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ARTICLE

On the systemic entropy of low-order systems

Tony Lee Graham , Khalid Khan and Hamid Reza Nasriani

School of Engineering, University of Central Lancashire, Preston, UK

ABSTRACT
Reliability engineering is a well-defined field and systemic analysis is not new.
Typically, the first raw-moment (MTTF) is all that is sought in applications of
this method and a rule-of-thumb method achieves this algebraically without
the need for calculus by assuming exponential distributions. However, there
is no standard labelling or naming of the different block diagrams used, nor
is there a standard list of solutions for low-order networks. In this paper dif-
ferent moments are compared, and the vector algebra approach is emphas-
ised. A small amount of fine structure is evident in the moments, but broadly
they are found to be equivalent for bulk system analysis. Analogy is made to
statistical physics and a set of characteristic values is developed.

Abbreviations: MTTF: Mean time to failure; STOP: Series-Two-One-Parallel;
RAMS: reliability, availability, maintainability and safety; R-ket: Column vector
of the polynomial coefficient representation of systemic reliability struc-
ture function

ARTICLE HISTORY Received 29 August 2019; Revised 15 April 2020; Accepted 29 May 2020

KEYWORDS Reliability engineering; mean time to failure; entropy; systemic analysis

1. Summary of reliability engineering theory

It is hypothesised that any system/process can be subdivided into parts
connected in a network which can be represented two-dimensionally. The
reliability of the entire system is then a combination of the reliability of the
parts (Saleh & Marais, 2006). Whilst it is not an essential assumption, it is
usual that each sub-system or component has only two states: working or
broken; reliable R, or failed F. The probability of each state P Rð Þ, P Fð Þ is
abbreviated here as simply R, and F: If a non-critical subsystem fails, but
not the entire system; then the chance of total system failure changes. This
is not the same thing as a continuous production operation producing a
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lower quality output.

Rþ F ¼ 1 (1)

The simplest network is of a single black-box as shown on Figure 1.
For the example of Figure 1, we might have a system with 90% reliability

R¼ 0.9, and 10% unreliability F¼ 0.1 using (1). This simple formulation works eas-
ily for such a problem as rolling a six-sided die and defining a ‘6’ result as operat-
ing and all other results as failures. When describing a more sophisticated
system, such as a desktop computer, house, etc. then the reliability relates to an
unrepairable failure in the normal operating lifespan. Such thinking leads natur-
ally into discussion of failure rates and average lifespans. These are understood
to be moments of some probability distribution as a function of time. There are
infinitely many probability distributions, but engineering practice is constrained
by two principles in its choice of which to use. Firstly, the engineer is usually con-
versant with only a handful of the simplest functions such as polynomials and
exponentials, for which calculus is easy. Secondly some distributions pertain to a
physical cause: The Gaussian bell-curve describes a diffusion process, top-hat for
white-noise, binomial relates to permutations and combinations, Poisson for rare
events, the Weibull for mechanical fracture and the extreme-order to tail-end
phenomenon. However, most applications of reliability engineering use the
exponential for the simplicity of single-parameter sampling.

R ¼ e� t=sð Þb (2)

The Weibull probability distribution (2) is in general a 3-parameter distribution
(i.e. replace t by t � s where s is the start time), s is the scale factor (for example
quantifying time t in hours or years) and b is the shape factor. The exponential
distribution is simply (2) in the special case b¼ 1 applied to the ‘normal working
life’ of a system. In that case, k ¼ 1/s is the failure rate for a mean time to failure.

R ¼ e�kt (3)

On Figure 2 the two-block networks can be seen and the basic ideas of
series and parallel (also known as Redundant) operations in a process.

A

Figure 1. Black-box network.

A B
A

B

Figure 2. Series (left) and parallel (right) networks.
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Considering the series system first; the system can only function if both
sub-systems A ‘AND’ B are functioning. The word ‘AND’ being mathematic-
ally equivalent to multiplication we obtain the system total reliability as a
‘structure function’ of the failure rates of the subnets (4).

RT ¼ RARB ¼ e�kAte�kBt ¼ e� kAþkBð Þt (4)

This leads easily to computing the expected failure time (5) from the
probability density function f ¼ dF=dt:

mttf ¼ t ¼
ð1

�1
tfdt ¼

ð1

0

RTdt ¼
ð1

0

e� kAþkBð Þtdt ¼ 1
kA þ kBð Þ (5)

In this simple case the mean time to failure equates to the sum of the
individual failure rates. The same can be said for series with more than two
components. For the parallel system on Figure 2 the same procedure can
be followed to obtain (6)

RT ¼ e�kAt þ e�kBt � e� kAþkBð Þt (6)

and

mttf ¼ 1
kA

þ 1
kB

� 1
kA þ kBð Þ (7)

Immediately one sees that the mttf can be obtained from the structure
function by replacing exponentials by reciprocals and sums. This is similar
to the laws of indices and is a good case for engineers to only use the
exponential probability distribution.

