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This paper describes a novel method for representing different facial expressions based on the shape space vector (SSV) of the
statistical shape model (SSM) built from 3D facial data. The method relies only on the 3D shape, with texture information not
being used in any part of the algorithm, that makes it inherently invariant to changes in the background, illumination, and to
some extent viewing angle variations. To evaluate the proposed method, two comprehensive 3D facial data sets have been used
for the testing. The experimental results show that the SSV not only controls the shape variations but also captures the expressive
characteristic of the faces and can be used as a significant feature for facial expression recognition. Finally the paper suggests
improvements of the SSV discriminatory characteristics by using 3D facial sequences rather than 3D stills.
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1. Introduction

Facial expressions provide important information in com-
munication between people and can be used to enable
communication with computers in a more natural way.
Recent advances in imaging technology and ever increasing
computing power have opened up a possibility of automatic
facial expression recognition. Up till now some research
efforts have been exploited in applications such as human-
computer interaction (HCI) systems [1], video conferenc-
ing [2], and augmented reality [3]. From the biometric
perspective, the automatic expression recognition has been
investigated in the context of patients’ monitoring in the
intensive care and neonatal units [4] for signs of pain
and anxiety, behavioural research on children’s ability to
learn emotions by interacting with adults in different social
contexts [5], identifying level of concentration [6], that
is, for detecting drivers’ tiredness, and finally in aiding
face recognition. Facial expression representation, which
forms one of the most important elements in the facial
expression recognition system, is concerned with extraction
of facial features for representing variations of expressions.
Good features for representing the facial expressions should
enable interpretation of various face articulations without
any limitation of race, gender, and age. Furthermore, it

should also have the capability of reducing the complexity
of classification algorithms.

Generally, facial expressions can be represented in two
forms, namely, holistic representation and local representa-
tion [7]. For the holistic representation, the face is processed
as a single entity. Wang and Yin [8] introduced a holistic
representation method for representing facial expressions,
which is named the topographic context (TC). In this
method a grey-scale facial image is treated as a topographic
terrain surface in a 3D space with the height of the terrain
represented by the image intensity at each pixel. As the
result of the topographic analysis, each pixel of the image
is described by one of the topographic labels: peak, ridge,
saddle, hill, flat, ravine, and pit. The topographic context
has been also extended for 3D facial surfaces by Wang et al.
[9], where it is referred to as the primitive surface feature
method. Huang et al. [10] proposed a method for expression
representation based on the local binary pattern, which is
originally designed for the texture description. The local
binary pattern is calculated by encoding the information of
depth difference of a 3D facial surface. Active appearance
model (AAM) is a statistical model of shape and grey level
of object of interest and mainly used for 2D facial images.
For the facial expression representation, the AAM is built
on the facial images which are manually selected with a set
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of landmarks localised around the facial features such as
eyebrows, eyes, mouth, and nose [11]. As an extension of the
AAM, the 3D morphable model was developed by Blanz and
Vetter [12]. Instead of using manually selected sparse facial
landmarks, the 3D morphable model uses all the data points
of 3D facial scans to represent the geometrical information.
This model has been used to control 3D facial surfaces from
a 2D image, across variations in pose, ranging from frontal
to profile view, and a wide range of illuminations. B-spline is
a parametric model which is often used to describe surfaces.
When used with 3D facial data, a large number of data points
can be efficiently modelled by a small number of B-spline’s
control points [13]. When combined with the facial action
coding system (FACS) [14], the control points are placed in
areas that correspond to action units, and the expression of
a face can be generated automatically by adjusting the B-
spline’s control points.

In contrast to the holistic approaches, the local repre-
sentation methods focus on the local features or areas that
are prone to change with facial expressions. Saxena et al.
[15] introduced the localised geometric model to locally
represent facial expressions. Their method uses the classical
edge detectors with colour analysis for extracting the local
appearances of a face such as eyebrows, lips, and nose.
Subsequently a feature vector containing measurements of
the facial appearances, such as the height of eyebrows, brow
distance, mouth height, mouth width, and lip curvature,
is created for the facial expression classification. A local
parameterised model proposed by Black and Yacoob [16]
is developed based on image motion which is calculated
using the optical flow of facial image sequences. The image
motion not only accurately models a nonrigid facial motion
but also provides a concise description that is related to the
motion of local facial features to recognise facial expressions.
Kobayashi et al. [17] used a point-based geometric model
for the facial expression representation. The model contains
30 facial characteristic points in the frontal-view of the face.
These facial characteristic points are around the areas that
are the most affected by change of facial expressions, such as
eyes, nose, brows, and mouth.

In this paper, a novel method for representing facial
expressions is proposed based on the authors’ previous
work [18–20], which postulates that the shape space vectors
constitute a significant feature space for the recognition of
facial expressions. The proposed method uses only 3D shape
information, with the texture not being used at all. The
method is therefore inherently invariant to variations in
scene illumination conditions, background clutter, and to
some extent angle of view. This is in a striking contrast to
the methods based on texture where these factors severely
limit their practical applicability. Additionally as the texture
is not being used, it does not have to be captured; hence
fast full frame 3D acquisition techniques based on the time-
of-fly principle [21] can be used (3D scanners capturing
in excess of 40 frames/sec are commercially available)
instead of more computationally intensive, and therefore
slower, stereovision scanning systems. The shape space vector
(SSV) is the key element in the statistical shape model
(SSM), which models the high-dimensional shape variations

observed in the training data set using projections on a low-
dimensional shape space. In order to obtain the SSV two
consecutive stages are necessary, namely, (i) model building
stage and (ii) model fitting stage. In the model building
stage, the correspondences of points between all faces present
in the training data set are established first so that the
training data set can be aligned into a common reference
face. Subsequently the principal component analysis (PCA)
technique is applied to the aligned training data set to obtain
the SSM of the shape variations. In the model fitting stage,
an iterative algorithm based on a modified iterative closest
point (ICP) method is used to gradually adjust the pose
parameters and optimise the shape parameters in order to
match the model to the newly observed facial data. The
pose parameters consist of a translation vector, a rotation
matrix, and a scaling factor, whereas the shape parameters are
embedded in the SSV. In order to validate the discriminatory
ability of the SSV, 3D synthetic faces generated from the
FaceGen Modeller [22] and real 3D facial scans from the BU-
3DFE database [23] are used for the separability analysis in
the SSV domain. The experiments on recognition of facial
expressions using a selection of standard classification tools
are also presented.

