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Abstract: Analysis of colonoscopy images plays a significant role in early detection of colorectal
cancer. Automated tissue segmentation can be useful for two of the most relevant clinical target
applications—lesion detection and classification, thereby providing important means to make both
processes more accurate and robust. To automate video colonoscopy analysis, computer vision
and machine learning methods have been utilized and shown to enhance polyp detectability and
segmentation objectivity. This paper describes a polyp segmentation algorithm, developed based
on fully convolutional network models, that was originally developed for the Endoscopic Vision
Gastrointestinal Image Analysis (GIANA) polyp segmentation challenges. The key contribution of
the paper is an extended evaluation of the proposed architecture, by comparing it against established
image segmentation benchmarks utilizing several metrics with cross-validation on the GIANA
training dataset. Different experiments are described, including examination of various network
configurations, values of design parameters, data augmentation approaches, and polyp characteristics.
The reported results demonstrate the significance of the data augmentation, and careful selection of
the method’s design parameters. The proposed method delivers state-of-the-art results with near
real-time performance. The described solution was instrumental in securing the top spot for the
polyp segmentation sub-challenge at the 2017 GIANA challenge and second place for the standard
image resolution segmentation task at the 2018 GIANA challenge.

Keywords: fully convolutional dilation neural networks; polyp segmentation; data augmentation;
cross-validation; ablation tests

1. Introduction

Colorectal cancer (CRC) is one of the major causes of cancer incidence and death worldwide; e.g., in
the United States, it is the third largest cause of cancer deaths, whereas in Europe, it is the second largest
with 243,000 deaths in 2018. Globally there were 1,096,601 new cases and 551,269 deaths in 2018 [1].
Colon cancer’s five-year survival rate depends strongly on an early detection—decreasing from 95%,
when detected early, to only 35% when detected in the later stages [2,3], hence the importance of colon
screening. It is commonly accepted that the majority of CRCs evolve from precursor adenomatous
polyps [4]. Typically, a colonoscopy screening is proposed to detect polyps before any malignant
transformation or at an early cancer stage. Optical colonoscopy is the gold standard for colon screening
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due to its ability to discover and treat the lesions during the same procedure. However, colonoscopy
screening has significant limitations. Various recent studies [5,6] have reported that between 17% and
28% of colon polyps are missed during routine colonoscopy screening procedures, with about 39% of
patients having at least one polyp missed. It has also been estimated that an improvement of polyp
detection rate by 1% reduces the risk of CRC by 3% [7]. It is therefore essential to improve analysis of
colonoscopy images to ensure more robust and accurate polyp characterization, as it can reduce the risk
of colorectal cancer and healthcare costs. With new advanced machine learning (ML) methodologies, it
is conceivable to significantly increase the robustness and effectiveness of CRC screening.

Clinicians have identified lesion detection and classification as the two most relevant tasks for
which intelligent systems can play key roles in improving the effectiveness of the CRC screening
procedures [8]. Lesion segmentation can be used to determine whether there is a polyp-like structure in
the image, assist in polyp detection, and accurately delineate the polyp region, which helps with lesion
histology prediction [9]. This paper provides a comprehensive study showing how polyp segmentation
can be effectively addressed by using deep learning methodology.

Segmentation is an essential enabling technology for medical image analysis with a great
variety of methods [10–16]. Analysis of colonoscopy images, including polyp segmentation, is a
challenging problem because of intrinsic image appearance and polyp morphology variabilities. Polyp
characteristics change at different development stages, with evolving polyp shape, size, and appearance
(see Figure 1). Initially, colorectal polyps are generally small, with no strongly distinctive features.
Therefore, at this stage they could be easily mistaken for other intestinal structures, such as wrinkles and
folds. Later, when they evolve, they often get bigger and their morphology changes, with the features
becoming more distinctive. Polyps’ appearance in colonoscopy images is also strongly dependent on
the imaging devices used and illumination conditions. Illumination can produce substantial image
changes with varying local overexposure highlights, specular reflections, and low contrast regions.
Polyps may look very different even from slightly altered camera positions and may not have visible
transitions between themselves and their surrounding tissues. Furthermore, various other artefacts,
such as defocus, motion blur, intestinal content, and possibly surgical instruments present in the
camera view, can inevitably lead to segmentation errors.
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Figure 1. A sample of typical polyps from the GIANA SD (CVC-ColonDB) training dataset: (a,h) Small
size. (b) Blur. (c) Intestinal content. (d) Specular highlights/defocused. (e) Occlusion. (f) Large size.
(g) Overexposed areas. (a,e,h) Luminal region.

