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Abstract

Cosmic-ray (CR) fluxes in the heliosphere are affected by the transient interplanetary coronal mass ejections
(ICMEs), causing so-called Forbush decreases (FDs), characterized by a decline of up to 25% in the neutron monitor
counts at the Earth’s surface, lasting up to over a week. FDs are thought to be caused by the ICME shock wave or the
magnetic flux rope embedded in the ICME inhibiting CR propagation through the ICME structure. FDs are typically
modeled as enhanced diffusion within the ICME structure. However, so far modeling has not considered the access of
the CRs from the interplanetary field lines into the isolated magnetic field lines of the ICME flux rope. We study the
effect of an ICME flux rope on particle propagation by using full-orbit particle simulations, with the interface
between the external interplanetary magnetic field and the isolated flux rope field lines modeled analytically. We find
that the particles can access the flux rope through the x-point region, where the external magnetic fields cancel the
azimuthal component of the rope field. The transport through this region is fast compared to diffusive radial
propagation within the rope. As a result, the propagation of CRs into the flux rope can be modeled as diffusion into a
cylinder. The density cavity within the rope is asymmetric, and limited to the magnetic field lines isolated from the
external field. Thus, in order to evaluate the role of the flux rope in FDs, one must analyze the extent of the region
where the flux rope magnetic field lines are separated from the interplanetary magnetic fields.

Unified Astronomy Thesaurus concepts: Forbush effect (546); Galactic cosmic rays (567); Solar coronal mass
ejections (310); Interplanetary physics (827); Interplanetary magnetic fields (824); Interplanetary turbulence (830)

1. Introduction

Propagation of cosmic rays (CRs) in the heliosphere is
controlled by the electromagnetic fields within the solar wind
plasma. The mean magnetic field of the plasma has a Parker
spiral shape, and it is overlaid with plasma turbulence, which
causes stochasticity in the propagation of CRs. The CR
propagation is also affected by large-scale stable and transient
features in the heliosphere such as corotating interaction
regions and interplanetary coronal mass ejections (ICMEs).

The large-scale heliospheric structures are known to cause
sudden decreases in the intensities of high-energy galactic
cosmic rays (GCRs), which have their sources outside the
heliosphere. These Forbush decreases (Forbush 1937; Lock-
wood 1971; Cane 2000; Richardson & Cane 2011) are usually
attributed to ICMEs, although also corotating interaction
regions and heliospheric current sheet crosses can affect the
GCR intensities (e.g., Richardson et al. 1999; Thomas et al.
2014). The magnitude of GCR intensity decrease varies from
event to event, reaching up to 25% as measured by neutron
monitors, and has a dependency on particle rigidity R of R− γ

with γ ranging between 0.4 and 1.2 (e.g., Cane 2000).
The Forbush decreases often show a two-step temporal

structure (Barnden 1973; Cane 2000). The slowly evolving
component starts with a gradual decay of the CR fluxes lasting
for several hours, with subsequent recovery that typically takes
several days, up to over a week. This slow component is
typically considered to be due to GCRs having to penetrate the
ICME-driven shock wave and its turbulent downstream as they
arrive from the outer heliosphere to be observed at Earth. Within
the slowly evolving Forbush decrease, the CR fluxes can
experience additional reduction, lasting typically one day and
characterized by a fast decay and fast recovery. This faster
component is attributed to the particles experiencing the barrier

formed by the isolated magnetic flux rope within the ICME
(e.g., Cane 2000).
The contribution of the slow and fast components to the

depth of the Forbush decrease varies from event to event, but in
general they are comparable in terms of the Forbush decrease
effect they produce (e.g., Wibberenz et al. 1998; Richardson &
Cane 2011). Thus it is important to be able to characterize the
FD effects due to the shock and the flux rope separately
through modeling.
The effect of the shock wave on the GCR flux is typically

modeled as a propagating diffusive barrier, typically using a 1D
steady-state diffusion or cosmic-ray modulation model (e.g.,
Wibberenz et al. 1998, and references therein). The models use
the change of the radial diffusion coefficient, solar wind speed,
and the barrier size as parameters for the depth of the decrease,
and can produce decreases of 1%–10% for diffusion coefficient
increases of a factor of 10 within the barrier. The 2D transport
model of Le Roux & Potgieter (1991), incorporating both drift
and diffusion within the Parker transport model (Parker 1965),
successfully reproduced both the amplitude and temporal
profile of observed Forbush decreases, whereas Luo et al.
(2017) recently used a 3D Fokker-Planck approach to
investigate the effects of a wavy heliospheric current sheet on
the temporal profiles of Forbush decreases.
The modeling of the effect of the magnetic cloud on the

