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ABSTRACT
Temporality-driven covariate classification had limited impact on: the specification of directed acyclic
graphs (DAGs) by 85 novice analysts (medical undergraduates); or the risk of bias in DAG-informed mul-
tivariable models designed to generate causal inference from observational data. Only 71 students (83.5%)
managed to complete the “Temporality-driven Covariate Classification” task, and fewer still completed the
“DAG Specification” task (77.6%) or both tasks in succession (68.2%). Most students who completed the
first task misclassified at least one covariate (84.5%), and misclassification rates were even higher among
students who specified a DAG (92.4%). Nonetheless, across the 512 and 517 covariates considered by
each of these tasks, “confounders” were far less likely to be misclassified (11/252, 4.4% and 8/261, 3.1%)
than “mediators” (70/123, 56.9% and 56/115, 48.7%) or “competing exposures” (93/137, 67.9% and 86/138,
62.3%), respectively. Since estimates of total causal effects are biased in multivariable models that: fail
to adjust for “confounders”; or adjust for “mediators” (or “consequences of the outcome”) misclassified as
“confounders” or “competing exposures,” a substantial proportion of any models informed by the present
study’s DAGs would have generated biased estimates of total causal effects (50/66, 76.8%); and this would
have only been slightly lower for models informed by temporality-driven covariate classification alone
(47/71, 66.2%). Supplementary materials for this article are available online.

KEYWORDS
Causal inference; DAG;
Directed acyclic graph;
Observational data;
Statistical modeling;
Temporality

It’s such a mistake, I always feel, to put one’s
trust in technique

(George Smiley in: The Looking Glass War by
John Le Carre, 1965)

1. Introduction

1.1. Statistical Skills at the Heart of Evidence-Informed
Policy and Practice

Notwithstanding George Smiley’s caution and the fallibility of
method, statistical expertise plays an increasingly important
role in generating and interpreting quantitative evidence to
inform policy and practice (Teater et al. 2017; Firpo Flyvbjerg
et al. 2019); and training in statistical skills has always needed
to keep pace with ongoing developments in analytical practice
(Tu and Greenwood 2012; Porta, Vineis, and Bolúmar 2015;
Efron and Hastie 2016; Hokimoto 2019; Lübke et al. 2020).
Indeed, perhaps the most important contribution that statistics
can make to evidence-based decision making (and, by exten-
sion, the contribution that statistical skills training can make to
professionals and the lay public, alike) is in revealing and dealing
with the many different sources of bias that can occur when ana-
lyzing and interpreting obvious, observable differences between
ostensibly comparable phenomena (Firpo Flyvbjerg et al. 2019).
Regardless of whether such comparisons are an integral part
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of human nature or a conditioned response to our natural
and social environments (Ross 2019), they manifest as com-
pelling objects of enquiry and speculation even for those trained
to recognize how method, context, and perspective determine
the extent to which these comparisons actually provide preci-
sion, generalization, and causal/predictive insight, respectively
(Asprem 2016).

In the not so recent past, concern with selection bias (and, to
some extent, with chance associations generated by underpow-
ered sample sizes) led to a renewed focus: on statistical training
in the use of research design (particularly experimentation and
randomization) to address potential sources of bias when esti-
mating evidence of cause and effect; and on critical appraisal and
research synthesis techniques (including meta-analysis) to deal
with contradictory findings from different studies undertaken
in different contexts using different techniques (Djulbegovic and
Guyatt 2017). Over time, the limited utility of this approach has
led to a resurgence of interest in the analysis of nonexperimental
(observational) data and the synthesis of “real world evidence”
(e.g., Klonoff 2020; though see also: Losilla et al. 2018). Indeed,
there is broad consensus that such analyses will remain far more
common in many applied disciplines, not least in the era of
“digital tech” and “Big Data” (Eustace 2018); and in contexts
where intervention complexity, ethics, governance, safety, par-
ticipation, and cost make experimentation impossible or simply
undesirable and undesired (Meyer et al. 2019).

© 2021 The Author(s). Published with license by Taylor and Francis Group, LLC.
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1.2. Why Observational Data, Why Causal Inference and
Why Directed Acyclic Graphs (DAGs)?

Many of the same sources of bias that led to the earlier focus on
experimentation and randomisation—particularly those relat-
ing to confounding and sampling bias—continue to threaten
the validity of observational analyses, not least because design
constraints mean that such studies exert little control over the
allocation of naturally occurring “exposures” (be these physical,
biological, or social phenomena). Nonetheless, recent efforts
to address confounding and sampling bias have made sub-
stantial progress; and the emergence of “causal inference” as a
novel interdisciplinary field spanning statistics, mathematics,
and computing (as well as the applied social and biomedical
sciences), has helped in the translation of abstract theoreti-
cal techniques into accessible and practical applications (Porta,
Vineis, and Bolúmar 2015; Lübke et al. 2020).

Causal path diagrams (commonly operationalized as
directed acyclic graphs; DAGs) are one such technique. These
diagrams enable analysts to summarize and share both: their
theoretical knowledge and speculation regarding the likely
nature of the underlying data-generating mechanism (and the
causal relationships that are thought to exist between measured
[“manifest”] and unmeasured [“latent”] variables); and how
these assumptions (and presumptions) are reflected in the
statistical analyses designed to generate causal inference. In
effect, using DAGs to strengthen the design of such analyses
requires analysts to up their game by thinking through their
assumptions and taking greater care to prepare, double check,
and open these up for scrutiny, debate, and challenge (Textor
et al. 2016).

