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ABSTRACT 

The automotive industry is increasingly required to meet tough emission standards such as Euro 6 which will be 

implemented in September 2014.  Improved fuel efficiency is envisaged to be a direct contributory factor in 

reducing harmful emissions among other factors. Therefore, reduction of frictional losses in contact conjunctions is 

progressively an important issue. The compression ring-bore conjunction is responsible for consuming almost 5% 

of fuel energy. One intensely researched area is enhancement of tribological performance through surface texturing 

of contacting solid surfaces in order to retain micro-reservoirs of lubricant in regions which are prone to poor 

lubrication, for example in piston-cylinder system [1,2].  

The current work comprises of a validated numerical model which has been created for analysis of surface 

texturing in the piston ring cylinder liner contact. The model employs a two dimensional solution of Reynolds 

equation as well as the inclusion of Greenwood and Tripp boundary friction model [3]. The model is used to 

investigate the underlying mechanism of lubrication with textured surfaces. The understanding of surface texturing 

developed during this study enables design and positioning of textured patterns in piston ring - cylinder liner 

contact.  
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1. INTRODUCTION 

The piston compression ring-bore contact accounts for 5% of input fuel energy [4]. This is significant for such a 

small conjunction. With ever-increasing costs and stricter emerging legislation much attention is directed towards 

reducing the parasitic losses. 

The piston ring is one of the most challenging tribological contacts on the account of transient nature of the regime 

of lubrication during a typical engine cycle [5]. At the reversal points adverse tribological conditions are 

experienced due to piston reversal (thus cessation of lubricant entraining motion into the contact), particularly in 

transition between the compression to power stroke with high pressures acting behind the top compression ring 

inducing boundary interactions [6]. Laser texturing can be used to reduce friction in reciprocating contacts[1,2,7-9]. 

This paper describes how direct measurements of friction are obtained from a reciprocating slider bearing test rig. 

The results from the reciprocating slider rig are used to validate a numerical model which predicts the effect of 

surface texture features. The numerical model is then used for the analyses of the top compression ring in a fired 

engine. Numerical results for surface texturing the piston ring cylinder liner contact are reported. 
 

2. EXPERIMENTAL SET UP  

 

A precision reciprocating slider bench test rig has been developed [10]. A thin sliding strip (representative of 

compression ring thickness) with a face-width contact profile is loaded against and slides upon a flat plate. The 

plate is mounted upon precision low friction bearings and is allowed to float, when dragged by the sliding strip. An 

electric motor is directly coupled to the loaded and sliding strip via low friction and an almost backlash-free 

leadscrew. Piezo-resistive force sensors measure the inertial force of the floating plate, which is due to generated 

contact friction as:  
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∑                   (1) 

This arrangement is analogous to floating liner in situ direct measurement of friction from a motored or fired IC 

engine as reported, for example, by Gore et al [11].   

 

The actual sliding speed of the strip is measured by a rotational laser Doppler vibrometer. The thin strip is made of 

stainless steel grade 330 C and is hardened to 62HRC. The flat plate is made of EN 14 steel, electroplated by a 

20µm thick Ni-SiC coating. The surface is then ground and polished (Table 2). 
 

2.1 Laser surface texturing 

A laser surface texturing process was used to etch chevron-shaped textures onto the flat plate similar to those 

created by Costa and Hutchings [12]. An SPI 50Watt Fibre laser (table 1) was used to create the surface features. 
 

Table 1. Laser data 

Parameter Value (Unit) 

Beam Width 0.030 (mm) 

Feed speed 0.25 (mm/s) 

Pulse Width 0.500 (ms) 

Frequency 1687 (Hz) 

Power 16 (W) 

Shielding Gas Nitrogen @ 0.5 MPa 

 

The plates were polished for a short period of time after the Laser surface texturing process to remove any splatter 

or debris left protruding from the surface. The images in Figure 1 show typical laser-etched chevrons obtained 

through the Alicona Infinite Focus Microscope.  
 

 
Figure 1: Image of chevrons on test plate 

 

The chevron depth, ring face profile and Surface roughness of the plate and strip were measured. The chevrons 

have a thickness-to-depth ratio of 0.11 (representative of an optimised ratio as demonstrated in [8]) although some 

variation in the chevron depth is produced during the laser surface texturing process. The laser surface texturing 

process produces chevrons with a cross-sectional profile similar to that of a parabola (figure 1), therefore, modelled 

accordingly. If   is a typical chevron’s cross-sectional width,    is the depth of the chevron at its centre and    its 

centre position, then the profile can be described by: 

(
    
 

 ⁄
)
 

 
 

  
                       (2) 

 