GCR propagation requires a more involved approach, as the
cloud is typically characterized by a flux rope-like magnetic
structure, which should be taken into account. In a flux-rope
configuration, GCRs must propagate across the magnetic field
within the cloud to penetrate closer to the cloud axis. Several
studies have used approximations based on GCR modulation
models and estimations of diffusive filling of the magnetic
cloud to evaluate the maximum depth of the Forbush decrease
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due to the flux rope (e.g., Quenby et al. 2008; Subramanian
et al. 2009), successfully reproduced Forbush decreases in
specific case studies by adjusting the diffusion coefficient
magnitude. A time-dependent diffusion approach was first used
in 1D by Cane et al. (1995) who modeled an observed FD
with radial diffusion coefficient κradial∼1019 cm2 s−1. The
approach has been recently refined by other authors, for
example, Munakata et al. (2006) studied the expansion of
the flux rope and the resulting adiabatic deceleration, and
Dumbović et al. (2018) investigated different flux rope
expansion models. The parameter fits for specific events
analyzed in these studies vary significantly, between
κradial∼1019–1021 cm2 s−1.

Also nondiffusive propagation of particles guided by the flux
rope magnetic fields has been addressed recently. Krittinatham
& Ruffolo (2009) investigated the role of guiding center drifts
in transporting CRs into a flux rope. They followed the GCR
guiding center orbits within the 3D toroidal flux rope starting
from the edge of the toroid, and found that drifts could trap
GCRs on closed orbits for long time periods. However, to keep
the CRs within the rope, and for them to propagate deeper into
the rope, another cross-field propagation mechanism is needed.
Similar results were found by Kubo & Shimazu (2010), who
used analytical and numerical solutions of 3D equations of CR
motion inside a flux rope. Benella et al. (2019) simulated
particles with the 3D equation of motion, without scattering or
diffusion, in a magnetic field of an observed flux rope
reconstructed using the Grad–Shafranov method. In their case
study they were able to reconstruct the observed FD caused by
a small flux rope of 6 hr in duration and 0.04 au in
reconstructed diameter.

However, the above studies only model the GCR propaga-
tion within the flux rope, with the particles injected from the
flux rope surface. Such models assume that the access of the
CRs from the open interplanetary field lines to the isolated field
lines of the flux rope is not hindered by the possibly singular
magnetic connection between the external and the rope
magnetic field lines. In this work, we investigate the validity
of this assumption by studying the particle penetration into a
flux rope from ambient constant background magnetic field.
We make use of a model that includes an analytic description
of the interface between the background magnetic field and the
isolated field lines of the flux rope. We numerically solve the
fully 3D equations of motion for the test particles and
incorporate scattering in velocity space. The full-orbit simula-
tions naturally include the drifts the particles experience within
the magnetic field structure. In addition, the particles propagate
across the magnetic field due to the random-walk of the
particles’ gyrocenters when the particle velocities are iso-
tropized. We compare the 3D simulations with a simple radial
diffusion model describing diffusion of particles into a
cylinder. The models are introduced in Section 2, with further
details of the diffusion model in the Appendix. The results are
presented in Section 3, with a discussion in Section 4, and
conclusions are gathered in Section 5.

2. Models

2.1. Flux Rope Model

We model the flux rope magnetic field using the force-free
description by Gold & Hoyle (1960), where, in cylindrical

coordinates (r, f, Z), the magnetic field is given by
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where Ba is the axial field, and b is a parameter describing the
number of windings around the axis, per unit length of the flux
rope along the Z-axis. The field of the flux rope is generated by
a field-aligned current, consistently with the Ampere’s law,
∇×BGH=μ0 JGH, giving
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The current system generating the Gold-Hoyle field is not
limited in r, which is not feasible in reality. In observations of
interplanetary magnetic clouds, the extent of the magnetic flux
rope is limited (e.g., Burlaga et al. 1981). To achieve such a
cutoff of the magnetic field requires a current system in which
the axial current that produces the azimuthal magnetic field is
counteracted by a current flowing in the opposite direction. To
our knowledge there are no observations of such a current
system at present. Thus, instead of attempting to limit the flux
rope magnetic field by formulating a current system, we opt for
limiting the magnetic field directly. For this purpose, we use a
modulating function

= - +f s s s2 3 1, 33 2( ) ( )

which goes from 1 to 0 as the variable s goes from 0 to 1, and
has a vanishing derivative at 0 and 1. We use the modulating
function to smoothly cut off the magnetic field at rope radius rb,
over a sheath region of thickness tb, by using
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which fulfills the condition ∇·B=0.
The magnetic flux rope is superposed on a background

magnetic field. In this work, we consider constant a back-
ground magnetic field B0, thus giving the total magnetic field as

