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Abstract: Recently, there has been an increasing need for new applications and services such as big
data, blockchains, vehicle-to-everything (V2X), the Internet of things, 5G, and beyond. Therefore,
to maintain quality of service (QoS), accurate network resource planning and forecasting are essen-
tial steps for resource allocation. This study proposes a reliable hybrid dynamic bandwidth slice
forecasting framework that combines the long short-term memory (LSTM) neural network and local
smoothing methods to improve the network forecasting model. Moreover, the proposed framework
can dynamically react to all the changes occurring in the data series. Backbone traffic was used to
validate the proposed method. As a result, the forecasting accuracy improved significantly with the
proposed framework and with minimal data loss from the smoothing process. The results showed
that the hybrid moving average LSTM (MLSTM) achieved the most remarkable improvement in
the training and testing forecasts, with 28% and 24% for long-term evolution (LTE) time series and
with 35% and 32% for the multiprotocol label switching (MPLS) time series, respectively, while
robust locally weighted scatter plot smoothing and LSTM (RLWLSTM) achieved the most significant
improvement for upstream traffic with 45%; moreover, the dynamic learning framework achieved
improvement percentages that can reach up to 100%.

Keywords: traffic forecast; slice; local smoothing; LSTM; dynamic learning

1. Introduction

Next-generation networks have been designed to offer reliable service with ultra-low
latency, massive-scale connectivity, high security, extreme data rates, optimized energy, and
better quality of service (QoS) [1–3]. Despite these features, the technology (infrastructure
and logic) used in these networks must display an intelligence for coping with the dynamic
QoS demand [4–9] and react autonomously to different dynamic and self-organizing situ-
ations. Additionally, network management is complicated due to the coupling between
various service layers where congestions can arise and spread vertically as well as hor-
izontally. Furthermore, the congestions arising due to poor management can affect the
QoS and service-level agreement (SLA). Therefore, proactive approaches for managing
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bandwidth and network resources are highly needed. The legacy static network resource
allocation indicated that a bandwidth reservation can guarantee a particular QoS. However,
a dynamic network resource allocation effectively resolves this problem [10–13]. It relies
on the forecasting network resources’ demands and acts accordingly to enable a timely
and dynamic response. Thus, the accuracy of predictive approaches was regarded as a
vital factor and essential in various applications of the predictive frameworks. Reliable
artificial intelligence (AI) and machine learning (ML) techniques are crucial and widely
used in different applications, such as network traffic forecasts [4–9,14], the Internet of
things (IoT) [10], and wireless communications [11,15]. The data characteristics indicated
that the traffic used in real-time applications in current and future networks exhibited
variable, nonlinear, and unstructured data formats with slowly decaying autocorrelations
between different samples. These features showed that the traffic can exhibit long-range
dependence (LRD) [12,16]. To ensure a proper control strategy, the short-step forecasts,
such as the one-step forecast models used for LRD traffic, could not respond accurately
to the dynamic bandwidth allocation, especially in the higher latency links [1]. Hence, a
long-term traffic forecast was required for implementing a flexible strategy to control the
networks [1].

Many ML-based studies have focused on the multiple-step bandwidth forecasting
process. In general, two different approaches were used for designing bandwidth forecast
algorithms, where the first algorithms were based on the supervised ML models, the other
relies on statistical models. The first algorithm described various traffic forecasting models
based on a supervised ML process, specifically the artificial neural networks (ANNs).
On the other hand, the second algorithm used statistical models that are based on the
generalized autoregressive integrated moving average (ARIMA) model [1,2]. The major
difference noted between the ANN and ARIMA models was that the ARIMA model
required the imposition of a stationary property. It also did not accurately forecast while
handling LRD [17,18]. The LSTM process is a very effective ML technique used for time
series forecasts. This process was applied in multiple-step predictions under different
scenarios. The main advantage noted after applying the LSTM-RNN process was that it
could quickly learn the temporal dependencies on the input data. At the same time, it
was not necessary to specify a fixed set of lagged inputs [17–19]. LSTM could resolve the
long-term dependency issue as it memorized the information for more extended periods,
unlike some other linear time series forecast algorithms (such as ARIMA and its various
extensions) that were affected by the unnecessary fluctuations occurring in the series [19–22].
This is then projected to all forecasted results. Owing to the ability of the LSTM technique
to forget or remember information based on its activation function, these techniques can
re-evaluate their weights based on their correlation with the remaining time series. This
ability of LSTM makes it versatile and adaptable when dealing with errors, noise, and
sample gaps. However, as the fluctuations and noise increase in a time series, it is more
difficult for the forecasting technique to provide accurate performance. Therefore, data
smoothing and filtering must be conducted before any forecasting. This preprocessing
method could handle significant fluctuations and outliers by adjusting the built-in sliding
window. Motivated by these, we consider the combination of LSTM and smoothing for the
multistep-ahead forecasting of backbone network traffic forecasting.

Moreover, to address model reliability and validity, the concept changes detection
mechanism must be incorporated and addressed due to the rapid data characteristics and
distribution changes. In this work, a real dataset was collected and analyzed. The dataset
was collected from a premier internet service provider backbone network. The major
contributions of the study can be summarized as follows:

1. Investigation of the hybrid multistep-ahead forecast framework after combining
LSTM and the local smoothing techniques for the network traffic forecast;

2. A change detection framework is proposed. This framework was used to determine
when to build new hybrid forecast model;
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3. Finally, the effectiveness of the model was furtherly analyzed and compared with the
relevant study.