The remainder of this paper is organised as follows.
Section 2 introduces the details of construction of the
SSM. Section 3 describes the procedure used for fitting the
model to the facial data that has not been included in the
training data set. Section 4 provides results of qualitative and
quantitative separability analysis. Results of facial expression
recognition using some popular classification algorithms
operating on the SSV feature space are presented in Section 5.
Finally, concluding remarks are given in Section 6, and
a potential improvement of the expression representation
using the SSV constructed for dynamic 3D data is briefly
discussed in Section 7.

2. Statistical Shape Model

The statistical shape model (SSM) is developed based on
the point distribution model (PDM) which was proposed
by Cootes et al. [24], and it is one of the most widely
used techniques for the model-based data representation
and registration. The model describes shape variations
based on the statistic calculated from the position of the
corresponding points in the training data set. In order
to build an SSM, the correspondence of points between
different 3D faces in the training data set must be estab-
lished first. Subsequently the principal component analysis
(PCA) is applied to the mutually aligned training data
set.

2.1. Estimating Point Correspondence. The knowledge of
the correspondence of points between 3D faces in the
training data set is essential, because the incorrect cor-
respondence can either introduce too much variations or
lead to illegal instance of the model [24]. In the case of
the data used in this paper the correspondence of points
for the database generated using the FaceGen Modeller
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Figure 1: Example of point correspondence estimation in the training data set, with example images from the BU-3DFE.

is explicitly provided by the software, whereas the dense
correspondence of points for the faces in the BU-3DFE
database is estimated based on a set of facial landmarks
included in the database.

In this work, the estimation of the correspondence is
achieved in three steps: (i) facial landmark determination,
(ii) thin-plate spline (TPS) warping, and (iii) closest point
matching. The first step is to identify the corresponding facial
landmarks on the reference and training faces. The second
step is to warp the reference face to different training face
using TPS transformation that is calculated based on the
selected facial landmarks as control points [25]. The last
step is to estimate the point correspondence between the
warped reference face and different training faces based on
the closest distance metric. Figure 1 shows the framework
of computing the dense point correspondence of different
training faces from the BU-3DFE database. The reference
face is usually selected as a face containing neutral expression
with the mouth closed. Such selection of the reference
face helps to avoid wrong correspondences in the case of
matching between closed-mouth and open-mouth shapes.
If the reference face were selected with the mouth open,
after dense correspondence estimation, each point in the
open-mouth area of the reference face will find an incorrect
corresponding point in the training face within the closed-
mouth region even though those corresponding points of
the open-mouth area do not exist in the training faces with
mouth closed.

2.1.1. Thin-Plate-Spline Warping. The TPS warping tech-
nique is a point-based registration method which was first

proposed by Bookstein [26]. The TPS warping can be used
for interpolation as well as approximation. For the TPS
interpolation, the positions of corresponding landmarks
are assumed to be known exactly and the corresponding
landmarks are forced to match exactly each other after
warping [25, 27]. For the TPS approximation, the landmark
position errors are taken into account, implying that the
corresponding landmarks are not forced to match exactly
after warping is applied. It can be shown that the solution
of the approximation problem is equivalent to inclusion
of a regularisation term in the cost function along with
a fidelity term which is exactly the same as used in the
definition of the interpolation problem [28]. In this work, the
corresponding facial landmarks are manually labeled on the
3D face scans, and their positions are always prone to some
errors. Therefore, the TPS approximation model is more
suitable for our application.

Given sparse corresponding facial landmarks in the
reference face and one of the training faces, repre-

sented, respectively, by ˜P = (p̃1, p̃2, . . . , p̃L)T and ˜Q =
(q̃1, q̃2, . . . , q̃L)T , where p̃k = (x̃pk, ỹpk, z̃pk)T and q̃k =
(x̃qk, ỹqk, z̃qk)T denote x, y, and z coordinates of the kth cor-
responding pair and L is the total number of corresponding
facial landmarks, the objective is to find the TPS warping
function that warps the reference face to the training face.
The interpolating warping function, F, has to fulfill the

following constraint for all the landmarks in ˜P and ˜Q:

F
(

p̃i
) = q̃i, i = 1, 2, . . . ,L, (1)
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where the deformation model is defined in terms of warping
function F(p j) with

F
(

p j

)
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, (2)

where p j = (xp j , yp j , zp j)
T is a point on the reference face and

the warping functions for x, y, and z coordinates are defined
as follows

fx
(

p j

)

= a + axxp j + ay yp j + azzp j
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(

p j

)

= c + cxxp j + cy yp j + czzp j

+
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wziU
(∥

∥

∥p̃i − p j

∥

∥

∥

)

.
(5)

Function U is a radial basis function of the form

U(r) = r2 log r2, (6)

where r is a distance between two points. According to
Bookstein [26], the coefficients of the TPS interpolation
model can be calculated from

KcWc + PcAc = ˜Q, (7)

and

PT
c Wc = 0, (8)

where ˜Q is a L×3 matrix which contains facial landmarks on
the target face and written as

˜Q =

⎡
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⎢
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Wc and Ac are the matrices containing coefficients of the TPS
interpolation and defined as
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whereas matrix Kc that contains the radial basis functions is
defined as

Kc =

⎡

⎢

⎢
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and the radial basis function U(ri j) is

U
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Pc is the matrix including all corresponding landmarks of the
reference face and defined as

Pc =
[

1˜P
]

, (13)

and matrix ˜P is defined as

˜P =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x̃p1 ỹp1 z̃p1

x̃p2 ỹp2 z̃p2
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⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (14)

In the TPS approximation model, the interpolation
condition has to be weakened since the landmark localisation
errors have to be taken into account. The regularisation
term needs to be added into the TPS interpolation model
in order to control smoothness of the transformation.
The coefficients of the TPS approximation model can be
calculated as

(Kc + λcI)Wc + PcAc = ˜Q, (15)

where λc > 0 is a relative weighting factor between the
interpolating behavior and the smoothness of the transfor-
mation. For small λc, the TPS warping maintains a good
approximation of the landmarks. For large λc, the TPS
warping function becomes very smooth and adopts very little
to the local structures present in the data.