If one knows the failure rates (also known as hazard rates) for use in
Equations (6) and (7), then the inverse problem is to select a value of time
‘t’ corresponding to a particular reliability RT 2 0:68, 0:95, 0:997f g which are
of course values ingrained when learning about (totally unconnected)
Gaussian-symmetrical problems.

The value of ‘t’ from (6) is not trivially obtained by algebra. Either it is
read from a graph-plot or the one-block estimate (3) is used in the form t ¼
�ln Rð Þ=k where k ¼ 1=mttf is an estimated bulk or characteristic-failure
rate and equivalently a characteristic time for failures and repairs (Sifonte &
Reyes-Picknell, 2017).

For systemic analysis we treat all the hazard rates as equal kA ¼ kB ¼
. . . ¼ k so that Equations (4)–(7) become (8) where x ¼ e�kt for brevity.

Series Parallel

R ¼ x2, mttf ¼ 1
2k

R ¼ 2x � x2, mttf ¼ 3
2k

(8)

2. Names and labels for the different networks

To distinguish the two networks, we do not have particular names and there
is no database or standard list of networks, names and their properties. Since
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Figure 1 shows the one block network, and Figure 2 the two possible two-
block networks, shown on Figure 3 are the four possible three block net-
works. Labelled pictures for n¼ 1 to 5 are given as Table A1 in the Appendix.

This can be developed from the simplest networks and extended as more
complicated examples are worked into a simple list. To that extent, compar-
ing Figures 1 and 2 the reader will imagine a simple chain of n-blocks in a
series. Such can be denoted Sn. Similarly, n-blocks in parallel can be denoted
Pn. Since the basic building unit of higher order networks is combinations of
two or more things, there is no need to use a suffix ‘2’ for two blocks. This is
to say that the simple series of 1, 2, 3, etc blocks can be denoted S1, S, S3, …
Sn. This explains the labelling used on Figures 1, 2 and part of Figure 3. But it
is necessary to explain also how SP and PS are chosen on Figure 3.

Every network has a ‘structure function’ which formulaically expresses
the combination reliability in terms of the parts. This can be obtained using
the ‘top down’ method by iteratively applying three system laws:

1. Continuity Rþ F ¼ 1 for any system or subsystem
2. Series rule RS ¼ R1R2
3. Parallel rule FP ¼ F1F2

The continuity of probability requires a system to be either failed or reliable.
This rule can be easily relaxed, but that is beyond this paper for example to
account for ‘spurious’ failures. The series rule is easily understood from Figure
2 considering electric current flowing down a wire with two light bulbs con-
nected in series. For the entire system to be ‘alight’ both bulbs must be func-
tioning. The reliability of the system is equal to the reliability of bulb 1 ‘AND’
bulb 2. The AND operator being equivalent to multiplication. Similarly, for the
parallel system of Figure 3 and rule 3, there are no lights (total system failure)
only if there is failure of bulb 1 ‘AND’ bulb 2.

Consider the SP-labelled network of Figure 3, where A, B, and C refer to
the components and RX is the reliability of component ‘X’ (probability it will
operate correctly upon demand).

RT ¼ RABC (9)

‘total/system reliability equals the reliability due to the components A, B, C,
D and E’. A suffix T is used in (9) for the total/system to avoid confusion
with a series configuration (S and P suffices used throughout this paper).

A CB A
C

B A

B C

A

C

B

Figure 3. Three block networks with labels.
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¼ RARBC rule 2
¼ RA 1� FBCð Þ rule 1
¼ RA 1� FBFCð Þ rule 3

¼ RA 1� 1� RBð Þ 1� RCð Þ� �
rule 1

(10)

For a network that is overall a series the sequence of rules is 2–1–3–1–
repeatedly, for a parallel network the sequence is 1–3–1–2– (out of phase). This
sequence has a mnemonic ‘STOP’ for ‘series-starts-2 but start-1 for parallel’.

As a time dependent function of failure rates Rx ¼ e�kxt

RT ¼ e�kAt 1� 1� e�kBtð Þ 1� e�kCtð Þð Þ (11)

RT ¼ e� kAþkBð Þt þ e� kAþkCð Þt � e� kAþkBþkCð Þt (12)

mttf ¼ 1
kA þ kB

þ 1
kA þ kC

� 1
kA þ kB þ kC

(13)

Then the characteristic failure rate is k ¼ 1=mttf and t ¼ �ln Rð Þ=k: For
assuring a 95% system reliability ln 0:95ð Þ � 0:051: The scheduled time until
replacement would be

tmaintenance � mttf
20

(14)

Note that MTTF is used to characterise non-repairable systems/compo-
nents where the strategy is run-to-failure rather than repair. In ‘shorthand’
form, dropping the suffix notation, Equation (10) becomes

T ¼ ABþ AC � ABC (15)

Equation (15) evaluates ‘T’ as total system reliability rather than ‘S’ to avoid
confusion of system and series. In systemic form, where all the R’s are equal

R ¼ 2x2�x3 where x ¼ e�t=mttf (16)

There is another way to express the network from its structure function,
which is seen from example (16) as a polynomial. This can then be repre-
sented easily as the ordered set of coefficients of powers of ‘x’.