Notwithstanding the philosophical and epistemological
considerations involved (which have been summarized in
Section 1 of the online supplementary materials), DAGs offer
an immediate and compelling contribution to improving the
analysis of observational data because they help to encourage
and facilitate the principled elucidation of plausible (yet often
imperceptible) data generating processes, and thereby reveal
many of the critical features involved so that these can: inform
the design of statistical models; and ensure these models
are capable of providing a sound basis for causal inference.
These benefits reflect the ease with which DAGs can help
analysts seeking causal inference to identify which of the
variables that are known or available to them might play
important roles in the causal relationship they are interested
in estimating (the so-called “focal relationship”, Aneshensel
2002), and the extent to which a hypothesized cause (the
specified “exposure”) might genuinely affect a hypothesized
consequence (the specified “outcome”). Indeed, beyond the
variables specified as the “exposure” and “outcome” in any
given analysis, each of the other measured covariates (and all
of any other unmeasured or latent covariates, regardless of
whether these are known or available to the analyst involved)
can act as “confounders,” “mediators,” or “consequences of the
outcome”, and—when key causal paths among these variables
are missing—in a whole host of other roles, such as “competing
exposures” and “mediator-outcome confounders” (see Figure 1).
“Confounders” are covariates that cause both the specified
exposure and the specified outcome and which, in the absence

of adjustment (or equivalent conditioning achieved through
sampling or stratification), can reverse, enhance and/or mask
the direction, strength, and precision of the true (total causal)
relationship between exposure and outcome (as a result
of “confounder bias” (VanderWeele 2019)). “Mediators” are
covariates that are caused by the specified exposure and cause
the specified outcome (i.e., they fall along one of the potential
causal paths between the specified exposure and outcome).
Like confounders, mediators can reverse, enhance, and/or
mask the direction, strength, and precision of the true (total
causal) relationship between exposure and outcome (as a
result of inferential bias generated through “over-adjustment”
(Richiardi, Bellocco, and Zugna 2013; Gilthorpe et al. 2015))—
though, unlike confounders, mediators only generate such
biases after (over-)adjustment (or as a result of conditioning
thereon through sampling or stratification (Westreich and
Greenland 2013)). Meanwhile, “consequences of the (specified)
outcome” are covariates that do not necessarily have any causal
relationship with the specified exposure but are caused by
the specified outcome. Like mediators, conditioning on such
variables can reverse, enhance, and/or mask the direction,
strength, and precision of the true relationship between the
exposure and the outcome as a result of biases that are
essentially the same as those generated through conditioning
on the outcome and (when they are also consequences of the
specified “exposure”) “collider bias” (Elwert and Winship 2014;
Porta, Vineis, and Bolúmar 2015; Ellison 2020; Griffith et al.
2020; Herbert et al. 2020). Finally, “competing exposures” are
covariates that are causally unrelated to the specified exposure
(whether directly or indirectly) but which cause—and can
therefore explain a proportion of the variance in—the specified
outcome. Conditioning on genuine competing exposures has no
effect on the strength or direction of the relationship observed
between the specified exposure and outcome, but can improve
the precision of its estimation (Tennant et al. 2017).

Clearly, by helping analysts better understand: which covari-
ates do (and do not) introduce bias as a result of condition-
ing (whether through sampling, stratification, or adjustment);
and which covariates do (and do not) warrant adjustment in
statistical models examining the direction and strength of the
potential total causal relationships among measured variables in
observational datasets, DAGs can not only transform analytical
practices but can also enhance the ability of analysts to critique
and learn from the theories and modeling practices of others.
These improvements in analytical modeling to support causal
inference from observational data have helped to transform
what passed for accepted/acceptable practice where, until rel-
atively recently: there was little consensus on how to define or
identify a true “confounder” (VanderWeele and Shpitser 2013);
arbitrary and ostensibly haphazard techniques (including those
based simply on the covariates for which data were available;
Schelchter and Forsythe 1985) were commonplace; and even the
more reputable parametric techniques were deeply flawed, such
as:

(i) selecting covariates for adjustment on the basis that they
display strong univariate correlations with either the spec-
ified exposure and/or the specified outcome (e.g., Harris,
Ellison, and Clement 1999a); and
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Figure 1. Temporality-driven directed acyclic graphs (DAGs) drawn to demonstrate the three principal roles that covariates can play when situated: before the specified
exposure (potential confounders); between the specified exposure and outcome (likely mediators); and after the specified outcome (consequences of the outcome). The
upper DAG (A) includes: all possible unmeasured covariate sets; all probabilistic causal paths (between preceding and subsequent variables); and two of the many other
covariate roles (mediator outcome confounders [MOCs] and competing exposures) that are possible when one or more relevant causal paths are missing. The lower DAG
(B) is the simplified example provided to medical undergraduates in the present study which excluded unmeasured covariates and MOCs.
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(ii) using step-wise techniques to select a group of covariates
whose adjustment optimizes the total amount of variance
explained by the model (e.g., Harris, Ellison, and Clement
1999b).

Indeed, since covariates acting as confounders, mediators, com-
peting exposures, and consequences of the outcome can display
both strong and weak univariate correlations with specified
exposures and outcomes (i), and since adjustment for each type
of covariate can both strengthen and weaken the total amount of
variance explained by the model (ii), neither of these parametric
techniques are capable of distinguishing which covariates might
act as genuine confounders, and which are likely to act as medi-
ators, consequences of the outcome or competing exposures.
DAGs have addressed this impasse by providing a principled
schema based on two key tenets of causal logic, namely that:
all causal paths are unidirectional (hence “directed”); and no
consequence can directly or indirectly affect any of its own
cause(s) (hence “acyclic”).

In this way, DAGs greatly improve the ability of analysts to
identify potential confounders and include these in the “covari-
ate adjustment sets” required to mitigate the effect of “con-
founder bias” in observational analyses that aim to support
causal inference. DAGs have also provided the tools required to
identify, better understand, and explicate hitherto complex and
challenging sources of bias in observational datasets – perhaps
the most famous of which is the “low birth weight paradox”
(the observation that low birth weight babies are more likely
to survive if their mothers had smoked during pregnancy),
which DAGs have revealed to be a seminal example of “selection
collider bias” (Porta, Vineis, and Bolúmar 2015).

1.3. The Potential Utility of Temporal Logic to Improve the
Specification of DAGs

Nonetheless, the utility of DAGs to improve the design of
observational analyses for causal inference ultimately depends
upon the analyst’s understanding of the context and covariates
involved, and such understanding is inevitably vulnerable to:
errors and biases in the theoretical understanding, speculation,
or empirical evidence on which this is based; and limitations
in the knowledge, experience, and expertise of the analyst
concerned. Thus, while DAGs help make such vulnerabilities
visible, and thereby facilitate transparency, they add little to the
valid estimation of causal inference beyond: exposing the inher-
ent weaknesses in the data (and variables) available, the analyst’s
(imperfect) understanding and associated assumptions; and
ensuring the analyst’s statistical models appropriately reflect
these.