The remaining study is organized in the following manner: Section 2 discusses the
related works. Section 3 provides a detailed description of the smoothening-aided LSTM
model for bandwidth slice forecasts. Then, Section 4 discusses the performance of the
proposed model. It also shows the forecasting accuracy, smoothing analysis, and statistical
validation of the results. Lastly, the conclusion is presented in Section 5.

2. Related Work

Several studies have analyzed the effectiveness and superiority of the LSTM process
for bandwidth forecasting [21–30]. For instance, in [28] the researchers investigated the
performance of different ML techniques and assessed the forecast performances of their
video over the internet. They studied neural networks (NNs), support vector machines
(SVMs), and decision trees (DTs). They concluded that modeling based on the time series
data was better for generating promising results. Additionally, it was seen that the ANN
model showed a better performance than the other ML techniques. In [24], the researchers
used a hybrid neural network-wavelet model to analyze network traffic. They used the
wavelets for decomposing the input data into details and approximations, while the NN
was optimized with the help of a genetic algorithm. They noted that their proposed
model could significantly improve the forecast accuracy of the process. Though wavelet
processing helps in eliminating the unnecessary data, it can lead to some unintentional
issues via the traffic load forecast based on LSTM and deep NNs (DNN). The simulation
results showed that the forecast-based scalability mechanism performed better than the
threshold-based one. In [23], the researchers proposed a new mechanism for scaling the
access management functions (AMFs) in the 5G virtualized environment. This mechanism
was based on forecasting the mobile traffic using the LSTM NNs to estimate the user
attach request rate, which helped predict the accurate number of AMF examples required
to process the upcoming user traffic. Since it is a proactive technique, the proposed
model helps avoid deployment latency while scaling the resources. The simulation results
further indicated that the LSTM-based model was more efficient than the threshold-based
model. The proposed technique used LSTM on the request rate data without preprocessing,
which eventually may decrease the forecast accuracy. In [21], the researchers compared
the performance of the LSTM networks used for 4G traffic forecasts, seasonal ARIMA
(SARIMA), and the support vector regression (SVR). For this purpose, they collected
the data for 122 days, for which the data points were divided between the training and
testing datasets. They noted that the LSTM model showed better performance than the
SARIMA and SVR networks. In [26], the researchers developed a deep traffic predictor
(DeepTP) model to forecast long-period cellular network traffic. They noted that their
model showed better performance (12.3%) than the other traffic forecasting models used
in the study. Furthermore, a feature-based forecasting framework that used tier 1 internet
service provider (ISP) network traffic was discussed. LSTM was used as the core forecast
technique. The results obtained were significant and forecasted the traffic at very small
time scales (<30 s). In [22,29], the researchers discussed and proposed a hybrid empirical
mode decomposition (EMD) and LSTM forecast technique. EMD decomposes the available
bandwidth dataset into smoothened interstice mode functions (IMFs). After that, they
applied LSTM to forecast the traffic. They noted that their hybrid model showed a better
root mean square error (RMSE) value. In different studies [27,30], the authors used LSTM
for forecasting the vehicular ad hoc network (VANET). They determined the forecasting
accuracy with the help of the RMSE and mean absolute percentage error (MAPE); the
results proved the effectiveness of the proposed mechanism. The authors of [31] proposed
a smooth-aided SVM-based model for video traffic forecasting; the obtained results were
promising where local smoothing techniques were incorporated ahead to the SVM to
normalize the fluctuations in the input traffic. The smoothed support vector machine
(SSVM) has an improvement percentage of 32.35% for a one-step-ahead forecast. In the
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most recent study [32], the authors proposed a hybrid LSTM and convolution neural
network framework for a wireless network. The proposed solution was compared with
state-of-the-art techniques, and the effectiveness and superiority of the hybrid architecture
were highlighted. Table 1 summarize the most notable related work.

Table 1. Related work summary.

Ref ML Technique Application (Approach) Dataset Noise Preprocessing Dynamic
Learning

[28] NN, DT, and SVM
Forecast and performance
assessment of video over

the internet

Internet trace (14-day
and 10-day datasets) No No

[24] Back propagation
NN

Improvement of network
forecasting accuracy

Four days of network
traffic Yes (wavelet) No

[23] LSTM To predict the number of
AMFs in 5G core Control traffic No No

[21] LSTM To forecast cellular traffic
4G traffic utilization

data collected for
122 days

No No

[22] LSTM To forecast (<30 s) tier 1 ISP
traffic

Tier 1 ISP traffic
variable, hourly, daily,

5 min

Yes
(EMD) No

[29] LSTM To forecast network traffic Network traffic Yes
(EMD) No

[27,30] LSTM To forecast V2V traffic V2V traffic No No

[31] SVM To forecast video traffic Video traffic

Yes
(Gaussian smoothing,
moving average, and

Savitzky–Golay filters)

No

[32]
LSTM and

convolutional
neural network

To forecast wireless network
traffic Wireless traffic No No

Though the earlier studies presented many positive results, we noted that the accuracy
of multistep-ahead forecasting in autonomous network management was very challenging.
Owing to the noise inconsistency and bursts in the network traffic, small fluctuations
occurred in the traffic data that could degrade the forecast accuracy of the model [18].
Very few studies reported in the literature considered noise preprocessing, while no study
presented a dynamic framework for concept changes. Previously adopted noise prepro-
cessing methods in previous studies, such as wavelets and EMD, are less flexible than
window-based noise processing [31]. The only notable study used windows-based noise
processing, such as Gaussian smoothing, moving average, and Savitzky–Golay filters, and
used SVMs as an ML technique. At the same time, it was already proven in [28] that NNs
and LSTM outperform SVMs in forecasting accuracy. Moreover, the mentioned study was
carried out in very limited scenario (one-step forecasts).

