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I 

 

ABSTRACT 

 

Discovery of acoustic emission based biomarker for quantitative assessment of knee 

joint ageing and degeneration 

 By Hongzhi Chen 

Based on the study of 34 healthy and 19 osteoarthritic knees in three different age groups 

(early, middle and late adulthood), this thesis reports the discovery of the potential of knee 

acoustic emission (AE) as a biomarker for quantitative assessment of joint ageing and 

degeneration.  

Signal processing and statistical analysis were conducted on the joint angle signals acquired 

using electronic goniometers attached to the lateral side of the legs during repeated sit-

stand-sit movements. A four-phase movement model derived from joint angle measurement 

is proposed for statistical analysis, and it consists of the ascending-acceleration and 

ascending-deceleration phases in the sit-to-stand movement, followed by the descending-

acceleration and descending-deceleration phases in the stand-to-sit movement. Through the 

quantitative assessment of joint angle signals based on the four-phase model established, 

statistical differences of different knee conditions related to age and degeneration were 

discovered based on cycle-by-cycle variations and movement symmetry.  

For AE burst signals acquired from piezo-electric sensors attached to the knee joints during 

repeated sit-stand-sit movements, the statistical analysis started from the quantity of AE 

events in the proposed four movement phases and extended to waveform features extracted 

from AE signals. While the quantity of AE events was found to follow certain statistical 

trends related to age and degeneration in each movement phase, detail statistical analysis of 

AE waveform features yielded the peak amplitude value and average signal level of each 

AE burst as two most significant features.  

An image based knee AE feature profile is presented based on 2D colour histograms 

formed by the peak amplitude value and average signal level in four movement phases. It 

provides not only a visual trend related to knee age and degeneration, but also enables 

visual assessment of the differences and similarities among different knees. Application of 

principal component analysis showed not only distinct data clusters corresponding to 

participating groups, but also an age and degeneration related trajectory progressing from 

the early adulthood healthy group to the late adulthood healthy group followed by the 

middle adulthood osteoarthritic group to the late adulthood osteoarthritic group. 

Furthermore, this trajectory shows increasing areas for each data cluster, with a highly 

compact cluster for the early adulthood healthy group at one end and a widely spread 

cluster for the late adulthood osteoarthritic group at the other end. The discoveries formed a 

strong basis for further development of knee joint acoustic emission as a convenient and 

non-invasive biomarker for quantitative assessment of joint ageing and degeneration. 
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CHAPTER 1  INTRODUCTION 

 

1.1   BACKGROUND AND MOTIVATION OF THE RESEARCH 

 

The human knee joint is one of the most complex synovial joints located between the femur 

and tibia and capable of withstanding several times body weight [1]. It is one of the largest 

joints in the human body consists of the most complex musculoskeletal structures (Figure 

1-1), and the knee joint movements involving interaction among various anatomical parts 

(bones, cartilages, muscles, tendons, and ligaments) [2]. The human knee joint has been 

studied extensively. Typical changes in knees caused by the ageing process mainly consist 

of the changes of the synovial fluid, ligaments and joint capsules, joint receptors, as well as 

articular cartilages [3].  For old people, the quantity and quality of synovial fluid are 

reduced. The joint capsules and ligaments are stiffer due to the increase in the formation of 

crosslinks in collagen fibres and the loss of elastic fibres. The changes of joint capsules and 

ligaments in turn influence the quality of information received by the joint receptors. The 

ageing also causes deteriorations of the articular cartilages, which include reducing water 

content, chondroitin sulphate quality and content of glycosaminoglycans, quality and 

content of proteoglycans, articular cartilage thickness, synovial fluid perfusion, as well as 

increasing articular surface roughness and resistance to gliding. All these changes will have 

the possibility to result the knee to osteoarthritis (OA) at the late stage [4]. 
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(a) 

 

(b) 

Figure 1-1 Anatomy of human knee joint (a) bones, cartilages and ligaments,  

and (b) muscles and tendons (modified from: 

http://www.bigkneepain.com/knee_anatomy.html) 

Knee OA (also known as degenerative arthritis or degenerative joint disease) is a major 

type of knee disease that leads to the main cause of disability and morbidity worldwide [4-

5]. Its prevalence is predicted to increase as result of ageing populations [6-7]. The primary 

symptoms include joint pain and stiffness, and the pathologies consist of focal damage and 

degeneration of articular cartilages, abnormal remodelling and attrition of sub-articular 
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bones, osteophytes, ligament laxity, weakening of periarticular muscles, and the changes of 

synovial fluid and inflammation [4]. The current treatments include lifestyle modification, 

physiotherapy, medications for OA at the early stage, and total knee replacement (TKR) for 

OA at the advanced stage [5]. However, all treatments aim to relieve the symptoms suffered 

by patients, and none of the medications available are able to reform the disordered joint 

structure consistently [8]. As there is currently no cure for OA, early detection of joint 

degeneration becomes essential.      

Currently, a variety of visual imaging techniques such as X-rays [9], ultrasonography, and 

magnetic resonance imaging (MRI) [9-11] have been widely used to diagnose the knee 

disease, whereby a set of image based results regarding to the internal knee structure is 

provided for clinicians to assess the condition of a knee joint. X-ray diagnosis divides the 

severity level of OA into five stages based on the narrowing of knee joint space [11]. MRI 

and ultrasonography assess the severity levels of OA based on the degeneration of articular 

cartilages [12]. Relatively insensitive and highly observer dependent are the main 

limitations for the conventional radiography assessment. These limitations have led to 

increased utilisation of MRI for knee joint assessment, as it is more sensitive, and produces 

3D anatomical information for visualisation of the knee joint structures [13]. However, the 

cost, availability, portability and observer dependente are considered as the common 

limitations of the MRI examination. Although ultrasonography is more convenient for 

observing knee joint disorders, like the other two methods, it is also heavily observer 

dependent [14-15]. Furthermore, all the above mentioned methods are only able to provide 

a static snapshot of the knee joint in a particular pose, and none of these techniques provide 

dynamic information related to knee movement for activity based joint integrity assessment. 

Although gait analysis is able to assess the dynamic knee functions, it lacks sensitivity [16]. 

Additionally, none of these methods are able to detect OA until it is in the advanced stages. 

A normal knee with smooth and well-lubricated cartilage surfaces should move quietly, 

whereas an unhealthy knee covered by rough and poorly lubricated cartilage surface should 

move unevenly, producing acoustic signals [3]. Based on this scenario, the previous 

arthritis assessments use phonoarthrography (PAG) and vibroarthrography (VAG). PAG is 

based on the auscultation by attaching a microphone on the knee surface to record the 
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audible sound signals (with frequency range from 20 to 20 kHz) emitted during the knee 

performing regular movements [17-18]. It was followed by the development of VAG, 

which uses a miniature accelerometer [19], since it provides better attachment and is more 

sensitive in the lower frequency range, especially below 1 kHz.  

Acoustic emission (AE) is a natural phenomenon of high frequency sound (frequency 

range > 20 kHz) that can be generated by structures under loading or surface interaction, 

and it can be detected by attaching a piezo-electric transducer on the surface of the structure 

[20]. For several decades, AE has been widely applied to condition monitoring to detecte 

the micro-growth of damages inside engineering materials [21]. The knee joint also emits 

sound signals in the ultrasound range when bones, cartilages, ligaments, and soft tissues 

move against each other. By drawing parallels between condition monitoring and the 

dynamic joint integrity assessment, the AE waveforms emitted from the knees were studied 

[22-23]. The previous work consists of the development of the knee AE measurement 

system by integrating a traditional AE acquisition system which was widely used for 

condition monitoring of engineering structures, and an electronic joint angle measurement 

system which has been applied for recording joint movements for biomechanical studies 

[24]; the investigations and comparison of the sensor locations and sensor attachment; the 

development of a repeatable measurment protocol based on consecutive sit-stand-sit 

movements to create the knee joint AE signals; and the exploratory study of the AE signals 

(hits) emitted from normal and abnormal knees to investigate the differences between them. 

Through the studies by dividing the AE signals generated during movements into ascending 

(from sit-to-stand), and descending (from stand-to-sit) movement phases, siginificant 

differences have been found between normal and abnormal knees at two extreme ages and 

conditions (i.e. young adult healthy and old OA) in terms of the quantity of AE events and 

a set of AE waveform features (peak amplitude, duration, and peak frequency) [22-23]. 

However, no work has been performed to investigate the possibility of using AE to monitor 

ageing and degeneration of the knee joints. As the application of AE to the human knee 

joint is new, and detailed studies in terms of ageing and degeneration required more 

participants belonging to various age groups. 
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Building on the previous research findings with clear differences found from young healthy 

and old OA participants, it is hypothesised that there should be a trend of AE based profiles 

related to the knees belonging to various age bands and conditions. If such trend could be 

established, it will form the basis for identifying degenerative change out with the age-

related norms. This would not only enable the possibility of early diagnosis for the knees at 

risk, but also the efficacy of early treatment programmes to be evaluated.    

 

1.2   AIMS AND OBJECTIVES OF THE RESEARCH 

 

The main aim of this project is to discover AE based biomarkers (signatures) for 

quantitative assessment of joint ageing and degeneration, thereby enabling early diagnosis 

and prediction of knee joint structure changes. The term biomarker in this thesis is 

determined by the pattern that indicates the biological status of particular knee [25]. 

The specific objectives of the research are: 

• To undertake knee joint data selection and classification to form the appropriate 

groups with different age bands and conditions for analysis.  

• To discover the relationships between the goniometer derived joint angle signals 

and joint conditions related to age and degeneration.  

• To discover the relationships between the joint angle based AE and joint conditions 

related to age and degeneration. 

• To establish an AE based biomarker for visualising and classifying the knee joint 

conditions related to age and degeneration. 

 

1.3   THESIS ORGANISATION 

 

The organisation of the remainder of the thesis is as follow: 

Chapter 2 gives a brief literature review of the related work. 
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Chapter 3 presents the data acquisition system, measurement protocol based on the sit-

stand-sit movements,  AE data collection, as well as data selection and stratification for 

investigation in this project.  

Chapter 4 evaluates the joint angle signals created by the sit-stand-sit movements 

Chapter 5 devotes to the statistical evaluation of the AE signals, which include the 

statistical analysis of the quantity of AE events and the typical AE features, thereby 

determining the most significant features to represent the AE waveforms acquired.  

Chapter 6 presents the development of the biomarker based on the most significant AE 

features in different movement phases for visualisation and assessment of knee joint 

conditions. 

Chapter 7 summarises the experimental results of the work, emphasises the contributions to 

knowledge, and describes future work to develop AE further for knee joint assessment. 

 

1.4   CONTRIBUTIONS 

 

The original contributions of the work which are considered to be new are as follows: 

• A four movement phase model identified by the instantaneous angular velocity and 

the joint angle signals has been established for further assessment of AE and joint 

angle signals acquired during consecutive and repeated sit-stand-sit movements. 

• The joint ageing and degeneration related trends were discovered via the 

quantitative assessment of joint angle signals in terms of variations of joint angle 

and angular velocities. This was found to be particularly significant in the 

descending phase. 

•  The age/degeneration related differences were discovered via the quantitative 

assessment of movement symmetry based on the time spent and peak velocity ratios. 

This was found to be particularly significant in the DA-DD time ratios and 

ascending and descending peak velocity ratios.  
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• The joint ageing and degeneration related trends were further supported by the 

quantitative evidences of the AE events and the AE features. The increase in the 

number of AE events with certain loss of symmetry corresponds to the increase in 

age and change of joint condition from healthy and OA  [26].   

• An image based AE feature profile was proposed to give a visual and uniform 

representation based on peak amplitude and ASL values in four movement phases 

produced by different knee joints. 