For DAG-informed statistical models to provide greater
confidence in the valid estimation of the direction, strength, and
precision of focal relationships using observational data, a more
consistent, consensual, and objective approach to specifying
DAGs is required. This is where temporal considerations have
an important role to play, since the role(s) that covariates can
play in relation to a specified focal relationship are determined
by causal relationships that are themselves dependent upon
their temporal relationship to the specified exposure and
outcome. Indeed—setting aside prior theoretical knowledge

and speculation—temporality alone should determine which
covariates might plausibly act as confounders, mediators, or
consequences of the outcome simply on the basis of whether
these occur before the exposure, between the exposure and
outcome, or after the outcome, respectively. Assuming that all
preceding variables can be assumed to act as (probabilistic)
causes of all successive variables—at least in the absence of
definitive evidence to the contrary—reduces the task facing
experienced and inexperienced analysts alike to correctly
identifying which of their known/available covariates occur
before the specified exposure, and can therefore be considered
potential confounders on the basis that they will be probabilistic
causes of both the exposure and the outcome.

In spite of the substantive conceptual and contextual chal-
lenges involved in correctly identifying precisely when a covari-
ate (as measured) is likely to have occurred—which, in the
case of time-variant covariates requires evaluating when the
covariate (as measured) “crystallized” in the form in which
(and by the time at which) it was measured—drawing a DAG
using temporal logic appears deceptively simple and seems to
require limited technical expertise. As such, might not DAG
specification and its tangible benefits (of improved transparency,
interrogatability, and bias mitigation) be accessible to even inex-
perienced and novice analysts using temporality alone as the
basis for determining the (probabilistic) causal relationships
involved? This then was the rationale behind the development
of a novel directed learning exercise for third year medical
undergraduates,1 which comprised a series of four consecutive
tasks culminating in the classification of covariates (as con-
founders, mediators, consequences of the outcome, and com-
peting exposures) and the specification of DAGs. The aim of the
present study was to evaluate the implementation of this exercise
by examining: student engagement and task completion; the
(mis)classification of covariates; the (mis)specification of DAGs;
and the likely utility of these tasks for improving the design of
observational analyses to support causal inference.

2. Methods

2.1. Background to the Directed Learning Exercise on DAG
Specification

The development of the “Research and Special Studies” (RESS)
strand within the undergraduate curriculum at Leeds Medi-
cal School, and the development therein of training in DAG
specification during the third year (“RESS3”) module (Ellison
et al. 2014a, 2014b), has been summarized in Section 2 of
the online supplementary materials. The RESS3 module begins
with a series of lectures explaining the distinction between
clinical audit and service evaluation, and between biomedical

1UK medical training typically comprises a 5-year undergraduate degree
involving formal theoretical and practical instruction augmented by
extended clinical placements; and culminating in the award of a Bachelors
degree in medicine, followed by two years of practice-based postgraduate
training; and a further 3 to 8 years of specialist training (Marsden 2006).
The third-year UK medical undergraduates participating in the present
study, are therefore broadly comparable to U.S. students in the final year
of undergraduate training in an applied natural science discipline or those
with an undergraduate degree in the social sciences, arts and humanities
who are midway through subsequent postgraduate pre-medical training.
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and methodological research (“discovery”) and applied health
service research (“translation”). These sessions also offer practi-
cal guidance on: expert and stakeholder involvement; institu-
tional governance; and ethical approval procedures; and seek
to emphasize and reinforce how these preparatory steps can
offer tangible benefits in helping to establish: what mistakes
to avoid; which questions to prioritize; what support might
be required; and any necessary constraints to protect research
participants and researchers alike. These lectures conclude with
peer-led training in the use of NICE Evidence Search (a database
developed by the UK’s National Institute for Clinical and Care
Excellence to facilitate access to selected authoritative evidence
on health and social care, including best practice guidelines),
delivered with support from the NICE Evidence Search Cham-
pions Scheme (Rowley et al. 2015; Sbaffi et al. 2015).

The students then focus their attention on developing a
“Project Protocol” assignment for a hypothetical study (com-
prising a combined audit and service evaluation) that aims to
provide causal insights for improving adherence to a selected
best practice guideline. The design of this assignment aims to
balance the consistency required for the assessment of learning
outcomes with opportunities for students to choose, innovate,
succeed, and excel. To this end, the RESS3 Project Protocol
assignment requires students to specify, as their project’s spec-
ified outcome, adherence to a clinical practice guideline in any
specialty or context of interest to them. Likewise, for their spec-
ified exposure, students can then choose any modifiable aspect
of health service organisation/delivery that might feasibly affect
adherence to their selected practice guideline.

Over the weeks that follow, subsequent lectures, large-
group lectorials, and small-group tutorials support the students
to develop each of the five key skills required to design a
detailed Project Protocol that is capable of generating the
evidence required to support causal inference regarding the
nature, direction, and strength of any relationship between their
specified exposure and specified outcome. These skills involve:
selecting which additional variables (i.e., covariates) are likely
to be (un)necessary to measure, collect or extract; developing
standardized data measurement and/or extraction procedures
to strengthen precision and internal validity; designing coherent
inclusion and exclusion criteria to optimize both internal
and external validity; conducting sample size estimation to
generate a suitably powered sampling strategy; and using
DAGs to select an appropriate covariate adjustment set to
minimize bias from measured confounders that are available
for adjustment (and from adjustment for measured mediators
[or consequences of the outcome] that have been mistaken
for confounders), and thereby inform the design of suitable
multivariable statistical models to support causal inference and
associated interpretation.

The directed learning exercise developed to support the
acquisition of the last of these skills draws together four suc-
cessive tasks which are summarized on a two-sided worksheet
that students work through during the large-group lectorial
following their introductory lecture on causal inference and
DAGs and subsequently discuss in supervised small-group
tutorials later that same day. These four tasks comprise:

Task 1: Exposure and Outcome Specification: In this task,
students first choose an appropriate exposure variable that “aims

to measure/record the variation in clinical practice experienced
by” service users receiving care within the clinical context(s)
chosen by the student. Students then choose a suitable outcome
variable that describes “whether each patient in your proposed
study has received care that complied with the NICE guid-
ance/standard” as chosen by the student.

Task 2: Covariate Selection: This task involves the selec-
tion of what are described as “potentially important variables –
excluding the exposure—that are likely to cause the outcome,
for which students are reminded that “such causes must precede
the variable they cause—in this instance they must precede
the outcome and cannot be a subsequent consequence of the
outcome.”

