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Abstract 

Since the early 1990s, various research domains have been concerned with the concept of 

autonomous driving, leading to the widespread implementation of numerous advanced driver 

assistance features. However, fully automated vehicles have not yet been introduced to the 

market. The process of autonomous driving can be outlined through the following stages: 

environment perception, ego-vehicle localization, trajectory estimation, path planning, and 

vehicle control. Environment perception is partially based on computer vision algorithms 

that can detect and track surrounding objects. The process of objects detection performed by 

autonomous vehicles is considered challenging for several reasons, such as the presence of 

multiple dynamic objects in the same scene, interaction between objects, real-time speed 

requirements, and the presence of diverse weather conditions (e.g., rain, snow, fog, etc.).  

Although many studies have been conducted on objects detection performed by autonomous 

vehicles, it remains a challenging task, and improving the performance of object detection 

in diverse driving scenes is an ongoing field. This thesis aims to develop novel methods for 

the detection and 3D localization of surrounding dynamic objects in driving scenes in 

different rainy weather conditions.  

In this thesis, firstly, owing to the frequent occurrence of rain and its negative effect on the 

performance of objects detection operation, a real-time lightweight deraining network is 

proposed; it works on single real-time images separately. Rain streaks and the accumulation 

of rain streaks introduce distinct visual degradation effects to captured images. The proposed 

deraining network effectively removes both rain streaks and accumulated rain streaks from 

images. It makes use of the progressive operation of two main stages: rain streaks removal 

and rain streaks accumulation removal. The rain streaks removal stage is based on a Residual 

Network (ResNet) to maintain real-time performance and avoid adding to the computational 

complexity.  

Furthermore, the application of recursive computations involves the sharing of network 

parameters. Meanwhile, distant rain streaks accumulate and induce a distortion similar to 

fogging. Thus, it could be mitigated in a way similar to defogging. This stage relies on a 

transmission-guided lightweight network (TGL-Net). The proposed deraining network was 

evaluated on five datasets having synthetic rain of different properties and two other datasets 

with real rainy scenes.  
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Secondly, an emphasis has been put on proposing a novel sensory system that achieves real-

time multiple dynamic objects detection in driving scenes. The proposed sensory system 

utilizes a monocular camera and a 2D Light Detection and Ranging (LiDAR) sensor in a 

complementary fusion approach. YOLOv3- a baseline real-time object detection algorithm- 

has been used to detect and classify objects in images captured by the camera; detected 

objects are surrounded by bounding boxes to localize them within the frames. Since objects 

present in a driving scene are dynamic and usually occluding each other, an algorithm has 

been developed to differentiate objects whose bounding boxes are overlapping. Moreover, 

the locations of bounding boxes within frames (in pixels) are converted into real-world 

angular coordinates. A 2D LiDAR was used to obtain depth measurements while maintaining 

low computational requirements in order to save resources for other autonomous driving-

related operations. A novel technique has been developed and tested for processing and 

mapping 2D LiDAR measurements with corresponding bounding boxes. The detection 

accuracy of the proposed system was manually evaluated in different real-time scenarios. 

Finally, the effectiveness of the proposed deraining network was validated in terms of its 

impact on objects detection in the context of de-rained images.  

Results of the proposed deraining network were compared to existing baseline deraining 

networks and have shown that the running time of the proposed network is 2.23× faster than 

the average running time of baseline deraining networks while achieving 1.2× improvement 

when tested on different synthetic datasets. Moreover, tests on the LiDAR measurements 

showed an average error of  ±0.04m in real driving scenes. Also, both deraining and objects 

detection are jointly tested, and it was demonstrated that performing deraining ahead of 

objects detection caused 1.45× enhancement in the object detection precision. 
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Chapter 1 Introduction 

1.1 Overview and Problem Statement  

Autonomous driving, also known as self-driving or driverless vehicles, is considered a 

current trend in research and development. Autonomous driving refers to the technology and 

systems that allow vehicles to operate and navigate without human intervention. Major 

research centres and automotive companies are contributing to the boosting of the 

performance of autonomous driving on a regular basis. The Society of Automotive Engineers 

(SAE) has ranked autonomous driving in 6 levels, ranging from Level 0 (no automation) to 

Level 5 (automation under any circumstances)  [1]. Level 5 is still under research and not 

available publicly. 

Broggi et al.  [2] have examined different tests performed by AVs in different scenarios with 

roads of different traffic intensities. The test Autonomous Vehicle (AV) was called PROUD 

(Public Road Urban Driverless), which was considered a breakthrough in autonomous car 

technology. Moreover, Jo et al.  [3] targeted the development of AVs that are generalized for 

any driving environment. They used FlexRay as a software platform and communication 

protocol instead of traditional Controller Area Network (CAN) units. FlexRay is faster and 

more reliable compared to CAN technology. Some of the technologies that are applied in 

AVs are Lane Keep Assist (LKA), Park Assist (PA), Automatic Emergency Braking (AEB), 

Driver Monitoring (DM), Traffic Jam Assist (TJA), Dead reckoning (DR). Further 

technologies are under continuous development in order to move towards higher automation 

levels, such as: 

• Sensors’ development and optimization 

• Stretching Internet of Things (IoT) towards Internet of Vehicles (IoV), where the 

vehicles themselves gather traffic information, weather conditions, parking spaces, 

etc.  

• Enhancing and integrating different Artificial Intelligence (AI) techniques with 

different complex driving operations, such as objects detection, path planning and 

optimization, decision-making  

• Advancing AV-based cyber security to protect autonomous driving systems from 

being hacked by malicious parties. 
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Figure 1.1 illustrates the main modules constituting the autonomous driving system  [4]. 

Different sensors are mounted on AVs to gather data about the surrounding environment. 

They create a detailed picture of the environment, allowing the vehicle to identify different 

objects, such as pedestrians, road markings, and other vehicles. Different categories of 

sensors, their advantages, limitations, and applications will be discussed in Chapter 2. 

Afterwards, data gathered by the sensors is processed in the perception block, which 

processes data into useful, meaningful information. Advanced AI algorithms process the 

gathered sensory data to understand the environment, make decisions, and plan optimal 

routes.  

Moreover, the planning module uses the perception module’s output to perform short- and 

long-path planning. High-definition maps are used to enhance the vehicle’s understanding 

of its location and surroundings; this helps the vehicle navigate accurately and safely. 

Finally, the control module ensures the AV follows the path provided by the planning module 

by controlling different vehicle parts. For the aforementioned hierarchy of operations, the 

process of environment perception and object detection should be accurate and reliable, even 

in variable operational domains; in other words, a step forward towards Level 5 autonomy.  

In order to advance towards Level 5 AVs, they must achieve robust and reliable performance 

in different operational circumstances, most importantly, adverse weather conditions. The 

presence of rain, snow, and fog greatly degrades the quality of data gathered by the sensory 

systems of AVs. These weather conditions degrade scene contrast and visibility, which 

causes deterioration in the ability of the vehicle to detect surrounding objects. Adverse 

weather conditions could be classified into steady (fog, mist, and haze) and dynamic (rain 

and snow) [5]. Dynamic adverse weather conditions are more challenging to mitigate as they 

don’t affect the whole image equally. Moreover, they come in different directions, 

orientations, and intensities. For example, rain consists of countless drops of diverse sizes 

and shapes [6].  
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Figure 1.1: Block diagram of autonomous driving [7] 

 

1.2 Motivation 

Current challenges in AV development are summarized in Figure 1.2.  Also, as shown in 

Figure 1.1, environment perception comes ahead of the subsequent AV operations (i.e., 

planning and control) [7]. For AVs, data are collected by multiple sensors; after processing 

these data, different features of objects in the surrounding environment are extracted. Both 

static and dynamic objects are detected and then tracked. Moreover, vehicle behaviour and 

scene understanding are performed. The main functions of environment perception are based 

on lane and road detection, traffic sign recognition, dynamic objects detection and tracking, 

and scene understanding  [8]. Therefore, objects detection is an essential operation as it 

affects many subsequent ones [8].  

Most available sensory systems deployed on AVs are high-cost sensors that capture a 

considerable amount of data. The high cost of sensors hinders further research on the 

development of enhanced perception systems. Moreover, although the acquisition of huge 

amounts of perceived data enhances the surrounding understanding, it increases the 

computational complexity and running time of the system.  
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Also, driving environments are considered dynamic and surrounded by different road 

elements that are in continuous movement and interact with each other. Dynamic road 

elements include pedestrians, cyclists, and other vehicles. They interact with each other, 

causing occlusion and truncations of their detections captured by the camera. These 

interacting objects burden the integration of multi-sensory data.  

Level 5 AVs are meant to operate under diverse circumstances, such as slippery roads, road 

work, accidents, and diverse weather conditions. Much research has addressed different 

environment perception algorithms performed by AVs; on the other hand, other research has 

aimed to mitigate the effect of rain on visual data. However, some aspects have not been 

addressed, such as (1) addressing the deraining task in single images that lack temporal data, 

(2) real-time constraints that AVs should follow, and (3) different rain degradation effects.  

Additionally, numerous deraining algorithms have led to a decline in the subsequent object 

detection performance [9, 10]. Hence, it becomes crucial to assess deraining techniques in 

conjunction with the performance of object detection.  

 
Figure 1.2: Taxonomy of challenges facing the widespread and the operation of AVs  
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1.3 Thesis Objectives and Contribution 

This study has two main objectives. The first objective is to investigate the feasibility of 

employing a low-cost 2D Light Detection and Ranging sensor (LiDAR) in addition to a 

typical monocular camera to achieve real-time 3D object detection of multiple dynamic road 

elements. The second objective is to boost the object detection operation’s performance to 

enable it to perform under different rainy weathers. 

Therefore, the main contribution of this thesis is an object detection framework that remedies 

previous methods’ shortcomings to produce a bespoke solution for AVs object detection 

tasks. The main challenges that were addressed are (1) maintaining real-time performance, 

(2) computational complexity, (3) the presence of multiple dynamic objects surrounding 

AVs, (4) the high cost of the sensory systems, and (5) rainy weather conditions with different 

degradation effects. 

The main contributions of this thesis can be summarized as follows: 

• Adapting different state-of-the-art deraining and denoising methods to successfully 

perform deraining on both synthetic and real-world rainy datasets (Chapter 3).  Based 

on the available research, no work has been addressed before to mitigate different 

degradation effects in real time. 

• Proposing a lightweight network for real-time rain streaks and rain accumulation 

removal from images captured by AVs (Chapter 3). The proposed network works 

upon single images and adopts a multi-stage operation. Additionally, it has been 

tested on different synthetic and real-world rainy datasets. 

• Evaluating the running time of the developed network and comparing it to other 

significant deraining networks. 

• Developing a 3D object detection framework that employs complementary sensor 

fusion between a 2D LiDAR and a monocular camera (Chapter 4). YOLOv3 object-

detection framework has been applied to captured images to perform robust object 

detection. 

• Both separate and interacting objects are detected and analysed by the video 

processing module. Afterwards, LiDAR measurements were processed to 

complement the detected objects with a depth dimension. Therefore, the output of 

the object detection framework is bounding boxes of detected objects with associated 
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depth measurements. Previous methods used 3D sensors (3D LiDARs or stereo 

cameras), which impose higher cost and computational requirements, or were not 

targeted for detecting multiple overlapping objects.  

• Validation of the proposed model regarding the performance of object detection task 

by applying object detection algorithm (YOLOv3) over the de-rained images that 

are the output of the deraining framework. Moreover, deraining results from other 

deraining networks were also tested for object detection to be compared with the 

proposed model. 

The current research has resulted in three journal papers listed in Appendix A. 

1.4 Thesis Structure   

The overall thesis layout is as follows: 

Chapter 2 describes the specifications of autonomous driving along with its different 

technologies and challenges. Moreover, different sensory systems and environment 

perception approaches are elaborated and surveyed. The focus will be on dynamic object 

detection. In addition, different AI-based object detection techniques will be elaborated. 

Finally, the different degradation effects of rainy weather on captured images will be 

exploited while reviewing baseline deraining networks. 

Chapter 3 presents the effect that diverse rainy conditions impose on captured images from 

driving scenarios. A novel deraining network is further developed to perform single image 

deraining in real time.   

Chapter 4 investigates a low-cost framework that performs real-time multiple dynamic 

objects detection. The prototype includes a monocular camera along with a 2D LiDAR to 

perform the detection of numerous dynamic objects in 3D within real-world driving 

situations. The video-processing module outputs bounding boxes of detected objects, while 

LiDAR measurements complement these bounding boxes with a depth dimension. The 

system has the capability to accurately localize multiple objects even if they are occluding 

each other. 

Chapter 5 presents the experimentation details of the proposed approaches. Datasets used to 

evaluate of the proposed methods will be described, followed by the evaluation protocols for 
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object detection as well as deraining operations performed by AVs, along with ablation 

studies and experimental results. Proposed approaches are compared to current baseline 

ones; multiple experiments have been performed to evaluate the proposed deraining 

network’s performance over both synthetic and real rainy datasets. Additionally, its running 

time has been compared to baseline deraining algorithms. Finally, object detection has been 

performed on de-rained images to further asses the joint deraining and object detection 

operations. 

Chapter 6 concludes and summarizes the thesis. Additionally, the chapter provides 

recommendations for future work. 

Furthermore, a list of appendices is provided, which includes the following: 

• Appendix A: List of Publications 

• Appendix B: Hokuyo UTM-30LX Specifications  

• Appendix C: Vehicles’ Ground Clearance 

• Appendix D: Code Samples for LiDAR Measurements 

• Appendix E: Code Samples for LiDAR and Camera Integration 

• Appendix F: Auxiliary Material 

And, finally, the list of references is presented. 
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Chapter 2 Literature Review 

2.1 Introduction 

The process of object detection undertaken by AVs holds significant importance as it 

precedes various autonomous driving operations such as object tracking, trajectory 

estimation, and collision avoidance. The presence of dynamic road elements (pedestrians, 

cyclists, vehicles) adds complexity due to their constantly changing positions and 

behaviours. This chapter provides an all-encompassing examination of state-of-the-art object 

detection technologies, concentrating on the sensory systems and algorithms employed. 

First, a concise introduction to the operations and challenges inherent in autonomous driving 

is presented. Then, diverse sensory systems utilized on existing AVs are elaborated, 

discussing their advantages, constraints, and applications. Furthermore, the sensory systems 

used in various research endeavours are examined. Moreover, given the notable impact that 

AI has on objects detection tasks, different DNN-based networks are also elaborated, along 

with related research on this topic. Finally, due to the significant impact imposed by rainy 

weather on the object detection operation, different rain degradations are discussed along 

with the existing baseline deraining algorithms. 

2.2 Autonomous Driving 

AVs, commonly referred to as self-driving or driverless vehicles, have the potential to 

revolutionize the transportation pattern in the world. One of the most prominent advantages 

of autonomous driving lies in its ability to alleviate the demands of the driving task itself. 

Autonomous driving extends mobility access to a broader demographic, grants passengers 

additional free time during their journeys (the average driver in England spends 235 hours 

driving every year), reduces emissions, alleviates traffic congestion, and, most significantly, 

enhances road safety  [11]. Since the early 1990s, autonomous driving has attracted various 

research domains, paving the way for several highly advanced driver assistance 

functionalities that have now reached widespread adoption.   

Statistics related to road accidents reveal that a significant 76% of all accidents stem 

exclusively from human error, with a considerable 94% having an element of human error 

in their occurrence, according to the National Highway [11]. Among the primary reasons 
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behind road collisions are distractions, haste, and misinterpretation of other road users’ 

actions  [12]. 

The process of autonomous driving can be outlined in the following stages  [8, 12, 13]: 

• Perceiving the environment by the detection of roads, signs, pedestrians, cyclists, 

other vehicles, obstacles, etc., and understanding their motion 

• Determining the location of the detected objects 

• Localization of the ego-vehicle itself 

• Path planning and trajectory estimation 

• Giving the appropriate controlling commands to the actuators 

2.2.1 SAE Classification 

Given the variations in terminologies used to depict autonomous driving, the Society of 

Automotive Engineers (SAE) has established a classification system that ranks vehicle 

automation and intelligence levels. [14]. It provides a taxonomy of six levels of driving 

automation (level 0 – level 5). Defining an automation level is related to the driving 

automation features that can be engaged in a driving scenario at any instance. The six SAE 

levels are shown in Figure 2.1 and summarized below: 

• Level 0 (No Automation): The human driver is responsible for all driving aspects, 

including control and monitoring. 

• Level 1 (Driver Assistance): The vehicle can assist with either longitudinal or lateral 

control but not both simultaneously; an example is adaptive cruise control. 

• Level 2 (Partial Automation): The vehicle can control both longitudinal and lateral 

control simultaneously; however, the driver must remain engaged and monitor the 

environment. 

• Level 3 (Conditional Automation): The vehicle can perform object and event 

detection and response, while the human override is mandatory whenever the vehicle 

is unable to execute a particular task. 

• Level 4 (High Automation): The vehicle is entirely autonomous in the vast majority 

of situations, but there is still an option to switch to manual driving under challenging 

scenarios. 
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• Level 5 (Full Automation): The vehicle is fully automated under any Operational 

Driving Domains (ODDs), and the vehicle does not feature any typical driving 

controls (e.g., steering wheels, brake pedals, etc.). 

For an easier illustration, the UK’s Centre for Connected and Autonomous Vehicles 

described levels 0-2 as “Hands-on Assisted Driving,” level 3 as “Hands off, Eyes on (the 

road),” and levels 4 and 5 as “Hands off, Eyes off”  [15]. 

 
Figure 2.1: SAE J3016 automotive automation standard [14] 

2.2.2 Competitions Promoting Autonomous Driving 

Numerous competitions have been organized to stimulate advancements in the autonomous 

driving sector. The first was the European PROMETHEUS project, which featured a route 

from Munich to Odense in 1995 [16-18]. Furthermore, a particularly notable competition 

was organized by the Defence Advanced Research Projects Agency (DARPA) [19-21]. A 

brief overview of autonomous vehicle initiatives and competitions can be found in  [13]. The 

most recent ongoing challenge is the AutoDrive challenge, co-sponsored by the SAE and 

General Motors (GM)  [22]. This challenge is geared towards achieving navigation within 

an urban driving environment, following the SAE standards description of level 4 automation 

(J3016)  [14].  

2.2.3 Towards Autonomous Driving in Industry 

Parallel to the academic field, automobile manufacturers have embraced the advancement of 

autonomous vehicles  [23]. As a result, significant technological progress has been witnessed 

in this research arena. [24-27]. Many automotive companies have focused on enhancing the 
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autonomous capabilities of their vehicles. Commencing in 2013, Volvo embarked on the 

development of the “Drive Me” project, successfully creating Level 3 AVs. In 2017, Volvo 

initiated a large-scale trial of autonomous driving involving real-road experiences by 

customers. Similarly, in 2017, Audi introduced a Level 3 AV, becoming the world’s first 

production car crafted specifically for conditional automated driving at Level 3. The highest 

autonomy level AVs are developed by Waymo, which not only develops the highest-level 

autonomous vehicles but also manufactures a suite of self-driving hardware. On the other 

hand, Tesla’s new cars are equipped with hardware capable of facilitating autopilot 

functionalities and gradually introducing self-driving features through software updates, 

positioning them between levels 2 and 3 of autonomy. Notably, it’s important to highlight 

that most autonomous vehicle manufacturers employ the same types of sensors, except for 

Tesla, which abstains from using a LiDAR.  

While level 5 autonomous vehicles are not yet available in the commercial market, all 

manufacturers strive to achieve this objective. Notably, they are using similar sensory 

categories, except for Tesla, which opts not to utilize LiDAR technology as the 

manufacturers see it as a high-cost system that could be replaced by vision-based systems.  

Table 2.1 provides an overview of the concept cars manufacturers are targeting for 

production in the upcoming years. 

Table 2.1: Levels 4 and 5 concept cars 

Level 4 Level 5 
• Symbioz  

• Yandex Taxi 

• Volvo 360c 

• Ford fusion 

• Rolls Royce 103EX 

• Chrysler Pacificas  

• Toyota Edge 

• Mercedes Benz S-class 

• VW Sedric 

• Rinspeed Snap 

• Rinspeed Oasis 

• Rinspeed Microsnap 

• Rinspeed ∑tos 

2.2.4 Challenges Facing the Spread of Autonomous Driving 

Despite the significant progress within the realm of the autonomous driving field, numerous 

concerns impede its widespread adoption [28, 29] : 
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• Legal terms: They range from the need for a special driving license to much more 

obscure topics such as responsibility in the event of an accident. Legal terms must 

consider public policies, traffic codes, and technical standards. 

• Cybersecurity: Autonomous driving is a complex “system-of-systems” that requires 

a comprehensive and shared framework. The UK Department for Transport 

established key cybersecurity principles for Connected and Automated Vehicles. 

Also, the SAE developed a cybersecurity Guidebook for Cyber-Physical Vehicle 

systems [30] 

• Moral and ethical challenges: Driving scenarios are considered diverse and may 

include moral dilemmas as well as basic driving rules. AVs must make rapid 

decisions in these diverse conditions; therefore, moral algorithms must be established 

in order to solve such dilemmas according to acceptable norms. 

• Traffic management strategies: To enable AVs to interact in real road scenarios 

effectively, they must have with a high-precision digital map. Also, recent 

approaches believe that AVs should be cooperative; Vehicle-to-Vehicle 

communication is encouraged in order to effectively share critical information 

between vehicles (autonomous or traditional), making use of the advanced sensors 

mounted on AVs. 

2.3 Sensory Systems 

The initial stage in autonomous driving involves environment perception through suitable 

sensory systems. These sensory systems can be categorized into three primary categories 

[31], as shown in Table 2.2. 
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Table 2.2: Automotive sensing categories 

Sensory system Definition Sensors 

Self-seeing 

Estimating the current state of the ego-

vehicle: its velocity, yaw angle, acceleration, 

and steering angle, using proprioceptive 

sensors and the Controller Area Network 

Proprioceptive sensors: 

• Odometers 

• IMUs 

• Gyroscopes 

Localization Estimating the current location of the vehicle 
External sensors: GNSS 

Dead reckoning: IMUs 

Environment 

Perception 

Perceiving external data such as road 

markings, obstacles, traffic signs, etc. 