RSP ¼ j0, 2, � 1i ¼ h0, 0, 2j (17)

The two vector forms (17) correspond to the polynomial coefficient and
polynomial roots representations and are co-spaces. This paper is con-
cerned primarily with the former and a Dirac bracket notation is mainly
used to distinguish the two (Dirac, 1939). The root-form ‘CoBras’ also have
the complications of irrational and complex values. Hence, this paper is
concerned with R-kets. In Appendix, Table A2 lists the R-ket ‘states’ up to
n¼ 5 blocks. To make a more precise analogy the Dirac bracket is normally
used to represent an amplitude function, which is crudely described as the
non-commutative and complex-valued square root of a probability density
function. The systemic structure functions, such as Equation (12) could be
readily differentiated to obtain f-kets, which in turn could be processed for
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the complex square roots to give amplitude functions. The CoBras do not
relate as directly to Dirac brackets.

3. On the subject of moments

There are two main measures of risk in practice. For example, in health and
safety the risk is usually the expected loss across a range of possible scenarios.
This does not represent all applications of risk assessment. For example, on the
stock markets the risk is more heavily associated with the variance of share
pricing (Black & Scholes, 1973; Menezes & Oliveira, 2015) . A crude example of
a health and safety risk assessment problem that uses variance as the measure
of risk is concerned with mental care patients. In this case each patient is sub-
jectively assessed in terms of how far from ‘normal’ they have behaved.
Normal is interpreted to mean the care-resources they require. Risk is then the
expected deviation from whatever a patient needs classed as ‘normal’.

The mttf is the first raw moment of a probability distribution of failure
(to operate correctly upon demand) as a function of time. In reliability,
availability, maintainability and safety engineering (RAMS), the engineer will
compute the mttf to set maintenance intervals and may also obtain the
standard deviation as a ‘plus/minus’ measure even though standard devi-
ation is defined for the Gaussian distribution. The two ‘established’
moments are measures of position and spread. The entropy is in contrast a
measure of how organised is a distribution within its bounds.

To illustrate this, Figure 4 shows two different distributions of ‘bricks’
with different degrees of randomness/disorder. The entropy is a measure of
how much structure exists within a disperse population. It is most widely
understood from thermodynamics, or information theory.

In this paper there are a range of networks examined in terms of the struc-
tural complexity. Different moments will be computed for each network. It is a
logical question if entropy could be revealing as a measure of complexity. If
this is the case, then entropy should increase with the number of components.

4. Computing the systemic moments of exponential-
pdf networks

Computing the mean from a structure function was described with
Equation (5) and the standard deviation is (18).

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � t2

p
with mean-square t2 ¼

ð1

�1
t2fdt (18)

The reader will note the mathematical grammar distinguishing
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There is not a well-known short-cut formula for the mean-square, so this
is often computed from the structure density f ¼ � dR

dt literally using (18).
However, the practicing engineer doing that calculation soon sees a pat-
tern, which is very clear in terms of R-kets.

From the appended Table A2 (R-kets) there are some obvious patterns.
There is not a term for x0 in these vectors, because the basic ‘building
block’ is a single block corresponding to at least a power x1: From (11) it is
immediately apparent that there is an assumption of 100% reliability at
time zero. In R-ket form this means the coefficients of any network must
sum to unity. However, because these are not probability density vectors,
they are not of unit length. Any real-world system that is expressed as a
combination of parts (n-vector) can be expanded in terms of the R-kets of
the same degree (the state space is spanned).

The last coefficient of any R-ket, the rightmost term is ±1 which is here-
after called the ‘parity’ of a network. Consider, for explaining this, the net-
works S1, P, P3, P4, P5 as shown on Table 1.

Each additional parallel element introduces a factor �1. This is not seen
for the series networks S1, S, S3, S4: Apparently, the parity is an indicator
of parallelisation. The same is seen starting from any network and consider-
ing a similar network with ‘one extra’ parallel sub-net.

The single block network labelled S1 here is not really a series or parallel
permutation but fits the pattern rather like hydrogen fits into the modern
periodic table of elements.

The first few coefficients in any R-ket, up until a zero or negative number
is reached, describes the number of tie sets of that order. For example,
SPPSP is a six-block network with P in series with PSP :

On Figure 5 there are visibly three parallel pairs within the structure of
the network explaining its negative parity, even though it is a series of two
sub-nets when formulating the structure function. The network/state SPPSP
has two second order tie paths and three third order tie paths.

)b()a(

Figure 4. Two distributions of 15 ‘bricks’. (b) is more ordered and has lower entropy
than (a).
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As described under Equation (13) the R-ket can be processed to obtain
the density function in vector form. Keeping to the arbitrarily chosen
example SPðPSPÞ the R-ket and f-ket can be found as (16) by expanding the
R-ket, differentiating, and then reformulating as a vector.