2.1.2. Closest Point Matching. After the TPS approximation,
the shape of the reference face is warped to match the training
face. Since the shape of the reference face is close to the shape
of the training face, the dense point correspondence of the
reference face for the training face can be computed using the
closest distance metric. With the Euclidean distance d(p, q)
between two points p = (xp, yp, zp)T and q = (xq, yq, zq)T

are defined as

d
(

p, q
) =

√

(

xp − xq
)2

+
(

yp − yq
)2

+
(

zp − zq
)2
. (16)

Denoting a set of points of the training face by {qi, i ∈
[1,N]}, the closest distance between a point p = (xp, yp, zp)T

of the reference face and the training face is defined as

d
(

p,
{

qi, i ∈ [1,N]
}) = arg min

i

(

d
(

p, qi
))

. (17)
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Using the TPS approximation and closest point match-
ing, the dense point correspondence between the reference
face and a training face can be established. This process
is applied to all the training faces such that all of them
are in correspondence. The training faces from the BU-
3DFE database contain between 13 000 and 20 000 mesh
polygons with 8711 to 9325 vertices. The reference face
used in this paper has 15 687 mesh polygons and 8925
vertices. After performing the TPS approximation and closest
point matching, it is likely that there will be multi-to-one
correspondences between a training face and the reference
face. It is impossible to avoid this completely due to the
nature of the closest point matching technique. In order to
reduce the number of such correspondences, a subdivision
surface method has been used to increase the number of
vertices in the training faces [29].

2.2. Principal Component Analysis. Using the standard prin-
cipal component analysis (PCA), each 3D face in the
training data set can be approximately represented in a low-
dimensional shape vector space [30] instead of the original
high-dimensional data vector space. Given a training data
set of M faces, Qi(i = 1, 2, . . . ,M), each containing N
corresponding data points Qi ∈ R3N , where Qi contains all
the data points of the ith face encoded as a 3N-dimensional
vector. The first step of the PCA is to calculate the mean
vector Q (representing the mean 3D face):

Q = 1
M

M
∑

i=1

Qi. (18)

Let C be defined as the covariance matrix calculated from the
training data set:

C = 1
M

M
∑

i=1

(

Qi −Q
)(

Qi −Q
)T
. (19)

By building a matrix X of “centered” data vectors with Qi−Q
as the ith column of matrix X, covariance matrix C can be
calculated as

C = XXT , (20)

where matrix C has 3N rows and columns. Since the
number of faces, M, in the training data set is smaller
than the number of data points, the eigen decomposition
of matrix C

′ = XTX is performed first [31]. The first M
largest eigenvalues λi(i = 1, . . . ,M) and eigenvectors ui(i =
1, . . . ,M) of the original covariance matrix, C, are then
determined, respectively, from

λi = λ′i , (21)

ui = Xu′i
∥

∥Xu′i
∥

∥

, (22)

where λ′i and u′i are eigenvalues and eigenvectors of matrix
C
′
, respectively. By using these eigenvalues and eigenvectors,

the data points on any 3D face in the training data set can be
approximately represented using a linear model of the form

̂Q = Wb + Q, (23)

where W = [u1, . . . , ui, . . . , uK ] is a 3N × K so-called
“Shape Matrix” of K eigenvectors, or “modes of variation”,
which correspond to the K largest eigenvalues, and b =
[b1, . . . , bi, . . . , bK ] is the shape space vector (SSV), which
controls contribution of each eigenvector, ui, in the approx-
imated surface ̂Q [12]. The shape matrix W is database-
dependent. In a case when new faces are added to the existing
database, this shape matrix needs to be recalculated. Most
of the surface variations can usually be modelled by a small
number of modes K . Equation (23) can be used to generate
new examples of faces by changing the SSV, b, with suitable
limits [24]. According to the work proposed by Edwards et
al. [11], the suitable limits of the SSM are typically defined as

−3
√

λi ≤ bi ≤ 3
√

λi. (24)

Figure 2 shows the effect of varying the first three largest
principal components of the two models. These models were
built using 450 training faces from the FaceGen and BU-
3DFE database, respectively.

3. Model Fitting

Provided that the faces in the database are representative
of the faces in the population, a new face from the same
population, which has not been included in the training
data, can be represented using the derived SSM. In the
proposed method, the model fitting is treated as a surface
registration problem, which includes the estimation of the
pose parameters and shape parameters of the model. Whilst
the pose parameters include a translation vector, a rotation
matrix, and a scaling factor, the shape parameters are defined
by the SSV. As described in the following subsection, the
algorithm starts by aligning a new face with the mean face
of the model using similarity transformation. Subsequently
the model continues to be refined by iteratively estimating
the SSV and pose parameters.