Task 3: Temporality-driven Covariate Classification: Stu-
dents are once more reminded that “causes must temporally
precede the variable they cause” before they are directed
to identify: which of the covariates selected during task 2
are confounders (since they were “ALSO likely to cause the
exposure”); which are mediators (because they were “ALSO
likely to BE CAUSED BY the exposure”); and which must be
competing exposures (on the basis that they are neither causes
of, nor are they caused by, the specified exposure—although
it is worth noting that a substantial weakness in classifying
competing exposures in this fashion is that all such covariates
are likely to have indirect causal relationships with the exposure
through their direct causal relationships with confounders,
mediators, and consequences of the outcome).

Task 4: DAG Specification: Finally, in the last of the four
tasks the students are simply directed to “sketch a Directed
Acyclic Graph that includes your…exposure, outcome and each
of the…” selected covariates as identified and classified during
task 2 and 3 (above), respectively.

2.2. Engagement, Completion, Covariate
(Mis)Classification and DAG (Mis)Specification

To evaluate the directed learning exercise and each of its
subsidiary tasks, lectorial worksheets were photocopied,
anonymised and the original returned to the students con-
cerned. The anonymised worksheets were then used to assess
the proportion of students who had successfully completed each
of the four tasks (as outlined above) as a primary indicator of
student engagement. The medical (sub)specialities pertinent to
the clinical contexts, topics, and foci chosen by each student
were then classified and enumerated to provide an assessment
of the extent to which students had been able to exercise choice
when selecting these. Similar summaries of the guideline-
related outcomes, modifiable health service exposures and
speculative causes of each of the student-selected outcomes
(i.e., the covariates selected in the second task) offered an
assessment of the extent to which students explored different
healthcare pathways and the factors that might influence these.
Subsequent, in-depth assessment (undertaken by the author)
of the temporality-driven covariate classifications completed
during the third task (and those reflected by the DAGs specified
in the fourth task) permitted the estimation of covariate
misclassification rates in each of these tasks, disaggregated
by the type of covariate concerned (i.e., among confounders,
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mediators, consequences of the outcome, and competing
exposures). Finally, each of the specified DAGs was subjected
to detailed examination to calculate the average number of
variables (nodes) and causal paths (arcs) these contained, and to
enumerate the frequency of unorthodox features and technical
errors (such as: the use of adirectional or bidirectional arcs;
the unwarranted omission of arcs; and the presence of cyclical
paths). Together, these analyses aimed to evaluate the potential
utility of the directed learning exercise for strengthening the
analytical knowledge, skills and competencies of undergraduate
medical students in the use of DAGs to support the development
of statistical models capable of generating causal inference
from observational data (such as routinely collected health
service data on which many of their exposures, outcomes, and
covariates were likely to rely).

3. Results

3.1. Completion of the Four Successive Tasks in the
Directed Learning Exercise

A total of 85 anonymised worksheets were available for analysis
in the present study and although two thirds of the students
involved (58, 68.2%) had successfully completed all four of
the tasks in the directed learning exercise, completion rates
declined with each successive task from: close to 100% for the
first and second task (“Exposure and Outcome Specification,”
and “Covariate Selection,” respectively); to 83.5% (71/85) for the
third task (“Temporality-driven Covariate Classification”); and
77.6% (66/85) for the fourth and final task (“DAG Specification”;
see Figure 2). The median number of covariates selected during
the second of these tasks (i.e., those considered “potentially
important variables… that are likely to cause the [specified]
‘outcome”’) was 8, with a range of 5–14. Of those covariate
sets subsequently subjected to “Temporality-driven Covariate
Classification,” all 71 contained at least one potential confounder
(median number: 3; range: 1–8), while only 64 (90.1%) and 57
(80.2%) contained any likely “mediators” (median number: 2;
range: 1–6), or possible “competing exposures” (median num-
ber: 2; range: 1–6), respectively.

3.2. Student-Selected Clinical Contexts, Outcomes,
Exposures, and Covariates

The practice guideline-related outcomes chosen by students
during the first task in the present study (“Exposure and Out-
come Specification”) spanned a wide range of clinical special-
ties; the only notable omissions were public health, oncology,
radiology, intensive care, pathology, anesthesia, and surgery (see
Table 1). Likewise, the guidelines selected also covered every
stage of the healthcare pathway, the commonest being: assess-
ment and diagnosis (n = 17); referral, monitoring, and follow-
up (n = 20); and the provision of advice, medication, therapy
and/or care (n = 30). Somewhat unsurprisingly, given these
outcomes were derived from practice guidelines that commonly
serve as performance criteria, most (58/85, 68.2%) had associ-
ated delivery/waiting time targets.

Meanwhile, the preceding health service characteristics
considered amenable to modification included: the location
of health care delivery; the staff involved in delivering this

Figure 2. Flowchart summarizing the numbers of participants in the present study
who completed each successive task within the directed learning exercise (white
boxes; black text); and those participants who failed to complete one or more of
these tasks (grey boxes; white text).

care; and the expertise and equipment required/available. Of
these, the most common involved consideration of which
professions were available to/involved in the delivery of care
(n = 16); the training, experience and expertise of the health
care practitioners involved (n = 17); and associated staffing
levels and staff-to-patient ratios (n = 18). These features also
predominate among the patient-, practitioner-, facility-, and
catchment-specific parameters which students speculated might
act as potential causes of their selected outcomes during the
second task (“Covariate Selection”); although a far greater
proportion of students included those covariates specific to
patients (95.1%) or health care facilities (90.1%) than to either
practitioners (62.0%) or health service catchments (36.6%; see
Table 1).

3.3. Covariate Misclassification Prior to DAG Specification

Through careful assessment of those covariates classified as
confounders, mediators, and competing exposures during the
“Temporality-driven Covariate Classification” task it was possi-
ble to identify a substantial proportion that had been misclas-
sified (see Table 2). These included two covariates that were
assessed as equivalent/identical to the specified exposure (one
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Table 1. Clinical specialties, modifiable health service exposures, and guideline-related outcomes selected by 85 third year medical undergraduates receiving instruction
in the use of DAGs to inform analytical modeling for causal inference. Students were also invited to speculate what additional covariates might act as likely causes of their
selected outcome (in addition to their specified exposure), and these have been classified under four headings: patient characteristics and practitioner characteristics;
healthcare facilities; and service catchment area.