Exteroceptive sensors: 

• Camera 
• RADAR 
• LiDAR 
• Ultrasonic sensors 

 

Sensors can also be classified into active and passive [32, 33]. Active sensors transmit 

electromagnetic waves and then measure the return signal reflected to them. Examples of 

such sensors include Ultrasonic, Radio Detection and Ranging (RADAR), and LiDAR. On 

the other hand, passive sensors rely on detecting existing electromagnetic waves in the 

environment without emitting their own signals. Infrared- and light-based cameras are 

examples of passive sensors [34-45], as well as acoustic systems [46-48].  

2.3.1 Exteroceptive Sensors 

As outlined in Table 2.2, exteroceptive sensors play a vital role in sensing and perceiving 

the environment. Table 2.3 concisely summarises the prevalent exteroceptive sensors 

utilized in autonomous driving, including their advantages, limitations, and applications. 

This subsection elaborates their integration into various AV operations, both as standalone 

components and when combined. 

i. Camera 

There are two main camera categories that can be used on outdoor AVs: 

• Monocular cameras: They are the primary camera sensors used for object detection 

in  [44]. Also, in [49], multiple monocular cameras were used in multi-object 

tracking. Various algorithms have been developed to perform object detection and 

localization  [50, 51]; however, the results suffered from relatively low accuracy in 

depth estimation especially at longer ranges. 
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• Stereo-cameras: They have been used in [52] to perform road surface condition 

monitoring. Also as an extension to the work proposed in [51], Chen et al. have 

proposed 3D object proposals using stereo imagery in  [53]. Moreover, in [54, 55], 

authors have achieved 3D object detection in RGB-D images, demonstrating the 

great potential of 3D deep learning to perform 3D detections. Another significant 

boost to the stereo-vision applications was the work proposed in [56, 57], where 

authors transformed the data obtained from a stereo-camera into a 3D point cloud, 

emulating the 3D point cloud typically generated by a 3D LiDAR. This approach 

facilitated the application of various pre-existing LiDAR-based detection algorithms. 

Even though cameras provide feature details of surrounding environments, monocular 

cameras suffer from a lack of direct and accurate depth measurements. On the other hand, 

stereo-cameras can perform depth estimation via the processing of two separate images. 

However, stereo-imagery requires high on-board computational resources for computer 

vision processing; also, camera pairs may become un-calibrated during driving and may need 

manual adjustment. 
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Table 2.3: Sensors, advantages, limitations, applications 

Sensor Advantages Limitation Application 

Monocular 
camera 

• Low cost 
• Different Fields of View (FoV) 
• High-resolution cameras provide 

a more extended range  
• Provide features data 

• High computational requirements 
• It does not provide straightforward 

distance calculations  
• Limited by weather and lighting 

conditions 
• Can’t calculate the velocity of 

objects  

• Object detection & 
classification 

• Traffic signals 
recognition 

• Road and lane detection 

Stereo-camera 

In addition to the advantages of 
monocular cameras, stereo-cameras 
also provide: 
• Depth calculation 
• 3D-localization of objects 
• Enhanced object detection 
 

• More expensive than monocular 
cameras 

• Higher computational requirements 
• Limited by weather and lighting 

conditions 
• Can’t calculate the velocity of 

objects 

• Object detection and 
classification 

• 3D localization 
• 3D mapping 

Short-range 
RADAR 

• Large FoV 
• Easier to develop 
• Resistant to bad weather 

• Large package size 
• Shorter sensing range 

• Blind spot detection 
• Parking aid 

Long-range 
RADAR 

• Higher accuracy 
• Better resolution 
• Smaller package size 

• More data losses 
• Narrow Field of View at short 

distances 

• Speed calculation of 
detected vehicles 

• Used on highways and 
cross-traffic alert 
systems 

Ultrasonic 

• Direct distance estimation 
• Can operate in harsh weather 

conditions 
• Can detect near objects (<2m) 

• Can only detect near objects 
• Low angular resolution 

• Parking assistance 
• Near object detection 

 

ii. LiDAR 

LiDAR, which stands for Light Detection and Ranging, leverages the Time of Flight (ToF) 

principle to measure the distance between the sensor and detected objects. LiDARs emit 

laser pulses; these waves reflect off objects and are received by the LiDAR, which calculates 

ToF. These reflected and returned pulses are processed into a 3D visualization known as a 

‘point cloud’. 

LiDARs boast a maximum operational detection range of up to 200m  [58] and remain 

resilient in varying weather and lighting conditions. Diverse types of LiDARs project 

differing numbers of laser beams. Two-dimensional LiDARs employ a solitary beam 

projected onto a rotating mirror, whereas 3D LiDARs employ multiple laser diodes that spin 

at high speeds. The greater the number of laser diodes, the greater the number of 

measurements gathered thereby enhancing the precision of perceptual tasks  [59].  
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In some applications, multiple 2D LiDARs (each with a single beam) have been utilized for 

vehicle detection [60] and pedestrian detection [61, 62] through the application of pattern 

recognition techniques. However, this approach confines detection to a limited set of object 

classes. 

Multi-beam LiDARs, on the other hand, are used for 3D object detection [63, 64]. Examples 

of 2D LiDARs used in previous research are LRS-1000, LMS-291, and UTM-30LX, while 

examples of multi-beam LiDARs are IBEO LUX, Velodyne, and Quanergy. Three-

dimensional LiDARs are more computationally extensive and suffer from higher costs. 

There are three primary approaches to achieving 3D detection using point clouds  [65]: 

• Projecting a point cloud onto a 2D plane to implement 2D detection frameworks, 

subsequently obtaining 3D localization from the projected images. 

• Utilizing volumetric techniques involving voxelization [66, 67]. However, 3D 

convolutional operations pose high computational demands. 

• Employing PointNets  [68-70] to directly use raw point clouds for predicting 3D 

bounding boxes. This approach also involves significant computational overhead and 

increases runtime. 

iii. RADAR 

It boasts remarkable resilience to diverse weather and light scenarios, excelling in multi-

depth detection and long-range capabilities, as used in [71, 72]. In another study [73], a 

compact automotive RADAR sensor was employed to assess its proficiency in executing 

fundamental tasks like vehicle odometry, road structure mapping and tracking moving 

objects. 

iv. Ultrasonic 

Operating on the ToF principle, it measures the duration taken for sonic waves to travel to 

an object and return as an echo. Ultrasonic sensors are resilient and capable of determining 

distances to objects regardless of their colour, material, or prevailing weather conditions. 

Nevertheless, their applications are confined to short-distance measurements and parking 

systems. 
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2.3.2 Proprioceptive Sensors  

To achieve accurate path planning for the ego vehicle, its state must be continuously 

monitored using its proprioceptive sensors: Global Navigation Satellite System (GNSS), 

Inertial Measurement Unit (IMU), and wheel odometry. The GNSS, a satellite-based 

navigation system, imparts context and real-time information to AVs. Most of the available 

GNSS sensors employed in AVs incorporate an IMU, which, when fused with other sensors, 

equips the AV to measure metrics like velocity, Euler angles and angular velocity. This 

integration facilitates ego-motion correction.  A famous example of GNSS/ IMU is the X-

sense MTi-G.  

Furthermore, wheel odometry records the rotation rates of the vehicle’s wheels, thereby 

estimating its speed and acceleration [64]. Developers of Advanced Driver-Assistance 

systems (ADAS) assert that even level 3 AVs necessitate the integration of high-precision 

proprioceptive sensors. These sensors provide the AV with accurate location information 

and the intended path, ensuring operational competence even in scenarios where the lane 

view might be obstructed. 

2.3.3 Sensor Fusion 

Relying solely on a single type of sensor has demonstrated inefficiency and unreliability. 

Thus, the necessity of sensor fusion arises to transcend individual sensors’ limitations by 

harnessing multiple sensors’ strengths. Consequently, sensor fusion amplifies reliability and 

accuracy, and diminishes measurement uncertainty. The classification of sensor fusion can 

be based on: 

• Relationship between input data sources, as proposed by Durrant-Whyte [74]: (a) 

Complementary, (b) Redundant, and (c) Cooperative. 

• Types of input and output data, as proposed by Dasarthy  [75]: (a) Data-In-Data-Out, 

(b) Data-In-Feature-Out, (c) Feature-In-Feature-Out, (d) Feature-In-Decision-Out, 

and (e) Decision-In-Decision-Out. 

• Different Abstraction levels, as proposed by [76]: (a) Signal-level (b) Pixel-level (c) 

Characteristic-level (d) Symbol-level. 

• Architecture type [77]: (a) Centralized, (b) Decentralized, and (c) Distributed. 
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Different sensors data can be fused together, below are examples of the most widely applied 

sensor fusion combinations: 

i. Camera and LiDAR fusion 

The fusion between a camera and a LiDAR is primarily used to achieve obstacle detection 

and avoidance in various approaches, as presented in [69, 78-86]. In [85, 86], data from both 

3D LiDARs and cameras were integrated to achieve comprehensive obstacles perception. 

The LiDAR’s role was to ascertain the precise object positions, whereas the camera 

contributed features and classification information.  In a study by Han et al. [86], a decision-

level sensor fusion approach was employed on a Velodyne 64-beam LiDAR along with an 

RGB camera. This combination aimed to enhance the detection of dim objects such as 

pedestrians and cyclists. Similarly, in studies by Chen, Xiaozhi et al. and Qi et al. [69], 

Regions of Interest (ROIs) were extracted from images, with the LiDAR providing 3D 

localization.  

Furthermore, a three-dimensional object detector operating within the Bird’s Eye View 

(BEV) space has been introduced in work by Liang et al. [82]. This approach involves 

merging image features by learning to map them onto the BEV space. The integration is 

achieved through continuous convolutions that fuse image and LiDAR feature maps across 

varying resolution levels. Likewise, in the study conducted by Xiaozhi et al.  [78], a deep 

fusion benchmark was devised, surpassing the prevailing state-of-the-art performance by 

25% and 30% in terms of Average Precision (AP). Similarly, in [79, 80], two-dimensional 

Convolutional Neural Networks (CNNs) were employed on both BEV and image feature 

maps, followed by fusion at the intermediate stage through region-wise convolutional feature 

maps. 

Several approaches have been directed towards the detection of specific classes of objects. 

For instance, in [87], a pedestrian detection system was introduced.  This system employed 

pedestrian pattern matching and recognition techniques, augmented by context information, 

to estimate potential danger linked to the identified pedestrians.  Their experimental results 

yielded positive detection rates of 82.29% with 1.11% false positives per frame. These 

outcomes were juxtaposed with scenarios involving solely cameras (73.97% positive 

detections, 5.27% false positives) and only LiDAR (74.56% positive detections, 13.3% false 

positives). 



 

 

  

  19 

In addition, Garcia et al. [81] addressed the vehicle detection challenge. This study 

capitalized on context and real-time Global Positioning System (GPS) information to 

enhance the detection process.  The fusion results yielded a positive vehicle detection rate of 

92.03%, with a mere 0.59% missed detections per frame. These outcomes were contrasted 

with those achieved using solely a camera (47.72% positive detections, 1.13% missed 

detections) and solely a LiDAR (91.03% positive detections, 8.19% missed detections). 

Another noteworthy example pertains to passive beacon detections, as discussed in the study 

by Rövid & Remeli  [84]. In this context, the authors proposed a delineation methodology 

that improved performance by fusing camera and LiDAR data. 

Beyond the scope of object detection and localization, the fusion of LiDAR and camera 

sensors has enabled the functionalities of urban mapping and vehicle positioning, as 

evidenced by studies such as [85, 88, 89].  Shi et al. [88] introduced an innovative approach 

that amalgamated a panoramic camera with a 2D laser scanner for urban mapping and 

localization. Their outcomes exhibited an average error of 0.2m in the horizontal plane along 

a 580m trajectory.  In the work by Zhang, J. & Singh [89], a distinctive strategy involving a 

rotating motor-mounted Hokuyo UTM-30LX LiDAR and a monocular camera achieved 3D 

mapping. The LiDAR was set to rotate by 180°. Xue et al. [85] pursued the integration of 

LiDAR and camera sensor data to facilitate effective autonomous positioning and obstacle 

perception through geometric and semantic constraints. Despite its complexity, the 

algorithm's real-time constraints were not met, and the detection of faint objects was not 

considered. 

Although the fusion of camera and LiDARs achieved promising results, existing approaches 

suffered from one or more of the following: 

• Detection of specific objects classes: [80, 81, 84-87], 

• Employing 3D LiDARs: [69, 79, 80, 82, 85, 86] 

• Not real-time: [78, 80] 

ii. Camera and RADAR fusion 

The incorporation of RADARs into AVs brings the added advantage of reliable and precise 

obstacle detection even in challenging scenarios such as low visibility, adverse weather 

conditions, object occlusions, and distant targets. Some research has addressed the problem 

of detection of specific object classes; an example is a study by Palffy et al. [90], where 
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particular attention was given to addressing the issue of pedestrians crossing roads, mainly 

when they are obscured by surrounding vehicles. The study leveraged RADAR’s capability 

to detect pedestrian reflections through multi-path propagation, even when entirely occluded.  

Similarly, in the research conducted by Chadwick et al. [91], RADAR integration with 

cameras was showcased to enhance the detection performance of small and distant objects. 

Their investigation focused on two object classes: vehicles and pedestrians/cyclists. 

The integration of camera and RADAR data has demonstrated efficacy not only in object 

detection, but also in classification.  Jhan et al. [92] exemplified this by combining data from 

both camera and RADAR sensors to achieve object classification and relative distance 

measurement. The approach introduced in their study operates in a real-time environment 

facilitated by its swift detection capabilities. However, their approach has been only 

evaluated on short distances and not proven accurate on long distances. 

Furthermore, an innovative avenue of research involves deploying Deep Learning (DL) 

methodologies on RADAR signals to identify the presence of objects in the surrounding 

scene and subsequently determine their three-dimensional positions. Zhang et al. [72] 

explored this novel approach by utilizing a deep learning framework as opposed to 

conventional signal processing techniques on RADAR data. Their proposed system was 

evaluated in the context of car detections within noisy environments and was not tested on 

other different objects having different features (e.g., dim objects, small/distant objects, etc.). 

As shown, most of the existing camera-RADAR fusion approaches are dedicated to the 

detection of specific object classes or objects in a short range, which makes this direction 

need more development and exploration in order to be appropriate for AVs environment 

perception. 

iii. Camera, LiDAR and RADAR fusion 

This method is often regarded as the costliest approach to sensor fusion, and numerous 

researchers have explored various implementations of this sensor combination. For instance, 

in the study by Steyer et al.  [93], pre-fused measurement data was leveraged to introduce an 

innovative grid-based object-tracking methodology. RADAR Doppler velocity estimates 

were seamlessly integrated into the input data in order to enhance the accuracy of motion 

estimation. Their approach was evaluated using actual sensor data, with a specific focus on 

autonomous driving in complex urban settings. 
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Furthermore, in the work by Ahrabian et al. [94] a sensor fusion strategy was employed, 

encompassing a RADAR, ZED stereo-camera, and an HDL-32E Velodyne LiDAR. The 

researchers developed an algorithm capable of tracking potential objects within the scene 

without being restricted to specific object types (object agnostic). Similarly, using the 

identical LiDAR and stereo-camera as outlined by Ahrabian et al.  [94] along with the 

addition of a 150 GHz RADAR, Daniel et al.  [95] investigated their approach within a 

simulated fog-laden environment. This experimentation underscored the significance of 

including a RADAR sensor as an integral component within the automotive industry. 

In the study by Kunz et al.[21], the emphasis was on centralized sensor-independent fusion 

schemes designed to facilitate straightforward sensor substitution and ensure redundancy 

through the utilization of probabilistic and versatile interfaces. Their approach involved the 

integration of three IBEO LUX 3D LiDARs, monocular cameras, and multiple RADAR 

sensors. Another strategy, devised by Cho et al. [96], allowed the system to seamlessly 

switch between a point model and a 3D-box model, depending on the proximity of objects 

to the vehicle. 

Fusion of different data modalities by applying sensor fusion on a bigger number of different 

sensors provides the system with a big size of variant features of the surrounding 

environment, enhancing the accuracy and precision of the operation of objects detection 

performed by AVs. However, this also implies the burden of the high cost of the sensors 

employed. Moreover, processing big amounts of data leverages the need for heavy complex 

computations that need powerful processing units to overcome the computational needs.   

2.4 Object Detection Using Artificial Intelligence Techniques 

The object detection phase facilitates a semantic comprehension of the captured data, 

involving the identification of both the class and the spatial location of identified objects.  

To ensure the development of a dependable autonomous vehicle equipped with the ability to 

comprehend its surroundings, the selection of appropriate object detection techniques 

becomes crucial for efficient performance across the desired environments. The diversity of 

driving scenarios presents distinct challenges in object detection: 

• Variable weather and lighting conditions (for example, fog, snow, rain, morning, 

night, etc.) 
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• Object's reflectivity (dim vs. highly reflective) 

• Detection of small/distant objects 

• Object's movements 

• Movement and speed of the ego-vehicle 

• Obstacles occlusion and truncation 

• Presence of multiple objects. 

Other challenges in choosing the suitable algorithm include: 

• Computation time and complexity 

• The required computation hardware for the algorithm. 

• Availability of datasets and training data 

Object detection falls into two primary categories: 2D and 3D. The choice of the detection 

technique predominantly depends on the intended application, the sensors employed, and the 

subsequent tasks following the detection process (e.g., sensor fusion). For example, video 

surveillance applications may suffice with 2D detections alone. On the other hand, the 

functioning of autonomous vehicles depends on the accurate 3D localization of detected 

objects. Various sensors can be used to achieve object detection, but the visual system retains 

its prominence as a primary data source as it can perform object classification as well. 

In autonomous driving, the task of object detection encompasses diverse classes that can be 

categorized as either static or dynamic objects. Static objects include entities like traffic 

lights, signs, buildings, bridges, and curbs, while dynamic objects include pedestrians, 

cyclists, animals, and various vehicles. Detecting static objects is generally perceived as 

more straightforward due to their predicted shapes and fixed positions.  

Two fundamental approaches to object detection exist: Machine Learning (ML) and Deep 

Learning (DL), as shown in Table 2.4. Illustrative examples of ML techniques encompass 

the Scale-Invariant Feature Transform (SIFT)  [97], Histogram of Oriented Gradients (HOG) 

[98], and the Viola-Jones object detection framework founded on Haar-like features [99] . 

Meanwhile, instances of DL approaches and architectures include Region proposals (R-

CNN) [100], Fast R-CNN [101], Faster R-CNN [102], Single-Shot multi-box Detector 

(SSD) [103], and You Only Look Once (YOLO) [104]. Given the variability of object 

classes, lighting conditions, and backgrounds, relying solely on feature extraction achieves 
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less robust performance. DNNs play a pivotal role in object detection tasks, offering the 

ability to learn and extract intricate features. Additionally, their training algorithms prevent 

the need for manual feature design. 

Table 2.4: Machine Learning vs. Deep Learning 

Criteria Machine Learning (ML) Deep Learning (DL) 

Description 

Uses statistical algorithms and 
models to improve computer 
systems’ performance on a specific 
task by learning from data without 
being explicitly programmed 

Uses neural networks with 
multiple layers to learn from 
huge amounts of data to 
perform complex tasks 

Data 
requirements 

Can be trained on small to medium-
sized datasets 

Requires a significant amount 
of data to train 

Performance 
 
DL algorithms outperform ML algorithms; however, they require a 
lot of computation power 

Feature 
Engineering 

Requires manual feature 
engineering to extract relevant 
features from the data 

It can automatically extract 
features from the data, which 
reduces the need for manual 
feature engineering 

Applications Predictive modelling, clustering, 
and classification tasks 

Image and speech 
recognition, natural language 
processing, and robotics tasks 

 

2.4.1 Object Detection using DNNs 

Convolutional neural networks (CNNs) have revolutionized object detection by enabling 

automated and highly accurate detection of objects in complex scenes. Figure 2.2 presents a 

chronological illustration that highlights key milestones in the implementation of object 

detection for AVs. It shows milestones of object detection for AVs, including the state-of-

the-art DL-based approaches (R-CNN [100], Fast-CNN   [100], Faster-CNN  [102], SSD  

[103], YOLO  [104]), CNN-based Networks  ( [53, 67-69, 79, 105-110]), and reliable real-

time object detection approaches  ( [50, 51, 53, 86, 111-113]). Handcrafted features 

dominated the period prior to 2013. A transition took place in 2013 with the development of 

CNNs, which contributed to the emergence of multiple real-time object detectors for driving 

scenes 
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Two prominent approaches that leverage Convolutional Neural Networks (CNNs) for object 

detection are Single Shot MultiBox Detector (SSD) and You Only Look Once (YOLO). 

These methods have played a pivotal role in advancing object detection system’s accuracy, 

efficiency, and real-time capabilities. Since the development of R-CNN networks [100], 

much research has turned towards the employment of DNNs in object detection  [100-104].  

i. Single Shot MultiBox Detector (SSD) 

SSD is a real-time object detection method that combines object localization and 

classification in a single pass through the network. It is designed to be efficient while 

maintaining high accuracy. Key features of SSD include: 

• Anchor Boxes: SSD employs anchor boxes of various aspect ratios and scales at 

different locations within an image. These anchor boxes act as references for 

predicting object positions and sizes. 

• Multi-layer detection: SSD uses multiple convolutional layers with varying receptive 

fields to capture objects of different sizes. Detection predictions are generated at 

different scales to handle objects at various resolutions. 

