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A PURELY INFINITE CUNTZ-LIKE BANACH ∗-ALGEBRA WITH

NO PURELY INFINITE ULTRAPOWERS

MATTHEW DAWS AND BENCE HORVÁTH

Abstract. We continue our investigation, from [10], of the ring-theoretic infiniteness
properties of ultrapowers of Banach algebras, studying in this paper the notion of being
purely infinite. It is well known that a C∗-algebra is purely infinite if and only if any
of its ultrapowers are. We find examples of Banach algebras, as algebras of operators
on Banach spaces, which do have purely infinite ultrapowers. Our main contribution
is the construction of a “Cuntz-like” Banach ∗-algebra which is purely infinite, but
whose ultrapowers are not even simple, and hence not purely infinite. This algebra is a
naturally occurring analogue of the Cuntz algebra, and of the Lp-analogues introduced
by Phillips. However, our proof of being purely infinite is combinatorial, but direct,
and so differs from existing proofs. We show that there are non-zero traces on our
algebra, which in particular implies that our algebra is not isomorphic to any of the
Lp-analogues of the Cuntz algebra.

2020 Mathematics Subject Classification. 46M07, 46H10, 46H15 (primary); 43A20
(secondary)

1. Introduction and preliminaries

1.1. Introduction. We continue our study of infiniteness properties of Banach algebras,
and how these interact with reduced products, in the continuous model theory sense,
which we initiated in [10]. Recall that an idempotent p in an algebra A is infinite
if it is (algebraically Murray–von Neumann) equivalent to a proper sub-idempotent of
itself. One prominent property which we did not study in [10] is that of being purely
infinite, which for simple rings could be defined by saying that every left ideal contains
an infinite idempotent. We discuss this notion, and the literature surrounding it, in
Section 1.2 below. This definition is equivalent, for a unital Banach algebra, to A not
being C, and that for a ∈ A non-zero there are b, c ∈ A with bac = 1. This generalises
the definition for C∗-algebras.

As a purely infinite Banach algebra must be simple, the asymptotic sequence algebra
of A is never purely infinite, see Remark 2.7 below. We thus focus on ultrapowers in
this paper. As in [10], and perhaps not surprisingly from the perspective of continuous
model theory, we find that an ultrapower (A)U is purely infinite if and only if it satisfies
a “metric” form of the definition, where we have some sort of norm control. That purely
infinite C∗-algebras have purely infinite ultrapowers follows from such norm control
always being available.

Key words and phrases. Asymptotic sequence algebra, Banach ∗-algebra, Cuntz semigroup, Leavitt
algebra, purely infinite, semigroup algebra, ultrapower
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2 MATTHEW DAWS AND BENCE HORVÁTH

In [10] we found examples of Banach algebras which did, and did not, have suitable
forms of norm control. Our major tool was to look at weighted semigroup algebras,
where the weight allowed us to vary the norm control which we obtained. Surprisingly,
in this paper we have no need to consider weights. Thus our examples are somewhat
more “natural”, and indeed, in showing that our principal example does not have simple
(hence purely infinite) ultrapowers, we proceed in a somewhat indirect way, and avoid
directly computing norms in the ultrapower.

The structure of the paper is as follows. In the remainder of the introduction, we
provide a more detailed introduction to purely infinite algebras, and recall the ultrapower
construction. In Section 2 we define a suitable “quantified” definition of being purely
infinite, and show that this does indeed capture when ultrapowers are purely infinite.
We show quickly how this gives that purely infinite C∗-algebras have purely infinite
ultrapowers.

In Section 2.2, we provide natural examples of Banach algebras which do have purely
infinite ultrapowers. These are built as algebras of operators on suitable Banach spaces.
Finally, we show that if a Banach algebra A does have simple ultrapowers, then it
behaves a little like a C∗-algebra, in the sense that non-zero continuous algebra homo-
morphisms out of A must be bounded below. We use this property to show that our
main example does not have simple ultrapowers. In particular, it cannot have purely
infinite ultrapowers either (cf. Lemma 1.2 (1)).

In Section 3 we present our main construction. As in [10], we use the Cuntz semigroup
Cu2, which is a semigroup with zero element, modelled on the relations of the Cuntz
algebra O2. We study the semigroup algebra A = ℓ1(Cu2 \ {♦},#), where we replace
the semigroup zero by the algebra zero. We recall some of the combinatorics of this
semigroup. There are two natural idempotents in this algebra, and we quotient by
the relation that these idempotents sum to 1, say leading to the algebra A/J . By a
delicate combinatorial argument, we show that the resulting Banach algebra is purely
infinite: for any non-zero a ∈ A/J we find f ∈ A which maps to a, and g, h ∈ A with
g#f#h = 1, see Theorem 3.18. To show that A/J does not have simple ultrapowers,
we construct a faithful, but not bounded below, representation on the Banach space ℓp,
for each p ∈ [1,∞).

The Banach algebra A has been previously studied in [8], but in relation to being
properly infinite (and further we studied a “weighted” version of this algebra in [10]).
The underlying algebra, given by generators and relations, but without the ℓ1-norm
completion, has a much longer history, as noticed by Phillips in [22]; compare Remark 3.5
below. Indeed, Phillips makes a careful study of (in particular) the algebra Op

2 , which,
in our language, is the closure of the image of A/J in B(ℓp). It is worth noting here
that A/J itself is the ℓ1-completion of the Leavitt algebra L2; see Remark 3.10. As we
consider in Remark 3.29, given the lack of “permanence” properties for purely infinite
Banach algebras, there appears to be no logical connections between our results and
those of Phillips. In particular, Phillips shows that Op

2 is purely infinite, but we have
been unable to decide if Op

2 has purely infinite ultrapowers, or not.
However, an immediate corollary of the material presented in Section 4 is that A/J

and Op
2 are not isomorphic for any p ∈ [1,∞) (see Theorem 4.1). Section 4 is devoted to

the study of traces on A/J and Op
2. Namely, we show that there are non-zero bounded
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traces on A/J (see Theorem 4.3) whilst there are no non-zero bounded traces on Op
2,

for any p ∈ [1,∞) (see Theorem 4.10).
Unless stated otherwise, we will use the same notation and terminology as in [10].

1.2. Purely infinite algebras. Let A be an algebra. We say that two idempotents
p, q ∈ A are algebraically Murray–von Neumann equivalent or simply equivalent (in
notation, p ∼ q) if there exist a, b ∈ A such that p = ab and q = ba. Note that ∼ is
an equivalence relation on the set of idempotents of A. We say that the idempotents
p, q ∈ A are orthogonal (in notation, p ⊥ q) if pq = 0 = qp. An idempotent p is infinite
if p = q + r for orthogonal idempotents q, r ∈ A with p ∼ q and r 6= 0.

If A is additionally a ∗-algebra, then a self-adjoint idempotent is called a projection.
Here one often takes a different notion of equivalence, which for C∗-algebras is well-
known to give the same definitions; compare [10, Section 2].

The notion of a C∗-algebra being purely infinite is well-known, and has many equiv-
alent definitions, mostly studied for simple algebras, but also in the non-simple case,
[18]. Purely infinite C∗-algebras appear prominently in the classification programme for
C∗-algebras, [21], in particular in the guise of the Kirchberg algebras. It is common to
take as a definition that a C∗-algebra is purely infinite if every hereditary subalgebra
contains an infinite projection.

In a more general direction, the notion of a simple ring being purely infinite was studied
in [2], where it is taken as definition that a simple ring R is purely infinite if every right
(or equivalently, left) ideal of R contains an infinite idempotent. Consideration of what
it means for a non-simple ring to be purely infinite is given in [3].

Common to both definitions (in the simple case) is the following equivalence; for
C∗-algebras see for example [9, Theorem V.5.5] while for rings see [2, Theorem 1.6].

Definition 1.1. A complex unital algebra A is purely infinite if it is not a division
algebra and for every a ∈ A non-zero there exist b, c ∈ A such that 1A = bac.

In this paper, we shall work only with this definition. Note that by the Gel’fand–
Mazur Theorem a complex unital normed algebra is a division algebra if and only if it
is isomorphic to the field of complex numbers C. In the rest of the paper all algebras
are assumed to be complex.

We finish the section with the following. We recall that a unital algebra A is properly
infinite if there exist idempotents p, q ∈ A with p ∼ 1A, q ∼ 1A and p ⊥ q.

Lemma 1.2. Let A be a purely infinite algebra. Then A is

(1) simple; and
(2) properly infinite.

Proof. We first show that A is simple. Let J be a non-zero, two-sided ideal in A and
pick a ∈ J non-zero. There exist b, c ∈ A such that 1A = bac, hence 1A ∈ J . Thus
J = A.

We now show that A is properly infinite. Recall that A is not a division algebra,
hence we can find a non-zero, non-invertible element, say a ∈ A. Let b, c ∈ A be such
that 1A = bac. We define p := cba and r := acb, it is clear that p, r ∈ A are idempotents
with p ∼ 1A ∼ r. However p and r need not be orthogonal. Nevertheless, either p 6= 1A
or r 6= 1A (or both), otherwise a were invertible with inverse cb which is not possible.
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Without loss of generality we may assume p 6= 1A. Let s := 1A − p, then s ∈ A is a
non-zero idempotent with s ⊥ p. We can find some x, y ∈ A such that 1A = xsy. Define
q := syxs, then q2 = syxssyxs = syxsyxs = syxs = q, and clearly q ∼ 1A. Now p ⊥ q
as p ⊥ s. �

1.3. Ultrapowers of Banach algebras. Let A be a Banach algebra and let ℓ∞(A)
be the Banach space of all bounded sequences (an) in A, turned into a Banach algebra
with pointwise operations. Let U be a non-principal ultrafilter on N and let cU (A) be
the closed, two-sided ideal of ℓ∞(A) formed of sequences (an) with limn→U ‖an‖ = 0.
The quotient

(A)U = ℓ∞(A)/cU (A) (1.1)

is the ultrapower, see [14]. It is well known that (C)U ∼= C.
We shall denote by a capital letter A, and so forth, an element A = (an) ∈ ℓ∞(A).

Let πU ,A : ℓ∞(A) → (A)U be the quotient map; then

‖πU ,A(A)‖ = lim
n→U

‖an‖. (1.2)

In particular, given any a ∈ (A)U we can always findA = (an) ∈ ℓ∞(A) with πU ,A(A) = a
and ‖A‖ = supn ‖an‖ = ‖a‖. We always assume that our ultrafilters are non-principal,
which on a countable indexing set, is equivalent to being countably-incomplete (see [14,
Section 1]). When it does not cause any confusion we may drop the subscripts on πU ,A.

Given a Banach algebra A and an ultrafilter U , the “diagonal” map

ιA : A → (A)U ; a 7→ πU((a)) (1.3)

is an isometric embedding. In particular, dimA 6 dim(A)U follows.

Let A and B be Banach algebras and let ψ : A → B be a continuous algebra homomor-
phism. Then for an ultrafilter U there is an induced continuous algebra homomorphism
ψU : (A)U → (B)U such that

ψU (πU ,A ((an))) = πU ,B ((ψ(an))) (1.4)

for each (an) ∈ ℓ
∞(A). If ψ is non-zero then ψU is non-zero too.

2. Norm control

2.1. Quantifying pure infiniteness. In [10] we “quantified” Dedekind-finiteness, proper
infiniteness and stable rank one, in order to characterise when an ultrapower (A)U has
these ring-theoretic properties of the underlying Banach algebra A. We follow our pre-
vious approach in the present paper.