With new, advanced machine learning methodologies, including the so-called deep learning,
it seems conceivable to significantly increase the robustness and effectiveness of colorectal cancer
screening, and improve the segmentation accuracy, lesion detectability, and the accuracy of the
histological characterization. In recent years there have been several efforts to apply advanced machine
learning tools for automatic polyp segmentation. This work has been inspired by the limitations
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of these previously proposed methods. This paper is focused on the evaluation of a novel fully
convolutional neural network (FCN) specifically developed for this challenging segmentation task.
The proposed FCN system outputs polyp incidence probability maps. The final segmentation result
was obtained either by a simple thresholding of these maps, or a hybrid level-set [17,18] was used to
smooth the polyp contour and eliminate small, noisy network responses.

The paper is an extended version of the paper presented at the 2019 Medical Image Understanding
and Analysis (MIUA) conference [19]. Compared to that conference paper, this paper extends the
analysis by proving more in-depth evaluation, including added justification for the network architecture,
test-time data augmentation, analysis of the cross-validation, results visualization, processing-time,
and comparisons with other segmentation methods evaluated on equivalent segmentation problem.

2. Related Work

Segmentation has an important role to play in colonoscopy image analysis. This becomes
clear even when considering how different terminology is used to describe similar processes and
objectives. Indeed, many existing polyp detection and localization methods can already be interpreted
as segmentation as they provide heat maps and different levels of polyp boundary approximations.
Equally, segmentation tools can be used to provide polyp detection and localization functionality and
they can be of great help when delimiting the region to be analyzed for a posterior automatic histology
prediction process. Polyp segmentation methods can generally be divided into two categories, those
based on shape and those based on texture, with machine learning methods becoming more popular
in both categories.

The earliest approaches in the shape-based segmentation category used predefined polyp shape
models, required manual contour initialization heavily depending on the presence of complete polyp
contours, and were less effective for atypical polyps. Hwang et al. [20] used ellipse fitting techniques
based on image curvature, edge distance, and intensity values for polyp detection. Gross et al. [21]
used the Canny edge detector to process prior-filtered images, identifying the relevant edges using a
template matching technique for polyp segmentation. Breier et al. [22,23] investigated applications of
active contours for finding polyp outline.

The shortcomings of these early methods led to the development of robust edge detectors.
The “depth of valley” concept was introduced by Bernal et al. [24] and further improved in [25–27].
This allowed one to detect more general polyp shapes, and then segment the polyp through evaluating
the relationship between the pixels and detected contour. Later work by Tajbakhsh et al. [28] used edge
classification, utilizing the random forest classifier and a voting scheme producing polyp localization
heat maps, and was then improved via the use of sub-classifiers [29,30].

Polyp segmentation methods within the texture category typically operated on a sliding window.
Karkanis et al. [31] combined gray-level co-occurrence matrix and wavelets. Using the same database
and classifier, Iakovidis et al. [32] proposed a method that provided the best results in terms of area
under the curve metric.

Advances in deep learning techniques have recently allowed the gradual replacement of
hand-crafted feature descriptors by convolutional neural networks (CNN) [33,34]. Ribeiro et al. [35]
looked at a CNN with a sliding window approach and found that it performed better at polyp
classification than the state-of-art hand-crafted feature methods. However, sliding window techniques
are inefficient and find it difficult to use image contextual information. Consequently, an improvement
has been suggested in the form of fully convolutional networks (FCN) [36,37], which can be trained
end-to-end and output complete segmentation results, without the need for any post-processing.
As shown by Vázquez et al. [38], even a retrained off-the-shelf FCN produced competitive polyp
segmentation results. Zhang et al. [39] showed that the same architecture can be improved by adding
a random forest to decrease false positives. One of the most popular architectures for biomedical
image segmentation, the U-net [37], was used by Li et al. [40] to encourage smooth contours in
polyp segmentation.
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The existence of a relationship between the size of the CNN receptive field and the quality of
segmentation results has prompted the introduction of a new layer, the dilation convolution, in order
to control the CNN receptive field in a more efficient way [41]. Chen et al. [42] utilized this to develop a
new architecture called atrous spatial pyramid pooling (ASPP). The ASPP module consists of multiple
parallel convolutional layers with different dilations to facilitate learning of multi-scale features.

There is an increasing trend of colonoscopy image analysis becoming more automated and
integrated, making use of more machine learning techniques. Polyp segmentation can be seen as a
semantic instance segmentation problem, and therefore many of the techniques and improvements
developed for a generic semantic segmentation can possibly be adopted for polyp segmentation.
There is a clear trend of deep feature learning and the end-to-end architectures gradually replacing
hand-crafted and deep features operating on a sliding window. All of this allows for significant
improvements, creating more efficient and accurate methods for polyp segmentation.