3.1. Similarity Registration. The iterative closest point (ICP)
method can be used to achieve similarity registration
between the model mean face and a new face. The ICP [32]
is a widely used point-based surface matching algorithm.
This procedure iteratively refines the alignment by alternately
estimating points correspondence and finding the best
similarity transformation that minimises a cost function
between the corresponding points. In this work the cost
function is defined using Euclidean distance:

E =
N
∑

i=1

∥

∥q′i − (sRqi + t)
∥

∥
2, (25)

where q′i and qi(i = 1, . . . ,N) are, respectively, the corre-
sponding vertices from the model and the data face. R is a
3× 3 rotation matrix, t is a 3× 1 translation vector, and s is a
scaling factor. Following the algorithms in [33, 34], R, t, and
s are calculated as follows.
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Figure 2: Effects of changing the contribution of the first three principal components of the shape space vector on the models derived from
the FaceGen and BU-3DFE data sets.
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Figure 3: An example of the model fitting.

(1) From the point sets, {qi} and {q′i}(i = 1, . . . ,N),
compute the mean vectors, q and q′:

q = 1
N

N
∑

i=1

qi, (26)

q′ = 1
N

N
∑

i=1

q′i . (27)

(2) Calculate pi and p′i (i = 1, . . . ,N):

pi = qi − q, (28)

p′i = q′i − q′. (29)

(3) Calculate the matrix H:

H =
N
∑

i=1

p′ip
T
i . (30)

(4) Find the SVD of H:

H = UΣVT . (31)

(5) Compute the rotation matrix:

R = UDVT , (32)

D =
⎧

⎨

⎩

I, if det
(

UVT
) = +1,

diag(1, 1,−1), if det
(

UVT
) = −1.

(33)

(6) Find the translation vector and scaling factor:

s = tr
(

PP
′TR
)

tr(PPT)
, (34)

t = q′ − sRq, (35)

where P = [p1, . . . , pN ] and P
′ = [p′1, . . . , p′N ] are 3×

N matrices.

In (32), matrix D is used as a “safeguard” making
sure that the calculated matrix R is a rotation matrix and
not a reflection in 3D space. The outline of the similarity
registration procedure is given in Algorithm 1. The criterion
used to terminate the iteration of the algorithm is based on
the variation of the distance between the two surfaces at two
successive iterations. According to the experimental results,
the iteration of similarity registration is terminated when the
variation, τ, is below 0.1 mm. Figure 3(a) shows an example
of the results obtained by the similarity registration. The
position of the model is fixed and the new face is transformed
to align to the model. Although there are noticeable local
misalignments, that is, around the mouth and eyes, due to
different facial expressions, they are globally well matched.

3.2. Model Refinement. With the data registered to the
current model using similarity transformation, the objective
of the model refinement is to deform the model so that it is
better aligned to the transformed data points. To estimate the
optimal pose and shape parameters the whole process has to
iterate. This can be seen as a superposition of the ICP method
and the least squares projection onto the shape space. The
least squares projection onto the shape space provides the

SSV, ̂b, which controls the deformations of the model. It
is also postulated here that at the convergence point this
vector can be used as a feature for interpretation of the face
articulation. The SSV, ̂b, for an observed face is calculated
from

̂b = WT
(

Qc −Q
)

, (36)
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Input: points Q from the new face and points Q
′

from the current
model.

Output: transformed points Q using estimated similarity
transformation.

Initialisation:
set threshold τ(τ > 0) for terminating the iteration, k = 0,
d0 = inf , e = τ;
while e ≥ τ do
k = k + 1;
Compute correspondence qi ↔ q′j(i) with
j(i) = arg min j∈1:N‖qi − q′j‖;
Compute pose parameters : R, T, and s using Equations (26)–
(35);
Transform the points from set Q using similarity
transformation qi = sRqi + T and update set Q accordingly;
Measure misalignment dk between corresponding points in the
point set of new face Q and the point set of the model Q

′
;

e = dk−1 − dk ;
End

Algorithm 1: Similarity registration.

Input: points Q of a new face, and the face model: W,Q.

Output: Estimation of the SSV, ̂b.
Initialization:

set threshold σ(σ > 0) for terminating the iteration, ̂b0 = 0,
k = 0;

while ‖̂bk − ̂bk−1‖ ≥ σ do
Calculate points from the deformed model: ̂Q = Ŵbk + Q;
Register points sets ̂Q and Q using Algorithm 1 and obtain the
corresponding points Qc for the transformed new face;
k = k + 1;
Project corresponding points Qc onto the shape space
̂bk = WT(Qc −Q);

end

Algorithm 2: Model refinement.

where Qc ∈ R3N is a vector which contains N corresponding
data points representing the new face. The mean vector
of data points Q and shape matrix W are obtained from
(18) and (22), respectively. The details of the algorithm are
explained in Algorithm 2. The criterion used to terminate
the iteration of the model refinement is based on the
change of the SSVs at two successive iterations. According
to the experimental results, the iteration of the algorithm is
terminated when the change of the SSVs, σ , is below 5. For
most cases, it is seen that the shape variation of the model
during the model refinement is negligible when the change
of the SSVs is smaller that this preset threshold.

An example of the results obtained from the model
refinement is shown in Figure 3(b). In this case the model
is matched to a face with a strong fear expression. The inter-
mediate states illustrate how the model is being deformed to
match the new face during the refinement iterations.

4. Separability Analysis

To assess if the SSV can be used as a feature space for the
facial expression analysis and recognition, the separability of
the SSV-based features has been analysed, using qualitative
and quantitative methods. In the qualitative analysis, the
separability of the SSV-based features is examined visually
in a low-dimensional SSV space. The quantitative analysis
is carried out using one of the numerical separability
criteria. Four types of data sets have been used in the
separability analysis; they are 3D synthetic faces generated
from the FaceGen Modeller, manually selected 3D facial
landmarks from the BU-3DFE database, 3D face scans from
the BU-3DFE database, and automatically detected 3D facial
landmarks from the BU-3DFE database. All these data sets
cover a wide variety of ethnicity, age range, as well as gender.
Face samples from the FaceGen and BU-3DFE data sets
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Disgust
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Happiness

(a) Face samples from the FaceGen database

Anger

Disgust

Fear

Happiness

(b) Face samples from the BU-3DFE database

Figure 4: Face samples showing four different subjects and expressions with four levels of expression intensity.

showing different individuals and different expressions are
shown in Figure 4. The faces used for testing are not included
in the training data sets used for building the SSM.