• An age and degeneration related trajectory was discovered in the low dimension 

PCA space with the early adulthood healthy and late adulthood OA knees at two 

extremes. The results showed not only the difference between the age-matched 

healthy and OA groups [27-28], but also the difference between the knees in 

different age bands and with different conditions [26, 29]. 

The work has led to two conference papers and two journal papers (see Appendix H). 
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CHAPTER 2  LITERATURE REVIEW 

 

2.1  INTRODUCTION 

 

This chaper reviews the applications of both vibration (sound signals in the audible range), 

and AE (high frequency ultrasound) for condition monitoring of machinery and biomedical 

assessment of the human body, as well as the study of knee flexion-extension for functional 

assessment of human knee joints. The applications of vibration and AE measurements for 

structural health and biomedical assessments are reviewed in Sections 2.2, and 2.3, 

respectively. As it is easy to exam the conditions by hearing and screening, it is not 

unreasonable to apply the vibration sound for coarse classifying normal and abnormal 

conditions [19]. Compared to traditional vibration signals, AE signals are considered to 

have the following advantages: 

• AE is highly sensitive and offers the possibility to detect the defects and the 

progression of damage at early stage than vibration sound, as ultrasound is more 

related to the microscopic changes [30]. 

• As high frequency elastic waves, AE is less likely to be affected by background 

noise and insensitive to structural resonances  than the tradition vibration signals 

[30]. 

With flexion-extension forming the fundamental action of knee joint movements [2], 

Section 2.4 reviews the studies of two basic movement procotols which have been used for 

measuring the knee joint functions over the whole movement range, namely, swinging, and 

sit-stand-sit, respectively [24]. A summary is given in Section 2.5.   

 

2.2  APPLICATIONS OF VIBRATION MEASUREMENT 

 

2.2.1  Vibration measurement for condition monitoring 

 



 

 

9 

 

The condition of machinery is essential for the operators to make decisions regarding to 

usage, maintenance, and retirement. Vibrations generated by machinery provide a good 

signature of the current condition [31]. Vibration signals in the audible frequency range 

(frequency range < 20 kHz) emitted from machinery can be recorded by using a 

microphone or tri-axial accelerometer. The reasons for the wide use of vibration for 

condition monitoring are due to a better understanding of vibration mechanisms in 

machinery and that the change in vibration signal can easily be attributable to the dynamic 

characteristics and the fault conditions [19, 32]. In this sub-section, condition monitoring of 

bearing surface and gears based on audible vibration signals are reviewed, as they have a 

similar mechanical function as the knee joint (carrying the body mass with movement 

involving interaction among various internal structures) [2].  

Vibration measurement based on the audible vibration signals for monitoring the conditions 

of rolling element bearings were investigated by [33-35]. The investigations include the 

evaluation of signals and noise generated by vibration in bearing [33], as well as audible 

vibration signals related to localised defects (cracks, pits and spalls on the rolling surfaces) 

and distrubuted defects (surface irregularities like roughness, waviness, or off-size of the 

rolling elements) [34-35], which are similar to joint disorders due to bone surface 

roughness and poor lubrication [4]. Applications of audible vibration signals for monitoring 

the health condition of gears were investigated by [30, 32, 36-38]. The investigations 

involve the application to detect the gearbox failure in aviation [36]; the local fault of gears 

in terms of partial damage of tooth, gear crack, and localised wear [32, 37]; the study on the 

diagnostic capabilities of natural pitting of the gears [30]; as well as on-line monitoring of 

the artificially induced gear cracks [38]. Via the statistical, time, frequency, and mixed 

time-frequency approach [39-41], the audible vibration signals showed the ability to 

determine the normal and defective bearing and gears. However, no investigation has been 

performed for condition monitoring of defect progression in bearing and gears based on the 

audible vibration signals.       

 

2.2.2  Vibration measurement for biomedical assessment 
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As knees also create audible vibration signals during moving, vibration based measurement 

methods such as phonoarthrography (PAG) [17-18] and vibroarthrography (VAG) [42-53] 

have been explored as a non-invasive testing technique for assessing knee joints in the past 

two decades. A set of signal processing techniques has been developed for dealing with the 

VAG signals emitted from the knee, which started from the analysis of knee vibration 

signals acquired during knee swinging using a linear prediction method [42, 52], muscle 

contraction interference cancellation [43], and VAG source identification [44] based on the 

evaluations of VAG signals acquired from normal knees, knees subsequently underwent 

arthroscopy, and cadaver knees. The outcomes demonstratetd the potential of the VAG 

based methodology for diagnosis and treatment of knee pathology before and after joint 

surgery or drug therapy. Based on the cross analysis of the clinical parameters and the 

signal variability parameters extracted from the segmented signals, VAG signals were also 

considered as a useful tool for screening normal and chondromalacia patella in the 

following study [45]. 

Afterwards, a comprehensive comparative study was carried out in terms of the parametric 

representations of VAG signals acquired during knee swinging [46], which took into 

account the signal parametric features and the clinical features of 51 normal and 38 

abnormal knees (include knees with chondromalacia, meniscal tear, tibial chondromalacia, 

and anterior cruciate ligament injuries), by applying the regression model [53] to classify 

the dominant features extracted from the segmented VAG signals. The highest accuracy 

rate of 85.9% was achieved. The same VAG signal database has been extended to analyse 

the differences between healthy and abnormal knees via full wavelet packet tree 

decomposition [54] and a local discriminant based algorithm [55], and precise identification 

of normal and abnormal joints can be achieved from certain nodes of the wavelet packet 

tree (with the highest accuracy rate of 84.2 %) [48]. In the recent studies, statistical 

moments [39] were applied to extract additional information from the histograms of VAG 

signals stored in the same database, and the studies include classification of normal and 

abnormal VAG patterns by combining a strict 2-surface proximal classifier [56] and genetic 

algorithm [57]. By dividing the VAG signals into the ascending and descending movement 

phases based on the time scale, feedforward neural networks [58] showed good 

performance to determine normal and abnormal VAG signals by using the statistical 
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moments as well as the adaptive turn counts [59] of VAG signals [50-51]. However, all the 

investigations mentioned above do not show the degree of healthiness and severity of 

symptoms, and the movement phase isolation is simply performed by dividing the entire 

signal duration into two halves.  

 

2.3  APPLICATIONS OF ACOUSTIC EMISSION MEASUREMENT  

 

2.3.1  Acoustic emission measuremrents for condition monitoring 

 

AE occurs as the high frequency transient elastic waves (frequency range > 20 kHz) 

generated by the materials under pressure or vibrating [19], and it can be detected by 

attaching a piezo-electric transducer on the surface of the materials being monitored.  

AE has been applied to monitor the conditions in machinery. The previous work includes 

comparative studies on the diagnostic and prognostic capabilities based on AE, vibration as 

well as other techniques such as spectrometric analysis [30] for bearing surfaces [60-62] 

and gears [30, 37-38]. After establishing AE as a complementary diagnostic tool for 

identification of bearing defects, [60-62] extended the experimental investigation to 

identify the presence and size of a defect on the loaded bearing, and compared AE and 

audible vibration signals by varying speed and load conditions. From the results obtained, it 

was concluded that AE offers early fault diagnosis and better identification capabilities of 

bearing defects in terms of subtle changes than vibration. Furthermore, based on the 

comparative study of AE, vibration and spectrometric methods, through the time, frequency, 

and mixed time-frequency analysis of the signals acquired, AE signals have been shown to 

be able to indicate various types of progressing local faults in terms of partial damage of 

tooth, gear crack, and localised wear [32, 37], natural pitting [30], and early diagnosis of 

natural wear [38] in the gear systems. 

Additonally, literature results show that the applications of AE also include health 

monitoring of aerospace structures [63]; indication of tool wear based on chatter vibration 

and AE response [64]; condition monitoring of various wear particles during repeated dry 
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rubbing [65]; structure failure detection and quality evaluation of shotcrete in the reinforced 

concrete slabs [66]; fatigue growth monitoring in the aluminium alloy [67], as well as 

damage progression monitoring for composite laminates [68]. By analysing and processing 

the AE signals using the AE waveform features [69], the time reverse modelling method 

[70], the mixed time-frequency analysis [41], and the multivariate statistics [53], AE were 

also found to provide a useful signature and sensitivity to detect subtle changes such as the 

early stage defects and the progression of damage for the above mentioned materials.  

 

2.3.2  Acoustic emission measurements for biomedical assessment 

 

In biomedical assessment based on AE, several studies presented AE as a useful tool for 

bone condition assessment [71]. In the previous study, it was applied to examination of 

micromechanics of bone failure [72]. During the study, cyclic loading was applied to the 

bone to generate AE, and the result showed that AE is sensitive for monitoring the 

development of damage on the bone. In the following study, AE was extended to predict 

bone fracture at an early stage [73], and it was found that crack initiation in human bone 

was detectable by using AE signals emitted. AE has also been employed as a passive 

experimental method for assessing the acrylic bone cement failure of the hip joint [74-75]. 

Through the quantitative assessment of a set of AE waveform features (i.e. magnitude, 

duration, rise time, etc) [68], fatigue related AE trends corresponding to the duration and 

rise times were found, with severe fatigue related to longer duration and rise times. For 

other applications, AE also has been successfully explored as the signature for in vitro 

monitoring of rabbit anterior cruciate ligament (ACL) damages [76]. From the experiments 

involving the complete rupture of 16 rabbits’ tibia-ACL-femur and the complete failure of 

4 ACL specimens, the results based on the ratio of AE waveform peak amplitude and rise 

time were seen to have certain similarities to the categories of matrix deformation, 

debonding and fibre fracture used in testing of fibre composite materials (with low peak 

amplitude and short rise time corrsponding to matrix deformation and high peak amplitude 

and long rise time corresponding to fibre fracture). Additionally, the quantitative 

assessment of AE data acquired from the adult rat femora supports the hypothesis that 
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immobilisation-related degradation of bone mechanical properties is associated with 

increasing brittleness of cortical bone tissues [77].   

For AE based human knee joint assessment [22-23, 78], early studies involved the 

observation and identification of AE signals emitted from the knees with various cartilage 

lesion and the knees at the disordered stage under typical daily loading (include knee 

bending, stairs ascending/descending and walking) [78]. In the following studies, the AE 

based joint measurement has been developed for examing the dynamic integrity of normal 

and abnormal knee joints. Through the exploratory study to investigate the potential of AE 

for clinical assessmemt of knee joints based on consecutive and repeated sit-stand-sit 

movements, the results demonstrated significant differences between young healthy and 

elder OA knees [22-23], and provide the basis for further development of AE for 

assessment of ageing and degeneration of human knee joints reported in this thesis. 

 

2.4  STUDIES OF KNEE JOINT FLEXION-EXTENSION 

 

2.4.1  Studies of knee joint movement based on swinging 

 

Knee joint swinging plays an important role in the assessment of pre-operative and post-

operative assessment of the TKR [79-81]. Based on the studies over 145 subjects, it has 

been found that the effectiveness of TKR can be assessed based on the range of motion of 

knee flexion-extension [79]. In the followed studies [80], by investigating a group of 284 

knee replacement cases, increased risks of post-operative flexion contracture were found 

from the knees with certain flexion-extension deformity. Based on the studies over 5,622 

knees after sugery [81], it was confirmed that the range of knee flexion-extension can be a 

useful marker for post-operative functional assessment of the knees.  

Knee flexion-extension based on swinging has also been applied to assess the age-related 

knee joint disorder [82-86]. Based on the studies of swinging in younger and older normal 

subjects [82-83], statistical significance in terms of flexion-extension laxity has been found 

between them with elder subjects related to higher joint laxity in flexion but not in 
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extension. This finding has led to the following study concentrating on the relationships 

between certain knee flexion angles and the joint disorders for younger and elder healthy 

cohorts [86], and significantly higher medial and lateral laxities which results to the 

changing of knee joint space have been found from older knees when positioning the knees 

in 10
o
 and 80

o
 flexion. By flexing the knee to 90

o
 and cross analysis with the MRI images 

of 20 post-operative TKR patients, higher lateral laxity than medial laxity were observed 

[83]. From the studies of flexion-extension range of motion from 30 elder healthy subjets, 

no signicant differences were found among them [85]. 

