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Loughborough, UK  

*Corresponding author: H.Rahnejat@lboro.ac.uk

Abstract: 

The paper describes a combined tribodynamics analysis (dynamics and contact tribology) of 
cylindrical roller bearings of a heavy duty truck transmission under high applied loads. The 
dynamic analysis provides the transient variations in contact load. It also determines the 
vibration spectrum of the bearing as well as that of contact dynamics. It is shown that with 
sufficient preloading and/or interference fitting a widely spread loaded region results, which 
reduces bearing-induced vibration. The transient tribological analysis, including thermal 
analysis with a novel and realistic lubricant inlet boundary condition demonstrates that non-
Newtonian mixed elastohydrodynamic regime of lubrication is prevalent, but with reduced 
friction compared with unrealistic dry Coulombic friction, which is often assumed in 
literature.  

Keywords: 

Roller bearings, Dynamic analysis, Bearing vibration, Thermal mixed-elastohydrodynamics, 
non-Newtonian friction   

Nomenclature: 

𝐴  Apparent contact area 

𝐴𝑎 Asperity contact area 

𝐶  Radial clearance 

𝑐  Heat capacity of the lubricant 

𝑐𝑟𝑟 Specific heat capacity of roller material 

𝑐𝑟𝑎 Specific heat capacity of race material 

𝐸𝑟 Reduced Young’s modulus of elasticity, 𝐸𝑟 = 𝜋
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𝐸𝑟𝑟 ,𝐸𝑟𝑎 Young’s modulus of elasticity for roller and race materials 

𝐹𝑥 Excitation force in the transverse 𝑥-direction 
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𝐹𝑦  Excitation force in the transverse 𝑦-direction 

𝑓𝑏  Boundary friction  

𝑓𝑐  Cage frequency  

𝑓𝑛  Bearing base natural frequency 

𝑓𝑟  Roller-passage frequency 

𝑔  Gravitational acceleration 

ℎ𝑖   Lubricant film thickness of roller 𝑖 to race contact 

ℎ  Lubricant film thickness in the EHL model 

ℎ𝑐0  Central film thickness 

𝑘𝑛  Stiffness of inner ring-roller-outer ring contact 

𝑘𝑓  Lubricant conductivity 

𝑘𝑟𝑟  Thermal conductivity of roller material 

𝑘𝑟𝑎  Thermal conductivity of race material 

𝑘  Ratio of surface speeds of the contiguous solids 

𝑀  Rotor mass 

𝑚  Number of rollers 

𝑚𝑖  Inlet distance to the conjunction 

𝑚𝑒  Outlet distance from the conjunction 

𝐿  Roller length 

𝑙𝑑  Length of the dub-off region 

𝑃𝑚  Average contact pressure 

𝑝  Hydrodynamic pressure 

𝑅𝑑  Dub-off radius 

𝑅𝑧𝑥  Equivalent radius of contact of an ellipsoidal solid against a semi-infinite elastic half-
space 

𝑅𝑟𝑟  Roller radius 

𝑅𝑟𝑎  Radius of race 
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𝑇  Temperature 

𝑇0  Inlet temperature of the contact 

𝑡  Time 

𝑈  Speed of entraining motion 

𝑈𝑟𝑟  Roller surface speed 

𝑈𝑟𝑎  Race surface speed 

𝑊𝑎  Asperity contact load 

𝑊𝑖  Applied load on roller 𝑖 

𝑤𝑖  Squeeze velocity for roller 𝑖 to race contact 

𝑋,𝑌  Spatial Co-ordinates in the contact conjunction 

𝑥,𝑦  DOFs of bearing centre 

𝑍  Normal direction to the contact 

 

Greek symbols 

𝛼  Pressure-viscosity coefficient of the lubricant 

𝛽         Average asperity summit radius 

�̅�  Temperature viscosity coefficient 

𝛿𝑖 Contact deflection of roller 𝑖 

𝜀𝑝  Computational error for pressure convergence 

𝜀𝑇  Computational error for thermal balance 

𝜀𝑊  Computational error for instantaneous quasi-static equilibrium 

𝜉          Asperity distribution per unit contact area 

𝜂0 Atmospheric lubricant dynamic viscosity 

𝜂  Lubricant dynamic viscosity 

𝜃𝑖 Angular position of roller 𝑖 

λ  Stribeck’s oil film parameter 

𝜐𝑟𝑟, 𝜐𝑟𝑎 Poisson’s ratio for roller and race material 
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�̅� Radial interference fit 

𝜌  Lubricant density 

𝜌0  Atmospheric lubricant density 

𝜌𝑟𝑟  Density of roller material 

𝜌𝑟𝑎  Density of race material 

σ   Root mean square composite surface roughness  

𝜏𝐿  Limiting shear stress 

𝜏𝑣  Viscous shear stress 

𝜏0  Limiting shear stress at atmospheric pressure 

𝜙𝑖  Angle of fluid inlet point 

𝜙𝑒  Angle of fluid outlet point 

χ  Slope of limiting shear stress with pressure 

 

Introduction: 

Rolling element bearings often determine the performance limit of the machine that they are a 
part. Their response is affected by a host of interacting parameters under a wide range of 
operating conditions, including variable contact loads, speeds and temperatures. Bearing 
performance is often ascertained with respect to key performance measures which include 
friction and wear [1], fatigue [2,3], thermal stability [4] and generated vibration and noise [5-
7]. The selection and useful life of a bearing are critically dependent on all these measures. 
Therefore, any predictions should be based on a combination of dynamic analysis and the 
prevailing tribological contact conditions. 

Ball and rolling elements in a bearing undergo complex motions, such as rolling and sliding 
motion with respect to the inner and outer raceway grooves, as well as mutual convergence or 
separation of bearing rings under oscillating conditions [8]. These motions are caused by 
variations in the applied load transmitted to the bearing as well as contact conditions between 
the balls or rolling elements and the raceway grooves [9]. With proper preloading and/or 
interference fitting the contact loads between the rolling elements and raceway grooves far 
exceed those generated in the partially conforming contacts of the cage to raceway grooves or 
those between the rolling elements and their retaining cage pockets [1,5,9]. Therefore, the 
bearing dynamics model can be simplified to only include the effect of varying contact forces 
between the rolling elements and raceway grooves. The instantaneous net force resulting 
from these interactions together with any variations in the transmitted applied forces to the 
bearing supports cause the mutual convergence or separation of bearing rings. This results in 
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bearing-induced vibration, which is also affected by a host of geometrical and topographical 
parameters. These include the presence of off-sized rolling elements [10], surface waviness of 
contacting solids [5,6,11], faults such as pits and cracks on the contacting surfaces [7,11]  and 
dynamic variation in bearing stiffness as the result of the orbiting rolling element 
complement, known as the variable compliance effect [5,6,12]. This is an inherent property 
of a bearing, even for idealised smooth mating surfaces.          

