disruption of brain functional connectivity (Murty et al., 2020; Rondina et al., 2016). 509 
Pathological changes of synaptic integrity and coordinated network activity has been 510 
associated with neurodegenerative and age-related neural disorders. Recent research further 511 
suggests that altered oscillatory activity in the brain may be an early warning sign of age-512 

related neurological diseases (Murty et al., 2021). As the HPC and mPFC have well-513 
established roles in cognitive and memory functions, we discuss relevant age-related 514 
neurological disorders that have aberrant HPC-mPFC circuitry.   515 

 516 

Alzheimer’s Disease 517 

Alzheimer’s Disease is a progressive neurodegenerative disorder with widely characterized 518 
abnormalities in neural oscillations and cognitive deficits (Byron et al., 2021; Hamm et al., 519 
2015; Isla et al., 2021; Kitchigina, 2018). It has been shown that prominent neural HPC-mPFC 520 
oscillations, particularly slow-frequency θ and fast-frequency γ, are significantly altered in 521 
mouse models of AD (Kitchigina, 2018; Mehak et al., 2022) and in patients with early and late 522 
stage AD (Başar et al., 2017; Goodman et al., 2018; McDermott et al., 2018). Additionally, 523 
abnormal oscillations across the HPC-mPFC circuit are associated with AD pathology such 524 
as extracellular insoluble β-amyloid (Aβ) plaques, intracellular neurofibrillary tangles (NFTs), 525 
and tau aggregation (Ahnaou et al., 2017). A study found that Aβ significantly reduces synaptic 526 
inputs of hippocampal fibres to the PFC at different frequencies (5–50 Hz) measured by mean 527 

amplitudes of field excitatory postsynaptic potentials (fEPSPs) in vitro (Flores-Martínez and 528 
Peña-Ortega, 2017). Intracranial recordings from the HPC and mPFC of TgF344-AD rats 529 
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reveal impaired HPC-mPFC θ-γ coherence and attenuated phase-amplitude coupling 530 
concomitant to Aβ deposition and NFTs (Bazzigaluppi et al., 2018). In tau-expressing rats, 531 
Tanninen and colleagues revealed a significant attenuation of inter-region θ and γ phase-532 
phase and amplitude-amplitude oscillatory coupling between the HPC and prelimbic mPFC 533 
during associative learning (Tanninen et al., 2017). Notably, these changes in neural 534 
oscillations were observed prior to cognitive deficits, implicating oscillatory changes detectable 535 
in preclinical AD. Further evidence from rodents reveal the crucial role of mPFC spindle-band 536 
coupling with hippocampal ripples (Maingret et al., 2016; Zhurakovskaya et al., 2019).  537 

The significance of HPC-mPFC in AD is further understood through studies of memory. 538 
Episodic memory is one of the first systems to decline in AD, and affected individuals show 539 
deficits in object and spatial recognition memory consolidation (Tromp et al., 2015). These 540 
processes rely on concurrent activity in the dHPC and mPFC, and chemogenetic inactivation 541 
of these regions impairs memory consolidation in mice (Tuscher et al., 2018). Recent work 542 
demonstrates that CA1 and mPFC θ sequences are temporally coordinated to support 543 
memory-guided decision-making processes in rats (Tang et al., 2021), and synchronization of 544 
θ and γ oscillations regulate HPC-mPFC communication during cognitive processes 545 

particularly learning and memory (Colgin, 2011; Hyman et al., 2005; Wirt et al., 2021; Buzsáki 546 
and Draguhn, 2004). Low levels of θ-γ coupling associated with working memory deficits are 547 

further reported in patients with mild cognitive impairment (MCI) and AD (Abubaker et al., 548 
2021; Goodman et al., 2018; Kitchigina, 2018). Although it is well established that aberrant 549 
HPC-mPFC circuit dynamics are found in AD, it remains unclear whether oscillatory 550 
abnormalities cause cognitive deficits or are a by-product of cellular changes. Nevertheless, 551 
pathological circuits in AD include abnormal θ and γ oscillatory activity across the HPC-mPFC 552 
circuit that leads to impairments in cognition and memory (Mably and Colgin, 2018).   553 