 

2.4.2  Studies of knee joint movement based on sit-stand-sit 

 

With sit-stand-sit movements involving the kinetic and kinematic variables in trunk-lower 

limb interaction, they are another important test to determine the functional level of a 

person [87]. Sit-stand-sit movements have been studied for both healthy and abnormal 

participants of various ages [88-93]. 

The studies of normal subjects include the duration and velocity assessments of the sit-

stand-sit movement cycles [87]. Based on the investigation of 50 subjects (including young 

adults, middle aged, and elder normal subjects), and by dividing the sit-stand-sit movement 

cycles into ascending and descending phases, the average durations showed that the 

descending movement spent slightly longer time than ascending; the forward lean velocity 

was significantly higher in ascending than descending; and the recovery velocity was 

significantly higher in descending than ascending. The sit-stand-sit method was also used to 

determine the movement characteristics for the healthy bodies [89]. By assessing 34 young 

and 33 elder healthy participants performing sit-stand-sit movements using self-selected 

speed, and by including a force measurement system, young adult subjects were found to 

displace the centre of pressure further forward and through a greater percentage of their 

initial base of support than older subjects. In the followed study, the motor strategy in terms 

of the centre of mass of sit-stand-sit movements was investigated [90] based on sit-stand-sit 

movements performed by 16 young and 35 old healthy subjects via their natural speed. 
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Compared to the younger healthy subjects, it was found that the elder healthy subjects tend 

to flex the trunk more in order to bring the centre of mass closer to the based of support at 

higher speed, thereby compensating the stability when lifting off from the chair.   

The comparison of sit-stand-sit movements performed by the healthy and abnormal 

subjects was also made [91-93]. By including the force plate to acquire the ground reaction 

force, and taking into account the influence of hand force to the ground reaction force 

location of the sit-stand-sit movement performed by a total of 51 subjects (17 young, 23 

elderly healthy, and 11 elderly impaired), a trend was discovered that impaired elder 

subjects placed the reaction force the most anterior, elder subjects place it intermediately, 

and young subjects place the least anterior [91]. The kinematic and kinetic characteristics of 

the healthy and cerebral palsy children were investigated in the followed study [88]. By 

taking into account 27 healthy and 21 symptomatic subjects, the kinematic evaluation 

showed slowness of motion, increased anterior tilting and hip flexion in the abnormal group 

compared with the normal group, and the major kinetic finding showed that the maximum 

knee extensor moment was decreased in the cerebral palsy children group. The kinetic, 

kinematic, and temporal parameters were also assessed for 13 healthy and 7 hemiplegic 

adults [93] performing sit-to-stand movements. With the sit-to-stand movements 

partitioned into three phases (i.e. initialisation with the trunk begin to lean forward, seat-off 

at the first point with body changing from sitting to standing position, and stabilisation at 

the fully stand position), it was confirmed that the duration of the seat-off for the abnormal 

adults was around twice as long as for healthy adults, the values of kinematic parameters 

for the abnormal group were greater than the normal group, and the kinetic parameters 

showed high asymmetry in the abnormal group with high values observed in the hemiplegic 

side.      

 

2.5  SUMMARY 

 

In this chapter, the applications of audible and ultrasound acoustic signals, as well as the 

studies of the knee joint movements in terms of flexion-extension were reviewed. By 
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evaluating audible vibration signals emitted from the gears and bearings, as well as the 

human knee joints, there is ample evidence that audible vibration signals could be a useful 

signature for detecting the defects of materials and the disorders of human joints. As AE 

signals are more related to the microscopic changes, and more robust against the 

background noise than the audible signals, it has been applied for assessing subtle changes 

and the progression of damage. In terms of joint movements, swinging and sit-stand-sit 

have been used for functional assessment with age and pathology related differences found.  

From the literature with AE showing a capability to detect subtle changes in condition 

monitoring and the progression of damage for both biomedical and machinery assessments; 

and sit-stand-sit movements showing a capability to reveal differences related to age and 

degeneration, and from the exploratory study of knee AE signals from sit-stand-sit 

movements with the results showing significant differences between young healthy and 

older OA knees, it is reasonable to expect knee AE signals from sit-stand-sit movements to 

form a biomarker of knee age and condition. If such biomarker can be discovered, it will 

enable the monitoring of progression of damage, as well as the early evaluation of the knee 

joints at risk. 
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CHAPTER 3  DATA ACQUISITION 

 

3.1  INTRODUCTION 

 

This chapter introduces the data acquisition system used to record AE and joint angle 

signals, the joint movement based data acquisition protocol, the joint angle based AE, as 

well as the data collected and the signals used for study. The traditional AE and the 

electronic angle measurement systems, as well as the integration of the two systems and the 

AE hit definition are introduced in Section 3.2. Section 3.3 is devoted to the movement 

based data acquisition protocol and the joint angle based AE signals acquired. The data 

collected and the signal selection criterion are described in Section 3.4 and Section 3.5, 

respectively. Concluding remarks are given in section 3.6. 

 

3.2  DATA ACQUISITION SYSTEM 

 

The data acquisition system includes a traditional AE system which is frequently used for 

monitoring engineering structural integrity and an electronic angle measurement system for 

acquiring joint angle signals. While the former is presented in Sub-section 3.2.1, the latter 

is presented in Sub-section 3.2.2. The system setup and AE hit definitions are described in 

Sub-section 3.2.3. 

 

3.2.1  AE system 

 

The AE system (Figure 3-1) is sponsored by the Physical Acoustic Ltd (Cambridge, UK), 

which consists of two piezo-electric AE transducers (model S9204) to record transient AE 

signals from two knees, two gain selectable pre-amplifiers (2/4/6 preamplifier) to provide 

40 dB gain for each sensor, a PCI-2 data processing board for receiving and pre-processing 
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the signals acquired, and a PCI expansion card to link the PCI-2 board with the computer 

[69].  

S9204 is a general purpose AE sensor with dimensionalities of 23 mm × 15 mm (diameter 

× height), which provides an appropriate size to be attached on the knee, and a good 

sensitivity over a wide frequency bandwidth (50-200 kHz), which is better in terms of 

investigation when recording new signals from an unknown process (in this case unknown 

friction inside human knee joints). The details of the sensor specifications are shown in 

Appendix A. Before data acquisition, the pencil lead breaking approach was applied to test 

the AE sensor response [94], the details of AE sensor testing can be found in Appendix B. 

 

Figure 3-1 AE system 

 

3.2.2  Angle measurement system 

 

To link the movement based AE signals with the knee joint angles, an electronic 

goniometer system which sponsored by Biometrics Ltd (Cwmfelinfach, UK) is integrated 

to record angular movement from each knee joint (Figure 3-2). It consists of two twin axis 

goniometers (model SG-150) as well as a goniometer receiver (subject unit) and the 



 

 

19 

 

corresponding amplification unit (base unit, model K800) for receiving and pre-processing 

of joint angle signals [95].  

SG-150 is a twin-axis goniometer with a measurement range of ±150
o
, which is specially 

designed for measuring lateral flexion and extension of the knee joints. Detail 

specifications of the sensors used can be found in Appendix C. Prior to data acquisition, the 

linear regression approach was used to calibrate the goniometer system [96], and the details 

of the goniometer calibration process can be found in Appendix D.   

 

Figure 3-2 Electronic angle measurement system 

 

3.2.3  System setup and AE hit definition 

 

The block diagram of the system setup is shown in Figure 3-3, where the AE sensors and 

electro-goniometers are connected to the pre-amplifiers and goniometer amplification unit, 

respectively, before linking both to an AE acquisition board (PCI-2 board). In order to 

synchronise two systems, the AE sensors are connected to the two receiving channels of the 

PCI-2 board directly, and the connection between the PCI-2 board and the goniometers are 

made via a J6 parametric and digital I/O connector [69]. Furthermore, the PCI-2 board is 

connected with a laptop computer using a PCI expansion card. Based on this connection, 
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both the electronic angle measurement system and AE system can be triggered by the 

AEWin software (AEWin version 3.02, Physical Acoustic Ltd, Cambridge, UK). 

 

Figure 3-3 Block diagram of system connection 

Four hit definition parameters are used to determine an AE transient waveform, namely, 

threshold, peak definition time (PDT), hit definition time (HDT), and hit lockout time 

(HLT). A burst signal is recognised as an AE waveform when the burst signal magnitude 

crosses the threshold. In this project, the threshold is set to 32 dB (39.8107 µV), thereby 

minimising the noise signals acquired and ensuring as much appropriate signals acquired as 

possible, as lower threshold value could cause higher amount of lower-level AE signals 

acquired by the system, which may include more noise; whereas higher threshold value 

could result lower amount of AE signals acquired by the system, which may cause certain 

loss of useful information. The PDT is the retriggerable window used to determine the real 

peak of an AE hit detected, and it is triggered each time when a new AE maximum has 

been detected within the duration of PDT. The HDT is the retriggerable window which is 

used to determine the end of the AE event and store its measured attributes. It is triggered 

by each threshold crossing from a higher AE magnitude value to a lower AE magnitude 

value within the duration of HDT. The HLT is used to inhibit the measurement of 

reflections and late-arriving parts of AE signals, thereby ensuring the data to be acquired at 
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a faster rate after a hit being detected. HLT is a non-retriggerable window, which is 

triggered by the last threshold crossing of the AE hit detected. In order to avoid detection of 

false peak magnitudes, PDT should be set as short as possible but long enough to detect the 

real AE maximum, whereas HLT and HDT should be at least twice the length of PDT, 

thereby ensuring that the system is ready for detecting the next hit while the late-arriving 

part of waveform from the previous hit is locked out, as well as reducing the risk that two 

separate AE hits will be treated as a single one. As an example shown in Figure 3-4, PDT 

and HDT are retriggered by the new AE maximum and the new threshold crossing within 

the window length, respectively, and HLT is triggered to lockout the remaining part and 

finish the current waveform detection when there is no more maximum detected and 

threshold-crossing within the length of PDT and HDT. In this particular project, these three 

parameters are fixed to PDT = 200 µs, HDT = 800 µs, and HLT = 1000 µs, respectively, 

which is considered as an appropriate setting through the observation of preliminary system 

tests [23]. In order to minimise the data volume, AE signals are recorded in a non-

continuous mode. Each AE event is stored as a waveform digitised at 1MHz sampling  

 

Figure 3-4 Illustration of the hit definition parameters 
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frequency over a maximum duration of 15 ms which includes a time of 3 ms before 

threshold crossing. 

 

3.3  DATA ACQUISITION PROTOCOL AND ANGLE BASED AE 

 

The AE events were acquired by attaching the sensor on the location upon medial 

compartment and below the mid-line of patella. This specific anatomical site has shown to 

provide good measurement sensitivity [23], because it is closest to the area of contact 

between surfaces moving against each other in the knee joint, and it offers a relative stable 

sensor position that is less affected by skin movement. As shown in Figure 3-5, the sensor 

was attached on the knee through a 130 mm × 130 mm hypoallergenic medical adhesive 

patch (Tape Specialities, Berkhamsted, UK). In order to make a convenient connection 

after sensor attachment, a small hole is made in each tape before sticking it on the knee. For 

sensor attachment, each knee is supported in extension and the adhesive tape is applied in 

such a way so as to provide the highest possible elastic tension to hold down tightly each 

AE sensor on the anatomical site. This prevents the AE sensor from sliding during joint 

movement as joint flexion will create a greater elastic tension to press down further the AE 

sensor on the anatomical site. To ensure sufficient acoustic coupling between the sensor 

face and the knee surface with minimum acoustic attenuation [23], the conductive gel was 

utilised to fill air gaps caused by skin roughness and hairs. To record AE signals 

consistently, the sensors used for the left and right knees were fixed by the product serial 

number. The goniometer with a fixed sampling interval of 0.01 second is attached between 

the lateral side of thigh and shank using double sided medical tape. 