= +B B B . 5r 0 ( )

We align the flux rope so that in Cartesian coordinates (x, y, z)
its axial magnetic field is directed in the positive x direction,
and the background magnetic field is aligned in the z direction
thus =B eB z0 0 ˆ , where B0 is the magnitude of the background
field. We use B0=5 nT, consistent with the observed
interplanetary magnetic field at 1au from the Sun. In future
work, we will also investigate other relative orientations
between the rope axis and the background magnetic field.
We show the z-component of the magnetic field used in the

simulations in Figure 1(a) for flux rope parameters Ba=5B0,
b−1=14 re and rb=32 re, where re is the solar radius. The
parameters have been selected based on a case study of a flux
rope analyzed in Dasso et al. (2006). The solid blue curve
shows Gold-Hoyle rope field, as given by Equation (1), and the
dashed red and dashed–dotted black lines show the field given
by Equation (4) for two boundary thicknesses tb. As can be
seen, the unlimited solution shown by the blue curve displays
no boundary for the flux rope extent, whereas using a finite
boundary thickness results in finite flux rope.
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In Figure 1(b) we show a y−z-projection of the rope
magnetic field, with the projected magnetic fields shown by the
thin color-coded lines. The red curve is the separating
boundary, or a surface, between the field lines that are isolated
within the flux rope and those connected to the external open
field. The thick blue curve shows the extent of the flux rope, as
given by parameter rb. It should be noted that the structure is
asymmetric, and the separated field encloses only a fraction of
the range defined by the flux boundary radius, rb. The x-point,
where the y and z components of the background and rope
fields cancel is located at (y,z)≈(−32,0)re.

In addition, in Figure 1(c), we show the 3D structure of the
rope and the enclosing field. The red curves trace the field lines
within the flux rope, and the blue curves the open field lines
outside of the separated flux rope field lines. As can be seen,
the external field is disrupted in the direction along the axis of
the flux rope (the blue curves on the near side of the red axis
field lines), due to the toroidal field.

2.2. Particle Simulations

We analyze the charged particle propagation in a flux rope
by use of full-orbit simulations that solve the full 3D Lorentz
equation. The simulation method is described in more detail in
Dalla & Browning (2005). The particle propagation is
investigated as the particles penetrate the flux rope field from
below or above the flux rope. For statistical efficiency, we
employ the Liouville theorem to trace the particles as phase
space elements backward in time, injecting them within the
region of interest, and tracing them until they reach an injection
surface, or until a predetermined simulation time has lapsed.

We will also employ scattering in the simulations. The
scattering is included as pitch- and phase angle isotropization at
scattering events parameterized by scattering time τsc=λsc/v,
where λsc is the parallel scattering mean free path, which for
simplicity is kept constant in the simulations, and v is the
particle velocity. At a scattering event, the particle’s post-
scattering velocity vector will be drawn from an isotropic
distribution, keeping the magnitude of the velocity constant.
The scattering will facilitate decoupling of the particle from the
field line it was on before scattering, as the particle’s gyrocenter
will move a distance of the order of its Larmor radius. Thus, the

scattering will cause the particle’s gyrocenter to move
stochastically across the magnetic field lines.
It should be noted that the stochastic random-walk of the

particles across the magnetic field described above is slow
compared to the transport of particles across the mean field as
they propagate along random-walking field lines in the
turbulent plasmas (e.g., Fraschetti & Jokipii 2011). The latter
is typically considered to dominate cross-field CR transport,
and is the basis of the theories connecting the plasma
turbulence properties to the CR cross-field diffusion coeffi-
cients used in Fokker-Planck equation-based modeling of CRs
(e.g., Jokipii 1966; Matthaeus et al. 2003; Shalchi 2010;
Ruffolo et al. 2012; Laitinen & Dalla 2017). However, as
shown by Ghilea et al. (2011), in 2D-dominated turbulence the
turbulently random walking field lines tend to follow the 2D
equipotential contours of the magnetic field. In a flux rope such
as the one modeled in this project, the equipotential contours
are mainly azimuthal. Thus, as first approximation we assume
that the field line random walk does not contribute appreciably
to the propagation of CRs radially toward the axis of the flux
rope, and do not introduce cross-field transport of CRs due to
random-walking field lines in this study.
We show samples of particle traces from our simulations in