3. Method

The Dilated ResFCN polyp segmentation network investigated in this paper, previously introduced
in [19,43], is shown in Figure 2. Its design was inspired by the FCN [36], DeepLab [42], and Global
Convolutional [44] networks. The proposed solution consists of feature extraction, multi-resolution
classification, and fusion sub-networks.
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The ResNet-50 model [45] has been selected as the feature extraction sub-network because, as
shown later in this section, it provides a reasonable balance between network capacity and required
resources for the polyp segmentation problem. The ResNet-50 can be partitioned into five constituent
parts: Res1–Res5 (see Table 1 in [45]). Res1 includes the first convolutional (Conv1) and pooling (Pool1)
layers. Res2–Res5 incorporate sub-networks, having respectively 9, 12, 18, and 9 convolutional layers
with 256, 512, 1024, and 2048 feature maps. Each of these subnets works on gradually reduced maps,
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down sampled with stride two when moving from right to left (Figure 2). The sizes of these feature
maps are 62 × 72, 31 × 36, 16 × 18, and 8 × 9 respectively.

Table 1. The Dice coefficient results obtained on V1–V4 validation folds for the FCN8s, ResFCN, and
Dilated ResFCN. The Dice coefficient and standard deviation, averaged over all validation sets, are
also shown.

Network V1 V2 V3 V4 Average Standard Deviation

FCN8s 0.68 0.60 0.50 0.75 0.63 0.11
ResFCN 0.68 0.71 0.63 0.82 0.71 0.08

Dilated ResFCN 0.77 0.80 0.70 0.88 0.79 0.08

The classification sub-network encompasses four multi-resolution parallel paths connected to
the outputs from Res2–Res5 of the feature extraction sub-network. Each parallel path consists of
dilation and 1 × 1 (denoted as “Pixel Classifier”) convolution layers to, respectively, assemble image
information at different spatial ranges and perform the pixel-level classification at different resolution
levels. Furthermore, a dropout layer [46] is included to improve the network training performance.
The results section shows that the key to the success of the proposed architecture is the use of
dilated kernels, as they increase the receptive field without increasing network information capacity
or computational complexity. With the large receptive field, the network can extract long range
dependencies, incorporating image contextual information into pixelwise decisions. The process
of selecting suitable dilation rates in each of the parallel paths of the classification sub-network is
explained in some detail later in this section. The essential part of that process is to match the receptive
field to the statistics of polyp size. Based on the available training data, the 5 × 5 kernel was selected
for the lowest resolution path, which is connected to Res5 (see Figure 2). This kernel corresponds to a
dilation rate of 2 and it can adequately represent 91% of all polyps in the training dataset. The regions
of dilation convolutions should be overlapping, and therefore the dilation rates increase with resolution.
The dilation rates for sub-nets connected to Res4–Res2 are 4, 8, and 16 and the corresponding kernel
sizes are 9, 17, and 33. The fusion sub-network corresponds to the deconvolution layers of the FCN
model. In the proposed architecture, a bilinear interpolation is used to up-sample results from each
multiresolution classification path to match the image sizes, and the fusion is completed by simply
adding such aligned corresponding sub-network responses.

As explained above, ResNet-50 is selected as the backbone network for image feature extraction,
as it has been previously shown to provide a good compromise between accuracy, required memory
footprint, and computational requirements [47]. However, the question is whether deeper networks
would help to improve the segmentation performance. To test this, the ResNet-50 in the Dilated
ResFCN architecture, shown in blue in Figure 2, was replaced by ResNet-101 and ResNet-152. Figure 3
shows, as red crosses, the corresponding mean Dice coefficients, and the number of operations required
for each given backbone network. The corresponding Dice coefficient standard deviation (STD) is
represented by the vertical bars. The area of the circles represents the number of parameters for the
corresponding network. ResNet-152 is the worst one, with the smallest mean Dice coefficient; and the
largest standard deviation, number of operations, and required number of parameters. ResNet-101
and ResNet-50 have similar mean values, but ResNet-101 has a larger standard deviation and larger
numbers of parameters and operations. Therefore, the segmentation performance gets worse when a
deeper backbone network is used. This can possibly be explained by the fact that, for the given polyp
segmentation problem, ResNet-101 and ResNet-152 provide too much information capacity, leading
to overfitting.
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Figure 3. Chart comparing performance of three tested CNNs, explaining the selection of the backbone
feature extraction network in the Dilated ResFCN architecture. Number of operations corresponds
to a single forward pass of the backbone network. The number of parameters for each network is
represented by the corresponding circle [47]. The values shown as red crosses were obtained using
Dilated ResFCN architecture with ResNet50, ResNet101, and ResNet152 as feature extraction backbone
networks (shown as blue in Figure 2), with the corresponding standard deviation estimates represented
by the blue vertical bars.