• Real-time performance: SSD’s single-pass architecture and multi-layer predictions 

enable real-time object detection suitable for applications like video analysis, 

robotics, and autonomous vehicles. 

ii. You Only Look Once (YOLO) 

YOLO is recognized for its real-time object detection capabilities achieved through a single 

forward pass of a CNN. YOLO’s unique grid-based approach allows it to make predictions 

at multiple spatial scales within a single iteration. Key features of YOLO include: 

• Grid-based detection: YOLO divides the input image into a grid, with each grid cell 

responsible for predicting objects within its boundaries. Each cell predicts bounding 

box coordinates and class probabilities. 

• Single forward iteration: YOLO's single-pass mechanism directly outputs object 

predictions, making it exceptionally fast and suitable for real-time applications. 

• Speed-accuracy balance: While YOLO offers real-time performance, it may not 

match the accuracy of some other methods. However, YOLOv3 have improved 

accuracy while maintaining impressive speed. 
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Table 2.5 provides a comprehensive comparison of the performance of the three primary 

DL-based object detection methods (CNNs, SSD, YOLO) considering their speed (Frames 

per Second (FPS)) when executed on a Graphics Processing Unit (GPU), along with their 

mean Average Precision (mAP) of detections over different objects classes. A 

comprehensive exploration of object detection using deep learning is covered in [114]. It is 

essential to highlight that SSDs demonstrate limitations in detecting small objects. 

Conversely, numerous CNN-based detection networks have been developed due to the 

diverse advantages of CNN-based approaches (such as hierarchical feature representation, 

increased expressive capability, and the combination of several tasks together), as depicted 

in Table 2.6. CNN-based detection has been effectively applied to achieve the following: 

• Vehicle detection (ex: [115]) 

• Pedestrian detection (ex: [115-117]). Furthermore, a survey was conducted to explore 

the utilization of deep learning techniques for pedestrians’ detection and tracking in 

[118]. Additionally, a comprehensive survey on camera-based pedestrian detection 

methods can be found in  [119]. 

• Cyclists’ detection (ex:  [120, 121] ) 

Table 2.5: Different deep learning approaches  

Approach Speed 
(FPS) 

Testing 
dataset mAP (%) 

C
N

N
 R-CNN [100] 6 
 

VOC 
 

53.3 
 Fast R-CNN [101] 0.5 VOC 70 

Faster R-CNN (VGG16)  [102] 7 VOC 73.2 

SS
D

 SSD300  [103] 59 VOC 74.3 

SSD512 [103] 22 VOC 76.8 

Y
O

LO
 

YOLOv1 [104] 45 VOC 63.4 
YOLOv1-Tiny  [122] 155 VOC 52.7 

YOLOv2  [123] 67 VOC 76.8 
YOLOv2 [123]  40 VOC 78.6 
YOLOv2 [122] 40 COCO 48.1 

YOLOv2-Tiny  [122, 123] 244 COCO 23.7 
YOLOv3  [122, 124] 51 COCO 57.9 
YOLOv3-Tiny  [122] 220 COCO 33.1 
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Figure 2.2: Milestones of object detection for AVs  
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Due to the exceptional speed of YOLO, several research efforts have been dedicated to 

expanding its capabilities: 

• YOLO9000 [123]: In this work, YOLO9000 was trained on both the COCO detection 

dataset and the ImageNet classification dataset. This simultaneous training approach 

enables YOLO9000 to predict unlabelled data. Validation on the ImageNet dataset 

yielded a mAP of 19.7%, while for 156 classes not present in the COCO dataset, it 

achieved a mAP of 16.0%. As a result, YOLO9000 can perform real-time detection 

for over 9000 object categories. 

• YOLO-LITE [122]: This variant was developed to cater to portable devices without 

GPUs. Trained on the PASCAL VOC and COCO datasets, it achieved mAPs of 

33.81% and 12.26%, respectively. Its notable advantage lies in its high FPS, which 

reaches 21 FPS on non-GPU platforms.   

• Complex-YOLO [125]: It is an extension of YOLOv2 that integrates the Euler-

Region-Proposal-Network to leverage 3D point cloud data from multi-beam 

LiDARs, such as the 64-beam Velodyne LiDAR. This extension enables 3D 

detections for all eight classes in the KITTI dataset, running at a speed of over 50 

FPS on an NVIDIA TitanX GPU. The achieved APs for the main object classes in 

the KITTI dataset were as follows: 

o Cars: 67.72% (easy), 64.0% (moderate), 63.01% (hard) 

o Pedestrian: 41.79% (easy), 39.7% (moderate), 35.92% (hard) 

o Cyclists: 68.17% (easy), 58.32% (moderate), 54.3% (hard) 

Table 2.7 presents an overview of recent advancements in utilizing deep learning for object 

detection tasks in autonomous vehicles. As illustrated, many approaches are dedicated to the 

detection of specific classes of objects, such as pedestrians [86, 126], traffic cones [83], and 

vehicles [112]. Some approaches suffered from slow inference time [50, 51, 53, 112, 127]. 

The slow operation of some existing approaches makes them hard employ on AVs, as 

autonomous driving requires fast real-time computations in order to achieve real-time 

decisions. 
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Table 2.6: CNN-based object detection networks 

Network Approach Time 
Analysis Modality Performance 

3DVP  [107] 
Tr

an
sla

tio
n 

of
 p

oi
nt

 c
lo

ud
s i

nt
o 

vo
xe

ls - RGB images 
• 3D AP on KITTI (car: 87.46%, 75.77%, 65.38%) 
• AOS (86.92%, 74.59%, 64.11%) 
• AP on OutdoorScene (car: 90.0%, 76.5%, 62.1%) 

MV3D  [78] 
0.36𝑠/image 
(TitanX 
GPU) 

LiDAR point 
cloud, RGB 
images 

3D detection AP on KITTI dataset (easy IoU: 56.56% - 
hard IoU: 96.52%)  

Vote3Deep  
[109]  - 

LiDAR point 
cloud, RGB 
images 

2D AP on KITTI dataset (easy, moderate, hard): 
• Car: 76.79%, 68.24%, 63.23% 
• Pedestrian: 68.39%, 55.37%, 52.59% 
• Cyclists:  79.92%,67.88%, 62.98% 

VoxelNet 
[67] 

0.033𝑚𝑠 
(TitanX 
GPU) 

LiDAR point 
cloud 

3D AP on KITTI (easy, moderate, hard): 
• Car: 77.47%, 65.11%, 57.73% 
• Pedestrian: 39.48%, 33.69%, 31.51% 
• Cyclists: 64%, 52.18%, 46.61% 

PointCNN  
[105] 

po
in

t c
lo

ud
 p

ro
ce

ss
in

g 
us

in
g 

m
ul

ti-
la

ye
r 

pe
rc

ep
tro

ns
 

0.012𝑠 per 
batch for 
inference of 
batch size 16 
(GPU 
NVIDIA 
Tesla P100) 

LiDAR point 
clouds 

• ModelNet40 dataset: 
o Pre-aligned: mA (88.8%), OA (92.5%) 
o Unaligned: mA (88.1%), OA (92.2%) 
ScanNet dataset mA (55.7%), OA (79.7%) 

PointNet  
[68] - LiDAR point 

cloud 
• ModelNet40 dataset: mA (86.2%), OA (89.2%) 
• Stanford dataset: 3D detections mAP 24.24% 

Frustum  
[69] 

4 FPS (GPU 
NVIDIA 
GTX 1080i) 

LiDAR point 
cloud, RGB 
images 

• mAP on SUN-RGBD: 54% 
• 3D AP on KITTI (easy, moderate, hard): 

o Car: 81.2%,70.39%,62.19% 
o Pedestrian: 51.21%, 44.89%, 40.23% 
o Cyclists: 71.96%, 56.77%, 50.39% 

PointFusion  
[108] 

Faster R-
CNN, 
PointNet  

 - 
LiDAR point 
cloud, RGB 
images 

• mAP on SUN-RGBD: 45.38% 
• 3D AP on KITTI (easy, moderate, hard): 

o Car: 77.92%, 63%, 53.27% 
o Pedestrian: 33.36%, 28.04%, 23.38% 
o Cyclists: 49.34%, 29.42%, 26.98% 

VoxNet  
[106] 

Volumetric 
occupancy 
grid using a 
supervised 
3D CNN 

0.002𝑠/2000 
points (GPU 
Tesla K40) 

LiDAR point 
clouds, RGBD 
images, CAD 
data 

Average Accuracy on Sydney Urban Objects dataset: 
• ModelNet10: 0.92 
• ModelNet40: 0.83 
• NYUv2: 0.71 

AVOD  [79]   

Combined 
fusion 
approaches, 
Faster R-
CNN 

0.1𝑠/ frame 
(GPU 
TitanXP) 

LiDAR point 
cloud, RGB 
images 

3D AP on KITTI (easy, moderate, hard): 
• Car: 81.94%, 71.88%, 66.38% 
• Pedestrian: 50.8%, 42.81%, 40.88% 
• Cyclists: 64%, 52.18%, 46.61% 

PSMNet 
[110] 

Spatial 
Pyramid 
pooling and 
3D CNN 

Real-time LiDAR point 
cloud, RGB 
images 

• 92.03% positive detections, 0.59 misses per frame on 
real driving conditions 
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Table 2.7: DL-based object detection approaches 

Approach 
Base 

Architecture 

Target 

Objects 

Time 

Analysis 
Input Data Accuracy 

Liu et al. [126] YOLOv2 
Pedestrians 
(2D) 

73 FPS on 
NVIDIA GPU 
GTX 1080Ti 

RGB images 
90.9% AP on INRIA & 
Caltech datasets 

Han et al.  [86] 
Improved 
YOLO 

Dim 
objects 
(3D) 

13 FPS on 
NVIDIA GPU 

64-beam 
LiDAR & 
RGB camera 

82.9% mAP on a 6-
category dataset of 3000 
frames 

Wei et al.  [83] YOLO and 
SVM 

Traffic 
cones (3D) 

5Hz on 
NVIDIA 
Jetson TX2 
GPU 

8-beam 
LiDAR & 
RGB camera 

True positive rate, false 
negative rate: (3-20m 
range:  97.6%, 2.4%), (20-
40m range: 94.8%, 5.2%) 
on a collected dataset 

Li et al. [112] 
Fully 
Convolutional 
Networks 

Vehicles 
(3D) 

- 64-beam 
LiDAR 

AP on KITTI dataset 
(easy, medium, hard): 
(84.2%, 75.3%, 68%) 

Wang et al. [127] 

Sliding 
Window 
Approach, 
CNN 

Car, 
pedestrians
, cyclists 

0.5𝑠/100k 
points on a 
multi-core 
CPU (i7) 

3D LiDAR 

AP on KITTI dataset 
(easy, medium, hard): Car: 
47.99%, 56.8%, 42.57%, 
Pedestrian: 35.74%, 
44.48%, 33.72%, 
Bicyclists: 31.24%, 
41.43%, 28.6% 

Chen et al. [53] CNNs 3D objects 
2𝑠/image on 
NVIDIA GPU 
TitanX 

Stereo-
camera 

3D AP of cars on KITTI 
(89.49%, 81.21%, 74.32%) 

Mousavian et al. 
[50] 
 

Deep CNNs 3D objects 1.1𝑠/ image 
RGB 
Camera 

AP cars (92.98%, 89.04%, 
77.17%), AOS cars ( 
92.9%, 88.75%, 76.76%) 
on KITTI dataset 

Chen et al. [51] CNNs 3D objects 
1.8𝑠	inference 
time on a 
single core  

Monocular 
Camera 

AP on KITTI dataset 
(easy, medium, hard): Car: 
92.33%, 88.66%, 78.96%, 
Pedestrian: 80.35%, 
66.68%, 63.44%, Cyclists: 
76.04%, 66.36%, 58.87% 

2.4.2 Three-dimensional Object Detection 

Table 2.8 provides a compilation of the latest and widely recognized 3D object detection 

networks and frameworks, along with their respective limitations. Most approaches that are 

focusing on 3D detections are based on processing 3D point clouds along with RGB images. 

Existing approaches suffer from one or more of the following limitations: 
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• Not real-time 
• Detection of static objects 
• Detection of specific objects classes 

Table 2.8: Three-dimensional object detection networks and frameworks 

Research Modality Limitation 

Multi-task multi-sensor fusion for 3D object 
detection  [128] 

RGB + 3D point 
cloud 

Expensive 3D LiDAR 
Not real-time 

Frustum pointnets for 3D object detection from 
rgb-d data  [69] RGB-D 0.12s per frame 

Not real-time 

Pointfusion: deep sensor fusion for 3D 
bounding box estimation  [108] 

RGB + 3D point 
cloud 

1.3s per frame 
Not real-time 

RoarNet: a robust 3D object detection based 
on region approximation refinement  [129] 

RGB + 3D point 
cloud 

Expensive 3D LiDAR 
Not real-time 

A frustum-based probabilistic framework for 
3D object detection by fusion of LiDAR and 
camera data  [130] 

RGB + 3D point 
cloud 

Only for detecting 
static objects 

SEG-VoxelNet for 3D vehicle detection from 
RGB and LiDAR data  [131] 

RGB + 3D point 
cloud 

Only detects vehicles 
Not real-time 

MVX-Net: multimodal voxelnet for 3D object 
detection  [132] 

RGB + 3D point 
cloud Not real-time 

3D-cvf: generation joint camera and LiDAR 
features using cross-view spatial feature fusion 
for 3D object detection  [133] 

RGB + 3D point 
cloud 

NVIDIA GTX 
1080Ti, inference time 

75𝑚𝑠 per frame 
(13.33 FPS) 

PI-RCNN: an efficient multi-sensor 3D object 
detector with point-based attentive cont-conv 
fusion module  [134] 

RGB + 3D point 
cloud Not real-time 

Image guidance-based 3D vehicle detection in 
traffic scene  [135] 

RGB + 3D point 
cloud Only vehicles, 4FPS 

Epnet: enhancing point features with image 
semantics for 3D object detection  [136] 

RGB + 3D point 
cloud Not real-time 

 

Although much research applied sensor fusion between cameras and LiDARs to achieve 3D 

detections, not enough research has considered employing 2D LiDARs in addition to 

cameras to achieve 3D detections. This is because attaining straightforward depth 

measurements of surrounding objects from 2D LiDARs is a challenging operation due to the 
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single horizontal plane measurements. Moreover, objects features cannot be directly 

acquired from 2D LiDAR measurements; as a result, in order to achieve 3D detections using 

2D LiDARs and cameras, complementary fusion should be applied.  

2.5 Object Detection in Rainy Weather Types 

To recall, the difference between levels 4 and 5 AVs is that level 5 AVs can operate under 

any ODD. The most advanced currently available AVs are at level 4 autonomy. 

Consequently, the operation of AVs must demonstrate reliability across all demanding 

scenarios to gain public confidence and justify the investment. Therefore, one of the tasks 

that should be performed, even under challenging weather conditions, is object detection.  

Diverse weather conditions can degrade image quality, leading to distortion and impairment. 

These conditions can be categorized as either stable or dynamic [137]. Steady weather 

conditions encompass fog, mist, and haze, whereas dynamic weather conditions involve rain 

and snow. Rainy weather conditions, characterized by larger and variable droplets, have a 

more pronounced impact on scene visibility. These conditions reduce contrast and scene 

visibility, significantly affecting the ability of AVs to detect objects.   

Our study focuses on addressing the deterioration caused by rain in captured videos of the 

environment. This is particularly crucial as rain is the most prevalent dynamic weather 

condition, particularly in regions like the United Kingdom  [138]. Despite the progress made 

by researchers in the field of deraining techniques, real-time video deraining for autonomous 

vehicles remains a relatively unexplored area. 

2.5.1 Rain Degradation 

i. Types of rain  

Rain can be defined by the existence of numerous drops that come in diverse sizes, intricate 

forms, and varying velocities. Rain contributes to two distinct types of reductions in 

visibility.  Rain streaks incline to generate specular highlights and obstruct and distort 

background scene elements. Conversely, distant rain streaks accumulations generate 

atmospheric veiling effects that scatter light and obscure the line of sight, resembling the 

impact of fog [139].  Since the attributes of rain streaks and the accumulation of rain are 

distinct, the distortions they introduce to images differ. Consequently, researchers tackle 

each type of rain degradation as a distinct problem.  
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Figure 2.3 shows the impact of different rain degradation forms on images. The green box 

shows the effect of heavy rain streaks; the yellow box shows the impact of the presence of 

rain streaks of different sizes overlapping on each other. The blue and red boxes show the 

impact of the accumulation of rain streaks resembling a foggy/veiling effect; it can be noted 

that the veiling effect becomes stronger on further objects  [140]. 

 
Figure 2.3. An example of the presence of different rain degradations in the same frame 

ii. Rain effect on video frames  

The presence of raindrops blocks the light reflected from the surrounding objects. Also, rain 

distorts the intensity in images and video frames  [5]. Deraining techniques can be divided 

into two primary categories: video-based and single-image-based methods. Video-based 

methods often exploit temporal information within consecutive frames. In contrast, single 

image-based deraining poses a more challenging task due to the absence of temporal 

redundancy knowledge and the limited information available per frame [141, 142].  As a 

result, more significant research effort has been dedicated to devising diverse algorithmic 

approaches to tackle this issue. Furthermore, existing single image-based methods can be 

categorized into three distinct groups according to Wang, Hong et al. [6]:  

• Filter-based methods  [143-146]: It is based on identifying different rain properties 

and designing appropriate filters to achieve rain-free images. 

• Prior-based methods [147-152]: It is based on leveraging prior knowledge of both 

rainy and clear images, prior-based methods encompass a range of techniques, among 

which is Morphological Component Analysis (MCA)  [153], histogram of oriented 



 

  

  33 

gradients (HOG)  [154], structural similarities, and sparse representation models  

[152];  

• Deep learning-based methods  [155, 156]. 

iii. Rain effect on LiDAR 

Much research has studied the operation of the Hokuyo UTM-30LX  2D LiDAR used in this 

thesis [157-159]. Authors in  [158] examined its performance under different environments; 

they performed tests in several scenes. It has been shown that raindrops were not detected 

and did not impose a noticeable difference on the detection of background objects. One of 

the explanations for this phenomenon is that raindrops in the air are too small that it does not 

impose an effect on the laser beams. Moreover, measurements captured by the Hokuyo 

UTM-30LX tend to stabilize for about 4 minutes before preheating.  

iv. Rain effect on object detection  

The performance of object detection methods is heavily influenced by how diverse the 

training and testing data are.  According to extensive experiments performed by Hnewa and 

Radha in  [5], the performance of object detection frameworks which are trained on non-

rainy datasets degrades when tested on rainy datasets. This degradation is due to the fact that 

rain hides and distorts important visual features which are used for detection.  

The Average Precision (AP) of the detection of small and distant objects declines more 

significantly than that of bigger objects. Large objects, such as vehicles, occupy larger 

regions in a frame; therefore, even when rain exists, there are still enough features that can 

be extracted and detected. Also, objects made of reflective material are better detected even 

if distorted with rain  [5].  

v. Related work and deraining challenges 

Numerous methods have been suggested to tackle rain detection and removal, as outlined in 

Table 2.9. This challenge can be approached either from a video-based perspective or as an 

image-based task. However, a significant portion of these approaches did not take into 

account the specific requirements of AV systems and encountered the following deficiencies: 

• High computation time: [160-162] 

• Only addressed the problem of rain detection:  [163, 164] 
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• Assumes static scenarios:  [165], also ref. [166]’s approach does not work with highly 

dynamic raindrops. The approach of  [167] fails to separate dynamic textures and 

moving objects. 

• Not applicable for real-time scenarios:  

o The approach of [168] requires the interaction of a human operator to process 

the captured frames. Also, it is bound by certain scenes (lane and building 

scenes). 

o The approaches of [161, 169] exploit temporal information during the 

recovery process. 

o The approach of [170] makes use of previously cleaned frames. 

o The approach of [162] suffers from high computational time. 

• Limited to certain degradation factors: [9, 160, 171, 172]  

According to  [173], no existing de-raining method directly aids in the objects detection task 

that happens afterwards. This encouraged developing new robust algorithms to account for 

high-level vision problems on real-world driving scenarios. 

2.5.2 State-of-the-Art Deraining Networks 

Traditional deraining models, which are based on the detection of the statistical 

characteristics of rain, depend on performing linear mapping transformations. Therefore, 

they are not resilient to dynamic rain variations, such as different streak directions, 

intensities, and orientations  [174-177]. Recently, CNN-based Deep-Learning (DL) 

techniques  [140, 161, 178] have emerged and shown significant improvements compared to 

traditional methods.  
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Table 2.9: Rain detection and removal approaches 

Paper Input Method Limitations 

[160] Rain streaks 
(images) 

Single-step rain detection and removal by analysing rain’s local 
features (orientation, amplitude, etc) and applying anisotropic 
filter. 

 Low speed, 
temporal 
dependency 

[164] Rain drops 
(images) 

Cellular Neural Networks, and SVM. Pattern recognition using 
SVM produces a model for the classification phase using 
Cellular Neural Networks.  

Detection only, 
no removal 
performed 

[165] 
Any rain 
condition 
(videos) 

They used the significant difference in time evolution between 
the rain and non-rain pixels in videos, and then analysed this 
difference with the help of skewness. 

static scenes 

[166] Rain drops 
(videos) 

Based on motion and intensity of temporal derivatives of the 
input video. The authors assume that pixels without raindrops 
exhibit swifter motion compared to those with raindrops, and the 
temporal shift in intensity of non-raindrop pixels is greater than 
that of raindrop pixels. 

Temporal 
dependency, 
static scenes 

[168] Rain drops 
(videos) Hough transformation and Sobel filters Human operator  

[169] Rain streaks 
(videos) 

Spatial and temporal information, incorporating motion 
segmentation for dynamic scenes. Rain removal filters are 
employed following the application of photometric and 
chromatic constraints used for rain detection. 