R ¼ j0, 2, 3,�8, 5,�1i
R ¼ 2e�2kt þ 3e�3kt�8e�4kt þ 5e�5kt�e�6kt (19)

f ¼ � dR
dt

¼ kj0, 4, 9, � 32, 25, � 6i (20)

This calculation to obtain (20) is significantly faster as a vector maths
problem. Consider that a vector is converted into a new vector by the appli-
cation of a matrix operator. In this example the matrix operator represents
differentiation acting upon the R-ket column vector.

k

1 0 0
0 2 0
0 0 3

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

4 0 0
0 5 0
0 0 6

0
BBBBBB@

1
CCCCCCA

0
2
3

�8
5

�1

0
BBBBBB@

1
CCCCCCA

¼ k

0
4
9

�32
25
�6

0
BBBBBB@

1
CCCCCCA

(21)

The operator here is a diagonal n� n matrix containing the first n inte-
gers. This is hereafter denoted ‘Z’ as in Equation (22). The matrix has the
Natural numbers as eigenvalues and the eigenvectors are the cartesian
orthonormal basis. Using this definition, it is found f ¼ kZR and R ¼ 1

k Z
�1f :

Z ¼
1 0
0 2

. . . 0

. . . 0

..

. ..
.

0 0

. .
. ..

.

. . . n

0
BBB@

1
CCCA Z�1 ¼

1 0

0
1
2

. . . 0

. . . 0

..

. ..
.

0 0

. .
. ..

.

. . .
1
n

0
BBBBBB@

1
CCCCCCA

(22)

Table 1. R-kets of ‘pure’ parallel networks with n¼ 1 to 5 components.
S1 1
P 2 �1
P3 3 �3 1
P4 4 �6 4 �1
P5 5 �10 10 �5 1

A

B

D
F

E

C

Figure 5. The SPPSP j0, 2, 3,�8, 5,�1i network, n¼ 6, arbitrarily selected as example.
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It is also useful at this point to introduce a unit row-vector 1 ¼
h1, 1, 1, . . . :, 1j, which has the effect of summing diagonal elements of
such a matrix when applied as a scalar product.

t ¼ hj1jk�1Z�1Ri t2 ¼ 2hj1jk�2Z�2Ri r ¼ k�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � tð Þ2

q
(23)

Using the above example R ¼ j0, 2, 3, � 8, 5, � 1i it is found t ¼ 5
6k , t

2 ¼
91

90k2
and r ¼ 1

6k

ffiffiffiffi
57
5

q
� 0:563

k : In this formulation the computation of
moments from structure function does not even require exponential
expressions. Appended Table A3 gives the mean and standard deviations
for the configurations on appended Tables A1 and A2 and entropy as
explained below. To be precise the moments are of the form t ¼ a

k , r ¼ b
k

where a and b are the ‘mean parameter’ and ‘standard deviation parameter’
given on the tables. This parameter is the single value that identifies the
distinct networks.

5. Systemic entropy and quantum numbers

The mathematical definition of entropy used in this paper is the common
one from thermodynamics and information theory (Guenault, 2007).

S ¼ �
ð1

�1
fln fð Þdt (24)

For example, state/network P3 on Figure 3 has R-ket j3, � 3, 1i and dens-
ity function f tð Þ ¼ 3ke�kt � 6ke�2kt þ 3ke�3kt ¼ 3kx 1� xð Þ2 where x ¼
e�kt: It is convenient to change the variable of integration dx ¼ �kxdt and
use 1� x ¼ y for the final integral.

S ¼ �
ð1

�1
f ln 3kð Þ þ ln xð Þ þ 2ln 1� xð Þ� �

dt ¼ ln 3:437=kð Þ (25)

The logarithm in (24) separates the factors of the density function to
give a series of simpler integrals (25). A couple of standard integrals (26)
resolves many of the calculations, but for irreducible quadratic factors a
numerical integration has been used in this paper.

In ¼
ð1

0

tne�ktdt ¼ n!
kn

In ¼
ð1

0

znln zð Þdz ¼ �1

nþ 1ð Þ2 (26)

The result (25) is of the form S ¼ ln c=kð Þ and ‘c’ is the entropy parameter
on Table A3 that identifies the network uniquely. The final appended Table
A4 again lists these ‘states’ alongside the number ‘n’ of components and
the number of complex pairs of roots corresponding to Table A3. The three
‘index summation’ columns refer to the number of series ‘S’ and parallel ‘P’
letters in the label/name of the state as measures of how the state is

SAFETY AND RELIABILITY 9



constructed internally. Thus P3S3 is short for P3S2S2S2 for which
P

P ¼ 3,P
S ¼ 6 and R ¼ P

PþP
S ¼ 9:

The next three columns of Table A4 refer to the permutations of label-
lings that can be applied to a given state in analogy to statistical physics.
For example, on configuration SP, the three boxes can be labelled a, b, c.
There are six permutations of the letters alone: abc, acb, bac, bca, cab, cba
this number is labelled X. If we assign components reliabilities RA ¼ 0:9,
RB ¼ 0:8, RC ¼ 0:77 then for these six micro-states there are only 3 distinct
values for total system reliability, and entropy (described as energy state on
the table). Systemically there would only be one energy state. The number
of micro-states with the same entropy is the degeneracy.