4.1. Qualitative Evaluation. Since the high-dimensional SSV-
based features are hard to visualise, only the first three
elements of the SSV are used for qualitative analysis. For
different types of data, the first three principal compo-
nents retain different levels of variability present in the
training data set. With the retained variability defined as
∑3

i=1 λi/
∑M

i=1 λi, where λi and M are given in Section 2.2, the
first three principal components retain around 51% of the
total data variability for the model built using 450 synthetic
faces. For the model built from the facial landmarks the
first three principal components retain around 42% data
shape variability, whereas for the model built using dense set
of facial points the first three principal components retain
35% of the variability. The last two models were built using
the same 450 faces randomly selected from the BU-3DFE
database.

4.1.1. 3-D Synthetic Faces. Firstly, the 3D synthetic faces
generated from the FaceGen Modeller are used to show the
separability of the SSV-based features. The FaceGen Modeller
is a commercial software designed to create realistic faces
with controllable type and level of expressions for subjects
of any ethnic origin or gender. Since the correspondence
information is provided for all the face vertices (3428 vertices
are used to represent all the synthetic faces), the SSM can
be built directly without correspondence search. However,
it needs to be stressed that the priori knowledge about
the correspondence, for the faces in the training data set,

was only used in the model building stage. In the model
fitting stage the information about the data correspondence
was ignored and the correspondence search was included in
finding the SSV representation of the faces from the test sets.

For the evaluation, a training data set of 450 3D synthetic
faces from 18 subjects was used to build the SSM. A
sample of faces from the training data set is shown in
Figure 4(a). Another 450 synthetic faces of 18 subjects were
used for testing. The training and testing faces are mutually
exclusive. First, for clarity of the presentation, Figure 5 shows
the separability of the synthetic faces’ SSVs for selected
expression pairs with five different subjects and varying
expression’s intensity. The SSVs of the same subject and
representing the same expression with various expression’s
intensity are linked together. Considering the expression’s
intensity as only variable the corresponding SSVs are aligned
on the same line segment. It can be observed that the
SSV-based features corresponding to different subjects and
different facial expressions are well separated; furthermore
the orientation of each line seems to define a type of the
expression. Figure 6 shows the separability of the synthetic
faces’ SSVs for all six basic expressions and five subjects
shown in different colours. It can be seen that the SSVs
representing different expressions for the same subject are
clustered together and the SSVs representing the same
expression are located on the line segments having the same
orientation which is independent of the subject.

From the obtained results, showing clustered lines in the
SSV space, it seems reasonable to postulate that the FaceGen
Modeller uses a linear shape space model for face generation,
whereby different eigen subspaces represent different face
expressions as well as different face types. Such an approach
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Figure 5: Visualization of the synthetic faces separability using first
three elements of the SSV and five different subjects.

for face generation was previously proposed in computer
graphics literature [35]. From the presented results, it can
be concluded that the proposed face registration method
is able to recover the facial expression and subject con-
trol parameters used in the face generation model (e.g.,
orientations of the clustered lines in the SSV space define
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Figure 6: Visualization of the synthetic faces separability for six
expressions and five subjects.

(a) Neutral. (b) Surprise.

Figure 7: Example of manually selected landmarks in two different
faces from the BU-3DFE database.

eigen faces responsible for generating different expressions
in the FaceGen shape space model, whereas positions of
the clustered lines define the subject’s identity, as shown in
Figures 5 and 6).

4.1.2. Manually Selected Facial Landmarks. To test that the
SSV feature space can be used for classification of expressions
present in real faces and in the same time to circumvent any
potential problems caused by wrong data correspondence,
tests were carried out on the SSM derived from manually
selected landmarks on faces from the BU-3DFE database.
Each set of 3D facial landmarks provided in the database con-
tains 83 facial points, which are manually labeled around the
areas that are most affected by changes of facial expressions
including eyes, nose, brows, and mouth. Figure 7 illustrates
positions of the landmarks on two different faces. The BU-
3DFE database contains 100 subjects; for each subject, 25
various expressions are included, which can be categorised
into neutral, happy, disgust, fear, angry, surprise, and sad
[23]. The SSM was built using landmarks from 450 faces
belonging to 18 randomly selected subjects. Another set of
landmarks from a different set of 450 faces from 18 different
subjects was used as a test set.
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Figure 8: Separability analysis for manually selected landmarks
using first three principal components.

Figure 8 demonstrates the separability of the SSV feature
space, derived using manually selected landmarks. The first
three elements of the SSV were used with five types of
facial expressions. Figure 8(a) shows that facial expressions
of happy and sad can be easily separated even in a low-
dimensional SSV feature space. This is in agreement with
the general consensus that the expressions of sadness and

happiness are the most recognisable human expressions as
confirmed by a number of psychophysical test. Some of
the expressions are not as well separated in the feature
space as, for example, “angry” and “fear”, as shown in
Figure 8(c). Although they are partly “mixed” together in the
low-dimensional shape space, it is still possible to separate
the majority of these facial expressions. Again this result
reflects findings of psychophysical tests, which confirm that
expressions such as anger and fear can be easily misclassified
by a human observer [36].

4.1.3. Full 3D Face Scans. The results from the previous
section show that with the use of the SSV feature space it
is possible to discriminate facial expressions on real facial
scans. Unfortunately, although the SSM built from manually
selected landmarks uses real faces, the correspondence
is established manually. This approach would not be a
satisfactory solution for most applications as the manual
landmark selection is too tedious and time consuming. In
this section discriminatory characteristics of the SSV feature
space constructed using a dense set of facial points, as
described in Section 3, are examined. As explained there, the
correspondence is estimated automatically during the pose
estimation stage of the model fitting process. It should be
noted here that as the dense correspondence is not given
in the training data set, the correspondence between points
on different training facial scans is also estimated during the
model building phase as explained in Section 2.1.