Definition 2.1. Let A be a unital Banach algebra. For a ∈ A \ {0} define

CA
pi(a) = inf{‖b‖‖c‖ : b, c ∈ A, bac = 1}

with CA
pi(a) = ∞ if there are no b, c ∈ A with bac = 1.

Then a unital Banach algebra A is purely infinite exactly when it is not isomorphic
to C and CA

pi(a) < ∞ for each a ∈ A \ {0}. Note that if a ∈ A is such that CA
pi(a) <∞

then 1/‖a‖ 6 CA
pi(a).
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By homogeneity, we have

CA
pi(za) = |z|−1CA

pi(a) (a ∈ A \ {0}, z ∈ C \ {0}). (2.1)

Thus it is enough to study the unit sphere of A.
Usually, we will drop the superscript on CA

pi(a) and simply write Cpi(a), whenever it
is clear from the context which Banach algebra the element a is taken from.

Proposition 2.2. Let U be a countably-incomplete ultrafilter. Let A be a unital Banach
algebra not isomorphic to C. Then the following are equivalent.

(1) (A)U is purely infinite;
(2) There is K > 0 such that Cpi(a) < K for each a ∈ A with ‖a‖ = 1.

Proof. As usual, we may suppose that U is a non-principal ultrafilter on N.
((1) ⇒ (2)) : We prove the statement by way of a contraposition. Assume (2) does

not hold. Then in particular we can pick a sequence (an) in A consisting of norm one
elements such that Cpi(an) > n for each n ∈ N. Let A := (an) so A ∈ ℓ∞(A). Assume
towards a contradiction that (A)U is purely infinite. Thus we can find B = (bn), C =
(cn) ∈ ℓ

∞(A) such that π(1) = π(B)π(A)π(C), or equivalently, limn→U ‖1−bnancn‖ = 0.
Let N := {n ∈ N : ‖1 − bnancn‖ < 1/2}, then N ∈ U . By the Carl Neumann series
xn := bnancn ∈ inv(A) with ‖x−1

n ‖ 6 2 for each n ∈ N . As 1 = x−1
n xn = (x−1

n bn)ancn,
we conclude that

n < Cpi(an) 6 ‖x−1
n bn‖‖cn‖ 6 ‖x−1

n ‖‖bn‖‖cn‖ 6 2‖B‖‖C‖ (n ∈ N ). (2.2)

As N ∈ U and thus N is infinite, this gives a contradiction.
((2) ⇒ (1)) : Assume (2) holds. Let A = (an) ∈ ℓ∞(A) be such that π(A) 6= 0.

This is equivalent to saying that limn→U ‖an‖ 6= 0, hence there is δ > 0 such that
{n ∈ N : ‖an‖ < δ} /∈ U , that is, M := {n ∈ N : ‖an‖ > δ} ∈ U . Thus we may set
a′n := an/‖an‖ whenever n ∈ M, and a′n := 0 otherwise. Clearly ‖a′n‖ = 1 for each
n ∈ M, hence by the assumption it follows that Cpi(a

′
n) < K for each n ∈ M. Thus for

every n ∈ M we can find b′n, c
′
n ∈ A such that b′na

′
nc

′
n = 1 and ‖b′n‖‖c

′
n‖ < K. We set

bn :=











√

‖c′n‖

‖b′n‖‖an‖
b′n if n ∈ M,

0 otherwise;

and cn :=











√

‖b′n‖

‖c′n‖‖an‖
c′n if n ∈ M,

0 otherwise.

(2.3)

Hence bnancn = ‖an‖
−1b′nanc

′
n = b′na

′
nc

′
n = 1 for each n ∈ M. It is also follows from the

definitions that ‖bn‖ =
√

‖b′n‖‖c
′
n‖/‖an‖ <

√

K/δ and similarly ‖cn‖ <
√

K/δ, hence
B := (bn), C := (cn) ∈ ℓ∞(A).

Fix ε > 0. Then

M = {n ∈ N : 1 = bnancn} ⊆ {n ∈ N : ‖1− bnancn‖ < ε}, (2.4)

hence from M ∈ U we conclude {n ∈ N : ‖1 − bnancn‖ < ε} ∈ U . Thus limn→U ‖1 −
bnancn‖ = 0, which is equivalent to π(B)π(A)π(C) = π(A). Lastly, (A)U cannot be
isomorphic to C by the assumption and dimA 6 dim(A)U . Thus (A)U is purely infinite.

�
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Remark 2.3. In view of the comment before Proposition 2.2, we may rewrite condition
(2) as

(2’) There is K > 0 such that Cpi(a) 6 K/‖a‖ for each non-zero a ∈ A.

Consequently (A)U is purely infinite if and only if there exists a K > 0 such that

1/‖a‖ 6 Cpi(a) 6 K/‖a‖ (a ∈ A \ {0}). (2.5)

Corollary 2.4. Let U be a countably-incomplete ultrafilter, and let A be a Banach
algebra such that (A)U is purely infinite. Then A is purely infinite.

Proof. Note that A is not isomorphic to C, otherwise (A)U ∼= (C)U ∼= C which is non-
sense. Hence by the assumption we can take some K > 0 which satisfies the conditions of
Proposition 2.2 (2). Let a ∈ A be non-zero. We set a′ := a/‖a‖, then Cpi(a

′) < K. Thus

there exist b′, c′ ∈ A such that b′a′c′ = 1. Now define b := b′/
√

‖a‖ and c := c′/
√

‖a‖,
thus bac = 1 as required. �

In fact, we can make a quantitative statement in this direction.

Lemma 2.5. Let A be a unital Banach algebra. If U is an ultrafilter, then

C
(A)U
pi ◦ ιA = CA

pi . (2.6)

Proof. (>): Let a ∈ A, and put A := (a) ∈ ℓ∞(A). Assume B = (bn), C = (cn) ∈ ℓ
∞(A)

are such that πU(1) = πU(B)πU (A)πU (C), which is equivalent to limn→U ‖1−bnacn‖ = 0.
Let us fix ε ∈ (0, 1). Then

Nε := {n ∈ N : ‖1− bnacn‖ < ε} ∈ U , (2.7)

and by the Carl Neumann series xn := bnacn ∈ inv(A) with ‖x−1
n ‖ 6 (1 − ε)−1 for each

n ∈ Nε. Thus 1 = x−1
n xn = (x−1

n bn)acn, and consequently

CA
pi(a) 6 ‖x−1

n bn‖‖cn‖ 6 ‖x−1
n ‖‖bn‖‖cn‖ < (1− ε)−1‖bn‖‖cn‖ (n ∈ Nε). (2.8)

Therefore CA
pi(a) 6 limn→U ‖bn‖‖cn‖(1 − ε)−1 = ‖πU (B)‖‖πU (C)‖(1 − ε)−1, which

holds for all ε ∈ (0, 1), hence CA
pi(a) 6 ‖πU (B)‖‖πU (C)‖. Consequently CA

pi(a) 6

C
(A)U
pi (πU (A)) = C

(A)U
pi (ιA(a)), as claimed.

(6): Let a ∈ A. Assume b, c ∈ A are such that 1 = bac. Putting A := (a), B :=
(b), C := (c) ∈ ℓ∞(A), we clearly have πU(1) = πU(B)πU (A)πU (C). Consequently

C
(A)U
pi (ιA(a)) = C

(A)U
pi (πU (A)) 6 ‖πU (B)‖‖πU (C)‖ = ‖b‖‖c‖, (2.9)

and therefore C
(A)U
pi (ιA(a)) 6 CA

pi(a), as required. �

One might wonder whether the converse to Corollary 2.4 could be true. We will show
that this is not the case: there is a purely infinite Banach ∗-algebra which does not have
purely infinite ultrapowers (see Theorems 3.20 and 3.27 ).

However, it is well known (see [13, Section 3.13.7]) that the converse to Corollary 2.4
remains true for C∗-algebras. Here we demonstrate how this can easily be deduced from
Proposition 2.2.
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Lemma 2.6. Let A be a purely infinite C∗-algebra. Then Cpi(a) = 1 for each a ∈ A with
‖a‖ = 1, consequently (A)U is purely infinite for every countably-incomplete ultrafilter
U .

Proof. Let a ∈ A have norm one. Let us fix ε > 0. Clearly a∗a ∈ A is positive, hence
by [9, Theorem V.5.5] there is some x ∈ A such that (xa∗)ax∗ = x(a∗a)x∗ = 1 and
‖x‖ < ‖a∗a‖−1/2 + ε = 1 + ε. Thus

Cpi(a) 6 ‖xa∗‖‖x∗‖ 6 ‖x‖2‖a‖ < (1 + ε)2, (2.10)

and therefore Cpi(a) 6 1. The “consequently” part follows from Proposition 2.2. �

We note that [9, Theorem V.5.5] has an elementary (functional calculus) proof, passing
by way of an equivalent definition of what purely infinite means for C∗-algebras, compare
our discussion in Section 1.2.

We briefly consider the asymptotic sequence algebra. Let c0(A) be the closed, two-
sided ideal of ℓ∞(A) which consists of sequences (an) with limn→∞ ‖an‖ = 0. In fact,
when A is unital, ℓ∞(A) is the multiplier algebra of c0(A) (compare [12, Section 13] for
example). The asymptotic sequence algebra Asy(A) is the quotient algebra ℓ∞(A)/c0(A).

As opposed to the previously studied properties in [10] such as stable rank one,
Dedekind-finitess and proper infiniteness, the theory for the asymptotic sequence al-
gebra and the ultrapower of a Banach algebra seems to bifurcate here.

Remark 2.7. Let A be a non-zero unital Banach algebra. Then Asy(A) is not simple
and hence not purely infinite.

Proof. Note that Asy(A) is simple if and only if c0(A) is a maximal two-sided ideal in
ℓ∞(A). But this latter is not possible, as for example, the following shows. Let U be
a non-principal ultrafilter on N such that 2N ∈ U . Let A := (an) be a sequence in A
defined by a2n := 1A and a2n−1 := 0A for each n ∈ N. Clearly A ∈ ℓ∞(A) and in
fact A ∈ cU (A) by definition. On the other hand clearly A /∈ c0(A). Consequently
c0(A) ( cU (A) which shows that c0(A) cannot be maximal. The last part follows from
Lemma 1.2. �

We finish this section with a handy tool for showing when Banach algebras fail to have
simple ultrapowers. Indeed, this is one of the key ideas in the proof of Theorem 3.27.

Proposition 2.8. Let A be a Banach algebra such that (A)U is simple for some countably-
incomplete ultrafilter U . Then for every Banach algebra B, every non-zero continuous
algebra homomorphism ψ : A → B is bounded below.

Proof. We prove by contraposition. Suppose B is a Banach algebra and ψ : A → B is a
non-zero continuous algebra homomorphism which is not bounded below. Thus we can
pick a sequence (an) in A consisting of norm one elements with limn→∞ ‖ψ(an)‖ = 0. In
particular A := (an) ∈ ℓ∞(A) and (ψ(an)) ∈ cU (B), where U is a countably-incomplete
ultrafilter. Consider the induced continuous algebra homomorphism ψU : (A)U → (B)U .
On the one hand, from (1.4) and the above we see that ψU (πU ,A(A)) = πU ,B((ψ(an))) = 0,
hence πU ,A(A) ∈ Ker(ψU ). As ‖πU ,A(A)‖ = limn→U ‖an‖ = 1, it follows that Ker(ψU )
is a non-zero ideal in (A)U . On the other hand, ψ and hence ψU is non-zero, therefore
Ker(ψU ) is also a proper ideal in (A)U . So (A)U is not simple. �
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2.2. Examples of Banach algebras with purely infinite ultrapowers. It is a
good point to give an example of a class of non-C∗, Banach algebras with purely infinite
ultrapowers. In what follows, B(X) and K(X) denote the algebra of bounded linear
operators on a Banach space X and the set of compact operators on X, respectively.
Clearly B(X) is a unital Banach algebra and K(X) is a closed, two-sided ideal in B(X).