 554 

Epilepsy  555 

Epilepsy is a common neurological disorder that is characterized by frequent seizures. It 556 
affects nearly 1% of the population with substantial morbidity and mortality (Fiest et al., 2017) 557 
There is increasing interest to study the pathophysiological mechanisms underpinning seizure 558 
generation in epilepsy, particularly abnormal connectivity in certain brain regions (Engel et al., 559 

2013; Englot et al., 2016; Jiruska et al., 2013). Studies in patients with focal epilepsy showed 560 
widespread network alterations that extend beyond the epileptogenic zone (Braakman et al., 561 
2013; Luo et al., 2012; Widjaja et al., 2015). In rodent and human studies, altered connectivity 562 

between the HPC and mPFC has been correlated with epilepsy conditions (Englot et al., 2015; 563 
Jin and Maren, 2015). Individuals with temporal lobe epilepsy (TLE) show HPC-mPFC 564 
hypersynchrony and abnormally greater coherence in θ bands (Holmes, 2015), suggesting 565 
that epileptiform events are facilitated by the slow oscillation state biasing hippocampal 566 
pathways towards hyperexcitability and enhancing hypersynchrony across HPC and cortical 567 
networks (Nazer and Dickson, 2009). In a rat model of TLE, coherence in θ band synchrony 568 
between the dHPC and mPFC was further found to be increased in the pre-ictal period 569 
preceding seizures, suggesting that altered HPC-mPFC connectivity may promote seizure 570 
generation (Broggini et al., 2016).  571 

Further evidence revealed that prolonged or recurrent seizures can cause or exacerbate 572 
cognitive impairments (Blake et al., 2000; Butler and Zeman, 2008; Butler et al., 2009). 573 
Numerous studies suggest that altered HPC-mPFC connectivity may be related to 574 

neurocognitive deficits in patients with epilepsy (Doucet et al., 2013; Voets et al., 2014). One 575 

study found fewer physiological hippocampal ripples, greater spontaneous HPC interictal 576 
epileptiform discharges (IEDs), and impaired spatial memory consolidation associated with 577 
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strongly coupled HPC IEDs-mPFC spindles during sleep and awake states in a rat model of 578 
TLE (Gelinas et al., 2016). In patients with focal epilepsy, the coupling of IEDs with spindles 579 
in regions distinct from the epileptic network were further observed to alter spatiotemporal 580 
oscillatory properties and mediate abnormal patterns of brain connectivity (Dahal et al., 2019). 581 
It is becoming increasingly clear that precisely coordinated HPC IEDs-prefrontal cortex 582 
spindles exacerbate aberrant HPC θ-γ coupling during rapid eye movement (REM) in the 583 
epileptic brain (Jansen et al., 2021; Mendes et al., 2021). Consequently, the generation of 584 
pathological HPC oscillations and IED-mediated abnormal coupling of oscillations may alter 585 
HPC-mPFC network activity and disrupt normal HPC ripples-mPFC spindles coupling crucial 586 
for supporting memory processes in the epileptic brain (Azimi et al., 2021; Mendes et al., 2021; 587 

Siapas and Wilson, 1998; Xia et al., 2017). Overall, connectivity studies in epilepsy are critical 588 
endeavours that may lead to improved strategies for localization epileptogenic area, aid 589 
surgical intervention and facilitate outcome prediction in epilepsy.  590 

 591 

Therapeutic Strategies for Targeting HPC-mPFC Circuit Dynamics  592 

Medical treatments and neural substrates for therapeutic approaches can be guided by the 593 
study of brain oscillations. Oscillotherapeutics is an exciting area of therapy that uses 594 
oscillations as biomarkers or therapeutic targets to treat disorders with brain network 595 
dysfunction (Takeuchi and Berényi, 2020). Here, we discuss advancements in brain 596 
stimulation, gene therapy, and pharmacotherapy, highlighting evidence for the use of 597 
oscillotherapeutics to treat disorders with aberrant HPC-mPFC circuit dynamics.  598 

 599 

Brain Stimulation 600 

An emerging application in brain stimulation therapy is the use of neuromodulation to restore 601 
network abnormalities in cognitive disorders such as AD (Chan et al., 2021a). Methods include 602 

non-invasive and invasive approaches that stimulate the brain at targeted sites to restore 603 
balance of neural circuits via manipulation of oscillatory activity in local and network-wide 604 
activity. In this section, we highlight Non-invasive Gamma Entrainment Using Sensory 605 