Temporal 
dependency 

[161] Rain streaks 
(images) 

De-rainNet: leveraging domain knowledge in image processing 
to enhance deraining using a moderately sized CNN Low speed 

[170] 

Rain streaks 
and 
accumulation 
(videos) 

A rain-free frame is predicted based on a single rainy frame and 
then used as a reference along with previously restored clean 
frames to enhance the accuracy of obtaining a clean frame. 

Temporal 
dependency 

[162] Rain Streaks 
(videos) 

Multiscale convolutional sparse coding technique for eliminating 
rain effects. Low speed 

[171] Rain streaks 
(images) Frequency division, and non-negative matrix factorization Limited to rain 

streaks removal 

[172] Rain Streak 
(videos) 

Super pixel segmentation to conduct scene decomposition into 
units consistent with depth. 

Limited to rain 
streaks removal 
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The majority of cutting-edge algorithms are rooted in convolutional neural networks 

(CNNs). Various modules can be integrated into deraining networks, including: 

• Residual blocks are used in  [179-183]. They are also called skip connections or 

shortcut connections; they are a building block that allows the network to learn the 

residual between the input and output of a layer. In other words, it models the 

difference between the desired output and the actual output of a layer. By 

incorporating this difference, the network can more easily learn identity mappings 

and residual mappings, facilitating the training of very deep networks. 

• Dilated convolution is used in  [178, 184]. Dilated convolutions are a powerful tool 

in deep learning architectures, especially for tasks that require capturing contextual 

information at different scales, by efficiently expanding the receptive field without 

increasing computational overhead.  

• Dense blocks are used in  [185]. They are a unique innovation that enhances feature 

reuse, gradient flow, and parameter efficiency in deep neural networks. Their design 

philosophy of densely connecting layers has led to improved performance and 

training stability in modern convolutional architectures. 

• Recurrent layers are used in [10, 186]. The core idea behind recurrent layers is to 

introduce connections that loop back on themselves, allowing information to be 

passed from one step to the next. This enables the network to maintain some form of 

memory or context as it processes sequential data.  

Certain methods employed lightweight networks, either in a cascaded setup or within a 

Laplacian pyramid framework, with the goal of improving computational efficiency   [187, 

188]. However, this compromise led to a decline in deraining performance. In contrast, deep 

networks are intricate, complicating individual module analysis. 

Listed below are baseline deraining networks used for single image deraining and have 

achieved significant performance on rainy datasets. 

i. PRN and PreNet 

In 2019, Ren et al.  [141] established a straightforward foundation for deraining networks. 

Their innovation involved a novel network design that systematically unravelled a shallow 

Residual Network (ResNet). They harnessed the potential of recursive computations by 

employing a progressive ResNet (PRN). Furthermore, they introduced recursive layers that 
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capitalized on the interdependencies of deep features across stages (PreNet). Given its 

simplicity, efficiency, and efficacy, this model serves as a fitting baseline for forthcoming 

deraining studies. 

ii. MSPFN 

In 2020, Jiang et al. [180] tackled the issue of removing rain streaks from single images. 

They explored the concept of multi-scale collaborative representation for rain streaks, 

considering various input image scales and hierarchical deep features within a unified 

framework. They captured the overall textures of comparable rain streaks located at different 

positions by employing recurrent computations.  

iii. MPRNet 

In 2021, Zamir et al. [189] introduced a multi-stage network that follows a progressive 

approach to learn the restoration of degraded images. This strategy involves breaking down 

the entire process into smaller, more manageable sub-processes. Their framework 

incorporates sequential information exchange from early to late stages alongside lateral 

connections connecting feature processing blocks to preserve comprehensive information. 

This network addresses various image restoration tasks such as denoising, deblurring, and 

deraining. In the initial stages, encoder-decoders are utilized to extract multi-scale 

contextualized features. Subsequent stages operate at the original image resolution to 

produce spatially accurate outputs. Furthermore, they incorporated a Supervised Attention 

Module (SAM) between each pair of stages to refine features before transmitting them to the 

subsequent stage. 

iv. HINet 

In 2021, Chen et al.  [190] introduced HINet, a robust and straightforward multi-stage 

network design. HINet comprises two subnetworks, both adopting the U-Net architecture 

[191]. A novel element, the Half Instance Normalization (HIN) block, was incorporated. The 

network's performance excelled over state-of-the-art methods across various image 

restoration tasks, including denoising, deblurring, and deraining.  

2.6 Summary  

This chapter provided a brief background on autonomous driving and its current challenges. 

Nowadays, most vehicles have different autonomous capabilities onboard, such as lane 

detection and parking assistance. On the other hand, both research and industry are moving 
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towards reaching fully autonomous vehicles (Level 5), which are capable of operating under 

any operational driving domain without the need for human interference.  

Different types of sensors were studied (Camera, LiDAR, RADAR and Ultrasonic), and 

compared to highlight each sensor’s advantages, limitations, and applications. Moreover, a 

review of the related research applying sensor fusion on different sensor combinations was 

made. In the proposed study, objects detection process is the primary concern as it comes 

ahead of other tasks performed by AVs. Objects detection should be performed while 

maintaining AV-related requirements, such as real-time performance, detection of multiple 

and dynamic objects, and reliable performance under different weather conditions.   

Moreover, due to the significant effect weather conditions impose on the objects detection 

operation, different rain degradation types are elaborated, showing their effect on images. 

Also, existing baseline research towards rain detection and removal has been elaborated and 

compared while highlighting their limitations.  

On the other hand, much research has been made towards enhancing the performance of the 

objects detection process; some approaches reached remarkable accuracy by employing 

expensive sensory systems while integrating them with powerful computational hardware. 

However, these systems impose high computational requirements; otherwise, they will slow 

down the whole system. Moreover, objects detection is a primary step before many others. 

Hence, the computational resources are shared among many different operations in addition 

to objects detection. Therefore, future research should aim to reduce the complexity and 

computational requirements of autonomous driving sub-operations. Other less expensive 

approaches exist; however, they still have their limitations, such as slow running time, 

detecting specific objects, and not considering the dynamic behaviour of both the 

surrounding objects and the ego vehicles themselves.  

In this thesis, a real-time 3D objects detection framework is proposed which addresses many 

of the current systems’ limitations while maintaining low computational requirements. 

Moreover, the visual objects detection operation is boosted by proposing a deraining network 

in order to maintain reliable objects detection performance in rainy weather conditions. The 

following chapters will demonstrate the contributions of this thesis while comparing the 

proposed work to related work in the field.  
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Chapter 3 Visual Rain Streak and Accumulation Removal using 

Artificial Intelligence 

3.1 Introduction 

Object detection stands as a foundational task for AVs, preceding activities such as object 

tracking, trajectory estimation, and collision avoidance. It involves the process of identifying 

and precisely localizing objects while determining their respective classes. Environmental 

perception is accomplished through the utilization of suitable exteroceptive sensory systems. 

Exteroceptive sensors encompass a range of devices such as monocular and stereo cameras, 

short- and long-range RADARs, ultrasonic sensors, and LiDARs. 

In this thesis, a cost-effective approach is taken by combining a single-beam (2D) LiDAR 

with a monocular camera to achieve comprehensive 3D detection of dynamic objects in real 

driving scenarios, all while maintaining real-time processing capabilities. This study also 

addresses challenges encountered during dynamic object detection, such as complex object 

interactions leading to occlusion and truncation, as well as the dynamic variations in 

perspective and bounding box scales. Object detection from images relies on a deep-learning 

detector (YOLOv3), while LiDAR measurements undergo pre-processing and clustering. 

The system's output includes object classification and localization within bounding boxes, 

accompanied by a third dimension of depth information obtained from the LiDAR 

measurements. A schematic of the proposed approach is shown in Figure 3.1. 

However, when object detection frameworks (image-based) are applied to unclear or 

distorted images, their performance greatly degrades. The reason behind this is that 

distortions (such as rain) cover important features that are needed by object detection 

frameworks to perform feature extraction.  

Weather conditions that lead to image distortions can be categorized as either steady or 

dynamic, as outlined by Garg and Nayar  [137]. Steady weather conditions encompass 

phenomena like fog, mist, and haze, while dynamic weather conditions comprise instances 

of rain and snow. Due to their larger and constantly changing droplet patterns, the dynamic 

weather conditions impose more substantial impairments on scene visibility. These 

conditions result in diminished scene clarity and contrast, thereby causing a notable decline 

in the effectiveness of object detection by AVs. 
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Rain is the most common dynamic challenging weather condition, especially in the United 

Kingdom  [138], as the annual average rainfall percentage in the UK is around 33.7% [192]. 

Even though many researchers have achieved advancements in developing deraining 

methods, real-time video deraining for AV tasks has been largely understudied. 

Rainfall can be defined as the existence of numerous water droplets characterized by diverse 

sizes, intricate forms, and fluctuating velocities. It randomly spreads with varying speeds 

over road elements (i.e., roadways, pavements, vehicles, pedestrians, cyclists, animals, etc.).  

Due to the high velocity of raindrops, their perspective projection forms rain streaks [193]. 

Figure 3.1: A schematic of the whole system 
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The presence of raindrops in captured video frames causes pixel intensity variations, as they 

block the light reflected by objects in the driving scene. Generally, rain streaks cause lower 

contrast and more whitened visual data [5]. 

As discussed in the Literature Review in Section 2.5, rain causes two different forms of 

visibility degradations. Rain streaks distort the images by producing specular highlights and 

distorting background scene features. On the other hand, rain streaks may gather and produce 

a hazy effect that resembles fog, hence decreasing the scene’s vision [139]. Rain streaks and 

rain streak accumulation have different characteristics, and as a result, the distortions they 

cause to images are different. Researchers eventually deal with them as two distinct issues. 

This has encouraged the research towards developing a framework that mitigates both rain 

degradation types without negatively affecting the sequential object detection tasks.  

Therefore, rainfall influences camera-captured videos and detections; the performance of 

object detection is degraded due to the degraded image quality.  As a result, mitigating the 

effect of rain on the object detection framework is one of the most critical tasks that AVs 

should perform to reduce the gap towards achieving Level 5 autonomous driving 

(Automation under any ODD). Moreover, it is considered a challenging task due to: 

• Real-time performance constraints (computation speed and complexity) 

• Different rainfall characteristics  

• Dynamic driving scenarios  

• Further tasks (e.g., object detection) depend on the output of the deraining process. 

Some studies have shown that many deraining algorithms  [9, 194] actually degrade the 

detection performance compared to directly using the rainy images as input into the 

corresponding detection frameworks as they may over-smooth the input images, which 

distorts meaningful features in a scene, especially edges of objects [5]. Moreover, most 

deraining algorithms have been designed and tested using synthesized rainy datasets or 

mitigated a single rain degradation effect. Also, some of the SOTA deraining networks are 

heavily weighted, which leads to higher computational requirements and furthermore 

hinders low-cost real-time performance.  

Current deraining algorithms suffer from unclear and unsatisfactory aspects [173], including 

but not limited to (i) rain modelling is over-simplified, i.e., considering and evaluating with 

a single type of rain degradations, (ii) limiting evaluation to synthetic images, which lacks 
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the complexity and characteristics of real rain, (iii) many algorithms have not been evaluated 

metrics related to human perception quality  [195] or computer vision [208]. 

In this chapter, a lightweight multi-stage network for single-image deraining is presented; it 

mitigates the two main types of rain degradations in different directions, orientations, 

intensities, and accumulations. The proposed approach utilizes different progressive stages 

to reliably restore images affected by different rain degradations while maintaining low 

inference time. Lightweight networks have fewer parameters and less computation  [196]. 

3.2 Overview of Residual Networks (ResNets) 

Due to the vanishing gradient problem, training Deep Neural Networks (DNNs) is a 

challenging task; repeated multiplication that occurs when the gradient is backpropagated 

reduces the gradient, making it infinitely small. As a result, the deeper the network, the more 

saturated its performance becomes and the faster the degradation occurs [197]. The main 

idea of Residual Networks (ResNets) is using “identity shortcut connections” or “skip 

connections” that skips one or more layers [179], as shown in Figure 3.2. The addition 

between the output of a layer and its input improves the training of deep networks as these 

skip connections easily navigate gradients through them, resulting in faster training and 

higher accuracy from deep networks [9, 194]. Typical ResNets are implemented with 

double- or triple-layer skips that contain nonlinearities (ReLU) and batch normalization in 

between. 

3.2.1 Progressive Residual Networks  

In  [141], Ren et al. have recursively unfolded a shallow ResNet with five Residual Blocks 

(ResBlocks) into multiple stages, taking advantage of recursive computations without 

increasing the network parameters; they introduced the Progressive Residual Network 

(PRN). In addition, they introduced a recurrent layer forming a Progressive Recurrent 

Network (PreNet) in order to employ the dependencies of deep features across stages.  
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Figure 3.2: Residual learning: ResBlocks  [179] 

3.3 Methodology 

Figure 3.3 illustrates the suggested deraining framework, which consists of the removal of 

(i) rain streaks and (ii) rain accumulation. Because the deterioration of rain accumulation is 

multiplicative and its removal will adversely affect the rain streak removal stage, generating 

more significant errors, separate training for the two stages has been performed. Thus, end-

to-end training would have caused contamination of the recovery of rain streaks, which 

would have a more significant impact on the captured visual data [139]. On the other hand, 

both phases were jointly implemented during the testing phase. 

When distant rain streaks accumulate, they produce an atmospheric veiling effect that is 

comparable to the degradation caused by fog, as shown in Equations 3.1 and 3.2 [198]. 

Therefore, rain accumulation removal can be achieved using techniques similar to defogging 

and dehazing. Removal of rain accumulation as an initial step negatively affects the whole 

deraining process, as it may lead to strengthening the appearance of existing rain streaks; all 

rain streaks, even already sharp and clearly visible ones, are boosted; eventually, they look 

different than those present in the datasets, either synthetic or real [198]. Therefore, in the 

proposed organization, another rain streak removal stage was re-applied after rain 

accumulation removal, as the rain accumulation removal stage will cause the rain streaks 

that may be missed in the first stage of rain streak removal to be more apparent.  

𝐼(𝑥) = 𝐽(𝑥)𝛼(𝑥) + 𝐴,1 − 𝛼(𝑥)/, 3.1	



 

  

  44 

𝐽(𝑥) = 1𝐵 + 3 𝑆5!!

"

!!#$

∘ 𝑅8 3.2 

Where 𝐼(𝑥) is the observed hazy image at pixel location 𝑥; 𝐽 is the actual scene radiance; 𝛼 

is the transmission map; 𝐴 is the global atmospheric light (indicating the intensity of a light 

source at an infinite distance); 𝐵 is the background layer; 𝑆5!! represents a layer of rain streaks 

having the same direction; 𝑡% is the index of rain-streak layers; 𝑠 is the maximum number of 

rain-streak layers; and 𝑅 is a region-dependent variable that indicates the locations of 

individually visible rain streaks; finally,  ∘ is an element-wise multiplication operation. 

The initial stage of the suggested framework involves conducting rain-streak elimination. 

This is succeeded by eliminating rain accumulations and, ultimately, applying rain-streak 

removal once again. This sequence is founded on the insight that the phase of rain 

accumulation removal brings out the presence of less conspicuous rain streaks, which might 

have been overlooked during the initial round of rain-streak removal. The diagram of the 

suggested deraining framework is illustrated in Figure 3.3. 

 
Figure 3.3: Proposed deraining framework 

3.3.1  Rain Streaks Removal 

The procedure for removing rain streaks relies on Residual Networks (ResNets), as 

introduced by He et al. [179]. This is done to preserve real-time efficiency without 

contributing to the computational intricacy of the object detection framework. The 

fundamental design of progressive residual networks has been embraced. Hence, instead of 

employing deeper and more intricate networks, the rain streak removal unfolds in a series of 

stages, with ResNet being employed in each stage. Furthermore, to prevent a surge in the 

count of network parameters and the vulnerability to overfitting, the approach involves 

recursive computations achieved by sharing the same network parameters across multiple 

stages. 
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A basic ResNet has three parts: (i) a convolutional layer 𝑓&', (ii) multiple ResBlocks 𝑓%(" to 

extract deep representation, and (iii) a convolutional layer 𝑓)*!, as shown in Figure 3.4. 

Inference of the Progressive Residual Network (PRN) at stage 𝑡 can be formulated as shown 

in Equations 3.3 and 3.4: 

𝑥!+,⋅. = 𝑓&'(𝑥!+$, 𝑦)	,	 3.3	

𝑥! = 𝑓)*!(𝑓%("(𝑥!+,..)) 3.4 

 

Network parameters are reused across different stages, as 𝑓&', 𝑓%(", and 𝑓)*! are stage 

invariant. As shown in Equation 3.3, 𝑓&' takes the concatenation of the current estimation 

𝑥!+$ and rainy image 𝑦 as input, the inclusion of 𝑦 further improves the deraining 

performance.  

 
Figure 3.4: A basic ResNet  

i. Network Architecture 

The progressive network architecture is shown in Figure 3.5: 

• Filter sizes, 3 × 3, Padding 1 × 1;  

• 𝑓&' is a convolutional layer with ReLU non-linearity  [199]. Due to the concatenation 

of three channels from 𝑦 and another three channels from 𝑥!+$, the convolution of 

𝑓&'	has six input channels and 32 output channels; 

• 𝑓%(" includes five ResBlocks;  

• 𝑓)*! is a single-layer convolution; it takes the output of 𝑓%(" with 32 channels as input 

and outputs a 3-channel RGB image. 
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Figure 3.5: Progressive network architecture 

ii. Loss Function 

Although hybrid loss functions have been recently widely used to train deraining networks 

(e.g., MSE + SSIM, ℓ1 + SSIM, and adversarial loss), they increase the burden of hyper-

parameter tuning. As shown by Ren et al. [141], a single loss function, especially single 

negative SSIM, is sufficient to train PRN benefiting from the progressive nature architecture. 

For a model having multiple stages (𝑇), with a multiple number of outputs (𝑥$ , 𝑥0, …,	𝑥1   

), by only imposing supervision on the output of the final stage 𝑥1   [200].  MSE can be 

presented as: 

ℒ = 	‖𝑥𝑇 − 𝑥𝑔𝑡‖2 3.5	

Where, 𝑥2! is the corresponding ground-truth clean image.  

On the other hand, the negative SSIM loss can be represented as: 

ℒ = −𝑆𝑆𝐼𝑀(𝑥𝑇, 𝑥𝑔𝑡) 3.6	

 

3.3.2 Rain Accumulation Removal 

Rain streaks and the accumulation of rain have distinct visual distortions on captured images. 

Distant rain streaks accumulate, creating a distortion akin to fog. This fog-like effect not 

only degrades visibility but also conceals image details and the features of existing objects. 

Consequently, removing these distant rain streaks becomes imperative. Considering that the 

distortion caused by rain accumulation resembles that of fog (as represented by Equation 

3.1), similar algorithms can be employed for the removal of rain accumulation. For instance, 

techniques such as those outlined in references (e.g.   [139, 198, 201]). 
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i. Network Architecture 

The rain accumulation removal network incorporates a lightweight neural network termed 

Transmission-Guided Light-Weight Network (TGL-Net), as put forth by Li, Zhan et al. in 

2021  [202]. This network autonomously computes guided transmission maps instead of 

generating synthetic transmission maps using depth data and haze-free images. These maps 

are computed using the filter-refined dark-channel-prior (F-DCP) technique. This strategy 

empowers the network to be trained on both synthetic and real images without requiring 

extra manual adjustments or acquiring transmission information. 

The architectural design of TGL-Net draws inspiration from the Very Deep Residual 

Encoder-Decoder Network (RED-Net) introduced by Mao et al. in 2016.  While RED-Net 

employs a symmetric configuration with skip connections, TGL-Net deviates by featuring 

fewer layers and parameters, rendering it notably lightweight. TGL-Net comprises three 

main stages: downsampling, encoder-decoder, and upsampling, all of which are visually 

represented in  Figure 3.6; skip connections are shown as dotted lines [202]. 

 
Figure 3.6: TGL-Net’s symmetric architecture, comprised of three stages: downsampling, encoder-decoder, and 

upsampling [202] 

Downsampling 

The initial downsampling stage encompasses a convolutional layer (3 × 3) that is succeeded 

by a subsequent max-pooling layer. The role of the convolutional layer is to extract features 

from the images, after which the max-pooling layer reduces the total number 25 times by 

using a stride of 5. This optimization significantly enhances the computational efficiency of 

the network.  
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Encoder-Decoder 

During the encoder-decoder phase, a set of three convolutional and three deconvolutional 

layers are interconnected via a condensed encoder-decoder connection. This stage serves the 

purpose of both feature extraction and transmission estimation. Within the encoder, the 

convolutional layers are responsible for extracting additional image features while 

simultaneously eliminating noise. Conversely, the deconvolutional layers restore the 

intricate details of transmission maps in the decoder.  

In the encoder, the dimensions of the convolutional kernels follow a sequential pattern of 3 

× 3, 5 × 5, and 5 × 5. These dimensions are mirrored in the decoder’s corresponding 

deconvolutional kernels. Furthermore, zero padding has been incorporated to maintain 

consistency in the sizes of the output feature maps across each layer.  

The arrangement of symmetrically connected convolutional and deconvolutional layers 

remains consistent with the original RED-Net [203]. This choice leverages the advantageous 

characteristics of residual networks as outlined by He et al. [179]. The incorporation of skip 

connections, which directly transmit signals to subsequent layers, mitigates the prevalent 

issue of vanishing gradients often encountered in deep neural networks (DNNs), as described 

by Glorot and Bengio in 2010 [204]. Additionally, the utilization of skip connections 

contributes to the preservation of valuable image features and intricate details. 

In order to maintain a reliable computational efficiency, TGL-Net has a reduced encoder-

decoder number of layers; it has a six-layer encoder-decoder phase compared to 20 or 30 

layers in RED-Net. 

