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Microsatellites reveal that genetic 
mixing commonly occurs 
between invasive fall armyworm 
populations in Africa
Amy J. Withers1,2*, Jolanda de Boer3, Gilson Chipabika4, Lei Zhang5, Judith A. Smith3, 
Christopher M. Jones6,7 & Kenneth Wilson1,5*

Understanding the population structure and movements of the invasive fall armyworm (FAW, 
Spodoptera frugiperda) is important as it can help mitigate crop damage, and highlight areas at risk 
of outbreaks or evolving insecticide resistance. Determining population structure in invasive FAW 
has been a challenge due to genetic mutations affecting the markers traditionally used for strain and 
haplotype identification; mitochondrial cytochrome oxidase I (COIB) and the Z-chromosome-linked 
Triosephosphate isomerase (Tpi). Here, we compare the results from COIB and Tpi markers with highly 
variable repeat regions (microsatellites) to improve our understanding of FAW population structure in 
Africa. There was very limited genetic diversity using the COIB marker, whereas using the TpiI4 marker 
there was greater diversity that showed very little evidence of genetic structuring between FAW 
populations across Africa. There was greater genetic diversity identified using microsatellites, and 
this revealed a largely panmictic population of FAW alongside some evidence of genetic structuring 
between countries. It is hypothesised here that FAW are using long-distance flight and prevailing 
winds to frequently move throughout Africa leading to population mixing. These approaches 
combined provide important evidence that genetic mixing between invasive FAW populations may be 
more common than previously reported.

The fall armyworm (FAW, Spodoptera frugiperda) is a highly invasive crop pest in Africa, Asia and  Australasia1. 
It is native to North America where it is largely migratory, surviving winters in southern Florida and Texas 
before migrating north as the temperature warms, though there is some evidence that parts of Central and South 
America, such as Puerto Rico, have more resident populations that rarely interact with FAW from elsewhere 
in  America2–4. The migratory nature of FAW means that it has a strong flight ability, and some individuals can 
disperse as far as 300 miles before  oviposition5. Wherever it disperses to, the effects are devastating, causing 
millions of tonnes of crops to be lost, resulting in huge economic losses as well as food  shortages6.

Understanding the migratory routes of FAW is important as these can be used to predict areas at risk and give 
farmers warning for early intervention  techniques2,7. Additionally, understanding gene flow can help to predict 
outbreaks and foresee the spread of insecticide resistance that primarily occurs through the mixing of popula-
tions, leading to resistance alleles becoming more common in populations that were previously  susceptible7,8.

There is currently a lot known about FAW population structure and movements in its native range (North, 
Central and South America), enabling farmers to deal with outbreaks and minimise crop  losses2,7,9,10. Much less 
is known about potential migration and population mixing in Africa, and much of the available research has been 
based on mitochondrial cytochrome oxidase I (COIB) and the Z-chromosome-linked Triosephosphate isomerase 
(Tpi)  haplotypes9,11,12. There are two Tpi markers used for FAW, TpiE4 that is based on variation in exon 4 which 
can differentiate between the corn and rice strains, and TpiI4 that is based on intronic variation and has six 
recorded haplotypes (five corn, one rice) that can differentiate between strains and  populations9,11,12. However, 
there is some disagreement between COIB and TpiE4 haplotypes in FAW in Africa for strain identification, with 
evidence suggesting that the COIB haplotypes are less reliable in distinguishing between invasive populations 
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across Africa and  Asia9,11,13. This disagreement means that most individuals are identified as the rice strain with 
the COIB marker, and the same individuals are then identified as the corn strain with the TpiE4 marker. Given 
that the majority of samples have been collected on maize plants it has been suggested that the most accurate 
marker is likely to be the TpiE4  marker9,11,13. However, this confusion with the COIB and TpiE4 markers is most 
likely due to the hybridization of the corn and rice strains which has occurred in the invasive populations since 
FAW left its native  range14. Furthermore, the COIB and Tpi markers show very little variation in the invasive 
FAW populations, for example, only two COIB haplotypes (COIB-RS, CSh4) and four TpiI4 haplotypes (TpiCa1a, 
TpiCa2a, TpiCa2b, TpiRa1) were previously reported in South Africa and  India12,13.

There is also strong evidence that the invasive populations in Asia are originally from Africa, with FAW 
from both continents showing similar haplotype frequencies and the same mutation affecting the COIB strain 
identification  marker11–13. Understanding the source of the FAW population via population genetics approaches 
is, therefore, an important area of research in curbing further spread, and this study addresses this by using 
microsatellites to determine population structure and genetic diversity across Africa.