Stimulation (GENUS) and deep brain stimulation (DBS) as promising approaches in disorders 606 
with aberrant neural oscillations.  607 

Since γ brain activity has well-established roles in cognition, γ entrainment therapy has been 608 

explored for neurological disorders such as AD (Adaikkan and Tsai, 2020; Traikapi and 609 
Konstantinou, 2021). Visual GENUS at 40 Hz entrained γ oscillatory activity in the HPC and 610 
prefrontal cortices and enhanced inter-regional γ oscillatory activity in mouse models of 611 
neurodegeneration (Adaikkan and Tsai, 2020; Adaikkan et al., 2019). Auditory and audiovisual 612 

GENUS at 40 Hz further reduced amyloid load in the HPC and mPFC respectively, and 613 
hippocampal-dependent recognition and spatial memory tasks were also improved by auditory 614 
GENUS at 40 Hz in the neurodegeneration mouse model, 5XFAD mice (Martorell et al., 2019). 615 
These findings demonstrate the potential for GENUS to ameliorate AD pathology and improve 616 
cognitive function (Iaccarino et al., 2016).  617 

Preliminary data from human studies highlights its potential application in treatment for AD. 618 
Chan et al. (Chan et al., 2021b) conducted a randomized, placebo-controlled trial in 619 
participants with mild AD dementia and found that one-hour daily treatment of audio-visual 620 

GENUS at 40 Hz delivered over 3 months improved memory performance and reduced brain 621 
atrophy in the active group. Fatemi et al. (2022) employed simultaneous auditory and visual 622 
stimulation in cognitive healthy participants and found significantly enhanced θ-γ phase-623 
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amplitude coupling (PAC). This corroborates evidence for GENUS as a potential treatment for 624 
AD, as it may be able to correct abnormal oscillations across the HPC-mPFC circuitry and 625 
restore cognitive functions (Belluscio et al., 2012; Chan et al., 2021b; Fatemi et al., 2021; 626 
Lisman & Jensen, 2013; Tort et al., 2009).   627 

The application of DBS to target HPC-mPFC circuit dynamics is based on the hypothesis that 628 
DBS can modulate oscillations in these regions (Cervera‐Ferri et al., 2016; Muthuraman et al., 629 

2020; Zhu et al., 2019). DBS therapy is a neurosurgical intervention where electrical activity 630 
is constantly or intermittently delivered to the brain through electrodes. The ability for DBS to 631 
modulate oscillatory rhythms is actively explored in diseases with pathological brain circuitries 632 
(Herrington et al., 2016; Lozano et al., 2019). DBS of the subthalamic nucleus (STN) and 633 
globus pallidus interna (GPi) was shown to effectively reduce pathological β band activity (13-634 
30 Hz) in the corticothalamic-basal ganglia network responsible for hallmark Parkinsonian 635 
rhythms (Müller and Robinson, 2018). Central thalamus-DBS (CT-DBS) increased 636 
hippocampal θ oscillations and improved SWM in SD rats (Chang et al., 2019), and ventral 637 
internal capsule/ventral striatum DBS therapy increased mPFC θ oscillations and improved 638 
cognitive control in human subjects with MDD Obsessive Compulsory Disorder (Widge et al., 639 

2019). Recent work further demonstrated that acute DBS in the mPFC with 130 Hz improved 640 
mPFC-vHPC θ and γ coupling in a rat model of developmental schizophrenia (Lippmann et 641 

al., 2021).  642 

Insight from DBS for epilepsy further implicates its beneficial impact in treating disorders with 643 
pathological neural circuitries (Laxpati et al., 2014; Wu et al., 2021). Recent evidence found 644 

that DBS in the medial septum entrained the hippocampal θ rhythm to facilitate anti-seizure 645 
effects in patients with temporal lobe epilepsy (TLE), (Wang et al., 2021). In another large, 646 
prospective double-blind study, HPC-DBS significantly reduced seizures in patients with 647 
refractory TLE, and 50% of these patients became seizure-free 8 months post-surgery (Cukiert 648 
et al., 2017). Given that prominent oscillations regulate communication between the HPC and 649 
mPFC, the ability for DBS to entrain oscillations in the HPC may restore normal HPC-mPFC 650 
oscillatory coupling disturbed in neurological disorders with global network dysfunction such 651 

as epilepsy. With increasing evidence that IED-spindle coupling is associated with aberrant 652 
hippocampal-cortical connectivity in epilepsy, future work using DBS to restore physiological 653 
HPC ripple-mPFC spindles may improve cognitive deficits found in patients with epilepsy. 654 

