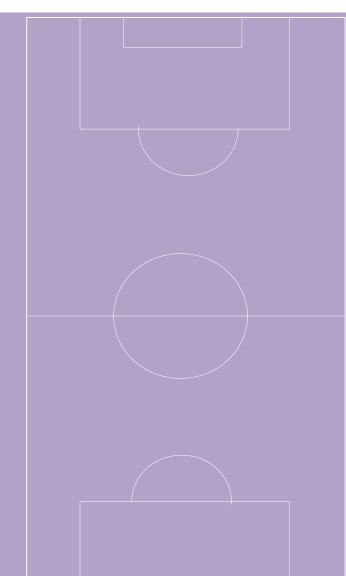

ROADSHOW **COLIN ENERGY SCENARIOS**

Siebe Broersma, Riccardo Pulselli, Han Vandevyvere, Kirstin O' Regan, Aimee McAvoy, Cathal Crumley, Brendan Holbeach **Colin, Belfast, 22.01.2016**

Co-funded by the European Union's Seventh Programme for research, technological development and demonstration

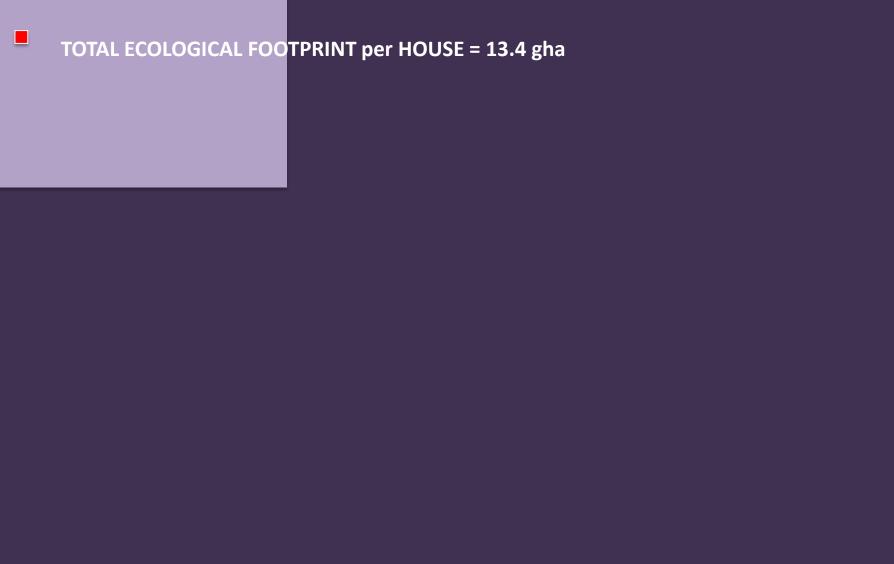
>> ENERGY MASTER PLAN FRAMEWORK



households 2.68 n. avg floor area 82.6 m² CARBON FOOTPRINT PER HOUSE = 5.92 t CO₂eq/yr avg built area 35.4 m² CARBON EMISSION ENERGY 5.55 t CO₂eq electricity demand 3191 kWh/yr heat demand 15383 kWh/yr gas for heating (52% of households) 1042 m³/yr oil for heating (48% of households) 926 kg/yr MOBILITY CARBON EMISSION 0.2 t CO₂eq vehicles 0.6 n. driven distance 1314 km/yr WASTE MANAGEMENT CARBON EMISSION waste production 284 kg/yr 0.17 t CO₂eq waste to landfill 40% waste to energy 16% waste to recycling & compost 44% GARDEN **CARBON UPTAKE** - 3 kg CO₂eq private garden 9.9 m²