Most dynamic analyses are based on 2 degrees-of-freedom models in the radial lateral 
directions of bearings [11,12]. Others include axial vibration of bearings in shaft-bearing 
systems subjected to thrust forces [13], or up to 5 degrees-of-freedom when moment loading 
and centrifugal effects [9,14] are taken into account. All these analyses assume dry contact of 
rolling elements to races with Hertzian contact conditions, which may be regarded as 
reasonable under elastohydrodynamic contact conditions where the lubricant film acts like an 
incompressible amorphous solid, with generated pressures closely conforming to Hertzian 
distribution. Such conditions occur under high loads and with no emerging bearing radial 
clearance. However, as already noted, the determination of friction is important for predicting 
wear, heat generation and bearing thermal stability.  

It has been shown by Dareing and Johnson [15] and Mehdigoli et al [16] that lubricant film 
damping is insignificant under elastohydrodynamic conditions. Therefore, friction is the main 
source of internal damping within a rolling element bearing. There is additional dry friction 
between the outer bearing ring and its retaining housing. Hence, realistic models should 
include the solution of lubricated rolling elements-to-races contacts within the bearing 
dynamic analysis. Full numerical solution of a complement of rolling elements and their 
raceway grooves in each step of dynamic analysis is computationally very time consuming, if 
not impossible. Therefore, an approach was devised by Rahnejat and Gohar [17] to use 
extrapolated oil film thickness formulae to provide a relationship between the lubricant film 
thickness and the load share of each contact in a complement of rolling element bearings. The 
method was for a dynamic 2-dimensional bearing model of a radial deep groove ball bearing, 
later extended to a 5 degrees-of-freedom model by Aini et al [18] to include the effect of 
axial thrust and moment loading in shaft-bearing systems. Lubricant viscous friction was 
implicit within the oil film thickness equation used. This approach leads to reasonable 
bearing vibration amplitudes, unlike the dry contact models which are only suitable for the 
determination of spectral contributions rather than realistic vibration amplitudes. However, 
the lack of a predicted film shape and contact elastohydrodynamic pressure distribution 
precludes the direct determination of friction, including any boundary interactions as well as 
the effect of generated heat in the bearing. For high applied radial loads with suitably 
preloaded bearings, an initial bearing dynamic analysis can indicate load variation per rolling 
element throughout a typical orbit (cage periodic rotation). If no emerging clearances occur, a 
subsequent elastohydrodynamic analysis provides all the necessary bearing tribological 
contact conditions as already shown with thermo-elastohydrodynamic analyses, including the 
effect of misalignment [19,20] and with isothermal contact conditions, including combined 
rolling, squeezing and tilting motion of rollers [8,21].             
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This paper uses the approach highlighted in [17] with lubricated contact dynamics, using an 
extrapolated oil film thickness equation for finite line contacts. The load per roller contact 
with the inner and outer raceway grooves is thus obtained through dynamic analysis. This is 
used in a subsequent detailed thermo-elastohydrodynamic analysis of a typical roller in a 
periodic cage cycle. Most reported lubricated bearing dynamics’ models assume fully flooded 
inlet conjunctions for roller-to-races contacts. Therefore, their results may be considered to be 
under idealised conditions. A new boundary condition based on a zero reverse flow at the 
inlet of a pair of rolling surfaces, which uses Tipei’s potential flow analysis with 
compatibility condition [22] is established. This boundary condition has recently been 
validated against experimental measurements [23]. Thus, the paper includes analyses which 
hitherto have not been reported in literature, including realistic lubricant flow rate into the 
contact, as well as integrating dynamics and tribological analyses for the case of finite line 
contacts.     

Method of Analysis 

Bearing Dynamics 

A roller in a rolling element complement carries an instantaneous share of the overall bearing 
applied load. Therefore, in accord with its orbital position and the excursion of the bearing 
centre from that of the supported shaft, the load share of each roller varies in a quasi-
harmonic manner [9-14, 17]. This means that a quasi-static analysis which is often assumed 
to determine roller-to-races contact load is unrealistic. The oscillatory nature of the contact 
load leads to the rolling elements being subjected to squeeze film motion as well as rolling, 
sliding and tilting motions. Hence, even with a nominally fixed applied dominant radial 
bearing load, the rolling elements are subject to transient loading. Therefore, a bearing 
dynamic model is a pre-requisite for the determination of in situ instantaneous contact 
conditions. With a dominant radially applied bearing load a 2 degrees-of-freedom bearing 
dynamics model suffices [17]. Under this condition any misalignment of rolling elements is 
ignored in the current analysis.   

A 2 degrees-of-freedom bearing dynamic model (figure 1) takes into account the lateral radial 
excursions of the supported shaft centre from the nominal geometric centre of the bearing. 
This creates a loaded region in the bearing, where the orbiting rolling elements are subjected 
to increased loading and contact deformation. Any emerging clearances (unloaded regions) 
can result in the deviation of roller-to-races contacts from elastohydrodynamic regime of 
lubrication, which can cause roller-cage collisions, roller skewing and excessive sliding in the 
contact region.  Suitable preloading and/or intereference fitting of bearings can guard against 
these phenomena by yielding a widely spread loaded region. An initial dynamics model can 
indicate the extent of load share per rolling element and aid correct preloading to avoid 
deviation from elastohydrodynamic conditions.  
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Figure 1: 2 DOF bearing dynamic model 

 

The equations of motion for the 2 degrees-of-freedom bearing model (figure 1) are: 

𝑀�̈� = [∑ −𝑊𝑖𝑐𝑐𝑐𝜃𝑖𝑚
𝑖=1 ] −𝑀𝑔 + 𝐹𝑥        (1) 

𝑀�̈� = [∑ −𝑊𝑖𝑐𝑖𝑠𝜃𝑖𝑚
𝑖=1 ] + 𝐹𝑦  

where, 𝜃𝑖 = 2π𝑓𝑐𝑡 + 𝑖 2π
𝑚

 , 𝑖 = 1 → 𝑚. 

These equations ignore the mass of rolling elements, as in most analyses [1,8,11,13,17,18]. 
Otherwise, an m-degrees of freedom model would be required with discretisation of the 
supported shaft mass proportionately to these radial degrees of freedom.   