Clinical (sub) “Modifiable” health Guideline-related outcomes Speculative causes of
specialties (n) service exposures (n) (n; †time targets) student-selected outcome (n/71; %)

Community sexual/reproductive health (1)
Emergency medicine (10)
General practice (17)
Medicine

- Cardiology (2)
- Clinical genetics (3)
- Endocrinology and diabetes (7)
- General internal medicine (3)
- Genitourinary medicine (1)
- Geriatric medicine (4)
- Infectious disease medicine (6)
- Respiratory medicine (3)
- Stroke medicine (8)

Obstetrics and gynecology (8)
Paediatrics (6)
Psychiatry

- Forensic psychiatry (2)
- General psychiatry (3)
- Liaison psychiatry (1)

Appointment availability (5)
Clinical practice (2)
Consultation context (5)
Equipment/facilities availability (8)
HCP expertise/experience (5)
HCP profession (16)
HCP training (7)
History taking (7)
Service availability (1)
Specialist clinic (4)
Specialist expertise availability (5)
Staffing levels (12)
Staffing levels – expertise (6)
Tailored resources (2)

Admission (2)†
Advice alone (4)
Advice and information (2)
Advice and Medication (5)
Advice and Referral (1)†
Assessment (14)†
Care (4)†
Clinical outcome (1)
Diagnosis (3)†
Discharge (2)
Medication (10)†
Monitoring and follow-up (11)†
Provision of equipment (6)
Referral (4)†
Specialist care (7)
Specialist referral (5)†
Therapy (4)†

Patient characteristics (65, 95.1%)
- Demographic
- Sociocultural
- Economic
- Morbidity/severity
- Behaviour
- Attitudes/preferences
- Healthcare uptake

Practitioner characteristics (44, 62.0%)
- Profession/specialty
- Training/knowledge
- Experience/expertise

Healthcare facility (64, 90.1%)
- Primary, secondary or community
- Public/private
- Clinic capacity/complexity
- Service accessibility
- Staffing levels/expertise
- Opening hours
- Equipment and facilities
- Service availability

Service catchment area (26, 36.6%)
- Healthcare funding
- Service integration
- Patient numbers
- Deprivation
- Amenities

Table 2. A comparison of student-reported and assessor-validated covariate classifications generated during the third task within the directed learning exercise
(“Temporality-driven Covariate Classification”) among students who completed this task (n = 71/85, 83.5%).

Student-reported covariate classification

Assessor-validated
Confounder Mediator Competing exposure

covariate classification: n = 71 per n = 252 per n = 64 per n = 123 per n = 57 per n = 137 per
student n (%) covariate n (%) student n (%) covariate n (%) student n (%) covariate n (%)

Exposure 0 (0%) 0 (0%) 1 (2%) 1 (1%) 1 (2%) 1 (1%)
Outcome 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Confounder 60 (85%) 241 (96%) 40 (63%) 55 (45%) 37 (65%) 75 (55%)
Mediator 11 (16%) 11 (4%) 10 (16%) 53 (43%) 15 (26%) 17 (12%)
Competing Exposure 0 (0%) 0 (0%) 10 (16%) 11 (9%) 4 (7%) 44 (32%)
Consequence of the outcome 0 (0%) 0 (0%) 3 (5%) 3 (2%) 0 (0%) 0 (0%)

of which had been misclassified as a likely mediator; the other as
a competing exposure); and three covariates that were assessed
as being “consequences of the (specified) outcome” (all three
of which had been misclassified as likely mediators). These
errors aside, misclassification rates were lowest (at 4.4%) among
the 252 covariates classified as potential confounders, although
these misclassifications involved a larger proportion of the 71
students who completed this task (at 15.5%). Misclassification
was substantially higher among the 123 covariates classified as
mediators (at 56.9%) and among the 137 classified as competing
exposures (at 67.9%); and these misclassification rates were
higher still (at 84.4% and 93.0%) among the 64 and 57 students
who classified at least one of their selected covariates as likely
mediators or competing exposures, respectively.

As a result of these errors, only 11 (15.5%) of the stu-
dents were assessed as having correctly classified all of
their selected covariates as confounders, mediators, and/or
competing exposures; and most of these students (9, 81.8%)

only achieved this after selecting/classifying none of their
covariates as mediators or competing exposures. This left
just two students who had correctly classified one or more
of their selected covariates as a confounder, mediator, and
competing exposure. Nonetheless, were these classifications
to have informed the covariate adjustment sets used in
multivariable statistical models designed to mitigate the risk
of bias (from unadjusted confounding or over-adjustment for
mediators [or consequences of the outcome]) when estimating
the (total causal) probabilistic relationship between the specified
exposure and the specified outcome, only those instances where
either: confounders had been misclassified as mediators (and
excluded from the covariate adjustment sets used); or mediators
[or consequences of the outcome] had been misclassified as
confounders or competing exposures (and included in these
covariate adjustment sets) would have led to biased estimates of
the total causal effect. For this reason, a much larger proportion
of the students who completed the “Temporality-driven
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Table 3. A comparison of student-reported and assessor-validated covariate classifications generated during the fourth task within the directed learning exercise (“DAG
Specification”) among students who completed this task (n = 66/85, 77.6%).

Student-reported covariate classification

Assessor-validated
Confounder Mediator Competing exposure Consequence of outcome

covariate classification: n = 66 per n = 261 per n = 53 per n = 115 per n = 58 per n = 138 per n = 2 per n = 3 per
DAG n (%) covariate n (%) DAG n (%) covariate n (%) DAG n (%) covariate n (%) DAG n (%) covariate n (%)

Exposure 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Outcome 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Confounder 50 (76%) 239 (92%) 31 (58%) 44 (38%) 34 (59%) 68 (49%) 0 (0%) 0 (0%)
Mediator 14 (21%) 20 (8%) 11 (21%) 59 (51%) 14 (24%) 18 (13%) 1 (50%) 2 (67%)
Competing exposure 2 (3%) 2 (1%) 11 (21%) 12 (11%) 10 (17%) 52 (38%) 0 (0%) 0 (0%)
Consequence of outcome 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (50%) 1 (33%)

Table 4. A comparison of student-reported covariate classifications generated during the third task (“Temporality-driven Covariate Classification”) with those classified in
the fourth task (“DAG Specification”) among students who completed both tasks (n = 58/85, 68.2%).