Due to the evolved dynamic nature of the network properties, the frameworks must
detect and adapt to all changes taking place in the statistical properties of the big data
traffic. The changes noted in the traffic profiles, such as a sudden surge in the traffic, took
place due to the change in the users, application behavioral variations taking place in
the traffic demands, and because of the emergence of novel technologies, applications,
or even a global pandemic, such as that of COVID-19 [33,34]. As a result, the number of
home users or eMBB traffic increases significantly compared with the corporate traffic [33],
which witnessed a significant decrease owing to lockdowns and widespread adoption of
work-from-home culture in the business operational model. In this study, considering



Sensors 2022, 22, 3592 5 of 27

the promising finding of using window-based techniques as a preprocessing method to
handle all the significant fluctuations and outliers by adjusting the built-in sliding window,
we extended these results to further these studies and explore the effects of hybrid local
smoothing processes and the LSTM-NN technique [35].

3. Methods

To resolve the challenges related to resource management noted in next-generation
network backbones, i.e., a beyond 5G (B5G) network environment, we propose a hybrid
ML model. This model combines the LSTM and smoothing processes and uses them for
the core network bandwidth slices. The forecasting model is called the smoothed LSTM.
Figure 1 shows the proposed overall conceptual framework. The model is motivated by the
promising results presented earlier [31]. The proposed ML technique is modeled as a time
series batch learning process. The researchers extended this algorithm by preprocessing
the dataset.

Figure 1. Conceptual framework.
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As depicted in Figure 1, the Anderson–Darling test was employed as a change de-
tection method to dynamically manage the dynamic selection of the hybrid algorithm
based on the changes in the underlying statistical properties. Then, to avoid eroding the
periodic patterns and trends in the series, the system studied the local and global trends
separately to detect and eliminate long-term or short-term noise. The preprocessing focuses
on the local variations. It applied local smoothing techniques to eliminate the fluctuations
and unnecessary noise in the data, which can negatively affect the model’s prediction
accuracy, especially in the case of the nonlinear and nonstationary time series. The local
preprocessing techniques show a higher dynamic reaction to the noise level and short-term
variations than the other wavelet- and Hilbert–Huang transform (HHT)-based processes.
A similar approach was used earlier [31], where researchers studied the superior nonlinear
approximation ability of an SVM combined with the “classical” local smoothing processes,
such as Gaussian smoothing, moving average, and Savitzky–Golay filters. The study results
indicated that their proposed model performed better than the state-of-the-art model, viz.,
logistic regression. We determined the effectiveness of their proposed model by using the
real and available network traffic datasets. After the local smoothing preprocessing takes
place and the provided y arrives as an input, a forecast ŷt is produced using the current
LSTM model δ, after which a loss function f (ŷt, yt) is used to update the model. Finally, a
statistical test was conducted by the Diebold–Mariano test to validate the obtained results.

3.1. Dataset

The dataset was collected from a premier internet service provider in Africa. We
examined different bandwidth utilization time series; the collected data represent LTE,
MPLS, and the upstream tier 1 carrier traffic’s aggregated backbone traffic. Three hundred
and fifty time steps’ sample data were collected. Each time step represents 28.8 min, and
350 time steps represent one week. This was attributed to the limitations of the data
collection tool. The values were interpolated and used for developing a time series model.
The findings will benefit the real-world core and backbone networks in such a way as to
achieve efficient network resource planning.

For this work, the computer specifications that were used to process and execute
the proposed framework were Core i5 1.8 GHz with 16 GB of RAM. Figure 2 shows the
backbone topology where the dataset was collected.

Table 2 shows the description for each bandwidth slice.

Table 2. Slice description.

No Bandwidth Slice Description

1 LTE Represents the aggregated backbone bandwidth traffic for
4G-LTE

2 MPLS Represents the aggregated backbone traffic for corporate
data centers

3 Upstream traffic Represents the aggregated backbone traffic to the tier
1 internet service provider

Three different traffic profiles were used to explore different traffic characteristics.
Slice 1 represents the aggregated backbone traffic for 4G-LTE measured at the SGI interface
between the packet data network (PDN-GW) and the core routers in the evolved packet
core (EPC). The EPC is responsible for the establishment, management, and authentication
of users’ sessions. The core routers are linked to the MPLS backbone network and the tier 1
upstream providers through the upstream routers. Slice 2 is the aggregated backbone traffic
for corporate data centers; it was gathered from corporate users’ virtual routing function
(VRF) instances at the MPLE backbone routers. Finally, slice 3 represents aggregated traffic
at upstream router (A).
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Figure 2. Backbone topology.

It is evident from Figure 3 that all bandwidth slices exhibit significant seasonal patterns
with daily peaks. Nevertheless, the data also show a stochastic pattern with continuous
irregular fluctuations between successive points. On the other hand, no long-term trend
appeared to exist. Some slices exhibit a weekly pattern, such as in the MPLS slice since
it is more associated with corporate users where corporate business is active mainly dur-
ing weekdays rather than during weekends. Table 3 shows the summarized descriptive
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statistics, Figure 3 shows the sample time series dataset and Figure 4 shows the dataset
histograms.

