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Abstract
The classical Artin–Whaples approximation theorem allows to simultaneously approximate
finitely many different elements of a field with respect to finitely many pairwise inequivalent
absolute values. Several variants and generalizations exist, for example for finitely many
(Krull) valuations, where one usually requires that these are independent, i.e. induce different
topologies on the field. Ribenboim proved a generalization for finitelymany valuations where
the condition of independence is relaxed for a natural compatibility condition, and Ershov
proved a statement about simultaneously approximating finitely many different elements
with respect to finitely many possibly infinite sets of pairwise independent valuations. We
prove approximation theorems for infinite sets of valuations and orderings without requiring
pairwise independence.

1 Introduction

We fix a field K , elements x1, . . . , xn ∈ K and z1, . . . , zn ∈ K× and start by recalling the
classical approximation theorem for absolute values:

Theorem 1.1 (Artin–Whaples 19451) Let |.|1, . . . , |.|n be nontrivial absolute values on K .

(I) Assume that |.|1, . . . , |.|n are pairwise inequivalent.
Then there exists x ∈ K with

|x − xi |i < |zi |i for i = 1, . . . , n.

Since the non-archimedean absolute values correspond to Krull valuations of rank 1, the
following theorem is a generalization in the non-archimedean case:

1 Published in [3]. See also the historical remarks in [33, §4.2.1]. See also [22, XII.1.2], [10, 1.1.3].
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Theorem 1.2 (Bourbaki2) Let v1, . . . , vn be nontrivial valuations3 on K .

(I) Assume that v1, . . . , vn are pairwise independent.4

Then there exists x ∈ K with

vi (x − xi ) > vi (zi ) for i = 1, . . . , n.

In the literature, one can find three possible directions of generalizing Theorem 1.2.
Firstly, one can unify Theorems 1.1 and 1.2 to approximate with respect to finitely many

pairwise independent valuations and absolute values, like in [29, (4.2) Corollary] or [34,
Cor. 27.14]. This also includes approximation with respect to (not necessarily archimedean)
orderings on K , see Theorem 2.8 below.

Secondly, one can relax the condition of pairwise independence in Theorem 1.2, at the
expense of introducing a compatibility condition, as done by Nagata [24] and Ribenboim
[30].

Theorem 1.3 (Ribenboim 19575) Let v1, . . . , vn be valuations on K .

(I) Assume that v1, . . . , vn are pairwise incomparable and that ifw is a common coarsening
of vi and v j , i �= j , then w(xi − x j ) ≥ w(zi ) = w(z j ).

Then there exists x ∈ K with

vi (x − xi ) > vi (zi ) for i = 1, . . . , n.

Thirdly, and most pertinently for us, one can find approximation theorems for possibly
infinite subsets of the spaces Sord(K ) of orderings or Sval(K ) of valuations on K , under some
assumptions on (U)niformity, (T)opology and (I)ndependence (our presentation). The first
occurrence of such a ‘block approximation’ theorem seems to be [11, Theorem 1], but there,
like in many subsequent works including [7,14,16,18,27], these results apply only to very
special fields satisfying some geometric local-global principle, an example of which is the
following:

Theorem 1.4 (Prestel 19856) Let S1, . . . , Sn ⊆ Sord(K ) pairwise disjoint.

(T) Assume that each Si is compact in the Harrison topology on Sord(K ) (cf. Sect. 2).
(I) Assume that K is pseudo-real closed (PRC), that is, every geometrically integral K -

variety that has rational points over every real closure of K has a K -rational point.7

Then there exists x ∈ K with

(x − xi )
2 < z2i for all orderings in Si , for i = 1, . . . , n.

However, for valuations, Darnière [6] and Ershov [13] proved results for general fields.

Theorem 1.5 (Ershov 20018) Let S1, . . . , Sn ⊆ Sval(K ) pairwise disjoint.

2 This attribution is taken from [30]. See also [4, VI.7.2 Theorem 1], [9, 10.1.7], [10, 2.4.1].
3 The term valuation in this work always refers to Krull valuations, with value group written additively.
4 That is, they induce distinct topologies on K , or, equivalently, they have no nontrivial common coarsening.
5 This is a mild reformulation of [30, Théorème 5’], see also [31, p. 136 Théorème 3].
6 See [27, p. 354], also reproven in [16, Corollary 1.3].
7 The PRC property can indeed be seen as a very strong independence assumption, since it implies in particular
that distinct orderings on K induce distinct topologies, cf. [27, p. 353].
8 See discussion in Sect. 5.7 for how this follows from the results in [13].
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(U) Assume that there exists a common uniformizer π ∈ K of all v ∈ S1 ∪ · · · ∪ Sn.
(T) Assume that each Si is compact9 in the Zariski topology on Sval(K ) (cf. Sect. 2).
(I) Assume that the elements of S1 ∪ · · · ∪ Sn are pairwise independent.

Then there exists x ∈ K with

v(x − xi ) ≥ v(zi ) for all v ∈ Si , for i = 1, . . . , n.

The aim of this paper is to prove approximation theorems that generalize Theorem 1.2
in these directions simultaneously; they apply to infinite sets of valuations and orderings,
without assuming pairwise independence or the presence of a local-global principle. Our
main result in this direction is Theorem 4.7, which is in particular a common generalization
of Theorems 1.4 and 1.5. Instead of attempting to explain the technical assumptions of that
main theorem here, we now simply quote three instances of it:

Theorem 1.6 Let S1, . . . , Sn ⊆ Sval(K ) pairwise disjoint.

(U) Assume that there exists a common uniformizer π ∈ K of all v ∈ S1 ∪ · · · ∪ Sn.
(T) Assume that each Si is compact in the Zariski topology on Sval(K ).
(I) Assume that for any valuation w on K with a refinement in some Si and a refinement in

some S j , we have w(xi − x j ) ≥ w(zi ) = w(z j ).

Then there exists x ∈ K with

v(x − xi ) > v(zi ) for all v ∈ Si , for i = 1, . . . , n.

Theorem 1.7 Let S1, . . . , Sn ⊆ Sval(K ), not necessarily disjoint.

(U) Assume there exists a monic polynomial f ∈ K [X ] such that for every v ∈ S1∪· · ·∪ Sn,
f has coefficients in the valuation ring of v and the reduction of f has no zero in the
residue field of v.

(T) Assume that each Si is closed in the Hochster dual of the Zariski topology on Sval(K ).
(I) Assume that for any i , j and w ∈ Si ∩ S j , we have w(xi − x j ) ≥ w(zi ) = w(z j ).

Then there exists x ∈ K with

v(x − xi ) ≥ v(zi ) for all v ∈ Si , for i = 1, . . . , n.

Theorem 1.8 Let S1, . . . , Sn ⊆ Sord(K ) pairwise disjoint.

(T) Assume that each Si is compact in the Harrison topology on Sord(K ).
(I) Assume that ifw is a valuation on K whose valuation ringOw is convex both with respect

to an ordering in Si andwith respect to an ordering in S j , i �= j , then these two orderings
induce distinct orderings on the residue field of w, and w(xi − x j ) ≥ w(zi ) = w(z j ).

Then there exists x ∈ K with

(x − xi )
2 < z2i for all orderings in Si , for i = 1, . . . , n.

Note that condition 1.8(I) is in particular always satisfied when distinct orderings on K
induce distinct topologies, and so this in particular generalizes Theorem 1.4. In Remark 4.8,
we explain how to deduce Theorems 1.6, 1.7 and 1.8 from Theorem 4.7, which is proven in
Sects. 2–4.

9 We use “compact” to mean what other sources call “quasi-compact”, i.e. there is no implication of being a
Hausdorff space.
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In Sect. 5 we deduce from Theorem 4.7 some related results, namely value approximation
theorems and residue approximation theorems. In the literature such results are often needed
on the way to prove an approximation theorem, but we deduce them as corollaries of the main
theorem. We also discuss special cases and applications to p-valuations and the connection
to the strong approximation theorem in global fields.

In Sect. 6 we extend Theorem 4.7 even further by allowing finitely many exceptional
valuations or (possibly complex) absolute values forwhich condition (U)might in general not
be satisfiable, thus obtaining a result that in addition contains Theorem 1.1 and Theorem 1.3.

Finally, in Sect. 7 we use our approximation theorems to discuss a related problem, namely
approximation of the values of rational functions. The results of Sects. 5 and 7 are crucial
ingredients of our paper [1], and the results of Sect. 4 are used in [2].

2 The space of localities

We start by setting up the language unifying valuations and orderings in which wewill phrase
and prove the main theorem. For basics on valuations and orderings we refer to [10] and [9].

Let K be a field. We denote by B(K ) the set of subsets O ⊆ K that satisfy O · O ⊆ O
and O ∪ O−1 = K (where for X ⊆ K we write X−1 := {x−1 : 0 �= x ∈ X}).
Example 2.1 (1) K ∈ B(K )

(2) If |.| is an absolute value on K , then {x ∈ K : |x | ≤ 1} ∈ B(K ).
(3) If v is a valuation on K with valuation ring Ov , then Ov ∈ B(K ).
(4) If ≤ is an ordering on K , then {x ∈ K : −1 ≤ x ≤ 1} ∈ B(K ).

ForO ∈ B(K )wewriteO× = O∩O−1 andmO = O\O×. The following basic properties
are easily checked: 1 ∈ O, 0 ∈ mO ,OO = O,mOO = mO . For x ∈ K× we have x ∈ mO if
and only if x−1 /∈ O. The collection of sets xO, for x ∈ K×, is totally ordered by inclusion.

We equip B(K ) with the Zariski topology TZar with subbasis

{O ∈ B(K ) : x ∈ O}, x ∈ K .

The corresponding constructible topology Tcon by definition has subbasis

{O ∈ B(K ) : x ∈ O}, {O ∈ B(K ) : x /∈ O}, x ∈ K .

With the constructible topology, B(K ) is a closed subspace of the Stone space 2K as

B(K ) =
⋂

x,y∈K×
{O ⊆ K : 0 ∈ O ∧ (x ∈ O ∨ x−1 ∈ O) ∧ (xy ∈ O ∨ x /∈ O ∨ y /∈ O)},

so it is compact and T2. Noting also that the Zariski topology is T0, it follows from [19,
Proposition 7] that the Zariski topology is spectral, and it follows from [19, Proposition 8]
that the “Hochster dual” TZar∗ of the Zariski topology with subbasis 10

{O ∈ B(K ) : x ∈ mO}, x ∈ K ,

is spectral, see also [8, §1.4].

10 By definition, TZar∗ has as a basis for the closed sets the compact open sets in TZar, i.e. the finite unions of
finite intersections of sets of the form {O ∈ B(K ) : x ∈ O}, for x ∈ K . It follows that {O ∈ B(K ) : x ∈ O},
for x ∈ K , is a subbasis for the closed sets of TZar∗ . This is equivalent to the description given above.
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Remark 2.2 Consider the following properties of a subset X ⊆ B(K ):

(1) X is closed in TZar or in TZar∗
(2) X is closed in Tcon
(3) X is compact in Tcon
(4) X is compact in TZar and in TZar∗

Then

(1) ⇒ (2) ⇔ (3) ⇒ (4).

We denote by Sval(K ) the space of equivalence classes of valuations on K , by Sord(K )

the space of orderings on K , and by Sabs(K ) the space of equivalence classes of absolute
values of K . We write

S(K ) = Sval(K ) ∪ Sord(K ) ∪ Sabs(K )

for the union of these three spaces, but identify rank-1 valuations and archimedean orderings
with their associated absolute values. We call elements of S(K ) localities11 of K and denote
them by letters like v. In the case v ∈ Sval(K ), we denote by v also a fixed valuation in that
equivalence class, in the case v ∈ Sord(K ) we write ≤v for the corresponding order relation
on K , and in the case v ∈ Sabs(K ) we write |·|v for a fixed absolute value in that equivalence
class. As usual, we call an absolute value v ∈ Sabs(K ) complex if |.|v is neither ultrametric
nor induced by an archimedean ordering, i.e. if v ∈ Sabs(K )\(Sval(K ) ∪ Sord(K )).