Further studies examining the ability for DBS to alter HPC-mPFC oscillations at different 655 
frequencies will significantly contribute to advancing progress in using DBS to treat 656 
neurological disorders with aberrant HPC-mPFC circuitry.  657 

 658 

Gene Therapy 659 

The use of gene therapy to modulate HPC-mPFC circuit dynamic is a relatively new area of 660 
research. However, preliminary findings from clinical trials suggest that gene therapy can 661 

target diseases like AD that have aberrant neural circuitries. There are over 40 ongoing clinical 662 
trials in treatment for neurodegenerative diseases (Sun and Roy, 2021) and for example, 663 
currently, much optimism surrounds the Phase 1 clinical trial of the AAV2-Brain Derived Nerve 664 
Growth Factor (BDNF) gene therapy to treat AD or MCI (National Institute of Health (NIH), 665 
NCT05040217). Since BDNF regulates key memory circuits involving the HPC and mPFC 666 
(Rosas-Vidal et al., 2014), AAV2-BDNF gene therapy represents a promising therapeutic 667 
approach to treating neurodegenerative diseases like AD by targeting the modulation of 668 
synaptic signalling (Gao et al., 2022); National Institute of Health (NIH), NCT05040217). A 669 

recent study further demonstrated that SynCav1 gene therapy may also be a promising 670 
therapy for AD. First, the authors demonstrated that PSAPP AD model mice at 9 and 11 671 
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months of age exhibited deficits in caveolin-1 (Cav-1), a protein essential for synaptic and 672 
neuroplasticity and associated learning and memory impairments (Wang et al., 2021). Then, 673 
they found that delivery of SynCav1 to the HPC at 3 months using adeno-associated virus 674 
serotype 9 (AAV9) improved memory and improved morphological changes including a 675 
greater number of CA1 dendritic spines and dendritic arborization which support important 676 
rhythms like θ in the HPC-mPFC circuit (Nuñez and Buño, 2021; Wang et al., 2021). 677 
Interestingly, these effects were seen without the reduction of amyloid deposits and implicates 678 
the role of this novel gene therapy for later stages of neurodegeneration where there may be 679 
high levels of amyloid deposition (Wang et al., 2021).  680 

The application of gene therapy for neural circuit disorders is further highlighted in its potential 681 
to treat developmental disorders with heritable components (Mirzayi et al., 2022; Sahin and 682 
Sur, 2015; Sternson and Bleakman, 2020). There is increasing evidence that gene therapy 683 
technologies including chemogenetics (Sternson and Bleakman, 2020), optogenetics (Mirzayi 684 
et al., 2022) and CRISPR-based gene editing (Heidenreich and Zhang, 2016) are viable tools 685 
for dissecting and restoring neuronal circuits fundamental to developmental and neurological 686 
diseases. In a recent study, adeno-associated viruses (AAV)-mediated expression of human 687 

FMRP isoform 17 orthologs corrected abnormal γ activity and autism-related behaviours in 688 
Fmr1 KO rodents (Hooper et al., 2021), and AAV-FMRP-injected mice demonstrated the ability 689 

to restore cellular expression in hippocampal and cortical neurons to 50% WT levels 56 days 690 
after injection (Gholizadeh et al., 2014). These findings implicate the potential for gene therapy 691 
to restore cellular changes (e.g. GABAergic deficits) and correct circuit imbalances (neuronal 692 
hyperexcitability) associated with  learning disabilities, sensory hypersensitivities, and social 693 
deficits in FXS and other neurodevelopmental disorders (Bülow et al., 2022; Contractor et al., 694 
2015). As of now, the efficacy of gene therapy in restoring abnormal HPC-mPFC circuitry 695 
remains unclear and clinical trials are warranted. Future work to improve gene delivery and 696 
increase understanding of post-transcriptional regulation systems will further optimize gene 697 
therapy to correct aberrant HPC-mPFC circuitry associated with developmental and 698 
neurological disorders (Ingusci et al., 2019).   699 