CARBON FOOTPRINT PER HOUSE

includes energy use, car driving and waste management



ECOLOGICAL FOOTPRINT PER HOUSE

includes energy use, car driving and waste management

150 m

TOTAL ECOLOGICAL FOOTPRINT per HOUSEHOLD

avg. ecological footprint per capita: 5 gha/person; 2.7 people/household

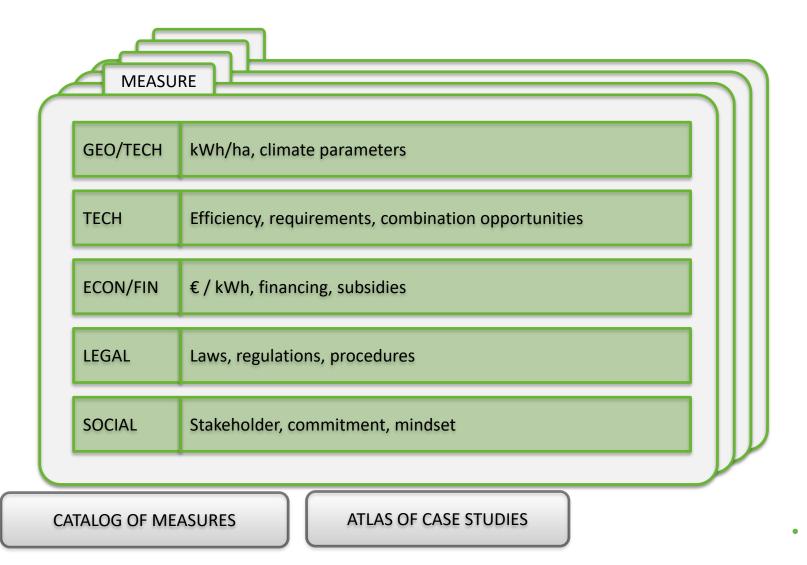
450 m

COLIN DISTRICT ECOLOGICAL FOOTPRINT, HOUSEHOLD RATE = 13,951 gha

COLIN DISTRICT TOTAL ECOLOGICAL FOOTPRINT = 124,071 gha

households n. 9259 Population 24,814 n. avg ecological footprint 5gha/person

HOUSEHOLDS RATE includes: energy use car driving waste management


TOTAL FOOTPRIN includes: purchased goods food consumption extended transport other waste

COLIN DISTRICT ECOLOGICAL FOOTPRINT

avg ecological footprint 5 gha per person

From the catalogue of measures (single techniques, measures, combination of technologies) From the atlas of case studies (built examples)

List of potentially suitable energy measures Energy Efficiency

Insulation;

- o roof
- high performance windows
- o Wall
- \circ Floor
- Air tightness
- Installation efficiency
 - \circ upgrade heating installation
 - \circ efficient mechanical ventilation/ ventilation with heat recovery
- Add greenhouse
- Demolition & reconstruction
- Urban densification with higher building compactness
- Smart grid (electric demand side management)

List of potentially suitable energy provision measures

- PV on roofs (facades); road-side PV; PV power plant
- Solar thermal on roofs; Solar thermal plant; Road solar collector
- Large wind turbine; Micro wind turbine

Biomass

- o individual biomass boiler
- \circ local heat network + central boiler/ CHP
- local heat network + bio digester + CHP
- Heat pump individual (incl buffer),
 - o on air
 - ground loop heat exchanger (horizontal)
 - \circ ground loop heat exchanger (vertical)
- Collective heat pump + heat network
 - ground loop heat exchanger (horizontal)
 - ground loop heat exchanger (vertical)
 - H/C storage in aquifer; in ground; watertank
- Waste heat utilization
- Smart grid (electric)

List of non-technical measures

- Behavioural change
- Subsidies
- Local energy company (e.g. cooperative)
- Smart financing scemes

SUITABLE ENERGY SYSTEMS

Combined energy measures:

Scheme 1: Basic short term individual improvement (standard home renovation) + long term scenario development

- Basic insulation + high performance individual condensing gas boiler Insulation;
 - roof
 - high performance windows
 - insulating existing cavity of walls
 - improving air tightness
 - Installation efficiency
 - upgrade heating installation: individual condensing boiler
 - basic mechanical ventilation
 - Optional:
 - PV-roof
 - Solar thermal boiler
- Next phase planning
 - \circ organise LT stepwise transition to high energy performance
 - organise corresponding financial planning

 at the neighbourhood scale: (1) plan urban **densification** on empty spaces where appropriate and (2) plan **replacement** of worst performing patrimony (demolition and reconstruction on site or elsewhere). Approach prevents dislocating people expect to new and better housing.