Microsatellites are highly variable, repeat regions of DNA that are useful when studying genetic mixing 
within insect populations at continental scales. For example, in two hoverfly species (Episyrphus balteatus and 
Sphaerophoria scripta) microsatellites revealed high levels of genetic mixing, suggesting frequent migratory 
movements across Europe over a very large geographical scale, predominately occurring along the North–South 
 axis15. Additionally, microsatellites can also be used to detect genetic differentiation at much smaller scales, such 
as between reduviid bugs (Triatoma dimidiate) in neighbouring villages in  Guatemala16.

Microsatellites have previously been identified in FAW using populations from Texas, Mississippi, Puerto 
Rico and  Brazil17,18. These microsatellites were variable enough to distinguish between three genetically distinct 
populations and were able to identify migrants between those  populations18. Therefore, considering the limited 
variability and confusion around the COIB and Tpi haplotypes, FAW microsatellites might be a better way to 
identify population structure in FAW across Africa.

To improve current understanding of population movements of FAW in Africa, in this study we explored 
population genetic structure across FAW larvae collected from six African countries (Malawi, Rwanda, Kenya, 
Sudan, Kenya and Ghana) between 2017 and 2019. We used traditional strain and haplotyping methods for FAW 
(COIB, TpiE4 and TpiI4), as well as eight highly variable FAW microsatellite loci to determine genetic structure 
and mixing across countries.

Results
Strain identification and haplotyping using COIB and TpiE4 markers. The COIB marker was ana-
lysed using an enzyme based PCR  assay19, and the TpiE4/TpiI4 product was sequenced using Sanger sequencing. 
The expected strain discordance between the COIB and TpiE4 markers was observed in all countries, with the 
markers only reporting the same strain in 19% of samples (see Supplementary Table S1 online). In all countries, 
both markers identified larvae of the corn and rice strain (Fig. 1). Overall, the COIB marker most frequently 
reported samples as the rice strain (mean ± S.E. = 72% ± 0.09), whereas the TpiE4 marker reported them as the 
corn strain (mean ± S.E. = 92% ± 0.02). Both markers showed very similar strain frequencies across Malawi, 
Rwanda, Sudan and Zambia. In Ghana, more samples were reported as corn strain (63%) than rice using the 
COIB marker compared to the other countries, and there was significant variation in the distribution of the corn 
strain based on the COIB marker (χ4 = 53.17, P < 0.001). However, when using the TpiE4 marker, the proportion 
reported as the corn strain was similar across all five countries (χ4 = 1.16, P = 0.885). Those larvae identified as 
corn strain by the COIB marker in Ghana (N = 45), Rwanda (N = 16), Sudan (N = 6) and Zambia (N = 8) were 
sequenced using Sanger sequencing to determine the haplotype. All larvae were identified as CSh4 suggesting 
very little genetic differentiation based on COIB haplotypes.

In all countries, the intronic TpiI4 marker identified both corn and rice strain FAW, with the corn strain 
(82–99%) being more common compared to the rice strain (1–18%) (Fig. 1A). The most common haplotype in 
every country was TpiCa1a, and the rarest was TpiCa2C (Fig. 1B). A novel rice haplotype (TpiRa1b) was identi-
fied in samples from Malawi, Rwanda and Sudan, where no larvae were of the previously recorded rice haplotype 
(Fig. 1B,C). The greatest number of different haplotypes was observed in Ghana, with four different haplotypes 
identified (TpiCa1a, TpiCa2a, TpiCa2C, TpiRa1a). Heterozygotes were recorded in all countries, however due 
to ambiguity in which haplotype combinations these were, they were only identified as heterozygotes (Fig. 1B). 
An amova was carried out on the TpiI4 alignment based on genetic distances and showed significant differences 
between the six countries, however the total variance explained by differences between countries was low, with 
most of the genetic variation being between individuals within countries, which would suggest a largely panmictic 
population (Table 1). To further check for genetic structuring based on TpiI4 markers, a PCA was carried out 
using the genetic distance between sequences and this showed clustering based on strain identification, but no 
evidence of structuring between the six countries (Supplementary Fig. S1A online).