Following the methodology described in [48], the numbers of active kernel weights in the left and
right paths of the classification subnetwork are shown in Figure 4. It can be seen that with the dilation
rate too high, the 3 × 3 kernel is effectively reduced to a 1 × 1 kernel. On the other hand, too small
a dilation rate leads to a small receptive field negatively affecting the performance of the network.
The selected dilation rates of 2 and 16, for the “left” and “right” networks respectively, provide a
compromise with a sufficient number of kernels having 4–9 valid weights.
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The Dilated ResFCN feature extraction module (ResNet-50) was initialized with the weights
trained on the ImageNet database. The remaining convolutional and up-sampling sub-networks were
initialized by Xavier [49] and bilinear interpolation weights respectively. Subsequently, the whole
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network was trained on the polyp training dataset. Dilated ResFCN was trained using the Adam
algorithm [50] using the Caffe framework. They were trained with thirty epochs and an initial learning
rate of 10−4, which was reduced by a factor of 0.1 after every 10 epochs.

4. Data

The proposed polyp segmentation method has been developed and evaluated on the data from the
2017 Endoscopic Vision GIANA Polyp Segmentation Challenge [51]. The data includes both standard
definition (SD) and high definition (HD) polyp images.

The SD set consists of the publicly available CVC-ColonDB [24,52] used for training and the
CVC-ClinicDB [26,53,54] used for testing. The CVC-ColonDB contains 300 polyp images acquired
from 15 video sequences, all of them showing different polyps. Each image has a resolution of 500
by 574 pixels. On average, 20 images were selected from each sequence, warranting the maximum
variability between images of the same polyp. Each image has a corresponding pixel-wise mask,
annotated by an expert, to create the associated ground truth data. The CVC-ClinicDB contains 612
polyp images selected from 31 colonoscopy video sequences, each showing a different polyp. As in the
case of the CVC-ColonDB, an average of 20 images, each of 288 by 384 pixels, were selected from each
video, with the aim of having as many different polyp views as possible. In this case, several experts
contributed to the definition of ground truth data. A single expert generated the pixel-wise masks
representing the polyp regions and the remining experts contributed to the definition of the clinical
metadata describing each polyp characteristics.

The GIANA HD dataset [51] is a collection of high-definition white light colonoscopy images
assembled as part of the effort to develop and validate methods for automatic polyp histology
prediction [9]. These data of 1080 by 1920 pixel images is divided into two subsets. The fist subset
with 56 images was used for training, and the second subset with 108 images was used for testing.
For the ground truth, an expert generated pixel-wise binary masks using GTCreator [55], which were
subsequently reviewed by a panel of experts.

The results reported in this paper are based on a cross-validation approach using the training
dataset only. Selected results obtained on the SD test dataset were reported in [43].

Data Augmentation

The performance of the CNN-based methods relies heavily on the size of training data used.
Clearly, the set of training images is very limited in this case, at least from the perspective of a typical
training set used in a context of deep learning. Moreover, some polyp types are not represented in the
database, and for some others there are just a few exemplar images available. Therefore, it is necessary
to enlarge the training set via data augmentation. Data augmentation is designed to provide more
polyp images for CNN training. Although this method cannot generate new polyp types, it can provide
additional data samples based on modelling different image acquisition conditions, e.g., illumination,
camera position, and colon deformations.

All training images are rescaled to a common image size (250 by 287 pixels) in such a way that image
aspect ratio is preserved. This operation includes random cropping equivalent to image translation
augmentation. Subsequently, all images are augmented using four transformations. Specifically, each
image is: (i) rotated with the rotation angle randomly selected from a range of 0◦–360◦, (ii) scaled
with the scale factor randomly selected between 0.8 and 1.2, (iii) deformed using a thin plate spline
(TPS) model with a fixed 10 × 10 grid and a random displacement of the each grid point with a
maximum displacement of 4 pixels, and (iv) color adjusted, using color jitter, with the hue, saturation,
and value randomly changed, with the new values drawn from the distributions derived from the
original training images [56]. After augmentation, the training dataset consists of 19,170 images in
total. A representative sample of the augmented images is shown in Figure 5.
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Figure 5. An example of an standard definition (SD) image augmentation using rotation, local
deformation, color jitter, and scale.