Figure 3. Backbone bandwidth slices: (a) LTE, (b) MPLS, and (c) upstream traffic.
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Table 3. Descriptive statistics.
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LTE 701 9.9 × 108 9.8 × 108 4.5 × 1016 2.1 × 108 −0.505 4.58 × 108 6.50 × 108 8.2 × 108 1.0 × 109 1.13 × 109 Johnson SB
MPLS 701 6.1 × 108 4.4 × 108 2.3 × 1016 1.5 × 108 - 1.80 × 108 2.43 × 108 3.1 × 108 4.3 × 108 5.48 × 108 Johnson SB

Upstream 701 4.75 × 109 5.1 × 109 9.76 × 1017 9.8 × 108 −0.463 2.67 × 109 3.57 × 109 4.4 × 109 5.3 × 108 5.79 × 109 Gen. extreme value

Figure 4. Dataset histograms: (a) LTE, (b) MPLS, and (c) upstream traffic.
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From Table 3, the most notable statistical property is that the LTE and MPLS follow
the Johnson SB statistical distribution, while the upstream traffic follows the Gen. extreme
value distribution. Equations (1)–(4) show the portability density functions (PDFs) for each
distribution function associated with every bandwidth slice, respectively:

f (x) =
−0.829

0.589
√

2πz(1− z)
exp

(
−1

2

(
0.589− 0.829ln

(
z

1− z

))2
)

(1)

where z ≡ x−3.885×108

0.589 .

f (x) =
0.854

0.398
√

2πz(1− z)
exp

(
−1

2

(
0.3980.854ln

(
z

1− z

))2
)

(2)

where z ≡ x−1.637×108

0.398 .

f (x) =
1

1.08× 109 t(x)0.48exp−t(x) (3)

where t(x) =
(

1− 0.52
(

x−4.88×109

1.08×109

)) −1
−0.52

Since ξ 6= 0
3.13

5.92× 107Γ
(

1
3.13

) e−(|
x−6.35)

2.96×107 |)
3.13

(4)

f (x) =
1.53

1.39× 108
√

2πz(1− z)
exp

(
−1

2

(
−0.072 + 1.5ln

(
z

1− z

))2
)

(5)

where z ≡ x−1.11×107

1.3966×108 .

3.2. Local Smoothing Techniques

As discussed, noise in the time series forecast can significantly and negatively affect
the forecasts in the n steps ahead. Hence, this issue must be handled carefully. Minimizing
the effects of low- and high-frequency noise can help accurately forecast the short- or
long-term-scale data. Some earlier studies discussed the importance of noise removal or
data processing [7,18,22,24,29]. In the subsequent section, we discuss the different local
smoothing methods applied in this study.

3.2.1. Local Regression

LOWESS [36] is a first-degree polynomial model with weighted linear least squares,
while LOESS is a second-degree polynomial model based on the basic fitting model, which
employs localized data subsets to construct a curve that approximates the primary data,
with weights derived using Equation (6). The LOWESS model evaluates the fit at xi for
deriving the fitted values, (ŷi), and residuals, ε̂i = ŷi − yi, at every observation (xi, yi).
The additional robustness weight wi, was calculated and subjected to the magnitude of ε̂i.
Accordingly, a new weight wi(xi), was assigned to each observation, where wi is defined as
shown in Equation (7) [34]:

wi(x) =
(

∆i (x)
∆q(x)

)
(6)

wi =


(

1−
(

ε̂i
6MAD

)2
)2

, |ε̂i| < 6MAD

0 , |ε̂i| ≥ 6MAD

 (7)

where MAD = Median (|ε̂i|).
Two different versions of the above techniques were used, i.e., “RLOWESS” and

“RLOESS”. In these forms, the researchers assigned lower weights to the outliers in the
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regression. Moreover, zero weights were assigned to the new values outside the six mean
absolute deviations.

3.2.2. Moving Average

Moving average (MA) [13,35–37] is regarded as a real-time filter that eliminates the
high frequency from the data. It is generally used for trend forecasting. The estimated
coefficients were equal to the reciprocal of the span or bandwidth. MA is also called
“exponential smoothing”. Here, the researchers define Ci as the throughput at time i.
Consider c = {Ci}, i = 1 . . . p as the time series, where p was the length of the time series.
Hence, the MA of period q at time l was calculated using Equation (8) [35–39]:

mq
l =

1
q

q

∑
i=1

cl−i+1 (8)

3.2.3. Savitzky–Golay Smoothing Filter

The Savitzky–Golay (SG) smoothing filter [40] is a low-pass filter that is characterized
by two parameters that are indicated as K and M. The SG filter is defined as the weighted
MA value, i.e., a finite impulse response (FIR) filter. The researchers calculated the filter
coefficients using the unweighted linear least squares regression and polynomial model of a
particular degree (default of 2). Furthermore, the time series to be determined is described
as x(n), while the observed time series was estimated as y (n) = x (n) + w (n). Here, w (n) is
regarded as the additive white Gaussian noise, wherein the final output is derived using
Equation (9):

x̂(n) = ∑M
K=−M h(k)y(n− k) I (9)