2.2 Test protocol  

Before the start of each set of sliding tests, the load cells were calibrated and surface topography of the contact 

surfaces were measured. Figure 2 shows typical topography of the strip’s contacting face-width. A drop of oil was 

applied onto the flat liner plate using a syringe. The oil was evenly spread across the surface. An initial running-in 

period was allowed prior to each test. After each test the surfaces of the strip and the floating plate were measured 

again. 
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Figure 2: Measured ring face profile 

3. NUMERICAL METHODOLOGY 

A combined numerical and experimental approach is undertaken to ascertain the effectiveness of laser textured 

surfaces in retention of a lubricant film and improving hydrodynamic load carrying capacity, as well as reducing 

friction. Previous experimental evidence has suggested that in the case of piston ring-cylinder liner system 2-4% 

reduction in friction is attained [1,9]. Furthermore, Balakrishnan et al [13] carried out numerical analysis for piston 

skirt-textured cylinder bore conjunction and showed improved oil retention through creation of textured chevron-

type reservoirs at the top dead centre. The predictions for piston skirt-liner oil film thickness showed remarkable 

agreement with measurement of the film thickness under the same conditions using ultrasonic sensors [14]. 

However, measurements of either oil film thickness or friction were not obtained for the much narrower ring-bore 

conjunction. This paper uses a thin strip slider, representing a segment of circumferentially conforming ring against 

a flat floating plate of finite width. A quasi-3D analysis can be carried out, using Reynolds equation: 

 
 

  
(
   

  

  

  
)  

 

  
(
   

  

  

  
)  ( )

 

  
(  )   

 

  
(  )                        

(3) 

 

Reynolds equation is solved together with the film thickness equation, representing the gap shape (Figure 3): 
 

 (     )    ( )    (   )    (   )                              (4)  

where,    is the minimum film thickness,    is the ring face profile and    describes the profile of surface features.  

 

The ring face-width profile    is measured, and only varies in the  -direction (direction of entraining motion). For 

the purpose of numerical analysis, the film profile in figure 3 is created using the following set of equations. 
 

  ( )  {

                              
                                 

                                 
}                                           (5) 

where, s is the gradient with respect to ring face-width, g is the film profile at x=0 (the intercept) and r and q refer 

to the edge and flat land film shape. 
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Figure 3: Film Shape with chevrons 

 

Due to the relatively low load applied, there is negligible localised deflection of the contacting surfaces, indeed a 

mixed-hydrodynamic regime of fluid film lubrication is expected. The combination of low load and low lubricant 

entrainment simulates load-kinematic conditions at TDC reversals under assumed isothermal conditions (such as 

cold start-up or a motored engine condition). Solution of equations (3) and (4) yields the lubricant film thickness 

and the hydrodynamic load carrying capacity as: 

   ∫ ∫  
 

 

 

 
                        (6) 

 

A fully flooded inlet is assumed, as the surface of the floating plate is provided with a layer of free surface film 

ahead of the sliding contact. However, low sliding speed is often insufficient to entrain a volume of lubricant into 

the contact. Thus, a mixed regime of lubrication is anticipated. The outlet boundary conditions are those of Swift-

Stieber with assumed atmospheric vaporisation pressure at the film rupture point .The inlet pressure at the front 

face of the strip is set to atmospheric pressure. Only a segment of the whole strip width in the y-direction (direction 

of lubricant side-leakage) was included in the model to keep the computational time to an acceptable level. 

Therefore, symmetric boundary conditions in the transverse direction are used. Thus, the boundary conditions are: 
                                             (7) 

        
  

  
                                  (8) 

  

  
|
(   )

 
  

  
|
(   )

                     (9) 

 

During reciprocating motion some degree of asperity interactions is expected. The mixed and boundary regimes of 

lubrication are accounted for using the Greenwood and Tripp [3] asperity contact model. The load carried by the 

asperities is given by equation (10), where    is the composite Young’s modulus of elasticity of the contacting 

surfaces, and     and   ⁄  are the roughness parameters. 

   
  √ 

  
 (   ) √

 

 
     

 ⁄
( )                        (10) 

 

and the statistical function takes the following form 

  ( )  
 

  
 ∫ (   )    ( 

  

 
)

 

 
                   (11) 

 

The sum of the viscous and asperity loads gives the load carrying capacity as: 
                                         (12) 

 

The convergence criterion for the numerical analysis is the load balance; between the applied load and that carried 

by the contact as:  
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                             (13) 

 

where, F is the applied load and ε is the error tolerance. 
 