For the purpose of validation, the original training images were divided into four V1–V4
cross-validation subsets with 56, 96, 97, and 106 images respectively. Following augmentation, the
corresponding sets had 4784, 4832, 4821, and 4733 images for training. Following the standard 4-fold
validation scheme, any three of those subsets were used for training (after image augmentation) and
the remaining subset (without augmentation) for validation. Frames extracted from the same video
are always in the same validation sub-set; i.e., they are not used for training and validation at the
same time.

Figure 6 demonstrates the impacts different augmentation techniques have on network
performance. The ablation tests show that the combination of different augmentation techniques
significantly improves the segmentation results when compared to any standalone augmentation
method, with the real combined method median being better than any other individual augmentation
median with a 95% confidence level.
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5. Results

5.1. Evaluation Metrics

Evaluation of image segmentation quality is an important task, particularly for biomedical
applications. Suitable evaluation measures should reflect segmented object properties relevant to
the specific application [57]; e.g., when the precise location of the organ/tissue boundaries is of
concern. the spatial distance measures, such as Hausdorff distance or boundary Jaccard index [58],
should be used. When overall organ/tissue location is of importance, the overlap based measures
are often used (e.g., Dice coefficient, Jaccard index, precision, and recall), whereas when comparative
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segmentation quality is needed without access to the ground truth, pair-counting-based methods are
used (e.g., Rand index or adjusted Rand index). The GIANA challenges [51] have become a benchmark
for the assessment of colonoscopy polyp analysis, and therefore it has been decided to use the measures
adopted by the GIANA challenges.

The Dice coefficient (also known as F1 score), precision, recall, and the Hausdorff distance are
used, for each detected polyp, to compare the similarity between the binary segmentation results and
the ground truth. For the results reported here, a simple thresholding operation on the networks
output was used, followed by the morphological opening and hole filling operations to create binary
networks’ response.

Precision and recall are standard measures used in a context of binary classification:

Precision =
TP

TP + FP
Recall =

TP
TP + FN

(1)

where TP, FP, and FN denote, respectively, true positive, false positive, and false negative. Precision
and recall can be used to quantify the over-segmentation and under-segmentation. The Dice coefficient
is one of standard evaluation measures used in image segmentation and is defined as:

Dice =
2× TP

2× TP + FP + FN
(2)

It should be noted that the other popular overlap-based measure, the Jaccard index:

Jaccard =
TP

TP + FP + FN
(3)

can be expressed as function of the Dice coefficient:

Jaccard =
Dice

2−Dice
(4)

Therefore, the evaluation reported here is based on the Dice coefficient only.
The Hausdorff distance provides the means to quantify similarities between the boundaries G and

S of two objects, with zero indicating that the object contours completely overlap. It is defined as:

H(G, S) = max
{
supx∈G in fy∈S d(x, y), supx∈S in fy∈G d(x, y)

}
(5)

where d(x, y) denotes the distance between points x and y. It should be noted that the Hausdorff
distance is sensitive to outliers and is not bounded. For these reasons it has been argued that shape
measures such as the boundary Jaccard index, which is both robust to outliers and bounded, should be
used instead. However, due to the above-mentioned compatibility with the results reported for the
GIANA challenges, the Hausdorff distance is also used in this paper.

5.2. Test Time Data Augmentation

The proposed deep segmentation networks are not rotation invariant, so it is possible to perform
additional rotation data augmentation in the prediction mode to tweak their segmentation accuracy.
The adopted implementation of the test time augmentation uses 24 images obtained from the original
input image, which is rotated in 15 degrees intervals. These 24 augmented images are subsequently
presented to the network input and the corresponding output images are averaged after being converted
to the original image reference frame. The whole procedure is graphically represented in Figure 7.
Although it is possible to implement other types of the test time augmentation, it should be recognized
that any such augmentation will increase computation time, and therefore a trade-off is required
between quality of segmentation and computation time. For the problem considered in this work, it
has been concluded that the rotation-only augmentation approach provides such a trade-off.
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The proposed test time augmentation better utilizes the generalization capabilities of the 
network. The quantitative comparison of the segmentation results for FCN8s, ResFCN, and Dilated 
ResFCN with and without data augmentation is shown in Figure 8. For the Dilated ResFCN, the test 
time data augmentation increases the median, from 0.90 without to 0.92 with the test time 
augmentation. The distribution of the results with test time augmentation is also more compact. 

Figure 7. Graphical representation of the test time data augmentation; the images on the left show the
network binary outputs for each rotation augmented image; the image in the middle shows the results
of averaging of these binary images after transferring them into the original image reference frame; the
image on the right shows final segmentation results, superimposed on the original image, with three
contours showing ground truth (in blue), results without data augmentation (in green), and with the
data augmentation (in red).