The final column of Table A4 is called ‘tie order’ and refers to the R-ket rep-
resentation in comparison to the tie sets of the network/state. For example, PS
has two second degree/order tie paths. The R-ket is j0, 2, � 1i with the ‘0, 2’
expressing that there are zero first order tie paths and 2 second order tie paths.
The parity bit ‘�1’ does not reveal any tie paths. In this example the tie paths
were given in the first two numbers of the vector, so the tie-order was
recorded as 2. A canonical Boolean structure function could also be used, but
this confuses the addition ‘þ’ operator with the ‘OR’ operator and can lead to
drastically erroneous estimates in risk assessment.

Whilst these characteristic values of the ‘states’ are not the same as the
quantum numbers used to describe electronic configurations of atoms, the
correlation of these numbers with the moments is examined below to look
for any obvious ‘periodicity’.

The data from Tables A3 and A4 were used to plot the graphs below to
establish the two main aims of this paper; firstly to examine entropy as a
moment by comparing it to the more usual mean and standard deviation,
and secondly to examine the entropy of the set of states for any apparent
trends using the broadly named quantum numbers above.

On Figure 6 it is seen that the standard deviation is 94% correlated with
the mean for n¼ 1 to 6 networks. This means that one can often be used to
predict the other, introducing only a small error. The same cannot be said for
non-systemic networks. The upper limits of the spread of ‘dots’ on Figure 6
correspond to networks that are purely series and purely parallel combinations.
There is also a visible a band-structure with gaps on Figure 6. The points for a

Table 2. Series upgrading effects on network properties/moments.
Configuration R-ket RS Degeneracy, X/e o k�mttf kr

S1 1 1 1 1 1 2.7183
S 0 1 2 2 2 0.5 1.36
S3 0 0 1 3 6 3 0.3333 0.906
S4 0 0 0 1 4 24 4 0.25 0.68
S5 0 0 0 0 1 5 120 5 0.2 0.544

10 T. L. GRAHAM ET AL.



given number of blocks are spread along the entire length of the best fit line
and the gaps would disappear if larger numbers of blocks are introduced. The
bands correspond to ‘upgrading’ described below.

Figure 7 looks like a better correlated form of Figure 6. This can be
understood because entropy involves an integration over a logarithm.
Rather like plotting experimental data on logarithmic axis improves

Table 3. Parallel upgrading effects on network mean/moment k�mttf.
S1 P P3 P4 P5 P6
2.718 3.69 4.06 4.25 4.37 4.44

Table 4. ‘Progressive parallelisation’ effects on network mean/moment k�mttf.

y = -0.1937x2 + 0.9873x - 0.0193
R² = 0.9391
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Figure 6. Comparing the systemic mean and standard deviation of n< 7 exponential
reliability SP-networks.

y = -0.4424x2 + 2.9562x - 0.0444
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Figure 7. Comparing systemic entropy to systemic mean for n< 7 SP-nets.
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apparent correlations. Comparing Figures 6 and 7 there does not seem to
be any amazing benefit for the work of computing the more complicated
type of moment. Figure 8 compares standard deviation to entropy

From Figures 6 and 7, it might be expected that Figure 8 would approxi-
mate to a straight line with some ‘fine structure’ due to the banding. This is
indeed the case and evidently the systemic entropy is roughly 3.4 times the
standard deviation for about the first hundred networks on Tables 1–4. The
correlation here is 97% and the data for Figure 8 was to only four signifi-
cant figures accuracy from the tables.

The thermo-dynamical entropy is depicted here as an ensemble average over
only a small number of network sub-components. The mathematical extension
to very large systems would better exploit the analogy to statistical physics.

6. Systemic upgrading

For want of a better name, this short section is concerned with the systemic
entropy changes when a single block is added (or removed) from a net-
work. A limited number of scenarios have been examined for this paper.

6.1. Series upgrading

This is exemplified by the series of states S1, S, S3, S4, etc. It is simply a
matter of adding one extra block onto the end of a network. The R-kets, RS,
degeneracy and moments are given on Table 2.

There is little surprise on Table A1 that the series-sum and order of tie-
path increase exactly with the number of blocks in a network, or that the
degeneracy is the factorial of the number of blocks for a simple series. The
main interest from Table A1 is the effect on the R-ket is to introduce an

y = 3.3784x - 0.0944
R² = 0.9691
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Figure 8. Complexity compared to uncertainty: plot of entropy and standard deviation.
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extra zero on the left because the structure function is ‘enhanced’ as R !
xR when an additional reliability is placed in series. This can be mathematic-
ally represented by a matrix that transforms the network to the upgraded
network in R-ket form. This is simply an (nþ 1)�n rectangular matrix com-
posed of a row of zeros and the n-identity matrix.