For v ∈ S(K ) we write

Ov =

⎧
⎪⎨

⎪⎩

{x ∈ K : v(x) ≥ 0}, v ∈ Sval(K ),

{x ∈ K : −1 ≤v x ≤v 1}, v ∈ Sord(K ),

{x ∈ K : |x |v ≤ 1}, v ∈ Sabs(K )

and

mv =

⎧
⎪⎨

⎪⎩

{x ∈ K : v(x) > 0}, v ∈ Sval(K ),

{x ∈ K : −1 <v x <v 1}, v ∈ Sord(K ),

{x ∈ K : |x |v < 1}, v ∈ Sabs(K ).

Note that these definitions agree if v ∈ Sabs(K ) ∩ Sval(K ) or v ∈ Sabs(K ) ∩ Sord(K ). The
map v �→ Ov gives an embedding of S(K ) into B(K ), and we identify S(K ) with its image.
Under this identification, the trivial valuation vtrivial is identified with K ∈ B(K ), and for
any locality v we have mv = mOv .

Remark 2.3 On Sval(K ), the Zariski topology induces the usual Zariski topology with sub-
basis

{v ∈ Sval(K ) : v(x) ≥ 0}, x ∈ K ,

and the constructible topology induces the usual constructible (or patch) topology with sub-
basis

{v ∈ Sval(K ) : v(x) ≥ 0}, {v ∈ Sval(K ) : v(x) > 0}, x ∈ K .

11 We deviate slightly from the terminology of [9, Chapter 7], where only elements of Sval(K )∪Sord(K ) are
called localities.
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Both the Zariski topology and the constructible topology induce on Sord(K ) the usual
Harrison-topology (see for example [21, VIII, §6]) with subbasis

{v ∈ Sord(K ) : x ≥v 0}, x ∈ K ,

since for example x �→ 1−x
1+x exchanges the intervals (−1, 1] and [0,∞). In particular, Sval(K )

and Sord(K ) are compact and therefore closed in S(K ) in the constructible topology, while
Sabs(K ) is in general not.

Example 2.4 For π ∈ K× and e ∈ N we denote by Seπ (K ) ⊆ Sval(K ) the set of valuations v

on K with discrete value group �v (say Z is a convex subgroup of �v) and 0 < v(π) ≤ e.
Then the three topologies TZar, TZar∗ , and Tcon induce the same topology on Seπ (K ). To see
this, note that v(x) ≥ 0 ⇔ v(xeπ) > 0, and v(x) > 0 ⇔ v(xeπ−1) ≥ 0, for all v ∈ Seπ (K )

and all x ∈ K×. This applies in particular to sets S ⊆ S1π (K ) of valuations with a common
uniformizer.

Moreover, Seπ (K ) is Tcon-closed in Sval(K ), since v ∈ Sval(K ) is in Seπ (K ) if and only if
v(π) > 0 and for all x ∈ K× we have either v(x−1) ≥ 0 or v(xeπ−1) ≥ 0. Since Sval(K )

is compact in the constructible topology, it follows that Seπ (K ) is also compact.

Any locality v ∈ S(K ) induces on K a field topology, which we call the v-topology,
defined by taking {zmv : z ∈ K×} as a basis for the filter of neighbourhoods of 0. The sets
Bv(x, z) := x + zmv with x ∈ K , z ∈ K× form a basis for this topology.

IfOv ⊆ Ow , then v is a refinement of w and w is a coarsening of v. This defines a partial
order on S(K ), and v and w are incomparable if they are incomparable in this partial order.

Remark 2.5 If v,w are valuations then this terminology is standard; whereas if v is an order-
ing, then it has no proper refinement, and a valuation w is a coarsening of v if and only if
Ow is convex with respect to ≤v . If v ∈ Sabs(K )\Sval(K ), i.e. v is an archimedean absolute
value (real or complex), then v has no proper refinement, and its only proper coarsening is the
trivial valuation, so in particular v is incomparable to any other nontrivial element of S(K ).

Remark 2.6 Note that by definition v refines w if and only if v is in the Zariski closure of
{w}, which is the case if and only if w is in the TZar∗ -closure of {v}. In particular, a subspace
of S(K ) satisfies the T1 separation axiom with respect to either TZar or TZar∗ if and only if
its elements are pairwise incomparable.

For every v and w in S(K ) there exists a finest common coarsening v ∨ w in S(K ). If
w is a valuation coarsening v, then v induces a locality v̄ ∈ S(Kw), where Kw denotes the
residue field of w. Moreover, either v and v̄ are both valuations, or both orderings, or both
complex absolute values (and w is trivial in this case).

Two localities v,w ∈ S(K ) are independent if they induce distinct topologies on K . If
both v and w are nontrivial, this is the case if and only if v ∨ w is the trivial valuation.
Dependence of localities is an equivalence relation on S(K ). It follows from the fact that the
set of coarsenings of a given locality is totally ordered that for any finite number of pairwise
dependent nontrivial localities there is another nontrivial locality which is a coarsening of
all of them.

We call v and w strongly incomparable if v and w are incomparable and induce distinct
(and then automatically independent) localities on the residue field of their finest common
coarsening v ∨ w. Two sets S1, S2 ⊆ S(K ) are called incomparable (respectively strongly
incomparable, or independent) if any element of S1 is incomparable (respectively strongly
incomparable or independent) to/from any element of S2.
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Remark 2.7 Two non-trivial independent localities are strongly incomparable. If two locali-
ties v,w are not both orderings, then they are strongly incomparable if and only if they are
incomparable. The possible failure of strong incomparability for incomparable orderings is
described by the Baer–Krull theorem [10, Theorem 2.2.5].

We have the following approximation theorem for pairwise independent localities, gen-
eralizing Theorem 1.2.

Theorem 2.8 Let v1, . . . , vn ∈ S(K ) be all nontrivial, let x1, . . . , xn ∈ K and z1, . . . , zn ∈
K×.

(I) Assume that v1, . . . , vn are pairwise independent.

Then there exists x ∈ K with

x − xi ∈ zimvi for i = 1, . . . , n.

Proof. If all vi are in Sval(K ) ∪ Sabs(K ), then this is [29, Corollary 4.2]. For any non-
archimedean ordering vi , consider its finest proper coarsening ṽi , a nontrivial valuation.
Since zimṽi ⊆ zimvi , we can replace vi by ṽi and observe that the pairwise independence is
preserved, thereby reducing to the situation without non-archimedean orderings.

The following is a generalization of a special case of Theorem 1.3.

Proposition 2.9 Let v1, v2 ∈ S(K ) and let z1, z2 ∈ K× such that for the finest common
coarsening w = v1 ∨ v2 we have z1Ow = z2Ow .

(1) If v1 and v2 are strongly incomparable, then there exists z ∈ K× with z ∈ z1mv1 and
z−1 ∈ z−1

2 mv2 .
(2) If v1 and v2 are comparable or strongly incomparable (e.g. at least one of them is a

valuation), then there exists z ∈ K× with z ∈ z1Ov1 and z−1 ∈ z−1
2 Ov2 .

Proof. Assume without loss of generality that z1 = 1. Note that then in particular z1, z2 ∈
O×

w .
In case (1), w is a valuation and v1 and v2 induce independent v̄1, v̄2 ∈ S(Kw). The

nonempty set {z̄ ∈ Kw× : z̄−1 ∈ z̄−1
2 mv̄2} is open with respect to the v̄2-topology on Kw

and hence contains a ball x̄+ z̄′2mv̄2 with x̄, z̄
′
2 ∈ Kw×. By Theorem 2.8 there exists z̄ ∈ Kw

with z̄ ∈ z̄1mv̄1 and z̄ ∈ x̄+ z̄′2mv̄2 , so z̄
−1 ∈ z̄−1

2 mv̄2 . If z ∈ Ow is any lift of z̄, then z ∈ z1mv1

and z−1 ∈ z−1
2 mv2 .

In case (2), if v1 and v2 are comparable, say Ov1 ⊆ Ov2 , then w = v2 and thus z1Ov2 =
z2Ov2 , so z = z1 satisfies the claim in this case.Otherwisev1 andv2 are strongly incomparable
and the claim then follows from the stronger claim (1).

Remark 2.10 (Shifting and scaling) The assumption that z1 = 1 in the preceding proof is an
example of two general simplification principles which will be used in our proofs in various
places. Consider an approximation problem on two sets of localities S1, S2, where we wish
to find an element x ∈ K such that x − x1 ∈ z1Ov for all v ∈ S1, and x − x2 ∈ z2Ov

for all v ∈ S2, for some given elements x1, x2 ∈ K and z1, z2 ∈ K×. If x1 = x2, then we
have the trivial solution x = x1, so we may assume x1 �= x2. For any constant c ∈ K , if
we have a solution x ′ for the modified approximation problem determined by x ′

1 = x1 − c
and x ′

2 = x2 − c, then x = x ′ + c is a solution for the original approximation problem. This
shifting of the problem can for instance be used to assume x1 = 0 without loss of generality.
Similarly, for any constant d ∈ K×, if there is a solution x ′ to the modified approximation
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problem given by x ′
1 = dx1, x ′

2 = dx2, z′1 = dz1, z′2 = dz2, then x = d−1x ′ is a solution
to the original approximation problem. This scaling, together with previous shifting, can be
used to reduce to the case x1 = 0, x2 = 1; alternatively (but usually not additionally), we
can suppose that z1 = 1, as in the proof of Proposition 2.9. The compatibility conditions (I)
we impose in our theorems, see for instance Theorem 1.6(I), are all unaffected by scaling
and shifting.

3 A uniformity condition on a set of localities

We now describe the general (U) condition that we use in the main theorem and deduce some
first consequences. Fix a field K and let S ⊆ S(K ). Consider the following assumption on S
and an element t ∈ K×.
Assumption 3.1 There exists a polynomial f ∈ K [X ] of degree d ≥ 2 with leading coeffi-
cient ad such that the following conditions are satisfied for all v ∈ S:

(i) For every x ∈ Ov we have f (x) ∈ Ov .
(ii) For every x ∈ Ov we have f (x) /∈ tmv .
(iii) For every x /∈ Ov we have f (x) ∈ xd(Ov\tmv) ∩ (ad xd + xd−1Ov).
(iv) We have Ov + Ov ⊆ t−1Ov .

Remark 3.2 Note that conditions (i, ii) as well as (iii) imply that t ∈ Ov and therefore
condition (iv) is trivial if v is a valuation. Moreover, conditions (ii, iii) give that f has no zero
in K if S is nonempty. If v is a complex absolute value, then K is dense in its completion
K̂ ∼= C; since f has a zero in K̂ , conditions (ii, iii) will never both be satisfied in that case.
We will therefore mostly ignore complex absolute values until Sect. 6.

Condition (iii) implies that ad ∈ Ov : If v is a valuation and ad /∈ Ov , then for any x /∈ Ov

we have xdOv ∩ (ad xd + xd−1Ov) = ∅, since a member of the intersection would have to
have valuation both equal to v(ad xd) and at least v(xd). If v is an ordering (and very similar
if v is a complex absolute value) and ad /∈ Ov , then for x >v max(1, (|ad | − 1)−1) we have
xdOv + xd−1Ov ⊆ xd(1+ x−1)Ov , and all elements of this set are of smaller absolute value
than ad xd , so again xdOv ∩ (ad xd + xd−1Ov) = ∅.
Remark 3.3 Note that Assumption 3.1 remains true when S is enlarged by adding the coars-
enings of all localities in S; we may thus assume that S is closed under coarsenings. The
assumption also remains true when passing to a subset of S.