For the knee to create AE signals, it is required to move under loading. Based on the 

previous studies [22-23], the participants were asked to perform 10 consecutive and 

repeated sit-stand-sit movements at their preferred and comfortable speed through a series 

of 5 consecutive movements with 30 seconds to 1 minute break between each series. Each 

sit-stand-sit movement consists of ascending from a 40 cm high chair until reaching a fully 

erect standing position, and descending back to return to the sitting position. In order to 
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minimise the influences of movement strategies [87], a chair with backrest and without 

armrest was used, and all the study participants were required to cross arms in front of their 

chest when performing the movements. Before starting data acquisition, each participant  

 

 

 

Figure 3-5 Sensor location and attachment 



 

 

24 

 

was asked to perform 3 to 5 consecutive movements, in order to become familiar with the 

movement protocol. The AE signals created by this familiarisation activity were not taken 

into account. 

An example of joint angle based AE acquired by the system from a participant for a set of 

five consecutive and repeated sit-stand-sit movements is shown in Figure 3-6, there are five 

cycles in the joint angle signal corresponding to five repeated sit-stand-sit movements. The 

solid curve represents the joint angle signal, the minimum joint angle in each cycle 

corresponds to the knee flexion angle in the sitting position and the peak joint angle 

corresponds to the knee extension angle at the standing position, respectively. There exists 

a variation in the starting flexion angle among the participants, as it is determined by the 

participants’ leg length which could not be controlled. The red dots superimposed on the 

angle signal correspond to individual AE events which satisfy the hit definition parameters 

stated in Sub-section 3.2.3. 

 

Figure 3-6 Joint angle based AE 

Each individual AE event is accompanied by a set of characteristic waveform features [69] 

that can be grouped as follows:  

• Amplitudes: 
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o Peak amplitude: Peak amplitude value (positive or negative) of individual 

waveform, measured in unit of dB. 

o ASL:  Average amplitude of AE signals, measured in unit of dB. 

• Times: 

o Duration: Time continuation of the AE event between the first and the last 

threshold crossing, measured in unit of microseconds (µs). 

o Rise time: Time interval between the first threshold crossing and the AE 

peak amplitude, measured in unit of µs. 

o Fall times: Time interval between the peak amplitude and the last threshold 

crossing, measured in unit of µs. 

• Energy: 

o Signal strength:  Integral of the rectified signal voltage over the duration of 

AE waveform, measured by picovolt-second (pV-s).  

o Absolute energy: Integral of the squared voltage divided by the reference 

resistance (10 kΩ) over the duration of AE event, measured in attoJoules 

(aJ).  

• Signal counts: 

o Counts: Number of AE pulses exceeding the detection threshold. 

o Counts to peak:  Number of AE pulses between the first pulse exceeding the 

threshold and peak amplitude. 

o Counts down: Number of AE pulses between the peak amplitude and the last 

AE pulse exceeding the detection threshold . 

• Frequencies: 
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In the following, the first two frequency based features are derived from the power 

spectrum of AE hits calculated using the Discrete Fourier Transform (DFT) [97] 

and the remaining ones are derived from the relationships between the number of 

pulses and the time related components in each AE event. 

o Peak frequency:  Defined as the frequency of peak magnitude in the power 

spectrum, measures in unit of kilo-Hertz (kHz). 

o Centre frequency: Centre frequency over the whole duration, this is 

determined as: 
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where |a(n)| and f(n)  are referred to as the corresponding magnitude and 

frequency of the n
th

 Fourier frequency bin in the total of l frequency bins, 

respectively. Same as the peak frequency, the centre frequency is also 

measured in kHz. 

o Average frequency: Average frequency over the whole duration, measured 

in kHz, and it is calculated by 

 
a

counts
f

duration
=  (3-2)   

o Initiation frequency: Frequency of the initial waveform before the peak 

amplitude, also known as the rise time frequency. It is calculated by counts 

to peak divided by the rise time, and also measured in kHz, as shown in 

equation (3-3) 
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f

rise time
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o Reverberation frequency: AE frequency which can be computed by equation 

3-4, measured in kHz 

r

counts down
f

fall time
=  (3-4) 

As an example, Figure 3-7 illustrates a typical AE waveform from a healthy knee, and a 

typical AE waveform from an OA knee, accompanied by the AE descriptors corresponding 

to each waveform. 

 

                                 (a)                                                                                     (b) 

Figure 3-7 AE waveform example from (a) healthy knee; and (b) OA knee 

 

3.4  STUDY PARTICIPANTS AND DATA COLLECTED 

 

As shown in Table 3-1, AE and joint angle signals were collected from 72 participants. It 

includes 38 healthy subjects, 16 OA subjects, 7 rheumatoid arthritis (RA) subjects, 8 

subjects with joint damage, 2 subjects with joint pain and the remaining one subject after 



 

 

28 

 

total knee replacement (TKR). The RA group consists of 6 subjects with rheumatoid 

arthritis and 1 subject with polyarthritis. The damage group includes 2 cartilage damage 

(two females), 2 ligament and cartilage damage (two males), and 4 joint injury participants 

(one male and three females). The healthy participants were recruited from the student and 

staff population at the University of Central Lancashire, and the local population in Preston 

area. All healthy participants were identified as the participants with knees not receiving 

any clinical treatments, or not having historic diagnosis as joint disorder by clinicians. The 

abnormal participants were recruited from among patients referred for physiotherapy to the 

Blackpool, Fylde & Wyre NHS Foundation Trust, all subjects were clinical-confirmed as 

joint disorder or symptomatic. The study was approved by the NHS local research ethics 

committee. 

Joint condition Number of subjects MA ± SD 

(years) 

ABMI ± SD 

(kg/m
2
) 

Healthy 38 56.26±21.12 25.84± 3.55 

OA 16 63.94 ± 9.53 29.53±3.83 

RA 7 59± 12.78 33.25±1.50 

Damage joints 8 48.63±15.64 29.13±3.14 

Joint pain 2 78±1.41 29±5.66 

TKR 1 85 32 

Total 72 

Table 3-1 Age and BMI of each participating group with MA and SD denoting mean age 

and standard deviation  

The body mass index (BMI) of each participant was derived from the general health and 

well-being questionnaire based on the participant’s weight and body height, represented by 

the ratio of body weight and height squared in unit of kg/m
2
. The BMI statistics for 6 main 

groups are also shown in Table 3-2, two healthy participants (aged 73 and 77 years), and 

three RA participants (aged 38, 69, 44 years) were excluded due to either body mass or 
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height missing. As the average BMI (ABMI) values of 6 main groups shown in the table, it 

is seen that the healthy subjects’ ABMI value is slightly higher than the lower bound of the 

overweight level (ranged from 25 to 29.9 kg/m
2
). For the subjects with OA, joint damage, 

joint pain, the ABMI values are close to the upper bound of the overweight level. For RA 

participants, it is seen to reach the obesity level, with values varying between 30 and 34.9 

kg/m
2
. 

Additionally, the healthy subjects can be further divided into three sub-groups, and the OA 

subjects can be further divided into two sub-groups based on their ages, the statistics of 

these sub-groups are shown in Table 3-2. From the ABMI values of the healthy and OA 

sub-groups shown in Table 3-2, most of healthy subjects aged from 20 to 40 years are seen 

to be in the normal weight condition (normal BMI is expected to vary from 18.5 to 24.9 

kg/m
2
). Similar ABMI values are also observed from participants aged from 41 to 60 years 

and aged over 61 years in the healthy sub-groups, with the ABMI values for these two 

groups slightly higher than the lower bound of the overweight level. The ABMI values for 

the two OA sub-groups show that most of the subjects with knee OA are overweight, with  

Joint 

condition 

Number of 

subjects 

MA ±SD 

(years) 

 

ABMI ± SD 

(kg/m2) 

Healthy sub-group aged 20 - 40 

years 

10 27.70 ± 3.67 24.90 ± 3.67 

Healthy sub-group aged 41 - 60 

years 

10 51.20 ± 5.80 26.60 ± 3.13 

Heathy sub-group aged above 61 

years 

18 74.78 ± 8.61 26.39 ± 3.63 

OA sub-group aged 50 - 60 years  6 55 ± 1.90 28.50 ± 3.02 

OA sub-group aged above 61 years 10 70.80 ± 6.43 29.60 ± 3.72 

Table 3-2 Age and BMI of healthy and OA sub-groups 
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the maximum ABMI value from the eldest OA sub-group. 

In terms of clinical data collection, healthy and OA subjects were required to answer a knee 

injury and osteoarthritis outcome scores (KOOS) questionnaire [98], an SF36 questionnaire 

[99], and a general health and well-being questionnaire (appendix E) that includes the body 

height, the body mass, and the experienced abnormal symptoms of left and right knees 

(includes clicking, difficulty in moving, grating, locking, pain, reduced range of movement, 

stiffness, swelling, and tenderness), thereby clarifying the clinical status of both knees for 

each study participant. Additionally, for OA group, the Kellgren & Lawrence (K-L) X-ray 

scores [11] of 10 knees with grades 1-4 corresponding to doubtful, minimal, moderate, and 

severe stages were also recorded, in order to measure the severities of damage. There are 2 

knees with grade 1 (aged 55 and 82 years), 2 knees with grade 2 (aged 52 and 55 years), 3 

knees with grade 3 (aged 55, 64 and 67 years), and 3 knees with grade 4 (aged 64, 71 and 

73 years). For other abnormal subjects, the joint conditions were measured by the SF36 and 

the general health and well-being questionnaire.  

 

3.5  DATA SELECTION 

 

With a large number of healthy and OA knees in different age groups, it enables the project 

to focus on discovery of a potential AE based biomarker for quantitative assessment of 

knee joint ageing and degeneration. In order to ensure all signals used are collected from 

the knees under the clear clinical statuses. All selected healthy signals were collected from 

the knees without either previous treatment or experienced abnormal symptoms assessed by 

the general health and well-being questionnaire, and all selected OA signals were collected 

from the knees with radiological confirmation. The family arthritis histories, physical 

activities, and genders are not considered in this study. The data selected can be 

summarised as below: 

• Group H1 early adulthood healthy knees, with 10 asymptomatic healthy knees 

selected from 8 healthy participants with ages 22-40 years (MA + SD = 29.42 ± 

5.45 years). These 10 asymptomatic healthy knees consist of both knees from 2 
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healthy participants who had claimed both knees being normal and one knee from 

another 6 healthy participants who had claimed one knee without abnormal 

symptoms.  

• Group H2 middle adulthood healthy knees, with 11 asymptomatic healthy knees 

selected from 8 healthy participants with ages 42-58 years (MA + SD = 50.00 ± 

5.07 years). These 11 asymptomatic healthy knees consist of both knees from 3 

healthy participants who had claimed both knees being normal and one knee from 

another 5 healthy participants who had claimed one knee without abnormal 

symptoms.  

• Group H3 late adulthood healthy knees, with 13 asymptomatic healthy knees 

selected from 11 healthy participants with ages over 61 years (MA + SD = 71.27 ± 

6.99 years). These asymptomatic healthy knees consist of both knees from two 

healthy participants who had claimed both knees being normal and one knee from 

another 9 participants who had claimed one knee without abnormal symptoms.  

• Group OA1 middle adulthood OA knees, with 7 OA knees selected from 6 OA 

participants with ages 50-60 years (MA + SD = 55.00 ± 1.90 years). These OA 

knees consist of both knees from one OA participant based on radiological 

confirmation and one knee from another five OA participants based on clinician 

diagnosis. 