Useries ¼

0 0
1 0

. . . 0

. . . 0
0 1
..
.

0

..

.

0

. . . 0
. .
.

. . .

..

.

1

0
BBBBB@

1
CCCCCA

(27)

The mean and standard deviation are the same for simple series using
exponential distributions in systemic terms. These moments decrease as 1/
n as shown on Figure 9, as the number of blocks is increased. This is a well-
known effect for the mean, but decreasing entropy, and thus complexity,
for longer network chains is novel.

6.2. Parallelisation

This is exemplified by the following changes of states: s1–p–p3–p4– etc.
which gives a series of vectors j1i, 2, � 1i,j 3, � 3, 1i,j 4, � 6, 4, � 1i:½ The
pattern here is of the form a, b, c, dij ! 1þ a, b� a, c� b, d � c, � dij
which is (28) in operator form.

Uparallel ¼

2
�1
0
0
0
..
.

0

1
1

�1
0
0
..
.

0

1
0
1

�1
0
..
.

0

. . .

. . .

. . .

. . .
. .
.

. .
.

. . .

1
0
0
0
0
1

�1

0
BBBBBBBBBB@

1
CCCCCCCCCCA

(28)
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Figure 9. Moments decrease as 1/n for series upgrading.
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Equation (28) includes the parallel ‘unit’ 2, � 1i:j For example:

UParallelRS ¼
2

�1
0

1
1

�1

0
@

1
A 0

1

� �
j0, 1i ¼ RPS (29)

The entropy change due to this ‘parallel upgrading’ proceeds as follows:
This is the same pattern as the total system reliability for n-blocks in par-

allel. This asymptotically tends to a maximum value as 1� 1/n.

6.3. Parallel expansion

The example state changes for this are: S1 – SP – S3P
2 – S4P

3 giving a series
of vectors j1i, j0, 2,�1i, 0, 0, 4, � 4, 1i,½ 0, 0, 0, 8, � 12, 6, � 1i:½ The oper-
ator is (30) and the pattern is ja, b, c, di ! j0, 2a, 2b�a, 2c�b, 2d�c,�di:

Uparallel ¼

0
2

�1
0
0
..
.

0

0
0
2

�1
0
..
.

0

0
0
0
2
�1
..
.

0

. . .

. . .

. . .

. . .

. . .
. .
.

. .
.

0
0
0
0
0
2

�1

0
BBBBBBBBBB@

1
CCCCCCCCCCA

(30)

For example

UparallelRP ¼
0
2

�1
0

0
0
2
�1

0
BB@

1
CCA 2

�1

� �
¼

0
4
�4
1

0
BB@

1
CCA ¼ RSP2 (31)

The entropies of the sequence S1 – SP – S3P
2 – S4P

3 are 2.72–1.78–1.40–
decreasing as 1/n the same as a series of individual blocks.

6.4. Series reduction

By similar choices of networks, the inverse problems can be easily devel-
oped. Series reduction, for want of a name, means removing a single com-
ponent from the end of a chain, opposite to series upgrading. This is again
a combination of the identity matrix, this time the operator includes a col-
umn rather than a row of zeros.
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U�1
series ¼

0 1
0 0

0 . . . 0
1 . . . 0

..

. ..
.

0 0

..

. . .
. ..

.

0 . . . 1

0
BBB@

1
CCCA (32)

For example

U�1
seriesRS4 ¼

0 1
0 0
0 0

0 0
1 0
0 1

0
@

1
A

0
0
0
1

0
BB@

1
CCA ¼ RS3 (33)

6.5. Progressive parallelisation

This is exemplified by the series of states S4, S3P, SPS, PS3 (Figure 10).
Clearly there are many such patterns to explore in any future study. The

operator for this one is yet incompletely specified (33) such that the col-
umns contain 2, �1 save the first, which is to be chosen to simplify the
inverse matrices.

Upp, 2 ¼ a 2
b �1

� �
Upp, 3 ¼

a 1=2 0
b 3=2 2
c �1 �1

0
@

1
A

Upp, 4 ¼
a
b
c
d

1
�1=2
3=2
�1

0
1=2
3=2
�1

0
0
2

�1

0
BB@

1
CCA

(34)

To examine the entropy changes caused by this ‘enhancement’ consider
a sequence of states:

This is clearly following the pattern of more and more parallel in a network.

7. Non SP-networks

There are some networks that cannot be Boolean-reduced to combinations
of series and parallel parts only. The best known of these is the simplest,
the bridge network (Figure 11).