Proposition 2.9. Let X be c0 or ℓp, where 1 6 p < ∞. Then (B(X)/K(X))U is
purely infinite if U is a countably-incomplete ultrafilter. More precisely, for every a ∈
B(X)/K(X) with ‖a‖ = 1 there exist b, c ∈ B(X)/K(X) such that 1 = bac and ‖b‖‖c‖ =
1.

The proof of Proposition 2.9 relies on the following result of Ware, see [27, Lemma 3.3.6].
Note that it is a strict strengthening of [26, Lemma 2.1]; the proof works by extracting
a suitable block basic sequence equivalent to the standard unit vector basis for X.

Lemma 2.10. Let X be c0 or ℓp, where 1 6 p < ∞. Then for each A ∈ B(X) a
non-compact operator, there exist B,C ∈ B(X) such that

IX = BAC and ‖π(B)‖‖π(C)‖ = 1/‖π(A)‖, (2.11)

where π : B(X) → B(X)/K(X) the quotient map.

Proof of Proposition 2.9. Let A ∈ B(X) be such that ‖π(A)‖ = 1. Hence by Lemma 2.10
there are B,C ∈ B(X) such that IX = BAC and ‖π(B)‖‖π(C)‖ = 1. This obvi-
ously proves the first part of the claim. In particular, Cpi(π(A)) = 1 follows whenever
‖π(A)‖ = 1. Now Proposition 2.2 yields that (B(X)/K(X))U is purely infinite, whenever
U is a countably-incomplete ultrafilter. �

Let us introduce some terminology, commonly found in the literature, for the property
we have been studying. For a unital algebra A, and given a ∈ A, we say that 1A factors
through a, or a is a purely infinite element, if there exist b, c ∈ A such that 1A = bac.

In a unital algebra A we define the set

MA := {a ∈ A : 1A does not factor through a}. (2.12)

The following result is folklore and easy to see; we omit the proof.

Proposition 2.11. Let A be a unital algebra.

• The set MA is closed under scalar multiplication, and under multiplying elements
of it from the left and right by elements from A. Thus it is the largest proper
(and therefore unique maximal) two-sided ideal in A if and only if MA is closed
under addition.

• If MA is closed under addition and A/MA is not a division algebra, then A/MA

is purely infinite.

Note that in the second item the condition that A/MA is not a division algebra
cannot be omitted. Indeed, Kania and Laustsen showed in [17, Theorem 1.2] that with
X := C[0, ω1], the one-codimensional Loy–Willis ideal coincides with MB(X) and hence
B(X)/MB(X)

∼= C.

When the unital Banach algebra A is B(X) for some “classical” Banach space X, it
happens very often that MB(X) is the unique maximal ideal in MB(X). Here we give a
few examples, a more comprehensive list can be found in [17, p. 4832].
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Example 2.12. If X is any of the Banach spaces below then MB(X) is closed under
addition and hence it is the unique maximal ideal in B(X):

• X = c0 or X = ℓp, where 1 6 p <∞, in this case MB(X) = K(X) (see [15]);
• X = ℓ∞ (see [19, p. 253]);
• X = Lp[0, 1], where 1 6 p <∞ (see [11, Theorem 1.3 and the text after]);
• X = C[0, 1] (see the explanation in [17, p. 4832]).

Remark 2.13. Let A be a unital algebra and let J be a two-sided ideal in A such
that A/J is purely infinite. Then MA is closed under addition if and only if J = MA.
Indeed, A/J is simple by Lemma 1.2, or equivalently, J is a maximal ideal. Hence ifMA

is closed under addition then it is the unique maximal ideal in A by Proposition 2.11,
thus J = MA. The other direction is trivial.

It is certainly not true however that for a unital Banach algebra A and a closed,
two-sided ideal J of A the quotient A/J is purely infinite only if MA is closed under
addition. We shall show this by way of a counter-example. In order to do this, let
us recall the following piece of terminology. For Banach spaces X and Y the symbol
GY (X) denotes the closed, two-sided ideal of operators on X which approximately factor
through Y .

Lemma 2.14. Let X := ℓp ⊕ ℓq, where 1 6 p < q < ∞. Then MB(X) is not closed

under addition while
(

B(X)/GY (X)
)

U
is purely infinite, where Y is ℓp or ℓq and U

is a countably-incomplete ultrafilter. More precisely, for every a ∈ B(X)/GY (X) with
‖a‖ = 1 there exist b, c ∈ B(X)/GY (X) such that 1 = bac and ‖b‖‖c‖ = 1.

Proof. The first part of the claim is well known; see e.g. [24, Theorem 5.3.2]. Indeed,
B(X) has exactly two maximal two-sided ideals, namely, Gℓp(X) and Gℓq(X). We will
work with Y = ℓp, the other case is entirely analogous.

Let us recall that by Pitt’s Theorem [1, Theorem 2.1.4], we can describe B(X) and
Gℓp(X) as

B(X) =

[

B(ℓp) B(ℓq, ℓp)
B(ℓp, ℓq) B(ℓq)

]

=

[

B(ℓp) K(ℓq, ℓp)
B(ℓp, ℓq) B(ℓq)

]

,

Gℓp(X) =

[

K(ℓp) B(ℓq, ℓp)
B(ℓp, ℓq) B(ℓq)

]

=

[

K(ℓp) K(ℓq, ℓp)
B(ℓp, ℓq) B(ℓq)

]

.

Consequently,

B(X)/Gℓp(X) ∼= B(ℓp)/K(ℓp),

where the isomorphism is clearly isometric. Hence the result follows from Proposi-
tions 2.9 and 2.2. �

3. A “Banach- analogue” of the Cuntz algebra

In this section we show that a naturally occurring infinite-dimensional Banach ∗-
algebra is purely infinite, but it does not have a simple ultrapower.

3.1. Preliminaries.
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3.1.1. Involutive semigroups with zero elements, and the Banach ∗-algebra ℓ1(S \ {♦}).
We recall that a semigroup S is involutive if there is a map s 7→ s∗, S → S with the
property (s∗)∗ = s and (st)∗ = t∗s∗ for each s, t ∈ S.

We say that S is a monoid with a zero element if S is a monoid with at least two
elements and there exists a ♦ ∈ S such that ♦s = ♦ = s♦ for all s ∈ S. If such a ♦ ∈ S
exists then it is necessarily unique. As we assume that S has more than one element, we
have ♦ is different from the multiplicative identity e ∈ S. Note that if S is additionally
involutive, then necessarily ♦∗ = ♦.

Let us briefly recall that it is possible to endow the Banach space ℓ1(S \ {♦}) with
a unital Banach algebra structure; see [8] and [10] for details; compare also [16]. This
is accomplished by identifying ℓ1(S \ {♦}) with the quotient algebra ℓ1(S)/Cδ♦, where
ℓ1(S) is endowed with the convolution product. This allows us to define a product # on
ℓ1(S \ {♦}) which satisfies

δs#δt =

{

δst if st 6= ♦

0 if st = ♦
(s, t ∈ S \ {♦}) . (3.1)

In particular it follows from equation (3.1) that (ℓ1(S \ {♦}),#) is a unital Banach
algebra with δe being the unit, and such that ‖δe‖ = 1.

If in addition S is involutive, then the formula

f∗(s) := f(s∗) (f ∈ ℓ1(S \ {♦}), s ∈ S \ {♦}) (3.2)

defines an isometric involution on ℓ1(S \ {♦}). Hence ℓ1(S \ {♦}) is a Banach ∗-algebra.

3.1.2. The Cuntz semigroup Cu2. In the following Cu2 denotes the second Cuntz semi-
group (see also [25, Definition 2.2, p. 141]; this is also occasionally called the “polycyclic
monoid” in the literature, [6]). (We warn the reader that “Cuntz semigroup” now also
means something unrelated in C∗-algebra theory.) That is, Cu2 is an involutive semi-
group with multiplicative identity e and zero element ♦, and generators s1, s2, s

∗
1, s

∗
2

subject to the relations s∗1s1 = e = s∗2s2 and s∗1s2 = ♦ = s∗2s1. In notation, Cu2 is

〈s1, s2, s
∗
1, s

∗
2 : s

∗
1s1 = e = s∗2s2, s

∗
1s2 = ♦ = s∗2s1〉. (3.3)

We now mostly follow the notation of [8, Section 3.3].

Definition 3.1. We set

In := {(i1, i2, . . . , in) : i1, i2, . . . , in ∈ {1, 2}} (n ∈ N), (3.4)

and I0 := {∅}. Let I :=
⋃

n∈N0
In, and L :=

∏

n∈N{1, 2}.
Let n = (ni) ∈ L, we then set

n0 := ∅,

nl := (n1, n2, . . . nl) ∈ Il (l ∈ N). (3.5)

If i, j ∈ I, then we define ij ∈ I by concatenation

ij :=











i if j = ∅,

j if i = ∅,

(i1, i2, . . . , im, j1, j2, . . . jn) if i = (i1, i2, . . . , im) and j = (j1, j2, . . . , jn).

(3.6)
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For each i ∈ I we define si ∈ Cu2 \ {♦} by

si :=

{

e if i = ∅,

si1si2 · · · sin if i = (i1, i2, . . . in) ∈ I \ {∅}.
(3.7)

We clearly have sisj = sij and s
∗
ij := (sij)

∗ = (sisj)
∗ = s∗j s

∗
i .

3.2. Basic combinatorics of Cu2. We collect some combinatorial results, which while
known, we state for ease of reference. The following result, as stated below, can be found
in [10, Lemma 3.7], where it is attributed to Cuntz (see [7, Lemmas 1.2 and 1.3]).

Lemma 3.2. (1) For every i, j ∈ I we have

s∗i sj =











s∗k if i = jk for some k ∈ I,

sk if j = ik for some k ∈ I,

♦ otherwise.

(3.8)

(2) For every t ∈ Cu2 \ {♦} there exist unique i, j ∈ I such that t = sis
∗
j .

Remark 3.3. Let t ∈ Cu2 \{♦}. By Lemma 3.2 (2) there exist unique i, j ∈ I such that
t = sis

∗
j . Let α, β ∈ N0 be the unique numbers such that i ∈ Iα and j ∈ Iβ.

Thus we may define the length of t as

length(t) := α+ β. (3.9)

In fact, Lemma 3.2 (2) features so frequently in our arguments that we shall mostly
use it implicitly without referring to it.

A very important corollary of the above is the lemma below, which we will use nu-
merous times throughout the rest of the paper.

Lemma 3.4. Let i, j,m,n ∈ I. Then

s∗i sms
∗
nsj =







































s∗qp if i = mp and n = jq for some p,q ∈ I,

s∗r if i = mqr and j = nq for some r,q ∈ I,

sps
∗
q if m = ip and n = jq for some p,q ∈ I,

spq if m = ip and j = nq for some p,q ∈ I,

sr if i = mp and j = npr for some p, r ∈ I,

♦ otherwise.