Student-reported covariate classification

Confounder Mediator Competing exposure

Third task n (%) Fourth task n (%) Third task n (%) Fourth task n (%) Third task n (%) Fourth task n (%)

Median per DAG 4 4 2 1 2 2
Maximum per DAG 8 7 4 6 6 6
Minimum per DAG 1 1 0 0 0 0
Total 213 (50.1%) 231 (50.4%) 100 (23.5%) 101 (22.1%) 112 (26.4%) 126 (27.5%)

Task 3 >Task 4 9 10 6
Task 3 <Task 4 22 9 14
Task 3 = Task 4 27 39 38

Covariate Classification” task (24/71, 33.8%) would have been
able to generate unbiased estimates of total causal effects on the
basis of these classifications.

3.4. Covariate Misclassification During DAG Specification

Very similar covariate misclassification rates were also observed
in the DAGs specified by the 66 (77.6%) students who went on to
complete the final task of the directed learning exercise (“DAG
Specification”; see Table 3); although these rates were slightly
higher for covariates classified as confounders (24.2% per DAG;
8.4% per covariate) and slightly lower for those classified as
mediators (79.2% per DAG; 48.7% per covariate) or competing
exposures (82.8% per DAG; 62.3% per covariate) when com-
pared to those observed during the previous task (“Temporality-
driven Covariate Classification”; see Table 2). However, it is clear
that a substantial proportion of the 58 (68.2%) students who
completed both of these tasks altered not only the total number
of covariates included therein, but also how these were classified
(see Table 4). Indeed, the total number of covariates classified as
confounders, mediators, and competing exposures increased by
5.4% from n = 425 to n = 458 from the third to the fourth/final
task; and while the DAGs contained a similar number of covari-
ates classified as mediators, they contained substantially more
covariates classified as confounders and competing exposures
than those classified as such during the Temporality-driven
Covariate Classification task.

These changes in the number and classification of covariates
following “DAG Specification” may explain why substantially
fewer of the students who completed this task successfully clas-
sified all of their selected covariates as confounders, mediators,
or competing exposures (5/66, 7.6%) than those who completed
the preceding task (11/71, 15.5%). This observation held true for

the subset of 58 students who had completed both of these tasks,
17.2% of whom (10/58) had successfully classified all of their
selected covariates following the “Temporality-driven Covariate
Classification” task, while only 6.9% (4/58) had achieved this
during “DAG Specification.” As before (see Section 3.3), the
proportion of multivariable models capable of generating bias-
mitigated estimates of the (total) probabilistic causal relation-
ship between the specified exposure and specified outcome was
substantially higher at 24.2% (16/66), although this was a good
deal lower than that achieved by “Temporality-driven Covariate
Classification” alone (24/71, 33.8%); and this disparity was also
evident among the subset of students who completed both the
fourth task (15/58, 25.9%) and the preceding third task (21/58,
36.2%).

3.5. DAG Specification Errors and Their Likely
Consequences

Across all of the DAGs specified by the 66 (77.6%) stu-
dents who completed the final task of the directed learning
exercise, the median total number of nodes included was
10 and ranged from 4 to 14 (these numbers comprising all
included covariates, as well as the specified exposure and
specified outcome). All of these DAGs included at least one
covariate assessed as representing a potential confounder, and
the median number of such nodes was 4 (range: 1–10). In
contrast, 17 (25.8%) DAGs contained no likely mediators,
and the median number of mediators was just 1 (range: 0–6).
Likewise, 9 (13.6%) DAGs contained no competing exposures,
and the median number of competing exposures was also 1
(range: 0–6).

Two students included nodes in their DAG that were assessed
as being consequences of the outcome (one student included
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two such nodes, the other included just one), though none
of the three students who had previously selected (and mis-
classified) such covariates during the second and third tasks
(see Table 2) then went on to represent these as such in their
DAGs (i.e., with arcs leading to them from the outcome, with
or without additional arcs from the specified exposure and/or
other included covariates). Elsewhere, 16 (24.2%) DAGs used
composite “super-nodes” (i.e., a single node with which two or
more covariates were associated; Tennant et al. 2020), and in
these 16 DAGs the median number of arcs drawn was just 6
(range: 3–9), while for the remaining 50 (75.8%) DAGs—all of
which had separate nodes for each of the selected covariates—
the median number of arcs was 12 (4–22). Neither approach
to DAG specification (using super-nodes or separate/discrete
nodes) generated DAGs that were assessed as being “forward
saturated” (i.e., included all possible arcs between temporally
separated nodes); and all but one had missing arcs between
covariates specified as potential confounders and those specified
as likely mediators. There were also a substantial number of
DAGs with missing arcs: between confounders and the speci-
fied outcome (32, 48.5%), from the specified exposure to any
mediators (21, 31.8%), and from any mediators to the speci-
fied outcome (23, 34.8%). Indeed, there were even 9 (13.6%)
DAGs in which the focal relationship itself—that is, the arc
between the specified exposure and the specified outcome—was
missing.

While a strict interpretation of these missing arcs would have
made it challenging to assess which (if any) of the DAGs had
correctly classified covariates as potential confounders, likely
mediators or competing exposures, this was achieved by inter-
preting: covariates with single arcs leading into the exposure as
confounders; those with single arcs leading out of the exposure
as mediators; and those with only a single arc leading into the
outcome as competing exposures—an approach that was vali-
dated by reference to the classificatory labels which 27 (40.9%)
students had included next to individual covariates or clusters
of covariates in their DAGs. Thus, despite the fact that almost
all of the DAGs contained missing arcs (a serious issue given
the strong assumption an absent arc implies), only a handful of
DAGs contained errors suggesting a fundamental lack of under-
standing: only one contained a cyclical causal path; only one had
used adirectional arcs (i.e., arcs that lacked arrows); and only one
had arcs that ended in the middle of another arc (in this instance
the arc between the specified exposure and outcome) rather than
ending at one of the nodes at either end of that arc. Nonetheless,
together with the large number missing arcs, and the associated
failure to apply or achieve forward saturation, all of the specified
DAGs contained at least one technical error, and none of the
students succeeded in applying the “DAG Specification” task
instructions correctly.