Remark 3.4 In the situation of Assumption 3.1, if t ∈ O×
v for some v ∈ S, then conditions

(i, ii) imply that v is necessarily a valuation: If v is an ordering, then Ov\tmv = {1,−1},
and the polynomial f cannot map the infinite set Ov into a two-element set as required by
(i, ii); if v is a complex absolute value, then we may pass to the completion K̂ ∼= C without
affecting the truth of (i, ii), but in C, the set Ov\tmv is the complex unit circle under the
assumption t ∈ O×

v , and the non-constant polynomial f cannot map the closed unit disc Ov

into the unit circle.
In particular, if t = 1, then S consists only of valuations.

Example 3.5 Assumption 3.1 is satisfied for the following sets S ⊆ S(K ) and elements
t ∈ K×:
(1) If S ⊆ Sval(K ) and there exists a monic f ∈ K [X ] such that for all valuations v ∈ S

the coefficients of f are in the valuation ring of v and the reduction of f does not have
a zero in the residue field of v, then the assumption is satisfied with t = 1.
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(2) If S ⊆ S1π (K ) is a set of valuations with a common uniformizer π ∈ K× (cf. Exam-
ple 2.4), then the assumption is satisfied with t = π , as we may consider f = X2 − π .
Slightly more generally, assume that S ⊆ Seπ (K ), for some π ∈ K× and e > 0 (also cf.
Example 2.4). Then the assumption is satisfied with t = π , by choosing f = Xe+1 −π .

(3) If S ⊆ Sord(K ) then the assumption is satisfied with t = 1
2 , by choosing f = 1

2 (X
2+1).

Example 3.6 Assume that K is of characteristic zero. For a prime number p and e ∈ N, we
note that Sep(K ) contains all p-valuations in the sense of [28] with p-ramification index at
most e (and arbitrary residue degree). Then for every finite set of prime numbers P with
product q and every e ∈ N, the space

S = Sord(K ) ∪
⋃

p∈P
Sep(K )

satisfies Assumption 3.1 with t = q
2q+1 , as is seen by taking f = q+1

2q+1 (X
2e + q

q+1 ). In
particular, in the language of [15], if S0 is a finite set of primes of a number field K0 and K
is an extension of K0, then for any type τ ∈ N

2 the set Sτ
S0

(K ) and this choice of t satisfy
Assumption 3.1.

Example 3.7 As a different criterion, let S ⊆ Sord(K ), f = ∑d
i=0 ai X

i ∈ Q[X ] and t ∈ Q
×.

If

d∑

i=0

|ai | ≤ 1, |t | +
d−1∑

i=0

|ai | ≤ |ad |, and |t | ≤ 1

2
,

then conditions 3.1(i, iii, iv) are satisfied for all v ∈ S. If additionally | f (x)| ≥ |t | for every
x ∈ R, then the same holds for every real-closed field and therefore for every ordered field,
so condition 3.1(ii) is also satisfied for all v ∈ S.

Example 3.8 Let g ∈ Z[X ] be a monic polynomial with no real zero, so in particular g as a
function R → R is bounded away from zero. Write g = ∑d

i=0 ai X
i . For a small rational

number b > 0, consider the polynomial

f = bd+1g(b−1X) = b ·
d∑

i=0

aib
d−i X i ∈ Q[X ]

and t = bd+2. For sufficiently small b, this clearly satisfies all the conditions from Exam-
ple 3.7. We may in fact choose b = 1/l for some large prime number l.

Now let K be anyfield of characteristic not l, and consider f and t as above. In this situation
Assumption 3.1 is satisfied with S = Sord(K )∪ S′ and t as above, where S′ ⊆ Sval(K ) is the
set of valuations on K with residue characteristic not l in whose residue field the reduction of
g does not have a zero: For any valuation v ∈ S′, the polynomial f has all coefficients inOv ,
its reduction has no zero over the residue field since the reduction of g does not, and t ∈ O×

v .
For orderings v ∈ Sord(K ), we have forced the assumption to be satisfied by construction.

Note that by the ChebotarevDensity Theorem (see [25, VII, (13.4)]), the set S′ will include
all valuations on K with residue field Fp for some positive density of prime numbers p. By
choosing g suitably, e.g. as the minimal polynomial of an integral primitive element of a
totally imaginary Galois extension L/Q, one can in fact achieve densities arbitrarily close to
1, because the reduction of the polynomial g has no root in Fp for all prime numbers p such
that p is neither completely split nor ramified in L/Q, cf. [25, I, (8.3)].
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Proposition 3.9 Let t and f be given. There exists a function φ : K× × K× −→ K× such
that for all v ∈ S(K ) for which conditions 3.1(i, ii, iii) are satisfied, and for all x, y ∈ K×,
the following hold:

(1) If x ∈ tOv and y ∈ tOv , then φ(x, y) ∈ xOv ∪ yOv .
(2) If x−1 ∈ Ov or y−1 ∈ Ov , then φ(x, y)−1 ∈ x−1Ov ∩ y−1Ov .

Proof. Let φ be the homogenisation of f t−1, so if f is of degree d ≥ 2 then φ is given by

φ(X , Y ) = f (XY−1)Ydt−1 ∈ K [X , Y ].
Let v ∈ S(K ) satisfy conditions 3.1(i, ii, iii), and write O = Ov , m = mv . Recall that t ∈ O
by Remark 3.2.

To prove (1), let x, y ∈ tO. Then xd t−1 ∈ xO and yd t−1 ∈ yO. If xy−1 ∈ O, then
f (xy−1) ∈ O, by 3.1(i), hence

φ(x, y) = f (xy−1)yd t−1 ∈ yO.

If instead xy−1 /∈ O, then f (xy−1) ∈ (xy−1)dO by 3.1(iii), hence

φ(x, y) = f (xy−1)yd t−1 ∈ (xy−1)d yd t−1O = xd t−1O ⊆ xO,

as required.
To prove (2), our assumption is that either x−1 ∈ O or y−1 ∈ O. If xy−1 ∈ O, then

y−1O ⊆ x−1O, so the assumption implies that y−1 ∈ O. From 3.1(ii) we have f (xy−1) /∈
tm, so f (xy−1)−1 ∈ t−1O. Thus

φ(x, y)−1 = f (xy−1)−1y−d t ∈ y−dO ⊆ y−1O = x−1O ∩ y−1O.

On the other hand, if xy−1 /∈ O, then x−1y ∈ O and x−1O ⊆ y−1O, and the assumption
implies that x−1 ∈ O. By 3.1(iii), f (xy−1) /∈ (xy−1)d tm, so f (xy−1)−1 ∈ (x−1y)d t−1O.
Thus

φ(x, y)−1 = f (xy−1)−1y−d t ∈ (x−1y)d t−1y−d tO = x−dO ⊆ x−1O = x−1O ∩ y−1O.

Corollary 3.10 Let t and f be given, and let φ be as in Proposition 3.9. Let v ∈ S(K ) satisfy
conditions 3.1(i, ii, iii). Then for x1, . . . , xn ∈ K×, the non-zero element

φ(x1, . . . , xn) :=
{
x1, n = 1
φ(x1, φ(x2, . . . ) · · · ), n > 1

satisfies:

(1) If xi ∈ tOv for all i , then φ(x1, . . . , xn) ∈ ⋃n
i=1 xiOv .

(2) If x−1
i ∈ Ov for some i, then φ(x1, . . . , xn)−1 ∈ ⋂n

i=1 x
−1
i Ov .

Proof. For (1), induction using Proposition 3.9(1) firstly shows that for any i ≥ 1, the element
φ(xi , . . . , xn) is in tOv . Secondly, using Proposition 3.9(1) again, we obtain

φ(x1, . . . , xn) = φ(x1, φ(x2, . . . , xn)) ∈ x1Ov ∪ φ(x2, . . . , xn)Ov,

so using induction once more gives φ(x1, . . . , xn) ∈ ⋃
i xiOv as desired.

For (2) note that it is sufficient to prove that φ(x1, . . . , xn)−1 ∈ x−1
i Ov for those i

with x−1
i ∈ Ov , since for x−1

i ∈ Ov and x−1
i ′ /∈ Ov we have x−1

i Ov ⊆ x−1
i ′ Ov . For

any such i , we have φ(xi , . . . , xn)−1 ∈ x−1
i Ov by Proposition 3.9(2), and then induction

shows φ(x j , . . . , xn)−1 ∈ x−1
i Ov for all j ≤ i , so we obtain the claim φ(x1, . . . , xn)−1 ∈

x−1
i Ov .
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Remark 3.11 Only for use in Sect. 6 we note that the proof of part (1) of Proposition 3.9, and
consequently also of part (1) of Corollary 3.10, requires only conditions 3.1(i) and 3.1(iii) to
hold.

Remark 3.12 A functionφ satisfying the conditions fromProposition 3.9 can also be obtained
using assumptions different from our Assumption 3.1. For instance, if one works with a set
S consisting exclusively of valuations such that the holomorphy ring R = ⋂

v∈S Ov is a
Bézout ring with quotient field K , then for any x, y ∈ K× we can find z ∈ K× with
v(z) = min(v(x), v(y)) for all v ∈ S: this is exactly the statement that the fractional ideal
x R+ yR is principal with generator z. This z will satisfy the properties desired from φ(x, y)
in Proposition 3.9.

As a slightly more general condition, it is sufficient for R to be a Prüfer ring such that there
exists a natural number n for which the n-th power of any two-generated fractional ideal of
R is principal: In this situation, for any x, y ∈ K×, we can find a generator z of the fractional
ideal (x R + yR)n , and this generator z will satisfy v(z) = nmin(v(x), v(y)) for all v ∈ S,
which is as desired for φ(x, y). This latter condition on R is established in [32, Theorem 1]
in the situation of Example 3.5(1), using effectively our construction of the function φ.

Ring-theoretic conditions on the holomorphy ring are in the style of the (U) conditions of
results of Ershov, see Sect. 5.7. Our Assumption 3.1 is more ad hoc, but has the advantage
that it can also apply to orderings.

4 The approximation theorem

Wewant to prove two approximation theorems: onewith a conclusion of the type x−xi ∈ zim
and onewith the weaker conclusion x−xi ∈ ziO. Neither of these theoremswill easily imply
the other, but the proofs are very similar, so we state and prove our lemmas simultaneously
in the two situations, called “Situation m” and “Situation O”.

Let S ⊆ S(K ). For v ∈ S(K ), we write Bv = mv in Situation m, and Bv = Ov in
SituationO.Moreover, in Situationm, we endowS(K )with the topologyTZar∗ , in SituationO
with theZariski topologyTZar. In thisway, in either case sets of the form {v ∈ S(K ) : x ∈ Bv},
for x ∈ K , are open.

Let us also fix t ∈ K×. We call two localities v,w t-independent if t ∈ O×
v∨w and addi-

tionally v,w are strongly incomparable if they are both not valuations. For any t-independent
localities v and w, the finest common coarsening v ∨ w is always a valuation; in particular
v �= w unless v = w is a valuation. Note that any two independent localities are always t-
independent, and any two valuations (not necessarily distinct) are 1-independent.We call two
sets S1, S2 of localities t-independent if any element of S1 is t-independent to any element
of S2.

Example 4.1 Let t = π ∈ K and e ∈ N. Valuations v,w ∈ Seπ (K ) (cf. Example 2.4), are
t-independent if and only if they are distinct.