(3.10)

Consequently, s∗i sms
∗
nsj = e if and only if i = mk and j = nk for some k ∈ I.

Proof. Applying Lemma 3.2 to s∗i sm and s∗nsj, we immediately obtain that

s∗i sms
∗
nsj =































s∗ps
∗
q = s∗qp if i = mp and n = jq for some p,q ∈ I,

s∗psq if i = mp and j = nq for some p,q ∈ I,

sps
∗
q if m = ip and n = jq for some p,q ∈ I,

spsq = spq if m = ip and j = nq for some p,q ∈ I,

♦ otherwise.

(3.11)

Once more we apply Lemma 3.2 to s∗psq, which yields the desired formula (3.10).
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The “consequently” part follows from inspecting the cases in the above formula and
from observing that

• s∗qp = e or spq = e or sps
∗
q = e if and only if p = ∅ = q if and only if i = m and

j = n,
• s∗r = e if and only if r = ∅ if and only if i = mq and j = nq,
• sr = e if and only if r = ∅ if and only if i = mp and j = np.

�

3.3. A purely infinite quotient of (ℓ1(Cu2 \ {♦}),#). From now on we let A :=
(ℓ1(Cu2 \ {♦}),#). In this section we study a natural quotient of A, which is related to
the Leavitt algebra L2 (see Remark 3.10), and show that the identity of this quotient
factors through every non-zero element of the quotient.

Remark 3.5. Suppose we start instead with the group ring C[Cu2], which is just the
algebra of finitely supported elements of ℓ1(Cu2), and similarly quotient by the span of
δ♦. As observed in [22, Section 1], the algebra C[Cu2]/Cδ♦ was studied, with a different
presentation, by Cohn in [5, Section 5], and is sometimes called the Cohn algebra C2.

We could hence viewA as being a Banach algebra completion of C2. To our knowledge,
this algebra has not been studied from this perspective; for example, it is not mentioned
in [8]. We make remarks about links, or lack thereof, with Phillips’s work in [22] below,
Remark 3.29.

Let us observe first that in view of Lemma 3.2, we may write

f =
∑

t∈Cu2\{♦}

f(t)δt =
∑

i,j∈I

f(sis
∗
j )δsis∗j (f ∈ A). (3.12)

Our first goal is to find a useful sufficient condition which guarantees that an element
f ∈ A is purely infinite, in other words, that there exist g, h ∈ A with g#f#h = δe.

Definition 3.6.

• Let v ∈ Cu2 \ {♦}, and let i, j be the unique elements in I with v = sis
∗
j .

– Suppose n ∈ L. We define

vnl := sinl
s∗jnl

= sis(n1,...,nl)s
∗
(n1,...,nl)

s∗j (l ∈ N0). (3.13)

– Suppose n ∈ I. There is a unique α ∈ N0 satisfying n ∈ Iα; hence n =
(n1, n2, . . . , nα).We define vnl as in (3.13) provided l ∈ N0 is such that l 6 α.
Otherwise vnl is undefined.

We have in particular vn0 = sin0s
∗
jn0

= sis
∗
j = v, and that enl = s(n1,...,nl)s

∗
(n1,...,nl)

.

• We say that f ∈ A has zero sums at v = sis
∗
j ∈ Cu2 \ {♦} if

∑

l∈N0

f(vnl ) =
∑

l∈N0

f(sinl
s∗jnl

) = 0 (n ∈ L). (3.14)

Notice that as f is an ℓ1 element, the sum in (3.14) is absolutely convergent.
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Lemma 3.7. Let n ∈ I ∪ L and f ∈ A. Then

δs∗nl
#f#δsnl

=

(

l
∑

k=0

f(enk )

)

δe +
∑

i,j∈I
s∗nl

sis
∗

j
snl

/∈{e,♦}

f(sis
∗
j )δs∗nl

sis
∗

j
snl

(l ∈ N0). (3.15)

Proof. Let us fix an l ∈ N0. We first note that by Lemma 3.4

{sis
∗
j : i, j ∈ I, s∗nl

sis
∗
j snl

= e} = {sis
∗
j : i, j ∈ I, nl = ip, nl = jp for some p ∈ I}

= {sis
∗
i : i = nk for some 0 6 k 6 l}

= {enk : 0 6 k 6 l}.

Since

δs∗nl
#f#δsnl

=
∑

i,j∈I
s∗nl

sis
∗

j
snl

6=♦

f(sis
∗
j )δs∗nl

sis
∗

j
snl
,

the result follows. �

Proposition 3.8. Let f ∈ A be such that it does not have zero sums at the multiplicative
unit e ∈ Cu2. Then there exist g, h ∈ A with g#f#h = δe.

Proof. By the assumption there is an n = (n1, n2, . . . , nk, . . .) ∈ L such that
∑

k∈N0
f(enk ) 6=

0. Let us set zN :=
∑N

k=0 f(e
n
k ) for each N ∈ N0. As f ∈ A, the sequence (zN ) con-

verges to some non-zero element in C, therefore there is an ε > 0 and N ′ ∈ N0 such that
|zn| > 2ε for each n > N ′. From Lemma 3.7 we see that

δs∗nl
#f#δsnl

= zlδe +
∑

i,j∈I
s∗nl

sis
∗

j
snl

/∈{e,♦}

f(sis
∗
j )δs∗nl

sis
∗

j
snl

(l ∈ N0). (3.16)

There is a K ∈ N such that
∑

i,j∈I\∪M
k=0Ik

|f(sis
∗
j )| < ε for all M > K. Let us fix an

M > max{N ′,K} and define

f ′ :=
∑

i,j∈∪M
k=0Ik

f(sis
∗
j )δsis∗j . (3.17)

Clearly, f ′ ∈ A is finitely supported such that ‖f −f ′‖ < ε. Also, f ′(t) = 0 whenever t ∈
Cu2 is such that length(t) > 2M . We also note that f ′(enk ) = f ′(snk

s∗nk
) = f(snk

s∗nk
) =

f(enk ) for each k ∈ {1, . . . ,M} by the definition of f ′. Consequently,

zM =

M
∑

k=0

f(enk ) =

M
∑

k=0

f ′(enk ). (3.18)

To ease notation, we put z := zM .

Claim 3.9. There is a p ∈ I such that

δs∗p#δs∗nM
#f ′#δsnM

#δsp = δs∗nMp
#f ′#δsnMp = zδe. (3.19)
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Proof of Claim 3.9. By Lemma 3.7 and (3.18) we have δs∗nM
#f ′#δsnM

= zδe+h0, where

h0 :=
∑

i,j∈I
s∗nM

sis
∗

j
snM

/∈{e,♦}

f ′(sis
∗
j )δs∗nM

sis
∗

j
snM

. (3.20)

If h0 = 0 then we are done. Otherwise, H0 := supp(h0) 6= ∅. We claim that there is an
i ∈ {1, 2} such that

|{s∗i tsi : t ∈ H0, s
∗
i tsi 6= ♦}| < |H0|. (3.21)

To show this, observe that as supp(f ′), and hence also H0, is finite, it is enough to
see that s∗1ts1 = ♦ or s∗2ts2 = ♦ for some t ∈ H0. This readily follows however from
{e} 6= H0 (which clearly holds as e /∈ H0).

For this choice of i, applying Lemma 3.7 again we see that

δs∗nMi
#f ′#δsnM

i = δs∗i #(zδe + h0)#δsi = zδe + δs∗i #h0#δsi

= (z + h0(e) + h0(sis
∗
i ))δe + h1, (3.22)

where

h1 :=
∑

i,j∈I
s∗i sis

∗

j
si /∈{e,♦}

h0(sis
∗
j )δs∗i sis∗j si . (3.23)

Note that supp(h1) ⊆ {s∗i tsi : t ∈ H0, s
∗
i tsi 6= ♦}.

On the one hand h0(e) = 0. On the other hand s∗nM
sis

∗
j snM

= sis
∗
i if and only if

i = nM i and j = nM i by Lemma 3.4, hence

h0(sis
∗
i ) = f ′(snM is

∗
nM i) = 0. (3.24)

The last equality follows because length(snM is
∗
nM i) = 2(M + 1), and f ′ vanishes on

elements of Cu2 of length at least 2M + 1. Consequently,

δs∗nMi
#f ′#δsnM

i = zδe + h1, (3.25)

where H1 := supp(h1) is such that |H1| < |H0|.
Let us fix some k0 > | supp(f ′)|. Continuing recursively, we obtain i1, i2, . . . , ik0 ∈

{1, 2} and finitely supported functions (hk)
k0
k=1 in A with Hk := supp(hk) such that

δs∗
nM (i1,...,ik)

#f ′#δsnM
(i1,...,ik) = zδe + hk (1 6 k 6 k0), (3.26)

|H0| > |H1| > . . . > |Hk0 |. (3.27)

As supp(f ′) is finite, we must have that Hk0 = ∅ or equivalently hk0 = 0. Thus setting
p := (i1, . . . , ik0) ∈ I yields the claim. �

We now finish the main proof. From the claim we obtain

‖δe − z−1δs∗nMp
#f#δsnMp‖ = |z|−1‖δs∗nMp

#(f ′ − f)#δsnMp‖

6 |z|−1‖f − f ′‖ < 1/2, (3.28)

thus the Carl Neumann series implies u := z−1δs∗nMp
#f#δsnMp ∈ inv(A). Hence setting

g := u−1#z−1δs∗nMp
and h := δsnMp concludes the proof. �
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In the following, let J denote the closed, two-sided ideal in A generated by the element

f0 := δe − δs1s∗1 − δs2s∗2 . (3.29)

Clearly f0 is an projection in A, in other words, f20 = f0 and f∗0 = f0. We immediately
see from the formula (3.12) and Lemma 3.2 (2) that

J = span{g#f0#h : g, h ∈ A} = span{δsis∗k#f0#δsls
∗

j
: i, j,k, l ∈ I}. (3.30)

Since f∗0 = f0, it follows from (3.30) that J is a ∗-ideal in A, and therefore A/J is a
Banach ∗-algebra.

Remark 3.10. Continuing Remark 3.5, in the Cohn Algebra C2
∼= C[Cu2]/Cδ♦ we could

also consider the ideal, say J2, generated by f0. Then C2/J2 is seen to be isomorphic to
the Leavitt algebra L2, see [22, Section 1], which was first considered (over the field with
2 elements) in [20].

A/J is a Banach algebraic completion of L2, which again seems not to have been
considered in the literature before. Compare with Remark 3.29 below.

Let us introduce some new terminology which will render the technical proofs in this
section significantly more transparent.

Definition 3.11.

(i) An element t = sis
∗
j ∈ Cu2 \ {♦} is symmetric if i = j.

(ii) We say that t ∈ Cu2 \ {♦} is a symmetric expansion of r = sms
∗
n ∈ Cu2 \ {♦}

if there exists a symmetric u ∈ Cu2 \ {♦} with t = smus
∗
n. If in addition u 6= e

then we say that t is a proper symmetric expansion of r.
(iii) For some t ∈ Cu2 \ {♦} the set of symmetric expansions of t is denoted by St.
(iv) An element of Cu2 \ {♦} is without symmetric core if it is not the proper sym-

metric expansion of any element in Cu2 \ {♦}.

The following are immediate from the definition.

Remark 3.12.

• An element t ∈ Cu2 \ {♦} is a symmetric expansion of r = sms
∗
n ∈ Cu2 \ {♦} if

and only if there exists i ∈ I with t = smis
∗
ni. Also, t is a proper expansion of r

if and only if i 6= ∅.
• An element t ∈ Cu2 \ {♦} is without symmetric core if and only if whenever
m,n, i ∈ I are such that t = smis

∗
ni then i = ∅.