Figure 9 illustrates the separability of the facial expres-
sions in the feature space of the first three principal
components of the SSV built from the full facial scans. As
in the previous section five different facial expressions were
used. Similarly to the results shown for the manually selected
facial landmarks the results demonstrate again that the SSV
feature space offers a good expression separability.

4.1.4. Automatically Selected Facial Landmarks. As shown
in the previous section, the SSV feature space built from
full facial scans, using dense facial points, provides good
separability of expressions. Additionally this approach is
more practical as the correspondence is estimated auto-
matically. Intuitively discriminatory characteristics of the
SSV feature space can be further improved by using only
information from the facial regions which are articulated the
most during different expressions. In the “full facial scan”
approach, all the points contribute to the SSM, but some
points, that is, on a forehead, carry very little information
about face expression. These points would still contribute
to the variations of the SSM model as they would represent
variability of facial shape for different subjects. Evaluation
was therefore carried out to use the “full facial scan” SSM first
to establish the correspondence between the model and the
data and subsequently used the SSM built from predefined
facial landmarks on the model for the facial expression
representation.

This approach is in principle very similar to using
the SSV representing variations of the manually selected
landmarks, with the difference that landmark selection
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Figure 9: Separability of the facial expressions in the feature space
of first three principal components of the SSV built from the full
facial scans.

is automated, where the automation is achieved through
registration of the “full facial scan” SSM with a new face.
Since the corresponding indices of the facial landmarks
on the model are already known, the positions of the
corresponding landmarks on a new face scan can be directly
estimated when the model is matched to the new face scan.
In this case the surface registration error may introduce

variability in the position of the landmarks which in turn
may have negative effects on the classification performance.
To examine registration accuracy of the proposed method
tests were carried with the synthetic and real faces. In the
experiments, for each data type, the model has been matched
to 450 faces which were not used for the model building.
Subsequently the Euclidean distance between corresponding
landmarks on the deformed model and the test faces was
calculated. The average distance between corresponding
landmarks on the synthetic faces and the model, calculated
from all the 450 test faces, was 1.49 mm with maximum
error of 3.95 mm, whereas corresponding distances obtained
for the real faces were 3.56 mm and 7.64 mm, respectively.
The bigger registration errors obtained for the real faces
are mainly thought to be due to the errors in the manual
selection of the facial landmarks. Indeed it is believed that
the errors in the manual landmark selection, used in the
model building stage, have more influence on the method
performance than the registration error.

Similar to the previous experiments, the model is built
using 450 face scans from 18 randomly selected subjects,
and another 450 face scans from 18 subjects are used for
testing. Figure 10 shows the separability test for the proposed
method. As before the first three principal components
are used to represent five facial expressions. Compared
to the case with the manually selected facial landmarks,
the SSV feature space offers a comparable performance on
separability of expressions.

4.2. Quantitative Evaluation. The separability of the SSV-
based features has been demonstrated qualitatively in the
preceding section. This qualitative analysis shows that the
SSV feature space exhibits good facial expressions separabil-
ity. Due to the way the synthetic data is generated, the SSV-
based features in that case were seen to form very distinctive
linear patterns with different line directions responsible
for different expressions. From experiments with real facial
scans from the BU-3DFE database, the best performance is
achieved when landmarks are used to build the SSM.

In order to further investigate the separability of the SSV-
based features, a quantitative evaluation was carried out. For
this analysis, only the SSM which was generated using the
data from the real scans was included in the test. The data sets
included (i) manually selected facial landmarks, (ii) full face
scans, and (iii) automatically selected facial landmarks. In
this quantitative evaluation, a computable criterion based on
the within-class and between-class distances [37] was used to
measure the separability of expressions in the corresponding
SSV feature spaces. A similar criterion has been used by
Wang and Yin [8] to evaluate the separability of topographic
context (TC) and intensity-based features for the facial
expression analysis and recognition. The criterion relies on
the average between-class distance in the case of multiple
categories, which is defined as follows:

J1(x) = 1
2

Nc
∑

i=1

Pi

Nc
∑

j=1

Pj
1

MiMj

Mi
∑

k=1

Mj
∑

l=1

δ
(

xik, x
j
l

)

, (37)
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Figure 10: Separability analysis for automatically selected land-
marks using first three principal components.

whereMi andMj are the number of samples in classes μi, and

μj , xik, and x
j
l are the K-dimensional feature vectors (SSV)

with labels μi and μj . Nc is the number of distinct classes.

Pi and Pj are the class-prior probabilities, and δ(xik, x
j
l )

denotes the distance between two samples, which is usually

calculated using Euclidean distance. J1(x) can be represented
in a compact form by using the so-called within-class scatter
matrix SW and between-class scatter matrix SB [38], which
are defined as follows:

SW =
Nc
∑

i=1

Pi
1
Mi

Mi
∑

k=1

(

xik −mi

)(

xik −mi

)T
,

SB =
Nc
∑

i=1

Pi(mi −m)(mi −m)T ,

(38)

where mi is the mean of samples in the ith class:

mi = 1
Mi

Mi
∑

k=1

xik, (39)

and m is the mean for all of the samples:

m =
Nc
∑

i=1

Pimi. (40)

Using (38), J1(x) can be rewritten in the following form:

J1(x) = tr(SW + SB). (41)

Although J1(x) is an efficient and computable separability
criterion for feature selection, it is not appropriate for
comparing two or more features since the calculated value of
J1(x) depends on the scale and dimensionality of the feature
space. In order to compare two or more features which lie in
different spaces with different scales and dimensionalities, a
new criterion, J2(x), similar to J1(x), is used (as in [8]) based
on a natural logarithm of the ratio of the determinant of the
within-class scatter matrix and between-class scatter matrix.
The new metric is defined as

J2(x) = ln
|(SW + SB)|

smax
, (42)

where smax is the entry which contains the maximum value in
matrix Σ, and matrix Σ is obtained using the singular value
decomposition (SVD) of matrix SW :

SW = UΣVT . (43)

The larger the value of J2(x), the better the samples
are separated. For comparison, the models using manu-
ally selected landmarks, full face scans, and automatically
selected landmarks are built using the same 450 face scans
as described in the previous sections. As shown in Figure 11,
for the same ratio of retained variability in the model training
data, J2(x) calculated for the SSV feature space of manually
selected landmarks is always the highest. It is not though
significantly different from J2(x) calculated for automatically
selected landmarks when the retained variability is within the
most commonly used range of 70% to 90%. As expected the
separability based on J2(x) is the worst for the SSV computed
from the full face scans.
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Table 1: Recognition rate.