Furthermore, an Exponential Linear Unit (ELU) activation has been implemented for each 

encoder and decoder layer. In contrast to the Rectified Linear Unit (ReLU), ELU offers the 

advantage of avoiding an excessive number of “dead nodes” while still preserving the 

positive linear attributes of ReLU activation, thus mitigating the vanishing gradient problem, 

as depicted in Figure 3.7. Additionally, the mean output value of ELU is proximate to zero, 

promoting accelerated convergence during training, as indicated by Clevert et al. in 2015  

[205]. Consequently, the ELU function serves as the activation mechanism for the encoder 

and decoder layers within TGL-Net. 

Subsequent to the encoder-decoder layers, a single convolutional layer is employed, which 

combines a three-channel feature map into a single-channel predicted transmission map. 
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Additionally, a non-linear Sigmoid activation function has been utilized. This sigmoid 

function enters a saturation region when the input reaches extreme values (larger than 5 or 

smaller than -5), potentially intensifying the vanishing gradient risk when more layers are 

added. However, the utilization of ELU units and skip connections within the encoder-

decoder layers effectively addresses the vanishing gradient problem. The non-linear sigmoid 

function ultimately generates a preliminary estimate of a reduced transmission map that is 

smaller than the input image 25 times. 

 

 
Figure 3.7: Activation functions  

Upsampling  

The upsampling phase is introduced to match the dimensions of the input image. This 

upsampling phase encompasses a dual-step process. Initially, image enlargement is executed 

through bilinear interpolation, a measure undertaken to uphold the network’s computational 

efficiency. Subsequently, a convolutional layer is employed to further enhance the 

transmission’s map output quality.   

ii. Loss Function 

In order to combine the errors of both the transmission maps and the outputs, a double-error 

loss function was used; it was proposed by Li et al. in  [202]. The double-error loss function 

makes use of the errors of both a transmission map and clear output to supervise the training 

of the network. As a result, prior information is introduced, which achieves output images 

with enhanced details and richer information. 
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3.4 Summary  

Within this chapter, a novel deraining network designed to address a diverse range of rain-

related issues prevalent in images taken under rainy driving conditions is introduced.  This 

network is devised to alleviate distinct rain effects, encompassing varied rain streak 

orientations, intensities, and rain accumulations. Comprising three primary phases, the 

proposed approach strategically tackles these challenges. The initial phase is dedicated to 

rain streak removal, targeting the elimination of the most conspicuous rain streaks within the 

image. Subsequently, the second phase focuses on rain accumulation removal, which is 

similar to a defogging process. Finally, the third phase involves a second rain streak removal 

operation, which removes any remaining rain streaks that may have been intensified by the 

prior rain accumulation removal phase.  

The foundation of the network relies on fundamental lightweight architectures with few 

parameters to ensure real-time computational efficiency. This consideration is of utmost 

importance due to the stringent requirement for prompt processing in deraining networks, as 

well as in other subsequent operations conducted by autonomous vehicles (AVs) 

This work has been submitted and published in the Applied Sciences Journal as “A 

Lightweight Network for Real-Time Rain Streaks and Rain Accumulation Removal from 

Single Images Captured by AVs”. 
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Chapter 4 Real-time Object Detection Using a Multi-Sensory 

System 

4.1 Introduction 

Among the complexities, dynamic road objects like pedestrians and cyclists present a 

substantial challenge due to their dynamic behaviour. The operational reliability of object 

detection, crucial for AVs, is mainly tested in this context. The prevalent approach in both 

commercial AVs and research endeavours involves the utilization of costly sensors. 

Nonetheless, this reliance on expensive sensors could potentially impede the advancement 

of AV research and capabilities. 

These detection techniques yield bounding boxes encapsulating the detected entities, 

accompanied by predicted class labels and associated confidence scores  [206]. Within the 

realm of autonomous driving, the task encompasses the recognition of various object 

categories, which can be categorized into two main groups: static and dynamic objects. Static 

objects encompass elements such as traffic lights, signs, buildings, bridges, and curbs, while 

dynamic objects comprise pedestrians, cyclists, animals, and various types of vehicles. 

Detecting static objects is generally more straightforward due to their well-defined shapes 

and relatively predictable positions.  

Despite the substantial interest researchers have shown in LiDAR-based 3D detections, point 

clouds still lack the texture information necessary for effective object classification. 

Furthermore, point clouds encounter issues such as sparsity and reduced density when 

detecting objects at a distance.   

4.2 Sensory System 

In this thesis, a low-cost sensory system has been employed and a novel fusion algorithm 

has been developed in order to perform real-time 3D object detection. A monocular camera 

is used in addition to a 2D LiDAR; both sensors complement each other.  

4.2.1 Monocular Camera 

Cameras play a pivotal role as the primary vision sensors utilized for object detection due to 

two key factors: (1) their affordability, making them a cost-effective option for integration 

into AVs, and (2) their ability to capture intricate texture details. Nonetheless, monocular 
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cameras face limitations in lacking a third dimension crucial for precise object detection. 

While 3D object detection from captured images can be accomplished by extending the 

detected 2D bounding boxes through techniques like reprojection constraints or regression 

models, the accuracy of depth estimation in these calculations remains less dependable. 

In this thesis a monocular camera is used as a vision sensor for detecting and localizing 

objects (in a 2D plane) in captured video frames. Different monocular cameras could be 

used, and a simple update in the system would be applied regarding field of view and 

resolution.  

4.2.2 Two-Dimensional LiDAR 

In order to add a depth dimension to detected surrounding objects, a LiDAR has been chosen. 

LiDARs come in two categories: 3D and 2D. 3D LiDARs project multiple laser beams along 

the vertical plane, providing a large amount of data; on the other hand, 2D LiDARs only 

project a single beam at the same vertical point. As discussed in Chapter 2, much research 

has focused on using 3D LiDARs as they provide the system with more information on the 

surrounding objects. However, they impose high costs and high computational requirements. 

Therefore, in this research, a 2D LiDAR has been employed to evaluate its performance 

when used along with a monocular camera.  

Below are five essential considerations for choosing a LiDAR to operate on an AV: 

• Resistance to ambient light: Intense sunlight can interrupt this process by preventing 

the LiDAR from reading its own returning light pulses. This could cause the LiDAR 

to malfunction, resulting in a loss of navigation. Therefore, a LiDAR with high 

sunlight resistance must be chosen for outdoor applications. 

• Resistance to Environmental Noise: Environmental factors such as rain and snow can 

interfere with LiDAR’s ability to accurately detect objects (i.e., leading the system 

to detect objects that are not there). Therefore, it is important to choose a LiDAR 

capable of maintaining a high level of accuracy even in adverse conditions. Some 

advanced LiDARs mitigate possible interferences using multi-echo technology, as 

shown in Figure 4.1, ensuring reliability regardless of weather conditions and 

minimizing false alarms, saving time and money. Multi-echo is an essential feature 

as part of the energy from the pulse of the LiDAR may be reflected by nearby 

environmental factors (such as rain and snowflakes). At the same time, the rest of the 
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beam reaches an obstacle and is reflected by it. LiDARs with multi-echo technology 

evaluate these multiple “echoes” and ignore the closer, weaker reflections caused by 

environmental factors. This eliminates the effect of noise. 

• High Environmental Rating: When choosing a LiDAR to work outdoors, it must be 

resilient enough to have a longer lifetime and resist environmental factors (such as 

rain). A LiDAR with rugged construction and a high enclosure rating will help reduce 

Mean Time Before Failure (MTBF) and ensure the longevity of the navigational 

system.  

• Temperature Range: Extremely cold or hot temperatures could damage sensors (for 

example, causing LiDAR’s housing to crack). Because of this, LiDARs with a wider 

operating temperature range and a built-in temperature control system are advised. 

• Electromagnetic Considerations: Outdoor environments may have a wide variety of 

signal emissions, which could contain varying strengths and types of electrical noise. 

This noise can induce itself onto the sensors and circuits of the control system, which 

could cause the system to behave erratically. Although this factor is often overlooked 

in the early design process, electromagnetic noise can become problematic once AVs 

are deployed into real-world environments, especially for vehicles operating near 

substations or powerlines. 

 
Figure 4.1: Multi-echo operation 

 

According to the previously mentioned criteria for choosing a LiDAR, four LiDARs were 

considered good candidates, they are presented in Table 4.1. 
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Table 4.1 Comparison between three candidate LiDARs 

 UXM-30LX-EW UTM-30LX-EW UXM-30LXH-EWA UTM-30LX 

Range 30m 30m 30m 30m 

Field of view 190° 270° 190° 270° 
angular resolution 0.25° Approx. 0.25° 

degrees 

0.125° Approx. 0.25° 
Scan time 50ms/scan 25ms/scan 50ms/scan 25ms/scan 
Multi-echo ✓ ✓ ✓ - 

 

UTM-30LX-EW and UTM-30LX were the best candidates owing to their wider FOV and 

faster scanning time. Due to the availability, the LiDAR used in this research is the Hokuyo 

UTM-30LX (shown in Figure 4.2). It owns competitive features; however, it lacks a multi-

echo feature. It is a 2D radial LiDAR that measures 1,081 distance points in a range from -

135° to 135°, where orientation 0° corresponds to the front of the sensor, as shown in Figure 

4.3. It takes 0.025 seconds/scan when operating in the continuous acquisition mode. The 

LiDAR has a resolution of 1mm in a range from 0.1 to 60m and requires a dedicated power 

source (12V, 1A) to operate correctly. More specifications are listed in Appendix B.  

 
Figure 4.2: Hokuyo UTM 30LX  [207] 
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Figure 4.3: Hokuyo UTM 30LX angular range 

 

4.2.3 Sensor Fusion 

Relying solely on a single type of sensor has demonstrated its inadequacy and unreliability; 

thus, the integration of multiple sensors through sensor fusion becomes imperative to 

overcome these limitations. Through the utilization of multiple sensors, the process of sensor 

fusion enhances the trustworthiness and precision of measurements while diminishing their 

inherent uncertainty. To effectively harness the capabilities of the 2D LiDAR within diverse 

and challenging driving scenarios, where many distinct objects may potentially overlap and 

interact, the implementation of an overlapping detection mechanism becomes essential. This 

mechanism serves the purpose of identifying objects that are overlapping and forming 

clusters with one another. This algorithm plays a crucial role during the integration of LiDAR 

and camera data. 

4.2.4 Sensors Placement 

Sensors placement must consider the vehicles’ ground clearance (i.e. ride height): it is the 

amount of space between the base of an automobile tyre and the lowest point (typically the 

axle) or, more appropriately, to the shortest distance between a flat-level surface, and the 

lowest part of a vehicle other than those parts designed to contact the ground (such as tyres, 

tracks, skis, etc.), as shown in Figure 4.4. Therefore, vehicle types are surveyed in order to 

estimate the average ground clearance of vehicles in the UK in order to place the LiDAR at 

a height that is between the maximum ground clearance and the minimum vehicle height 

(this is given in Appendix C). Therefore, it is concluded that the LiDAR’s optimal height is 
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559mm away from the ground in order to be higher than the maximum ground clearance 

(maximum truck ground clearance is 559mm). 

In the proposed setup, the camera system and the LiDAR must have a common horizontal 

centre point in order to be able to correctly map between the image pixels and LiDAR light 

beam angles. 

 
Figure 4.4: Vehicles ground clearance 

4.3 Real-time Object Detection using Artificial Intelligence Techniques 

4.3.1 Deep-Learning-Based Object Detection 

Object detection techniques yield bounding boxes encompassing identified objects, 

accompanied by an anticipated class and a confidence score [206]. Various factors influence 

the selection of the appropriate object detection algorithm, and consequently, distinct driving 

scenarios introduce varying challenges to object detection. These challenges can include: 

• Fluctuating weather and lighting conditions 

• Reflective objects 

• Differing object dimensions 

• The obstruction and partial concealment of obstacles.  

Table 2.5 summarises a comparison between the performance of the three main DL-based 

object detection approaches: CNNs, SSD, and YOLO. The table shows that there is a trade-

off between the detection FPS and the mAP percentage.  It can be observed that: 

• SSDs achieve high mAP on high FPS; however, it is worth noting that SSDs perform 

poorly when detecting small/distant objects. This is because SSD detects small 
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objects only in higher-resolution layers. However, these layers contain low-level 

features, like edges or colour patches, that are less informative for classification. 

• YOLO Tiny models achieve high-speed detections while degrading the mAP values. 

• YOLOv2 and YOLOv3 achieve unparalleled speed while maintaining high mAP 

values on both VOC and COCO datasets  [123, 124]. 

As a result of these comparisons, YOLOv3 will be employed as a real-time object detection 

network. YOLOv3 works upon Darknet, which is a neural network framework created by 

Joseph Redmon [208] (He is the author of these YOLO papers: [104, 123, 124]). Darknet is 

a framework to train neural networks. It is open-source, written by C/CUDA and serves as 

the basis for YOLO. The initial repository established by J. Redmon can be located in  [209].  

The YOLO algorithm is named “you only look once” because its prediction used 1×1 

convolutions; this means that the size of the prediction map is exactly the size of the feature 

map before it. It is based on Convolutional Neural Networks (CNN) that can perform object 

detection in real time. It processes input images as a structured array of data and recognizes 

patterns between them.  

The YOLOv3 architecture can be summarized as follows: 

• Input: YOLOv3 takes an image input and divides it into a grid. 

• Darknet: The input image goes through a backbone Darknet-based network. 

• Multi-scale detection: YOLOv3 performs objects detection at three different image scales, 

and it generates bounding boxes and class probabilities at each scale. 

• Bounding box prediction: YOLOv3 predicts multiple bounding boxes with associated 

confidence scores for each grid cell at each scale. 

• Class prediction: YOLOv3 predicts the class probabilities for each bounding box, 

indicating the likelihood of an object being for a specific class. 

• Non-Maximum Suppression (NMS): It only keeps non-redundant bounding boxes with the 

highest confidence scores for each detected object. 

• Output: The final output is bounding boxes, each associated with a specific class and a 

confidence score. 

YOLO performs at high speed while maintaining high detection accuracy. It looks at the 

whole image once at test time; therefore, its predictions are influenced by the full context of 
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the image. Different image regions are scored based on their resemblance to predefined 

classes. 

YOLOv3 generates 2D bounding boxes in addition to the predicted class of the detected 

object.  The model employed here has been pre-trained on the KITTI dataset, which is the 

most extensive dataset targeted for computer vision assessment related to autonomous 

driving. 

4.3.2 Overlapping Detection 

To ensure accurate usage of the 2D LiDAR across diverse and demanding driving scenarios 

and given the potential existence of multiple distinct objects that might overlap and interact 

(as shown in Figure 4.5), the implementation of an overlapping detection algorithm was 

imperative. This algorithm identifies objects that are in overlapping proximity and groups 

them into clusters. This algorithm's utilization will be during the integration of LiDAR and 

camera data, enhancing the precision of object location updates that necessitate distance 

computations. Multiple challenges face the overlapping checking process: 

• The detection is performed in real-time scenarios, and the objects’ number and 

locations are continuously changing,  

• The regular overlapping checking operations cause higher computational 

complexity and time. 

• There are multiple objects-overlapping scenarios: non-overlapping (Figure 4.6), 

overlapping between two or more objects in a single cluster (Figure 4.7), and the 

most common case in driving scenarios is overlapping between multiple objects in 

different clusters (Figure 4.8)  

 
Figure 4.5: Overlapping samples from the KITTI dataset after YOLOv3 object detection 
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Figure 4.6: No overlapping scenario 

 

 
Figure 4.7: Partial and full overlapping scenarios 

 

 
Figure 4.8: Overlapping in multiple clusters in the same image frame 

 

In order to do the overlapping checking, the struct “bbox_t” is updated in order to include a 

vector of the overlapped horizontal pixels “overlapped_pixels” and another vector for the 

overlapped objects “overlapped_objects” and renamed it to “bbox_ol_t”. The first step is to 

loop through the “n” detected objects at frame “i” in order to detect if the n’th object 

overlapped with any of the previous objects and update its related attribute of 

“overlapped_pixels” and “overlapped_objects”. 
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4.4 LiDAR Data Processing 

4.4.1 Conversion of Radial Measurements into Perpendicular Measurements 

LiDAR works by calculating distances through angular rotations, resulting in radial 

measurements, as depicted in Figure 4.9 and Figure 4.3. To normalize the LiDAR 

measurements, it becomes necessary to convert these radial measurements into 

perpendicular measurements, as demonstrated in Equation 4.1. 

⊥ distance = 𝑐𝑜𝑠(A) x radial distance 4.1	

 
Figure 4.9: LiDAR radial to perpendicular measurements  

 

4.4.2 Linearization and Smoothing 

The data collected by the LiDAR for objects enclosed within bounding boxes cannot be 

directly regarded as a simple distance to be incorporated as a third dimension of the detected 

objects. This complexity arises from several factors, such as the irregular surfaces of the 

detected objects, uncertainties associated with the sensors, and the constant occurrences of 

overlapping and truncation among objects. Moreover, a phenomenon called mixed pixels 

occurs when discrete points appear between two objects that are horizontally alongside each 
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other [158]. It happens because the scanner received a part of the echo from one object and 

another part from the other object. Consequently, the data obtained from the LiDAR 

undergoes a smoothing and linearization process to provide a clearer comprehension of the 

objects present in the surroundings.  

In order to apply depth measurements denoising, there are three suggested methods  [210]: 

(1) spatial filters, (2) methods using depth and colour statistical information, and (3) 

segmentation-based methods. The most common spatial filters are Gaussian Low-Pass Filter  

[211],  Median Filter  [212], and Bilateral Filter  [213]. On the other hand, the idea behind 

methods depending on depth and colour information is that discontinuities in colour typically 

correlate with discontinuities in range measurements. However, colour information is 

seldom available in LiDAR depth measurements. Finally, segmentation-based methods 

smooth regions in-depth images without impairing edges by segmenting the data and then 

performing local smoothing on each segment.  

LiDAR measurements exhibit a Gaussian noise distribution with a variance of ±3𝑐𝑚. 

Consequently, employing a filter with a Gaussian impulse response function emerges as a 

suitable choice for noise reduction. In real-world scenarios, the surfaces of objects 

encompass both flat and rough areas as well as edges. Given the sparse nature of LiDAR 

measurements for distant objects, object edges manifest as disruptions in the LiDAR 

measurements, whereas flat surfaces exhibit gradual value changes. This underscores the 

necessity for an edge-preserving filter in the depth measurements reconstruction. To ensure 

real-time efficiency, a median filter was employed to carry out the filtering process while 

maintaining the integrity of edge features. 

4.4.3 Grouping of LiDAR Measurements into Clusters with Unique IDs  

Different studies have addressed the problem of object segmentation on LiDAR point clouds  

[60, 63, 64, 214, 215]. Nonetheless, their approaches either relied on 3D point clouds or 

operated under the assumption that the environment comprises distinct objects that do not 

overlap physically. In the proposed study, the challenge of multiple dynamic objects 

interacting and overlapping with one another is confronted. 

Once the LiDAR measurements are refined through filtering, the subsequent step involves 

clustering, where similar neighbouring data readings are grouped together and assigned a 
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unique identifier accompanied by an average distance value. Two primary variables dictate 

this process: 

• Minimum cluster size: To prevent the generation of numerous unnecessary mini 

clusters that might delineate subregions of objects, experimentations with various 

cluster sizes were made. Smaller cluster sizes led to an increased occurrence of false 

clusters. 

• Threshold for difference: This parameter establishes the boundary between 

consecutive clusters, indicating the disparity that defines the separation between 

them. 

4.5 Camera and LiDAR Fusion 

4.5.1 Mapping between Image and LiDAR Coordinates 

The results produced by the video-processing module encompass two essential components: 

• Two-dimensional bounding boxes are superimposed upon the image pixels. 

• Object classes attributed to the detected objects. 

Establishing a correspondence between image pixels and real-world angular coordinates is 

imperative to facilitate the integration of sensor data between pixels (bounding boxes) and 

LiDAR measurements. Given the utilization of a 2D LiDAR, the focus remains on the 

horizontal plane (𝑥-axis), as the LiDAR maintains a constant vertical value. 

Leveraging the camera pinhole model illustrated in Figure 4.10, a functional mapping was 

formulated to translate image pixels into angular rotations. This function operates on the 

following inputs: 

• pixel 𝑥-coordinate (𝑥𝑝𝑖𝑥𝑒𝑙) 

• Frame width (𝐹𝑟𝑎𝑚𝑒𝑊𝑖𝑑𝑡ℎ) 

• Horizontal field of view of the camera (𝐻𝐹𝑂𝑉) 



 

  

  63 

 

Figure 4.10: Conversion of pixel values into real-world angular coordinates 

 

Considering the optical axis (ℓ), which is the direct line connecting the camera (𝐶) and the 

centre of the frame, it’s possible to establish two right-angled triangles: 

1. The hypotenuse (ℎ1) extends from the camera to the image’s edge, forming an angle 

(θ) with the hypotenuse and (ℓ). 

2. The hypotenuse (ℎ2) runs from the camera to the position of (𝑥𝑝𝑖𝑥𝑒𝑙), resulting in 

an angle (ϕ) with the hypotenuse and (ℓ). 

Within this configuration, the calculation of angle (ϕ) becomes necessary. The following 

trigonometric calculations are employed to calculate the angle (ϕ): 

𝑏 = 𝐹𝑟𝑎𝑚𝑒𝑊𝑖𝑑𝑡ℎ /2 4.2	

θ = 𝐻𝐹𝑂𝑉/2 4.3	

𝑥 = 𝑥𝑝𝑖𝑥𝑒𝑙-𝐹𝑟𝑎𝑚𝑒𝐶𝑒𝑛𝑡𝑟𝑒 4.4	

𝑡𝑎𝑛(θ) = 𝑏/ ℓ 4.5 

𝑡𝑎𝑛(ϕ)= 𝑥/ ℓ 4.6 
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Making use of common (ℓ) in both Equations 4.5 and 4.6, both are solved for (ℓ), namely: 

ℓ = 𝑏/𝑡𝑎𝑛 (θ) = 𝑥/𝑡𝑎𝑛 (ϕ) 4.7 

ϕ = 𝑡𝑎𝑛−1 ((𝑥 𝑡𝑎𝑛(θ))/𝑏) 4.8 

 

This procedure is executed for both the left and right 	𝑥-coordinates of each bounding box to 

transform the horizontal pixel values of the bounding boxes into angular coordinates in the 

real world. 