Lemma 3.13. The set

{Sv : v ∈ Cu2 \ {♦} is without symmetric core} (3.31)

forms a partition of Cu2 \ {♦}.

Proof. Let t ∈ Cu2 \ {♦} be arbitrary. There exist unique p,q ∈ I such that t = sps
∗
q.

Let α ∈ N0 be maximal with respect to the property that there is an i ∈ Iα with p = mi

and q = ni for some m,n ∈ I. Then t = sps
∗
q = smis

∗
ni = sm(sis

∗
i )s

∗
n shows that t is

the symmetric expansion of v := sms
∗
n. Observe that v is without symmetric core. For

assume towards a contradiction that there exists k ∈ I\I0 such that v = saks
∗
bk for some
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a,b ∈ I. Therefore m = ak and n = bk must hold, consequently t = smis
∗
ni = sakis

∗
bki.

This contradicts the maximality of α.
Let v,w ∈ Cu2 \ {♦} be without symmetric core. Assume there is some t ∈ Sv ∩ Sw.

Let i, j ∈ I be unique with v = sis
∗
j , then t = siks

∗
jk for some k ∈ I. Similarly, let p,q ∈ I

be unique with w = sps
∗
q, then t = spls

∗
ql for some l ∈ I. As siks

∗
jk = t = spls

∗
ql, it

follows that ik = pl and jk = ql. We want to show that v = w, equivalently i = p and
j = q. Let α, β ∈ N0 be the unique numbers such that k ∈ Iα and l ∈ Iβ. Note that it
is enough to show that α = β. Assume towards a contradiction that, say, α < β. Then
there are m ∈ Iβ−α and n ∈ Iα with l = mn. Thus ik = pmn, hence from k,n ∈ Iα
we obtain i = pm. Similarly, we get j = qm. But then v = sis

∗
j = spms

∗
qm, which by

β − α > 0 contradicts that v is without symmetric core. �

Proposition 3.14. Suppose f ∈ A is such that it has zero sums at some v ∈ Cu2 \{♦}.
Define h :=

∑

t∈Sv
f(t)δt ∈ A. Then h ∈ J .

Proof. Let i, j ∈ I be such that v = sis
∗
j . Then Sv = {siks

∗
jk : k ∈ I} and hence

h =
∑

k∈I f(siks
∗
jk)δsiks∗jk . From f0 ∈ J we immediately get

δsims∗
jm

− δsim1s
∗

jm1
− δsim2s

∗

jm2
= δsim#f0#δs∗

jm
∈ J (m ∈ I). (3.32)

In particular, setting m := ∅ in (3.32) yields

δv − δsi1s∗j1 − δsi2s∗j2 ∈ J . (3.33)

Hence from

h = f(v)δv + f(si1s
∗
j1)δsi1s∗j1 + f(si2s

∗
j2)δsi2s∗j2 +

∑

k∈I\(I0∪I1)

f(siks
∗
jk)δsiks∗jk (3.34)

and (3.33) we see that

(

f(v) + f(si1s
∗
j1)
)

δsi1s∗j1 +
(

f(v) + f(si2s
∗
j2)
)

δsi2s∗j2

+
∑

k∈I\(I0∪I1)

f(siks
∗
jk)δsiks∗jk − h ∈ J

⇐⇒
∑

k∈I1

(

f(v) + f(sie
k
1s

∗
j )
)

δsiek1s∗j

+
∑

k∈I\(I0∪I1)

f(siks
∗
jk)δsiks∗jk − h ∈ J . (3.35)

Continuing inductively, we obtain

∑

k∈In

(

f(v) +
n
∑

l=1

f(sie
k
l s

∗
j )

)

δsiekns∗j
+

∑

k∈I\
⋃n

r=0 Ir

f(siks
∗
jk)δsiks∗jk − h ∈ J (n ∈ N).

(3.36)
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That f has zero sums at v is to say f(v) = −
∑

l∈N f(sie
k
l s

∗
j ) for each k ∈ L. Therefore

(3.36) is equivalent to

−
∑

k∈In

(

∑

l>n

f(sie
k
l s

∗
j )

)

δsiekns∗j
+

∑

k∈I\
⋃n

r=0 Ir

f(siks
∗
jk)δsiks∗jk − h ∈ J (n ∈ N).

(3.37)

Now
∑

t∈Cu2\{♦}
|f(t)| <∞ implies

∑

k∈In

∣

∣

∣

∣

∣

∑

l>n

f(sie
k
l s

∗
j )

∣

∣

∣

∣

∣

→ 0 and
∑

k∈I\
⋃n

r=0 Ir

|f(siks
∗
jk)| → 0 (n→ ∞). (3.38)

As J is closed, we conclude from (3.38) and (3.37) that h ∈ J . �

3.4. Representing A/J in B(ℓp). To make further progress on understanding A/J ,
we will consider certain representations of this algebra, thus proving in particular that
it is non-trivial. From now on we let πJ : A → A/J denote the quotient map.

We will represent A/J inside B(ℓp(N)), the unital Banach algebra of bounded linear
operators on ℓp(N), for any p ∈ [1,∞). Let p ∈ [1,∞) be fixed. We first define operators
A1, A2, B1, B2 on ℓp := ℓp(N) by

(A1x)(n) = x2n, (A2x)(n) = x2n−1 (x ∈ ℓp), (3.39)

and

(B1x)(n) =

{

xn/2 if n ∈ 2N,

0 otherwise,
(B2x)(n) =

{

x(n+1)/2 if n ∈ 2N − 1,

0 otherwise.
(x ∈ ℓp).

(3.40)

It is immediate that Ai, Bi,∈ B(ℓp) with ‖Ai‖ = 1 = ‖Bi‖ for i ∈ {1, 2}. Moreover,
the following relations hold:

A1B1 = Iℓp = A2B2, A1B2 = 0 = A2B1, B1A1 +B2A2 = Iℓp , (3.41)

where Iℓp denotes the identity operator on ℓp.

Remark 3.15. Let us note that the set {Bn
1 : n ∈ N} is linearly independent in B(ℓp).

Indeed, suppose (αn)
N
n=1 is a finite family of scalars such that

∑N
n=1 αnB

n
1 = 0. Let (en)

be the standard unit vector basis of ℓp. We see that

0 =

N
∑

n=1

αnB
n
1 e1 =

N
∑

n=1

αne2n , (3.42)

hence αn = 0 must hold whenever 1 6 n 6 N .

Proposition 3.16. For each p ∈ [1,∞) there is a continuous, unital algebra homomor-
phism Θp : A/J → B(ℓp) with

Θp(πJ (δs∗i )) = Ai and Θp(πJ (δsi)) = Bi (i ∈ {1, 2}). (3.43)

In particular A/J is infinite-dimensional and non-commutative.
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Proof. Fix a p ∈ [1,∞). The operators A1, A2, B1, B2 ∈ B(ℓp) are subject to the rela-
tions A1B1 = Iℓp = A2B2 and A2B1 = 0 = A1B2, hence there is a unique semigroup
homomorphism

φp : Cu2 → B(ℓp) (3.44)

which satisfies φp(s
∗
1) = A1, φp(s1) = B1, φp(s

∗
2) = A2 and φp(s2) = B2. Notice that

in particular φp(e) = φp(s
∗
1s1) = φp(s

∗
1)φp(s1) = A1B1 = Iℓp and φp(♦) = φp(s

∗
1s2) =

φp(s
∗
1)φp(s2) = A1B2 = 0. By Lemma 3.2 (2), and because the operatorsA1, A2, B1, B2 ∈

B(ℓp) have norm one, we see that ‖φp(t)‖ 6 1 for every t ∈ Cu2.
It follows that there is a unique continuous algebra homomorphism

θp : A = (ℓ1(Cu2 \ {♦}),#) → B(ℓp) (3.45)

such that ‖θp‖ 6 1 and θp(δt) = φp(t) for all t ∈ Cu2 \ {♦}.
In particular θp is unital as θp(δe) = φp(e) = Iℓp . Moreover, from the relation B1A1 +

B2A2 = Iℓp we see

θp(f0) = θp(δe)− θp(δs1)θp(δs∗1)− θp(δs2)θp(δs∗2) = Iℓp −B1A1 −B2A2 = 0, (3.46)

consequently J ⊆ Ker(θp). Therefore there is a unique continuous algebra homomor-
phism

Θp : A/J → B(ℓp) (3.47)

with ‖Θp‖ 6 1 such that Θp ◦ πJ = θp, where πJ : A → A/J is the quotient map.
Clearly Θp(πJ (δt)) = θp(δt) = φp(t) for each t ∈ Cu2 \ {♦}. Consequently the required
relations hold.

Let us show that A/J is infinite-dimensional. We observe that

{Bn
1 : n ∈ N} = {Θp(πJ (δsn1 )) : n ∈ N} ⊆ Ran(Θp), (3.48)

and hence Ran(Θp) is infinite-dimensional by Remark 3.15. From this it readily follows
that A/J is infinite-dimensional too.

Finally, it is clear that A/J is non-commutative. �

Remark 3.17. It is obvious that the continuous homomorphism θp : A → B(ℓp) in the
proof above is not injective for any p ∈ [1,∞). We remark in passing however, that it is
possible to find (even explicitly construct) a continuous, unital, faithful ∗-homomorphism
A → B(ℓ2); see [8, Remark 3.16].

The following is our main result for showing that A/J is purely infinite.

Theorem 3.18. Let f ∈ A. Then the following are equivalent:

(1) f ∈ J ;
(2) f has zero sums at every v ∈ Cu2 \ {♦} without symmetric core;
(3) There are no g, h ∈ A with g#f#h = δe.

In particular J = MA and hence J is the unique maximal ideal in A.

Proof. We first show the contrapositive of ((3) ⇒ (2)). So assume the opposite of (2),
that is, there exists v = sis

∗
j ∈ Cu2 \ {♦} without symmetric core such that f does not
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have zero sums at v. We claim that f := δs∗
i
#f#δsj ∈ A does not have zero sums at e.

To see this, let us fix an n ∈ L. Using Lemma 3.4 we see that
∑

l∈N0

f(enl ) =
∑

l∈N0

f(snl
s∗nl

) =
∑

l∈N0

(δs∗
i
#f#δsj)(snl

s∗nl
)

=
∑

l∈N0





∑

p,q∈I

f(sps
∗
q)δs∗i sps∗qsj



 (snl
s∗nl

) =
∑

l∈N0

f(sinl
s∗jnl

) =
∑

l∈N0

f(vnl ),

(3.49)

hence the claim follows because f does not have zero sums at v. We can thus ap-
ply Proposition 3.8; there exist g, h ∈ A with δe = g#f#h. Consequently δe =
(g#δs∗

i
)#f#(δsj#h), verifying the negation of (3).

We now show ((2) ⇒ (1)). Assume that f has zero sums at every v ∈ Cu2 \ {♦}
without symmetric core. We set fv :=

∑

t∈Sv
f(t)δt for every v ∈ Cu2 \ {♦} without

symmetric core. As Cu2 \ {♦} is countable, the set of elements without symmetric core
may be enumerated as (vn). In view of Lemma 3.13 the set {Svn : n ∈ N} consists of
mutually disjoint sets, consequently

∥

∥

∥

∥

∥

f −
N
∑

n=1

fvn

∥

∥

∥

∥

∥

=
∑

t∈Cu2\{♦}
t/∈∪N

n=1Svn

|f(t)| → 0 (N → ∞). (3.50)

The convergence of the right-hand side of (3.50) follows from Lemma 3.13; namely, that
{Svn : n ∈ N} covers Cu2 \ {♦}. This shows f ∈ span{fvn : n ∈ N}. Proposition 3.14
yields however fvn ∈ J for each n ∈ N. Thus f ∈ J .