Microsatellite locus information. Microsatellites were amplified by PCR individually, and then geno-
typed on a ABI3500 sequencer. All eight microsatellites successfully amplified, and the number of alleles found 
ranged from 3 to 13 (Table 2). Twenty-one individuals (23%) had missing allele data, this ranged from 1 to 3 
loci per individual, with an average of 0.34 (Table 2). Null allele frequencies were high for four alleles: Spf1502, 
Spf343, Spf997 and Spf670 (Table 2). Seven of the eight microsatellites significantly deviated from Hardy–Wein-
berg equilibrium (HWE) when all individuals were considered together (Table 2). However, some of these micro-
satellites were in HWE at the within-country level (see Supplementary Table S2 online). The index of association 
(rbarD) metric measures how likely individuals are to be the same at one particular locus in relation to other 
loci, and how this compares to other individuals, and can give a good indication of linkage between  loci20. This 
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Figure 1.  Strain and haplotype identification of FAW larvae using COIB, TpiE4 and TpiI4 markers. (A) 
Strain identification of FAW larvae using COIB and TpiE4 markers. The number of samples for COIB:TpiE4 
markers tested per country are Ghana 72:72, Malawi 40:95, Rwanda 127:126, Sudan 28:28 and Zambia 53:44. 
(B) Proportion of each TpiI4 haplotype identified. (C) Sequences of each TpiI4 haplotype identified, variable 
positions are shown in bold. The number of samples for the TpiI4 marker for each country are Ghana N = 70, 
Malawi N = 27, Rwanda N = 141, Sudan N = 24 and Zambia N = 34.
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metric was calculated and suggested a possible high chance of linkage between three pairs of loci (Spf1592 and 
Spf1502, Spf1592 and Spf997, Spf918 and Spf997) (see Supplementary Fig. S2 online). However, a composite 
linkage disequilibrium test, which measures the association between two  alleles21, did not find any significant 
evidence of linkage disequilibrium (see Supplementary Table S3 online). 

Population differentiation based on microsatellites. Population differentiation can be measured in 
several ways; here we used three common measures (Nei’s Gst, Hedrick’s Gst and Jost’s D) and each suggested 
that there was very little evidence of population differentiation across  Africa22–24 (Table 3). In all three measures 
tested, a value of 0 suggests little genetic differentiation (panmixia) and 1 suggests high levels of segregation. The 
range of the three measures across all loci was 0.03 to 0.14 (Table 3). There was also evidence of low genetic vari-
ance based on Fst between countries at each locus tested (Table 3). Pairwise Fst values between the six countries 

Table 1.  Results of an amova to analyse differences between the six countries based on TpiI4. P value was 
calculated using a randomization test with 999 permutations.

Variation Df Sum of Squares Variance components Total variance (%) P value

Between countries 4 13.40 0.04 3.51 0.002

Between individuals within countries 292 342.66 1.17 96.49 NA

Total 296 356.06 1.22 100 NA

Table 2.  Locus and allele information for each of the eight microsatellites, and HWE results. Those loci with 
high null allele frequencies are in italics. Loci which significantly deviate from HWE are in bold and were 
calculated using a Monte Carlo Exact Test.

Locus Individuals Number of alleles

Number of 
individuals with 
missing data

Allele size range 
(bp)

Null allele 
frequency

Hardy–Weinberg 
equilibrium P

Spf1502 82 10 10 124–141 0.62  < 0.001

Spf789 86 13 5 182–199 0.11  < 0.001

Spf343 91 8 1 107–127 0.35  < 0.001

Spf997 90 7 2 79–113 0.23  < 0.001

Spf1706 91 3 1 118–126 0.16  < 0.001

Spf1592 87 11 5 187–217 0.00 0.048

Spf918 88 6 4 111–123 0.00 0.578

Spf670 90 7 2 128–152 0.45  < 0.001

Table 3.  Genetic differentiation measures for FAW in Africa based on the eight microsatellites. In all three 
measures tested, a value of 0 suggests very little genetic differentiation (panmixia) and 1 suggests high levels of 
segregation. All measures are based on Hs (heterozygosity within populations) and Ht (heterozygosity without 
population structure). F-statistics represent genetic variance in a subpopulation compared to the whole (Fst—
values closer to 1 suggest high levels of differentiation between populations) or in a subpopulation compared to 
individuals within that subpopulation (Fis—values close to 1 suggest high levels of inbreeding in populations). 
Negative values of Fst and Fis should be interpreted as 0 and suggest very low differentiation of populations 
(Fst) or very low chance of inbreeding (Fis). Confidence intervals of Fis based on bootstrapping are also 
provided.