A DCB
A

D

C
B

A
B

C D

A

B DC

Figure 10. The four n¼ 4 configurations illustrating ‘progressive parallelisation’.
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T ¼ ABþ CDð Þ þ ADE þ BCEð Þ
� BCDE þ ACDE þ ABDE þ ABCE þ ABCDð Þ

þ2ABCDE
RB1 ¼ j0, 2, 2,�5, 2i (34)

t ¼ 49=60k r ¼ ffiffiffiffiffi
41

p
=12k s ¼ ln 0:3756=kð Þ (35)

7.1. Transform the network into SP-form

There are two ways widely known to obtain a structure function for non SP-
systems. There is an analogy to impedance in electronic circuits. On Figure
12, a triangle is superimposed onto the bridge network, and its equivalent
Y-shaped subnetwork is shown (Kennelly, 1899). To complete the analogy,
it is a matter of some algebra to obtain {X,Y,Z} and (A,C,E} in terms of each
other.

X ¼ AC
Aþ C þ E

A ¼ XY þ XY þ YZ
Z

Y ¼ AE
Aþ C þ E

C ¼ XY þ XY þ YZ
Y

Z ¼ CE
Aþ C þ E

E ¼ XY þ XY þ YZ
X

(36)

7.2. Hybridisation

The network is imagined to be a synthesis of two networks: one where the
bridge element has failed (PS2) and one where the bridge element is 100%
reliable (SP2). This is denoted here as SP2�PS2 and is mathematically
achieved from the R-kets as B1 ¼ xSP2 þ 1� xð ÞPS2 where ‘x’ is the reliabil-
ity of the bridging element. Recall that multiplication by ‘x’ previously had
the effect of right-shifting the R-ket and inserting an extra zero.

B1 ¼ xSP2 þ PS2�xPS2

¼ j0, 0, 4,�4, 1i þ j0, 2, 0,�1, 0i�j0, 0, 2, 0,�1i
¼ j0, 2, 2,�5, 2i

(37)

In this way it is a question if any two networks could be bridged
together, one superimposed on the other. The reader could try this
exhaustively, then rule-out any pre-existing networks such as S1 � S¼ SP
and note that for any network A �A ¼ A: Furthermore, feasible bridges
(i.e. Ones that can be drawn) would have a parity of ±2 requiring that
appropriate networks to combine should have compatibly opposite parities.

A

D

B
E

C

Figure 11. The n¼ 5 bridge configuration B1:
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This still leaves a number of new networks to rule-out and this paper only
suggests that this may possibly be explained in terms of the polyno-
mial roots.

8. Relaxing the exponential assumption

The Weibull distribution (2) introduces that extra one parameter to compli-
cate everything above in this paper. All the R-kets now need to be pre-mul-
tiplied by a ¼ b

s
t
s

� �b�1 so that, for example, BPS2 ¼/ j0, 2, 0,�1, 0i: The
moments are found to be (38)

t ¼ h1jz�1�1
bjRi tn ¼ h1jz� 1þ1

bð Þn jRi (38)

To apply this method to the systematic (i.e. Not systemic) problem, the
coefficients of the vectors would no longer refer to integer powers of ‘x’
and the vectors/matrices would have different lengths. This is beyond the
scope of this paper.

9. Discussion

This paper has introduced a labelling system to distinguish SP-networks of
arbitrary order, but it requires modification to encompass non SP-networks
(hybrids) and cumbersome use of parenthesis appears to be needed for
higher order networks. A set of tables was given of the first n¼ 5 networks
and their properties. Non-integer numbers of components are beyond the
scope of this paper. Another way to represent the networks, using cartesian
vectors, was reviewed and it was found that the standard moments were
easily computed from this, along with a series of characterising numbers.
The moment ‘systemic entropy’ was compared to systemic means and
standard deviations and no real advantage was obtained, save that it is
‘understood’ to represent complexity of a network. Entropy changes with
simple changes to the system were explored.

The paper reviewed non SP-networks and how hybridisation is repre-
sented in vector form. Finally, the exponential distribution was relaxed to a
Weibull distribution and it was found that the vector form was changed
only by a multiple.

A

D

B

E

C

1

2

3

4

D

B

1

2

3

4
X

Y

Z

Figure 12. The ‘triangle-Y’ transformation.
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In conclusion any real system can be understood to be a hybrid, distrib-
uted across a range of states. The mean, standard deviation and other
moments are measures of system risk. Risk itself is a quantum state of a sys-
tem/process and there are analogies with statistical physics. The risk man-
ager, armed with this study, can consider how specifying one step of a
process into a series of two smaller steps will reduce entropy due to the
increase in information given, yet back-up systems increase uncertainty.
Furthermore, whilst a system may be designed to precisely represent one
network state, the reality will always be a diffusion across different specifi-
cations, mainly with variations of clarity of subsystems.

There are many aspects of this work that can be pursued in analogy to
statistical physics: amplitude functions, different distributions and distribu-
tion moments and quantum numbers, etc. But the future work envisioned
is concerned with the fault tree and event tree forms of block diagrams,
higher order bridges, Karnaugh graphs and applying the network-entropy
to the complexity of buildings for purposes of fire safety evacu-
ation modelling.
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Table A1. List of block networks n¼ 1 to 6 with SP-names and labelled blocks.
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Table A2. List of states and R-kets.
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Table A3. ‘Moment factors’ for the configurations on Table A1a.