Feature type/classifier LDA (%± SD) QDC (%± SD) NNC (%± SD)

Synthetic faces 98.00± 1.33 100.00± 0.00 70.89± 2.52

Real faces 81.89± 6.96 80.11± 6.87 79.00± 7.09

Manually selected landmarks 84.67± 4.12 82.44± 5.48 83.22± 6.42

Automatically selected landmarks 82.78± 4.64 80.34± 5.03 81.78± 5.28

SD: Standard Deviation.
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Figure 11: Quantitative evaluation of facial expression separability
in the SSV feature spaces.

Table 2: Confusion matrix of the LDA classifier for the synthetic
faces.

Input/output Anger Disgust Fear Happy Sad Surprise

(%) (%) (%) (%) (%) (%)

Anger 94.00 2.00 2.00 2.00 0.00 0.00

Disgust 0.00 100.00 0.00 0.00 0.00 0.00

Fear 0.00 2.00 98.00 0.00 0.00 0.00

Happy 0.00 0.00 0.00 96.00 2.00 2.00

Sad 0.00 0.00 0.00 0.00 100.00 0.00

Surprise 0.00 0.00 0.00 0.00 0.00 100.00

5. Experiments on Facial
Expression Recognition

The separability analyses performed in the previous section
indicate that the SSV feature space can be used in principle
for classification of facial expressions. In this section, the
person-independent facial expression recognition experi-
ments using the high-dimensional SSV are conducted to
further validate discriminatory properties of the SSV feature
space. Again, four different types of facial data were used in
the experiments. For each type of facial data, 900 faces from

Table 3: Confusion matrix of the LDA classifier the real faces.

Input/output Anger Disgust Fear Happy Sad Surprise

(%) (%) (%) (%) (%) (%)

Anger 82.64 3.48 4.17 3.47 4.86 1.39

Disgust 7.64 78.47 3.48 5.56 2.08 2.78

Fear 4.17 3.47 72.59 12.50 5.56 1.39

Happy 2.78 5.56 8.33 83.33 0.00 0.00

Sad 4.17 3.47 11.11 0.00 81.25 0.00

Surprise 0.00 0.00 4.17 2.78 0.00 93.06

Table 4: Confusion matrix of the LDA classifier for the manually
selected landmarks.

Input/output Anger Disgust Fear Happy Sad Surprise

(%) (%) (%) (%) (%) (%)

Anger 90.97 4.17 0.00 0.00 4.86 0.00

Disgust 2.08 89.58 2.78 3.47 0.69 1.39

Fear 0.00 4.86 70.14 4.86 14.58 5.56

Happy 1.38 3.47 6.94 88.19 0.00 0.00

Sad 9.72 0.00 11.81 5.56 72.92 0.00

Surprise 2.08 0.00 1.39 0.00 0.00 96.52

Table 5: Confusion matrix of the LDA classifier for the automati-
cally selected landmarks.

Input/output Anger Disgust Fear Happy Sad Surprise

(%) (%) (%) (%) (%) (%)

Anger 90.28 0.00 2.08 3.47 4.17 0.00

Disgust 4.16 81.94 4.16 2.78 1.40 5.56

Fear 2.78 4.16 65.97 8.18 11.81 5.56

Happy 5.56 0.00 6.94 87.50 0.00 0.00

Sad 3.47 5.56 10.42 3.47 77.08 0.00

Surprise 2.08 0.00 3.47 0.00 0.00 94.44

36 subjects are used containing six basic facial expressions
of anger, disgust, fear, happiness, sadness, and surprise.
These faces are divided into six subsets. Each subset contains
six subjects with 25 faces per subject representing different
expressions. During algorithm evaluation one of the subset
is selected as the test subset while the remaining sets are
used to construct the training database. Such experiment
is repeated six times, with the different subsets selected as
the test subset each time. As the focus of this paper is
on the feature extraction and not on design of the best
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Table 6: Confidence confusion matrix for the human observers using 2D video sequences.

Input/output Anger Disgust Fear Happiness Sadness Surprise Pain

(%) (%) (%) (%) (%) (%) (%)

Anger 55.39 26.03 5.19 0.00 5.13 5.31 2.94

Disgust 7.70 68.86 5.22 0.00 8.47 4.59 5.16

Fear 3.80 9.02 46.90 0.00 7.13 23.90 9.26

Happiness 0.27 0.98 0.71 92.95 1.15 2.35 1.59

Sadness 4.07 5.87 3.63 0.71 74.15 3.22 8.33

Surprise 0.60 7.54 21.84 1.04 2.46 64.64 1.88

Pain 4.94 9.45 9.46 2.30 18.96 3.85 51.04

possible classification algorithm, three well-know (off-the-
shelf) classification methods have been used, namely; linear
discriminant analysis (LDA) [39], quadratic discriminant
classifier (QDC) [40], and nearest neighbor classifier (NNC)
[37]. The detailed description of these methods is beyond
the scope of this paper but can be found in most of the
textbooks on pattern recognition. The average recognition
rates as well as standard deviations, calculated from all the
six experiments using different subsets of faces, for the four
different types of facial data, are give in Table 1. To have a fair
comparison, the size of the SSV for each data type has been
selected in such a way that the retained variability in each
corresponding SSM is as similar as possible. For the results
presented below, SSV for the synthetic data has 27 elements
corresponding to 95.31% of retained variability, SSV for the
full facial scans has 39 elements corresponding to 94.77%,
whereas the SSV for the facial landmarks (both manually and
automatically selected landmarks are using the same model)
has 18 elements corresponding to 95.12%.