In the equations of motion,  𝐹𝑥 and 𝐹𝑦 are the external excitation forces and 𝜃𝑖 is the 
instantaneous circumferential angular position of a rolling element 𝑖, whilst 𝑊𝑖 is its 
instantaneous contact load. This contact load can be obtained from the Hertzian load-
deflection relationship which is a reasonable assumption under the elastohydrodynamic 
regime of lubrication described in the Introduction:  

𝑊𝑖 = 𝑘𝑛𝛿𝑖
𝑛                       (2) 

where, 𝑘𝑛 is the Hertzian contact stiffness non-linearity between a rolling element and the 
inner and outer raceway grooves. The exponent of localised deflection, 𝑠, is equal to 10/9 for 
the case of rolling element bearings [1]. The deflection of a rolling element to raceway 
contacts, 𝛿𝑖, is as the result of the local mutual convergence of bearing rings and any initial 
radial clearance or interference fit there, as well as the lubricant film thickness formed [17], 
thus:  

2𝛿𝑖 = 2(ℎ𝑖 − 𝐶) + 𝑥𝑐𝑐𝑐𝜃𝑖 + 𝑦𝑐𝑖𝑠𝜃𝑖         (3) 

where, C is the radial local clearance. In the case of an interference fit: 𝐶 = −�̅�   
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For finite line contact of an equivalent rigid roller against a semi-infinite elastic half-space of 
equivalent elastic modulus 𝐸𝑟, the extrapolated minimum lubricant film thickness is obtained 
as [24]:  

ℎ𝑖 = 𝑅𝑍𝑍�13.924𝑊𝑖
∗−0.045𝑈∗0.647𝐺∗0.46�1 − 0.75𝑒132𝑤𝑖 𝑈⁄ ��     (4) 

where, U is the speed of entraining motion of the lubricant into the contact of a rolling 
element and raceway, here taken as the inner race, thus: 𝑈 = 1

2
(𝑈𝑟𝑟 + 𝑈𝑟𝑎), and the squeeze 

film  velocity is: 𝑤𝑖 = ∂ℎ𝑖
∂𝑡

. Note that ∂ℎ𝑖
∂𝑡

< 0 indicates normally approaching surfaces, (local 

convergence of the bearing rings), whereas ∂ℎ𝑖
∂𝑡

> 0 indicates the rate of separation of the 

contacting surfaces. Clearly, ∂ℎ𝑖
∂𝑡

= 0 indicates a pure rolling contact condition. For contact 

separation, equation (4) is used with ∂ℎ𝑖
∂𝑡

= 0  as the lubricant does not sustain tensile stresses. 
The dimensionless groups 𝑊𝑖

∗ (load parameter), 𝑈∗ (speed or rolling viscosity parameter) and 
𝐺∗(the material’s parameter) are given as [24]: 

𝑊𝑖
∗ = 𝑊𝑖𝐸𝑟 𝑅𝑍𝑍𝐿⁄  , 𝑈∗ = 𝜂0𝑈𝐸𝑟 𝑅𝑍𝑍⁄  , 𝐺∗ = 𝛼𝐸𝑟       (5) 

These equations are solved with step-by-step integration, using Runga-Kutta method, 
yielding values of x and y and the other parameters, particularly 𝑊𝑖 for all contacts: i= 1→m.  

The bearing specifications, operating conditions and lubricant properties are provided in 
tables A1 and A2 in the Appendix. 

As in [17] the initial position is assumed to be where the centre of the shaft and the bearing 
are coincident at 𝑥 = 𝑦 = 0. This implies an equilibrium position post any bearing housing 
deflection, which thereafter is assumed to behave in a rigid manner. Therefore, the equations 
of motion (1) account for the dynamic displacements of the supported rigid shaft relative to 
the geometric centre of the bearing. Of course in practice the bearing housing has certain 
compliance which can affect the inner dynamics of the bearing through elastic deformation of 
the housing support, depending on the applied bearing load, a case studied by Gao et al [25] 
among others. Furthermore, the supported shaft can also undergo misalignment [26] or be 
subjected to various bending modal responses [13].  Therefore, bearing vibration occurs 
about the static equilibrium position and reaches a steady state limit cycle in phase plane 
representation, ,x x  (shown in figure 2) after an initial period of transience. Two cases are 
presented in figure 2. One corresponds to a bearing suitably preloaded, yielding a radial 
interference fit of 5 µm and the other represents a lightly preloaded case, yielding a zero 
clearance. In both cases the initial cycle (in dotted lines) of the transient behaviour (when the 
shaft is released from the initial position 𝑥 = 𝑦 = 0) is retained as the shaft commences 
rotation at a speed of 209 rad/s. The bearing reaction attempts to restore the equilibrium, 
yielding the limit cycle orbits for both cases, shown in full line orbits. The values 𝑥 = 𝛿05  
and 𝑥 = 𝛿00 represent the static equilibrium positions under steady state conditions, with the 
bearing vibration represented by the indicated limit cycles. The area enclosed within the limit 
cycle is a measure of hysteretic losses. The line integration of the limit cycle perimeter yields 
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the dominant response frequency of the bearing, which is a function of its effective stiffness, 
itself a function of the number of rolling elements, the extent of interference fit, shaft mass 
and the applied load. Rahnejat and Gohar [17] termed this dominant response frequency       
the base natural frequency of the bearing. Clearly, the case with an interference fit of 5µm 
has a shorter period of oscillation (limit cycle perimeter) and thus a higher base natural 
frequency than that with a zero clearance. The dominant base natural frequency of the limit 
cycle vibrations can best be observed in its frequency spectrum, shown in figures 3(a) and 
3(b) for the interference fitted and zero clearance bearings respectively.  

 

Figure 2: Phase plane representation of the bearing lateral loaded direction  

 

(a)- For bearing fit of �̅� = 5µ𝑚 
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(b)- For bearing with zero clearance, �̅� = 0  

Figure 3: Spectrum of x-oscillations limit cycle  

The spectra in figure 3 are the direct result of the effective dynamic stiffness of the bearing, 
affected by the contact deformation of the rolling element complement in their orbital motion 
about the centre of the bearing. The extent of contact stiffness variation of roller complement-
to-races contact is best observed by load share of a typical rolling element during a steady 
state cage cycle. This is shown in figure 4 for the case of 5µm interference fit. It is clear that 
a typical roller-to-raceways’ contact is subjected to increased loading beyond the initial 
preload in the loaded region of the bearing in the region bounded by the section lines YY to 
XX in the figure (such as roller positions A1, B1 and C1). Conversely, reduced contact 
deformation occurs in the bearing arc XX to YY. Sufficient preload, as shown in the figure, 
ensures no loss of contact load (i.e. W>0). Clearly, a reducing preload could result in loss of 
contact for some of the roller complement. This occurs for the case of mutual separation of 
bearing rings beyond zero clearance (i.e. poorly preloaded bearings).  
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Figure 4: Load share of a typical roller-to-races’ contact during a cage cycle  

under steady state conditions for �̅� = 5µ𝑚 

The spectrum of vibration, contained in the time history of figure 4, is obtained after steady 
state conditions are reached for several cage cycles. This is shown in figure 5. Two frequency 
contributions make the basis of the spectrum (figure 5(a)). These are the aforementioned base 
natural frequency of the bearing and the cage rotational frequency (the lowest bearing 
frequency: resulting from the cyclic repetition of the circumferential disposition of 
complement of rollers). Multiples of cage frequency occur because of the off-loading of 
roller-to-raceway contact reactions beyond the original applied preload. This is an indication 
of the emergence of a pronounced loaded region. In the case of the bearing with a preload of 
�̅� = 5µ𝑚 only the second harmonic of cage frequency is noted. With zero clearance (i.e. 
�̅� = 0) the loaded region is more pronounced, so the passage of rolling elements through it 
makes a more marked difference in the bearing’s dynamic stiffness. As a result, higher 
multiples of cage speed appear in the spectrum of vibration (see figure 5(b)). In turn multiples 
of base natural frequency also occur as the result of variations in the effective dynamic 
stiffness of the bearing (in this case the super-harmonic at 2𝑓𝑛).   
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  (a)- with radial interference of �̅� = 5µ𝑚 