Remark 4.2 The definition of t-independence is made with a view towards applying Proposi-
tion 2.9 later. Two t-independent localities are either comparable or strongly incomparable,
so part (2) of that proposition may be applied. If the two localities are t-independent and
incomparable, then they are necessarily strongly incomparable, so Proposition 2.9(1) may
be applied.

For the rest of this section we assume that S and t satisfy Assumption 3.1. Indeed, we fix
a polynomial f ∈ K [X ] as described there.
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We now start the proof of the approximation theorem by constructing elements that are
‘uniformly small’ resp. ‘uniformly big’.

Lemma 4.3 Let S1, S2 ⊆ S be nonempty and compact in the given topology. Assume they
are t-independent, and in Situation m furthermore incomparable. Let z, z′ ∈ K× such that
w(z) ≤ 0 and w(z′) ≤ 0 whenever w is a valuation on K which has a refinement in S1 and
a refinement in S2. Then there exists b ∈ K× such that b ∈ tBv ∩ t zBv for all v ∈ S1, and
b−1 ∈ tBv ∩ t z′Bv for all v ∈ S2.

Proof. For fixed v ∈ S1 and v′ ∈ S2, denotew = v∨v′. This is a valuation by the assumption
of t-independence, and so w(z), w(z′) ≤ 0, and w(t) = 0.

With the aim of applying Proposition 2.9, we define two elements zv, z′v′ as modifications
of z, z′, as follows. If z ∈ Ov let zv = t z, otherwise let zv = t . If z′ ∈ Ov′ let z′

v′ = (t z′)−1,
otherwise let z′

v′ = t−1. Note that w(zv) = w(z′
v′) = 0. Therefore zvOw = Ow = z′

v′Ow ,
so the assumption of Proposition 2.9 is satisfied; we also keep Remark 4.2 in mind for the
hypotheses on v and w.

In Situationmwe have that v and v′ are strongly incomparable and can apply Proposition
2.9(1) to get y ∈ K× with y ∈ zvmv = zvBv and y−1 ∈ z′−1

v′ mv′ = z′−1
v′ Bv′ ; In Situation

O we can apply Proposition 2.9(2) to get y ∈ K× with y ∈ zvOv = zvBv and y−1 ∈
z′−1
v′ Ov′ = z′−1

v′ Bv′ . Thus, setting bvv′ = y, we get in both situations that

(1) bvv′ ∈ zvBv = tBv ∩ t zBv and
(2) b−1

vv′ ∈ z′−1
v′ Bv′ = tBv′ ∩ t z′Bv′ .

For every x ∈ K×, the set

U (2)
x = {u ∈ S : x−1 ∈ tBu ∩ t z′Bu} = {u ∈ S : (xt)−1 ∈ Bu} ∩ {u ∈ S : (xtz′)−1 ∈ Bu}

is open in the given topology. For each v ∈ S1, the family {U (2)
bvv′ : v′ ∈ S2} is an open

covering of S2, by (2). By compactness of S2, there are finitely many v′
1, . . . , v

′
m ∈ S2 such

that S2 ⊆ ⋃m
i=1U

(2)
bvv′

i

. Let bv = φ(bvv′
1
, . . . , bvv′

m
), where φ is as in Corollary 3.10. For each

i , by (1), we have bvv′
i
∈ tBv ∩ t zBv ⊆ tOv , and so Corollary 3.10(1) gives that

(1′) bv ∈ ⋃m
i=1 bvv′

i
Ov ⊆ tBv ∩ t zBv .

On the other hand, for each v′ ∈ S2, there is an i with v′ ∈ U (2)
bvv′

i

, i.e. b−1
vv′

i
∈ tBv′ ∩ t z′Bv′ ⊆

Ov′ , and so Corollary 3.10(2) gives that

(2′) b−1
v ∈ ⋂m

i=1 b
−1
vv′

i
Ov′ ⊆ tBv′ ∩ t z′Bv′ .

Similarly, for every x ∈ K , the set

U (1)
x = {u ∈ S : x ∈ tBu ∩ t zBu}

is open, and the family {U (1)
bv

: v ∈ S1} is an open covering of S1, by (1′). By com-

pactness of S1, there exist finitely many v1, . . . , vk ∈ S1 such that S1 ⊆ ⋃k
i=1U

(1)
bvi

. Let

b = φ(b−1
v1

, . . . , b−1
vk

)−1.

For each v ∈ S1, there is an i with v ∈ U (1)
bvi

, i.e. (b−1
vi

)−1 = bvi ∈ tBv ∩ t zBv ⊆ Ov and

so Corollary 3.10(2) gives that

(1′′) b ∈ ⋂k
i=1 bviOv ⊆ tBv ∩ t zBv .
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Finally, for each v′ ∈ S2 and each i , by (2′), we have that b−1
vi

∈ tBv′ ∩ t z′Bv′ ⊆ tOv′ , and
so Corollary 3.10(1) gives that

(2′′) b−1 ∈ ⋃k
i=1 b

−1
vi

Ov′ ⊆ tBv′ ∩ t z′Bv′ ,

as required.

Lemma 4.4 Let d be the degree of f and ad its leading coefficient. Let v ∈ S, z ∈ K× and
b ∈ K×. Then the element x = adb−d f (b−1)−1 satisfies

(1) x − 1 ∈ zBv if b ∈ tBv ∩ t zBv , and
(2) x ∈ zBv if b−1 ∈ tBv ∩ t zBv .

Proof. Recall that t ∈ Ov and ad ∈ Ov (Remark 3.2).
Proof of (1): Assume that b ∈ tBv ∩ t zBv . If b ∈ mv (which is the case if t ∈ mv ,

z ∈ mv , orBv = mv), then bd f (b−1) ∈ (Ov\tmv) ∩ (ad + bOv) by 3.1(iii), so in particular
ad − bd f (b−1) ∈ bOv and (bd f (b−1))−1 ∈ t−1Ov . Therefore,

x − 1 = ad − bd f (b−1)

bd f (b−1)
∈ bOv t

−1Ov = bt−1Ov ⊆ zBv

as desired. If b /∈ mv , then Bv = Ov , t ∈ O×
v and z−1 ∈ Ov . Combining b ∈ tBv = Ov

and b−1 ∈ Ov we then get b ∈ O×
v . Therefore, b

d f (b−1) ∈ Ov\tmv = O×
v by 3.1(i, ii), and

therefore x ∈ Ov . Since t ∈ O×
v implies that v is a valuation (Remark 3.4), we conclude that

x − 1 ∈ Ov ⊆ zOv = zBv.

Proof of (2): Now assume that b−1 ∈ tBv ∩ t zBv . We have f (b−1) /∈ tmv by 3.1(ii), so

x ∈ adb
−d t−1Ov ⊆ b−d+1Bv ⊆ zBv.

Remark 4.5 Again only for use in Sect. 6 we point out that the proof of Lemma 4.4(1) in
Situationm requires only 3.1(iii) to hold for v, t and f , and not all the other conditions from
Assumption 3.1.

Lemma 4.6 Let S1, . . . , Sn ⊆ S be nonempty and compact in the given topology. Assume
they are pairwise t-independent, and in Situationm furthermore pairwise incomparable. Let
x ′, x ′′ ∈ K, z1, . . . , zn ∈ K× such that for any valuation w on K which has a refinement in
Si and a refinement in S j , i �= j , we have w(zi ) = w(z j ), and furthermore for any valuation
w with a refinement in S1 and a refinement in Si , i �= 1, we have w(x ′ − x ′′) ≥ w(z1). Then
there exists x ∈ K with x − x ′ ∈ z1Bv for each v ∈ S1 and x − x ′′ ∈ ziBv for each v ∈ Si ,
i �= 1.

Proof. If x ′ = x ′′, we may take x = x ′, so assume this is not the case. By shifting and scaling
as in Remark 2.10, we may assume that x ′′ = 0 and x ′ = 1. (Observe that all the hypotheses
and the claim are invariant under shifting and scaling.) In this situation, the compatibility
hypothesis implies that w(z1) = w(zi ) ≤ 0 for every w with a refinement in S1 and a
refinement in Si , i �= 1.

For any i �= 1, Lemma 4.3 provides an element bi ∈ K× with bi ∈ tBv ∩ t z1Bv for
v ∈ S1 and b−1

i ∈ tBv ∩ t ziBv for v ∈ Si . Let b = φ(b2, . . . , bn). By Corollary 3.10(1,2),
b ∈ tBv ∩ t z1Bv for v ∈ S1, and b−1 ∈ tBv ∩ t ziBv for v ∈ Si , i �= 1. Hence Lemma 4.4
finishes the proof.
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Theorem 4.7 Let S1, . . . , Sn ⊆ S(K ), t ∈ K×, x1, . . . , xn ∈ K and z1, . . . , zn ∈ K×.

(U) Assume that Assumption 3.1 holds for S = S1 ∪ · · · ∪ Sn and t.
(T) Assume each Si is compact in the given topology.
(I) Assume that for any valuation w on K with a refinement in Si and a refinement in

S j we have w(xi − x j ) ≥ w(zi ) = w(z j ); assume further that the Si are pairwise
t-independent, and in Situation m furthermore pairwise incomparable.

Then there exists x ∈ K with

x − xi ∈ ziBv for all v ∈ Si , for i = 1, . . . , n.

Proof. We use induction on n. Without loss of generality assume that Si �= ∅ for all i .
For n = 1 we may take x = x1.
For n > 1, we want to apply the induction hypothesis for the sets S2, . . . , Sn , the ele-

ments x2, . . . , xn and t z2, . . . , t zn . Note that, by the assumption of pairwise t-independence,
w(t zi ) = w(zi ) for every valuation w with a refinement in Si and a refinement in S j , j �= i ,
so the compatibility condition w(xi − x j ) ≥ w(t zi ) = w(t z j ) is satisfied. The induction
hypothesis thus gives an element x ′′ ∈ K with x ′′ − xi ∈ zi tBv for all v ∈ Si , i ≥ 2. We now
apply Lemma 4.6 to the sets S1, . . . , Sn and the elements x ′ := x1, x ′′ and z1, z2t, . . . , znt .
Note that if a valuation w has a refinement in S1 and a refinement v in Si , i �= 1, then indeed

w(x ′ − x ′′) = w((x1 − xi ) + (xi − x ′′)) ≥ w(z1) = w(zi ),

as x ′′ − xi ∈ zi tBv ⊆ ziOw implies that w(x ′′ − xi ) ≥ w(zi ). We thus obtain x ∈ K with
x − x1 ∈ z1Bv for all v ∈ S1, and x − x ′′ ∈ zi tBv for all v ∈ Si , i �= 1. Finally, for v ∈ Si ,
i �= 1, we get that

x − xi = (x − x ′′) + (x ′′ − xi ) ∈ zi tBv + zi tBv ⊆ zi tBv(Ov + Ov)

⊆ zi tBv · t−1Ov = ziBv

by 3.1(iv). This finishes the induction.

Remark 4.8 As promised, we now explain how to deduce Theorems 1.6, 1.7 and 1.8 from
the introduction.

Theorem 1.6 is obtained by applying Theorem 4.7 in Situation m with t = π : 1.6(U)
implies 4.7(U) (see Example 3.5(2)), and 1.6(T) together with 1.6(U) implies 4.7(T) (see
Example 2.4). The Si are pairwise t-independent (Example 4.1) and pairwise incomparable
since pairwise disjoint, so 1.6(I) implies 4.7(I).

Theorem 1.7 is obtained by applying Theorem 4.7 in Situation O with t = 1: 1.7(U)
implies 4.7(U) (see Example 3.5(1)), and 1.7(T) implies 4.7(T) (see Remark 2.2). In fact,
since the Si are closed in the Hochster dual of the Zariski topology, then the Si are also closed
under coarsenings, and so 1.7(I) implies 4.7(I).