• Group OA2 late adulthood OA knees, with 12 knees selected from 8 participants 

with ages over 61 years (MA + SD = 69.50 ± 6.39 years). These OA knees consist 

of both knees from four OA participants based on radiological confirmation and one 

knee from another four OA participants based on clinician diagnosis. Two 

participants were removed from the study due to data conversion problem. 

For the healthy groups, the youngest and the eldest knee ages are 22 and 83 years, 

respectively. For the OA groups, the youngest and the eldest knee ages are 52 and 82 years, 

respectively.  
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3.6  CONCLUDING REMARKS 

 

This chapter has focused on the description of the system used to acquire AE and joint 

angle signals, the system setup, the movement based data acquisition protocol, the joint 

angle based AE, as well as the data collected. The data acquisition system consists of the 

traditional AE system and the electronic angle measurement system, which includes two 

circular piezo-electric AE transducers, and two twin-axis electro-goniometers along with 

the corresponding signal receiving, amplification and pre-processing units. The motivation 

of integrating the angle measurement modality with the AE measurement modality is to 

allow the occurrence of AE signals to be related to the joint angles. Both AE and electronic 

goniometer system are firstly connected to the corresponding amplification and pre-

processing units, and then synchronised by the same trigger, and both of signals are pre-

processed by using the PCI-2 data processing board. An AE event is determined when the 

transient signals satisfy four hit definition parameters, namely, threshold, PDT, HDT, and 

HLT, respectively.  

The AE events were recorded by attaching piezo-electric transducers and goniometers 

inferior to the patella and anterior to the medial compartment (nearest location toward the 

knee weight bearing surface) and lateral side of the leg, respectively. As AE signals are 

generated when the knee is under pressure, participants were required to make two sets of 5 

consecutive and repeated sit-stand-sit movements using the preferred and comfortable 

speeds to create AE and joint angle signals. All participants were required to fold arms in 

front of their chest, in order to minimise the influence of movement strategies. The joint 

angle based AE accompanied by a set of waveform features were recorded using the non-

continuous mode.  

AE and joint angle signals, as well as the clinical records were collected from 72 subjects, 

including 38 healthy participants, 16 OA participants, 7 RA participants, 8 participants with 

joint damage, 2 joint pain participants and 1 OA participant after TKR. The healthy and OA 

subjects can be further divided into five sub-groups based on their ages. In terms of the 

ABMI values, the values showed that most of the participants in healthy, OA, damage 

joints and joint pain groups are overweight, and most of participants in RA and after TKR 



 

 

33 

 

group are obese. For the five healthy and OA sub-groups, most of the participants in the 

early adulthood healthy group are seen to have normal weight, whereas most of the 

participant in the other four groups are seen to have overweight. The AE signals used to 

study are captured from 10 group H1 knees, 11 group H2 knees, 13 group H3 knees, 7 

group OA1 knees and 12 group OA2 knees. In order to ensure all the signals used to 

investigate joint ageing and degeneration were under clear clinical statuses, all the healthy 

signals were selected from the knees without any experienced abnormal symptoms or 

previous treatments, and the OA signals were all selected from the knees that were 

radiologically-confirmed. The family arthritis histories, physical activities, and genders 

were not considered. 
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CHAPTER 4  ANALYSIS OF JOINT ANGLE 

SIGNALS  

 

4.1  INTRODUCTION 

 

This chapter presents processing and analysis of joint angle signals. Section 4.2 introduces 

the pre-processing of joint angle signals. As consecutive and repeated sit-stand-sit 

movements are performed by all participants, they are isolated based on joint angle and 

angular velocity into individual cycles with four movement phases proposed for measuring 

the statistical outcomes. Section 4.3 analyses the joint angle signals in terms of the cycle-

by-cycle variation and the symmetry of individual sit-stand-sit movement cycle, 

represented by the average correlation coefficients and the symmetric ratio, respectively. 

Concluding remarks are given in Section 4.4. 

 

4.2  MOVEMENT ISOLATION 

 

With sit-stand-sit forming the fundamental action in the movement protocol to create knee 

AE signals, each sit-stand-sit movement cycle performed by a participant can be considered 

as performing one individual test that gives a particular AE measurement outcome. With all 

participants performing consecutive and repeated sit-stand-sit movements, it is not 

unreasonable to assume some meaningful statistics to be embedded in the multiple 

measurement outcomes generated by the repeated movement actions [23]. Based on this 

assumption and the underlying biomechanical strategies of movement, the consecutive and 

repeated sit-stand-sit movements are separated to individual movement cycles with four 

movement phases proposed for measuring the statistical outcomes. 

The procedures for movement cycle separation can be briefly summarised as below: 
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• Smooth the raw angle signal using a moving average window, which is derived by 

[40], thereby removing the short-time fluctuations occurred during knee movement. 

The definition of the moving average window used to smooth the joint angle signals 

is given by: 

 

( )

( )

t k
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t

t
k

θ
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+

=
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(4-1) 

where k is referred to as the window length, θr(t) denotes the joint angles before 

smoothing with t as the sample index, and θs(t) is the smoothed joint angle at 

sample t.  

• Calculate the instantaneous angular velocity by using the definition given by: 
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s
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t

dt t

θ θ θ
ω

− −
= =  (4-2) 

where θs(t) and θs(t-1) are the smoothed joint angles at sample t and t-1, respectively, 

and ts denotes the sampling interval of the goniometer, which was set to 0.01 

seconds for all data acquisition. 

• With the instantaneous angular velocity calculated, a velocity threshold of |ω(t)| = 

0.1 °/s was provided to determine the start and stop time of each movement cycle. 

The knee joint is considered to be in motion when |ω(t)| > 0.1°/s, and static when 

|ω(t)| ≤ 0.1°/s, where |ω(t)| denotes the absolute values of the angular velocity 

computed by equation (4-2). 

Figure 4-1 shows an example of angle signal before smoothing and the smoothed angle 

signal over 10 movement cycles, with the raw angle signals shown in the left half of the 

figure, it is seen that before smoothing, there are local fluctuations in the signal, mainly at 

the start and stop of each sit-stand-sit movement. This will influence the movement cycle 

isolation, because short time fluctuations will have possibility to drive the local velocity to 

a high level due to the sampling interval being fixed to as short as 0.01 second. By 

comparing with the signals shown in the right half of the figure, it is seen that the angle 

signal can be smoothed using the above mentioned moving average window with a length 

of 50, which was found to be appropriate for all joint angle signals.  
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Figure 4-1 Angle signals before and after smoothing 
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With the knees moved under the preferred and comfortable speed, the variations in the 

durations of individual movements are analysed. Figure 4-2 shows the statistical differences 

in individual movement duration for all the knees performing 10 repeated movements, 

where the dots and whisker represent the average duration and the corresponding SD value 

over 10 movement cycles. By observing the deviations shown in the figure, it is seen that 

the consecutive movements performed by most of knees studied can be considered as 

repeatable, with the SD values less than 1 second for all the knees studied. By using the 

mean and SD plots of the late adulthood healthy group (H3) as the reference, movement 

durations of group H1 and H2 knees are shown to be more consistent than two OA groups, 

with all deviations shorter than 0.5 seconds. Although some movement durations with 

slightly higher variations start to appear from group H3 knees, they can be considered as 

repeatable as movement durations with high deviations can be associated mainly with the 

long average durations (the highest deviation of 0.73 seconds corresponding to the average 

duration of 4.73 seconds appears in one of OA2 knees).   
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Figure 4-2 Durations of individual movements for all knees studied 
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Figure 4-3 Normalised joint angle and angular velocity with AE hits from healthy knee in 

group H1 

  

Figure 4-4 Normalised joint angle and angular velocity with AE hits from OA knee in 

group OA2 
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By performing movement cycle separation, Figures 4-3 and 4-4 show a set of five cycles of 

joint angle and angular velocity signals superimposed on each other together with AE hits 

represented by dots, where the time scale of each movement is normalised by its full 

duration in order to compare the data from different movements based on a comparable 

scale. From the angle and angular velocity signals shown in Figures 4-3 and 4-4, it can be 

seen that each individual sit-stand-sit movement can be divided to the ascending phase (sit-

to-stand) and the descending phase (stand-to-sit) by using the occurrence of peak joint 

angle, and each ascending/descending phase can be further divided into the acceleration 

phase and the deceleration phase using the maximum velocity values in the 

ascending/descending phase, thereby forming the following four movement phases: 

• The ascending-acceleration (AA) phase from the start of the movement at the sitting 

position to the occurrence of the peak angular velocity. 

• The ascending-deceleration (AD) phase from the peak angular velocity in the 

ascending phase to the occurrence of the peak angle upon reaching the standing 

position. 

• The descending-acceleration (DA) phase from the occurrence of the peak angle to 

the occurrence of the peak angular velocity in descending. 

• The descending-deceleration (DD) phase from the peak angular velocity to the stop 

of the movement at the sitting position.  

In the previous studies, the individual sit-stand-sit movement cycle has been isolated to 

ascending-descending phase for movement measurements among varioug age groups [84], 

in this thesis, these four phases-model developed are considered to link more closely to the 

underlying biomechanical strategies of movement including the temporal sequences of 

segment movement, muscle activity and joint moments.  

 

4.3  ANALYSIS OF JOINT ANGLE SIGNALS 

 

With each individual movement divided into four movement phases, the superimposed 

joint angle and angular velocity signals from the healthy knee shown in Figure 4-3 are seen 

to have a lower cycle-by-cycle variation than those from the OA knee shown in Figure 4-4. 
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Moreover, it can be also observed from these two figures that the angular movements of the 

healthy knee are more symmetrical than the OA knee in terms of the waveform shapes, the 

time spent in each movement phase, as well as the peak angular velocities. These 

observations have led to the analysis in this section of cycle-by-cycle variations of joint 

angle signals (Sub-section 4.3.1), as well as the movement symmetry (Sub-section 4.3.2).  

 

4.3.1  Cycle-by-cycle variations of joint angle signals  

 

Let the smoothed angle signal of individual sit-stand-sit movement cycle be denoted by A(i) 

with i = 1, 2, …, 10. Using the middle movement cycle in each set of five consecutive sit-

stand-sit movements as the reference, the cycle-by-cycle variations of joint angle signals 

are assessed by using the average correlation coefficient (ACC) [100] given by:   

1,2,4,5 6,7,9,10

1
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  (4-4) 

where l denotes the number of samples in two angle signals which are required to have the 

same length, and A(m) denotes the middle movement cycle of the first and the second 

consecutive sit-stand-sit movement sets. According to the data acquisition protocol 

described in Section 3.3, the durations of individual movement cycles performed by the 

same knee are slightly different (Figure 4-2). In order to make the signals over the duration 

of interest to have the same length, the peak angle of the reference movement is aligned 

with the peaks of other movements with the extra parts at the beginning and/or end of the 

longer angle signal excluded in the correlation computation using equation 4-4. The values 

of ACC vary between 0 and 1, with the values greater than 0.8 and less than 0.5 considered 

as strong and weak correlated, respectively. 
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Similarly, let the angular velocity of each sit-stand-sit movement cycle be denoted by V(i) 

with i = 1, 2, … 10. Using the middle movement cycle in each set of five consecutive sit-

stand-sit movements as the reference, the average ACC value for the angular velocities is 

given by: 
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As the durations of angular velocity signals in two different movement cycles are also 

slightly different, like the joint angle signal, the peak velocity of the reference movement 

cycle is aligned to the peak velocity of other movements with the extra parts excluded in 

correlation computation.
 