Figure 2 for λsc=0.1 and 0.3au for the flux rope shown in
Figure 1. The blue circle depicts the flux rope radius rb, and the
red circle the surface separating the open and isolated field
lines. The thin helical lines show the orbits of particles of
different energies, as given by the legend in both figures. As
can be seen in Figure 2(a), the low-energy particles are mainly
confined to areas either outside or inside the isolated field lines.
However, with sufficient scattering, in this case with
λsc=0.1 au, some particles can enter the isolated field lines
through the x-point on the left side of the flux rope. Inside the
flux rope, the particles quickly fill the toroidal magnetic field
lines of the cloud, and can propagate in the radial direction
through scattering.
The higher-energy particles, shown in Figure 2(b), have

larger Larmor radii, and thus their access due to the gyrocenter
decoupling is more efficient. The particles still mostly enter the
isolated field lines at or close to the x-point on the left side of
the flux rope, however, through a larger area, and as a result
they can penetrate the isolated field lines already with less

Figure 1. (a) The z-component or the toroidal component, of the magnetic field (Bz(z=0)) through the axis of the flux rope, for configuration where the constant
background field is aligned with the z-axis, and the rope axis along the x-axis. The solid blue curve shows the field for an infinite Gold-Hoyle flux rope, while the
dashed red and dashed–dotted black curves show the cases where the field is decayed to zero from the radius, rb=32 re within a boundary layer of thickness
tb=10 re and tb=1 re respectively. (b) A y−z projection of the magnetic field of the flux rope with tb=1 re. The red curve depicts the boundary between the
isolated flux rope field lines and the open background magnetic field. The thick blue circle denotes the extent of the flux rope, as given by rb. (c) A 3D projection of the
magnetic field of the flux rope. The red curves represent the field isolated within the rope, whereas the blue field lines are open.
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frequent scattering. They are also able to propagate radially
within the flux rope more efficiently, as well as to again escape
the flux rope.

It should be noted that the ease of access of particles to the
isolated field lines is clearly a finite Larmor radius effect: in
guiding center approximation, the particles could access the
flux rope only through the singular point (or singular line in
3D). Thus, it is necessary to use a fully 3D equation of motion
for the particles in order to analyze the particle access to the
isolated magnetic structure within a flux rope.

2.3. Diffusion Model

Particle propagation inside a flux rope is often modeled
using a diffusion-convection approach, with Fokker-Planck,
Parker, or diffusion equation (e.g., Cane et al. 1995; Munakata
et al. 2006; Quenby et al. 2008; Subramanian et al. 2009;
Dumbović et al. 2018). We compare our test particle modeling
results to those obtained via a diffusion approach by using a
simple radial diffusion equation for the density of particles,
n(r, t), defined as

k
¶

¶
=

¶
¶

¶
¶

n r t

t r r
r r

n

r

, 1
. 6radial

( ) ( ) ( )

The diffusion coefficient for a random-walk process with
step size Δr at intervals τ, at the limit of large time and large
number of scatterings is defined as

k
t
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Dr

2
. 7radial
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In our simulations, the randomization of the velocity vector at
scattering events results in random-walk of the particle’s
gyrocenter. Simplifying our analysis to the case where the
magnetic field is aligned with the x-axis, a particle at (y(t), z(t)
has its gyrocenter (yG, zG) initially at

m f= - - W +y y t r t1 cos 8G L0 0
2
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m f= - - W +z z t r t1 sin , 9G L0 0
2
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where μ0 and f0 are the pitch angle cosine and the phase
angle at t=0, respectively, Ω=q B/γm is the gyro-
frequency, rL=v/Ω is the particle’s Larmor radius, and

g = - v c1 1 2( ) is the Lorentz factor with c being the
speed of light.
If the velocity vector is now scattered to give new values μ1

and f1, the change in the gyrocenter will be, say, for the
y-coordinate,
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Averaging the square of the deviation over the velocity space
(assumed to be isotropic), we find
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Thus, a diffusion coefficient that corresponds to our
simulations is of the form

k
t
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r

3
. 12L

radial

2

sc
( )

This form of the cross-field diffusion coefficient was given also
in, e.g., Parker (1965).
In our full-orbit simulations, the parallel scattering timescale

τsc is kept constant. However, the Larmor radius of a particle
depends on the magnitude of the magnetic field. As a result, the
cross-field diffusion coefficient is considerably smaller within
the rope, by a factor of ~ B Ba0

2( ) (see Equations (1) and(5)),
and varies as r−4 for 1/brrb.
It should be noted that as we use time-backward integration

within the full-orbit model, the cross-field decoupling of the
particle from its field line depends on the magnetic field at the
location where the scattering event occurs. As a result, the
cross-field propagation in our simulations cannot be considered
as averaged over a Larmor orbit, which would be more natural
for considering decoupling of the particles. We will consider
other parameterizations of the scattering and cross-field
diffusion in future studies.
Equation (6) is solved using the Crank–Nicolson method,

which is explained in detail in the Appendix.