Action

Result

nome renovation/ r long term scenario development at wood		3424-180304-0	2000 F
	Existing Neighbourhood Minimal insulation 	Heat demand Electricity demand CO ₂ emissions	4200 MWh/y 874 MWh/y 1516 t CO ₂ eq/y
	Basic Insulation Solution Insulation; • Roof • High performance windows • Insulating existing cavity of walls • Improving air tightness • Installation efficiency • Changing heating system • Basic mechanical ventilation	H E CO ₂ (avoided)	2706 MWh/y 874 MWh/y 371 t CO ₂ eq/y
Ediging	Optional • PV-roof • Solar thermal boiler		
ISI ISI ISI N	Next Planning Phase	Phase A	
	 Organise LT stepwise transition to high energy performance Organise corresponding financial planning At the neighbourhood scale: 	H E CO2 (avoided) Phase B	1982 MWh/y 640 MWh/y 777 t CO ₂ eq/y
Phase 01 Phase 02 Phase 03	 plan urban densification on empty spaces where appropriate 	H	991 MWh/y
Non Non	and	CO2 (avoided)	320 MWh/y 420 t CO ₂ eq/y
	2. plan replacement of worst per- forming patrimony (demolition and reconstruction on site or else- where).	Phase C H E	0 MWh/y 0 MWh/y
Phase 04 Phase 05 Phase 06	Approach prevents dislocating people expect to new and better housing.	CO2 (avoided)	420 t СÓ ₂ өq/у

Bottière-Chênaie, Nantes, France

Hannover Kronsberg, Habitat

Anemoon Project, Tienen

Hannover Kronsberg, Habitat

Orsoyer Strasse, Düsseldorf, Germany

Calculations scheme 1.

1. Basic retrofit + densi	ification and replacement	energy demand	energy saved	CO2 emmision	avoided CO2
Woodside area		(MWh/y)	(MWh/y)	(t CO2eq/y)	(t CO2eq/y)
0 N houses	273				
heat demand	4200105 kWh	4200		1042	
electricity demand	873600 kWh	874		474	
	Total:	5074		1516	
1 heat demand after retrofit	120 kWh/m2				
heat demand neighbourhood	2705976 kWh/y	2706	1494		371
2 N old houses	200				
N new houses	146				
electricity demand	640000 kWh	640	234		127
heat demand	1982400 kWh	1982	2218		550
3 N old houses	100				
N new houses	346				
electricity demand	320000 kWh	320	320		174
heat demand	991200 kWh	991	991		246
4 N old houses	0				
N new houses	546				
electricity demand	0 kWh	0	320		174
heat demand	0 kWh	0	991		246

Scheme 2: Biomass based high performance neighbourhood with deep renovation and PV

High performance improvement

oinsulation;

- roof
- high performance windows
- walls
- floors
- optional: greenhouse addition, other high performance additions to dwellings based on family needs

oair tightness

- installation efficiency
 - change heating system
 - efficient mechanical ventilation / ventilation with heat recovery

Biomass

local heat network + central boiler

PV

 ${\scriptstyle \bigcirc} \mathsf{PV}$ on roof tops

o central small PV power plant

Scenario 2: Biomass based high performance neighbourhood with deep renovation at Laural Bank & Glenwood

Action

Result

	Existing build • Heat demand • Electricity demand • CO ₂ emissions	Heat demand Electricity demand CO ₂ emissions	5600 MWh/y 1165 MWh/y 2021 t CO ₂ eq/y
	High performance improvement Insulation; • Roof • High performance windows • Walls • Floors Air Tighness Installation Efficiency; • change heating system • efficient mechanical ventilation / ven lation with heat recovery	H E CO ₂ (avoided) Area for Biomass Waste from Waste from i- maintenance of green space	1503 MWh/y 1165 MWh/y 1016 t CO ₂ eq/y 119 Hectares (Half of Colin)
	Electricity production • PV on roofs Optional: • Greenhouse addition, other high performance additions to dwellings based on family needs	H E CO2 (avoided) PV per roof	1503 MWh/y 284 MWh/y 478 t CO ₂ eq/y 18m²
	Biomess • Local heat network + Central boiler Electricty Production • Central PV power plant	H E CO2 (avoided) Area of PV power plant	0 MWh/y 0 MWh/y 527 t CO ₂ eq/y 2076m ²
Eco Zathe Heat and Power Plant, Leeuwarden			

Calculations scheme 2.