 700 

Pharmacotherapy 701 

In pharmacotherapy for AD, there is an emerging paradigm shift from solely targeting 702 
pathological hallmarks like amyloid plaques to modulating neural circuitries. Considerable 703 
evidence demonstrates that critical oscillatory rhythms (θ and γ) supporting memory 704 

processes are altered from early stages of AD (Başar et al., 2016; Grunwald et al., 2001; 705 
Traikapi and Konstantinou, 2021). Several AD drugs have been shown to modulate these 706 
rhythms (Isla et al., 2021). Notably, the AChE inhibitor donepezil was found to increase 707 
stimulation-induced hippocampal θ oscillation power, enhance θ phase to γ amplitude 708 
coupling, reduce cortical hyperexcitability and reduce occurrences of high-voltage spindle 709 
activity in a transgenic AD mouse model (Stoiljkovic et al., 2018). In addition, current drugs 710 
approved for the symptomatic treatment of dementia (rivastigmine, tacrine, galantamine and 711 
memantine) have been shown to enhance cortical slow θ (4.5-6 Hz) and γ (30.5-50 Hz) 712 
oscillations (Ahnaou et al., 2014; Drinkenburg et al., 2015). Recently, the histone deacetylase 713 
inhibitor (HDAC) suberoylanilide hydroxamic acid (SAHA), was found to rescue impairment of 714 
hippocampal γ (20-40 Hz) oscillations and restore activity of fast spiking interneurons in basal 715 
and active states in a model of AD (PSAPP transgenic mice) (Takasu et al., 2021). These 716 

findings implicate the ability for SAHA to modulate hippocampal γ oscillations through its effect 717 

on fast-spiking PV+ GABA-containing interneurons (Bartos et al., 2007). Since PV+ 718 
interneurons mediate crucial HPC-mPFC interactions underlying memory consolidation 719 
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(ripple-spindle oscillatory coupling) (Xia et al., 2017), SAHA represents the crucial role of 720 
pharmacotherapies in targeting HPC-mPFC circuit dynamics for treating cognitive 721 
impairments in AD.  722 

The potential for pharmacotherapies to modulate aberrant HPC-mPFC circuit dynamics is 723 
further implicated in treatment for schizophrenia. Schizophrenia is a complex disorder 724 
associated with significant abnormal neuronal synchrony and impairments in spatial and 725 
temporal integration of brain network activity (Başar et al., 2016; Orellana and Slachevsky, 726 
2013; Rame et al., 2017; Uhlhaas and Singer, 2010). The “pharmaco-EEG” approach has 727 
been used in schizophrenia therapy to study and predict clinical efficacy of drugs through EEG 728 
parameters (Drinkenburg et al., 2015; Galderisi, 2002). Recently, Cariprazine (United States: 729 
Vraylar; Europe: Reagila), a third-generation antipsychotic approved for the treatment of 730 
schizophrenia (Stępnicki et al., 2018), demonstrated evidence for stabilizing the aberrant 731 
increase and accelerating the resynchronization of hippocampal γ oscillations in a rat model 732 
of acute first-episode schizophrenia (MK-801) (Meier et al., 2020). Clozapine have also shown 733 
efficacy in restoring hippocampal-prefrontal cortical synaptic plasticity and augmenting long-734 
term potentiation in the HPC-mPFC pathway via dopaminergic modulation in animal models 735 

of schizophrenia (Matsumoto et al., 2008; Rame et al., 2017; Ruggiero et al., 2021). The 736 
development of effective pharmacotherapies that restore aberrant neural dynamics is a 737 

growing and important area of research. Abnormal neural synchrony significantly contributes 738 
to various pathologies, and further advancements in pharmacotherapies should consider 739 
targeting neural circuitries in treatment, particularly in diseases with prominent aberrant HPC-740 
mPFC circuit dynamics like AD and schizophrenia to restore normal function (Canter et al., 741 
2016).  742 
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Table 2 Overview of neurodevelopmental and neurological disorders associated with 760 
abnormal hippocampus-medial prefrontal cortex circuit dynamics. For a more thorough 761 
discussion, refer to text. (AD=Alzheimer’s Disease; dHPC=dorsal hippocampus; 762 
DMN=default mode network; HPC=hippocampus; HPC-mPFC=hippocampal-medial 763 
prefrontal cortex; human pluripotent stem cells=hPSCs; interictal epileptiform 764 
discharges=IEDs; MCI=mild cognitive impairment; mPFC=medial prefrontal cortex; 765 
PV+=parvalbumin-positive; SPW-Rs=sharp wave-ripples; vHPC=ventral hippocampus) 766 
 767 

Category  Disorder Species Relevant Findings  Reference 

Neurodevelopmental 
Disorders 
 

Autism 
Spectrum 
Disorder 
 
 

Rodent Dendritic changes in 
the HPC and mPFC 
pyramidal neurons. 
 