An iterative procedure is followed, if the criterion is not met, by altering the initially guessed value of   . The 

generated viscous friction is given as:  
 

    ∫ ∫  
 

 

 

 
                                     (14) 

where, assuming no side leakage: 
 

   
 

 

  

  
 

 (     )

 
                        (15) 

 

Boundary friction contribution comprises two parts, as it is assumed that a thin layer of absorbed lubricant resides 

on the asperity summits and acts in accordance with the non-Newtonian Eyring shear stress   . There is also  

boundary shear strength of cold-welded asperity pairs on the contiguous counterfaces;   , which for a ferrous oxide 

layer has the value of 0.17 [15]. 
                                  (16) 
 

The asperity contact area    for typical asperity geometry and assumed Gaussian distribution can be obtained from 

equation (17) considering the general form of statistical function,   ( ) as [3,15]: 
      (   )    ( )                          (17) 

 

The total friction becomes: 
                                          (18) 

4. RESULTS  

The input data for the numerical model is provided in Table 2. The measured sliding speed has a mean value of 

24.42 mm/s (±0.06 mm/s). 
Table 2. Parameters used in numerical analysis 

Parameter Value 

Lubricant viscosity (Pa.s) 0.1583  

Ring face width (mm) 1 

Ring surface roughness 

(µm) Ra, Rq 

 
             0.511, 0.709 

Liner surface roughness 

(µm) Ra, Rq 
 

             0.172, 0.105 

Stroke length (mm) 80 (max) 

Applied load (N)  

Ring length (mm) 

0.8 

32 

 

The generated pressure distribution is shown in Figure 4. The pressure profile has two distinct features. There is a 

wedge effect and a trough at the inlet to each chevron facing lubricant entrainment. These act as reservoirs, thus 

causing low pressure regions. For the chevrons facing opposite to the direction of entrainment there is sharp rise in 

generated pressures (pressure perturbation). These pressure perturbations are reminiscent of micro-

elastohydrodynamic effect. Pressure fluctuations enhance load carrying capacity of the contact relative to the 

nominally smooth surface.  
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Figure 4: Viscous pressure distribution 

 

 

 
 

Figure 5: Predicted and measured reduced friction with chevron textures 

 

Therefore, as the strip traverses the introduced chevrons an increase in the load carrying capacity is predicted. 

Hence, at the constant applied load, this effect translates to increased film thickness, hence reduced friction as 

evident from both experimental measurement and numerical predictions (figure 5). This figure provides percentage 

friction reduction in the textured region with respect to the untreated part of the plate surface. Good qualitative and 

quantitative comparison is noted between measurements and predictions.  

5. ENGINE SIMULATIONS  

The numerical model is now used to consider the conditions found in a fired engine. A Honda CRF 450R single 

cylinder 4-stroke motocross motorbike is modeled. The pertinent data is provided figure 6. Further details about 

the engine specifications are given in [2]. 
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Figure 6: Input data from the Honda CRF 450R engine to the numerical  

 

Similar surface texture designs as those presented in section 2.1 are modelled on the liner 10 degrees crank angle 

position on the either sides of top dead centre reversal during the transition between the compression to power 

strokes. During this region, and especially at the beginning of the power stroke when high pressures combine with 

slow sliding speeds highest frictional losses usually occur. 

 
Figure 7: Improvement in friction produced by the surface textures at the end of the compression and beginning of power stroke 

 

The results shown in figure 7 show the reduction in friction with surface texturing included in the analysis relative 

to untextured surfaces with the same assumed surface topography. The surface textures produce micro- 

hydrodynamic pressure perturbations as described in the previous section and also reduce the asperity interactions 

between the contiguous surfaces due to a reduction in contacting area. 
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Nomenclature 

A Apparent Contact Area 

Aa Asperity Contact Area 

B Ring Face Width 

E
’
 Effective Elastic modulus of the contacting 

pair 

fb Boundary Friction 

ft Total Friction 

fv Viscous Friction 

H Film Thickness 

h0 Minimum Film thickness 

hs Profile of the ring face width 

ht Surface Feature film thickness 

hd Chevron Height 

l Ring Length 

lc Chevron thickness 

p Pressure 

pc Cavitation Pressure 

pin Inlet Pressure 

q,r,f,g,s Ring profile co-efficients 

t Time 

U1, U2 Ring, liner speed of entraining motion 

V1,V2 Ring, liner speed in the  axial direction 

Wa Load share of asperities 

Wh Hydrodynamic Load share 

WT Total load carried 

x Direction along the ring face(in the direction 

of entraining motion) 

xc Film rupture boundary 

xm Centre or the chevron at each cross section 

y Direction axially along the ring 

 

Greek Symbols 

 

η Lubricant dynamic viscosity  

κ Average Asperity tip 

λ Stribeck oil film parameter  

ρ Lubricant Density 
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