 

  (b)- with zero radial clearance, �̅� = 0 

Figure 5: Spectra of load per rolling element contact 

In the extreme case of narrow loaded regions, where the applied load dominates the bearing 
preload the repetitive disposition of the roller complement by the increment 2π

𝑚
 (i.e. roller 

spacing) leads to the often noted roller-passage frequency; 𝑓𝑟 = 𝑚𝑓𝑐. This extreme case is not 
noted under the simulated conditions.  However, the case in figure 5(b) shows the beginning 
of this phenomenon for the case of a lightly preloaded zero clearance bearing, with up to 4 
rollers traversing a relatively unloaded bearing region (note the contribution at 4𝑓𝑐).  
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There are also modulation effects between the base natural frequency of the bearing and the 
cage frequency and its multiples, with these effects becoming more significant in the case of 
reducing value of �̅�. It is also clear that resonant conditions would occur when a multiple of 
the cage frequency approaches the base natural frequency of the bearing.  

Ref [17] provides detailed analysis of the effect of shaft mass, radial interference fit and 
number of rolling elements on the base natural frequency of radial deep groove ball bearings. 
This paper is focused on the determination of contact conditions under the prescribed 
dynamic analysis.    

Contact model:  

To determine friction and generated heat a numerical solution of the thermo-
elastohydrodynamic lubricated contact of roller-to-raceway is required. With the contact load 
variation determined in the previous section and the relative contact velocity of roller to 
raceway known under a given bearing operating condition, the solution can be obtained for a 
typical roller during the steady state repetitive cage cycle in figure 4. Reynolds equation is 
solved simultaneously with a contact thermal model. Reynolds equation of the following 
form is used to obtain the generated contact pressures: 

  
𝜕
𝜕𝑍
�𝜌ℎ

3

𝜂
𝜕𝑝
𝜕𝑍
� + 𝜕

𝜕𝜕
�𝜌ℎ

3

𝜂
𝜕𝑝
𝜕𝜕
� = 12 �𝑈 𝜕

𝜕𝑍
[𝜌ℎ] + 𝜕

𝜕𝑡
[𝜌ℎ]�     (5)  

where X is the direction of entraining motion of the lubricant into the contact and Y denotes 
the side leakage direction along the length of the roller. The side-leakage flow is considered 
to be negligible for the usually starved roller-to-races contacts, thus the remaining Couette 
flow (first term on the right-hand side of equation (5)) is that due to the lubricant entrainment 
in the X direction only. The ultimate term on the right-hand side of equation (5) is due to 
squeeze film motion under oscillating conditions (this is essentially lubricant squeeze as the 
result of local mutual approach and separation of contacting surfaces).  
 
The pressure distribution, p is obtained, when variations in the film thickness, h is known as 
(figure 6 shows the elastic film shape in the direction of entraining motion): 
 

ℎ(𝑋,𝑌) = ℎ0 + 𝑐(𝑋,𝑌) + ∆(𝑋,𝑌)       (6) 

 

Figure 6: Film geometry 
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The rolling elements used are cylindrical rollers with dub-off end profiles in the axial roller 
direction (Figure 7). These relief profiles are used to mitigate pressure spikes which would 
otherwise form at the roller extremities due to stress discontinuity [26]. The un-deformed 
roller conjunctional profile is thus obtained as: 
 

𝑐(𝑋,𝑌) = 𝑍2

2𝑅𝑍𝑍
+ (𝑙𝑑−𝜕)2

2𝑅𝑑
                    𝑖𝑓                   𝑌 ≤ 𝑙𝑑      

𝑐(𝑋,𝑌) = 𝑍2

2𝑅𝑍𝑍
                                     𝑖𝑓        𝑙𝑑 < 𝑌 < 𝑙 − 𝑙𝑑      (7) 

𝑐(𝑋,𝑌) = 𝑍2

2𝑅𝑍𝑍
+ (𝜕−(𝑙−𝑙𝑑))2

2𝑅𝑑
              𝑖𝑓        𝑙𝑑 ≤ 𝑌      

  

 
 

Figure 7: Roller-race contact geometry 
 
𝑅𝑧𝑥 is the equivalent radii of contact of an ellipsoidal solid against a semi-infinite elastic half-
space, representing the instantaneous contact of any roller-to-race in the principal plane of 
contact ZX as shown in figure 7:  
 
1

𝑅𝑍𝑍
= 1

𝑅𝑟𝑟
+ 1

𝑅𝑟𝑟
          (8)

   
The radii of contact of the roller and the race in the ZY principal plane of contact are 
considered to be very large (nominally flat), thus: 𝑅𝑍𝜕~∞ . 
 
The localised contact deflection ∆(𝑥,𝑦) is obtained by solution of the elasticity potential 
integral: 
 
∆(𝑋,𝑌) = 1

𝐸𝑟
∬ 𝑝(𝑍1,𝜕1)𝑑𝑍1𝑑𝜕1

�(𝑍−𝑍1)2+(𝜕−𝜕1)2𝐴          (9) 
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where (𝑋,𝑌) represents a point where the deflection of the semi-infinite elastic half-space of 
reduced elastic modulus 𝐸𝑟 is calculated due to any arbitrary pressure distribution 𝑝(𝑋1,𝑌1) 
over the contact domain; 1 1( , )X Y∈ .  
 