Locus

Heterozygosity Population differentiation F-statistics

Hs Ht Nei’s Gst Hedrick’s Gst Jost’s D Fst Fis CI Fis ( −) CI Fis ( +)

Spf1502 0.76 0.82 0.07 0.36 0.30 0.05 0.75 0.19 0.66

Spf789 0.79 0.89 0.11 0.60 0.54 0.10 0.10 0.03 0.52

Spf343 0.74 0.75 0.01 0.05 0.04 0.00 0.52 0.19 0.61

Spf997 0.67 0.69 0.04 0.14 0.10 0.03 0.35 0.13 0.44

Spf1706 0.18 0.18 0.03 0.04 0.01 0.02 0.26 0.07 0.46

Spf1592 0.85 0.86 0.01 0.10 0.09 0.01  − 0.01 0.06 0.54

Spf918 0.64 0.65 0.01 0.03 0.02 0.01  − 0.02 0.19 0.66

Spf670 0.79 0.80 0.01 0.05 0.04  − 0.01 0.63 0.03 0.52

All NA NA 0.04 0.14 0.03 0.03 0.33 NA NA
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ranged from − 0.02 to 0.08 (mean ± S. E. = 0.03 ± 0.01) suggesting high levels of population mixing (Supplemen-
tary Table S4 online). The level of inbreeding occurring within populations can be inferred from Fis, however, 
this varied between loci with high levels suggested for some loci (e.g. Spf1502 and Spf670), but low for others 
(e.g. Spf1592 and Spf789) (Table 3). These results suggest that in Africa, FAW may frequently mix with FAW 
from other countries suggesting that very little population differentiation is occurring.

Population differentiation was further analysed using an amova to determine if the genetic distance between 
individuals varies by country, location within country or sampling year (see Supplementary Table S5 online). 
There was no significant difference between samples from locations within countries  (F4,81 = 1.17, P = 0.120), or 
between sampling years  (F1,81 = 0.96, P = 0.543). The amova suggested, however, that FAW from each country 
were genetically different to FAW from other countries  (F5,74 = 1.86, P = 0.001).

As Country was the only significant factor influencing FAW population differentiation, a second amova was 
carried out to determine genetic variation between and within countries. This suggested significant differences 
between the six countries, however the total variance explained by differences between countries was low, and 
most of the genetic variation was found within individuals which would suggest a largely panmictic popula-
tion (Table 4). To further check for genetic structuring based on the microsatellite markers, a PCA was carried 
out using the genetic distance between individuals and this showed no evidence of structuring between the six 
countries (Supplementary Fig. S1B online).

Population clustering based on microsatellites. Clustering was carried out using an admixture model 
in STRU CTU RE, with the number of clusters selected using Delta K (Evanno method) and LnPr(K)  methods25. 
Based on Delta K there were three genetically distinct clusters in FAW (Fig. 2A,B). Based on LnPr(K), the most 
likely number of clusters was five (Fig. 2C,D). In both 3 and 5 cluster scenarios, FAW from Sudan and Zambia 
were more genetically isolated from the four other countries, though some individuals from the other four 
countries do show similar assignment patterns suggesting population mixing does occur between all countries. 
Samples from Ghana, Kenya, Malawi and Rwanda appear very similar to each other, suggesting high levels of 
population mixing between these countries (Fig. 2C,D, clustering with two and four clusters is shown in Sup-
plementary Fig. S3 online). Based on the similarities between the structuring results for 3 and 5 clusters, and 
that the LnPr(K) begins to plateau after K = 3 we propose that population structure of FAW in Africa is best 
described by three genetic clusters. To identify potential substructure in FAW from the four countries exhibiting 
evidence of genetic similarity (Ghana, Kenya, Malawi and Rwanda), a separate analysis was performed in STRU 
CTU RE. This identified 3 genetic clusters as the most likely scenario, based on both DeltaK and LnPr(K), and 
further confirmed high levels of mixing between the countries, with no strong evidence of substructure identi-
fied (Fig. 2E–G).

STRU CTU RE has been shown to miss some subdivision when clustering  individuals26, therefore, population 
clustering analysis was also carried out by identifying clusters de-novo (i.e., with no prior population informa-
tion provided) and then using Discriminant Analysis Principal Components (DAPC). This approach determines 
the number of possible clusters by running successive K-means clustering, and selecting the most suitable 
cluster based on Bayesian Information Criterion and the number of PCs to keep was calculated to be 7 using the 
a-score26. This method identified three clusters as the best model based on BIC (BIC = 120.67) in FAW (Fig. 3A). 
Based on three clusters, FAW from Sudan were more genetically different to populations from elsewhere in 
Africa with no individuals assigned to cluster 3, whereas, cluster 3 individuals were found in all other countries 
(Fig. 3B–D). The three clusters highlighted similarities between the adjacent countries of Zambia and Malawi, 
with 50% and 44% of individuals respectively from these countries assigned to cluster 3, and similarities between 
Kenya and Rwanda, with 23% and 19% of individuals assigned to cluster 3 respectively (Fig. 3B–D). Ghana 
showed most similarities with Kenya and Rwanda, with 25% of individuals assigned to cluster 3 (Fig. 3B–D).