Finally, Theorem 1.8 follows from Theorem 4.7 in Situationm using Example 3.5(3) and
taking Remark 2.3 into consideration.

Remark 4.9 Note that the set of v ∈ S(K ) for which a given x ∈ K satisfies an approximation
condition x − xi ∈ ziBv is always open-closed in the constructible topology, in particular
compact both in TZar and in TZar∗ . This explains why condition 4.7(T) is natural. It is also
clear that without this condition the theorem must fail.

Remark 4.10 It is obvious that assumption 4.7(I) cannot simply be dropped. It is also clear
that if there exists x with x − xi ∈ ziOv for all v ∈ Si , i = 1, . . . , n, then any w as in 4.7(I)

123



Approximation theorems

must satisfy w(xi − x j ) ≥ min{w(zi ), w(z j )}, but the condition w(xi − x j ) ≥ w(zi ) =
w(z j ), which also appears in Theorem 1.3, cannot be deduced and could possibly be relaxed.
However, the following example shows that one cannot replace this compatibility condition
by w(xi − x j ) ≥ min{w(zi ), w(z j )} in Theorem 4.7.

If K = Q(T ) with w the T -adic valuation, and v1 and v2 the composites of w with the
2- and 3-adic valuations, respectively, then there is no x with v1(x − (2T )−1) ≥ v1(T−1)

and v2(x) ≥ 0, since v1(x) = v1((2T )−1) implies w(x) = −1, but v2(x) ≥ 0 would imply
w(x) ≥ 0. In this case we might have sought to apply Theorem 4.7 in Situation O with
S1 = {v1}, S2 = {v2}, x1 = (2T )−1, x2 = 0, z1 = T−1, and z2 = 1. Then assumption (U)
is satisfied by Example 3.5(1), and w(x1 − x2) = −1 = min{w(z1), w(z2)}.
Remark 4.11 We can conclude from Theorem 1.8 that every field K for which

(∗) any two orderings on K induce distinct orderings on the residue field of their finest
common coarsening w

is an SAP-field in the sense of [26, §6], i.e. for every two disjoint closed subsets S1 and S2
of Sord(K ) there is some a ∈ K with a >v 0 for all v ∈ S1 and a <v 0 for all v ∈ S2. This
is in fact a special case of [26, Theorem 9.1], which in particular states that K is SAP if and
only if for every valuation w on K with formally real residue field either

(i) the value group �w is 2-divisible, or
(ii) |�w/2�w| = 2 and the residue field Kw carries a unique ordering.

Due to the Baer-Krull theorem, our condition (∗) is precisely that (i) holds always. We note
that Theorem 1.8, and therefore also Theorem 4.7, is no longer true if we replace (∗) by the
weaker condition that K is an SAP-field, as the example K = R((T )) with its two orderings
≤0+ and ≤0− , making T an infinitesimal positive respectively negative element, shows: The
approximation problem with S1 = {≤0+}, S2 = {≤0−}, x1 = 0, x2 = 1, z1 = z2 = 1

3
satisfies the compatibility condition w(x1 − x2) ≥ w(z1) = w(z2) where w is the T -adic
valuation, but is not solvable.

5 Applications and counterexamples

We start by deducing a few corollaries that resemble similar approximation theorems in the
literature. We will phrase several of these corollaries for compact sets in TZar∗ , but recall
that this property is satisfied for example by every closed set in the constructible topology
(Remark 2.2).

5.1 Value approximation

The following ‘value approximation’ theorem is our version of Ribenboim’s [30, Theorem 5],
see also [31, p. 135 Théorème 1] and [34, Theorem 28.12], which in the case of independent
valuations appears already in Krull’s seminal paper [20, Satz 15]. In [13, Proposition 2.6.6]
a similar result with a different condition (U) is given, and condition (T) is replaced by
compactness in the Zariski topology.

Corollary 5.1 Let S1, . . . , Sn ⊆ Sval(K ), t ∈ K×, and z1, . . . , zn ∈ K×.
(U) Assume that Assumption 3.1 holds for S = S1 ∪ · · · ∪ Sn and t.
(T) Assume each Si is compact in TZar∗ .
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(I) Assume that the Si are pairwise t-independent and pairwise incomparable.

Then there exists z ∈ K× with

v(z) = v(zi ) for all v ∈ Si , for i = 1, . . . , n,

if and only if for any valuation w on K with a refinement in Si and a refinement in S j we
have w(zi ) = w(z j ).

Proof. It is clear that if such a z exists then every w with a refinement in Si and a refinement
in S j satisfies w(zi ) = w(z) = w(z j ). Conversely, if that compatibility condition is satisfied
then the claim follows from Theorem 4.7 in Situation m with xi = zi for all i .

Remark 5.2 It is worth pointing out in this context that any form of value approximation
theorem like Corollary 5.1 implies the existence of a function φ as in Proposition 3.9, but
of course it need in general not be given by a polynomial. It also implies the existence of
elements b as in Lemma 4.3.

Remark 5.3 The assumption 5.1(T) cannot be replaced by compactness in the Zariski topol-
ogy, as one can show with the following example in number fields – here an obstruction to
value approximation is given by the class group.

Consider the number fields K = Q(
√−5); it is well-known that K has class number

hK = 2, with p0 = (2, 1 + √−5) an example of a non-principal ideal, see for instance [23,
pp. 132–133]. The extension L = K (

√−1) of K is of degree 2 = hK , and one can verify
that it is unramified at all places. (Note that since Q(

√−1)/Q is unramified over all finite
primes except 2, it suffices to check that the primes of K above 2 are unramified in L .) Hence
L is the Hilbert class field of K (see [25, VI, Proposition 6.9]).

Consider the polynomial f = X2 − X − 1, and let S be the set of valuations on K
corresponding to prime ideals inert in L/K ; no such prime ideal has residue characteristic
5, since the prime ideal (

√−5) is split in L/K . One verifies that L/K is generated by a zero
of f , so in particular f is irreducible over K . The discriminant of f is 5. By standard results
on the splitting of prime ideals in extensions, see [25, I, Proposition 8.3], for any prime p of
K inert in L (which necessarily does not contain 5), the reduction of f has no zero inOK /p.
In particular, Assumption 3.1 is satisfied for the set S and t = 1 by Example 3.5(1).

However, Corollary 5.1 does not transfer to this situation:Writing S1 = {Op0}, S2 = S\S1,
we claim that there is no element x ∈ K× with v(x) = v(1 + √−5) for v ∈ S1 and
v(x) = v(1) for v ∈ S2. If x were such an element, the ideal (x)p−1

0 would be a product of
prime ideals not inert in L/K . Since L/K is unramified of degree 2, it would be a product
of prime ideals split in L/K , all of which are principal ideals in K by the theory of the
Hilbert class field [25, VI, Corollary 7.4]. Hence p0 itself would be principal, which is a
contradiction. Therefore such an x cannot exist.

One can check that any Zariski open subset of S is empty or cofinite, hence the sets S1
and S2 are Zariski compact.

5.2 Residue approximation

The following ‘residue approximation’ appears for finitely many independent valuations
already in [20, Satz 17] (see also [30, Lemme 6]) and for finitely many incomparable valua-
tions in [31, p. 143 Proposition 1], see also [4, VI.7.2 Corollary 1] and [9, Theorem 10.2.1].
A version for finitely many arbitrary valuations can be found in [30, Lemme 11].
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Corollary 5.4 Let S1, . . . , Sn ⊆ Sval(K ), t ∈ K×, and x1, . . . , xn ∈ K with xi ∈ Ov for each
v ∈ Si and each i .

(U) Assume that Assumption 3.1 holds for S = S1 ∪ · · · ∪ Sn and t.
(T) Assume each Si is compact in TZar∗ .
(I) Assume that the Si are pairwise t-independent and pairwise incomparable.

Then there exists x ∈ K with x ∈ Ov for each v ∈ Si for every i such that

x = xi in Kv for all v ∈ Si , for i = 1, . . . , n.

Proof. This follows immediately from Theorem 4.7 in Situation m by choosing zi = 1 for
all i .

5.3 p-valuations

We now discuss approximation on the sets Seπ (K ), which in particular includes the special
case of p-valuations of bounded p-ramification index, cf. Example 3.6. We equip Seπ (K )

with the constructible topology. Recall that Seπ (K ) is compact and the topology coincides
with the topology induced by TZar∗ (Example 2.4). Let

Re
π (K ) =

⋂

v∈Seπ (K )

Ov

denote the corresponding holomorphy ring.

Corollary 5.5 Let S1, . . . , Sn ⊆ Seπ (K ) be disjoint and closed, let x1, . . . , xn ∈ K, and let
z1, . . . , zn ∈ K×. Assume that for any valuation w on K with a refinement in Si and a
refinement in S j we have w(xi − x j ) ≥ w(zi ) = w(z j ). Then there exists x ∈ K with

v(x − xi ) > v(zi ) for all v ∈ Si , for i = 1, . . . , n.

Proof. This follows from Theorem 4.7 in Situation m using Example 3.5(2). Note that two
distinct valuations in Seπ (K ) are always incomparable and π-independent (Example 4.1).

Corollary 5.6 Let S1, . . . , Sn ⊆ Seπ (K ) be disjoint and closed, x1, . . . , xn ∈ Re
π (K ) and

k1, . . . , kn ∈ N. Then there exists x ∈ K with

v(x − xi ) > v(πki ) for all v ∈ Si , for i = 1, . . . , n.

Proof. This follows from Corollary 5.5: If w is a valuation with a refinement vi in Si and a
refinement v j in S j , then xi , x j ∈ Re

π (K ) ⊆ Ovi ⊆ Ow and w is a proper coarsening of both
vi and v j , hence w(xi − x j ) ≥ 0 = w(πki ) = w(πk j ).

The argument for the following consequence is also contained in [6, Propriété II.3.2].

Proposition 5.7 For every π ∈ K× and e > 0, the following statements are equivalent:

(1) For every v ∈ Seπ (K ), the holomorphy ring Re
π (K ) is dense in Ov in the v-topology.

(2) The elements of Seπ (K ) are pairwise independent.

Proof. ¬(2) ⇒ ¬(1): Suppose two distinct v1, v2 ∈ Seπ (K ) have a nontrivial common
coarsening w. Let a ∈ K× with w(a) > 0. As v1 and v2 are incomparable, Proposition 2.9
gives a y ∈ K with v1(y) ≥ v1(π) > 0 and v2(y) ≤ v2(π

−1) < 0. If Re
π (K ) was dense
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in Ov1 , then there would exist x ∈ K with v1(x) ≥ 0, v2(x) ≥ 0 and v1(x − y) > v1(a).
The latter condition implies that w(x − y) ≥ w(a) > 0, but v2(y) < 0 ≤ v2(x) gives
v2(x − y) < 0 and thus w(x − y) ≤ 0, a contradiction.

(2) ⇒ (1): Let v0 ∈ Seπ (K ), y ∈ Ov0 and z ∈ K×. We want to show there exists
x ∈ Re

π (K ) with v0(x − y) > v0(z). Without loss of generality, v0(z) ≥ 0. Let

S1 = {v ∈ Seπ (K ) : v(y) ≥ 0 ∧ v(z) ≥ 0}
and S2 = Seπ (K )\S1. Since in particular S1 and S2 are independent, we can apply Corol-
lary 5.5 to x1 = y, x2 = 0, z1 = z, z2 = 1 to get x ∈ K with v(x − y) > v(z) ≥ 0 for
v ∈ S1, and v(x) ≥ 0 for v ∈ S2. In particular v0(x − y) > v0(z) and x ∈ Re

π (K ).

Example 5.8 An example where Proposition 5.7 can be applied is when K is a so-called
pseudo p-adically closed field: If we set π = p and e = 1, then Seπ (K ) equals the set of
p-valuations of p-rank 1, and any two of these are independent, see Theorem C and the
remark following Proposition D of [17].