It is noted that a high-degree polynomial helps in achieving a higher smoothing level
without attenuating any data features. It is worth mentioning that LOESS is used for
seasonal decomposition. However, we focused on using LOESS and other local regression
techniques for smoothing in this study since decomposition may aggressively remove some
important dataset features. Let us understand how to choose the bandwidth q. Bandwidth
plays a vital role in the general local regression fit, while the simplest approach involves
selecting q as a constant for all xi. However, a large variance is observed if the selected
bandwidth is minimal. This was attributed to insufficient data falling in the smoothing
window and generating a noisy fit. However, not all data will be fitted in the specified
window if q is very large. As a result, it is challenging to select an optimum q value to
avoid unnecessary data loss from the original time series. Hence, we proposed a solution,
described in Algorithm 1, that finds the minimum q value that causes minimal data loss
reflected in the minimum mean square error (MSE).

Algorithm 1 Loss aware smoothing

Input:
y : Bandwidth Slice, Z: Series length, q: smoothing window
size
Output:
MSE, ŷ : locally fitted value using local smoothing technique
Process:
1- For n = q to Z − q do
2- Initialize K [];
3- for j = n − q to n + q Do
4- ŷ ← smooth (y(j)) with minimum MSE
5- Assign (ŷ(j)) into K []
6- Return ŷ
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3.3. Anderson–Darling

The Anderson–Darling test is [41] a nonparametric test that shows a superior perfor-
mance while detecting departures from normality [41]. A K-sample is a type of Anderson–
Darling test used to detect if multiple observations are generated from the same statistical
distribution.

AD = −n− 1
2

n

∑
i = 1

(2i− 1)(ln(xi) + ln(1− (xn+1−i))) (10)

where {xi < . . . < xn} is the ordered input sample of size n (ranging from the smallest to
the largest element). The hypothesis states that the {xi < . . . < xn} that arises from the
same distribution is rejected if the AD in Equation (10) i larger than the critical values of
ADα at the given α.

3.4. LSTM

LSTM [32] is a recurrent neural network that forgets and propagates information for
a recurrent training period. This can improve the forecast performance. Due to its ability
to correlate current and earlier information, the LSTM technique effectively forecasts time
series [42]. The cell represents the basic unit of LSTM. Assume t as the sequence vector,
where t = 1, 2, . . . T denotes the sample index, while T defines the total time series samples
present in a sequence. At every index t, the input sample, xt; past cell state, at − 1; and past
hidden state, ht − 1; were considered by LSTM. All temporal relationships in LSTM can be
derived using the equations below [32,42]:

Γ f t = σ(W f hht− 1 + W f xxt + b f ) (11)

Γit = σ(Wihht− 1 + Wixxt + bi) (12)

Γgt = ρ(Wghht− 1 + Wgxxt + bg) (13)

Γo t = σ(Wohht− 1 + Woxxt + bo) (14)

at = Γ f t
⊙

at− 1 + Γit
⊙

Γg t (15)

ht = Γot
⊙

ρ(at) (16)

Here, Wfh, Wfx, Wih, Wih, Wgh, Wgh, Woh, and Woh represent the weight matrices,
while bf, bi, bg, and bo represent the bias vectors that corresponded to the respective resultant
vectors for Γf t, Γit, Γg t, and Γo t. Additionally, the forget gate, input gate, input node, and
output gate are represented by using the subscript notations of f, i, g, and o, respectively.
The symbol “

⊙
” is an elsewise product. In Equations (11)–(16), the researchers represented

the weight matrices by T × T, with a vector size of T × 1. The cell state emulated LSTM.
The output of the hidden state was considered as a virtual output of the cell state. The
sigmoid and rectified linear unit (ReLU) were used as the activation functions in this study;
they were represented by σ(z) = 1·1 + e − z, which yields an output in the range of (0, 1)
for any input. The activation function can be used across all the LSTM gates, wherein
the output gates decide if the data should be propagated (values near 1 or 0). The LSTM
training process includes gradient computation that eliminates the gradient problem if
all the gradients are reduced to zero [36]. ReLU activation can handle this issue, where
gradients are calculated faster. However, they are not easily eliminated [32]. The function
of a forget gate is to choose what information to retain and what information to remove
from ht− 1 and xt. This output results in the vector Γ f t (11), which contains values ranging
between (0 and 1) that help in eliminating the irrelevant values from the cell state. Then,
by applying the sigmoid activation, the new information yields indices by the input gate
that further yield the vector Γit (12). The output from the ReLU activation encourages the
inclusion of new values in the vector Γgt (13). The result of the element-wise product of
Γit and Γgt that contains new values is added to Γft

⊙
at − 1. This provides the updated

cell state at (15). After this, the filtered value from the updated cell state at is passed as the
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new hidden state ht. The values that are passed to the new hidden state ht are determined
after passing the updated cell state at through the ReLU activation. This eventually yields
ρ(at). Then, we determine the location of all updated cell state vectors which maintain the
filtered values by the sigmoid activation (14), resulting in the vector Γot. Finally, ht is seen
to be the final hidden state that can be calculated using Equation (16). Algorithm 2 presents
the LSTM training process. The training process combines three repetitive processes, i.e.,
forward propagation, backward propagation, and model updates. The process continues
further to minimize the training error. Then, the forward propagation forwards the training
sample, X (where X ε y) and batch size B, with a learning rate of α. The output is then
backwards propagated using g, where g ε y. After that, the error, E, and learning rate, α,
are updated accordingly.