2. High performance retrofit & bior	nass heat network & PV	energy demand	energy saved	CO2 emmision	avoided CO2
Lauralbankstreet & Glenwood		(MWh/y)	(MWh/y)	(t CO2eq/y)	(t CO2eq/y)
0 N houses	364				
heat demand	5600140 kWh	5600		1389	
electricity demand	1164800 kWh	1165		632	
Total:		6765		2021	
1 A-label heat demand	50 kWh/m2				
heat demand	1503320 kWh	1503	4097		1016
2 harvestable woody biomass per hectare	12667 kWh/ha				
hectare needed to heat the area	119 ha	0	1503		373
3 avg solar insolation	876 kWh/m2hor-y				
avg solar insolation	912 kWh/m2-30deg-y				
avg PV system efficiency	15%				
projected hor surface area buildings	12878 m2				
avg hor surf area per house	35,4 m2				
av available part for solar production	50%				
available surface per house	17,7 m2				
annual elctricity production on roofs	880855 kWh	284	881		478
stil needed electricity	283945 kWh				
PV power plant	2076 m2	0	284		154

SUITABLE ENERGY SYSTEMS

Combined energy measures:

Scheme 3A: Heat pump based high performance individual with deep renovation (horizontal collectors)

High performance improvement

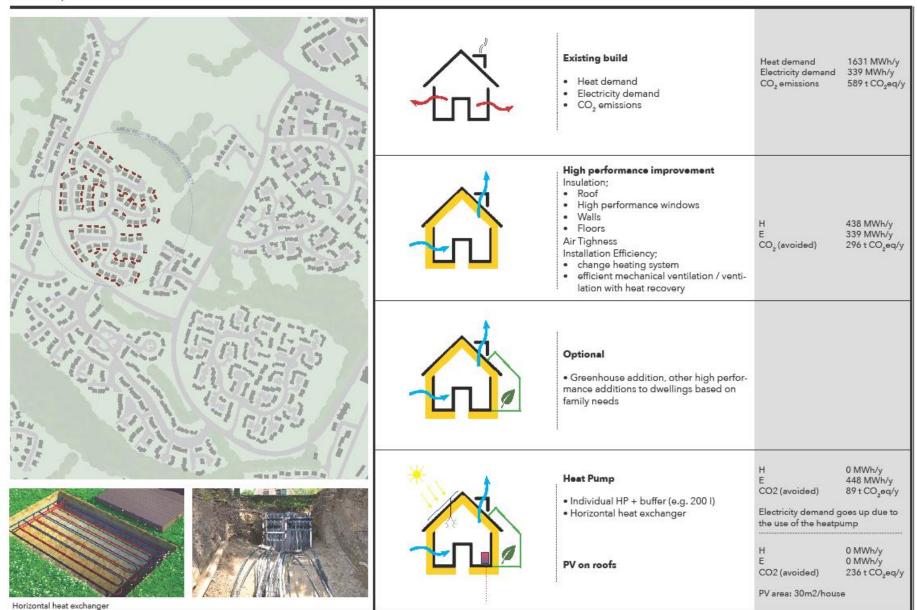
oinsulation;

- roof
- high performance windows
- walls
- floors
- optional: greenhouse addition, other high performance additions to dwellings based on family needs

oair tightness

- \circ installation efficiency
 - change heating system
 - efficient mechanical ventilation / ventilation with heat recovery

Heat pump


- o individual HP + buffer (e.g. 200 l)
- horizontal heat exchanger
- PV on roofs

Note: PV is added to become fully energy neutral

Scenario 3a: Heat pump based high performance individual with deep renovation (horizontal collectors) at Glenkeen

Action

Result

Calculations scheme 3A.

3A. high perf retrofit individual with deep re	enovation (horizontal collectors)	energy demand	energy saved	CO2 emmision	avoided CO2
Glenkeen		(MWh/y)	(MWh/y)	(t CO2eq/y)	(t CO2eq/y)
0 N houses	106				
heat demand	1630810 kWh	1631		404	
electricity demand	339200 kWh	339		184	
Total:		1970		589	
1 A-label heat demand	50 kWh/m2				
heat demand	437780 kWh	438	1193		296
2 Indiv heat pump with hor heat exchangers	4 C.O.P.				
heat demand	0 kWh	0			
new electricity demand for heat pump	109445	109	328		81
total electricity demand	448645	449			
3 avg solar insolation	912 kWh/m2-30deg-y				
avg PV system efficiency	15%				
available surface per house	30,0 m2				
annual elctricity production on roofs	435024 kWh	14	435		236
stil needed electricity/ excess energy	13621 kWh	14			

SUITABLE ENERGY SYSTEMS

Combined energy measures:

Scheme 3B: Heat pump based high performance individual with deep renovation (vertical collectors)

High performance improvement

oinsulation;

- roof
- high performance windows
- walls
- floors
- optional: greenhouse addition, other high performance additions to dwellings based on family needs

oair tightness

- o installation efficiency
 - change heating system
 - efficient mechanical ventilation / ventilation with heat recovery