5.4 Comparison with strong approximation

We now want to compare our approximation theorems with the well known results for a
global field K . Beyond the Weak Approximation Theorem 1.1 valid for any field, in global
fields we have the following stronger result.

Theorem 5.9 (Strong Approximation, [5, Chapter II §15 Theorem]) Let K be a global field
and S � Sabs(K )\{vtrivial}.

For each v ∈ S, let xv ∈ K and εv > 0 be given such that xv ∈ Ov and εv = 1 for almost
all v ∈ S ∩ Sval(K ). Then there exists an x ∈ K with |x − xv|v ≤ εv for all v ∈ S.

As usual in algebraic number theory, in this situation a nontrivial element of Sabs(K ) is
called a place. The condition that S excludes at least one place can clearly not be omitted
due to the product formula (e.g. see [25, III, (1.3)]) – for instance, there is no element of K×
which is of norm ≤ 1 at all places and of norm < 1 at one of them.

To compare with our theorems, one first has to analyse the topologies on S defined in
Sect. 2. One easily checks that the Zariski topology on S is exactly the cofinite topology;
in particular any subset of S is Zariski compact. On the other hand, the Hochster dual of
the Zariski topology is the discrete topology, so S is never compact unless it is finite. (It is
important here that we excluded the trivial valuation from S.)

This means that while our approximation theorem in Situation m is quite weak for global
fields (we can only approximate on finite sets Si , i.e. do not obtain anything stronger than
the weak approximation Theorem 1.1), we can use our approximation theorem in Situation
O to recover strong approximation under additional hypotheses.

Proof of Theorem 5.9 when S contains no complex places and Assumption. 3.1 holds. For
each v ∈ S let xv and εv be given. Write S0 ⊆ S for the set of finite places v ∈ S with xv = 1,
εv = 1. The set S\S0 is finite, so enumerate it as {v1, . . . , vn}, and for each i find a zi ∈ K×
with |zi |vi ≤ εi . Writing z0 = x0 = 1 and Si = {vi }, xi = xvi for i ≥ 1, we apply Theorem
4.7 in Situation O to the sets Si and elements xi , zi for i = 0, . . . , n. The element x thus
obtained is as desired.

By Example 3.8, this proves strong approximation in some situations of sets of places
S with density arbitrarily close to 1, i.e. we only have to exclude a set of places of small
density. We will see how to lift the prohibition on complex places in Sect. 6. However, we
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cannot reach the full statement of strong approximation, in which only a single place needs
to be omitted, since for any non-constant f ∈ K [X ] and t ∈ K× the Chebotarev Density
Theorem shows that there is always a positive density of finite places v of K with v(t) = 0
in whose residue field the reduction of f has a zero, hence violating Assumption 3.1.

5.5 Kronecker dimension one and reduction to finitely generated fields

For so-called fields of Kronecker dimension one, i.e. algebraic extensions of Q and algebraic
extensions of some rational function field Fq(T ), most of our approximation results, or some
variants of it, are very easy to prove since they can be reduced to approximation results in
finite extensions of Q respectively Fq(T ). For example, one even has the following stronger
result:

Proposition 5.10 Let K be a field of Kronecker dimension one, S0, . . . , Sn ⊆ S(K ) pairwise
disjoint nonempty sets which are closed in the constructible topology, x1, . . . , xn ∈ K and
z1, . . . , zn ∈ K×. Then there exists x ∈ K with

x − xi ∈ ziOv for all v ∈ Si , for i = 1, . . . , n.

Proof. We work in the constructible topology throughout. Note that the finitely generated
subfields of K ofKronecker dimension one are global fields; we freely use results on localities
of global fields which are standard in number theory, see for instance [25, Chapter II, §8].
As S(K ) is the inverse limit of S(K0) for the finitely generated subfields K0 of K , and
Sabs(K0)\Sval(K0) is finite for all of these, the space S(K ) is compact Hausdorff. As S(K )

also has a basis of open-closed sets, we can assume without loss of generality by a standard
compactness argument that the Si are open-closed (and still pairwise disjoint), i.e. of the
form

Si = {v ∈ S(K ) : ai1, . . . , aiki ∈ Ov, bi1, . . . , bili ∈ mv}
with elements ai j , bi j ∈ K . Let K0 be a finitely generated subfield of K of Kronecker
dimension 1 (i.e. a global field) which contains all ai j , bi j , xi , zi . Then

S′
i := {v ∈ S(K0) : ai1, . . . , aiki ∈ Ov, bi1, . . . , bili ∈ mv}

consists exactly of the restrictions of the elements of Si to K0. In particular, S′
0, . . . , S

′
n are

again nonempty and pairwise disjoint. Now let

T ′
i = {v ∈ S′

i : xi ∈ Ov, z
−1
i ∈ Ov}.

Then S′
i\T ′

i is finite for every i , so by Theorem 5.9 there exists x ∈ K0 such that x−xi ∈ ziOv

for every v ∈ S′
i\T ′

i and x ∈ Ov for every v ∈ T ′
i , for i = 1, . . . , n. This x then satisfies

x − xi ∈ ziOv for every v ∈ Si and every i = 1, . . . , n.

Note that this proposition needs neither a (U) condition, since the set of localities on the
global field K0 has the property that every a ∈ K0 lies in O×

v for almost all v ∈ S(K0), nor
an (I) condition, since localities on a global field are automatically pairwise independent.

This might suggest that one can possibly reduce Theorem 4.7 to the special case where the
field is finitely generated over its prime field, by replacing the general field K by a suitable
finitely generated subfield K0. This however does not seem to be of much use, mainly since
in general neither of the two properties of global fields named in the previous paragraph
holds for K0; in fact, even if a set S ⊆ S(K ) satisfies some independence or compatibility
condition, the restriction of S to K0 need not.
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5.6 The (U) condition

We have seen in Remarks 4.10 and 5.3 that in our theorems the conditions (I) and (T) cannot
be dropped or significantly weakened. It remains to justify condition (U), i.e. essentially
Assumption 3.1, which is technical and may appear unnatural.

We have seen above that the product formula alone may necessitate the omission of some
place. The following example justifies our stronger assumption. We focus on a situation with
only valuations, so that only conditions 3.1(i, ii, iii) play a role.

Example 5.11 Let P be a set of prime numbers such that for every number field L there exist
infinitely many p ∈ P such that the prime ideal (p) is completely split in L/Q. We may of
course simply take P to be the set of all prime numbers (see e.g. [25, VII, (13.6) Corollary]).

We now consider K = Q(T ); we will construct two Zariski compact sets S1, S2 of
valuations on K , both only consisting of p-valuations (of p-rank 1) for some p ∈ P , such
that a certain approximation problem has no solution. We let S2 consist of a single valuation,
namely the composition (see [10, p. 45]) of the degree valuation on K with the q-adic
valuation on Q for some fixed q ∈ P . To construct S1, first fix an enumeration f1, f2, . . . of
the irreducible monic polynomials in Q[T ] and an enumeration x1, x2, . . . of the non-zero
elements of K . To each fi there is an associated discrete valuation v fi on K , trivial on Q.

For each i , construct a valuation on K in the following way. The residue field of v fi is a
finite extension of Q, so by assumption on P it carries a p-valuation vp of p-rank 1 for some
p ∈ P . We may even choose p such that for all x j , 1 ≤ j ≤ i , with v fi (x j ) = 0 we have
(vp ◦ v fi )(x j ) = 0 (where ◦ denotes composition of valuations), as this latter condition only
excludes finitely many p. We let vi = vp ◦ v fi , and take S1 = {vi : i ≥ 1}.

We claim that S1, as a subspace of Sval(K ) with the Zariski topology, carries the cofinite
topology. To see this, observe that for every x j ∈ K×, we have vi (x j ) = 0 unless either
i < j or v fi (x j ) �= 0, each of which only happens for finitely many i . Hence every nonempty
Zariski-open set is cofinite, and in particular S1 is compact. Since the valuations in S1 are
pairwise incomparable, the topology is T1 (Remark 2.6) and therefore the Zariski topology
is exactly the cofinite topology.

Consider now the following approximation problem: We demand an x ∈ K such that
v(x − 0) ≥ v(1) for all v ∈ S1, and w(x − T−1) ≥ w(T−2) for w ∈ S2. Such an x would be
integral at all v fi and furthermore integral at the degree valuation, hence necessarily constant.
However, then w(x − T−1) ≥ w(T−2) would be violated. Therefore this approximation
problem is not solvable, in spite of S1 and S2 being compact sets of valuations, any two of
which are independent.

Note that if P did not satisfy our initial condition, i.e. if there exists a number field L/Q

such that there are only finitely many p ∈ P for which the ideal (p) splits completely in L/Q,
then we may as well enlarge L to a totally imaginary finite Galois extension of Q in which no
(p) with p ∈ P splits completely; in this situation, Example 3.8 (where we choose g to be
the minimal polynomial of an integral primitive element of L/Q) shows that Assumption 3.1
applies with t ∈ Q

× (or even t = 1 since we are not interested in orderings), and therefore
Theorem 4.7 is applicable to sets S consisting only of valuations with residue field Fp for
some p ∈ P unramified in L/Q. Hence Example 5.11 shows that condition 4.7(U) cannot
be substantially weakened in Situation O.
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5.7 Affine families of valuations

We now briefly discuss the relation between our results and the approximation results in the
work of Ershov, e.g. [12–14]. One of the most general results Ershov obtains is the following,
which we have paraphrased.

Theorem 5.12 (see [13, Proposition 2.6.2.]) Let S1, . . . , Sn ⊆ Sval(K )\{vtrivial} pairwise
disjoint, and let x1, . . . , xn ∈ K and z1, . . . , zn ∈ K×. Write S = S1 ∪ · · · ∪ Sn.

(U) Assume that R = ⋂
v∈S Ov is a Prüfer ring with quotient field K .12

(T) Assume that each Si is compact in the Zariski topology.
(I) Assume that the elements of S are pairwise independent.

Then there exists x ∈ K with

v(x − xi ) ≥ v(zi ) for all v ∈ Si , for i = 1, . . . , n.

Condition 5.12(U) is satisfied for example in the situation of Example 3.5(2), see [12,
Proposition 3]. In particular, Theorem 1.5 follows from Theorem 5.12 applied to S1π (K ).
Condition 5.12(U) is also satisfied in the situation of Example 3.5(1), see [13, Proposition
2.3.3] or [32, Theorem 1].

On the other hand, Theorem 5.12 can be proven by our methods under the stronger
assumption that R is not only Prüfer but satisfies the condition explained in Remark 3.12.

6 Adding finitely many exceptional localities

The standing Assumption 3.1 on a set S of localities and an element t ∈ K× requires a
polynomial f ∈ K [X ] such that f (x) /∈ tmv for all x ∈ K and all v ∈ S. If v is a rank-1
valuation, this means in particular that f has no zero in the completion of K with respect to
v, so we cannot hope to cover rank-1 valuations with algebraically closed completion. For
the same reason, our method as is cannot cover absolute values with completion C, although
this is desirable for analogy with Theorem 1.1. It turns out, however, that at least finitely
many such exceptional localities can be added to our main theorem.

The following lemma is a variant of Proposition 2.9.

Lemma 6.1 Let n ≥ 1, v0, v1, . . . , vn ∈ S(K ) and z0, . . . , zn ∈ K× such that for any
valuation w coarsening v0 and some vi , i > 0, we have w(z0) ≥ w(zi ).

(1) If every vi with i > 0 is strongly incomparable to v0, then there exists z ∈ K× with
z ∈ zimvi for all i > 0 and z−1 ∈ z−1

0 mv0 .
(2) If every vi with i > 0 is either strongly incomparable to or a proper refinement of v0,

then there exists z ∈ K× with z ∈ zimvi for all i > 0 and z−1 ∈ z−1
0 Ov0 .