To obtain a solution to the EHL problem comprising equations (5) - (9), the lubricant 
rheological state is also required. The viscosity variation with pressure and temperature is 
given as [27]:  

𝜂 = 𝜂0𝑒𝑥𝑝 �(𝑙𝑠 𝜂0 + 9.67) × �−1 + (1 + 5.1 × 10−9𝑝)𝑧0 � 𝑇−138
𝑇0−138

�
−𝑠0

��           (10)                          

where: 

𝑧0 = ∝
5.1×10−9(𝑙𝑛 𝜂0+9.67)  and: 𝑐0 = 𝛽�(𝑇0−138)

(𝑙𝑛 𝜂0+9.67)  

 
Lubricant density variation with pressure and temperature is given as [28]: 
 

𝜌 = 𝜌0 �1 + 0.6×10−9𝑝
1+1.7×10−9𝑝

� × [1 − 0.65 × 10−3(𝑇 − 𝑇0)]                  (11)
  
 
Boundary conditions: 
 
It is usual to assume a fully flooded inlet in the numerical analysis of elastohydrodynamic 
lubrication problems, where:  
 
𝑋 → −∞ , 𝑝 → 0 and  𝑌 → −∞ , 𝑝 → 0               (12) 
 
In the numerical analyses a distance of 4-5 times the Hertzian contact footprint semi-half-
width is usually chosen in the direction of entraining motion, X to represent fully flooded 
conditions [29].  
    
The outlet boundary conditions usually employed are that of Swift-Stieber:  
 
𝑋 → −∞ , 𝑝 = 𝜕𝑝

𝜕𝑍
→ 0 and  𝑌 → −∞ , 𝑝 = 𝜕𝑝

𝜕𝜕
→ 0                          (13) 

However, realistic inlet and outlet distances should be used in the analysis in order to model 

the flooded or starved conditions (see later). Tipei [30] noted that in the inlet zone of the 

contact, there are swirl flows, where some reverse flow (counter flow) occurs. This was also 

observed experimentally by Birkhoff and Hays [31].  Physically, this means that only a 

fraction of the inlet lubricant flow is admitted into the contact domain, thus often causing 

starvation of the contact. The physical inlet is the distance to the centre of the contact 

footprint from the centre of the counter-flow region (the point of zero reverse flow, Figure 8).   
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Tipei’s method is based on the potential flows in the inlet region (𝑄1,𝑄2,𝑄3) in Figure 8. It 

should be noted that this method was developed for hydrodynamic conjunctions with 

relatively low pressures and negligible localised deformation, which is applicable to the inlet 

region of the conjunction. Applying the compatibility condition yields [30]: 

𝑐𝑐𝑡2𝜋 �1
2
− 1−𝑘

𝑓(𝑘)
� − 𝑐𝑐𝑡2𝜋��1

2
− 1−𝑘

𝑓(𝑘)�
2
− 2𝑘

𝑓(𝑘) = 𝑐𝑐𝑡𝜋 �1
2
− 1−𝑘

𝑓(𝑘)
−��1

2
− 1−𝑘

𝑓(𝑘)
�
2
− 2𝑘

𝑓(𝑘)
� ×

𝑐𝑐𝑡𝜋 �1
2
− 1−𝑘

𝑓(𝑘)
+ ��1

2
− 1−𝑘

𝑓(𝑘)
�
2
− 2𝑘

𝑓(𝑘)
�       (14) 

where: 

𝑘 = 𝑈𝑟𝑟
𝑈𝑟𝑟

 (is the ratio of surface speeds of the contiguous solids)   (15) 

and 𝑓(𝑘) is a function of the pressure gradient in a converging gap (the inlet meniscus point 

A in Figure 8): 𝑑𝑝
𝑑𝜙𝑖

∝ 𝑘. Thus, for the aforementioned inlet flow rates (𝑄1,𝑄2,𝑄3): 

2�1 + √𝑘�
2
≤ 𝑓(𝑘) ≤ 6�1 + √𝑘�        (16) 

Values of 𝑓(𝑘) for some usually encountered cases of 𝑘 are listed in table 1. 
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Figure 8: Flow through contact carried by the solid surfaces 

Table 1: Calculated values for 𝒇(𝒌) 

𝑘 𝑓(𝑘) 

0 4 

0.5 7.8 

1 32/2 

 

Prandtl-Hopkins boundary conditions do not allow the observed swirl flow at the inlet. Thus, 

Tipei [30] used Swift-Stieber conditions at the inlet:  

𝑐𝑐𝑐𝜙𝑖 = − �1 − ℎ𝑐0
𝑅𝑍𝑍

(𝑐𝑐𝑐ℎ𝜗𝑖 − 1)�           (17) 

and: 
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𝑐𝑐𝑐𝜙𝑒 = −�1 − ℎ𝑐0
𝑅𝑍𝑍

(𝑐𝑐𝑐ℎ𝜗𝑒 − 1)�             (18) 

where:  

𝑐𝑟𝑠ℎ𝜗𝑖
𝑐𝑟𝑠ℎ𝜗𝑒

=
1−13�1+

2√𝑘
1+𝑘�

1− 𝑓(𝑘)
6(1+𝑘)

                (19) 

Thus:                                                                                              

�1 −
1
3
�1 +

2√𝑘
1 + 𝑘

�� 𝑡𝑡𝑠ℎ𝜗𝑒 − �1 +
𝑓(𝑘)

6(1 + 𝑘)� 𝑡𝑡𝑠ℎ𝜗𝑖 

                                                 −  �1 − 𝑓(𝑘)
6(1+𝑘)� 𝑐𝑐𝑐ℎ𝜗𝑖[𝑡𝑎𝑐𝑐𝑖𝑠(𝑡𝑡𝑠ℎ𝜗𝑒) − 𝑡𝑎𝑐𝑐𝑖𝑠(𝑡𝑡𝑠ℎ𝜗𝑖)] = 0         

                  (20)                                                                                                                                                          

The parameters 𝜗𝑒 and 𝜗𝑖 are the ratios of the film thickness at the exit and the inlet to the 

central lubricant film thickness respectively. The physical inlet distance 𝑚𝑖 and the outlet 

distance 𝑚𝑒 can now be found from the solution of equations (17)-(20) (Figure 8) as: 

𝑚𝑖 = 𝑅𝑍𝑍𝑐𝑖𝑠𝜙𝑖               (21) 

𝑚𝑒 = 𝑅𝑍𝑍𝑐𝑖𝑠𝜙𝑒                                                                                                    (22) 

 
Thermal Contact model: 
 

There are two sources of heat generation in an elastohydrodynamic conjunction. One is due 
to the viscous shear of the lubricant. The other is the result of the compressive action of 
generated pressures. The generated heat is then carried away by the lubricant in the direction 
of entraining motion X and any side leakage in the Y direction. Some of the heat is conducted 
through the bounding contacting surfaces in the Z direction. Thus, the energy equation can be 
stated as: 

𝜌𝑐 �𝑢𝑓
𝜕𝑇
𝜕𝑍

+ 𝑣𝑓
𝜕𝑇
𝜕𝜕
� = 𝑘𝑓

𝜕2𝑇
𝜕𝑍2

− 𝑇
𝜌
𝜕𝜌
𝜕𝑇
�𝑢𝑓

𝜕𝑝
𝜕𝑍

+𝑣𝑓
𝜕𝑝
𝜕𝜕
� + 𝜂 ��𝜕𝑢𝑓

𝜕𝑍
�
2

+ �𝜕𝑣𝑓
𝜕𝑍
�
2
�        (23) 