As shown in Table 1, all the classifiers achieve a similar
recognition rate for the same data type with the extremely
hight rates achieved for the synthetic faces for all the
classifiers but the NNC classifier. For the facial data from the
BU-3DFE database, the manually selected landmarks’ SSVs
always reach the highest recognition rate, whereas the real
faces’ SSVs always achieve the lowest rate. Tables 2 to 5 show
LDA classifier confusion matrices for all the different data
types used in the experiments.

The presented results show that the SSV-based features
can be used for recognition of facial expressions. The results
for the manually selected landmarks are included only for
a reference as using this data type is not practical due to
lengthy process of landmarks’ selection. From the presented
results it can be seen that the best recognition rate of
82.78% obtained for the automatically selected landmarks
is comparable with the best recognition rate of 84.67%
obtained for the manually selected landmarks. This shows
that the deformable surface registration method described
in Section 3 is able to recover correct correspondences. An
interesting insight into classification performance can be
gained by looking at the confusion matrices. From Table 5
showing the confusion matrix of the LDA classifier for
the automatically selected landmarks, it can be concluded
that the anger and surprise expressions are all classified
with above 90% accuracy, whereas the fear expression is

only classified correctly in 65%. This can lead to the
question about adequacy of the ground truth data. This
is a difficult problem as the human expressions are very
subjective by their nature. To demonstrate this Table 6 shows
the confidence confusion matrix obtained for the human
observers. This data has been obtained as a part of the project
aiming to build and validate a 3D dynamic human facial
expression database [41]. The specific results shown in the
table are based on 10 observers asked to rank their confidence
about recognising 7 facial expressions represented in 210
video clips and each video clip lasts 3 seconds. As it can be
seen in the table the observers were very confident about
recognising the happy expression whereas the fear expression
was often confused with the surprise expression. This shows
a “subjective” nature of the ground truth data. Although
recognition rate of 65% for the fear expression in Table 5
seems to be quite low, when taking into account results
presented in Table 6, they can be considered as reasonable.

6. Conclusions

A novel method for facial expression representation has been
presented in this paper. It uses only 3D shape information,
and therefore, in contrast to most of the methods using
texture, our method is invariant to changes in the illumi-
nation, background, and to some extent viewing angle. The
proposed method assumes that the SSV efficiently encodes
facial expressions, and this encoding can be separated from
the SSV variations caused by observing different faces. The
performed tests indeed confirmed this hypothesis showing
that the proposed representation is, at least partially, invari-
ant to changes of the face ethnicity, gender, or age. A number
of different configurations of the SSM have been tested.
These include the SSM built from facial landmarks as well
as full facial scans of real as well as simulated data. A fully
automatic method has also been proposed for estimation of
the SSV, with an iterative procedure which in turn estimates
correspondence and shape parameters.

7. Future Work

In the method described in this paper the statistical shape
model is built using a single database. In the case of the
multiple databases which are subsequently integrated or
combined together, a further improvement of the method
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Figure 12: An example of the dynamic 3D face sequence.
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Figure 13: Trajectories of the first three principal components of
the SSV-based feature on dynamic face sequences.

would include construction of a hierarchical system, where
firstly the face type is decided upon, and subsequently the
facial expression is recognized using shape model built from
the facial expression database constructed for that specific
face type detected in the previous step.

The separability results presented in the paper show that
the SSV feature space can offer generally good separation
for different expressions. For some expressions though such
as angry and fear, the method provides only a limited
separation, at least for the data used in the experiments. As a
result, these expressions can be easily confused. One way to
improve the separation of these “difficult” expressions is to
provide more information to the model. From the reported
psychophysical test it can be concluded that temporal infor-
mation of the expression articulation provides important
cues for human observers and helps them to correctly read
expressions. Following this observation some simple tests
were conducted with dynamic 3D facial scans. The dynamic
face sequences are captured by the 3dMD scanner [42] in

ADSIP research centre, and the facial landmarks set on each
face in the sequence were manually labeled subsequently.
An example of face sequence is shown in Figure 12. Using
the face sequences, the trajectory of each specified facial
expression is recorded and displayed in the 3D feature space.
Figure 13 shows two trajectories plotted in the SSV domain
for sequences representing fear and angry expressions. It can
be seen that these trajectories are well separated in the SSV
domain, thereby illustrating the potential usefulness of the
temporal information of the face articulation for automatic
expression classification.
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uary 2001.

[36] P. Ekman and W. V. Friesen, “Constants across cultures in the
face and emotion,” Journal of Personality and Social Psychology,
vol. 17, no. 2, pp. 124–129, 1971.

[37] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification,
John Wiley & Sons, New York, NY, USA, 2nd edition, 2001.

[38] W. Zhao, R. Chellappa, and A. Krishnaswamy, “Discriminant
analysis of principal components for face recognition,” in
Proceedings of the 3rd International Conference on Face &
Gesture Recognition, pp. 336–341, 1998.

[39] P. McCullagh and J. A. Nelder, Generalized Linear Models,
Chapman and Hall, New York, NY, USA, 2nd edition, 1989.

[40] B. D. Ripley, Pattern Recogntion and Neural Networks, Cam-
bridge University Press, Cambridge, UK, 1996.

[41] B. J. Matuszewski, C. Frowd, and L. K. Shark, “Dynamic 3D
facial database,” Faculty of Science and Technology, University
of Central Lancashire, 2008.

[42] 3DMD 3D Scanner, 3DMD, 2006, http://www.3dmd.com/.