 

Figure 4-5 Cycle-by-cycle variations of joint angle signals 
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Figure 4-5 shows the cycle-by-cycle variations of the joint angle signals of all the knees 

studied in the ascending and descending phases using the box and whisker plot, where the 

upper and lower bounds of the box represent the upper and lower quartiles (75% and 25% 

percentiles) of movement durations of each group, respectively; the red line in each box 

represents the median value (50% percentile); the inter-quartile range (IQR) is defined as 

the distance between the upper and the lower quartiles; the whiskers at two extremes 

represent the maximum and minimum values within 1.5 times the IQR; and the red crosses 

outside the box represent the possible outliers which exceed the 1.5 × IQR [101].  

By observing the ACC values of the five groups shown in Figure 4-5, it can be summarised 

that: 

• Angle signals acquired from individual participants performing the sit-stand-sit 

movement are shown to have high similarities among different movement cycles, 

with the maximum ACC for all groups in both ascending and descending movement 

phases above 0.99. 

• From the IQR of the ascending phase, an age related difference is observed, with 

shorter IQR corresponding to higher movement consistency observed in the early 

and middle adulthood groups (H1, H2, and OA1), and longer IQR corresponding to 

lower movement consistency observed in the late adulthood groups (H3 and OA2). 

• From the IQR of the descending phase, there is a noticeable age and degeneration 

related trend. As shown in the bottom of Figure 4-5, the IQR is seen to increase 

from H1 to OA2, with the maximum inconsistency observed in group OA2.  

According to the cycle-by-cycle variations of the instantaneous angular velocity in the four 

movement phases shown in Figure 4-6, it can be seen that: 

• The angular velocities also show strong correlations among different movement 

cycles in the four movement phases, with the lower quatiles of all the ACC values 

above 0.95. 
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• From the IQR in the DA phase, there is a difference between healthy groups and 

OA groups, with higher angular velocity deviation observed in the three healthy 

groups and more consisitent angular velocity observed in the two OA groups.  

• From the IQR in the DD phase, the late adulthood healthy group and the OA groups 

are seen to have higher angular velocity deviation than the early and middle 

adulthood healthy groups.  
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Figure 4-6 Cycle-by-cycle variations of instantaneous angular velocity 
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4.3.2  Movement symmetry 

 

In order to investigate the movement symmetries when participants performing sit-stand-sit 

movements using the preferred and comfortable speed, the symmetric ratios of ascending-

descending movements and acceleration-deceleration movements within the ascending or 

descending phase are investigated in this sub-section. The symmetric ratio has been 

previously applied to study the relationships between the movement symmetry and the 

agonist/antagonist muscle activities of the elbow movements [102]. The definition of the 

average symmetric ratio is given by: 
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where, ta and td denote the total time spent on ascending or acceleration, the total time spent 

on descending or deceleration, respectively.  

 

Figure 4-7 Ratios of ascending time to descending time 
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Figure 4-7 shows the average ratios of the time spent on each ascending movement to the 

time spent on each descending movement. Based on the results shown in this figure, it is 

seen that:  

• The descending movements take longer time than the ascending movements, which 

is true for most of the knees studied (48 out of 53 knees shown in the figure), and is 

in agreement with [87].  

• The movements performed by the early and middle adulthood healthy knees (H1 

and H2 groups) are seen to be more symmetric and consistent than the other three 

groups, with all symmetric ratios varied between 0.9 and 1 for H1 knees and 

between 0.9 and 1.05 for H2 knees, respectively. 

 

 

Figure 4-8 Ratios of AA and AD times 

Based on the average ratios of the AA to AD times shown in Figure 4-8, it is seen that: 

• Most of the knees studied take a longer time to accelerate to the peak velocity than 

the time to decelerate back to static. Only a few knees are seen to spend similar 

times on acceleration and deceleration with 3 out of 53 knees shown to have 

symmetric ratios between 0.9 and 1.1. 
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Based on the average of the DA to DD time ratios shown in Figure 4-9, it is seen that 

• A high percentage of the knees is seen to take more time to decelerate than to 

accelerate in the descending phase.  

• There is an degeneration related difference observed in two age matched groups in 

terms of IQR, with increasing variations in the middle adulthood groups from H2 to 

OA1 and the late adulthood groups from H3 to OA2.    

 

Figure 4-9 Ratios of DA and DD times 

Since the sit-stand-sit movement has been divided to four phases based on the 

instantaneous angular velocity, another obvious symmetric ratio is the peak angular 

velocity in the ascending to that in the descending phase. The definition of the peak 

velocity ratio is given by equation 4-8: 

max ( )1

max ( )

a

v

d

t
s

N t

ω

ω

 
=   

 
  (4-8) 

where max|ω(ta)| and max|ω(td)| are referred to as the maximum instantaneous angular 

velocity in each ascending and descending phase, respectively. 
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As the average ratios of peak angular velocities for the five groups shown in Figure 4-10, it 

can be summarised that: 

• The peak angular velocity in the ascending phase for majority of the knees is 

generally higher than that in the descending phase. 

• The IQR of the early adulthood healthy group shows the highest consistency with 

the smallest deviation among the five groups observed. This is followed by the 

middle and late healthy adulthood groups with higher deviation, and the two OA 

groups with the highest deviation. 

• There is also an age related difference, with the early and middle adulthood groups 

having more similar peak velocities in the ascending and descending phase than the 

late adulthood groups with higher peak velocity in the ascending phase. This is in 

agreement with the observation of elder subjects tending to have a higher velocity to 

lift off the chair as reported in [90] and mentioned in Section 2.4.2.  

 

Figure 4-10 Ratios for peak angular velocities in ascending and descending phases 
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4.4  CONCLUDING REMARKS 

 

This chapter focused on pre-processing and analysis of joint angle signals. It firstly 

presented the methodology to process the joint angle signal (Section 4.2). A moving 

average window was applied to the joint angle signals in order to smooth the signal and 

remove the short time fluctuations. The instantaneous angular speeds within each 

goniometer sampling interval were calculated and an angular velocity threshold was 

applied to determine the start and stop of each movement. After the consecutive movements 

have been separated to individual cycles, the variations of individual movements performed 

by the same knee were evaluated, and the results showed that the times taken to perform 

each individual movement for the same knee can be considered as repeatable with 

relatively small SD. Based on the joint angular signals and the corresponding velocity of 

them, each movement cycle was divided further into four movement phases for statistical 

analysis. 

By investigating the cycle-by-cycle variations of all knees in the ascending and descending 

phases (Sub-section 4.3.1), high consistency among different cycles was observed. 

Additionally, there is a certain age related difference observed in terms of IQR in the 

ascending phase (with the late adulthood groups having higher IQR), and an ageing and 

degeneration related trend observed in terms of IQR in the descending phase (with IQR 

increasing with age from the early adulthood healthy group to the late adulthood healthy 

group followed by the midllde adulthood OA group to the late adulthood OA group). By 

further investigation of the cycle-by-cycle variations over the four movement phases, 

highly consistent angular velocities among different cycles were also observed. The 

degeneration related difference was observed in the DA phase with the healthy groups 

having higher deviation, and an ageing and degeneration related difference was observed in 

the DD phase with the late adulthood healthy group and the OA groups having higher 

deviation, these higher deviations in descending phase could be due to the essentric muscle 

contraction [24], while the higher tensions are created during muscle lengthening.  

The movement symmetry also showed the age and degeneration related differences (Sub-

section 4.3.2). The ascending-descending time ratio reveals a higher movement symmetry 
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from the early and middle adulthood healthy knees compared with the other three groups.  

Furthermore, there is a degeneration related difference in the IQR in the DA-DD time ratio 

by comparing healthy and OA knees in the same age group. Other interesting results from  

the ascending-descending peak velocity ratio include IQR increases with age and OA, and 

an age related difference with the late adulthood groups having higher difference between 

their ascending and descending peak velocities. 
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CHAPTER 5  STATISTICAL EVALUATION OF 

AE SIGNALS IN FOUR PHASES 

 

5.1  INTRODUCTION  

 

Following the analysis of joint angle signals in the preceeding chapter, the AE signals 

occurred in the four detailed movement phases are analysed in this chapter. It starts with the 

basic statistical analysis of the quantity of AE events (Section 5.2). This is followed by the 

detail analysis on the shapes of distributions and value occurrences of various AE 

waveform features mentioned in Section 3.3 to investigate further differences in the time 

and frequency domains among the participating groups. Section 5.3 evaluates the features 

in the amplitude category, which includes the statistical evaluation of peak amplitude and 

ASL. The statistical distributions and the value occurrences of time based features are 

discussed in Section 5.4, which includes the statistical evaluations of duration, rise time, 

and fall down time. Section 5.5 devotes to the frequency based features, which consists of 

two frequency features derived from the waveform frequency spectrum, namely, peak 

frequency and centre frequency, respectively; and three features derived from the time-

series waveforms, namely, average frequency, initiation frequency, and reverberation 

frequency, respectively. The statistical distributions of AE energy based features in terms of 

signals strength and absolute energy are covered in Section 5.6, and the statistical 

distributions of AE counts in terms of pulses exceeding the detection threshold (counts, 

counts to peak, and counts down) are covered in Section 5.7. Concluding remarks are given 

in Section 5.8. 

 

5.2  BASIC STATISTICS IN FOUR MOVEMENT PHASES 

 

Based on the four movement phase model established, AE signals were firstly analysed 

according to the quantity of AE events per movement. Although it is considered as a simple 
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analysis of AE signals, it is seen to form a good statistical observation in terms of gross AE 

activity from the knee joint during consecutive movements [23].   

 

Figure 5-1 Bilateral plots with right versus left knees for each movement phase 

Using bilateral plots with left knee versus right knee in each sit-stand-sit cycle, the number 

of AE hits generated by participants with both knees healthy and OA were compared in 

each movement phase. As an example, Figure 5-1 shows the bilateral plot for one 

participant in each group in the four movement phases, where a point near to the diagonal 

line indicates a symmetrical pair of knees with the number of AE hits from its left knee 

similar to that from the right knee in a sit-stand-sit cycle. Although the number of 

participants with both knees selected for the study is small, with consecutive and repeated 

sit-stand-sit movements performed by the participants generate repeatable results over  

certain durations, this can be considered as representative of the whole study population 

according to the ergodic theorem [103]. This enables some general observations to be made. 

For the early adulthood healthy group (H1), the participants are seen to generate 

particularly low, repeatable, and symmetrical numbers of AE hits from the left and right 

knees in all movement phases. With the increase in age, the participants in the middle and 
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late adulthood healthy groups (H2 and H3) are seen to generate higher but still relatively 

repeatable numbers of AE hits with a certain loss of symmetry in some movement phases. 

As the knee condition changed from healthy to OA, the participants in the middle and late 

adulthood OA groups are seen to generate much higher numbers of AE hits with a wider 

spread and a certain hit asymmetry in some or all movement phases. 

To show the statistical differences between the five groups for all the knees studied, the 

average AE hits among repeated movements are investigated. Let the q(i, ψ) be the AE hits 

acquired from the i
th

 movement in phase ψ, the average AE hits acquired from phase ψ can 

be determined by: 
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q q iψ ψ
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where ψ denotes the AA, AD, DA, DD movement phase, respectively. 

The AE hits in each movement cycle for each participant in each movement phase are 

tabulated in Appendix F and Figure 5-2 shows the average AE hits of the five groups 

represented by the box and whisker plot [101]. Form the figure, it can be summarised that: 

• Vast amount of transient AE signals are generated by the knees performing sit-

stand-sit movements (up to the maximum of 155.7 hits per movement on average 

from the late adulthood OA group (OA2) in the DD phase). 

• Although there are overlaps between the five groups (with the DD phase showing 

minimum overlaps), the maximum, median, and minimum average number of AE 

events are seen to increase in all movement phases based on age and joint 

conditions, increasing from group H1 to H3 followed by group OA1 to OA2, even 

with outliers taken into account. 