4.5.2 Complementary Camera and LiDAR Fusion 

Merging video and LiDAR data directly might seem straightforward, resulting in a horizontal 

line of pixels with associated distance measurements. However, the goal here is to link depth 

measurements with the 2D bounding boxes. Consequently, when the fusion is applied 

between bounding boxes and LiDAR measurements, the outcome comprises bounding boxes 

with linked distance measurements. Nonetheless, this task comes with a significant 

challenge: objects often overlap, causing the bounding boxes to intersect. As a result, the 

pixel range defined by a single bounding box could correspond to LiDAR measurements of 

multiple objects, as shown in Figure 4.11.  

Furthermore, Figure 4.12 depicts a block diagram showcasing the fusion procedure between 

the video and LiDAR data processing modules. Both modules work separately and then 

complement each other; hence, for the system to operate reliably, both modules should be 

working and complementing each other as each module outputs different required data. The 

camera module outputs the object’s class and its horizontal and vertical location, while the 

LiDAR provides the depth dimension. 
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Figure 4.11 A scenario including two overlapping objects  

During this stage, the process of sensor fusion takes place, involving the interaction between 

the bounding boxes generated by the video processing module and the clusters produced by 

the LiDAR data processing module. Several scenarios involving object overlapping need to 

be addressed:  

• No overlapping. 

• Object ‘𝑥’ is entirely situated in front of object ‘𝑦’ (object ‘𝑥’ is smaller than object 

‘𝑦’) (as illustrated in Figure 4.13(a)) 

• Object ‘𝑥’ is partially in front of object ‘𝑦’ (as depicted in Figure 4.13(b)). 

• Object ‘𝑥’ is partially behind object ‘𝑦’ (as shown in Figure 4.13(c)). 
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Figure 4.12: Block diagram for the object detection system of multiple overlapping objects using camera and LiDAR 

 

 
Figure 4.13: Different overlapping scenarios. (a) object ‘x’ is fully in front of object ‘y’; (b) object ‘x’ is partially in front 

of object ‘y’; (c) object ‘x’ is partially behind object ‘y’ 
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In this procedure, the algorithm examines the LiDAR clusters linked to the bounding boxes 

of every identified object. The process diagram for this step is illustrated in Figure 4.14. This 

task will enhance the real-time object detection performed by the video-processing module, 

as the bounding boxes typically exceed the actual perimeters of the detected objects. 

 
Figure 4.14: Flowchart for calculating the correct depth measurements for detected objects during overlapping objects 

4.6 Summary  

An affordable solution for achieving the necessary precision in obstacle detection for self-

driving vehicles involves a monocular vision-based system. However, this approach only 

provides a two-dimensional positioning of objects. To overcome this limitation, the 

incorporation of a range-finder sensor becomes essential. Nevertheless, the adoption of 3D 

LiDARs presents a challenge due to their high costs, which currently pose an obstacle to the 
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extensive implementation of autonomous driving across both industrial and research 

domains. 

In this chapter, a low-cost real-time 3D object detection for AVs has been developed using 

a monocular camera along with a 2D LiDAR. First, the state-of-the-art deep learning object 

detection method was adapted to detect multiple objects in real driving scenes; as shown in 

evaluation experiments, YOLOv3 has achieved the best performance (mAP) and running 

time (as shown in Section 2.4). Moreover, a mapping algorithm in order to convert image 

pixels to angular rotations was developed to be able to associate both bounding boxes’ 

locations and LiDAR measurements. Secondly, overlapping bounding boxes of detected 

objects are associated with flags in order to aid with the subsequent process of associating 

LiDAR measurements. 

Afterwards, LiDAR measurements are pre-processed by performing smoothing using a 

median filter and linearization to be able to divide LiDAR measurements into segments. 

Each segment is associated with a distance (depth) value, which is the closest depth to the 

LiDAR. Finally, these segments are mapped to the corresponding bounding boxes while 

utilizing the overlapping detection algorithm, as shown in Figure 4.14.  

The presented study promotes the adoption of cost-effective 2D LiDARs within AVs, 

thereby enhancing the integration of autonomous driving technology into a broader range of 

vehicles. One constraint of the suggested methodology is its dependency on the performance 

of the video-processing module, like YOLOv3. Hence, further exploration is needed to 

improve this aspect, potentially through the application of de-raining techniques.  

This work was published in Sensors Journal, as “Evaluation of 3D Vulnerable Objects’ 

Detection Using a Multi-Sensors System for Autonomous Vehicles” in February 2022. 
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Chapter 5 Experimental Setup and Results  

In this chapter, implementation details and experimental setup are illustrated. Different tasks 

require different evaluation protocols. Firstly, in order to evaluate the proposed deraining 

network, different metrics have been used to assess the quality of derained images. Also, 

both synthetic and real rainy datasets have been used. Secondly, to evaluate the objects 

detection approach, real road tests were made using the proposed sensory system, including 

a monocular camera and 2D LiDAR. Manual measurements and assessments validated this 

system due to the absence of datasets comprising 2D LiDAR measurements and images. 

Thirdly, joint deraining and detection experiments were performed in order to ensure that 

the proposed deraining network enhanced the following objects detection operation.   

5.1 Evaluation Metrics 

5.1.1 Evaluation of Deraining 

Quantitative results are obtained after removing rain from rainy images. For synthetic rainy 

images, full-reference metrics are used as they compare rain-removed images and the 

original rain-free images. On the other hand, no-reference metrics are used on real rainy 

images, where the corresponding rain-free images are not present due to the dynamic nature 

of driving scenarios; no-reference metrics assess the quality of the output image itself. 

i. Full-reference metrics 

For evaluating different deraining models, two primary assessment metrics are employed 

based on reference rain-free images: Peak Signal to Noise Ratio (PSNR) and Structural 

Similarity Index (SSIM) [216]. Full-reference metrics compare between the de-rained 

images and their corresponding original rain-free images. 

Peak Signal-to-Noise Ratio  

The Peak Signal-to-Noise Ratio (PSNR) represents the ratio between the maximum power 

of a signal and the power of the noise affecting the signal. To compute the PSNR between a 

test image 𝑔  and a reference image 𝑓, both having dimensions M × N, the PSNR is 

determined using Equation 5.1 [216]. 
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𝑃𝑆𝑁𝑅(𝑓, 𝑔) = 10 log$,(2550 𝑀𝑆𝐸(𝑓, 𝑔)⁄ ) 5.1	

Where, 

𝑀𝑆𝐸(𝑓, 𝑔) =
1
MN33,𝑓&3 − 𝑔&3/

0
4

3#$

5

&#$

 5.2	

As the Mean Square Error (MSE) tends towards zero (as shown in Equation 5.2), the PSNR 

value tends towards infinity. Consequently, a higher PSNR value indicates better image 

quality, while a lower PSNR value suggests significant numerical differences between 

images. 

Structural Similarity Index Measure   

Another commonly used evaluation metric for measuring the similarity between two images 

is the SSIM (Structural Similarity Index Measure). It was developed by Wang et al. [217] 

and is closely related to the perceptual quality assessment of the Human Visual System 

(HVS). The HVS is naturally adapted to extract structural information from images due to 

the inherent structure of natural image signals. SSIM leverages this structural information 

present in images to approximate the distortion within an image. Unlike traditional methods 

that sum up errors, SSIM characterizes image distortion through three distinct factors: loss 

of correlation, luminance distortion, and contrast distortion. The SSIM is defined in Equation 

5.3, where 𝑔  is a test image, and 𝑓 is a reference image. 

𝑆𝑆𝐼𝑀(𝑓, 𝑔) = 𝑙(𝑓, 𝑔)𝑐(𝑓, 𝑔)𝑠(𝑓, 𝑔) 5.3	

Where, 

𝑙(𝑓, 𝑔) =
2𝜇6𝜇2 +	𝐶$
𝜇60 + 𝜇20 + 𝐶$

 5.4	

𝑐(𝑓, 𝑔) =
2𝜎6𝜎2 + 𝐶0
𝜎60 + 𝜎20 + 𝐶0

 5.5 
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𝑠(𝑓, 𝑔) =
𝜎62 + 𝐶7
𝜎6𝜎2 + 𝐶7

 5.6 

• 𝑙(𝑓, 𝑔)	corresponds to the luminance comparison, which measures the closeness of 

the mean luminance of two images (𝜇6 and 𝜇2). This factor is maximal and equal to 

1 only if 𝜇6 = 𝜇2 (Equation 5.4). 

• 𝑐(𝑓, 𝑔), corresponds to the contrast comparison, which measures the closeness of the 

contrast of two images. Contrast is measured by the standard deviation 𝜎6 and 𝜎2. It 

reaches its maximal and becomes equal to 1 only if 𝜎6 = 𝜎2, (Equation 5.5). 

•  𝑠(𝑓, 𝑔), corresponds to the structure comparison, which measures the correlation 

coefficient between the two images	𝑓 and 𝑔. 𝜎62 is the covariance between 𝑓 and 𝑔, 

(Equation 5.6). 

• The positive constants 𝐶$, 𝐶0, 𝑎𝑛𝑑	𝐶7	 are added to avoid a null dominator. 

The positive values of the SSIM ranges between ‘0’ and ‘1’. A ‘0’ value means that there is 

no correlation between images, on the other hand, ‘1’ means that 𝑓 = 𝑔. Therefore, to 

evaluate the output of the deraining network (while comparing it to ground truth clear 

images), a bigger SSIM value is indicates better deraining performance. 

ii. No-reference metrics  

When evaluating deraining algorithms on real-world rainy images, it is infeasible to collect 

pairs of corresponding clear and rainy images due to the dynamic nature of outdoor scenes. 

Therefore, no-reference metrics are used to evaluate deraining performance on real-world 

datasets. Therefore, two no-reference evaluation metrics are used: Naturalness Image 

Quality Evaluator (NIQE) [218] and Spatial-Spectral Entropy-based Quality (SSEQ) [219] 

Naturalness Image Quality Evaluator (NIQE) 

NIQE is considered one of the blind Images Quality Assessment (IQA) metrics. It makes use 

of measurable deviations from statistical regularities existing in images, without training on 

human-rated distorted images and without any exposure to distorted images  [218]. A smaller 

score indicates better perceptual quality.  

The NIQE is applied by computing the 36 identical Natural Scene Statistics (NSS) features 

from equal-sized patches from the image to analyse their quality, fitting them with the 

Multivariate Gaussian (MVG) model, and then comparing its MVG fit to the natural MVG 
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model. The quality of the image is expressed as the distance between an MVG fit of the NSS 

features extracted from the test image and an MVG model of the quality-aware features 

extracted from the corpus of natural images [218]. This is shown in Equation 5.7. 

𝐷(𝑣$, 𝑣0, ∑$, ∑0) = i(𝑣$ − 𝑣0)1 j
∑$ + ∑0

2 k
+$

(𝑣$ − 𝑣0) 5.7	

Where, 𝑣$, 𝑣0, and ∑$, ∑0 are the mean vectors and covariance matrices of the natural MVG 

model and the rain-removed image’s MVG model  [218]. 

Spatial Spectral Entropy-based Quality (SSEQ) 

SSEQ was proposed by Liu et al.  [219]; it is an efficient general-purpose IQA model. It uses 

down-sampled responses as inputs, then extracts local entropy feature vector from the inputs 

(shown in Equation 5.8) and learns to predict image quality scores from these features. Image 

entropy indicates the amount of information contained within an image. 

𝐻 = −3𝑝& 	𝑙𝑜𝑔0	𝑝&

0..

&#,

 5.8	

 In Equation 5.8, 𝑝& is the probability associated with the grey level 𝑖, obtained from the 

normalized histogram of an image. 

5.1.2 Evaluation of Detection and Classification 

The detection techniques produce bounding boxes to delineate the identified regions. In 

terms of classification, there exist four distinct categories: 

• True Positive (TP): Indicates the number of correct predictions of the target class. 

• True Negative (TN): Indicates the number of correct predictions of the other class. 

• False Positive (FP): Indicates the number of incorrect predictions of the other class 

classified as the target class.  

• False Negative (FN): Indicates the number of incorrect predictions of the target class 

classified as other class classified class. 

Table 5.1 displays the confusion matrix for the above-mentioned classification categories. 
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Table 5.1: Confusion matrix for classification categories 

 
True Condition 

Positive condition Negative Condition 

Predicted 

Condition 

Positive Prediction TP FN 

Negative Prediction FP TN 

 

These mentioned classification categories are generally adopted in imaging classification 

methods; Accuracy (Equation 5.9), Sensitivity (i.e., also known as Recall, Equation 5.10), 

and Precision (Equation 5.11). These measures are using the TP, TN, FP, and FN defined as 

follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	
𝑇𝑃	 + 	𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 5.9	

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 5.10	

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 5.11 

 

Precision, also known as Positive Predictive Values (PPV), signifies the proportion of 

positive results that are correctly identified as true positives (TP). Additionally, Sensitivity 

also referred to as Recall, signifies the proportion of actual positive cases that are accurately 

predicted as positive. Lastly, the accuracy of a classification method reflects its overall 

performance by calculating the ratio of correct predictions (TP + TN) to all prediction 

outcomes (TP + TN + FP + FN) 

i. Intersection over Union (IoU) 

IoU serves as an assessment metric that compares the predicted bounding box (detection 

output area) with the area annotated in the ground truth. This metric is also known as the 

Jaccard index and quantifies the overlapping region between predicted and actual areas, as 

depicted in Figure 5.1. IoU is commonly employed for evaluating object detection 

techniques. Its mathematical representation is provided by Equation 5.12: 
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𝐼𝑜𝑈 =
𝐴2! 	⋂𝐴8
𝐴2! ⋂𝐴8

 5.12	

Where, 𝐴2! represents the area determined by the ground-truth annotations from experts, and 

𝐴8 corresponds to the bounding box predicted by the detection method.  

 
Figure 5.1: IoU calculation 

ii. Mean of average Precision (mAP) 

The mean of Average Precision (mAP) is employed to assess the detection localization 

performance of the proposed methods. mAP calculates the mean of Average Precision (AP) 

from the detection outputs. AP quantifies precision at various recall intervals, as defined in 

Equation 5.13.  

𝐴𝑃 = 	
1
11	 3 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑅𝑒𝑐𝑎𝑙𝑙&)

%(9:;;"

 5.13	

5.2 Evaluation Datasets 

Various datasets were used within this research to assess and refine the detection and 

deraining algorithms, enabling a comprehensive evaluation and comparison against existing 

methods in the field. The forthcoming subsections will elaborate on the specifics of data 

acquisition, data characteristics, and annotation procedures for each dataset. 

5.2.1 Synthetic Deraining Evaluation Datasets 

Falling rain is of a dynamic nature; it is uncontrollable and unpredicted. Therefore, it is 

infeasible to capture pairs of rainy and clear images simultaneously. Hence, rainy images are 

considered a no-reference category based on Wang et al.  [217]. This encouraged the 

synthesis of datasets for deraining; based on this idea, researchers inject noise in clear images 
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using synthetic rain generation algorithms. Therefore, knowing where each rain streak is 

placed makes it easy to obtain a rain streak mask image that can provide a supervisory signal 

to ML methods.  

There are mainly two approaches to synthesizing rainy images. The first approach is to use 

Adobe Photoshop and apply the non-linear “screen blend mode”. The second approach is to 

superimpose rain and haze on images. These settings are limited in generating diverse types 

of rain. 

The proposed deraining network is evaluated on multiple datasets across image restoration 

tasks. The datasets used are described below:  

i. Test100 

The name of this dataset ends with ‘100’ as it consists of 100 images; it was introduced by 

Zhang et al. [220] due to the lack of availability of large-sized datasets for single-image 

deraining. They randomly chose 50 images from the last 500 images in the UCID dataset 

[221] and another 50 random images from the test set of the BSD-500 dataset  [222]. After 

collecting these 100 images, Zhang et al. integrated rain streaks into them using Photoshop 

following the guidelines in [161]. They ensured adding rain effects of different intensities 

and orientations to emulate diverse rainy conditions. All images are resized to 256×256. A 

sample of the dataset is shown in Figure 5.2. 

 
Figure 5.2: Samples of the test100 dataset [220] 

ii. Rain100H 

This dataset contains 1800 training pairs and another 100 pairs for testing (the reason for the 

‘100’ in its name). It was contributed by Yang et al.  [139]. It has five heavy streak directions; 

that is where the letter ‘H’ at the end of its name comes from. While it is rare for a real rain 

image to contain rain streaks in many different directions, synthesizing this kind of images 

for training is observed to boost the capacity of the network. It is composed initially of 

samples from the BSD200 dataset  [223]. A sample is shown in Figure 5.3. 
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Figure 5.3: Samples of the Rain100H rainy dataset  [139] 

iii. Rain100L 

Similar to the Rain100H dataset, this dataset was provided by Yang et al.  [139]. The 

Rain100L dataset only consists of 200 training pairs and 100 testing pairs (the reason for the 

‘100’ in its name). It has synthetic rainy images featuring a single light type of rain streaks; 

that is where the letter ‘L’ at the end of its name comes from. It serves as a specialized 

resource to assess the capacity of deep neural deraining models in grasping the patterns of 

rain streaks.  The images were extracted from BSD200  [223]. A sample is shown in Figure 

5.4. 

 
Figure 5.4: Samples of the Rain100L rainy dataset   [139] 

iv. Test2800 

It was created by Fu et al. in [9]. It consists of 14,00 rainy/clean image pairs, a total of 2800 

images, and that is the reason why it is called ‘Test2800’. Thousand clean images were 

collected from the UCID dataset [221], BSD dataset [223] and Google image search to 

synthesize rainy images. Each clean image was used to generate 14 rainy images with 

different streak orientations and magnitudes. A sample is shown in Figure 5.5. 
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Figure 5.5: Samples of the Test2800 dataset [9] 

v. Test1200 

The Test1200 dataset is a large-scale dataset that was contributed to the work of Zhang et al.  

[185]. It contains 12,000 paired images of rainy scenes with different rain-density 

levels/labels (i.e., heavy, medium, and light). A sample is shown in Figure 5.7. 

vi. NYU Depth Dataset 

It was presented by Silberman et al.  [224]. It contains 1449 RGBD images recorded by both 

RGB and depth cameras from Microsoft Kinect, capturing 464 diverse indoor scenes with 

detailed annotations. It is used in the deraining phase to generate synthetic hazy images to 

train the rain accumulation removal network. This dataset comprises an extensive collection 

of indoor images affected by haze, along with their corresponding depth maps. Given that 

the transmission rate within a scene influences the proportion of light reaching the camera's 

sensor, this factor is contingent on the distance involved.  As a result, the transmission  𝑇(𝑥) 

at a specific location 𝑥 can be delineated as a function of the depth  [225], as illustrated in 

Equation 5.14. 

 

𝑇(𝑥) = 	 𝑒+	=>(@) 5.14	
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Figure 5.6: Samples of the NYU depth dataset  	

In Equation 5.14, β denotes the atmosphere’s attenuation coefficient, and 𝑑(𝑥) represents 

the scene's depth at location 𝑥. A larger β value signifies greater fog density within the scene, 

with β= 0	indicating an absence of haze in the image. Utilizing clear, haze-free images 

alongside their corresponding depth data from the NYU dataset, Li et al.  [202]  generated a 

total of 16,038 synthetic hazy images. These images were created with varying degrees of 

fog densities by randomly assigning values for β within the range	 [0.5,1.5]	according to 

Equation 5.14, and for atmospheric light A within the range [0.7,1.0].	All synthesized images 

possess a resolution of 480×640 pixels. An example is provided in Figure 5.6; the left column 

shows the RGB image, the middle column shows the raw depth image, and the right column 

shows class labels from the dataset  [224]. 
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Figure 5.7: Samples of the Test1200 dataset [185] 

vii. NTIRE 2018 dataset 

This dataset encompasses sets of matched haze-free images alongside their naturally 

occurring hazy counterparts. It comprises a total of 60 images for training, 10 for validation, 

and an additional 10 for testing. The collection consists of a diverse range of real-world 

scenes, both indoors and outdoors, captured under varying degrees of haze presence or 

absence. To create these corresponding pairs, two professional fog/haze machines were used 

to generate dense vapour, as documented in previous works  [226-228].  Samples from this 

dataset were used to train the rain accumulation removal network. 

5.2.2 Real World Rainy Images Dataset 

As acquiring pairs of real driving scenes in different situations (rainy vs. clear) is infeasible, 

most algorithms depend on synthesized datasets to train and evaluate their algorithms. 

Although some works have been done to study the physical characteristics of rain, e.g., rain 

direction  [178] and rain density [185], these synthesized datasets still lack the ability to fully 

model real-world rainy scenes. 

viii. Rain in Driving (RID) 

Li et al. [173] have collected 2,495 real rainy images from high-resolution driving videos 

captured by car-mounted cameras in rainy weather in different real traffic scenes during 

multiple drives. They labelled the bounding boxes for different road objects (e.g., 

pedestrians, cars, buses, bicycles, motorcycles, etc.) Most images are of 1920×990 

resolution, with a few exceptions of 4023×3024 resolution [173]. Samples of the RID dataset 

are shown in Figure 5.8. Statistics of objects’ classes presented in the RID dataset are 

presented in Table 5.2. 
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Figure 5.8: Samples of the RID dataset  [173] 

ix. Rain in Surveillance (RIS)  

Li et al. [173] have also collected 2,048 real rainy images from surveillance video cameras 

with relatively lower resolution (compared to the RID dataset). They were gathered by a total 

of 154 networked cameras on rainy days; they also ensured the collection of diverse content. 