Discussion
This study is the first to use microsatellites to determine FAW population mixing and genetic diversity in Africa. 
Considering the limited genetic diversity and unreliability of the COIB and TpiE4 haplotypes for strain identifi-
cation and the potential for confusion caused by corn and rice strain  hybrids11–14,27,28, we sought to quantify the 
degree of population structuring in FAW in Africa using a more robust microsatellite approach. This revealed 
that microsatellites had higher levels of genetic diversity compared to the COIB and TpiE4 markers, revealing 
that FAW in Africa is largely a panmictic population.

The previously reported discordance between the TpiE4 and COIB markers for strain identification was mir-
rored in this study, with very little agreement occurring between the markers. Furthermore, based on the COIB 
haplotypes it was not possible to determine genetic differentiation between the countries as only COIB CSh4 

Table 4.  Results of an amova to analyse differences between the six countries in this analysis based on the 
microsatellites. P value was calculated using a randomization test with 999 permutations.

Variation Df Sum of squares Variance components Total variance (%) P value

Between countries 5 69.24 0.197 3.25 0.001

Between individuals within countries 86 672.08 1.961 32.41 0.001

Within individuals 92 358.17 3.893 64.34 0.001

Total 183 1099.49 6.051 100 NA
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Figure 2.  Genetic structure of FAW as assigned by STRU CTU RE analysis of microsatellites. Panels (A) to 
(D) show the results of STRU CTU RE with all six countries. Panel (A) shows the DeltaK, Panel (B) shows the 
LnPr(K) for each cluster. Panel C shows the admixture plot for the three genetic clusters based on DeltaK. Panel 
D shows the admixture plot for 5 genetic clusters based on LnPr(K). Panels E to G show the results of STRU 
CTU RE carried out to assess substructure hierarchically. Panel (E) and (F) show the DeltaK and LnPr(K) for 
each cluster respectively. Panel (G) shows the admixture plot for the three genetic clusters based on both DeltaK 
and LnPr(K).
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was found. The intronic TpiI4 marker showed more variation between the individuals, however, the vast major-
ity of larvae were TpiCa1a, which is in line with previous studies investigating FAW in Africa and  Asia12,13,28. 
Previous work based on these markers in Africa concluded that there were significant differences between some 
African countries with widely separated populations being genetically  distinct28. Whilst the findings here using 
the TpiI4 marker do support some evidence of genetic variation between countries, it was low, suggesting more 
of a panmictic population of FAW across Africa based on this marker.

The low genetic variability observed with the COIB marker, and both TpiE4 and TpiI4 markers, limit the 
analyses that can be carried out and reduce the likelihood of genetic differentiation between countries being 
detected. By using highly variable microsatellites, we were able to overcome this challenge to determine genetic 
differentiation between FAW from different countries in Africa, as well as some similarities, suggesting the pos-
sible presence of both resident and migratory populations of FAW throughout the continent.

Most of the microsatellites in this study were out of Hardy–Weinberg equilibrium (HWE), whereas in previous 
population genetics studies using microsatellites in FAW from Paraguay and Brazil, no loci were found to be out 
of  HWE8. However, the deviation observed in the present study is to be expected in invasive FAW populations, 
which have been through a tight bottleneck, given that they probably originated from a small source population 
in Africa, providing further evidence of a common origin for FAW which then subsequently spread across the 
 continent9,27. The microsatellites also showed evidence of a genetic bottleneck and loss of diversity in the African 
FAW compared to populations in Texas, Mississippi, Puerto Rico, and Brazil. For example, previously reported 
allele sizes for locus Spf997 were in the range of 95 to  1398,17, whereas in this study the allele size range for the 
same locus was 79 to 113. The evidence of this genetic bottleneck throughout Africa offers more evidence of 
a single origin population instead of multiple introduction events. It is likely that if multiple incursion events 
had occurred then the microsatellite size ranges observed here would have matched more closely with those 
previously recorded.

Although FAW in Africa are likely to have undergone a population bottleneck at the time of invasion, the 
range of alleles for each locus identified in this study (3 to 13) was similar to that previously reported from Para-
guay and Brazil (3 to 15)8,18. Based on this range of alleles, previous work found genetic differentiation between 
northern and southern FAW populations across Brazil and Paraguay, as well as gene flow across all populations 
 sampled8. This indicates that despite a recent bottleneck there is still sufficient genetic diversity in microsatellite 
regions to enable population genetic studies of FAW in Africa.