(Barón-
Mendoza et 
al., 2018, 
2019) 

Rodent (1) Reduced θ 
synchronization 
between the 
vHPC and mPFC. 

(2) Loss of excitatory 
signalling from the 
vHPC to prefrontal 
GABAergic 
interneurons. 

 

(Cunniff et al., 
2020)  

Rodent  Hyperactivity of vHPC 
to mPFC projections 
impaired social 
memory.  
 

(Phillips et al., 
2019) 

Rodent Altered mPFC 
GABAergic 
innervation from 
vHPC negatively 
impacted social 
behaviour. 
 

(Sun et al., 
2020) 

Rodent 
and 
Human   

Dysfunctional sensory 
oscillations at 
frequency ranges 
associated with long 
range (δ, θ, α, β) and 
short range (β, γ) 
connectivity. 
 

(Simon and 
Wallace, 2016) 
 

Rodent 
and 
Human 

Impaired θ and α 
oscillatory activity 
associated with 
working memory 
deficits. 
 

(Larrain-
Valenzuela et 
al., 2017)  

Human Altered short- and 
long-range 
(hippocampal-frontal 
cortices) connectivity.  

(Hull et al., 
2017; 
Oldehinkel et 
al., 2019) 
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Fragile X 
Syndrome 

Rodent 
and 
Human 

Altered GABAergic 
signalling due to 
dysfunctional vHPC-
mPFC long-range 
GABAergic 
projections crucial for 
regulating social 
behaviour.  
 

(Kramvis et al., 
2020; Van der 
Aa and Kooy, 
2020; Yang et 
al., 2021) 
 

Rodent Oscillatory changes in 
the HPC that 
potentially disrupts 
HPC-mPFC circuitry:  
 
(1) Abnormally 

greater power of θ 
associated with 
increased slow γ. 

(2) Decreased spike-
count correlations 
of interneurons 
hyper-
synchronized with 
θ and slow γ.  

 

(Arbab et al., 
2018) 

Human Evidence suggesting 
impaired GABAergic 
HPC-mPFC signalling 
in FXS patients: 
 
(1) A 10% reduction 

in GABAA receptor 
availability.  

(2) Reduced GABA 
binding potential 
throughout the 
brain.  

 

(D’Hulst et al., 
2015) 

Human Evidence suggesting 
impaired HPC-mPFC 
local and long-range 
GABA-dependent 
interactions:  
 
(1) Delayed 

maturation of 
GABAergic 
neurogenesis in 
hPSCs  

(2) Increased 
neuronal networks 
activity. 

(3) Increased 
proliferation of 

(Zhang et al., 
2022) 
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neuroblast 
progenitors. 

(4) Downregulation of 
proteins 
associated with 
GABAergic 
neuronal 
maturation. 

 

Down 
Syndrome 
 

Rodent Altered HPC-mPFC 
neural dynamics:  
 
(1) θ frequency  
(2) HPC phase-

amplitude 
coupling 

(3) modulation of 
HPC high γ 

(4) θ coherence 
 

(Chang et al., 
2020) 

Rodent Reduced HPC SPW-
Rs coupling with 
cortical networks and 
impaired working 
memory.  
 

(Alemany-
González et 
al., 2020)  

Rodent  Altered GABAergic 
signalling; loss of fast-
spiking phenotypic 
PV+ cells and 
increased excitability. 
 

(Zorrilla de 
San Martin et 
al., 2020)  

Rodent 
and 
Human  

Abnormal 
coordination of θ 
oscillatory activity 
across the HPC and 
mPFC.  
 

(Goodman et 
al., 2018; Wirt 
et al., 2021)  

Human  Widespread 
alterations in DMN 
connectivity and 
weakened DMN- 
frontal cortices 
connectivity 
 

(Anderson et 
al., 2013; 
Wilson et al., 
2019) 

Human Reduced long-range 
hippocampal-
prefrontal connectivity 
associated with 
cognitive decline in 
people with DS 
converting to AD.  