3. Results

In this study, we investigate the dependence of CR
penetration into a flux rope on the particle energy and
scattering parameters, keeping the flux rope parameters fixed

Figure 2. A sample of particles with energies relevant to SEPs propagating in and around the flux rope presented in Figure 1. The blue circle shows the flux rope
radius rb=32re. The parallel mean free path of the particles is 0.1 and 0.3au in panels (a) and (b), respectively.
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at Ba=5B0, b
−1=14 re, rb=32 re, and tb=2 re, and the

rope axis normal to the background magnetic field, as shown in
Figure 1. In Figure 3, we show an example of the evolution of
200MeV proton density in the flux rope depicted in Figure 1,
as obtained with our test-particle simulations. The parallel
mean free path is λsc=0.1 au, representing reasonably strong
scattering in the interplanetary space. The particles are injected
isotropically at a constant rate at the bottom and top of the box
starting from t=0, that is,

d d= - + + QQ r t Q z z z z t,
1

2
, 130 0 0( ) ( ( ) ( )) ( ) ( )

where Θ is the Heaviside function. As we are employing a
time-backward integration method, the source function Q(r, t)
is used as a weighting function. Particles that do not reach
either of the injection boundaries within the simulation period
receive a weight of 0.

The simulated particles are binned in hourly bins, with the
Figure 3 showing the density at selected times. As can be seen,
for 200MeV protons, the evolution of the particle density
within the rope is very gradual. This is due to the small
gyroradius of the particle, ∼0.3 re. Scattering is required for
any flux rope penetration for low energies: our simulations (not
presented here) show that 200MeV protons are not able to
reach the flux rope axis without scattering.

The area of significant CR depletion is not defined by the
flux rope radius (blue circle in Figure 3): the barrier for the
particles is formed only by the isolated field region, depicted by
the dashed red curve in Figure 3. Once the particles have

accessed the flux rope, they quickly isotropize on the toroidal
field lines. The particle distribution within the flux rope is
asymmetric, due to the asymmetry of the surface separating the
flux rope and external magnetic field. At early times (the
leftmost contours in Figure 3) the boundary of the particle
cavity in the 200MeV proton density traces the separating
surface (red dashed curve). At later times, the contours inside
the rope trace the field lines shown in Figure 1(b), with each
contour centered progressively closer to the flux rope axis.
In the top panel of Figure 4, we present the one-dimensional

density profiles of the 200MeV protons through the axis of the
flux rope, along the y-axis (left panel) and along the z-axis
(right panel). As can be seen, the intensity decrease along the
y-axis is clearly asymmetric, and the decrease is much wider
than the decrease along the z-axis. This is due to the asymmetry
in the isolated field region caused by the existence of the
external field. The asymmetry is preserved as time progresses
and the flux rope is penetrated by more particles.
In Figure 5, we show the proton density profiles 3days after

injection, corresponding to a flux rope propagation time from
the Sun to Earth at speed 575km/s. The top panel shows the
effect of particle energy on the propagation of the particles
within the flux rope. This can be characterized through the
Larmor radius, which for the three energies, 20, 200, and
2000MeV are rL=0.1, 0.3, and 1.3re, respectively (for the
ambient background field). For the parallel mean free path of
λsc=0.1 au, used in the top panel of Figure 5, the
corresponding radial diffusion coefficients can be estimated
using Equation (12) as κradial=9·1016, 3·1018, and

Figure 3. Evolution of 200 MeV proton density inside and in the vicinity of a flux rope, with constant injection of particles above and below the rope. The parallel
scattering mean free path is λsc=0.1 au. The dashed curve shows the location of the separator surface between the flux rope and the open field.

Figure 4. Evolution of 200 MeV proton density profiles through the rope axis along z=0 axis (left) and y=0 axis (right), for the flux rope as shown in Figure 3.
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9·1019 cm2 s−1, respectively. Within the flux rope, the
diffusion coefficients would be fraction B Ba0

2( ) of that
outside the flux rope, due to the reduction of the Larmor
radius in a stronger field. Using these values, we can estimate a
cross-field diffusion time of the particles from the rope
boundary to the flux rope axis, t k= r 2d b

2
radial( ), which for

the 2GeV particle gives 0.33 days in the external field, and 8
days in the axis field. For a 20MeV proton, the cross-field
diffusion time in the ambient field would be over 300days.
Thus, such low-energy protons would not be able to penetrate
the flux rope within the propagation time of the flux rope from
the Sun to Earth.