Populations from the six countries (Kenya, Ghana, Malawi, Rwanda, Sudan and Zambia) did not show strong 
signs of population differentiation when using traditional measures (Nei’s GST, Hedrick’s GST and Jost’s D). This 

Figure 3.  DAPC clustering (k = 3) and assignment of individuals from each country based on microsatellites. 
(A) The lowest BIC represents the best number of clusters, which here is 3. (B) The position of individuals on 
the first two principal components, and in (C) the membership probability of individuals to that cluster. (D) 
Assigned clusters for each sampling location across Africa.
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indicates that these populations mix frequently, and no strong genetic structure is evident. This was supported 
by the amova which showed that most of the genetic variance was occurring between individuals.

This lack of population differentiation between countries provides evidence consistent with FAW undergoing 
long distance migratory flights in Africa creating a panmixia of populations. Additionally, there was no evidence 
of genetic differentiation between samples from different sampling locations within the same country, confirming 
that populations are mixing within countries. This has significant consequences for the evolution and spread of 
insecticide resistance, as resistance alleles can spread rapidly throughout each country and across Africa. This 
is an important finding as insecticide resistance (organophosphate and pyrethroid resistance) has already been 
reported in FAW in China, so is highly likely to be present in  Africa14. Considering the key role that long-distance, 
migratory flights played in the rapid spread of insecticide resistance both within and across continents in the 
invasive cotton bollworm (Helicoverpa armigera)29–32, it is important to consider the implications of frequent, 
long-distance flights that seem to be occurring in FAW.

The evidence of panmixia contrasts with previous results based on the COIB and Tpi markers, which ana-
lysed FAW samples from across Africa and found evidence of genetic differentiation between geographically 
widespread  countries9,28. Further investigation with microsatellites using clustering approaches show that whilst 
the countries included in this study are similar genetically (e.g. Kenya, Rwanda, and Ghana), others are more 
differentiated (e.g. Sudan). We conclude from this that genetic mixing of FAW populations is occurring widely 
across Africa, however, there are some FAW possibly forming resident and partially segregated populations, as 
seen in parts of South America and the  Caribbean7. Alternatively, the possibility that FAW have not been in 
Africa long enough to evolve population differentiation should also be considered.

Previous reports based on COIB and Tpi suggested a possible east–west divide between FAW  populations9, 
or no clear pattern of division between  populations28. Our study using microsatellites found that the two most 
genetically distinct populations are the most northerly and most southerly populations. African countries located 
further south (Zambia, Malawi) showed more similarities to each other compared with countries further north 
(Kenya, Rwanda, Ghana and Sudan) (e.g., fewer individuals were assigned to cluster 3 in the north compared 
to the south). This pattern of genetic separation coincides with the known migratory routes of the congeneric 
African armyworm (Spodoptera exempta) in eastern Africa, which follow the movement of the dominant winds 
each season, typically moving moths towards the north-west from Kenya and northern Tanzania, and a more 
south-westerly movement across southern Africa from  Malawi33,34. This is also aligned with the movement of the 
inter-tropical convergence zone (ITCZ), with the wind direction (and hence seasonal migration) being broadly 
south-easterly north of the equator and north-easterly south of the  equator34. Based on the high levels of mixing 
between FAW populations alongside this evidence of some genetic structuring between northern and southern 
populations, it is hypothesised that FAW may also follow the movement of the dominant winds if they are migra-
tory in Africa as, like many other insects, they rely on wind to support high-altitude long-distance  flights2,5,35,36.

This study highlights the benefits of using multiple approaches to study genetic diversity, with evidence 
presented for both widespread genetic mixing between populations alongside some segregation between coun-
tries. This is most likely due to a proportion of FAW adults undergoing long-distance migratory flights whilst 
the remaining FAW form more sedentary, resident populations. These results provide important evidence that 
genetic mixing between FAW populations throughout Africa may be more common than previously reported. 
This has important consequences for FAW management when considering factors such as the spread of insecti-
cide resistance and crop infestations across borders.