Finally, we show that ((1) ⇒ (3)). Suppose f ∈ J . Assume towards a contradiction
that there are g, h ∈ A with g#f#h = δe, then δe ∈ J . This is impossible as A/J is
non-trivial (in fact infinite-dimensional) by Proposition 3.16.

The equivalence ((1) ⇔ (3)) shows J = MA, hence the last part of the theorem
follows from Proposition 2.11. �

Corollary 3.19. Let a ∈ A/J be non-zero. Then there exist b, c ∈ A/J such that
bac = 1A/J .

Proof. Let f ∈ A be such that a = πJ (f). That a is non-zero is equivalent to f /∈ J .
Hence by Theorem 3.18 there are g, h ∈ A such that g#f#h = δe. Setting b := πJ (g)
and c := πJ (h) finishes the proof. �

Theorem 3.20. A/J is an infinite-dimensional, purely infinite Banach ∗-algebra.

Proof. This is immediate from Corollary 3.19 and Proposition 3.16. �

3.4.1. A description of the annihilator J ⊥. Let us start by pushing the characterisation
of J given by (3.30) a bit further:

Lemma 3.21. The following holds:

J = span{δsi#f0#δs∗j : i, j ∈ I}. (3.51)

Proof. Let us fix k ∈ I \ I0. In view of Lemma 3.2 (1) we have either
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• s∗ks1 = ♦ and s∗ks2 = s∗p, where p ∈ I is such that k = 2p; or
• s∗ks2 = ♦ and s∗ks1 = s∗q, where q ∈ I is such that k = 1q.

We may assume without loss of generality that the first item holds. Consequently

δs∗
k
#f0 = δs∗

k
− δs∗

k
#δs1s∗1 − δs∗

k
#δs2s∗2 = δs∗

k
− 0− δs∗ps∗2 = 0. (3.52)

With an entirely analogous argument we can show f0#δsl = 0 for any l ∈ I \ I0.
Hence from (3.30) and the above we conclude

J = span{δsis∗k#f0#δsls
∗

j
: i, j,k, l ∈ I} = span{δsi#f0#δs∗j : i, j ∈ I}, (3.53)

as required. �

Let us define the maps

τk : Cu2 \ {♦} → Cu2 \ {♦}; sis
∗
j 7→ siks

∗
jk (k ∈ {1, 2}). (3.54)

Lemma 3.2 (2) ensures that τk is in fact well-defined. By the very same result we actually
find that τk is injective.

For both k ∈ {1, 2}, we can find “induced” bounded linear operators

Tk : A → A with Tk(δt) = δτk(t) (t ∈ Cu2 \ {♦}). (3.55)

From injectivity of τk it easily follows that Tk is an isometry. Let T := T1 + T2. Then T
is a bounded linear operator on A.

In the following, A∗ denotes the (continuous) dual of A, which we identify with
ℓ∞(Cu2 \ {♦}) as a Banach space. Let T ∗ : A∗ → A∗ denote the adjoint of T . We
observe that

(T ∗µ)(sis
∗
j ) = 〈δsis∗j , T

∗µ〉 = 〈Tδsis∗j , µ〉 = 〈T1δsis∗j , µ〉+ 〈T2δsis∗j , µ〉

= 〈δτ1(sis∗j ), µ〉+ 〈δτ2(sis∗j ), µ〉 = 〈δsi1s∗j1 , µ〉+ 〈δsi2s∗j2 , µ〉

= µ(si1s
∗
j1) + µ(si2s

∗
j2) (i, j ∈ I). (3.56)

We recall that the annihilator of J is J ⊥ := {µ ∈ A∗ : 〈f, µ〉 = 0 for all f ∈ J }. In
what follows, IA denotes the identity operator on A.

Lemma 3.22. The following hold:

(1) J = Ran(IA − T ), and
(2) J⊥ = {µ ∈ A∗ : T ∗µ = µ}.

Proof. That J = Ran(IA − T ) is immediate from Lemma 3.21 and (3.55).
We now prove (2). Let us fix µ ∈ A∗. Suppose first T ∗µ = µ. Then 〈f, µ〉 = 〈f, T ∗µ〉 =

〈Tf, µ〉 or equivalently 〈f − Tf, µ〉 = 0 for every f ∈ A. Hence by continuity, 〈g, µ〉 = 0
for every g ∈ Ran(IA − T ). By (1) this is equivalent to µ ∈ J ⊥.

In the other direction suppose µ ∈ J⊥. By (1) we clearly have f−Tf ∈ Ran(IA−T ) =
J , and hence 〈f −Tf, µ〉 = 0 or equivalently 〈f, µ〉 = 〈Tf, µ〉 = 〈f, T ∗µ〉 for each f ∈ A.
Thus T ∗µ = µ. �
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3.4.2. A/J does not have purely infinite ultrapowers.

Proposition 3.23. Let F ⊆ I be finite with ∅ /∈ F , and set f :=
∑

i∈F δs∗i . Then

‖πJ (f)‖ = |F |.

Proof. Clearly ‖f‖ =
∑

i∈F ‖δs∗
i
‖ = |F | and hence ‖πJ (f)‖ 6 |F |. Thus it suffices

to show ‖πJ (f)‖ > |F |. This in turn follows if we can find ξ ∈ (A/J )∗ satisfying
‖ξ‖ = 1 and |〈πJ (f), ξ〉| > |F |. Recall, by Hahn–Banach, that π∗J : (A/J )∗ → A∗ is a

linear isometry with range equal to J⊥. Hence it is sufficient to find µ ∈ J ⊥ satisfying
‖µ‖ = 1 and |〈f, µ〉| > |F |.

We shall now define such a µ. To this end, let us consider the following property.
Given α ∈ N0 we say that t ∈ Cu2 \ {♦} has property (α −z) if

t = sis
∗
kj for some i, j ∈ Iα, and k ∈ F. (α−z)

Now define µ : Cu2 \ {♦} → C by setting

µ(t) :=

{

2−α if t has property (α−z) for some α ∈ N0

0 otherwise
(t ∈ Cu2 \ {♦}). (3.57)

We need to check that µ is well-defined. Assume α, β ∈ N0, i, j ∈ Iα, p,q ∈ Iβ and
k, l ∈ F are such that sis

∗
kj = sps

∗
lq. Then it follows from Lemma 3.2 (2) that i = p and

hence α = β.
It is clear that µ is bounded with ‖µ‖ = 1, hence µ ∈ A∗. We want to show that in

fact µ ∈ J ⊥, which in view of Lemma 3.22 (2) is equivalent to the following claim.

Claim 3.24. µ = T ∗µ.

Proof of Claim. Assume first t ∈ Cu2 \{♦} has property (α−z) for some α ∈ N0. Then
t = sis

∗
kj for some i, j ∈ Iα and k ∈ F . Notice that si1s

∗
kj1 and si2s

∗
kj2 have property

((α + 1)−z), hence by (3.56)

µ(t) = 2−α = 2−α−1 + 2−α−1 = µ(si1s
∗
kj1) + µ(si2s

∗
kj2)

= (T ∗µ)(sis
∗
kj) = (T ∗µ)(t). (3.58)

Assume now t ∈ Cu2\{♦} does not have property (α−z) for any α ∈ N0. By definition,
µ(t) = 0. By Lemma 3.2 (2) we can find unique α, β ∈ N0 and i ∈ Iα, j ∈ Iβ such that
t = sis

∗
j .

We observe that si1s
∗
j1 does not have property (γ − z) for any γ ∈ N0. For assume

towards a contradiction that there exist γ ∈ N0, p,q ∈ Iγ and l ∈ F such that si1s
∗
j1 =

sps
∗
lq. Then i1 = p and j1 = lq. In particular α+ 1 = γ and lq ∈ Iβ+1.

• Suppose α > β. By the above l ∈ Iβ+1−γ = Iβ−α. Consequently l ∈ I0 must
hold, which is equivalent to saying l = ∅. This contradicts ∅ /∈ F .

• Suppose α < β. Then j = wu for some u ∈ Iα and w ∈ Iβ−α and therefore
t = sis

∗
wu. As t does not have property (α−z) it follows that w /∈ F . However

u1 ∈ Iα+1 and q ∈ Iα+1, thus from wu1 = j1 = lq we conclude w = l ∈ F , a
contradiction.

An analogous argument shows that si2s
∗
j2 does not have property (γ −z) either for any

γ ∈ N0. From (3.56) we obtain (T ∗µ)(t) = (T ∗µ)(sis
∗
j ) = µ(si1s

∗
j1) + µ(si2s

∗
j2) = 0, as

required. �
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Lastly, from the definition of µ we see

|〈f, µ〉| =
∣

∣

∣

∑

i∈F

〈δs∗
i
, µ〉
∣

∣

∣
=
∣

∣

∣

∑

i∈F

µ(s∗i )
∣

∣

∣
=
∑

i∈F

2−0 = |F |. (3.59)

Hence the proposition is proved. �

Proposition 3.25. Fix p ∈ [1,∞). Let Θ: A/J → B(ℓp) be a continuous algebra
homomorphism such that Θ(πJ (δs∗i )) = Ai for all i ∈ {1, 2}. Then Θ is injective but it
is not bounded below.

Proof. Let us consider the operator S := (A1 + A2)/2 ∈ B(ℓp). We claim that ‖S‖ =

2−1/p. To see this, we first observe that (Sx)(k) = (x2k + x2k−1)/2 for all x ∈ ℓp and
k ∈ N. Thus for each x ∈ ℓp,

‖Sx‖p 6

∞
∑

k=1

( |x2k−1|+ |x2k|

2

)p
6

∞
∑

k=1

( |x2k−1|
p + |x2k|

p

2

)

=
1

2

∞
∑

n=1

|xn|
p =

1

2
‖x‖p.

(3.60)

The second inequality in (3.60) follows from convexity of the function x 7→ xp; [0,∞) →
[0,∞). (Specifically, we use that (a + b)p/2p 6 (ap + bp)/2 whenever a, b > 0.) Thus
‖S‖ 6 2−1/p. The upper bound is sharp, as ‖Sx‖ = 2−1/p‖x‖ holds by choosing for
example x := e1 + e2.

We set h := (δs∗1 + δs∗2)/2. For any N ∈ N we see that hN = 2−N
∑

i∈IN
δs∗

i
, where

clearly |IN | = 2N and ∅ /∈ IN . Therefore by Proposition 3.23 we obtain
∥

∥πJ
(

hN
)∥

∥ = 2−N
∥

∥

∥πJ

(

∑

i∈IN

δs∗
i

)∥

∥

∥ = 2−N |IN | = 1 (N ∈ N). (3.61)

From Θ(πJ (h)) = S and that Θ and πJ are homomorphisms we obtain
∥

∥Θ
(

πJ
(

hN
))∥

∥ 6 ‖Θ(πJ (h))‖N = ‖S‖N = 2−N/p (N ∈ N). (3.62)

It follows from (3.61) and (3.62) that Θ cannot be bounded below.
Lastly, A/J is purely infinite by Theorem 3.20, hence in particular it is simple by

Lemma 1.2 (1). As Θ is a non-zero continuous algebra homomorphism, Ker(Θ) = {0}
must hold. �

Remark 3.26. We stated this result for an arbitrary homomorphism Θ with Θ(πJ (δs∗i )) =
Ai for i ∈ {1, 2}, as this is all the argument needed. In fact, such a Θ is already equal
to Θp, as defined above. Indeed, let Ci = Θ(πJ (δsi)) for i ∈ {1, 2}. Then we have
that A1C1 = Iℓp = A2C2 and A1C2 = 0 = A2C1 and C1A1 + C2A2 = Iℓp . Thus
B1 = B1A1C1 = (Iℓp − B2A2)C1 = C1 − B2A2C1 = C1 and symmetrically B2 = C2.
From this, (3.12) and Proposition 3.16 the claim readily follows.