Proof. Note that we may freely scale the zi by a common factor, so assume without loss of
generality that z0 = 1.

Consider (1). By strong incomparability, all the localities under consideration are nontriv-
ial. Assume first that v0, . . . , vn are pairwise dependent. Aswas remarked earlier, this implies
that their finest common coarsening w is nontrivial. Any zi with w(zi ) < 0 may be replaced

12 In [13, Proposition 2.6.2.], the condition is that S is affine, which he shows to be the case iff S satisfies
(U), is compact in the Zariski topology and consists of pairwise incomparable valuations, see [13, Proposition
2.3.4, Corollary 2.3.2]. The latter two are implied by (T) and (I).
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by 1, since this only strengthens the conclusion. Hence we have w(zi ) = 0 for all i , and
we may reduce to a problem in the residue field Kw, on which v0, . . . , vn induce localities
v̄0, . . . , v̄n , where every v̄i with i > 0 is strongly incomparable to v̄0: Any lift z ∈ K× of
z ∈ (Kw)× satisfying z ∈ zimv̄i for all i > 0 and z−1 ∈ z0−1mv̄0 is as desired. Hence we
have reduced to a problem in the residue field, where the v̄0, . . . , v̄n are not all dependent.
Therefore let us assume henceforth that v0, . . . , vn are not all pairwise dependent.

We may first solve the problem restricted to all vi which are dependent with v0, so let
z′ ∈ K× with z′−1 ∈ z−1

0 mv0 and z′ ∈ zimvi for all vi dependent with v0; existence of such
z′ is given inductively, since we assumed that not all vi are dependent with v0. Note that
the conditions on z′ are then also satisfied in a v0-neighbourhood of z′. Likewise, for any vi
independent from v0 there is a vi -open set of z′i such that z′i ∈ z jmv j for all v j dependent
with vi . Then Theorem 2.8 gives z as desired.

For (2), if v0 is strongly incomparable to every other vi , then we may solve the stronger
problem (1), so assume this is not the case, i.e. some vi properly refines v0. In particular v0 is
a valuation. Since the residue field of v0 carries a nontrivial locality, it carries infinitely many
pairwise independent valuations, so we may pick a refinement v′

0 of v0 with v′
0 ∨ vi = v0

for any of the vi refining v0. Note that any w coarsening v′
0 and some vi will also coarsen

v0 = v′
0 ∨ vi , and hence satisfies w(z0) ≥ w(zi ). We can then solve problem (1) for

v′
0, v1, . . . , vn , and any solution thereof is as desired.

The following results are again to be understood in the two situations O and m as before.
This first proposition is an extension of Theorem 1.3 to include orderings and complex
absolute values.

Proposition 6.2 Let v1, . . . , vn ∈ S(K ), x1, . . . , xn ∈ K and z1, . . . , zn ∈ K×. Assume
that whenever w coarsens vi and v j , i �= j , then xi − x j ∈ ziOw = z jOw . Furthermore
assume in Situation m that for any i, j with xi �= x j the localities vi and v j are strongly
incomparable; in SituationO, assume the same only when vi and v j are both not valuations.
Then there exists x ∈ K with x − xi ∈ ziBvi for all i .

Proof. In Situation O, if vi refines v j , then xi + ziBvi ⊆ x j + z jBv j , so we may simply
remove v j from the list. We can repeat this until the vi are pairwise incomparable. Then all
conditions for the stronger result in Situation m are satisfied, so it suffices to consider this
situation.

We use induction on n (where K varies across the class of all fields). For n = 1 we may
take x = x1, so assume that n > 1. If the vi are pairwise independent the statement follows
from Theorem 2.8. If the vi are pairwise dependent with nontrivial finest common coarsening
w, we may assume after scaling and shifting as in Remark 2.10 that w(zi ) = 0 and xi ∈ Ow

for all i . It then suffices to solve the induced problem in the residue field Kw, i.e. to find
x ∈ Kw with x − xi ∈ zimv̄i for all i , since any lift x ∈ K of x will be as desired. Solving
the induced problem in Kw is possible inductively, since for any vi and v j which induce the
same locality on the residue field (i.e. are in particular not strongly incomparable), we have
assumed that xi = x j , so we obtain only one condition in the residue field for vi and v j .

Therefore assume that the vi are neither pairwise independent nor pairwise dependent.
After reordering, let v1, . . . , vk with 1 < k < n be amaximal pairwise dependent subset with
nontrivial common coarsening w. By scaling and shifting we may assume that w(zi ) = 0
and xi ∈ Ow for all i ≤ k. We can apply the induction hypothesis in the residue field of w

to obtain an x ∈ Kw which satisfies x − xi ∈ zimv̄i for any i ≤ k. Take any lift x ∈ K of
x . For i ≤ k we then have x + zimw ⊆ xi + zimvi . Hence we may replace the conditions
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with respect to the v1, . . . , vk by a single condition with respect to w, reducing the number
of conditions. Using the induction hypothesis once more proves the claim.

In order to formulate our approximation theorem with finitely many exceptional local-
ities, we introduce a modified version of Assumption 3.1, applying to finitely many sets
S1, . . . , Sn ⊆ S(K ) and an element t ∈ K×.

Assumption 6.3 There exists f ∈ K [X ] of degree d ≥ 2, with leading coefficient ad , such
that conditions 3.1(i, iii, iv) are satisfied for all v in any Si , and condition 3.1(ii) is satisfied
for all v in any infinite Si .

Note that imposing conditions 3.1(i, iii, iv) on those Si which are finite is quite weak
in practice. For any complex absolute value |·|, the conditions are satisfied for example for
f = ∑d

i=0 ai X
i ∈ K [X ] and t ∈ K× if

d∑

i=0

|ai | ≤ 1, |t | +
d−1∑

i=0

|ai | ≤ |ad |, and |t | ≤ 1

2
,

which are conditions we have already seen for orderings in Example 3.7. In particular,
Example 3.8 extends to also cover complex absolute values in this way.

For a valuation v, conditions 3.1(i, iii, iv) are satisfied for example if f has coefficients
in Ov and v(t) ≥ v(ad) = 0.

Theorem 6.4 Let S1, . . . , Sn ⊆ S(K ), t ∈ K×, x1, . . . , xn ∈ K and z1, . . . , zn ∈ K×.

(U) Assume that Assumption 6.3 holds for S1, . . . , Sn and t.
(T) Assume that each Si is compact in the given topology.
(I) Assume that for any valuation w on K with a refinement in Si and a refinement in

S j we have w(xi − x j ) ≥ w(zi ) = w(z j ); assume further that the Si are pairwise
t-independent, and in Situation m furthermore pairwise incomparable.

Then there exists x ∈ K with

x − xi ∈ ziBv for all v ∈ Si , for i = 1, . . . , n.

Proof. Wemay assume that all Si are nonempty. After reordering if necessary, say S1, . . . , Sk
are infinite and Sk+1, . . . , Sn are finite. In Situation O, we may furthermore assume that no
element of Si with i > k is a coarsening of an element of S j with j ≤ k, since such a
coarsening could simply be removed.

We first apply Proposition 6.2 to the elements of Sk+1, . . . , Sn to obtain an element x ′ ∈ K
such that x ′ − xi ∈ t ziBv for all v ∈ Si , i > k. We secondly apply Theorem 4.7 to the
sets S1, . . . , Sk , elements x1, . . . , xk and t z1, . . . , t zk to obtain an element x ′′ ∈ K with
x ′′ − xi ∈ t ziBv for all v ∈ Si , i ≤ k. For both Proposition 6.2 and Theorem 4.7, the
hypotheses are satisfied because of our assumption (I).

We want to find x ∈ K with x − x ′ ∈ t ziBv for v ∈ Si , i > k, and x − x ′′ ∈ t ziBv

for v ∈ Si , i ≤ k; such an x is as desired, by condition 3.1(iv). Note that we have the basic
compatibility condition

w(x ′ − x ′′) ≥ min{w(xi − x ′), w(xi − x j ), w(x j − x ′′)} ≥ w(t zi ) = w(t z j )

for any valuation w coarsening elements of Si and S j , i > k ≥ j .
If x ′ = x ′′, we set x = x ′, and in the remaining case we may assume without loss of

generality that x ′ = 1 and x ′′ = 0, by scaling and shifting all xi and x ′ and x ′′, and scaling
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all zi . It now suffices to find b ∈ K× with b ∈ tmv ∩ t zimv for v ∈ Si , i > k, and
b−1 ∈ tBv ∩ t ziBv for all v ∈ Si , i ≤ k; with such b we can apply Lemma 4.4 to obtain x .
(Note that by Remark 4.5 only condition 3.1(iii) is necessary for v ∈ Si , i > k, to apply the
lemma.)

Tofind such b, we imitate the proof ofLemma4.3. For any i ≤ k and v′ ∈ Si , there exists an
element bi,v′ ∈ K× with bi,v′ ∈ tmv ∩t z jmv for all v ∈ S j , j > k, and b−1

i,v′ ∈ tBv′ ∩t ziBv′ ;
this follows from Lemma 6.1 applied to v′ and the v ∈ Sk+1 ∪ · · · ∪ Sn with an element
zv′ ∈ K× chosen to satisfy zv′Bv′ = tBv′ ∩ t ziBv′ and elements zv ∈ K× chosen to
satisfy zvmv = tmv ∩ t z jmv for any j > k with v ∈ S j (note that if v ∈ S j ∩ S j ′ then
z jmv = z j ′mv by (I)). Note that if w coarsens v′ and some v ∈ S j , then w(zi ) = w(z j ),
hence w(zv′) = w(zv).

By compactness of the Si , there exists a finite list P of pairs (i, v) such that for any
i ≤ k and v′ ∈ Si there exists v ∈ Si with (i, v) ∈ P and b−1

i,v ∈ tBv′ ∩ t ziBv′ . Now
take b = φ(b1, . . . , bm), where b1, . . . , bm are the {bi,v : (i, v) ∈ P} in arbitrary order.
By Corollary 3.10, the first part of which only requires conditions 3.1(i, iii), this b is as
desired.

7 Approximation of values of rational functions

Let S ⊆ S(K ) be nonempty. We write

mS :=
⋂

v∈S
mv.

Note that mS · mS ⊆ mS , although mS is never an element of B(K ) as defined in Sect. 2
since 1 /∈ mS . Let us assume throughout that S does not contain the trivial valuation and is
compact in TZar∗ . We furthermore fix t ∈ K×, and assume that either S is finite, or S and t
satisfy Assumption 3.1. (This is for instance the case if S1, . . . , Sn are given which, together
with t , satisfy Assumption 6.3, and S is a subset of some Si .)

Lemma 7.1 Given z1, . . . , zn ∈ K× such that for any v ∈ S we have zi ∈ Ov for at least
one i , there exists z ∈ K× with z ∈ ⋂n

i=1 ziOv for each v ∈ S.

Proof. If S is finite, say S = {v1, . . . , vm}, then choose z′1, . . . , z′m to satisfy z′jOv j =⋂n
i=1 ziOv j , let v0 be the trivial valuation and z

′
0 = 1, and apply Lemma 6.1(2) to the v j and

z′j . If S is infinite, then Assumption 3.1 is satisfied for S and t , and the claim follows from

Corollary 3.10(2) by letting z = φ(z−1
1 , . . . , z−1

n )−1.

Lemma 7.2 The set mS contains a non-zero element, and the family

MS := {
zmS

∣∣ z ∈ mS\{0}
}

is a filter base.