Heat pump

- o individual HP + buffer (e.g. 200 l)
- vertical heat exchanger
- PV on roofs

Note: PV is added to become fully energy neutral

Scenario 3b: Heat pump based high performance individual with deep renovation (vertical collectors) at Glenbawn

Action

Result

	Existing build Heat demand Electricity demand CO₂ emissions 	Heat demand Electricity demand CO ₂ emissions	2031 MWh/y 422 MWh/y 733 t CO ₂ eq/y
	High performance improvement Insulation; • Roof • High performance windows • Walls • Floors Air Tighness Installation Efficiency; • change heating system • efficient mechanical ventilation / venti- lation with heat recovery	H E CO ₂ (avoided)	545 MWh/y 422 MWh/y 368 t CO ₂ eq/y
	Optional • Greenhouse addition, other high perfor- mance additions to dwellings based on family needs		
	• Individual HP + buffer (e.g. 200 I) • Vertical heat exchanger	H E CO2 (avoided) Electricity demand g the use of the heatpu	0 MWh/y 531 MWh/y 108 t CO ₂ eq/y oes up due to
Vertical Hest pump collectors Deep renovation - External wall Insulation	PV on roofs	H E CO2 (avoided) PV area: 30m2/house	0 MWh/y -10 MWh/y 238 t CO ₂ eq/y

Calculations scheme 3B.

3B. high perf retrofit individual with deep	renovation (vertical collectors)	energy demand	energy saved	CO2 emmision	avoided CO2
Glenkeen		(MWh/y)	(MWh/y)	(t CO2eq/y)	(t CO2eq/y)
0 N houses	132				
heat demand	2030820 kWh	2031		504	
electricity demand	422400 kWh	422		229	
Total:		2453		733	
1 A-label heat demand	50 kWh/m2				
heat demand	545160 kWh	545	1486		368
2 Indiv heat pump with hor heat exchangers	5 C.O.P.				
heat demand	0 kWh	0			
new electricity demand for heat pump	109032	109	436		108
total electricity demand	531432	531			
3 avg solar insolation	912 kWh/m2-30deg-y				
avg PV system efficiency	15%				
available surface per house	30,0 m2				
annual elctricity production on roofs	541728 kWh	-10	542		294
stil needed electricity/ excess energy	-10296 kWh	-10			

Scheme 3C: Heat pump based high performance individual with deep renovation (air to water)

High performance improvement

oinsulation;

- roof
- high performance windows
- walls
- floors
- optional: greenhouse addition, other high performance additions to dwellings based on family needs

oair tightness

- \circ installation efficiency
 - change heating system
 - efficient mechanical ventilation / ventilation with heat recovery

Heat pump

- o individual HP + buffer (e.g. 200 l)
- o air to water
- PV on roofs

Note: PV is added to become fully energy neutral

Scheme 4: central solar thermal power plant with seasonal high temperature buffer

- Basic insulation
 - Insulation;
 - roof
 - high performance windows
 - insulating existing cavity of walls
 - improving air tightness
 - Installation efficiency
 - changing heating system
 - basic mechanical ventilation
- Collective central solar thermal power plant
- Local heat network
- Collective heat pumps
- PV on roofs

Note 1: may not be feasible without deep building renovation Note 2: PV is add to become fully energy neutral

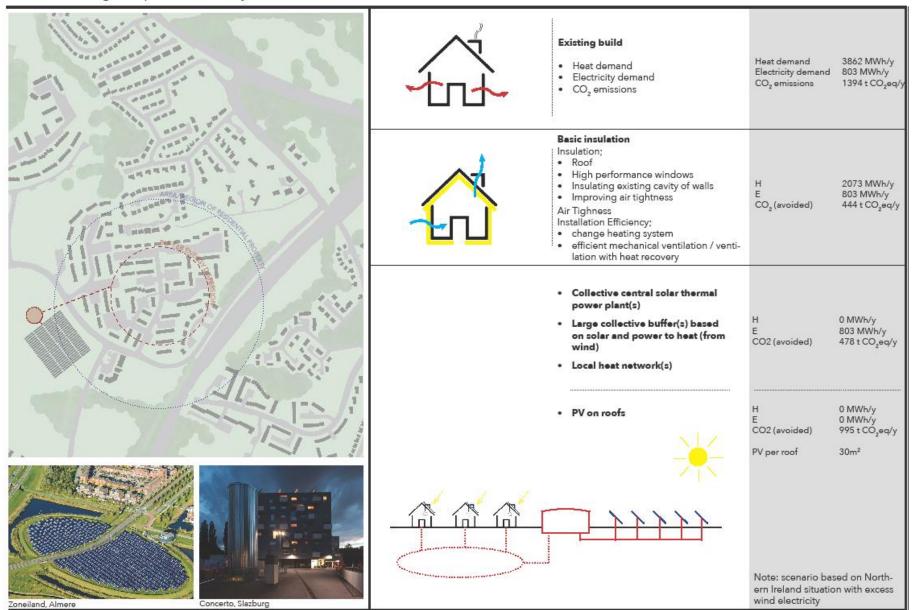
SUITABLE ENERGY SYSTEMS

Combined energy measures:

Scheme 5: Wind based energy cooperative & with power to heat seasonal high temp buffer + PV on roofs

Basic insulation

Insulation;


- roof
- high performance windows
- insulating existing cavity of walls
- improving air tightness
- $\ensuremath{\circ}$ Installation efficiency
 - changing heating system
 - basic mechanical ventilation
- Collective central solar thermal power plant(s)
- Large collective buffer(s)
- Power to heat (from wind)
- Local heat network(s)
- PV on roofs

Note: scenario based on Northern Ireland situation with excess wind electricity

Scenario 5: Wind based energy cooperative & with power to heat seasonal high temp buffer at Cherry Shilin

Action

Result

Calculations scheme 5

5. Solar thermal powered heat network +	wind excess and PV electricity	energy demand	energy saved	CO2 emmision	avoided CO2
Cherry Shilin		(MWh/y)	(MWh/y)	(t CO2eq/y)	(t CO2eq/y)
0 N houses	251				
heat demand	3861635 kWh	3862		958	
electricity demand	803200 kWh	803		436	
Total:		4665		1394	
1 heat demand after retrofit	100 kWh/m2				
heat demand neighbourhood	2073260 kWh/y	2073	1788		444
2 solar thermal production	2500 kWh/4.3m2				
solar thermal production	581 kWh/m2				
amount of power to heat from wind	33%				
amount of heat from solar collectors	67%				
system efficiency solar collectors and buffer	50%				
electricity into heat from wind turbines	684176 kWh/y	1389	684		344
heat produced by solar collectors	2778168 kWh/y	705	0		175
area of solar collectors	4778 m2				
area of solar collectors per house	19 m2				
storage buffer per household	12 m3				
total storage	<mark>3012</mark> m3				
3 avg solar insolation	912 kWh/m2-30deg-y	/			
avg PV system efficiency	15%				
available surface per house	30,0 m2				
annual electricity production on roofs	1030104 kWh	0	-227		995

Scheme 6a: Maximum PV + wind with individual seasonal heat buffers

- Basic insulation
 - Insulation;
 - roof
 - high performance windows
 - insulating existing cavity of walls
 - improving air tightness
 - Installation efficiency
 - changing heating system
 - basic mechanical ventilation
- Maximum rooftop PV + PV farms
- Individual seasonal buffers and/or V2G storage
- Individual heat pumps (see other schemes)

Note 1: scenario based on Northern Ireland situation with excess wind electricity Note 2: may not be feasible without deep building renovation Note 3: batteries not required as grid can take variations

Scheme 6b: Maximum PV + wind with collective seasonal heat buffers

- Basic insulation
 - Insulation;
 - roof
 - high performance windows
 - insulating existing cavity of walls
 - improving air tightness
 - Installation efficiency
 - changing heating system
 - basic mechanical ventilation
- Maximum rooftop PV + PV farms
- Collective seasonal buffers (may be supplemented with solar thermal)
- Combination of individual and collective heat pumps (see other schemes)

Note 1: scenario based on Northern Ireland situation with excess wind electricity Note 2: may not be feasible without deep building renovation Note 3: batteries not required as grid can take variations

Scheme 7: Deep geothermal + district heating + urban densification

- Basic insulation
 - Insulation;
 - roof
 - high performance windows
 - insulating existing cavity of walls
 - improving air tightness
 - Installation efficiency
 - upgrade heating installation: individual condensing boiler
 - basic mechanical ventilation
- Single deep geothermal CHP plant for Colin or Colin+
- Local heat network

Urban densification both for housing needs and for increasing local heat demand nearby plant

Towards a roadmap

- Design 1 or more future visions with technical interventions that meet the final goals
- Back-casting: put the technical interventions on a timeline
- What are drivers and barriers to reach the targets?
- Define non-technical actions that deal with the barriers.