Methods
Sample collection. FAW larvae for sequencing with COIB:TpiI4:TpiE4 were collected from Ghana 
(N = 72:70:72, 2017), Malawi (N = 95:27:40, 2018 and 2019), Rwanda (N = 127:127:141, 2017), Sudan 
(N = 28:28:24, 2017) and Zambia (N = 44:53:34, 2017) and stored in ethanol. FAW larvae for microsatellite analy-
sis were collected from Ghana (N = 16, 2017, maize), Kenya (N = 13, 2019, maize), Malawi (N = 8, 2018 and N = 8, 
2019, maize), Rwanda (N = 16, 2017, maize), Sudan (N = 15, 2017, maize), and Zambia (N = 16, 2017, maize) and 
stored in ethanol. Full collection details are provided in Supplementary Table S1 Online for COIB and Tpi mark-
ers and Supplementary Table S5 Online for microsatellite markers.

DNA extraction. DNA was extracted from samples following the standard protocol for tissue in the Qia-
gen DNeasy Blood and Tissue kit. DNA was stored in buffer AE at − 20 °C. The protocol was altered slightly for 
extracting DNA from larvae collected in Sudan, these modifications were 200 μl ATL and an additional 200 μl 
1 × SSC before incubation and the DNeasy Spin Column was centrifuged at 13,000 RPM.

Strain identification and haplotyping using COIB and Tpi markers. DNA was amplified for strain 
identification using COIB (F: 5′TAC ACG AGC ATA TTT TAC ATC, R: 5′GCT GGT GGT AAA TTT TGA TATC 27) 
and TpiI4/TpiE4 (F: 5′ATG ATT AGG ACA TCG GAG C, R:5′ATG TAA TCC AGT CAA TGC CTA 37, modified by de 
Boer). Cycling parameters for both COIB and TpiI4/TpiE4 were 94 °C 10 min, 33 cycles of 94 °C 1 min, 55 °C 
1 min, 72 °C 1 min and then a final extension of 72 °C for 5 min. Following COIB amplification, the product 
was incubated at 37 °C for 2 h with 1 µl EcoRV restriction enzyme and 2 µl NEBuffer to determine FAW strain. 
EcoRV cuts the amplicon at position 1182 bp if the sample is from the rice strain resulting in two visible bands, 
and does not cut for the corn strain resulting in one larger band when the product is run on a gel electropho-
resis (Table 3). There are five known haplotypes of the COIB marker, these are corn h1  (A1164A1287), corn h2 
 (A1164G1287), corn h3  (G1164A1287), corn h4  (G1164G1287) and rice  (T1164A1287)27 and unidirectional Sanger sequenc-
ing was used to verify the COIB corn haplotypes. Sequencing reactions contained 0.75 µL BigDye® Reaction Mix, 
1.70 µL 5 × BigDye® Sequencing Buffer, 0.32 µL 10 µM Forward primer, 5–20 ng template DNA and  H2O to sup-
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plement the reaction to 10 µL. The sequencing reaction was preincubated for 1 min at 96° C followed by 25 cycles 
of: 10 s at 96° C; 5 s at 50° C; 4 min at 60° C. Excess incorporated dye-terminators were removed using EDTA/
Ethanol precipitation before resuspending in 13 µL Hi-Di® formamide and capillary gel electrophoresis on an 
ABI 3500 Genetic Analyzer. Strain identification was carried out using the Tpi marker by Sangar sequencing 
following the same protocol as for COIB based on nucleotide variation in exon-4 (TpiE4), where the corn strain 
has base  C183, the R strain has base  T183 and hybrids (males only) have C/T183 27. Tpi Intron 4 (TpiI4) was used to 
determine TpiI4 haplotypes based on 18 previously recorded highly variable  positions12,37. For sequencing analy-
sis, raw sequences were assembled and aligned using ClustalW in  BioEdit38,39. Statistical analysis on strain and 
haplotype distributions for TpiE4 were carried out in R using a Poisson GLM followed by a  Chi2 test using the 
amova function. Based on the TpiI4 haplotypes, an amova was carried out using the POPPR package as this gave 
details of the variance explained within and between samples and populations (Kamvar et al. 2014), from which 
a P value was calculated using a randomization test with 999 permutations. The genetic distance computed for 
the amova was also used for Principal Components Analysis (PCA) using the prcomp function in R.

Microsatellite amplification. Eight highly variable microsatellites were selected for amplification based 
on them showing the greatest diversity in FAW in previous  studies8,17, the microsatellite primer details are shown 
in Table 5. Each sample was amplified in individual 20 µl reactions composed of 2 µl EasyTaq® Buffer, 1 µl 10 µM 
forward primer, 1 µl 10 µM reverse primer, 0.4 µl 10 mM dNTPs, 0.1 µl EasyTaq® DNA Polymerase, 13.5 µl  H2O 
and 2 µl DNA. Amplification conditions were 95 °C for 1 min, 30 cycles of 95 °C 30 s, 60 °C 30 s, 68 °C s and 
a final extension of 68 °C for 5 min. Once amplified, samples were stored at 20 °C until ready for genotyping.