Configuration
Mean SD Entropy

k � mttf k �r S

S1 1.0000 1.0000 2.718
S 0.5000 0.5000 1.360
P 1.5000 1.1180 3.690
S3 0.3333 0.3333 0.906
P3 1.8333 1.1667 4.060
PS 1.1667 0.9574 2.942
SP 0.6667 0.5774 1.780
S4 0.2500 0.2500 0.680
P4 2.0830 1.1932 4.251
S3P 0.4167 0.3819 1.127
P3S 1.5830 1.0830 3.619
PS3 1.0833 0.9610 2.789
SP3 0.7500 0.6292 1.999
PS2 0.7500 0.5590 1.847
SPS 0.5833 0.5069 1.557
SP2 0.9167 0.6292 2.182
PSP 1.2500 0.9465 3.032
S5 0.2000 0.2000 0.544
P5 2.2833 1.2098 4.366
SP4 0.8000 0.6683 2.132
P4S 1.8833 1.1418 3.964
S4P 0.3000 0.2828 0.814
PS4 1.0500 0.9708 2.737
P3S3 1.5333 1.0960 3.597
S3P3 0.4500 0.4113 1.218
S3P

2 0.5333 0.4295 1.401
SP3P 1.0500 0.6652 2.389
SPS3 0.5500 0.4924 1.471
S3PS 0.3833 0.3468 1.034
PS3S 0.6333 0.4910 1.957
P3S

2 1.2833 0.9293 2.967
PSP3 1.3000 0.9469 3.114
P3SP 1.6333 1.0682 3.610
SP3S 0.7000 0.5831 1.859
PS3P 1.1167 0.9500 2.819
SPSP 0.6167 0.5188 1.637
SPS2 0.4667 0.383 1.227
PSPS 0.8667 0.5972 1.759
PSPS 1.2000 0.9434 2.934
PSPP 1.3833 0.9239 3.070
SPPS 0.7833 0.560 1.892

aTable A3 uses shading to visually distinguish different values of network components. The table is
significant in showing trends in the moments as the number of series and parallel sub-systems
increases, and that the moments are broadly of equal value within the ‘systemic’
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Table A4. Characteristic values for the configurations on Table A1a.

Configuration n Complex pairs

Index summation
Microstates Energy states Degeneracy Tie order

RP RS R X e1 X/e o

S1 1 0 0 1 1 1 1 1 1
S 2 0 0 2 2 2 1 2 2
P 0 2 0 2 2 1 2 1
S3 3 0 0 3 3 6 1 6 3
P3 1 3 0 3 6 1 6 1
PS 0 2 2 4 6 3 2 2
SP 0 2 2 4 6 3 2 2
S4 4 0 0 4 4 24 1 24 4
P4 1 4 0 4 24 1 24 1
S3P 0 2 3 5 24 6 4 3
P3S 1 3 2 5 24 6 4 1
PS3 1 2 3 5 24 4 6 3
SP3 1 3 2 5 24 4 6 2
PSS 0 2 4 6 24 3 8 2
SPS 0 2 4 6 24 12 2 3
SPP 0 4 2 6 24 3 8 2
PSP 1 4 2 6 24 12 2 2
S5 5 0 0 5 5 120 1 120 5
P5 2 5 0 5 120 1 120 1
SP4 1 4 2 6 120 5 24 2
P4S 1 4 2 6 120 10 12 1
S4P 0 2 4 6 120 10 12 4
PS4 1 2 4 6 120 5 24 4
P3S3 2 3 3 6 120 10 12 1
S3P3 1 3 3 6 120 10 12 3
S3PP 0 4 3 7 120 15 8 3
SP3P 1 5 2 7 120 10 12 2
SPS3 1 2 5 7 120 20 6 4
S3PS 0 2 5 7 120 60 2 4
PS3S 1 2 5 7 120 10 12 3
P3SS 1 3 4 7 120 15 8 2
PSP3 1 5 2 7 120 10 12 2
P3SP 1 5 2 7 120 30 4 2
SP3S 1 3 4 7 120 30 4 2
PS3P 2 4 3 7 120 30 4 3
SPSP 1 4 4 8 120 60 2 3
SPSS 0 2 6 8 120 15 8 3
PSSP 1 4 4 8 120 30 4 2
PSPS 2 4 4 8 120 60 2 3
PSPP 1 6 2 8 120 15 8 2
SPPS 0 4 4 8 120 30 4 3

aTable A4 uses shading to visually distinguish different values of network components. The table
shows different ways to evaluate the degree of series and parallel within a network; and the num-
ber of different ways to draw the same network with equal system reliability. These numbers help
to establish a logical sequence in the list of different networks.
MTTF: Mean time to failure; STOP: Series-Two-One-Parallel; RAMS: reliability, availability, maintainabil-
ity and safety; R-ket: Column vector of the polynomial coefficient representation of systemic reliabil-
ity structure function
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