Velocities and velocity gradients in the fluid film are:  

𝑢𝑓 = 1
2𝜂

𝜕𝑝
𝜕𝑍

(𝑍2 − 𝑍ℎ) + 𝑧
ℎ

(𝑈𝑟𝑟 − 𝑈𝑟𝑎) + 𝑈𝑟𝑎            (24) 

𝜕𝑢𝑓
𝜕𝑍

= 1
2𝜂

𝜕𝑝
𝜕𝑍

(2𝑍 − ℎ) + (𝑈𝑟𝑟−𝑈𝑟𝑟)
ℎ

                         (25) 
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𝑣𝑓 = 1
2𝜂

𝜕𝑝
𝜕𝑦

(𝑍2 − 𝑍ℎ)                                                (26) 

and: 

𝜕𝑣𝑓
𝜕𝑍

= 1
2𝜂

𝜕𝑝
𝜕𝜕

(2𝑍 − ℎ)                                      (27) 

The boundary condition for the inlet lubricant temperature is assumed to be that of the 
housing temperature, thus: 

𝑇(𝑋𝑖𝑛,𝑌,𝑍) = 𝑇0                (28) 

The energy equation can be transformed to that of an equivalent solid in contact with a semi-
infinite plane as:  

𝑐𝑟𝑟𝜌𝑟𝑟𝑈𝑟𝑟
𝜕𝑇
𝜕𝑍

= 𝑘𝑟𝑟 �
𝜕2𝑇
𝜕𝑍2

+ 𝜕2𝑇
𝜕𝜕2

+ 𝜕2𝑇
𝜕𝑍2

�                                                                               (29) 

𝑐𝑟𝑎𝜌𝑟𝑎𝑈𝑟𝑎
𝜕𝑇
𝜕𝑍

= 𝑘𝑟𝑎 �
𝜕2𝑇
𝜕𝑍2

+ 𝜕2𝑇
𝜕𝜕2

+ 𝜕2𝑇
𝜕𝑍2

�                                                                               (30)      

Two additional boundary conditions other than (28) are set as:   

𝑇(𝑋,𝑌, +𝑑) = 𝑇0                  (31)  

𝑇(𝑋,𝑌,−𝑑) = 𝑇0                   (32) 

where, d and –d are the penetration depth of temperature distribution into the bounding 
solids. These are finite depths, sufficiently large to attain a zero temperature gradient in the Z-
direction. 

To satisfy the continuity of heat flux between the solid surfaces and the lubricant film, the 
following conditions should also be satisfied: 

𝑘𝑓
𝜕𝑇
𝜕𝑍
�
𝑍 = 0+

= 𝑘𝑟𝑟
𝜕𝑇
𝜕𝑍
�
𝑍 = 0−

                  (33) 

𝑘𝑓
𝜕𝑇
𝜕𝑍
�
𝑍 = ℎ−

= 𝑘𝑟𝑎
𝜕𝑇
𝜕𝑍
�
𝑍 = ℎ+

                  (34)
   

Determination of friction 

With an expected thin elastohydrodynamic film, a mixed regime of lubrication ensues, 
comprising non-Newtonian viscous shear of a lubricant film as well as interaction of 
ubiquitous asperities on the counterfaces (boundary friction contribution between roughness 
of rollers and their raceway grooves).  

Greenwood and Tripp [32] model is employed for prediction of boundary friction 
contribution. The method assumes Gaussian distribution of asperities. A proportion of load is 
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carried by the asperities on the opposing contacting surfaces, when mixed or boundary 
regimes of lubrication are encountered, based on the Stribeck’s oil film parameter:  

λ = ℎ
𝜎
≤ 3, where σ is the root mean square composite surface roughness. Usually, a very 

small proportion of load is carried by the asperities protruding through an insufficiently thick 
film. The share of contact load carried by the asperities is [32]: 

𝑊𝑎 = 16√2
15

𝜋(𝜉𝛽𝜉)2�
𝜎
𝛽
𝐸′𝐴𝐹5/2(𝜆)                             (35) 

where, 𝐸′ = 2
𝜋
𝐸𝑟 and the statistical function 𝐹5/2(𝜆) for a Gaussian distribution of asperities 

can be represented by a polynomial function as [24,33]: 

𝐹5 2⁄ (𝜆) = �−0.004𝜆5 + 0.057𝜆4 − 0.296𝜆3 + 0.784𝜆2 − 1.078𝜆 + 0.617;    𝑓𝑐𝑎   𝜆 ≤ 3
   0                                                                                                              ;    𝑓𝑐𝑎   𝜆 > 3

                                                (36) 

The asperity contact area is obtained as [32]: 

𝐴𝑎 = 𝜋2(𝜉𝛽𝜉)2𝐴𝐹2(𝜆)                (37) 

The statistical function 𝐹2(𝜆) can also be expressed through polynomial representation as 
[24,33]: 

𝐹2(𝜆) = �−0.002𝜆5 + 0.028𝜆4 − 0.173𝜆3 + 0.526𝜆2 − 0.804𝜆 + 0.500;    𝑓𝑐𝑎   𝜆 ≤ 3
   0                                                                                                              ;     𝑓𝑐𝑎   𝜆 > 3 

                            (38) 

Usually the roughness parameter (𝜉𝛽𝜉) is in the range 0.03-0.07 for steel surfaces. The ratio 
𝜉 𝛽⁄  is a representation of the average asperity slope, which is in the range 10−4 - 10−2 
[24,33]. In the current study it is assumed that 𝜉𝛽𝜉= 0.055 and 𝜉 𝛽⁄ =10-3. 

With boundary interactions there is a thin adsorbed film at the summit of asperities or 
entrapped in their contact. This adsorbed film is subjected to non-Newtonian shear, thus [34]: 

𝑓𝑏 = 𝜏𝐿𝐴𝑎                               (39) 

where, 𝜏𝐿 is the lubricant’s limiting shear stress [33, 34]:   

𝜏𝐿 = 𝜏0 + χ𝑃𝑚                                                                                                                    (40) 

where, 𝑃𝑚 = 𝑊𝑟
𝐴𝑟

, and χ = 0.04 for wet contact of asperity tips [34]. 