Microsatellite genotyping. Fragment genotyping was carried out on an ABI3500 sequencer. Each reac-
tion was composed of 11 µl HiDi Formamide, 0.4 µl Rox500 size standard and 1 µl PCR product (Spf343, Spf997 
and Spf1706) or 0.5 µl PCR product (Spf1592, Spf670, Spf789, Spf918, Spf1502). Genotyping results were viewed 
on Thermo Fisher Connect™. The threshold for successful amplification was > 100RFU, and for heterozygotes the 
minor peak was > 50% of the major peak. Alleles were called based on size measurements and peaks determined 
to be the same allele if size measurements were within 0.5 nucleotides of each other (for example, a size of 150.2 
and 150.6 were both classed as 150).

Microsatellite analysis. Samples with fewer than 5 microsatellites amplified were removed from the analy-
sis. Microsatellite analysis was carried out in R (v. 4.0.3)40. Hardy–Weinberg equilibrium was tested using the 
PEGAS R  package41. The frequency of null alleles was determined using the Chakraborty et al. (1994) formula 
through the POPGENREPORT R  package42. Heterozygosity and F-statistics were calculated using the HIERF-
STAT  package43. Genetic differentiation was measured using the MMOD package  (Gst and Jost’s D)44. Linkage 
disequilibrium was calculated using an association index using the POPPR  package45 and by composite linkage 
disequilbrium using GenePop (v 4.7)46. An Analysis of Molecular Variance (AMOVA) to determine population 
differentiation based on genetic distance was carried out using the adonis2 function from the VEGAN package 
in R for all  variables47 and country was looked at using an amova with the POPPR package as this gave details 
of the variance explained within and between samples and  populations45, from which a P value was calculated 
using a randomization test with 999 permutations. The genetic distance computed for the amova was also used 
for Principal Components Analysis (PCA) using the prcomp function in R. To identify population clusters, a 
Discriminant Analysis of Principle Components (DAPC) was carried out after clusters were identified de novo 
(i.e., no prior location information) using the find.clusters function in the ADEGENET package in  R26. Optimum 
number of K was selected based on BIC (Fig. 3A). The number of PCs retained in the DAPC was 7, this was 
determined using the a-score with the optim.a.score function in the ADEGENET package in R (Supplementary 

Table 5.  Microsatellite primer details.

Name GenBank identification Simple sequence repeat (SSR) Forward primer (5′–3′) Reverse primer (5′–3′)

Spf343 HM752609 (TG)12 [6FAM]GTC AAA GTT TTA 
CAT GGA AGC GTG 

CCC ATC TGT TTG TCC ACA 
GTA AAG 

Spf670 HM752637 (CAT)5 [6FAM]GGG AGA GGT TTC 
TAG CTT CTA CGG 

GAG GAG CCT TGG TTC AAT 
AGTGC 

Spf789 HM752653 (CACAC)4 [6FAM]CGA CAC GTT GAT 
TGC TCA CAG 

AAT CTT TTA TCA CAA TTC 
GCA GCC 

Spf918 HM752666 (TG)6 [6FAM]GCG AAA TTG TTT 
TAA TGT GGG TTG 

ACG ACC TAT ACG GAC CTT 
GTT ACG 

Spf997 HM752675 (TACA)4 [6FAM]TTG ATG CAT GAA 
TTT TCA AAC GAG 

ATC ACG TTG TGG TCC AAT 
CAATG 

Spf1502 HM752731 (CA)12 [6FAM]TTT GCA ATT TTA GTT 
ACA AAC GTC CTC 

TAT TGA TAG CCT CGT GTT 
TGA CCC 

Spf1592 HM752740 (TG)10 [6FAM]GGT TCC TGT TAT 
CAC CTG CAGTA 

CTA TGT AGT TTA TGT TAA 
TTC GCA CGAT 

Spf1706 HM752751 (AC)9 [6FAM]CCA CTG TAC TGT GAT 
AAA CAG ATG GC

ATG ATC ATA CAA AGT GCA 
TCC GTG 
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Fig. S4 online). STRU CTU RE (v. 2.3.4) was also used to identify population clusters, using an admixture model 
with 100,000 burnin and 100,000 reps for K1 to K15 with 15 iterations per  K48. STRU CTU RE results were visu-
alised using STRU CTU RE  HARVESTER49,  CLUMPP50 and DISTRUCT 51.
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