Algorithm 2 Training Process

Input:
y: bandwidth slice, p: Epochs, B: Batch size, X: training, g: testing, α: learning rate, ϑ̂ :Initial Model
Output:
ϑ: LSTM Model, E: Forecast Error, P: parameters
Process:
01: begin
02: for I ← to p
03: ϑ ← forward propagate ( ϑ̂, X, y, α, B)
04: E← Backward Propagation (ϑ,g)
05: P← Update[ϑ, E, α]
06: End for

Similar to the approach used in [23], hyperparameter selection was conducted through
a grid search, as depicted in Table 4. This is due to its reliability and simplicity [42].
Other options for hyperparameter selection include random search, Bayesian optimization,
particle swarm optimization (PSO), and genetic algorithm (GA) [42–44].

Table 4. LSTM hyperparameters.

Parameter Name

Library (Python) Tensorflow, Keras, NumPy, Sklearn
Batch size 1

Epochs 20
Optimizer/learning rate ADAM

Loss function RMSE
Neurons 2

Hidden layer 1
Activation function ReLU

3.5. Dynamic Learning Framework

Due to the evolved dynamic nature of the existing network properties, we proposed a
dynamic framework to detect and adapt to any changes in the data patterns of the data
traffic. Concept change is popularly used in statistics and data stream analysis. In this
study, Algorithm 3 was presented, wherein the framework consisted of S, local smoothing
algorithms, and where ϕi denotes the hybrid smoothed algorithms formed after combining
the local smoothing algorithms and trained LSTM neural network. The input of change
detection consists of a bandwidth slice y which is allocated based on the window size Wj. ti
is the time step of the bandwidth slice at index i, where tiε y. During the initial stages, the
reference δ represents the final selected hybrid algorithm and is initialized at the window,
Wj. The current window slides onto the data series and captures the next batch of data
series. After detecting any change, the change detector raises the alarm. However, if no
change occurs, the primary window Wj slides step-by-step until any change is detected.
Here, change refers to a change in the statistical distribution between Wj and Wj+1, defined
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by the Anderson–Darling test. In general, change detectors are used as a part of online
classifiers to guarantee a quick response to sudden changes. If some changes are detected,
then it is believed that the existing forecasting algorithms cannot accurately forecast when
using the new data as the input. Hence, a new hybrid forecast algorithm must be trained
and put in place for the generation of a novel forecasting model.

A smoothed bandwidth slice ŷ is used in the next window Wj+1 by utilizing the local
smoothing algorithms in S. Then, a new LSTM hybrid model ϕi using Algorithm 2 is
developed. After that, the error function E is calculated as a testing loss function; a new
list of ϕi[ ] is sorted with a minimum error function. Then, a statistically significant test
is performed using the Diebold–Mariano test for verifying if the new ϕi is statistically
different from the other hybrid algorithms in the list. However, if the new hybrid algorithm
is better, the old model δi−1 is replaced with the new one. The pseudocode of the change
detection is described in Algorithm 3. Figure 5 depicts the block diagram for the proposed
framework.

Algorithm 3 Dynamic Learning

Input:
y: bandwidth slice, S: list of local smoothing algorithms, ϕi : hybrid smoothed LSTM algorithm, k: list of
hybrid Smoothed LSTM algorithms (6 in this case),
Output:
δ: statistically significant smoothed LSTM algorithm, E: Forecast Error
Process
01: begin
02: δ← ∅ ;
03: for all time steps tiε y do
04: Wj ←Wj ∪ {ti} ;
05: if Change is detected = true then//using Anderson–Darling
06: Stop forecasting at Wj
07: ŷ← smoothy in Wj+1 using algorithms in S
//algorithm 3
08: for ϕi ink
09: ϕi[ ]← Build new hybrid LSTM models (ŷ, ϑ)
//algorithm 2
10: E← Calculate Forecast error of ti in Wj+2 using ϕi
11: k← k ∪ ϕi sorted with Min(E)
12: δ← Find in k the significant ϕi with Min(E)
13: If δ is significantly better than δi−1 //(old-Existed
forecast algorithm) then
14: replace δi−1 by δ else if
15: keep δ

16: endif
17: endif
18: Loop
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Figure 5. Dynamic learning framework.

4. Results and Discussion

In this study, the stationarity of time series was confirmed using the augmented Dicky–
Fuller (ADF) test as the nonstationary models can yield misleading results, as observed in
earlier studies [24,27]; although, LSTM can be used to model a nonstationary time series.
Moreover, we normalized the time series variances using the Box–Cox power transfor-
mation. Figure 6 presents the bandwidth utilization using the MA smoothing technique,
whereas Figure 6a depicts the MPLS bandwidth utilization without smoothing. Figure 6b
highlights the effect of using the MA smoothing process, where q = 0.003. Furthermore,
Figure 6c presents the effect of applying the MA smoothing technique using q = 0.05.