The rain effect in the RIS dataset is similar to rain and mist; in addition, the low-resolution 

cameras cause a foggy effect. Same as the RID dataset, they also annotated the main road 

objects (e.g., pedestrians, cars, buses, bicycles, motorcycles, etc.). Most of the cameras have 

a resolution of 640×368, with a few exceptions of 640×480. Samples of the RIS dataset are 

shown in Figure 5.9. Statistics of objects’ classes presented in the RIS dataset are presented 

in Table 5.2. 

 
Figure 5.9: Samples of the RIS dataset  [173] 

 

Table 5.2: Object statistics in RID and RIS datasets [173] 

Categories Car Person Bus Bicycle Motorcycle 
RID Set 7332 1135 613 268 968 
RIS Set 11415 2687 488 673 275 

 

5.2.3 Object Detection Evaluation Datasets 

In order to train and validate detection networks that will be used to detect objects 

surrounding AVs outdoors, different datasets with different features have been proposed in 

this field. 
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i. KITTI 

KITTI was collected via an autonomous driving platform; this dataset encompasses a 

comprehensive range of tasks, spanning stereo, optical flow, visual odometry, and more. The 

section dedicated to object detection comprises 7,481 annotated training images and 7,518 

testing images. These annotated images present both 2D and 3D bounding boxes of cars, 

pedestrians, and cyclists within urban driving scenarios.  

The nearly equal distribution of images between the training and testing sets serves several 

aspects: 

• Representativeness: it prevents the model from overfitting to specific features of the 

training set. A balanced distribution helps the model used to generalize unseen data 

well. 

• Evaluation: having a comparable number of images in the testing set allows for a 

robust assessment of the model’s performance. 

• Fair assessment: A balanced split ensures that the evaluation is fair and unbiased 

while providing a more accurate assessment of the model’s capabilities across 

different scenarios 

The balance in the number of images is just one aspect of dataset design. The diversity and 

representativeness of the data, along with careful annotation, are also crucial factors for 

creating a dataset that effectively supports the development and evaluation of computer 

vision algorithms, especially in the context of autonomous driving. 

The designated 3D metric is the Average Orientation Similarity (AOS), derived by 

multiplying the Average Precision (AP) of the 2D detector with the mean Cosine distance 

similarity pertaining to azimuth orientation [229, 230]. Furthermore, the dataset 

differentiates among three levels of difficulty: 

• Easy: Bounding boxes with a minimum height of 40 pixels, encompassing fully 

visible objects (no occlusion), and truncation limited to a maximum of 15%. 

• Moderate: Bounding boxes with a minimum height of 25 pixels, encompassing 

partially occluded objects, and truncation capped at a maximum of 30%. 

• Hard: Bounding boxes with a minimum height of 25 pixels, encompassing objects 

that are challenging to discern, and truncation restricted to a maximum of 50%. 
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The KITTI dataset primarily consists of images and sensor data captured in dry weather 

conditions. The dataset focuses on urban scenarios, and rainy or adverse weather conditions 

are not explicitly included in the standard KITTI dataset. 

Since the test ground-truth labels are not available, the KITTI training set has been equally 

divided into train and validation sets; also, it has been ensured that the training and validation 

sets do not come from the same video sequence. Samples from the KITTI dataset are shown 

in Figure 5.10. 

ii. COCO350 and BDD350 

Sponsored by Microsoft, the original COCO dataset encompasses over 330,000 fully 

segmented images, featuring an average of 7 objects per image across a total of 91 categories. 

The images were sourced from intricate real-life scenarios. Evaluation of outcomes is 

performed through Average Precision (AP) calculation across various levels of Intersection 

over Union (IoU) and diverse object sizes [231].  

On the other hand, BDD100k is a large-scale dataset comprising diverse scene types, 

including city streets, residential areas, and highways, and diverse weather conditions at 

different times of the day  [232]. It has 100k videos and 10 tasks to evaluate the progress of 

image recognition algorithms on autonomous driving. It includes different geographic, 

environmental, and weather conditions. A sample is shown in Figure 5.11. 

In order to conduct joint deraining and object detection assessment, samples curated by Jiang 

et al. in their work  [180] were utilized. Their dataset comprises a collection of samples 

drawn from diverse driving scenes, incorporating a range of conditions (850 samples 

originating from COCO and BDD datasets, which led to the creation of novel synthetic rain 

datasets COCO350 and BDD350). These datasets encompass varying rain orientations, 

magnitudes, and even encompass intricate scenarios such as night scenes.  
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Figure 5.10 KITTI Dataset samples [230] 

 
Figure 5.11: Samples of the BDD100K dataset  [232] 

iii. PASCAL VOC 2007/2012  

It consists of 4,824 images comprising 20 categories, including vehicles, animals, bicycles, 

buses, cars, motorbikes, and people. The images in the PASCAL VOC dataset are diverse 

and come from various sources, representing a wide range of real-world scenarios; for 

example, some images were sourced from web data, and others are contributed images. The 
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images include scenes from both indoor and outdoor environments, with different lighting 

conditions, backgrounds, and object poses. The dataset is split into three subsets: 1,464 

images for training, 1,449 images for validation, and the test set has 1,911 images. Results 

are evaluated by the Average Precision (AP) in each category and the mean Average 

Precision (mAP) across all the 20 categories. Additionally, it provides standard labelling and 

evaluation tools [233, 234]. 

iv. ImageNet 

Structured in accordance with the WordNet hierarchy, this dataset characterizes each 

meaningful concept through multiple words or phrases. Comprising a collection of 

14,197,122 images, ImageNet is arranged into 21,841 subclasses. These subclasses can be 

viewed as sub-trees stemming from 27 overarching high-level categories [235]. 

v. SceneFlow 

Comprising over 39,000 sets of stereo image pairs, this synthetic dataset exhibits a resolution 

of 960x540 pixels. The images are classified into three distinct categories: FlyingThings3D, 

Driving, and Monka. Notably, the dataset offers comprehensive and densely detailed 

disparity maps as the reference ground truth  [236]. 

vi. ModelNet 

Comprising a pristine compilation of 3D Computer-Aided Design (CAD) models, this 

dataset is sourced from online search engines. The ModelNet dataset manifests in two 

distinct variations: one containing solely the top 10 object categories and the other 

encompassing the complete set of 40 classes. In the context of ModelNet40, 12,311 3D mesh 

models spanning 40 categories are featured, with a division of 9843/2468 for training and 

testing. Additionally, the dataset offers diverse object alignment and facing-direction 

configurations. The evaluation metrics employed for ModelNet40 encompass mean per-class 

Accuracy (mA) and Overall Accuracy (OA)  [237, 238]. 

vii. OutdoorScene 

Comprising a total of 200 images, this dataset serves as a testing resource rather than a 

training one, with a principal focus on evaluating detections of extensively occluded and 

truncated objects. Within this dataset, there are 659 cars, out of which 235 cars are 

intentionally occluded and 135 are deliberately truncated [239]. 
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viii. Sydney Urban Objects 

Gathered through the utilization of a Velodyne HDL-64E LiDAR system in Sydney, this 

dataset encompasses 631 distinct scans featuring 26 diverse classes, including vehicles, 

pedestrians, signs, trees, and more. Its primary objective is to evaluate detection performance 

under demanding conditions involving varying viewpoints and levels of occlusion [240]. 

5.3 Experimental Results 

The proposed platform is equipped with: 

• Sensory system: A monocular camera, 2D LiDAR (Hokuyo UTM-30LX) 

• Computational hardware: NVIDIA GeForce GTX 1050Ti GPU, which is regarded 

as having medium performance, and an Intel Core i7-8750H CPU. 

Different experiments have been performed in order to evaluate both the deraining and 

objects detection approaches separately and then jointly.  

1. Deraining assessment: 

a. Evaluation on synthetic rainy datasets (Test100, Rain100H, Rain100L, 

Test2800, Test1200) using full-reference metrics (PSNR and SSIM) and 

comparing the performance with other baseline deraining approaches.  

b. Evaluation on real rainy datasets (RID and RIS) using no-reference metrics 

(NIQE and SSEQ) and comparing the performance with other baseline 

deraining approaches. 

c. Time performance evaluation and comparing the running time with other 

baseline deraining approaches. 

2. Objects detection  

a. Evaluation of the performance of objects detection from images using the 

KITTI dataset and YOLOv3 objects detector 

b. Evaluation of the performance of the LiDAR in calculating the depth of 

surrounding objects  

c. Evaluation of the performance of integrating both the camera and LiDAR in 

detecting and localizing surrounding objects in real driving scenes 

3. Joint deraining and objects detection 

a. Evaluation of the performance of objects detection after performing deraining 

and comparing the performance with other baseline deraining approaches 
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5.3.1 Ablation Studies 

In this section, different factors affecting the choice of the architecture of the proposed 

deraining network are investigated, specifically, the number of progressive stages employed 

in the rain streaks removal stage and also the effect of applying progressive operations. 

i. Number of progressive stages in the rain streak removal phase 

The diagrams presented in Figure 5.12 illustrate the impact of varying the number of PRN 

stages (𝑇) on the evaluation metrics of PSNR and SSIM. These metrics are employed to 

assess the deraining performance concerning image quality on the Rain100H dataset. It can 

be observed that an increase in the number of stages within the network corresponds to higher 

values for both PSNR and SSIM. However, it can be noted that beyond  𝑇 > 8, there is no 

further enhancement in both PSNR and SSIM. 

Furthermore, as shown in Figure 5.13, the average execution times during testing on the 

Rain100H dataset for models with stages T = 2, 3, 4, 5, 6, 7, 8, 9, and 10 are provided. 

Balancing the trade-off between efficiency and deraining performance, a decision was made 

to set the value of T to 8 for subsequent experiments. 

 
Figure 5.12: Effect of increasing number of progressive stages in rain streak removal network on PSNR and SSIM 

evaluation metrics. 
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Figure 5.13: Effect of increasing number of progressive stages in rain streak removal network on running time (in 

seconds). 

i. Effect of testing different stages progressively 

Two experiments were conducted to determine the optimal arrangement of the network's 

components. Initially, consideration was given to implementing rain accumulation removal 

as an initial pre-processing step. However, as demonstrated in Figure 5.14, this approach 

adversely impacted the overall deraining process. This is attributed to the fact that the rain 

accumulation removal phase led to undesirable alterations in the quality of rain streaks, 

resulting in an increase in their contrast and visibility across both real-world and synthetic 

datasets. Subsequently, the second proposed approach involved incorporating rain 

accumulation removal progressively, in conjunction with rain streak removal, as depicted in 

Figure 5.15. Additionally, the corresponding PSNR and SSIM values for both suggestions 

are outlined in Table 5.3. 

Table 5.3: Effect of applying rain accumulation removal as a pre-processing vs. progressive operation 

Approach PSNR SSIM 

Rain accumulation removal as pre-processing (Figure 5.14) 15.683 0.683 

Rain accumulation removal performed progressively with rain streak 

removal (Figure 5.15) 
33.01 0.901 
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Figure 5.14: The effect of applying rain accumulation removal as a pre-processing step, and then rain streak removal 

 

 
Figure 5.15: The effect of performing rain streak removal and rain accumulation removal progressively  

5.3.2 Deraining Experimental Results 

This section elaborates the settings on which the proposed network has been trained and 

tested. Also, comprehensive experimental results are presented and discussed in terms of 

quantitative and qualitative evaluations. Four main experiments were conducted in this 

section.  

In the first experiment, five synthesized rainy datasets were used to evaluate the performance 

of the proposed network compared to other deraining networks (HINet [190], MPRNet 

[189], PreNet [141], PRN [141], and MSPFN [180]). The used synthesized datasets are 

Rain100H [178], Rain100L [178], Test100 [220], Test1200 [185], and Test2800 [9].  
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The second experiment was conducted to evaluate the performance of deraining networks 

on real datasets, RID and RIS [173]. However, due to the lack of presence of rainy/clear 

images as a reference, different evaluation metrics were used, namely, NIQE and SSEQ. 

The third experiment was intended to ensure a fast performance of the deraining process.  

i. Implementation Details 

The training of both rain streak removal and rain accumulation removal was carried out 

independently; however, their testing was performed progressively. The training set for the 

rain streak removal network comprised 1800 images from the Rain100H dataset. On the 

other hand, training the rain accumulation removal network involved a synthetic dataset of 

hazy images derived from the NYU dataset [224], along with augmented real hazy data 

sourced from the NTIRE 2018 dataset. For training purposes, both networks employed the 

ADAM algorithm optimizer with an initial learning rate of 0.001.  

ii. Evaluation on synthetic datasets  

The performance of the proposed network is assessed across five distinct synthetic datasets, 

namely, Test100  [220], Rain100H [178], Rain100L [178], Test2800 [9], and Test1200 

[185]. The comparative PSNR and SSIM values are organized and presented in Table 5.4. 

Evidently, the proposed model achieves a noteworthy enhancement over state-of-the-art 

(SOTA) deraining algorithms.  

The qualitative outcomes, presented in Figure 5.16, highlight the results obtained on various 

datasets, as elaborated in Table 5.4. The proposed model notably excels in restoration 

performance, particularly evident in datasets such as Test100, Rain100H, and Test1200, 

which encompass a wide range of rainy conditions including both rain streaks and rain streak 

accumulations. Furthermore, the proposed network demonstrates enhanced performance 

levels on Rain100L and Test2800 datasets. In comparison, other networks tend to either 

overly smooth images, leading to blurriness, or leave certain rain streaks visible within the 

images. 



 

  

  90 

Table 5.4: Average PSNR and SSIM comparison on the synthetic datasets Test100, Rain100H, Rain100L Test2800, and 
Test1200. Red, blue, and green colours are used to indicate 1st, 2nd, and 3rd rank, respectively.  

Method 
Test100 Rain100H Rain100L Test2800 Test1200 Average 

PSNR  SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

HINET 30.29 0.906 30.65 0.894 37.28 0.970 33.91 0.941 33.05 0.919 33.036 0.926 

MPRNET 30.27 0.897 30.41 0.890 36.40 0.965 33.64 0.938 32.91 0.916 32.726 0.9212 

MSPFN 27.50 0.876 28.66 0.860 32.40 0.933 32.82 0.930 32.39 0.916 30.754 0.903 

PreNet 24.81 0.851 26.77 0.858 32.44 0.950 31.75 0.916 31.36 0.911 29.426 0.8972 

PRN 23.512 0.761 28.07 0.884 36.98 0.9772 23.7882 0.8121 19.733 0.7095 26.417 0.829 

proposed 32.43 0.93 33.01 0.901 37.21 0.969 33.89 0.932 34.23 0.953 34.154 0.937 
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Figure 5.16: Qualitative results on synthesized datasets 
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iii. Evaluation on Real Rain Datasets 

Further assessments were undertaken on real-world rainy datasets, specifically RID and RIS  

[173], to comprehensively evaluate the generalization capabilities of the proposed model. 

Given the unavailability of ground truth images devoid of rain, the evaluation of deraining 

performance necessitates the application of no-reference metrics such as NIQE and SSEQ. 

The quantified outcomes are provided in Table 5.5 to offer quantitative insights into the 

achieved results. 

Table 5.5: Comparison results of average NIQE/ SSEQ on real-world datasets (RID, and RIS). The smaller scores 

indicate better perceptual quality. 

Dataset Evaluation Metrics HINet MPRNet MSPFN PreNet Proposed 

RID 
NIQE ↓ 4.985 4.856 6.518 7.007 4.562 

SSEQ ↓ 81.1619 50.648 40.47 43.04 48.213 

RIS 
NIQE ↓ 6.887 6.045 6.135 6.722 6.148 

SSEQ ↓ 52.983 51.689 43.47 48.22 52.681 

iv. Time Performance Evaluation 

Given the tight real-time demands of tasks in AVs, particularly concerning object detection, 

it is essential that any supplementary processing does not introduce substantial 

computational intricacy that could undermine real-time functionality.  Therefore, the 

deraining process should take this into consideration. Moreover, the dynamic and mobile 

state of both AVs and surrounding objects presents another challenge. Given that 

computational efficiency stands as a critical consideration for autonomous driving 

applications, demanding real-time operation, a balance between processing demands and 

performance is crucial. Table 5.6 provides a breakdown of the execution times for different 

methods. This evaluation offers insights into the computational efficiency of each method, a 

vital criterion for applications in the AV domain. The proposed model achieves competitive 

performance compared with other models with inference time of 0.44× HINet, 0.31× 

MPRNet, 0.6× MSPFN, and 0.54× PreNet, on image size 500×500, and 0.41× HINet, 0.3× 

MSPFN, and 0.53× PreNet, on images of size 1024×1024. This speedup is due to the 

employment of progressive lightweight stages with fewer parameters compared to other 

baseline networks. The proposed network has 98.7K parameters; on the other hand, MSPFN 

has 13.22M parameters, while MPRNet has 3.57M parameters. 
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Table 5.6: Comparison of running time (seconds) on NVIDIA GTX 1050Ti GPU 

Image size HINet   MPRNet   MSPFN   PreNet proposed 

500x500 0.574 0.795 0.415 0.464 0.251 

1024x1024 2.0655 2.782 1.5376 1.578 0.843 

 

Authors of these deraining algorithms have evaluated the inference time in their research on 

different GPUs, therefore, their running times had to be re-evaluated on the same image sizes 

on a unified computer to produced valid comparisons. As stated in their published research: 

• HINet: Tesla V100 

o Rain13K, 256×256, 0.027(s) 

• MPRNet: Tesla V100/ NVIDIA Titan Xp 

o Rain13K, 256×256, 0.0374(s)  

• MSPFN: NVIDIA Titan Xp 

o Test100, 512×384, 0.308(s) 

o COCO350, 60×480, 0.58(s) 

o BDD350, 1280× 720, 1.24(s) 

• PreNet: NVIDIA GTX 1080Ti 

o 500× 500, 0.088(s) 

o 1024×2024, 0.551(s) 

• PRN (6 stages): NVIDIA GTX 1080Ti 

o 500× 500, 0.088(s) 

o 1024× 1024, 0.296(s) 

5.3.3 Objects Detection Experimental Results 

Complementary fusion has been adopted to integrate both data captured by camera and 

LiDAR in order to achieve 3D object detection in real time. First, 2D object detection, 

classification, and horizontal and vertical localization have been performed using YOLOv3. 

Also, an algorithm has been developed in order to detect overlapping objects and flag them. 

Second, 2D LiDAR measurements are pre-processed and complemented the bounding boxes 

that are the output of the object detection framework in order to associate a depth 

measurement to detected objects in the bounding boxes. 
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i. Experimental setup 

For real-time evaluation experiments, the monocular camera, the 2D LiDAR, and the 

computational hardware have been mounted such that they have a common vertical axis. The 

LiDAR has been placed ~559mm up from the ground in order to be above the vehicles’ 

ground clearance. In order to perform tests in real driving scenarios, the sensory system has 

been placed on a trolley in order to navigate with it easily in the streets.  

ii. Objects detection from images 

YOLOv3 has been selected as the real-time object detector  [229, 230]. The results obtained 

by YOLOv3 when tested on the raw KITTI and PASCAL VOC datasets are displayed in 

Table 5.7. Moreover, YOLOv3 achieved AP of 93.41%, 71.84%, and 83.6% for car, person, 

and cyclist detection, respectively. There are object detectors that perform better on object 

detection datasets (for example, Faster R-CNN and SSD). Still, they cannot be employed in 

real-time autonomous driving scenarios because of their slow execution speed. Additional 

comparisons between YOLOv3 and other deep learning object detection algorithms on 

various datasets are offered in  [206].  

Table 5.7: Mean average precision (mAP) of testing YOLOv3 on the KITTI and PASCAL VOC datasets 

Detection Algorithm mAP 

KITTI 82.95% 

PASCAL VOC 79.26% 

iii. LiDAR measurements processing 

Due to the diverse shapes of surrounding objects, non-linearity and different reflectivity, 

measurements captured by a LiDAR are not straight lines; on the contrary, they have many 

outliers. In order to smooth the readings while preserving the edges, median filtering is used 

as the initial stage in the processing of LiDAR measurements.  Before filtering, a sample of 

LiDAR measurements is shown in Figure 5.17(a), and the filtered readings are shown in 

Figure 5.17(b). 
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Figure 5.17: A sample of LiDAR measurements sample (a) pre-smoothing (b) post-smoothing 

The next stage includes segmenting the LiDAR readings and giving each fragment a distinct 

ID and depth value. An example of LiDAR measurements taken when two cars were present 

is shown in Figure 5.18 (one car is partly in front of the other).  

 
Figure 5.18: A sample of LiDAR measurements when scanning two overlapping objects 

LiDAR measurements show different clusters along the horizontal plane, each associated 

with an average depth measurement. However, these measurements are not enough to 

indicate the class of the detected objects. Therefore, complementary sensory fusion with data 
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of rich features is mandatory in order to be able to complement the depth measurements with 

objects’ classes.  

iv. Three-dimensional measurements after sensors fusion  

Experiments were done in actual driving situations, and the performance was manually 

assessed and validated because datasets with 2D LiDAR point clouds were unavailable. 

Manual markings were made on the testing ground with manually measured depth distances 

from the sensory system; these measurements are considered reference measurements in 

order to be compared to the distances measured by the proposed sensory system. 