The proposed test time augmentation better utilizes the generalization capabilities of the network.
The quantitative comparison of the segmentation results for FCN8s, ResFCN, and Dilated ResFCN
with and without data augmentation is shown in Figure 8. For the Dilated ResFCN, the test time
data augmentation increases the median, from 0.90 without to 0.92 with the test time augmentation.
The distribution of the results with test time augmentation is also more compact.
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5.3. Results

This section reports on several experiments performed to evaluate the proposed methods and
compare their characteristics. The two reference network architectures FCN8s [36] and ResFCN have
been selected as benchmarks for comparative analysis of the proposed methods. Whereas FCN8s is
a well-known fully convolutional network, the ResFCN is a simplified version of the network from
Figure 2, with the dilation kernels removed from the parallel classification paths. The ResFCN is
included to verify the significance of the dilated kernels in the Dilated ResFCN model.

Table 1 reports mean Dice coefficients computed on all tested networks on four validation subsets
described in Section 4. The last two table columns list the Dice coefficient and standard deviations
values averaged over all four validation subsets. The Dilated ResFCN is the best (indicated by bold
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typeface) on all validation subsets, demonstrating consistent performance with respect to changes in
the training data.

The results from Table 1, are represented in a graphical form in Figure 9. It is evident that, on
the available data, the Dilated ResFCN has the best performance with the contour representing that
method encompassing contours representing other methods.J. Imaging 2020, 6, x FOR PEER REVIEW 11 of 22 
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Figure 9. Graphical representation of Dice coefficient results for different segmentation methods overall
and different validation subsets. The more outwardly located the contour, the better the results.

The distribution of the Dilated ResFCN results as a function of the cross-validation folds is shown
in Figure 10. The results obtained on the fourth and third folds are respectively the best and worst.
A closer examination of these folds reveals that images in the fourth fold are mostly showing larger
polyps, whereas images in third fold are mostly depicting small polyps.
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using boxplots.

To further investigate the performance of the proposed method as a function of the polyp size,
Figure 11 shows the boxplot representing Dice coefficient, precision, and recall as functions of the
polyp size. The “Small” and “Large” polyps are defined as being smaller than the 25th and larger than
the 75th percentile of the polyp sizes in the training dataset. The remaining polyps are denoted as
“Normal.” The results demonstrate that the small polyps are hardest to segment. However, it should
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be said that the measures used are biased towards larger polyps as a relatively small (in pixels) over
and under-segmentation for small polyps would lead to more significant deterioration of the measure.J. Imaging 2020, 6, x FOR PEER REVIEW 12 of 22 
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Figure 11. Statistics for different measures on the validation results obtained for the Dilated ResFCN
network grouped as a function of the poly size.

To check whether the segmentation results depend on polyp’s shape, a circularity of the polyp
ground truth is used as a proxy for shape. It is calculated as a scaled ratio of a polyp area and square
of its perimeter, so the values are between zero and one. A perfectly circular shape has a circularity
of one, and smaller values correspond to more irregular shapes. As in Figure 11, statistics of the
three metrics have been calculated for polyps grouped into three sub-sets with small, normal, and
large circularity. The small and large sub-sets were constructed from polyps for which ground truth
circularity was smaller than the 25th and larger than the 75th percentile of the training data polyp
population circularity. The normal sub-group is constituted from the remining polyps. The results are
shown in Figure 12. Although there is some variability of the measures’ statistics in each subgroup,
these are not as distinctive as in case of the polyp size.
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Figure 12. Statistics for different measures on the validation results obtained for the Dilated ResFCN
network grouped as a function of the polyp circularity.

Table 2 lists the median and mean results for all three tested methods and all four evaluated
metrics. As can be seen from that table, the Dilated ResFCN method achieved the best results for all
four metrics. It got the highest values for Dice coefficient, precision, and recall, and the smallest value
for the Hausdorff distance, demonstrating the stability of the proposed method.
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Table 2. Median and mean values recorded for different measures and segmentation methods.

Dice Precision Recall Hausdorff

Median Mean Median Mean Median Mean Median Mean
FCN8s 0.69 0.63 0.75 0.68 0.71 0.65 207 193

ResFCN 0.82 0.71 0.89 0.75 0.84 0.74 229 201
Dilated ResFCN 0.89 0.79 0.95 0.81 0.89 0.81 20 54

Figure 13 demonstrates the results’ statistics for all the methods and all the measures using box
plots, with the median represented by the central red line, the 25th and 75th percentiles represented
by the bottom and top of each box, and the outliers shown as the red points. It can be concluded
that the proposed methods achieve better results than the benchmark methods. For all the measures,
the true medians for the Dilated ResFCN are better, with 95% confidence, than the other methods.
The significantly smaller Hausdorff distance measure obtained for the Dilated ResFCN indicates a
better stability of that method with boundaries of segmented polyps better fitting the ground truth data.
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Figure 13. The summative polyp segmentation results for different methods and evaluation measures.