Viscous shear of the lubricant film is obtained as: 

𝜏𝑣 = ∫ �±ℎ 𝑑𝑝
𝑑𝑥

+ 𝜂
ℎ

(∆𝑈)� 𝑑𝐴𝑣                             (41) 
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where: 𝐴𝑣 = 𝐴 − 𝐴𝑎 ≈ 𝐴 as 𝐴 ≫ 𝐴𝑎 which is typically less than 1% of the apparent contact 
area [24,32]. ∆𝑈 is the sliding velocity. 
If this shear stress is below the limiting shear stress, the calculated value of shear stress from 
equation (7) is used. For shear values above this limiting value the limiting shear stress from 
equation (6) is considered. Therefore, the viscous friction force is: 
 
𝑓𝑣 = ∬ 𝜏𝑣𝐴𝑣𝐴                                 (42) 
 
Required data for calculations of boundary friction contribution is provided in table 2: 
  

Table 2: Topographical and boundary shear data 

Parameters Values Units 
Composite surface roughness, 𝜉 0.6 𝜇𝑚 

Atmospheric limiting shear stress (𝜏0) 2.3 MPa 
Pressure-induced shear coefficient (χ) 0.047 - 

 

Method of Solution 

The following step-wise solution is used: 

Step 1: Equations (1) – (3) are solved simultaneously, using the ODE45 solver in the Matlab-
Simulink environment. The results provide the contact load and contact kinematics required 
for the mixed-thermo-elastohydrodynamic analysis.  

Step 2: An initial estimation for the lubricant film thickness, ℎ0 is made, using equation (4). 

Step 3: The inlet and outlet distances are calculated using this estimated lubricant film 
thickness and with the simultaneous solution of equations (17) – (20).  

Step 4: Pressure distribution and film thickness are obtained through simultaneous solution of 
equations (5) – (13). The inlet and outlet boundaries from the previous step are used to set up 
the computational domain. The following convergence criterion is used:   

For pressure convergence: ∑ |𝑝𝑛𝑒𝑛−𝑝𝑟𝑜𝑑|
𝑝𝑟𝑜𝑑𝐴 ≤ 𝜀𝑝 , where, typically: 10−4 ≤ 𝜀𝑝 ≤ 10−3                (43) 

The method of solution used is effective influence Newton (EIN) method [32] with line 
distributed low relaxation iteration. When the above criterion is not satisfied, the generated 
pressures are under-relaxed as: 𝑝𝑛𝑒𝑤 = 𝑝𝑟𝑙𝑑 + 𝛺𝛺𝑝. The under-relaxation factor is usually 
0.01 ≤ Ω ≤ 0.8   

Step 5: Initially, the temperature at all the computational nodes is considered to be the inlet 
temperature. The temperature distribution inside the lubricant and the bounding solid 
contacting surfaces are obtained, using equations (23) – (33). 
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At any iterative step the lubricant viscosity and density are updated for the calculated 
temperature and pressure distributions. The convergence criterion for the temperature 
distribution is:  

∑ |𝑇𝑛𝑒𝑛−𝑇𝑟𝑜𝑑|
𝑇𝑟𝑜𝑑𝑉 ≤ 𝜀𝑇                (44)

  

where, 10−5 ≤ 𝜀𝑇 ≤ 10−4. If the criterion is not satisfied, then the generated temperatures 
are under-relaxed as: 𝑇𝑛𝑒𝑤 = 𝑇𝑟𝑙𝑑 + 𝛺𝛺𝑇. The under-relaxation factor is usually 0.005 ≤
Ω ≤ 0.01.  

If the above convergence criteria are not met, steps 3-5 are repeated.    

Step 6: The integration of the pressure over the computational domain is calculated in order 
to find hydrodynamic reaction load as:  

𝑊ℎ = ∬𝑝𝑑𝑥𝑑𝑦                                                                                                                    (45)                         

The total instantaneous contact reaction for any roller-to-raceway contact is: 𝑊 = 𝑊ℎ + 𝑊𝑎, 
where 𝑊𝑎 is given by equation (35). This total contact reaction, W should equate the 
instantaneous load share of any contact 𝑊𝑖 obtained through dynamic analysis and equation 
(2). Thus, the following convergence criterion is applied: 

   |𝑊𝑖−𝑊|
𝑊𝑖

≤ 𝜀𝑊                   (46) 

where, 0.001 ≤ εW ≤ 0.05. The value of εw = 0.005 has been used in this work. If the 
criterion is not met, the central film thickness hc0 is adjusted and the entire iterative process 
is repeated: 
 
ℎ𝑐0𝑙 = ℎ𝑐0𝑙−1 �

𝑊𝑖
𝑊
�
𝜍
                     (47)

  
 
where, −0.1 ≤ 𝜍 ≤ 0.1 is termed a damping factor. 

Note that the inlet distance changes with different central film thickness and therefore the 
computational domain is updated accordingly.    

Results and discussion: 

The bearing specifications, lubricant rheology and operating conditions for the simulated 
cases are provided in tables A1 and A2 in the appendix. The data corresponds to the rear 
support roller bearing of the transmission input shaft of a heavy duty truck, equipped with a 
diesel engine delivering 2200 Nm (max) torque at the nominal engine speed of 209 rad/s. 

Results of thermo-elastohydrodynamic conditions are provided for both the traditionally 
assumed fully flooded inlet condition and those with the boundary conditions developed here. 
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In addition, the contact load variation in a cage cycle within the limit cycle oscillations is 
taken from figure 4. The squeeze velocity is initially set to zero and obtained thereafter as: 
∂ℎ
∂𝑡

= ℎ𝑘′−ℎ𝑘′−1

∆𝑡
, where the superscript k’ denotes the time step of simulation and ∆𝑡 is the 

time-step size. Figure 9 shows the variation of squeeze velocity during a cage cycle for a 
typical roller-to-race contact. The variation closely follows the characteristic load per roller 
under bearing small amplitude oscillations.   

 

Figure 9: Squeeze film velocity 

The aforementioned parameters are used to determine the lubricant film thickness and shape, 
as well as the corresponding pressure and temperature distributions in any roller-to-raceway 
contact at any instant of time. These correspond to the passage of a typical roller through 
various regions of the bearing, shown in figure 4. Typical results are shown in figure 10, for a 
roller traversing the loaded region of the bearing; positions A1, B1 and C1 in figure 4. The 
horizontal axis in this figure is the distance along the direction of entraining motion (along 
the half width of the Hertzian contact footprint). The results in figure 10 demonstrate the 
prevalent elastohydrodynamic regime of lubrication by the conformance of the lubricated 
pressure profiles to the dry elastostatic Hertzian condition (also included in the figure), except 
for the inlet trail and the pressure spike in the vicinity of the contact exit. These are important 
in the determination of film thickness, shear rate and ultimately the generated friction. 
Consequently, the determination of correct boundary conditions is essential for the lubricated 
contact analysis. A fully flooded inlet is the other extreme from a dry elastostatic Hertzian 
analysis, both of which may be viewed as rather idealised. Therefore, the results of the 
analysis with the determined new boundary conditions are also included in figure 10. The 
effect of boundary conditions on the film thickness is shown in the figures.  