Proof. First, a simple compactness argument shows that mS �= {0}, as follows. Each v ∈ S
is nontrivial, so there exists zv ∈ mv\{0}. By compactness in TZar∗ , there are finitely many
v1, . . . , vn ∈ S such that

S ⊆
n⋃

i=1

{v ∈ S(K ) : zvi ∈ mv}.
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Therefore
⋂n

i=1 zviOv ⊆ mv , for all v ∈ S. Lemma 7.1 yields z0 ∈ K× with z0 ∈⋂n
i=1 zviOv for each v ∈ S. Therefore z0 ∈ mS\{0}, and so MS is a nonempty family

of nonempty sets.
To see thatMS is a filter base, we let z1, z2 ∈ mS\{0}. Lemma 7.1 again yields non-zero z

with z ∈ z1Ov∩z2Ov ⊆ mv for eachv ∈ S. Thus zmS ∈ MS and zmS ⊆ zmv ⊆ z1mv∩z2mv

for every v ∈ S, and therefore zmS ⊆ z1mS ∩ z2mS , as required.

Consequently, there is a filter NS,0 of which MS is a filter base.

Lemma 7.3 Let F be a filter on K . Then there exists a Hausdorff field topology T on K such
that F is the filter of T -neighbourhoods of 0 if and only if the following conditions hold.

(1) ∀x ∈ K× ∃V ∈ F : x /∈ V
(2) ∀U ∈ F ∃V ∈ F : V + V ⊆ U
(3) ∀U ∈ F ∃V ∈ F : V ⊆ −U
(4) ∀U ∈ F ∃V ∈ F : V · V ⊆ U
(5) ∀U ∈ F ∀x ∈ K× ∃V ∈ F : xV ⊆ U
(6) ∀U ∈ F ∃V ∈ F : (1 + V )−1 ⊆ 1 +U

Proof. By [34, Ch. II Thm. 11.4], F satisfies (2)–(5) if and only if F is the filter of T -
neighborhoods of 0 for a ring topology T , which is then uniquely determined by F . In this
case, by continuity of addition, the sets 1 + U form the filter of T -neighborhoods of 1, and
therefore (6) is equivalent to the continuity of inversion at 1. By continuity of multiplication,
this is already equivalent to the continuity of inversion on K×. Finally, for the filter of T -
neighborhoods of 0, (1) is equivalent to

⋂
F = {0}, which in any topological group holds if

and only if the topology is Hausdorff ( [34, Ch. I Thm. 1.7]).

Lemma 7.4 The filter NS,0 satisfies conditions (1)-(6) of Lemma 7.3.

Proof. It suffices to verify (1)-(6) for the filter base MS . Let x ∈ K×, and choose z0 ∈
mS\{0}. Lemma 7.1 yields y0 ∈ K× with y0 ∈ xOv ∩ z0Ov ⊆ mv for all v ∈ S. In particular
y0 ∈ mS\{0}, and x /∈ y0mS . This proves (1).

Turning to the other conditions, let z1 ∈ mS\{0}. Then y1 := z1t ∈ mS\{0}. It follows
from condition 3.1(iv) that mS + mS ⊆ t−1mS . Then

y1mS + y1mS ⊆ z1mS,

which verifies (2). Condition (3) holds because −mS = mS .
Let z2 ∈ mS\{0}, and simply choose y2 = z2. Then

(y2mS) · (y2mS) = z22mS · mS ⊆ z2mS,

which verifies (4).
Let z3 ∈ mS\{0} and let x ∈ K×. Lemma 7.1 produces y3 ∈ K× with y3 ∈ z3x−1Ov ∩

z3Ov for all v ∈ S. Therefore y3 ∈ mS , since z3 ∈ mS , and we have xy3mS ⊆ z3mS , which
verifies (5).

Finally, let z4 ∈ mS , z4 �= 0. For any valuation v ∈ S, we have (1+ z4mv)
−1 ⊆ 1+ z4mv .

If S consists exclusively of valuations, this already shows that (1 + z4mS)
−1 ⊆ 1 + z4mS ,

verifying (6). Otherwise the characteristic of K is zero. For any v ∈ S which is not a
valuation, we have (2+mv)

−1 ⊆ mv . Therefore (1+ c
2 )

−1 = 1− c(2+ c)−1 ∈ 1+ cmv , for
all c ∈ mv , which establishes the inclusion (1 + z4

2 mv)
−1 ⊆ 1 + z4mv . Lemma 7.1 gives y4

with y4mS ⊆ z4mS ∩ z4
2 mS ⊆ mS . Then (1 + y4mS)

−1 ⊆ 1 + z4mS , which verifies (6).
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It follows from Lemma 7.4 that there is a (unique) field topology on K of which NS,0 is
the filter of neighbourhoods of 0. We call this topology the S-topology. A subset of K which
is open in the S-topology is said to be S-open. An S-ball is a set of the form

BS(x, z) := x + zmS,

for x ∈ K and z ∈ K×.

Lemma 7.5 All S-balls are S-open.

Proof. It suffices to show that mS is S-open. Assume first that S is infinite, so S contains no
complex places by Assumption 3.1 and Remark 3.2. Let x ∈ mS . We must find z ∈ mS\{0}
such that x + zmS ⊆ mS . First choose any z0 ∈ mS\{0}. Lemma 7.1 affords z ∈ K× with
z ∈ z0(1 − x)Ov ∩ z0(1 + x)Ov ⊆ mv , in particular z ∈ mS\{0}.

If v ∈ S is a valuation then certainly x+zmv ⊆ mv . On the other hand, suppose that v ∈ S
is an ordering and let y ∈ mv . If 0 ≤v x <v 1, then 1− x ≤v 1+ x , so x − 1 <v z <v 1− x .
Otherwise if−1 <v x <v 0, then−x−1 <v z <v 1+x . In either case we have x+zy ∈ mv ,
and so x + zmv ⊆ mv , for all orderings v ∈ S. Therefore x + zmS ⊆ mS , as required.

It remains to treat the case of finite S, say S = {v1, . . . , vn}. Let x ∈ mS . Since mvi is
vi -open, we may take zi ∈ mvi with x + zimvi ⊆ mvi . Lemma 7.1 provides z ∈ K× with
z ∈ ziOvi for all vi , so in particular z ∈ mS and x + zmS ⊆ mS , as desired.

It follows from Lemma 7.5 that the family
{
BS(x, z) : x ∈ K , z ∈ mS\{0}

}

is a base for the S-topology. Note that the S-topology is finer than the v-topology, for every
v ∈ S. For example, if v ∈ S is a valuation, then

mv =
⋃

x∈mv

x + mS .

If S = {v} is a singleton, then Bv(x, z) = B{v}(x, z), and thus the S-topology coincides with
the v-topology.

For each m ∈ N, we define the S-topology on Km to be the product topology induced by
the S-topology on K . An S-ball in Km is a set of the form

BS(x, z) :=
m∏

i=1

BS(xi , zi ),

for tuples x = (x1, . . . , xm) ∈ Km and z = (z1, . . . , zm) ∈ (K×)m . We also write
Bv(x, z) := B{v}(x, z). For D ⊆ Kl , a function f : D −→ Km is said to be S-continuous if
it is continuous with respect to the S-topologies. Furthermore, f is S-hereditarily continuous
if it is S′-continuous for each nonempty TZar∗ -compact S′ ⊆ S.

Example 7.6 If g ∈ K (x1, . . . , xl)m is a tuple of rational functions given by gi = hi
ki

with
hi , ki ∈ K [x1, . . . , xl ] coprime, then the domain

Dg = {x ∈ Kl : ki (x) �= 0 for all i}
of g is openwith respect to each v ∈ S, and the inducedmap g : Dg −→ Km is S-hereditarily
continuous, since each of the S′-topologies (for S′ ⊆ S TZar∗ -compact) is a field topology.

Proposition 7.7 Let S1, . . . , Sn ⊆ S(K )\{vtrivial} be nonempty, and let t ∈ K×.
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(U) Assume that Assumption 6.3 holds for S1, . . . , Sn and t.
(T) Assume each Si is compact in TZar∗ .
(I) Assume that the Si are pairwise independent.

For each i , let Ai ⊆ Km be a nonempty Si -open set. Then

n⋂

i=1

Ai �= ∅.

Proof. We shrink each Ai to a product of nonempty Si -balls
∏m

j=1 BSi (xi j , zi j ), then for
each j we apply Theorem 6.4 in Situation m to x1 j , . . . , xnj and z1 j , . . . , znj .

Theorem 7.8 Let S1, . . . , Sn ⊆ S(K )\{vtrivial} be nonempty and pairwise disjoint, t ∈ K×,
y
1
, . . . , y

n
∈ Km and z1, . . . , zn ∈ (K×)m.

(U) Assume that Assumption 6.3 holds for S1, . . . , Sn and t.
(T) Assume each Si is compact in the constructible topology.
(I) Assume that the elements of S = S1 ∪ · · · ∪ Sn are pairwise independent.

Let D ⊆ Kl be v-open for all v ∈ S, and let g : D −→ Km be Si -hereditarily continuous
for all i . Suppose that for each i and v ∈ Si there exists some xv ∈ D with

g(xv) ∈ Bv(yi , zi ).

Then there exists x ∈ D with

g(x) ∈ Bv(yi , zi )

for every i and v ∈ Si .

Proof. For each i and each v ∈ Si , the condition g(xv) ∈ Bv(yi , zi ) is satisfied in an
open-closed neighbourhood of v in the constructible topology on S. By compactness, we
find a finite covering of Si by such open-closed sets. By further refining this covering, we
obtain a family {Si,1, . . . , Si,ki } which is a partition of Si by nonempty open-closed sets,
such that for each j there exists xi j ∈ D such that g(xi j ) ∈ Bv(yi , zi ) for each v ∈ Si, j .
Therefore, for each i, j , we have g(xi j ) ∈ BSi, j (yi , zi ). It follows from our assumptions

that D ⊆ Kl is Si, j -open, and likewise it follows that g is Si, j -continuous. Therefore the
preimage Ai, j := g−1(BSi, j (yi , zi )) ⊆ D is a nonempty Si, j -open set, for each pair i, j . By

Proposition 7.7, there exists x ∈ ⋂n
i=1

⋂ki
j=1 Ai, j , and this satisfies the claim.

Corollary 7.9 Let S1, . . . , Sn ⊆ S(K )\{vtrivial} be nonempty and pairwise disjoint, t ∈ K×,
y
1
, . . . , y

n
∈ Km and z1, . . . , zn ∈ (K×)m.

(U) Assume that Assumption 6.3 holds for S1, . . . , Sn and t.
(T) Assume each Si is compact in the constructible topology.
(I) Assume that the elements of S = S1 ∪ · · · ∪ Sn are pairwise independent.

Let g1, . . . , gm ∈ K (x1, . . . , xl) be rational functions. Suppose that for each i and v ∈ Si
there exists some xv ∈ Dg (cf. Example 7.6) with

g j (xv) ∈ Bv(yi j , zi j )

for every j . Then there exists x ∈ Dg with

g j (x) ∈ Bv(yi j , zi j )

for every i, j and v ∈ Si .
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Remark 7.10 We remark that Corollary 7.9 is indeed a generalization of Situation m of
Theorem 6.4 (so in particular of Theorem 4.7) under the stronger assumption of pairwise
independence, as the latter one can be reobtained by taking the g j to be linear polynomi-
als. We do not know whether Theorem 7.8 or Corollary 7.9 hold without the assumption of
independence under some natural compatibility condition.

Remark 7.11 Since in the last theorem and its corollary we have been working with a set S of
pairwise independent localities, it is possible to use approximation results from the literature
instead of our Theorem 6.4, with a suitable adjustment of the (U) condition. For example, all
results of this section will remain valid for sets S1, . . . , Sn as in Theorem 5.12.
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