(DiProspero et 
al., 2022)  
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Neurological 
Disorders 

Alzheimer’s 
Disease 
 

Rodent 
and 
Human 

Abnormal mPFC 
spindle-band coupling 
with HPC ripples. 

(Maingret et 
al., 2016; 
Zhurakovskay
a et al., 2019) 

Rodent Inactivation of the 
dHPC and mPFC 
impaired object and 
spatial recognition 
memory 
consolidation.  
 

(Tuscher et al., 
2018)  

Rodent Altered CA1 HPC-
mPFC θ temporal 
synchronization.  
 

(Tang et al., 
2021) 

Rodent HPC-mPFC 
hypersynchrony 
associated with 
cognitive impairments. 
 

(Holmes, 
2015)  

Human Reduced θ-γ coupling 
associated with 
working memory 
deficits in patients 
with MCI and AD. 
 

(Abubaker et 
al., 2021; 
Goodman et 
al., 2018; 
Kitchigina, 
2018)  

Epilepsy 
 

Rodent Increased coherence 
at θ band synchrony 
between the dHPC 
and mPFC in pre-ictal 
seizure periods.  
 

(Broggini et al., 
2016)  

Rodent 
and 
Human 

Altered hippocampal-
cortical coupling:  

(1) Aberrant HPC 
IEDs induce 
mPFC spindles. 

(2) Degree of HPC 
IEDs-mPFC 
spindles coupling 
correlated with 
memory 
impairments. 

(Gelinas et al., 
2016; Mendes 
et al., 2021)  

Rodent 
and 
Human 

Increased HPC-mPFC 
θ asynchrony and 
atypical γ oscillations 
associated with 
cognitive impairments.  

(Bowie and 
Harvey, 2006; 
Chang et al., 
2019; Choi et 
al., 2016; 
Skirzewski et 
al., 2018)  

 768 
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Conclusion 769 

Considerable evidence from neuroanatomical and physiological studies demonstrates that the 770 
HPC and mPFC are anatomically and functionally intertwined. The HPC-mPFC circuit includes 771 

direct and indirect pathways that have well-established roles in supporting cognitive, emotional 772 
and sensory processes. For example, critical HPC-mPFC oscillatory rhythms facilitate 773 
episodic memory and spatial memory, persistent HPC-mPFC interactions promote long-term 774 
memory through context-based differentiation, and emotional processes are closely 775 
associated with oscillatory coupling of the HPC and BLA receiving direct projections from the 776 
mPFC. In this review, we have highlighted several neurodevelopmental (ASD, DS, FXS) and 777 
neurological disorders (AD, epilepsy) with altered HPC-mPFC circuit dynamics. Since 778 
oscillations across the HPC-mPFC circuit are crucial for supporting cognitive and behavioural 779 
functions, oscillotherapeutics that modulate pathological brain rhythms in neurodevelopmental 780 
and neurological disorders should be thoroughly explored (Földi et al., 2021; Widge et al., 781 
2019; Traikapi and Konstantinou, 2021; Takeuchi and Berényi, 2020). However, the current 782 
body of research on oscilliotherapeutics for abnormal HPC-mPFC circuitry is limited by the 783 
use of singular modalities (Liang and Mody, 2022). Since EEG and MEG presents with spatial 784 

resolution limitations, it is difficult to pinpoint sources of abnormal neural circuitry. Future 785 
research should employ multimodal imaging, combining EEG, MEG, and fMRI to better 786 

integrate spatial and temporal information of aberrant circuitries underlying disorders such as 787 
AD with cognitive and behavioural deficits. Furthermore, disorders such as ASD with 788 
heterogeneous pathophysiology makes it difficult to assess the extent by which aberrant 789 
oscillations contribute to cognitive/behavioural deficits. This can be improved by disease 790 
stratification (genetics and behavioural) and breaking down heterogenous disorders into 791 
smaller parts, making it easier to investigate oscillatory dynamics associated with specific 792 
phenotypes. In conclusion, oscillatory dynamics across the HPC-mPFC circuit could be useful 793 
biomarkers for assessing interventions in neurodevelopmental and neurological disorders, 794 
and advancements in brain stimulation, gene therapy and pharmacotherapy will accelerate 795 
effective treatments for various disorders with aberrant HPC-mPFC circuitry.  796 
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