4. Discussion

Despite the tightly structured design of the directed learning
exercise, the students involved in the present study were able
to exert substantial choice when selecting the clinical specialties
and contexts in which to situate their hypothetical Project Proto-
cols. This is likely to have enhanced their engagement with, and

completion of, the exercise, and should also have strengthened
its impact on the successful acquisition of the DAG specification
skills required to select an appropriate covariate adjustment set
to minimize bias from available/measured confounders, and
thereby inform the design of suitable multivariable statistical
models to support causal inference and associated interpre-
tation. However, it is also plausible that students were more
likely to choose hypothetical contexts within clinical special-
ties for which they already (felt they) had sound theoretical
knowledge, or at least sufficient interest and understanding
on which to base any speculation necessary. If so, their prior
assumptions regarding the likely causal pathways and data-
generating mechanism(s) involved in such contexts—whether
knowledge-based or somewhat speculative—may have actually
made it more challenging for them to preference temporality
during the third and fourth tasks of the directed learning exer-
cise (“Temporality-driven Covariate Classification” and “DAG
Specification,” respectively). Some evidence to this effect can
be found in the list of clinical specialties that students did
not choose as hypothetical contexts for their Project Protocol
assignments (see Table 1), since many of these only offer place-
ments to medical undergraduates at Leeds Medical School in
year 4 or 5 of the 5-year MBChB course (i.e., in the years after
they complete the RESS3 module in which the present study
took place; Murdoch-Eaton and Roberts 2009).

Setting these issues aside for the time being, the present
study found that most of the students were able to complete all
four of the tasks in the directed learning exercise; although an
increasing proportion found the last two tasks (“Temporality-
driven Covariate Classification” and “DAG Specification”)
more challenging or difficult to complete within the time
available. Moreover, since a small proportion of the students
who completed the fourth task (“DAG Specification”: 8/66,
12.1%) did so without completing the third task (“Temporality-
driven Covariate Classification”), it seems likely that the latter
was experienced as the most difficult and time-consuming; or
perhaps the least important for completing the ultimate task—
DAG Specification itself. These possibilities are worth exploring
further if, as seems plausible, the conceptual challenges involved
when classifying covariates on the basis of their temporal
relationship with the specified exposure (while ignoring
any—potentially erroneous—prior knowledge or speculation
regarding the causal/functional relationships involved), meant
it was only possible to complete one of these tasks in the time
available; and that some students found the fourth task needed
to be (and could be) completed without completing the third.

Similar considerations might have influenced the emphasis
many students placed not simply on completing the fourth
and final task (“DAG Specification”)—regardless of whether
they had completed the third—but also on choosing variables
in the second of these tasks (“Covariate Selection”) that were
more likely to be confounders than mediators or competing
exposures.

Given the focus of the directed learning exercise on DAG
specification, and on identifying potential confounders (and
distinguishing these from likely mediators) to permit their
inclusion in the covariate adjustment sets of multivariable mod-
els intended to generate causal inference, it is perhaps unsur-
prising that some students completed the fourth task (“DAG
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Specification”) without completing the third; or that all of
the students who completed these last two steps classified at
least one of their chosen covariates as a potential confounder.
Likewise, it is also possible that students felt prompted, or indeed
obliged, to specify at least some covariates as mediators and/or
competing exposures—and thereby demonstrate/evidence that
they could differentiate these from potential confounders—
even though correctly classifying covariates as mediators and
competing exposures was largely a secondary consideration
given the focus on compiling appropriate covariate adjustment
sets (of confounders) to mitigate the effects of potential
confounding within multivariable models capable of generating
causal inference.

Together with the potential impact of enabling students to
choose the clinical speciality in which to situate their hypothet-
ical Project Protocol on the prior theoretical knowledge and
associated speculation available to them, the implicit expecta-
tions of the directed learning exercise—that students should
focus on DAG specification (i.e., the fourth task) regardless of
completing the preceding task (“Temporality-driven Covariate
Classification”), and demonstrate their ability to identify poten-
tial confounders by distinguishing these from likely mediators
or competing exposures—may well have undermined the suc-
cessful acquisition of the skills intended. As such, addressing
each of these expectations (and being able to evidence this)
appears to have taken precedence over performing covariate
classification and DAG specification with any degree of pro-
ficiency for the vast majority of students; only 5.9% (5/85) of
whom completed all four tasks while correctly classifying the
covariates they had selected.

It certainly seems likely that the instructions and prompts to
privilege temporality over prior causal knowledge/speculation
that were embedded within the third and fourth tasks of the
directed learning exercise were either ineffectual or very difficult
for students to apply against the backdrop of their existing
knowledge, training, beliefs and/or interests in the healthcare
contexts and pathways that they themselves had chosen as the
basis for their hypothetical Project Protocol assignments. How-
ever, the present study found that many of the students who
completed both of the last two tasks in the directed learn-
ing exercise (“Temporality-driven Covariate Classification” and
“DAG Specification”) altered not only the classification of their
covariates but also the total number of covariates involved.
Contrary to the suggestion that students focused on complet-
ing these tasks (rather than on applying the skills required to
perform these competently), it seems more likely that drawing
their DAGs when completing the final task (i.e., “DAG Specifica-
tion”) prompted or required many of the students to reconsider
both the covariates they had chosen (in the second task of the
exercise: “Covariate Selection”) and how these covariates had
been classified (in the third task of the exercise: “Temporality-
driven Covariate Classification”). It also seems clear that DAG
specification led students to re-evaluate the role(s) that (other)
covariates might play in relation to any potential causal rela-
tionship between the exposure and outcome variables they had
chosen in the very first task (“Exposure and Outcome Specifica-
tion”). As such, DAG specification – in and of itself – proved
to be a task that invoked and involved considerations other
than temporality when students decided which covariates were

relevant for consideration/inclusion, and what role(s) each of
these might play within their DAG.