Theorem 3.27. The Banach ∗-algebra (A/J )U is not simple hence not purely infinite
for any countably-incomplete ultrafilter U .

Proof. Taking for example p = 1, it follows from Proposition 3.16 that there is a con-
tinuous, unital algebra homomorphism Θ: A/J → B(ℓ1) with Θ(πJ (δs∗i )) = Ai for each
i ∈ {1, 2}. Thus Θ is not bounded below by Proposition 3.25. Hence (A/J )U cannot
be simple for any countably-incomplete ultrafilter U by Proposition 2.8. In particular,
(A/J )U is not purely infinite by Lemma 1.2 (1). �
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Remark 3.28. Even though (A/J )U is not purely infinite for any countably-incomplete
ultrafilter U , it is always properly infinite. Indeed, A/J is purely infinite by Theo-
rem 3.20 hence it is properly infinite by Lemma 1.2 (2). Now it follows from [10, Corol-
lary 4.19] that an ultrapower of a properly infinite Banach algebra is properly infinite,
hence (A/J )U is properly infinite for any ultrafilter U .

Remark 3.29. In [22] Phillips considers certain representations of the Leavitt algebra L2

(see Remark 3.10) on Lp spaces. Indeed, [22, Example 3.1] constructs a representation of
L2 on ℓ

p which is essentially the same as the restriction of our Θp to L2. Phillips explores
generalisations of these representations, which are called spatial, see [22, Definition 7.4,
Lemma 7.5]. It is shown in [22, Theorem 8.7] that all spatial representations give rise
to isometrically isomorphic closures. This gives rise to the p-analogues of the Cuntz
algebras, [22, Definition 8.8]; see also [4] for more recent study of these algebras. Thus
the closure of the image of Θp, inside B(ℓp), is isometric to Op

2, in the language of [22].

Our result of course shows that Θp|
Op

2 : A/J → Op
2 is not an isomorphism, because it is

not bounded below. In fact, as we shall see in Section 4, the Banach algebras A/J and
Op

2 are not isomorphic for any p ∈ [1,∞).
Phillips shows in [23] that, in particular, Op

2 is purely infinite (with the same definition
as we use). The proof, however, is different to our proof that A/J is purely infinite, and
much more closely parallels the C∗-algebraic proof that O2 is purely infinite. A close
examination of the proof shows that it does not work for A/J , as various necessary
norm estimates are different (in the sense of not even being equivalent up to a constant)
for A/J .

It is not obvious to us that the proof in [23] provides an estimate for how C
Op

2
pi behaves,

and hence if Op
2 has purely infinite ultrapowers. Furthermore, given a lack of nice

“permanence” properties for purely infinite Banach algebras, it seems that knowing Op
2

is purely infinite is no direct help in showing that A/J is purely infinite, or vice versa.
We remark that similar questions around “permanence properties” are raised at the end
of [3].

Remark 3.30. As a final remark, while we have chosen to work with Cu2 in this paper
(or, equivalently, with an ℓ1-completion of the Leavitt algebra L2, see Remark 3.10) one
could also follow Phillips, and consider the general Cud and Ld, for d > 2. We have
chosen not to do this for notational simplicity, but let us quickly indicate what changes
would be needed.

Cud has generators (si)
d
i=1, (s

∗
i )

d
i=1 with s∗i si = e and s∗i sj = ♦ for i 6= j. The com-

binatorics of Cud are essentially the same, just with I now being all finite sequences in
{1, 2, · · · , d}. We can then form Ad := ℓ1(Cud \{♦},#) and consider the ideal Jd gener-

ated by the element δe −
∑d

i=1 δsis∗i . All of the results continue to hold, with essentially
identical proofs, excepting that various statements in the proof of Proposition 3.14 now
need to sum over 1, 2, · · · , d instead of just 1, 2.

To represent Ad/Jd on ℓp, we simply replace “2n” by “dn”, for example, defining

(Akx)(n) = xdn+1−k (x ∈ ℓp, k ∈ {1, 2, . . . , d}) . (3.63)

The obvious modifications can be made to Proposition 3.16. Similarly, d cases, instead
of just two, need to be considered in the proof of Lemma 3.21, and in the definitions of
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τk after this (now k ∈ {1, 2, · · · , d}), and 2 replaced by d in (3.56), (3.57) and (3.58).
Finally, we perform similar alterations to Proposition 3.25.

4. Bounded traces on A/J and the lack thereof on Op
2

The main aim of this section is to prove that there exist non-zero bounded traces on
A/J (Theorem 4.3), while there are no non-zero bounded traces on Op

2 (Theorem 4.10).
These two results immediately imply the following in particular:

Theorem 4.1. The Banach algebras A/J and Op
2 are not isomorphic for any p ∈ [1,∞).

4.1. Some background on traces. Let us first recall some basic properties of traces.
A trace on a Banach algebra B is a linear functional τ on B with 〈ab, τ〉 = 〈ba, τ〉 for
each a, b ∈ B. We say that a trace τ on B is bounded if τ ∈ B∗. The trace space of B is
the set of all bounded traces on B. A trace τ on a unital Banach algebra B is normalised
if 〈1B, τ〉 = 1.

Let B be a unital Banach algebra and let I be a closed, two-sided ideal in B. If τ
is a bounded trace on B with I ⊆ Ker(τ), then there is a unique bounded linear map
τ ′ : B/I → C with τ ′ ◦ πI = τ , and τ ′ is readily seen to be a trace, non-zero if and
only if τ is non-zero. We say that τ drops to a trace on B/I. Any bounded trace τ ′ on
B/I arises from such a τ . Hence the trace space of B/I is in bijection with the set of
bounded traces τ on B for which I ⊆ Ker(τ) holds.

4.2. There are non-zero bounded traces on A/J . Recall that ℓ1(Cu2)
∗ is isometri-

cally isomorphic to ℓ∞(Cu2) and that A := (ℓ1(Cu2\{♦}),#) is isometrically isomorphic
to ℓ1(Cu2)/Cδ♦. Hence by the previous section we may identify the trace space of A
with the set

{

τ |Cu2\{♦} : τ ∈ ℓ∞(Cu2), τ(♦) = 0, τ(uv) = τ(vu) (u, v ∈ Cu2)
}

. (4.1)

Recall that (A/J )∗ and J⊥ are isometrically isomorphic, and that J ⊥ embeds iso-
metrically into ℓ∞(Cu2 \ {♦}). Henceforth we identify traces on A/J with a subset of
ℓ∞(Cu2 \ {♦}).

Lemma 4.2. Let τ be a bounded trace on A. Then J ⊆ Ker(τ) if and only if τ(e) = 0.
Consequently, τ drops to a bounded trace on A/J if and only if τ(e) = 0.

Proof. Let us first note that by the definition of f0 it follows that

〈f0, τ〉 = 〈δe, τ〉 − 〈δs1s∗1 , τ〉 − 〈δs2s∗2 , τ〉 = τ(e) − τ(s1s
∗
1)− τ(s2s

∗
2)

= τ(e) − τ(s∗1s1)− τ(s∗2s2) = τ(e)− 2τ(e) = −τ(e). (4.2)

Suppose τ(e) = 0 holds. We show that J ⊆ Ker(τ). By Lemma 3.21 it is enough to show
that 〈δsi#f0#δs∗j , τ〉 = 0 for i, j ∈ I. We consider a number of possibilities. Suppose

there is a k ∈ I such that j = ik, then by Lemma 3.2 we have s∗j si = s∗k. Thus

〈δsi#f0#δs∗j , τ〉 = 〈δs∗
j
#δsi#f0, τ〉 = 〈δs∗

k
#f0, τ〉. (4.3)

If k 6= ∅, then from (3.52) we see that δs∗
k
#f0 = 0, and so 〈δs∗

k
#f0, τ〉 = 0. If k = ∅ then

s∗k = e and thus δs∗
k
#f0 = f0. Hence 〈δs∗

k
#f0, τ〉 = 〈f0, τ〉 = −τ(e) = 0 by (4.2) and the

assumption τ(e) = 0.
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Suppose there is a k ∈ I such that i = jk, then by Lemma 3.2 we have s∗j si = sk.

Thus 〈δsi#f0#δs∗j , τ〉 = 〈f0#δs∗
j
#δsi , τ〉 = 〈f0#δsk , τ〉. An analogous reasoning to the

above shows that 〈f0#δsk , τ〉 = 0.
Finally, if there is no k ∈ I such that i = jk or j = ik, then s∗j si = ♦ by Lemma 3.2

and hence δs∗
j
#δsi = 0. Thus 〈δsi#f0#δs∗j , τ〉 = 〈δs∗

j
#δsi#f0, τ〉 = 0.

Suppose J ⊆ Ker(τ) holds. Then 0 = 〈f0, τ〉 = −τ(e) by (4.2), hence τ(e) = 0 as
claimed. �

There is a complete characterisation of traces on A given in [8, Corollary 3.13], which
could presumably be extended to a complete characterisation of traces on A/J . We
restrict our study here to the bare minimum needed for our purposes.

Theorem 4.3. Consider the map τ : Cu2 → C defined as

τ(w) =

{

1 if w = si1s
∗
i for some i ∈ I,

0 otherwise.
(4.4)

The restriction of τ onto Cu2 \ {♦} gives a non-zero bounded trace on A with τ(e) = 0.
Consequently, τ drops to a non-zero bounded trace on A/J .

Proof. That τ is non-zero follows from e.g. τ(s1) = 1. Also, τ(e) = 0 is immediate.
Rather than using the characterisation given by [8, Corollary 3.13], which itself requires
checking many conditions, we shall show directly that our example τ is indeed a trace.

Take arbitrary v, u ∈ Cu2 \ {♦} and write v = sis
∗
j and u = sks

∗
l for some i, j,k, l ∈ I.

From Lemma 3.2 we see that

vu = sis
∗
j sks

∗
l =











sis
∗
lp if j = kp for some p ∈ I, (a)

sips
∗
l if k = jp for some p ∈ I, (b)

♦ otherwise (c)

(4.5)

and

uv = sks
∗
l sis

∗
j =











sks
∗
jq if l = iq for some q ∈ I, (I)

skqs
∗
j if i = lq for some q ∈ I, (II)

♦ otherwise. (III)

(4.6)

Suppose vu = sn1s
∗
n for some n ∈ I. Then τ(vu) = 1. Clearly (c) cannot hold.