• By using the median value of QA from the early adulthood healthy group as the 

reference, the maximum increase is seen to occur in the DD phase (around 7 times 

increase from group H1 to group H3 and 23 times increase from group H1 to group 

OA2), and the minimum increase is seen to occur in the DA phase (around 4 times 
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increase from group H1 to group H3 and around 14 times increase from group H1 to 

group OA2) . 

• There is a trend of increasing deviations related to age and OA (as shown by the 

IQR in the figure), with the number of AE hits generated by the OA groups seen to 

be more variable than those of the healthy groups. 

• The best separation of the five groups based on the number of AE events is seen to 

occur in the DD phase, with all values within the IQR non-overlapped. 

The results are in agreement with the previous work presented in Sections 2.3 and 2.4, 

and show the potential of using AE for identifying subtle differences in terms of joint 

age and condition.     
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Figure 5-2 Statistical differences of AE hits between five groups among four movement phases
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5.3  STATISTICAL EVALUATION OF AMPLITUDE BASED FEATURES 

 

With the basic statistics of AE hits showing the age and degeneration related trends, the 

following sections are devoted to detailed analysis based on the statistical distributions of 

various AE waveform features, thereby discovering further differences among the 

participating groups. Since each individual movement has been further divided into four 

movement phases using the joint angles and the corresponding instantaneous angular 

velocity (i.e. AA, AD, DA, and DD), similar to the AE hit analysis in the preceeding 

section, the statistical analysis of waveform features can also be carried out based on these 

four movement phases. This section focuses on the statistical distribution and value 

occurrence analysis of AE amplitudes, which is sub-divided into two sub-sections, with 

Sub-section 5.3.1 for the peak amplitude and Sub-section 5.3.2 for the ASL, respectively. 

 

5.3.1  Statistical evaluation of peak amplitude 

 

Figure 5-3 shows the statistical distribution (or the probability distribution) of the AE peak 

amplitude values obtained from the OA waveforms in the AA phase, with the horizontal 

axis denoting the peak amplitude values of all AE events, and the vertical axis denoting the 

corresponding occurrence probability. All the peak amplitude values shown in the figure 

are centred by: 

w(n)=αn - α0 (5-2) 

where αn and α0 denote the peak amplitude value of each individual AE hit and the 

minimum peak amplitude value, respectively. As shown in Figure 5-3, the AE peak 

amplitude values for OA knees in the AA phase are seen to form an exponential 

distribution [104], which can be expressed by: 

p(w) = λe
-λw

 (5-3) 

where λ and w denote the exponent parameter and AE peak amplitude values from the 

waveforms, respectively. 
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Figure 5-3 Probability distribution of peak amplitudes for OA knees in AA phase 

The validity of the underlying exponential distribution over the whole range of values for 

all groups can be examined more accurately by using the cumulative probability plot of the 

peak amplitude values, where the horizontal axis denotes the peak amplitude values, and 

the vertical axis denotes the cumulative appearance probability in an exponential scale. 

Based on this type of representation, a true exponential distribution of a feature will follow 

a straight line. Figure 5-4 shows the cumulative appearance of the AE peak amplitude 

values in percentage (%) with each symbol in the figure denoting a particular group. From 

the distributions shown in the figure, it can be seen that the curves formed by most of the 

peak amplitude values are relatively straight implying the exponential distribution as a good 

model, which is true for both normal and abnormal groups. Although some highest peak 

amplitude values at the tails of the distributions are seen to deviate from the straight lines, 

they are actually representing a very low probability of occurrence. While the distributions 

of the AE peak amplitude values for the five age and symptomatic groups are exponential, 

their exponents are seen to be different. All participating groups shown in Figure 5-4 are 

seen to have the same lower bound values of 32 dB in the four movement phases, which 

corresponds to the threshold set for detection of an AE event. Additionally, a high 

percentage of overlap in the range of the AE peak amplitude values among the different 
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participating groups is seen in each movement phase. The best distribution separation is 

seen in the DD phase with the minimum overlap.  

From Figure 5-4, there are significant differences among the five groups in terms of the 

upper bound peak amplitude values. In the AA movement phase, it is seen that the upper 

bound peak amplitude values are increased according to age for the three healthy groups, 

and decreased according to age for the two OA groups, with the maximum peak amplitude 

values above 90 dB created by group OA1 knees. In the AD movement phase, the 

maximum peak amplitude values for the healthy groups and OA groups are both increased 

according to age, with the maximum upper bound peak amplitude value for healthy and OA 

knees close to 80 and 90 dB seen in group H3 and OA2, respectively. Although similar 

upper bound peak amplitude values are observed from the late adulthood healthy group (H3) 

and middle adulthood OA group (OA1) knees in the AD movement phase, there is an 

absence of peak amplitude values between 60 and 70 dB in the late adulthood healthy 

group. For the DA movement phase, the difference between the upper bounds of the early 

adulthood healthy group to late adulthood healthy group is decreased with the maximum 

upper bound peak amplitude value above 90 dB seen in group H1, which is similar to the 

upper bound values of two OA groups. However, there are still significant differences in 

this movement phase, as group H1 knees do not create AE signals with peak amplitude 

values between 60 and 90 dB and no AE events with peak amplitude value between 70 and 

80 dB are seen to be created by group H2 knees. In the DD movement phase, the upper 

bound peak amplitude values for the healthy groups are seen to be increased from group H1 

to H2, and decreased from H2 to H3, with the maximum upper bound value close to 80 dB 

seen in group H2. Similar upper bound peak amplitude values can be observed in the two 

OA groups (both above 90 dB) in this movement phase. However, these two groups are still 

distinguishable as no AE events with peak amplitude values between 80 and 90 dB emitted 

from group OA2 knees.  
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Figure 5-4 Cumulative distributions of AE peak amplitude values 
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5.3.2  Statistical evaluation of ASL 

 

By replacing the peak amplitude values by the ASL values in equation 5-2, and letting α0 be 

the minimum ASL value of 10 dB, the centred ASL probability distribution of OA signals 

in the AA phase is shown in Figure 5-5. Although it does not fit any particular statistical 

distribution function, the probability distribution between 0 and 25 dB seems to approach a 

univariate normal (Gaussian) distribution which can be expressed as: 
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=  

 
  (5-4) 

where w, µw and σ, are referred to as the ASL values, and the corresponding mean and SD,  

respectively.  

 

Figure 5-5 Probability distribution of ASL for OA knees in AA phase 

Figure 5-6 shows the cumulatives distributions of the five age and symptomatic groups in 

the four movement phases with the cumulative probability expressed using the Gaussian 

scale. Although the curve shapes produced by different participating groups exhibit some 

similarities in all four movement phases, they are not straight implying non-Gaussian 

distributions. The distributions for the five groups show distinctive separation apart from 
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the OA curves in the AA and DD phases, and the middle and late adulthood healthy groups 

(H2 and H3) in the DA phase, which show slightly higher overlaps. Furthermore, the early 

adulthood healthy group (H1) produce ASL with the minimum upper bound values in all 

movement phases, and the two OA cumulative probability curves are seen to crossover in 

all phases. 

Additionally, significant differences can be observed at the tails of the distributions in each 

movement phase shown in Figure 5-6. In the AA movement phase, the upper bound values 

for the three healthy groups and the two OA groups are both increased with age and with 

around 10 dB difference between them. The upper bound value of group OA1 signals is 

seen to be 5 dB higher than the upper bound value of group H3 signals. Similar scenarios 

are observed in the AD and DA movement phases, with the marginal values of at least 5 dB 

sepearating the upper bound value of each group. In the DD movement phase, the upper 

bound values for H2 and H3 knees, and for OA1 and OA2 knees are seen to decrease with 

age with the maximum upper bound value around 40 dB produced by H2 knees and around 

55 dB produced by OA1 knees. Furthermore, the largest difference between the healthy 

groups and the OA groups in the upper bound values is seen to occur in the DD movement 

phase. 
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Figure 5-6 Cumulative distributions of ASL  
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5.4  STATISTICAL EVALUATION OF TIME BASED FEATURES 

 

This section investigates the statistical distributions and value occurrence of the time based 

features, namely, duration, rise time, and fall time. Like the statistical evaluations of the 

amplitude features shown in the preceeding section, this section firstly evaluates the 

probability distribution of each time feature from the OA signals in one movement phase, 

thereby investigating whether or not it follows any particular distribution function. This is 

followed by the investigation of whether or not each time feature from the signals generated 

by each group forms the similar distribution in the four movement phases based on the 

cumulative distributions. 

For the AE durations extracted from the OA waveforms in the AA phase, Figure 5-7 shows 

the probability distribution, where the logarithm scale of durations is used in order to 

accommodate the wide duration range (from 1 to 10
4
 µs).  

 

Figure 5-7 Probability distribution of durations for OA knees in AA phase 
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Figure 5-8 Probability distribution of rise times for OA knees in AA movement phase 

 

Figure 5-9 Probability distribution of fall times for OA knees in AA phase 

Although the probability distribution of the AE durations appears to have multiple peaks, a 

large part of the distribution in the middle has a Gaussian shape and this leads to the choice 

of using the Gaussian scale for plotting of its cumulative distribution to investigate the 

statistical distributions and value occurrence of individual groups. 
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Figure 5-8 shows the probability distribution function of AE rise times for OA knees in the 

AA phase, where the logarithm scale is again used to accommodate the wide spread of the 

rise times. Although multiple peaks are again seen in the probability distribution of the AE 

rise times, a certain resemblance to a Gaussian shape in the middle section from 10 µs to 

100
 
µs leads again to the use of the Gaussian scale for plotting the cumulative distribution 

to evaluate the statistical distributions and value appearance of the five age and 

symptomatic groups.  

The probability distribution function of the AE fall times based on the logarithm scale is 

also shown to have multiple peaks (Figure 5-9). Since a large part of the distribution in the 

middle (with the values between 10 and 10
2.5 

µs) is seen to approximate a Gaussian 

distribution, the Gaussian scale is again selected for further statistical analysis of the AE 

fall down time based on the cumulative distribution. 

Figure 5-10 shows the cumulative probability of the AE durations, where the five 

participating groups are seen to produce similar curve shapes in all four movement phases.  

After a very narrow range of short AE durations at the start, at least 70% of the AE 

durations are seen to form a relatively straight line, implying a Gaussian distribution. The 

curves for the five groups are highly overlapped, particularly in the AD, DA, and DD 

phases. Furthermore, the curves for the late adulthood healthy group are seen to crossover 

the middle and late adulthood OA group in the DA and DD movement phases to yield the 

highest upper bound. 

Although the distributions of AE durations for different groups are seen to be different, the 

differences are not as apparent as the amplitude based features. From the occurrence of AE 

durations among the four movement phases, it is seen that the early and middle adulthood 

healthy groups produce similar upper bound values around 3×10
3
 µs except in the AA 

movement phase, where H1 knees produce no waveforms having duration longer than 

3×10
3 

µs. For the other three groups, similar upper bound values are observed in all the 

movement phases, which are around 10
4 
µs.  

The cumulative probability plots of AE rise times in the four movement phases are shown 

in Figure 5-11. After a very narrow range of short rise times at the start, at least 75% of the 

rise times are seen to form a relatively straight line, implying Gaussian distribution as a 
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good approximation of the mid range rise time values. Furthermore, a very high percentage 

of overlaps are again seen to occur among the five curves in all four movement phases. 

Additionally, the distribution curves for the late adulthood healthy group are seen to follow 

those for the middle adulthood OA group in all four phases and break away to reach the 

similar upper bound values of the late adulthood OA group in the last three movement 

phases.  