Unfortunately, because the study context did not permit
the random allocation of task completion (or the sequence in
which tasks were completed), the differences observed between
the n = 13 students who completed the third task without
completing the fourth, the n = 8 students who completed
the fourth task without completing the third, and the n = 58
who completed both the third and then the fourth task, might
simply reflect differences in the confidence and competencies
of: the students who found the “Temporality-driven Covariate
Classification” so challenging (or time-consuming) that they
did/could not complete the subsequent task; those who
chose not to complete the “Temporality-driven Covariate
Classification” task because they viewed this as irrelevant or
unnecessary having quickly grasped its role in the “DAG
Specification” task (and having decided/been able to undertake
both tasks in a single step); and those who more diligently
followed the instructions provided (which encouraged students
to complete both tasks, one after the other; and to focus therein
on temporality). Moreover—since so few students completed
the third and fourth tasks without completing the fourth or
third, respectively—the covariate classifications these provide
offer scant evidence on which to draw firm conclusions as to the
relative merits of “Temporality-driven Covariate Classification”
versus “DAG Specification” alone, or in combination; and
further research is warranted using experimental designs
(in which groups of participants are randomly allocated to
complete the third and fourth tasks independently, together,
or in alternate sequences) to confirm whether “Temporality-
driven Covariate Classification” and “DAG Specification” have
differential (independent, combined, and/or sequential) effects
on covariate misclassification rates. Were such differences to
be confirmed, subsequent research would be warranted to
establish (rather than infer) the reasons and reasoning involved
in “Temporality-driven Covariate Classification” versus “DAG
Specification.” Such research would be necessary to establish

(i) the extent to which it is possible to base covariate classifica-
tion decisions solely on careful and nuanced consideration
of the temporal sequence of known covariates that consti-
tute time-invariant phenomena—as opposed to those that
have been operationalized as time variant measurements—
or those conceptualized as characteristics of entities or pro-
cesses rather than “events” in their own right; and

(ii) whether it is possible to preference temporality over the
cognitive and heuristic prejudices created by the acquisition
of theoretical knowledge (whether through training, expe-
rience or social conditioning; Wilson 1983).

Such research might generate important insights simply by con-
ducting in-depth interviews with established analysts who have
used temporality-driven covariate classification and/or DAG
specification to inform the design of appropriate statistical mod-
els capable of generating causal inference from observational
data. Experimental psychological techniques might also assist
in elucidating the substantial challenges that conceptualization,
operationalization and cognitive heuristics pose in achieving the
phenomenological and critical realist perspectives and insights
that are likely to be required to accurately and consistently
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interpret covariates (and their measurements) as markers of
temporally anchored and relational events which can then be
used to inform the design of statistical analyses capable of
informing causal inference.

5. Conclusion

The present study extends our understanding of the ease with
which directed learning in causal inference techniques might
be integrated within undergraduate courses that aim to equip
students with practical analytical and statistical skills. Using an
exercise designed to provide directed learning in each of the four
successive tasks involved in temporality-driven covariate classi-
fication and DAG specification, as well as substantial scope for
student choice regarding the contexts and topics to which these
tasks were applied, the present study demonstrated that reason-
able levels of student engagement and task completion can be
achieved. However, completion rates declined with each succes-
sive task, and a large number of errors were made in the last two
tasks (“Temporality-driven Covariate Classification” and “DAG
Specification”) which substantively undermined their classifica-
tory value and analytical utility. Taken together, these findings
suggest that some students struggled to complete the exercise in
the time available, and that those who completed all four tasks
may have only been able to do so at the expense of the diligence
required to follow instructions, consolidate their learning, and
demonstrate/attain a degree of proficiency.

Since the principal utility of specifying DAGs in full (i.e.,
with every temporally plausible arc included) is to facilitate the
identification of covariate adjustment sets for any of the possible
focal relationships (i.e., between any possible pair of variables
when specified as the exposure and outcome), the DAGs drawn
by students in the present study would have added little value to
the classification of covariates undertaken in the preceding task
(“Temporality-driven Covariate Classification”). Indeed, only a
very modest proportion (16/66, 24.2%) of the specified DAGs
provided a sufficiently clear indication as to which covariates
were considered potential confounders, likely mediators and
competing exposures so as to support the identification of an
appropriate covariate adjustment set for mitigating potential
bias from measured confounders (and misclassified mediators
[or consequences of the outcome]) when estimating the (total)
probabilistic causal relationship between the specified expo-
sure and specified outcome. That said, as was evident from the
assessment of the results of the previous task (“Temporality-
driven Covariate Classification”; see Table 2), clearly indicat-
ing which covariates are considered confounders, mediators,
or competing exposures offers little benefit to subsequent ana-
lytical modeling if these have been incorrectly classified; and
although the third task (“Temporality-driven Covariate Classi-
fication”) involved lower rates of covariate misclassification to
those achieved during the subsequent task (“DAG Specifica-
tion”), misclassification rates were still high enough to introduce
substantial avoidable bias in any subsequent analyses aiming
to estimate the (total) causal relationship between the specified
exposure and specified outcome if these had relied upon covari-
ate adjustment sets derived using the covariates as classified by
either task.

Nonetheless, the selection of additional and alternative
covariates and the changes in covariate classification that
occurred as a result of completing the final task (“DAG
Specification”) confirms the impact that drawing causal path
diagrams—in and of itself—can make in elucidating the covari-
ate adjustment sets required to mitigate bias from measured
confounders (and misclassified mediators) in analyses of
observational data that aim to support causal inference. At the
same time, it is entirely possible that the apparent worsening
in covariate misclassification rates observed following DAG
specification in the present study simply reflected the powerful
influence that theoretical knowledge and speculation can
bring to bear on (re)interpreting the likely causal relationships
between covariates selected on the basis that they that “…are
likely to cause the outcome” (see Task 2: Covariate Selection;
above); and even when the prior application of temporal logic
has already been used to generate more objective covariate
classifications. Moreover, it is worth bearing in mind that
the undergraduates involved in the present study had limited
expertise in the conceptualization and operationalization of
quantitative variables (and particularly time-variant variables)
as temporally anchored phenomena and on the opacity of
temporal relationships among and between these. Indeed,
these are exacting challenges even for competent analysts with
advanced training and substantial experience (Tennant et al.
2020); and there are well-established (if contentious and con-
tested) concerns that drawing DAGs might actually obfuscate
rather than elucidate the critical insights and associated thinking
required to design analytical models capable of supporting
causal inference with observational data (e.g., Krieger and
Davey Smith 2016). Clearly, further research is warranted to
strengthen our understanding of whether, and how, training
in DAG specification (and related techniques) might actually
improve the selection of appropriate covariate adjustment sets
for use in the analysis of observational data to support causal
inference.
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