• If (a) holds then sis
∗
lp = sn1s

∗
n and hence lp = n and i = n1 = lp1. This yields

that we are in case (II) with q = p1. Hence uv = skqs
∗
j = skp1s

∗
kp and thus

τ(uv) = 1.
• If (b) holds then sips

∗
l = sn1s

∗
n and hence l = n and ip = n1 = l1. Note that

either:
– p = ∅ so i = l1. This yields that we are in case (II) with q = 1. Hence
uv = skqs

∗
j = sk1s

∗
j = sjp1s

∗
j = sj1s

∗
j and thus τ(uv) = 1; or

– p = r1 for some r ∈ I then ir1 = l1 and thus ir = l. Note that this yields
that we are in case (I) with q = r. Hence uv = sks

∗
jq = sjps

∗
jq = sjr1s

∗
jr and

thus τ(uv) = 1.
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Alternatively, vu 6= sm1s
∗
m for anym ∈ I. Then τ(vu) = 0. If τ(uv) = 1 then uv = sn1s

∗
n

for some n ∈ I, so by the above argument with u, v swapped, also vu is of this form, a
contradiction. Hence τ(uv) = 0.

In either case, τ(uv) = τ(vu) follows, and so τ is a trace. The “consequently” part of
the theorem is a corollary of the first part and Lemma 4.2. �

4.3. There are no non-zero bounded traces on Op
2. For the rest of the section we

fix some p ∈ [1,∞). Recall the definitions of the operators A1, A2 and B1, B2 on ℓp. If
(en) denotes the standard unit vector basis on ℓp then we easily conclude that

Aien =

{

en+i−1
2

if n+ i− 1 is even,

0 otherwise
(n ∈ N, i ∈ {1, 2}). (4.7)

Similarly

Bien = e2n−i+1 (n ∈ N, i ∈ {1, 2}). (4.8)

Given i ∈ I we define

Ai :=

{

Ai1Ai2 · · ·Aiα if i = (i1, i2, . . . iα) ∈ I \ {∅},

Iℓp if i = ∅.
(4.9)

Analogously, define Bi.

Let us introduce a piece of notation. For a fixed i ∈ I we define

i∗ :=

{

(iα, iα−1, . . . i1) if i = (i1, i2, . . . iα) ∈ I \ {∅},

∅ if i = ∅.
(4.10)

Clearly Ai∗Bi = Iℓp for any i ∈ I.

Given i ∈ I, we define the map ρi : N → R by

ρi(n) :=







2−α

(

n+
α
∑

l=1

2l−1il − 2α + 1

)

if i = (i1, i2, . . . iα) ∈ I \ {∅},

n if i = ∅
(n ∈ N).

(4.11)

An elementary induction argument on α and (4.7) shows that

Ai∗en =







eρi(n) if n+
α
∑

l=1

2l−1il − 2α + 1 ∈ 2αN,

0 otherwise
(n ∈ N). (4.12)

Note that the indices of the operators Ai and Bi are elements of {1, 2} instead of {0, 1};
thus —for technical purposes only— we need the following lemma:

Lemma 4.4. Let α ∈ N. The map

θα : Iα → {0, 1, · · · , 2α − 1}; i = (i1, · · · , iα) 7→ 1− 2α +
α
∑

l=1

2l−1il

is a well-defined bijection.
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Proof. Let i = (i1, · · · , iα) ∈ Iα. Set jl := il−1 for each l ∈ {1, . . . , α}, so that jl ∈ {0, 1}.
Then

θα(i) = 1− 2α +
α
∑

l=1

2l−1(jl + 1) = 1− 2α + (2α − 1) +
α
∑

l=1

2l−1jl =
α
∑

l=1

2l−1jl.

This sum is indeed a member of {0, 1, · · · , 2α−1}. The result now follows by considering
the binary decomposition of an arbitrary element of {0, 1, . . . , 2α − 1}. �

Lemma 4.5. Let n ∈ N and let α ∈ N0 be fixed. There exists a unique i = (i1, i2, . . . , iα) ∈

Iα such that n+
α
∑

l=1

2l−1il − 2α + 1 is divisible by 2α.

Proof. Working modulo 2α, we wish to show that there is a unique i with n+ θα(i) ≡ 0
mod 2α, or equivalently, θα(i) ≡ −n mod 2α. This follows directly from Lemma 4.4. �

Proposition 4.6. Let α ∈ N0. We have that
∑

k∈Iα

‖Ak∗x‖p = ‖x‖p (x ∈ ℓp). (4.13)

Proof. If α = 0 then the claim is trivial, so assume α > 1. By (4.12), and as clearly
ρk : N → R is injective for each k ∈ Iα, we see that

∑

k∈Iα

‖Ak∗x‖p =
∑

k∈Iα

∥

∥

∥

∑

{n:ρk(n)∈N}

x(n)eρk(n)

∥

∥

∥

p
=
∑

k∈Iα

∑

{n:ρk(n)∈N}

|x(n)|p. (4.14)

By Lemma 4.5 we see that for each n ∈ N there is a unique k ∈ Iα with ρk(n) ∈ N.
Hence

‖x‖p =

∞
∑

n=1

|x(n)|p =
∑

k∈Iα

∑

{n:ρk(n)∈N}

|x(n)|p. (4.15)

The result follows. �

We require one more piece of notation. Given i ∈ I we define the map σi : N → N by

σi(n) :=







2αn−
α
∑

l=1

2l−1il + 2α − 1 if i = (i1, i2, . . . iα) ∈ I \ {∅},

n if i = ∅
(n ∈ N). (4.16)

An elementary induction argument on α and (4.8) show that

Bien = eσi(n) (n ∈ N). (4.17)

Proposition 4.7. Let α ∈ N0. Then for any family of vectors (xk)k∈Iα in ℓp,
∥

∥

∥

∑

k∈Iα

Bkxk

∥

∥

∥

p
=
∑

k∈Iα

‖xk‖
p. (4.18)

In particular, Bj is an isometry for each j ∈ Iα.
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Proof. The α = 0 case is trivial, so let α > 1. We claim that the ranges of σj and σk
are disjoint for distinct j,k ∈ Iα. Indeed, suppose σj(n) = σk(m) for some n,m ∈ N and
j,k ∈ Iα. In the notation of Lemma 4.4, this is equivalent to 2αn−θα(j) = 2αm−θα(k);
thus |n−m| = 2−α|θα(j)− θα(k)| 6 (2α − 1)2−α < 1. Therefore n = m and hence j = k

as θα is bijective. From the claim and (4.17) we obtain

∥

∥

∥

∑

k∈Iα

Bkxk

∥

∥

∥

p
=
∥

∥

∥

∑

k∈Iα

∞
∑

n=1

xk(n)eσk(n)

∥

∥

∥

p
=
∑

k∈Iα

∞
∑

n=1

|xk(n)|
p =

∑

k∈Iα

‖xk‖
p, (4.19)

as required. To see the “in particular part”, let j ∈ Iα and x ∈ ℓp. Set xj := x and
xk := 0 for each k ∈ Iα \ {j}, then ‖Bjx‖ = ‖x‖ follows from the first part. �

Lemma 4.8. Let α ∈ N0 and let j ∈ I. The operator
∑

k∈Iα
BkjAk∗ is an isometry on

ℓp.

Proof. We combine Propositions 4.6 and 4.7 to see that
∥

∥

∥

∑

k∈Iα

BkjAk∗x
∥

∥

∥

p
=
∥

∥

∥

∑

k∈Iα

Bk(BjAk∗x)
∥

∥

∥

p
=
∑

k∈Iα

‖BjAk∗x‖p =
∑

k∈Iα

‖Ak∗x‖p = ‖x‖p

(4.20)

for any x ∈ ℓp. �

Lemma 4.9. Let α ∈ N0 and let j ∈ I. The operator
∑

k∈Iα
BkA(kj)∗ has norm less

than or equal to 1.

Proof. We combine Propositions 4.6 and 4.7 to see that for any x ∈ ℓp,
∥

∥

∥

∑

k∈Iα

BkA(kj)∗x
∥

∥

∥

p
=
∑

k∈Iα

‖A(kj)∗x‖
p =

∑

k∈Iα

‖Aj∗Ak∗x‖p 6
∑

k∈Iα

‖Ak∗x‖p = ‖x‖p,

(4.21)

as ‖Aj∗‖ 6 1. �

Theorem 4.10. There are no non-zero bounded traces on Op
2.

Proof. Assume towards a contradiction that τ ′ is a non-zero bounded trace on Op
2 . As

Θp : A/J → B(ℓp) is a continuous algebra homomorphism with Ran(Θp) = Op
2 by

Proposition 3.16, it follows that τ := τ ′ ◦Θp|
Op

2 is a non-zero bounded trace on A/J . By
an abuse of notation, we identify τ with a member of ℓ∞(Cu2 \ {♦}), see the discussion
before Lemma 4.2.

As τ is non-zero, after possibly rescaling, we obtain that there is a w ∈ Cu2 \ {♦}
such that τ(w) = 1. Note that there is no u ∈ Cu2 \ {♦} such that w = sius

∗
j , where

i, j ∈ {1, 2} are distinct. Indeed, otherwise τ(w) = τ(sius
∗
j) = τ(s∗jsiu) = 0. Also note

that if w = sius
∗
i for some i ∈ {1, 2}, then τ(w) = τ(sius

∗
i ) = τ(s∗i siu) = τ(u). Hence

we may assume without loss of generality that w = sj or w = s∗j for some j ∈ I \ {∅}.
First suppose that w = sj. For every k ∈ I,

〈

BkjAk∗ , τ ′
〉

=
〈

BkBjAk∗ , τ ′
〉

=
〈

Ak∗BkBj, τ
′
〉

=
〈

Bj, τ
′
〉

=
〈

Θ(πJ (δsj)), τ
′
〉

=
〈

πJ (δsj), τ
〉

= τ(sj) = 1. (4.22)
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Using (4.22) and Lemma 4.8 we obtain for every α ∈ N,

2α =
∣

∣

∣

∑

k∈Iα

〈

BkjAk∗ , τ ′
〉

∣

∣

∣ =
∣

∣

∣

〈

∑

k∈Iα

BkjAk∗ , τ ′
〉∣

∣

∣ 6 ‖τ ′‖
∥

∥

∥

∑

k∈Iα

BkjAk∗

∥

∥

∥ = ‖τ ′‖, (4.23)

which is nonsense.
Now suppose that w = s∗j , so that

〈BkA(kj)∗ , τ
′〉 = 〈BkAj∗Ak∗ , τ ′〉 = 〈Aj∗Ak∗Bk, τ

′〉 = 〈Aj∗ , τ
′〉 = τ(s∗j ) = 1, (4.24)

analogously to the calculation in (4.22). Using Lemma 4.9 and an estimate completely
similar to (4.23) this again leads to a contradiction.

Hence there are no non-zero bounded traces on Op
2. �

Remark 4.11. It is much easier to prove however the weaker statement that there are
no normalised traces on Op

2. Indeed, let τ
′ be a trace on Op

2 . As Iℓp = Iℓp + Iℓp − Iℓp =
A1B1 + A2B2 − (B1A1 + B2A2), the equality 〈Iℓp , τ

′〉 = 0 follows; whence τ ′ cannot be
normalised.

We end the paper with a question of interest to Banach algebraists. Motivated by [23],
we ask if A/J is an amenable Banach algebra? Phillips shows that Op

2 is amenable, but
his techniques do not appear applicable to A/J due to differing (again, incomparable)
norm estimates. However, if A/J were amenable, this would immediately give a new
proof that Op

2 is amenable.
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Prague 1, Czech Republic

E-mail addresses:

Matthew Daws: matt.daws@cantab.net, mdaws@uclan.ac.uk
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