Experiments were done in different surrounding scenarios: 

• Scenario 1: Static cars  

• Scenario 2: Static pedestrians  

• Scenario 3: Four moving cars  

• Scenario 4: Four moving pedestrians  

Tests were made such that they included different aspects, for example, different objects’ 

orientations, speed, and lighting. Each of the scenarios that included moving objects was 

tested over a time frame of 2 minutes. Table 5.8 shows samples of the measurements that 

were captured at different times and compared to the actual locations, which were manually 

marked per each scenario. 
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Table 5.8 Evaluation results of LiDAR measurements in different scenarios 

Scenario Sample Measured distance 
(obj1, obj2) 

Actual distance 
(obj1, obj2) 

Error (obj1, 
obj2) 

Average 
Error 

Sc
en

ar
io

 1
 

1 4.014m, 7.465m 4m, 7.5m 
(overlapping) 0.014m, -0.035m 

0.04475m 
2 3.985m, 7.115m 4m, 7m -0.015m, 0.115m 

Sc
en

ar
io

 2
 1 0.986m, 2.873m 1m, 3m -0.014m, -

0.127m 
0.036075m 

2 1.998m, 2.0987m 2m, 2.1m 
(overlapping) -0.002m, -0.0013 

Sc
en

ar
io

 3
 

1 4.567m, 6.984m 4.5m,7m 0.067m, -0.016m 

0.052625m 
2 5.909.m, 9.997m 6m, 10m 

(overlapping) 0.091m, -0.003m 

3 7.532m, 11.985m 7.5m, 12m 0.032m, -0.015m 

4 9.874m, 13.429m 10m, 13.5m 
(overlapping) 

-0.126m, -
0.071m 

Sc
en

ar
io

 4
 

1 1.476m, 3.984m 1.5m, 4m -0.024m, -
0.016m 

0.035625m 
2 1.511m, 1.879m 1.5m, 1.9m 

(overlapping) 0.011m, -0.021m 

3 2.050m, 2.100m 2m, 2m 0.050m, 0.100m 

4 5.521m, 2.042m 5.5m, 2m 
(overlapping) 0.021m, 0.042m 

 

The final stage involves using the LiDAR data to complement the 2D bounding boxes 

produced by the real-time visual object detector (YOLOv3) with a third dimension (depth) 

after filtering and grouping. The system was evaluated in real-time scenarios, and it was able 

to meet the real-time requirements by operating at 18 FPS on an average GPU, retaining 

dynamic object recognition, and enhancing the bounding boxes with a depth dimension. The 

model's speed could be improved by utilizing a more potent device. The attained execution 

time of the suggested system marks significant progress when contrasted with alternative 

methods (as shown in Table 2.8). Testing of the system took place amidst dynamic driving 

scenarios involving mobile vehicles and pedestrians, where objects exhibited overlap and 

mutual interaction.  
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During the performed experiments, YOLOv3 did not missed detecting any objects. In the 

performed experiments, manual validation was performed, both for bounding boxes and 

depth measurements. The surrounding scenarios in the test cases are considered to have 

lower difficulty levels compared to other more complicated driving scenarios present in 

detection-dedicated datasets.  

Nonetheless, the system’s constraint pertained to weather conditions since the video-

processing component lacks the necessary resilience to effectively handle inclement weather 

situations like rain, snow, and fog. Therefore, this problem has been addressed by proposing 

a lightweight deraining network (Chapter 3). The following subsection will demonstrate the 

experimentation results when performing joint deraining and objects detection. 

5.3.4 Joint Deraining and Detection Experimental Results 

Diverse weather conditions, particularly rain, significantly deteriorate the accuracy of object 

detection. Raindrops obscure and distort the underlying visual attributes of nearby objects, 

attributes that detection methods rely on for object classification and localization. Figure 

5.19 demonstrates the performance of object detection with and without deraining in 

advance. 

Not all deraining algorithms contribute positively to the enhancement of object detection 

performance. As demonstrated by Hnewa and Radha in 2020  [5] and Li et al. in  [173], 

certain deraining methods (for example: [9, 10]) might, in fact, deteriorate detection 

performance when compared to utilizing rainy images directly as input within corresponding 

detection frameworks. This degradation can be attributed to the fact that these tested 

deraining algorithms tend to introduce excessive smoothing into images. Consequently, 

important visual features of a scene are distorted, and the edges of objects become smoother, 

resulting in objects being missed during detection. 

Hence, it is crucial to assess the effectiveness of the proposed deraining model by 

concurrently evaluating its impact on object detection performance on the de-rained results. 

An experiment was performed to apply object detection on de-rained images and evaluate 

the object detection performance. The influence that is imposed by the deraining models on 

the performance of object detection performed by AVs is illustrated. 

To conduct this assessment, samples curated by Jiang et al. in their work  [180] were utilized. 

Their dataset comprises a collection of samples drawn from diverse driving scenes, 
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incorporating a range of conditions (850 samples originating from COCO and BDD datasets, 

which led to the creation of novel synthetic rain datasets COCO350 and BDD350). These 

datasets encompass varying rain orientations and magnitudes, and even encompass intricate 

scenarios such as night scenes.  

The evaluation process commenced by applying the proposed deraining algorithm alongside 

other baseline deraining techniques  [141, 180, 189, 190] to restore the rain-free counterparts 

of these images. Subsequently, the YOLOv3 object-detection framework was employed to 

gauge the detection efficiency within the context of the derained images. The quantified 

outcomes, encompassing both the performance of the deraining process and the efficiency 

of object detection, are tabulated in Table 5.9. To provide a visual context, comparative 

examples are showcased in Figure 5.19; the first row denotes samples of the deraining results 

on the COCO350 dataset, and the second row denotes samples of the deraining results on 

the BDD350 dataset. The third and fourth rows show the results of object detection 

performed on the first and second rows sequentially. YOLOv3 has been used for object 

detection. 

Table 5.9: Comparison results of joint image deraining, and object detection on samples of COCO and BDD datasets. 

Methods Rainy 
Input 

HINET MPRNET MSPFN PreNet Proposed 

Deraining; Dataset COCO350/BDD350 

PSNR ↑ 14.79/14.13 18.0680/15.61 18.01/16.65 18.23/17.85 17.53/16.9 18.879/17.98 

SSIM ↑ 0.648/0.470 0.7859/0.5675 0.7864/0.7792 0.782/0.761 0.765/0.652 0.801/0.823 

Object Detection; Algorithm: YOLOv3; Dataset: COCO350/BDD350; Threshold:0.6 

Precision 
(%) ↑ 23.03/36.86 32.87/41.52 31.45/40.05 32.56/41.04 31.31/38.66 33.54/41.97 

Recall (%) ↑ 29.6/42.8 39.54/50.21 38.21/49.32 39.31/50.40 37.92/48.59 40.12/50.67 

IoU (%) ↑ 55.5/59.85 60.57/62.53 62.54/62.21 61.69/62.42 60.75/61.08 62.34/61.23 

As revealed in Table 5.9, the precision of the produced de-rained images by the proposed 

model exhibits a substantial enhancement of 68% compared to the original rainy inputs. 

Furthermore, when contrasted with other state-of-the-art deraining models, the derained 

images generated through the proposed approach exhibit more coherent and distinct features 

which efficiently boosts the detection performance.  
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Figure 5.19: Examples of joint deraining and object detection
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5.4  Summary 

In this chapter, an exhaustive examination of the developed approaches is presented. The 

chapter encompasses a comprehensive discussion of the utilized evaluation metrics that are 

used to measure the effectiveness and efficiency of the proposed approaches. For the 

deraining process, full-reference metrics (PSNR and SSIM) are used to evaluate the proposed 

deraining network over synthetic datasets. In contrast, no-reference metrics (NIQE and 

SSEQ) are used when evaluating over real rainy datasets, as these datasets lack 

corresponding clear pairs. For the assessment of the object detection framework, the standard 

evaluation metrics are adopted: Precision, Recall, IoU and mAP. 

Moreover, a thorough exploration of the used datasets is provided. Diverse datasets are used 

to guarantee the performance of the deraining network in different scenarios and include 

variable raining degradation effects. Five synthetic datasets are used (Test100, Rain100H, 

Rain100L, Test2800, Test1200), while two real rainy datasets are also used (RIS and RID). 

The diversity of the used datasets shows the effect of the proposed deraining network on 

different rain degradation effects compared to other baseline deraining approaches. On the 

other hand, different datasets are also explored, which are used for objects detection 

evaluation. Additionally, a sample of COCO and BDD datasets were modified with synthetic 

rain in order to perform joint deraining and objects detection using the proposed approaches.  

Multiple experiments have been performed to assess different aspects of the proposed 

approaches, and results have been compared to existing baseline approaches. The proposed 

deraining network showed enhanced results especially on datasets having heavy and diverse 

rain degradations. Moreover, it is 2.23× faster than the average running speed of baseline 

deraining networks. Also, the proposed sensory system achieved reliable classification and 

localization of surrounding objects in real driving scenes. Moreover, both deraining and 

objects detection are jointly tested, and it was shown that performing deraining ahead of 

objects detection caused 1.45× enhancement in the objects detection precision. 
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Chapter 6 Conclusions and Future Works 

6.1 Conclusion 

Autonomous driving technologies are being researched and developed as next-generation 

transportation due to their multiple benefits such as reducing the number of traffic accidents 

and offering passengers extra free time during their journeys. While the deployment of full 

AVs (Level 5) is still expected in the next few years, the current available AVs are usually 

classified between SAE autonomy Level 2 and Level 3.  The majority of commercially 

available AVs and research into them mainly depend on employing expensive sensors. 

However, this impedes the development of further research on the operations of AVs. 

Moreover, another important challenge in introducing AVs into the market is the ability to 

operate under various driving conditions by implementing a robust perception system that 

considers adverse weather conditions i.e., rain.  

This thesis explores objects detection and 3D localization of surrounding objects in driving 

scenes while focusing on maintaining a reliable detection performance in rainy weather 

conditions. One of the key observations which can be drawn from the reported work is that 

deep learning has a profound impact on object detection and autonomous driving, bringing 

significant advancements and improvements to these fields. Deep learning models have 

enabled real-time object detection in diverse and complex environments. This capability is 

crucial for autonomous vehicles, where quick and accurate decision-making is essential for 

safety. 

AVs operate under dynamic and diverse circumstances surrounded by multiple dynamic 

objects. Hence, AV should be robust enough to detect all dynamic surrounding objects in 

real time. Four main challenges that were addressed in this thesis are: 

• High sensory systems’ cost 

• The complex interaction between objects where occlusion and truncation occur 

• The dynamic changes in the perspective and scale of bounding boxes 

• The effect adverse weather condition imposes on perceived images and their effect 

on the object detection task. 
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6.1.1 Data Deraining  

Rain can be characterized by the presence of numerous drops exhibiting diverse sizes, 

intricate forms, and varying velocities. Rain contributes to two distinct types of visibility 

reduction. Rain streaks tend to create specular highlights, obstruct, and distort background 

scene elements. On the other hand, the accumulation of distant rain streaks produces 

atmospheric veiling effects, scattering light and obscuring the line of sight, similar to the 

effect of fog. Because the characteristics of rain streaks and the accumulation of rain are 

distinct, the distortions they introduce to images differ. Therefore, each type of rain 

degradation is addressed as a separate problem. 

Numerous approaches have been proposed to address rain detection and removal. This 

challenge can be approached either from a video-based perspective or as an image-based 

one. However, a notable proportion of these approaches failed to consider the specific 

requirements of AVs, exhibiting the following shortcomings: high computation time, solely 

focusing on the problem of rain detection, assuming static scenarios, inability to perform 

under real-time constraints, and not considering the effect on objects detection performance.  

As noted from existing deraining approaches, not all deraining algorithms contribute 

positively to the enhancement of object detection performance. Certain deraining methods 

might, in fact, deteriorate detection performance when compared to utilizing rainy images 

directly as input within corresponding detection frameworks. 

6.1.2 Sensory Systems 

Within the intricacies of autonomous driving, dynamic road elements such as pedestrians, 

cyclists, and different vehicles impose a significant challenge due to their unpredictable 

behaviour. In this context, the operational dependability of object detection, a critical aspect 

for AVs, is especially put to the test. The prevailing sensory systems employed in both 

commercial AVs and research initiatives rely on the use of expensive sensors which acquire 

huge amounts of data. This adds a requirement of utilizing extensive computational hardware 

and still adds to the running time of the whole system, which should be minimized in order 

to allow for additional operations applied by the system.  

6.2 Contribution 

To summarize, the contribution of this project includes developing a novel lightweight 

deraining network that performs single-image deraining and mitigates the degradations 
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caused by rain streaks and rain streaks accumulation. Moreover, a real-time objects detection 

platform has been proposed by applying sensor fusion between a monocular camera and a 

2D LiDAR. A novel algorithm has been implemented in order to differentiate between 

interacting surrounding objects and be able to associate separate objects with specific 3D 

locations. 

6.2.1 Data Deraining  

The main contributions towards developing a deraining network are: 

• A new baseline light-weight network has been proposed, which restores images 

distorted by different rain degradation effects. 

• The network utilizes two subnetworks: the first is concerned with rain streak removal 

based on Progressive Residual Networks (PRNs), and the second is concerned with 

rain accumulation removal (similar to defogging). 

• The proposed network was evaluated on synthetic datasets (Test100, Rain100H, 

Rain100L, Test1200, and Test2800) in addition to real-world rainy datasets (RID and 

RIS). 

• The output of the proposed network was evaluated jointly with the object detection 

algorithm (YOLOv3) in order to show the difference in object detection performance 

on rainy and de-rained images. 

• Baseline deraining algorithms have been implemented and compared with the 

proposed model by using different metrics. For example, PSNR and SSIM, when 

comparing their performance on synthetic datasets, NIQE and SSEQ on real-world 

rainy datasets. Moreover, they were all evaluated on a computer equipped with the 

same GPU (NVIDIA GTX 1050Ti) in order to measure their running times, as real-

time performance is a crucial constraint for AVs performance. 

The proposed model shows significant enhancement in the deraining performance, notably 

evident in datasets like Test100, Rain100H, and Test1200. These datasets cover diverse 

raining conditions, including both rain streaks and accumulations. Additionally, the 

proposed network exhibits improved performance on Rain100L and Test2800 datasets. In 

contrast to other networks, which either excessively smoothed the images resulting in 

blurriness or allow certain rain streaks to remain visible in the images. 
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Moreover, the proposed model achieves competitive running time compared with other 

models with inference time of 0.44× HINet, 0.31× MPRNet, 0.6× MSPFN, and 0.54× 

PreNet, on image size 500×500, and 0.41× HINet, 0.3× MSPFN, and 0.53× PreNet, on 

images of size 1024×1024. One of the reasons for this speedup is due to the employment of 

progressive lightweight stages with fewer parameters compared to other baseline networks. 

6.2.2 3D Objects Detection 

A low-cost single-beam LiDAR and a monocular camera have been used to achieve multiple 

3D dynamic object detection in real driving scenarios, all the while maintaining real-time 

performance. This research acts as a foundation for the employment of 2D LiDARs on AVs 

as a lower-cost substitute for 3D LiDARs. Also, the challenge of the presence of multiple 

overlapping objects in the same scene was addressed. The main contribution of this work 

lies in several aspects: 

• A fusion algorithm between LiDAR measurements and the detected objects in visual 

images captured by the monocular camera. Noting that, LiDAR works by measuring 

the distances in an angular rotational pattern; hence, the measurements acquired are 

radial. Therefore, in order to normalize the LiDAR measurements, these radial 

measurements must be converted into perpendicular measurements in order to map 

between Image and LiDAR coordinates. 

• Clustering/grouping of LiDAR measurements and calculating an average depth value 

for each cluster. 

• Detection of overlapping objects in images captured by the camera. 

• Maintaining a real-time performance. 

• Due to the lack of 2D LiDAR point clouds, all the testing was performed in real-time 

driving scenarios, and the performance was manually measured and validated. 

The mAP obtained by YOLOv3 when tested on the raw KITTI and PASCAL VOC datasets 

are 82.95% and 79.26%, respectively. Furthermore, examinations of LiDAR measurements 

indicated an average error of ±0.04 meters in real driving scenarios. Additionally, in joint 

tests involving both deraining and object detection, it was demonstrated that conducting 

deraining prior to object detection led to a 1.45 times enhancement in object detection 

precision. 
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6.3 Future Work 

The proposed methods for object detection of multiple dynamic road objects for AVs in 

challenging weather conditions have been evaluated on different available datasets. The 

evaluation results showed outstanding performance compared to the state-of-the-art results. 

The potential future directions in technical aspects are summarized below. 

• Mitigating other types of weather conditions 

In the current work, the model focused on rain streak and accumulation removal as it is the 

most common weather condition happening in the UK, with an annual average rainfall 

percentage of around 33.7%. Further research direction includes the investigation of 

enhancing the model to mitigate more diverse weather conditions such as snow, sun glare, 

and lightning. Moreover, the proposed network performs removal of both rain streaks and 

rain streaks accumulation even if only one of these degradations exists. Therefore, another 

direction to the proposed research is to add an initial step of detecting the type of degradation 

that exists in the captured images. 

• Experimenting with different variants of sensors 

Regarding future endeavours concerning the challenge of detecting multiple objects based 

on the proposed research, different approaches could be made; for example, multiple 

cameras could be used in order to extend the horizontal field of view without inducing 

significant image distortion. Moreover, dynamic calibration could be introduced to ensure 

accurate alignment and synchronization between the 2D LiDAR and monocular camera, 

especially as the vehicle operates in different environments and conditions. 
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Appendix B Hokuyo UTM-30LX Specifications 

As stated by the manufacturer, these are the specifications of Hokuyo UTM-30LX 2D 
LiDAR: 
Model No. Hokuyo UTM-30LX 

Range 30m 
Angular Resolution 0.25° 
scanning angle 270° 
Light source Laser semiconductor 870nm, Laser class 1 
Supply voltage 12 VDC ± 10% 
Supply Current maximum of 1A, normal is 0.7A 
Power consumption Less than 8W 

Accuracy 
It can be affected by strong light such as direct sunlight: 

• Under 3000lx: White Kent sheet: ± 30mm (0.1m to 10m) 
• Under 100000lx: White Kent sheet: ± 50mm (0.1m to 

10m) 
Detection range and 

detection object: 

 

• Guaranteed Range: 0.1-30m (White Kent sheet) 
• Maximum Range: 0.1-60m 
• Minimum Width detected at 10m: 130mm 

 

•  

 

Measurement Resolution 

and Repeated Accuracy 

• 1mm 
• Under 3000lx: 10mm (White Kent sheet up to 10m) 
• Under 100000lx: 30mm (White Kent sheet up to 10m) 

 Scan time 25 msec/scan 
Sound level Less than 25dB 

Connection • Power and synchronous output: 2m flying lead wire 

• USB: 2m cable with type-A connector 
Ambient 

(Temperature/Humidity) 
-10 to 50°C, less than 85% relative humidity 
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Appendix C Vehicles’ Ground Clearance 

In the table below, a comparison between a big range of different vehicles’ ground 

clearance is shown, in order to get an overview of the average range, maximum, and 

minimum values. 

Manufacturer Model Ground Clearance (mm) 

SUVs/ Cross Over  

Land Rover 

Defender 323 

Discovery 4  301 

Range Rover 295 

Range Rover Evoque 215 

Jeep 

Grand Cherokee 287 

Wrangler 254 

Cherokee 221 

Renegade Trailhawk 220 

Compass 205 

Renegade 200 

Toyota 

Hilux 286 
FJ Cruiser 245 

Land Cruiser 79 235 

Land Cruiser 200 230 

Land Cruiser 76 230 

Fortuner 220 

VW Toureg 243 

Tiguan 175 

Nissan 

NP300 240 

Patrol 230 

X-Trail 209 

Qashqai 182 

Juke 180 

NP200 177 

Volvo XC90 238 

XC60 230 
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V70 Cross Country 210 

V40 Cross Country 144 

Ford 

Ranger 237 

Everest 225 

Eco sport 200 

Kuga 197 

Audi 
Q7 235 

Q5 200 

Q3 170 

Mazda BT-50 232 

CX-5 215 

Mitsubishi 
Pajero 225 

Outlander Sport 216 

ASX 195 

Subaru Forester 220 

Outback 213 

Isuzu KB300 220 

Chevrolet Trailblazer 218 

Mercedes 

GL class 215 

GLE 215 

G-class 206 

GLA 183 

GLC 181 

Porsche Cayenne 215 

Macan 198 

BMW 

X6 210 

X5 209 

X3, X4 204 

X1 183 

Mahindra 

Scorpio Bakkie 210 

Bolero 200 

Genio 195 

Xylo 186 
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Scorpio SUV 180 

Renault 

Koleos 206 

Duster 205 

Captur 200 

Sandero Stepway 193 

Suzuki 
Grand Vitara 200 

Jimmy 190 

Vitara 185 

Citroen C4 Aircross 200 

Honda HR-V 185 

CR-V 170 

Dodge Journey 185 

Hyundai 
Sante Fe 185 

Tucson 172 

IX35 170 

Kia Sorento 185 

Fiat 500X 179 

Panda 4x4 150 

Chevrolet Captiva 178 

Peugeot 2008 165 

Mini  Countryman 160 

Opel Mokka 157 

Buses 

In some areas buses are required to have a ground clearance of at least 100 mm. Too much 

ground clearance can cause the vehicle to have an excessively high center of gravity, 

which could cause the vehicle to be unstable or even flip 

Trucks 

238.76 – 559 mm 
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Appendix D Code Samples for LiDAR Measurements 

This appendix includes samples from the C++ code that was implemented to manipulate 

LiDAR measurements. Full work has been represented in Chapter 3. 
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Appendix E Code Samples for LiDAR and Camera 

Integration 

This appendix includes samples from the C++ code that was implemented to manipulate the 

fusion between the detected bounding boxes using YOLO and the LiDAR measurements. 

Moreover, it handles the problem of the presence of multiple objects that could be 

overlapping. Full work has been represented in Chapter 4. 
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Appendix F Auxiliary Material 

Deraining Codes in the Literature 

Algorithms Paper link Projects Link 

HINET Paper link Code link 

MPRNET Paper link Code link 

MSPFN Paper link Code link 

PreNet Paper link Code link 

 

Object Detection Code  

Algorithm Code link Pretrained model link 

YOLOv3 Code link Model 

Faster R-CNN Code link Model 

SSD-512 Code link Model 

 

Synthesized Datasets 

Dataset Download link 

Test100 Google Drive link  

Rain100H Google Drive link  

Rain100L Google Drive link 

Test2800 Google Drive link 

Test1200 Google Drive link 
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Real-World Rainy Datasets 

Dataset Download link 

RID Google Drive link 

RIS Google Drive link 

 

 