It is important to note that a transient tribo-dynamic analysis is crucial for all the important 
measures of performance highlighted in the Introduction: friction, wear, thermal stability and 
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fatigue. All these depend on the pressure, temperature and shear distributions, and the film 
thickness. The pressure distribution and the generated pressure spike determine the sub-
surface stress field and the fatigue performance of rolling surfaces, as shown in [2,3,24] for 
point contact condition and Teodorescu et al [33] for line contact of lubricated cam-tappet 
conjunction under transient condition. The squeeze film caving phenomenon (formation of a 
central dimple), resulting from local approach of bearing rings (a negative squeeze velocity) 
can be observed in figures 10 A1 and 10 C1 (see also the corresponding points A1 and C1 in 
figure 9). At point B1, the mutual divergence of bearing rings occur (a positive squeeze film 
velocity, figure 9). There is an absence of squeeze cave in the elastic film shape. The 
formation of the dimple enhances the film thickness as shown in figure 10.  

The squeeze film phenomenon has been attributed to thermal wedge effect in sliding contacts 
by Liu et al [35]. In their case any change in the sliding velocity (Couette flow can be viewed 
as yielding an equivalent change in the squeeze film as [35]: 𝑈 𝑑ρℎ

𝑑𝑥
= 𝑑𝑥

𝑑𝑡
𝑑ρℎ
𝑑𝑥

= 𝑑ρℎ
𝑑𝑡

 (see 
equation (5)). This is in line with squeeze cave behaviour in figure 10 and the observations in 
[8] that formation of the cave is because of contact kinematics (including the effect of 
approaching squeeze velocity) even under isothermal conditions as well as any changes in 
lubricant viscosity due to localised temperature conditions. Figure 10 shows the enhanced 
film thickness with the formation of a squeeze cave. The increased film thickness results in 
reduced friction because of a decrease in boundary friction contribution (for the cases A1 and 
C1 when compared with the case B1) as shown in table 3. The table also provides the total 
friction due to the prevailing mixed regime of lubrication (boundary and viscous shear of the 
thin non-Newtonian film).  It can also be observed that with realistic boundary conditions a 
slightly starved contact results which marginally increases the predicted friction from its 
idealistic fully flooded inlet condition (by an average of 12.5%). The instantaneous kinetic 
coefficient of friction can also be obtained since the contact load is known from figure 4 
(marked by positions A1, B1 and C1). This is around 0.01, which is far less than the 
impractical dry contact Coulomb friction value of steel counterfaces of about 0.15-0.2, which 
is often used in dry contact analysis.               
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A1 

 
B1 
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C1 

 

Figure 10: Film thickness and pressure distribution in the loaded region of the bearing  

 

Table 3: Predicted friction under various conditions   

Orbital positions A1 B1 C1 

Boundary friction force [N], new boundary condition 2.60 3.46 2.68 
Boundary friction force [N], traditional boundary condition 2.56 3.18 2.53 

Total friction force [N], new boundary condition 40.67 40.76 43.01 
Total friction force [N], traditional boundary condition 39.50 35.54 38.56 

Power loss [Watts] , new boundary condition 23.95 24.00 25.32 
Power loss [Watts] , traditional boundary condition 23.26 20.92 22.71 

 

Figure 11 shows the temperature distributions through mid-plane of contact, corresponding to 
the results in figure 10. The temperature closely follows the same trend as the pressure 
distribution. An interesting point is that the reduced thermal wedge effect in figure 11 B1, 
with lack of a dimple (figure 10 B1) is a clearly an effect of contact kinematics, not the 
underlying cause for the squeeze caving phenomenon. Thermal analysis is, however, critical 
for the determination of realistic lubricant rheological state and leads to thermal thinning of 
the lubricant film. This has the effect of increasing contact friction through increased direct 
boundary interactions. 
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Figure 11: Temperature distribution at monitored points during one revolution 

 

Concluding remarks: 

Bearings are often the critical factors in the performance of rotating machinery. Two of the 
important effects are bearing dynamic performance, influencing the noise and vibration of 
machinery, and friction and generated heat, which affect efficiency of machinery and their 
structural integrity. Therefore, a holistic approach should include a tribo-dynamic analysis. It 
is shown that when rolling element bearings operate under elastohydrodynamic regime of 
lubrication the overall friction is kept to a minimum, with reduced boundary interactions. It is 
also clear that a combination of generated heat in the roller-to-races’ contacts, high contact 
load and realistic boundary conditions result in partial starvation and lead to the formation of 
thin elastohydrodynamic films, subjected to non-Newtonian shear characteristics. 
Nevertheless, the effective coefficient of friction is 10 times lower than any assumed 
Coulomb dry contact condition. This indicates that with appropriate preloading/interference 
fitting roller bearings operate with reduced vibration and promote elastohydrodynamic 
contact conditions.  

The inertial contribution of individual rolling elements in the overall shaft-bearing system is 
ignored in the current analysis (rolling elements are considered as massless). This is the 
approach used by other research workers as well, considering rolling element masses to be 
insignificant compared to other inertial effects. Their effect is also negligible with sufficient 
bearing preload and an assumed roller-to-race pure rolling contact. In practice, their inertial 
effect can be important with emerging clearances, rolling and sliding motion, as well as 
yawing and tilting with respect to their retaining cage and raceway grooves. These issues 
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were considered by Gupta [14], but for dry contact conditions. The analysis presented here 
can be extended to cases with such complex motions with individual rolling element’s inertial 
dynamics.    
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  Appendix: 

Table A1: Bearing specification and operating conditions 
Inner race bore 40 [mm] 
Inner race diameter 50 [mm] 
Outer race diameter 75.4 [mm] 
Roller diameter 12.7 [mm] 
Outer race outside diameter 83.7 [mm] 
Roller length 22 [mm] 
Dub-off radius 50 [mm] 
Dub-off length 3 [mm] 
Number of rollers 12 
Inner race-roller-outer race contact stiffness 5e8 [N/m] 
Shaft rotational speed 209 [rad/s] 
Cage set speed 83.26 [rad/s] 
External load 1500 [N] 
System mass 50 [kg] 
Radial interference 5 [µm] 

 
Table A2: Lubricant and material properties   

Pressure viscosity coefficient (α) 1.39e-8 [Pa-1] 
Temperature viscosity coefficient (�̅�) 0.026 [K-1] 
Atmospheric dynamic viscosity ( 𝜂0) 0.0499 [Pa.s] 
Inlet density 𝜌0 of lubricant 829.3 [kg/m3] 
Thermal conductivity of fluid 0.14 [J/kgK] 
Heat capacity of fluid  2000 [W/mK] 
Modulus of elasticity of contacting solids 210 [GPa] 
Poisson’s ratio of contacting solids 0.3 [-] 
Density of contacting solids 7850[kg/m3] 
Thermal conductivity of contacting solids 46 [W/mK] 
Heat capacity of contacting solids  470 [J/kgK] 
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