It is evident in Figure 6c that a higher q value may cause the loss of the main features
of the time series, bearing in mind that in the existing data-centric world losing even a
small amount of data can cause a violation of the service-level agreement. It can also lead
to inefficient resource planning and utilization. Therefore, q must be selected according to
Algorithm 1. From Table 5 it is clear that the moving average produced the highest MSE,
while LOWESS yielded the second largest MSE due to the likelihood that the first-degree
polynomial linear model will not fit the nonlinear bandwidth slice adequately. Fitting using
the LOESS-based quadratic polynomial produced a smaller MSE owing to the nonlinearity
of the second-order local fitting models. On the other hand, the Savitzky–Golay filter
produced a smaller MSE using a second-degree polynomial, compared with the LOESS,
where the weights were strongly influenced by q, as shown in Equation (6). Lastly, RLOESS
and RLOWESS shared a similar performance, yielding the lowest MSE values, as shown
in Table 5.
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Figure 6. Bandwidth utilization using moving average: (a) original MPLS slice (b); MPLS slice
smoothed with q = 0.003; and (c) MPLS slice smoothed with q = 0.05.
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Table 5. Smoothing MSE.

Smoothing Technique LTE-MSE MPLS-MSE Upstream MSE

Moving average 2.41 × 107 4.77 × 107 7.89 × 107

LOWESS 2.0785 × 107 2.65 × 107 6.79 × 107

LOESS 6.40 × 104 1.40 × 107 1.10 × 105

SGolay 1.0133 × 10−8 2.17 × 10−9 2.25 × 10−8

RLOWESS 1.7030 × 10−10 1.70 × 10−10 1.03 × 108

RLOESS 1.7030 × 10−10 1.70 × 10−10 7.03 × 107

Table 6 shows the performance of combining the local smoothing and LSTM intro-
duced in Algorithm 3. The main objective of this study was to improve the forecast accuracy
as a part of better network resource allocation. Therefore, the RMSE was selected as the
performance metric. The tables highlight the effects of the proposed methodology on the
training and computational time for every bandwidth slice. The improved results were
ranked (in brackets) and highlighted accordingly, corresponding to the best combination
of algorithms regarding the training RMSE, training time, and testing RMSE for 350 time
steps’ forecasting. The results were compared with an earlier study [23] and used as a
performance benchmark.

Table 6. Performance of combining local smoothing and LSTM.
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Original [23] 5400982 7.365 4982949 0.0059

MLSTM 5783686
(1) 13.872 56527763

(1)
0.00531

(3) MLSTM 3486200
(1)

7.221
(3)

3380349
(1)

0.0049
(3)

LLSTM 9092992 14.004 8644144 0.0045
(1) LLSTM 4205124

(3)
6.849

(1)
4022174

(3)
0.0039

(1)

LWLSTM 8065674 9.785
(1)

7391435
(2)

0.0051
(2) LWLSTM 3496462

(2) 8.5821 3411503(2) 0.0059
(5)

SLSTM 9075783 13.725 8655062 0.0061 SLSTM 4286874
(6) 7.588 4071104

(6) 0.0049 (3)

RLWLSTM 9067949 10.120
(2) 8635038 0.0054

(5) RLWLSTM 4250014
(5)

6.979
(2)

4045647
(4)

0.0040
(2)

RLLSTM 9112072 13.237 8640586 0.00535
(4) RLLSTM 4232122

(4) 13.995 4045664
(5)

0.0058
(4)

Tables 6 and 7 showed that the hybrid moving average and LSTM (MLSTM) technique
showed the best performance in training and testing the RMSE. However, it may require
a higher computation time, such as in the LTE and upstream training phases. These
results can be applied to the LTE and MPLS backbone bandwidth traffic, while hybrid
RLOWESS and LSTM (RLWLSTM) showed the best performance against the upstream
traffic. Although the MLSTM ranking scores were consistently high and showed an average
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ranking of 1.5, some performance divergence issues can be noted between the different
bandwidth slices with other traffic profiles and statistical distributions.

Table 7. Performance of combining local smoothing and LSTM.
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LLSTM 3976124 (4) 11.346
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LWLSTM 3411313
(3) 14.517 3889609

(5)
0.00576

(5)

SLSTM 3997700
(5) 13.687 3819971

(4)
0.00521

(1)

RLWLSTM 2253007
(1) 13.126 1989996

(1) 0.006011

RLLSTM 4946024 12.786 4122146 0.00544
(4)

This was further supported by the results presented in Table 3, wherein LTE and MPLS
exhibited a similar Johnson SB distribution, while the upstream traffic followed the Gen.
extreme distribution. Thus, the data reshaping resulting from the smoothing process can
improve the LSTM forecast accuracy, provided that minimum losses can be stripped from
the original data. However, no significant improvement in the processing time was noted
in some hybrid algorithms, while the process showed some penalties of extra processing
time. This drawback can be compensated for by increasing the computation powers of
the processing CPU/GPU or routing engines. Figures 7–9 show the improvement and
degradation in the forecasting accuracy and computational time in terms of percentages
compared with the original traffic and results presented in earlier studies [23]. Figure 7a
shows the training accuracy improvement for the LTE traffic in terms of percentages. It
was noted that MLSTM showed better accuracy (by ≈29%) in the training phase, while
the other algorithms showed a lower performance. However, this enhancement required
7% extra computation time. In Figure 7c, the accuracy for the 350 time steps’ forecasting
was improved by 22% using MLSTM and the processing time improved by ≈5%, while
LLSTM achieved the maximal computational time gain; however, the training and testing
performances degraded.
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Figure 7. Cont.
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Figure 7. Improvement percentages for LTE: (a) training RMSE, (b) training time, (c) 350 time steps’
testing, and (d) 350 time steps’ testing time.