The distribution of segmentation results for all the data points in the Dice coefficient–Hausdorff
distance and recall–precision spaces are shown in Figure 14. Each point represents an image, with
the color corresponding to the specific segmentation method. It can be seen that the Dilated ResFCN
outperforms all other methods, with the majority of corresponding points more tightly grouped
together in the bottom right corner of the Dice coefficient–Hausdorff distance space and the top right
corner of the recall–precision space. However, even for this method there are some outliers, which
seem to be uniformly distributed in both spaces. It could be therefore concluded that the Dilated
ResFCN is not biased towards under or over-segmentation. The ResFCN, although better than FCN8s
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with the majority of points within upper ranges of the Dice coefficient, seems to be poor in correctly
detecting polyp boundaries, with a cluster of points on the left-hand side of the Hausdorff distance-Dice
coefficient plot.
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Mean segmentation processing times for a single image with CPU and GPU implementations
are shown in Table 3. When implemented on the GPU all the methods have comparable processing
times, enabling near real-time performance. It is expected that further code optimization could provide
real-time processing (approximately 30 frames/s).

Table 3. Mean processing time of a single image, without test-time augmentation, using CPU and GPU.

Network I7-3820 (CPU) GTX-1080 (GPU)

FCN8s 8.00 s 0.047 c
ResFCN 0.70 s 0.040 s

Dilated ResFCN 1.80 s 0.050 s

5.4. Comparative Analysis

Section 2 reviews some of the most important polyp segmentation methods previously proposed
in the literature. The purpose of this section is to provide a brief quantitative comparison of the
proposed method with other reported polyp segmentation methods. However, such a comparison is
not a simple task. This is because the implementation details for the reported in literature methods
are often not provided. This may include details of the methods’ design parameters or the network
training arrangements. Therefore, it is difficult to reproduce evaluation results or make meaningful
comparisons with the reported results. Furthermore, the training and test data used by different
methods are not always the same. This makes it difficult to compare their performances under the same
test conditions. Finally, when reporting on the methods’ performances, some of authors use the test
data, which is the same as or highly correlated with the training data. This could happen, for example,
because data are split between training/validation and test sets with random image selection rather
than random video selection. In the former case it is likely that similar images, taken from a slightly
different camera position, of the same polyp, can be separated and assigned to the training and the
testing sets. Therefore, such evaluation results may not reflect the real performances of these methods.

The comparison provided here only includes polyp segmentation methods for which Dice
coefficient evaluation results have been published (i.e., the averaged Dice coefficient is selected as a
measure for methods comparison). The proposed network, as described in this paper, was applied to
the segmentation of the CVC-ClinicDB dataset, with a resulting average Dice coefficient of 0.8293.

Table 4 lists results from a sample of other methods reported in literature. Only deep learning-based
approaches have been included as they outperform the handcrafted feature-based methods by some
margin [24,59]. The shaded cells represent cases where the training and test data overlap and therefore
may not reflect a true performance of that method. Some of the methods reported in the table provide
results for different configurations. In these cases, the best performing configuration as measured by
the average Dice coefficient is indicated in bold; subsequently, these configurations can be used in a
direct comparison with the proposed method. It should be made clear that Table 4 does not provide a
comprehensive summary of the results reported in the literature, as only the papers using the CVC
datasets (which are also used in this paper) and reporting Dice coefficient results have been included.
Furthermore, only the methods published in the last two years, which clearly describe the experimental
arrangement for selection of the training and test data subsets, have been listed. Interested readers
can find more about other recently proposed methods in [60–62]. The information about other related
colonoscopy image analysis problems, use of handcrafted features, and use of different modalities can
be found in [9,24,27,63,64].
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Table 4. The comparison of existing polyp segmentation methods.