In the bottom panel of Figure 5, we show the 2GeV proton
densities 3days after injection for three different parallel mean
free paths, depicting three different turbulent environments
within and outside the flux rope. Here, we see the significance
of scattering in enabling the particles to penetrate the flux rope:
for stronger scattering with λsc=0.1 or 0.3au the flux rope is
fully filled by the 2GeV protons after 3 days. For λsc=1 au,
the radial diffusion coefficient in ambient field can be estimated
as 9·1018 cm2 s−1, with the density profile of similar shape but
less deep as for the 200MeV protons with λsc=0.1 au, as
shown in the top panel of Figure 5.

In Figure 6, we show the evolution of 200MeV protons into
a flux rope described in Figure 1 when the propagation is
modeled as radial diffusion (see Section 2.3 and the Appendix).
As the model is one-dimensional, it can only be used to analyze
the radial density profile of particles within the rope. The
diameter of the rope is taken to be that of the isolated field line

area (red circle in Figure 1(b)) along the y-axis. The diffusion
coefficient in Equation (6) is given by Equation (12). In the left
panel of Figure 6 we use a constant κradial within the flux rope,
with rL=qBa/m in Equation (12). In the right panel we use
rL=qBr(r)/m, resulting in a r−4 radial dependence of the
diffusion coefficient, as discussed in Section 2.3. This
comparison of different radial dependencies of κradial shows
how the radial profile of the CRs depends strongly on whether
the diffusion coefficient is consistent with the rope magnetic
field, or it is only estimated as constant within the rope.
In Figure 7 we compare the full-orbit simulations (solid

curves) and the radial diffusion solution (dashed curves) for
different particle energies and parallel mean free paths. The
comparison shows that the diffusion equation agrees reason-
ably well with the full-orbit simulations for a wide range of
energy and scattering conditions in the investigated flux rope
configuration. The correspondence of the two models implies
that the access of the particles into the isolated magnetic field
lines inside the flux rope from the external field lines is not
significantly hindered by the lack of magnetic connection. As
implied by Figure 2, the fast access may be facilitated by the
x-point between the isolated and open topologies, where the
magnetic tying of the particles to the field lines is at its weakest.

4. Discussion

In this paper, we have used full-orbit test-particle simulations
to investigate how high-energy charged particles can enter a
magnetic flux rope when they are required to propagate from

Figure 5. Proton density profiles through the rope axis along z=0 axis (left) and y=0 axis (right), for the flux rope as shown in Figure 3, after 3 days. Top panel:
dependence on proton energy, with λsc=0.1 au. Bottom panel: dependence on parallel scattering mean free path, 2GeV protons.
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external, open field lines to the isolated field lines inside the
rope. We used a model in which the flux rope is embedded
within an undisturbed magnetic field, including a transition
from the external field to the flux rope field. We found that the
significant size scale for particle propagation is not the scale
where the rope magnetic field dominates over the background
magnetic field, that is, the rope radius rb in Equation (4), as the
particles within this radius still can be connected to the outside
magnetic field (see Figure 1(b)). Only the field lines forming
the isolated rope structure constitute a significant barrier to the
charged particles. The barrier is asymmetric even for a
symmetric rope field, as seen in Figures 3 and 4, since the
particles that penetrated into the isolated field lines quickly
isotropize along the toroidal field lines, which themselves are
asymmetric (Figure 1)(b)).

The question then remains: how fast can the particles access
the isolated field lines of the flux rope from the external open
field lines? The interface in our model is represented by the
x-point, on the left-hand side of the rope in Figure 1(b). Will
the singular nature of this contact point hinder the particle
access to the isolated field lines?

To analyze this question, we solved a radial diffusion
equation with a diffusion coefficient consistent with the full-
orbit simulation setup, and compared the diffusion solution
with the full-orbit code results. We found that the full-orbit
simulation results give similar evolution of particle density
within the flux rope as a diffusion model where particles diffuse
into the rope from the separator surface. This indicates that the
access of the particles into the rope is a fast process as
compared to isotropization of particles along the flux rope

magnetic fields and the subsequent cross-field diffusion of
particles within the flux rope. Our result thus suggests that
diffusion-based flux rope simulation methods can be used to
model particle propagation into a magnetic flux rope, provided
that the radius of the rope is taken as the isolated surface radius
instead of the radius where the flux rope is disturbed.
However, this result is dependent on the turbulence

conditions of the region around the isolated field region, in
particular the turbulence environment around the x-point. With
strong turbulence in this region, the particle access to the flux
rope may be considerably slower. The superposed epoch study
by Masías-Meza et al. (2016) shows that the sheath is more
turbulent than the preceding solar wind and the flux rope.
However, the parallel and perpendicular particle diffusion
coefficients scale as aB Brms