Figure 8. Cont.
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Figure 8. Improvement percentages for MPLS traffic: (a) training RMSE, (b) training time, (c) 350 time
steps’ testing, and (d) 350 time steps’ testing time.
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Figure 9. Cont.



Sensors 2022, 22, 3592 23 of 27

Figure 9. Improvement percentages for upstream: (a) training RMSE, (b) training time, (c) 350 time
steps’ testing, and (d) 350 time steps’ testing time.

Regarding the MPLS backbone traffic profile, all other hybrid algorithms showed
better performance compared with the original profile [18] during the training and testing
phase by almost 20% on average, where higher scores were scored by MLSTM and LWLSTM
by nearly 35% as depicted in Figure 8. In addition, the computational processing times for
MLSTM, LLSTM, and RLLSTM also improved during the training and testing phases, as
presented in Figure 8.

Regarding the upstream traffic, a significant improvement was observed for the
upstream slices in all the training RMSE values, except RLLSTM. Furthermore, all the
algorithms showed better computation times during the training phase (≈8%), except
LLSTM. In addition to that, RLWLSTM showed 50% better performance during the testing
phase than the other algorithms. Finally, regarding the computational time, only RLWLSTM
showed a 4% lower performance, as depicted in Figure 9.

It was seen that the forecasting performance can be improved after using the proposed
Algorithms. However, the performance depended on the data series (bandwidth slice)
and its statistical properties. Therefore, the dynamic learning framework presented in
Figure 5 and Algorithm 3 can help detect any changes occurring in the data distribution.
Thus, new hybrid algorithms are to be introduced to replace the old forecasting algorithm.
Table 8 compares the forecasting RMSE without the proposed dynamic learning framework
presented in Figure 5 and the work presented in Algorithm 3.

Table 8 contains the algorithms obtained from the results in Table 7. It was evident
that the proposed framework can detect the changes in the statistical distribution of the
slices and provide new hybrid algorithms. The statistical distribution for each slice was
obtained from Table 3 (referred to as the actual statistical distribution in Table 8). Compared
against different distributions (referred to as new statistical distributions in Table 8), which
are already observed within the other slices, the improved performance was 94% for the
LTE 350 time steps’ forecast, while for MPLS the improvement percentage was 100%, and
finally for the upstream slice the rate was 100%.
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Table 8. Performance of dynamic learning.
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LTE MLSTM Johnson SB Gen. gamma (4P) 962141749 56527763
(94%)

MPLS MLSTM Johnson SB Gen. extreme
value 4752069825 3380349

(100%)

Upstream RLWLSTM Gen. extreme
value Gen. gamma (4P) 5157991293 1989996

(100%)

5. Conclusions

This study used the hybrid local smoothing and LSTM modeling approaches to
forecast the bandwidth slice utilization. Six local smoothing techniques were studied:
LOWESS, LOESS, moving average, Savitzky–Golay, RLOESS, and RLOWESS. The resultant
algorithms, i.e., MLSTM, LLSTM, LWLSTM, SLSTM, RLWLSTM, and RLLSTM indicated
that the hybrid LSTM can improve the forecasting accuracy. However, the improvement can
be accompanied by the additional computational overhead, and the obtained results may
vary depending on the underlying statistical properties of the tested data series. Therefore,
the researchers incorporated a dynamic framework to detect and provide a new hybrid
algorithm. The results were verified by the statistical significance tests and compared with
previous studies. The researchers believed their proposed technique can be used to forecast
the 4G/5G and beyond for reliable slice resource management. Furthermore, these results
can be extended and applied in the automatic resource allocation algorithm as part of the
slice allocator or orchestrator in the 5G networks and beyond.
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Abbreviations

V2X Vehicle-to-everything
QoS Quality of service
LSTM Long short-term memory
MLSTM Hybrid moving average long short-term memory
MPLS Multiprotocol label switching
RLWLSTM Hybrid robust locally weighted scatter plot smoothing and LSTM
SLA Service-level agreement
AI Artificial intelligence
ML Machine learning
IOT Internet of things
LRD Long-range dependency
ANN Artificial neural network
ARIMA Autoregressive integrated moving average
RNN Recurrent neural network
NN Neural network
SVM Support vector machine
DT Decision tree
DNN Deep neural network
AMF Access management function
SVR Support vector regression
DeepTP Deep traffic predictor
ISP Internet service provider
EMD Empirical mode decomposition
IMF Interstice mode function
RMSE Root mean square error
VANET Vehicular ad hoc network
MAPE Absolute percentage error
SSVM Smoothed support vector machine
eMBB Enhanced mobile broadband
B5G Beyond 5G
HHT Hilbert–Huang transform
RAM Random access memory
PDN-GW Packet data network gateway
EPC Evolved packet core
VRF Virtual routing function
PDF Probability density function
LOESS Locally estimated scatterplot smoothing
LOWESS Locally weighted scatterplot smoothing
MAD Mean absolute deviation
RLOWESS Robust locally weighted scatterplot smoothing
RLOESS Robust locally estimated scatterplot smoothing
MA Moving average
SG Savitzky–Golay
FIR Finite v
MSE Mean square error
AD Anderson–Darling
ReLU Rectified v
ADF Augmented Dicky–Fuller
LLSTM Hybrid v
LWLSTM Hybrid LOWESS and LSTM
SLSTM vLSTM
RLWLSTM Hybrid RLOWESS LSTM
RLLSTM Hybrid RLOESS LSTM
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