Methods Dice Coefficient Training Data Testing Data

FCN8s [65] 0.810 CVC-ColonDB

ResNet-50
FCN8s [66]

0.691 CVC-ClinicDB CVC-ColonDB

0.323 CVC-ClinicDB ETIS-Larib

Resized test images 0.462 CVC-ClinicDB ETIS-Larib

0.585 CVC-ColonDB CVC-ClinicDB

Pre-processing 0.679 CVC-ClinicDB CVC-ColonDB

Mask-RCNN [67]

ResNet50 0.716 CVC-ColonDB

CVC-ClinicDB
ResNet50 0.804 CVC-ColonDB

ETIS-Larib

ResNet101 0.704 CVC-ColonDB

ResNet101 0.775 CVC-ColonDB
ETIS-Larib

Multiple Encoder-Decoder network [68]
0.889 CVC-ClinicDB
0.829 CVC-ClinicDB ETIS-Larib

U-Net with Dilation Convolution [69] 0.825
CVC-ClinicVideoDB

CVC-ColonDB
GIANA HD

CVC-ClinicDB

Detailed Upsamling Encoder-Decoder
Networks [70]

0.913 CVC-ClinicDB

ResUNet++ [71] 0.7955 CVC-ClinicDB

From the results in Table 4, it can be seen that the multiple encoder-decoder network (MEDN) [68]
and the U-Net with dilatation convolution methods [69] have a comparable performance to the method
described in this paper. However, it should be noted that for the reported results the Dilated ResFCN
method used only 355 images for training, whereas in [68] 612 images were used. Furthermore, the
mean Dice coefficient results reported here for the Dilated ResFCN used 612 test images, whereas
results reported in [68] are based on only 196 test images. Although the same test data were used
in [69] as in this paper, compared to the results reported here, an additional 10,025 images from the
CVC-Clinic VideoDB were used to train the U-Net with the dilatation convolution method. The results
reported in [70] are better than for any other method listed in Table 4. However, it seems these results
were computed based on a random selection of images into the training and test subsets, rather
than a random selection of video sequences, making the interpretation of the method performance
somewhat difficult.

The Dilated ResFCN, ResNet-50 FCN8s, and Mask-RCNN were all created based on the ResNet
network’s backbone for the deep feature extraction. It can be seen from the results that although the
Mask-RCNN: ResNet-101 has a deeper architecture than ResNet-50, its segmentation performance
is worse. This is consistent with the experimental results reported in this paper (Section 3), and this
further confirms the rationale behind the selection of the ResNet-50 as the base for the feature extraction
subnetwork for the proposed Dilated ResFCN network.

As mentioned above, direct comparison of the methods is rather difficult due to different testing
regimes used by different authors. One possible way to overcome this limitation is to evaluate different
methods through common challenges. In such cases, all the methods are trained on the same training
set and by definition evaluated on the common test subsets using the same set of metrics. Furthermore,
as the evaluation is performed at the same time, it can provide a useful snapshot of the current
state-of-the-art and reference for further development. The Endoscopic Vision Gastrointestinal Image
Analysis (GIANA) polyp segmentation challenges [51] organized at the Medical Image Computing and
Computer Assisted Intervention (MICCAI) conferences were designed to provide such snapshots of
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the state-of-the-art. The Dilated ResFCN network evaluated in this paper was instrumental in securing
the first place for the image segmentation tasks at the 2017 GIANA challenge and second place for the
SD images at the 2018 GIANA challenge.

6. Conclusions

This paper describes Dilated ResFCN, a deep fully convolutional neural network, designed
specifically for segmentation of polyps in colonoscopy images. The main objective has been to propose
a suitable validation framework and evaluate the performance of that network. The Dilated ResFCN
method has been compared against two benchmark methods: FCN8s and ResFCN. It has been shown
that suitably selected dilation kernels can significantly improve the performance of polyp segmentation
on multiple evaluation metrics. More specifically, it has been shown that the Dilated ResFCN method is
the best ay locating polyps with the highest values of the Dice coefficient. It is also good at matching the
shape of the polyp with the smallest and most consisted value of the Hausdorff distance. Furthermore,
it does not seem to be biased with respect of under/over-segmentation, or indeed polyp shape. However,
it preforms better for medium and large polyps.

The improvement of the method performance has been achieved through test-time augmentation,
though that improvement needs to be measured against increased computational cost important for
real-time method applications. Further improvement is still required, possibly through additional
optimization of the dilation spatial pooling and more effective use of extracted image features, which
could potentially be achieved using the squeeze and excitation module [72] recently proposed in
literature. Due to a small number of training images, data augmentation is the key for improving
segmentation results. It has been shown that in this case rotation is the strongest augmentation
technique, followed by local image deformation and color jitter. Overall, the combination of different
augmentation techniques has a significant effect on the results. It has been shown that further
improvements can be achieved with test time augmentation. The method provides competitive results
when compared to other methods reported in the literature. In particular, the method was tested
against state-of-the-art at the MICCAI’s Endoscopic Vision GIANA Challenges, securing the first place
for the SD and HD image segmentation tasks at the 2017 challenge and second place for the SD images
at the 2018 challenge.
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