2 2( ) (see Jokipii 1966; Shalchi et al.
2004; Ruffolo et al. 2012; Laitinen et al. 2017, for value of α
for different processes), and this quantity does not attain a
significant increase in the sheath as compared to the preceding
solar wind (Masías-Meza et al. 2016). Thus, the increased
turbulence amplitude within the sheath does not necessarily
imply significantly larger scattering.
The turbulence conditions within the flux rope can have a

significant effect on the filling of the magnetic structure with
energetic particles. Our simple scattering model is consistent
with a radial diffusion coefficient κradial=9·1018cm2 s−1 for
200MeV protons and λsc=1 au (Equation (12)), which is
close to the Cane et al. (1995) fit of 1019 cm2 s−1. The long
parallel mean free path is also consistent with the observed
nearly scatter-free parallel propagation conditions within flux

Figure 7. Comparison of the full-orbit simulations (solid curves) and the radial diffusion solution (dashed curves) for the flux rope as shown in Figure 3, after 3 days,
with injection rate increasing 1% day−1. Left panel: dependence on proton energy, with λsc=0.1 au. Right panel: dependence on parallel scattering mean free path,
for 200MeV protons.

Figure 6. Evolution of 2 GeV proton density profiles through the rope axis, obtained solving the diffusion equation with diffusion coefficient parameterized by
λsc=1 au. Left panel: constant diffusion coefficient. Right panel: diffusion coefficient proportional to B2 within the rope.
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ropes observed in some solar events (e.g., Torsti et al. 2004;
Ruffolo et al. 2006; Sáiz et al. 2008; Leske et al. 2012),
although the Ruffolo et al. (2006) case study does imply a
stronger cross-field diffusion coefficient than ours and that in
the case study of Cane et al. (1995). The turbulence within a
flux rope has been analyzed by Leamon et al. (1998) who
found that the turbulence within an analyzed flux rope was
richer in the 2D component of turbulent geometry than
undisturbed solar wind, implying a stronger contribution of
cross-field diffusion of particles, relative to diffusion along the
magnetic field. However, as shown by Masías-Meza et al.
(2016), Brms/B is significantly lower within the magnetic
cloud, as compared to the sheath region and the undisturbed
solar wind. Lower relative turbulence amplitude implies
weaker cross-field transport within the cloud, compared to
the undisturbed solar wind. In addition, as we discussed earlier,
the field lines in 2D-dominated turbulence tend to follow the
2D equipotential contours (Ghilea et al. 2011) and thus may not
contribute significantly to transport toward the axis of the
flux rope.

Our current study has not addressed the thickness of the
boundary layer between the flux rope magnetic field and the
background magnetic field, or the flux rope orientation with
respect to the background magnetic field. An orientation other
than the one in our study, where the rope axis is normal to the
external field, will result in expansion of the isolated part of the
flux rope if the field strengths are kept the same. This may
result in slower filling of the flux rope, and hence deeper and
wider CR intensity depressions.We will address these details in
a subsequent study. Further, a flux rope is likely to expand as it
propagates from the Sun to the interplanetary space, with
changing internal magnetic field affecting the diffusion pattern
of particles into the flux rope. Such modeling was recently
performed in Dumbović et al. (2018), who found qualitative
agreement with observed Forbush decreases. We aim to
improve our modeling to include an expanding flux rope to
account for both the changes in diffusion coefficients, and the
resulting adiabatic deceleration of the particles in a future
study.

5. Conclusions

In this study we have simulated charged particle access to a
magnetic flux rope from external open magnetic field lines. We
found that:

1. The decrease of particle density is determined by the size
and geometry of the region in which the field lines are
completely isolated from the external field.

2. Low-energy particles can penetrate the isolated field lines
at or near the x-point between the isolated and open field
lines. This is a finite Larmor radius effect, as in guiding
center approximation the access could only take place
through a singular x-point. High-energy particles can
penetrate from a wider area, in the vicinity of the x-point.

3. The spatial distribution of the particle population inside
the isolated magnetic field structure is asymmetric, as
determined by the magnetic field line structure.

4. Particle access to the isolated fields is rapid compared to
the stochastic radial propagation of the particles, and the
latter is consistent with a simple radial diffusion model
where particles are injected at the isolated magnetic field
boundary.

Our findings show that radial diffusion into a cylinder can be
a viable model for describing particle penetration into or out of
a flux rope. However, care must be taken when describing the
extent of the isolated field region, as well as the turbulent
region outside it.

T.L. and S.D. acknowledge support from the UK Science
and Technology Facilities Council (STFC) (grants ST/
M00760X/1 and ST/R000425/1). Access to the University
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Appendix
Diffusion Model

The radial diffusion equation
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can be solved by use of Crank–Nicolson method (e.g.,
Hutchinson 2015), by discretizing n at locations rk=
r0+kΔr, and times t j=t0+jΔt. In the derivation below,
we will drop the subscript of the diffusion coefficient
for clarity.
The outer derivative of the right-hand side of Equation (A1)

can be written by evaluating the inner derivative at half-steps,
rk+1/2, as
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where k k¢ = r . The matrix can be reorganized to get
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Crank–Nicolson scheme is constructed by evaluating the
right-hand side of Equation (A1) at both the previous and new
timestep, thus it is a semi-implicit scheme, giving

= +
D

+
D+ +n n

t
M

t
M

2 2
A4k

j
k
j j j1 1 ( )

Figure 8. Contour plot of diffusion into cylinder, as a function of normalized
time and radius, obtained using the Crank–Nicholson scheme.
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Using

D
= n

t
M A

2
A5j j ( )

the solution at time t=t j+1 scheme can be written as

= - ++ -n nA A1 1j j1 1( ) ( )

where A is a tri-diagonal matrix with

a k k= - ¢ + ¢- +A A6k k k k k, 1 2 1 2( ) ( )

a k= ¢+ +A A7k k k k, 1 1 2 ( )

a k= ¢- -A A8k k k k, 1 1 2 ( )

with αk=Δt/(2rkΔr2).

The boundaries are defined as
¶
¶

=
=

n

r
0

r 0

and n(rb,t)=

Q(r,t). The outer boundary is solved simply by setting the
outer point at rb at each timestep. The inner, axial boundary is
singular, so we solve the equation by defining the radial grid at
half-integer steps (Hutchinson 2015), with rk=(k−1/2)Δr.
Note that the first point r0=−Δr/2 is outside the solution
grid and the matrix M starts with index k=1. The first row
of M is

k k=
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The second term vanishes as k k¢ = ¢ = =r 0 01 2 ( ) . The
remaining term is

k=
D

¢ -+M
r r

n n
1

.j j j
1

1
2 1 1 2 2 1( )

Consequently, the terms on the first row of A are

a k= - ¢+A A9j
1,1 1 1 1 2 ( )

a k= ¢+A . A10j
1,2 1 1 1 2 ( )

We show the solution to the diffusion equation
Equation (A1), as solved with the Crank–Nicholson scheme in
Figure 8, for a=1 and constant κ=1, with initially empty
cylinder and a time-independent unity source at r=1. To
prevent numerical issues, we use slight smoothing of the initial
n(r, t=0) at r=1, using the smoothing function given by
Equation (3).

The result shown in Figure 8 corresponds to diffusion into a
cylinder with radius a and diffusion coefficient κ0, when the

radius, time, and diffusion coefficient are normalized with
normalization constants rn,tn, andκn as

= =r r r r a, with A11n nˆ ( )

k
= =t t t t

a
, with A12n n

2

0

ˆ ( )

k k k k k= =, with . A13n n 0ˆ ( )

We use these normalization constants when comparing the
diffusion equation solutions with particle simulations. It should
be noted that in these units, the time particles diffuse a distance
s=a−r from the cylinder surface inwards, given as
τd=s2/(2κ), is

t = - r0.5 1 A14d
2ˆ ( ˆ) ( )

consistent with the parabolic shape of the =n r t, 1( ˆ ˆ) contour
in Figure 8.
To verify the code, we compare it to the analytic solution of

diffusion into an empty cylinder of radius a with constant
diffusion coefficient κ (e.g., Dumbović et al. 2018),

å l
l l
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¥
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where λn is defined by the positive roots of J0(λna)=0. The
comparison of the Crank–Nicholson scheme with the analytic
result is shown in Figure 9. It should be noted that the analytic
solution, Equation (A15), involves an infinite sum of oscillat-
ing Bessel functions, which converges very slowly. We used
1,000,000 terms in the sum, requiring 4 hr of computing time
(for a single-node python script using scipy and numpy
scientific libraries), resulting with initial density at cylinder axis
of n(r=0,t=0)=0.0007 n0 instead of the 0 given by the
initial condition. Taking this into account, the Figure 9
demonstrates excellent agreement between the Crank–Nichol-
son scheme and the analytical result.
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