In terms of the upper bound values of the rise times, group H1 knees are seen to produce 

the AE waveforms with the shortest rise time values in all of the four movement phases, 

with the upper bound values shorter than 10
3 

µs in the AA, AD, and DA movement phases, 

and shorter than 3×10
3 

µs in the DD movement phase. However, similar upper bound 

values can be observed from the H2, H3, OA1, and OA2 groups in the AA phase, with the 

rise times around 10
4 

µs. In the AD phase, little difference is observed between the upper 

bound values of group H2 and OA1, as well as group H3 and OA2. In the DA phase, 

although the distribution curves for the H1 and H2 groups show significant difference at 

their upper bound values, with the rise times produced by group H2 around 5 times longer 

than group H1, less difference between the upper bound values of group H3, OA1 and OA2 

is observed, with the maximum rise times for these three groups all around 10
4 

µs. In the 

DD movement phase, the values occurrence also show less discriminations for group H1 

and H2, as well as group H3, OA1 and OA2, with the curves of group H1 and H2 highly 

overlapped, and similar upper bound values (> 10
4  

µs) observed from another three groups. 

For the statistical distributions of fall down times (Figure 5-12), the curves are highly 

overlapped, and at least 80% of the values for each group are also seen to form the 

Gaussian distribution with their relative straight curves. In the AA phase, the minimum 

upper bound is seen to occur in the H1 group (upper bound fall down times < 3×10
3 

µs), 

and similar upper bound values are observed in the other four groups, which are around 10
4
 

µs. In the AD phase, the curves for group H1 and H2, as well as the curves for the other 

three groups are highly overlapped, with similar upper bound values. In the DA and DD 

phases, little differences are observed at the tails of group H1 and H2 distributions, as well 

as at the tails of OA1 and OA2 distributions, with the maximum fall down time longer than 

10
4 

µs seen in group H3 and OA2 knees in these two phases. 
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Figure 5-10 Cumulative distributions of durations 
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Figure 5-11 Cumulative distributions of rise times 
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Figure 5-12 Cumulative distributions of fall down times  
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5.5  STATISTICAL EVALUATION OF FREQUENCY BASED FEATURES 

 

This section focuses on the statistical evaluation of AE frequencies, which includes three 

frequency features derived from the time domain signals, namely, average frequency, 

initiation frequency, and reverberation frequency, respectively (Sub-section 5.5.1), as well 

as two frequency features derived from the waveform frequency spectrums, namely, peak 

frequency and the centre frequency, respectively (Sub-section 5.5.2).  

 

5.5.1  Statistical evaluation of average, initiation, and reverberation frequencies 

 

Figures 5-13 to 5-15 show the probability distribution functions of the average, initiation, 

and reverberation frequency of OA AE signals, where the logarithm scale is used to 

accommodate the spread of the frequency values (from 1 kHz to 1 MHz for these three 

features). From these figures, it is seen that these three features do not appear to fit any 

particular statistical distributions. However, there is a certain resemblance to the Gaussian 

distribution and this leads to the use of the Gaussian scale to represent the cumulative 

distributions of these three frequency features. For the statistical distributions of average 

and initiation frequencies, an issue need to be noticed is the high spike at the tail of 

distribution which represents the highest frequencies, as shown in Figures 5-13 to 5-14, the 

typical AE signal with such high frequency is the signal that contains 1 pulse exceeded the 

detection threshold over 1 µs (sampling interval). As this value is not an artefact, and these 

two features are not finally selected for classifying AE patterns in the next chapter, it is not 

necessary exclude them from the study.    

From the cumulative distributions of the average frequency values of the five age and OA 

related groups shown in Figure 5-16, over 80% of the average frequencies are seen to be 

relatively straight implying the Gaussian distribution apart from the tails of the curves, and 

high similarities are observed among the cumulative distribution curves in all of the five 

participating groups in all of the movement phases. Similar comments could be made for 

the cumulative distributions of the initiation frequency values shown in Figure 5-17. 
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Although the straight section of the cumulative distributions of the reverberation frequency 

are longer than those for the average and initiation frequencies, there is no significant 

difference among the five participating groups in any of the movement phase.  

 

Figure 5-13 Probability distribution of average frequencies for OA knees in AA phase  

 

Figure 5-14 Probability distribution of initiation frequencies for OA knee in AA phase 
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Figure 5-15 Probability distribution of reverberation frequencies for OA knees in AA phase 

In terms of the value occurrence of these three frequency based features, as shown by the 

cumulative plots in Figures 5-16 to 5-18, all groups are seen to have the same upper bound 

value around 1
 
MHz in terms of the average and initiation frequencies and around 500 kHz 

in terms of the reverberation frequencies. Furthermore, all groups are seen to have similar 

lower bound frequencies in all of the four movement phases, except group H1 knees.  
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Figure 5-16 Cumulative distributions of average frequencies 
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Figure 5-17 Cumulative distributions of initiation frequencies  
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Figure 5-18 Cumulative distributions of reverberation frequencies 
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5.5.2  Statistical evaluation of peak and centre frequencies 

 

From the probability distribution of the peak frequencies of the AE signals in the AA 

movement phase from OA knees shown in Figure 5-19, a bi-modal distribution is observed. 

The values lower than 100 kHz are seen to approach an exponential distribution, and the 

values above 100 kHz are seen to resemble a Gaussian distribution with two peak 

probabilities appeared at around 30 (lower band) and 150 kHz (higher band). Figure 5-20 

shows the probability distribution of the centre frequencies for the AE waveforms emitted 

from the OA knees in the AA movement phase, the distribution is seen to fit an asymmetric 

Gaussian distribution. 

In order to assess whether or not the peak frequency of the AE waveforms from the other 

groups form the similar distribution as the OA group, the statistical distributions of the peak 

frequencies for the five groups in the four movement phases are investigated. As the 

bimodal distribution is observed for the OA knees in terms of the peak frequency, and the 

centre frequency of OA knees is seen to approximately form the Gaussian distribution in 

the AA movement phase, the Gaussian scale is chosen to represent the cumulative 

distributions of the peak frequency, in order to make a consistent comparison. From the 

cumulative distribution of the AE peak frequency values in the four movement phases 

shown in Figure 5-21, it is seen that the curves generated by the five groups are seen to 

follow the probability distribution shown in Figure 5-19 with bi-modal occurrence 

probabilities. Although, the cumulative distributions are seen to be highly overlapped in the 

lower and higher bands, there is a difference in the relative occurrence probabilities of the 

peak frequencies in the lower band with respect to the those in the higher band, with 

highest difference shown in the AA movement phase. 

The upper bound peak frequency values for the five groups in the AA, AD and DD 

movement phases are seen to have less differences, with all peak frequencies above 200 

kHz apart from H1 knees in the DD movement phase. In the DA movement phase, there are 

two upper bound peak frequencies with one for group H1, OA1, and OA2 knees around 

150 kHz, and the other one for group H2 and H3 above 200 kHz.  
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Figure 5-19 Probability distribution of peak frequencies for OA knees in AA phase 

 

Figure 5-20 Probability distribution of centre frequencies for OA knees in AA phase 

From the cumulative distributions of the AE centre frequency values shown in Figure 5-22, 

they appear to rise exponentially as a result of following the probability distribution shown 

in Figure 5-20 with the first half of each curve having a lower gradient compared with the 

second half. Furthermore, the curve for each groups in each phase is seen to rise 

exponentially at slightly different rates. Although the curves show less overlap in the AA, 
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AD and DD phases, same value appearances are observed for most of groups in these three 

phases, with the exception of the early adulthood group seen to have a significant lower 

bound compared with other groups in the AD phase.  
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Figure 5-21 Cumulative distributions of peak frequencies  
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Figure 5-22 Cumulative distributions of centre frequencies  
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5.6  STATISTICAL EVALUATION OF AE ENERGY BASED FEATURES 

 

This section discusses the statistical distributions and the value occurrence of AE signal 

strength and absolute energy. Figures 5-23 to 5-24 show the probability distributions for the 

signal strength and absolute energy of AE waveforms acquired from OA knees in the AA 

movement phase, where the logarithm scale is used to accommodate the wide spread of 

values (from 5 to 10
6 

pV-sec for signal strength and from 1 to 10
6
 aJ for absolute energy). 

From these two figures, both distributions for the signal strength and absolute energy are 

seen to be approximately Gaussian with certain asymmetry.  

 

Figure 5-23 Probability distribution of signal strength for OA knees in AA phase 

Using the Gaussian scale, the cumulative distributions of the signal strength values are 

shown in Figure 5-25. Among all four movement phases, at least 95% of the signal strength 

values are seen to form the straight lines confirming distributions dominated by Gaussian. 

The distribution curves for the five groups are seen to increase at similar rate from 5 pV-

second to 10
6
 pV-second, with at least 99% of the signal strength values for the five groups 

overlapped. Although the upper bound values of the early and middle adulthood healthy 

groups are seen to increase in the AA, AD, and DA phases, and decreased in the DD phase, 
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the distributions do not show significant differences among the H3, OA1, and OA2 groups 

in any one of the movement phases. 

 

Figure 5-24 Probability distribution of absolute energy for OA knees in AA phase 

The cumulative distributions of the absolute energy values for the five age and OA related 

groups are shown in Figure 5-26, where the curves appear to follow the asymmetric 

Gaussian probability distribution shown in Figure 5-24 with the first half of each curve 

having a higher gradient compared with the second half. There are over 90% of the values 

in the five groups shown to be overlapped. In the AA and AD phases, the upper bound 

values are seen to increase from group H1 to H3, and similar for the H3, OA1 and OA2 

groups. In the DA phase, the upper bound values are seen to increase from the early to the 

middle adulthood healthy groups, and decrease from the middle to the late adulthood 

healthy groups with the value range between 10
4 

and 3×10
4
 aJ absent for the middle 

adulthood healthy groups. Similar upper bound values around 10
6
 aJ are observed in the H2, 

OA1 and OA2 groups in this phase. In the DD phase, although the upper bound values for 

group H2 and H3 show some discrepancy compared with the other three groups, it is 

difficult to spot the differences between the H1, OA1, and OA2 groups, as the curves for 

these three groups are seen to form a similar trajectory in this phase. 
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Figure 5-25 Cumulative distributions of signal strength  
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Figure 5-26 Cumulative distributions of absolute energy  
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5.7  STATISTICAL EVALUATION OF COUNT BASED FEATURES 

 

As the descriptors introduced in Section 3.3, AE counts category includes three features for 

measuring the number of pulse above the detection threshold, namely, counts, counts to 

peak, and counts down, respectively. The probability distributions of these three features 

for OA knees in the AA movement phase are shown in Figures 5-27 to 5-29, where the 

logarithm scale is applied to accommodate the spread for values (from 1 to 10
3
 pulses 

exceeded the detection threshold for these three features). By observing the statistical 

distributions of these three features, it is seen that all features follow approximately the 

exponential distribution, which leads to use the exponential scale to evaluate the statistical 

distributions and value occurrence for all of the groups over the four movement phase. 

 

Figure 5-27 Probability distribution of counts for OA knees in AA phase 
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Figure 5-28 Probability distribution of counts to peak for OA knees in AA phase 

 

Figure 5-29 Probability distribution of counts down for OA knees in AA phase 

From the cumulative distributions of counts among the four movement phases shown in 

Figure 5-30, it can be seen that although the curves are not exactly the straight lines, at least 

95% of the AE counts values are seen to approximately form the exponential distribution. 

The upper bound values are seen to increase from group H2 to H3, and decrease from 

group OA1 to OA2 in the AA phase. However, the upper bound values of group H1 and H2, 
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as well as group H3 and OA1 are seen to be similar. In the AD phase, although the upper 

bound values are seen to increase from group H1 to H3, and from group OA1 to OA2, over 

99.95% of the AE counts for group H3, OA1, and OA2 are seen to distribute within the 

similar range of values. In the DA phase, the upper bound values increase for both the 

normal and abnormal groups according to the increasing age bands. However, there is no 

significant difference in the upper bound values between group H2 and OA1 with round 

100 AE pulses exceeded the detection threshold, and between group H3 and OA2 with 

around 1000 AE pulses exceeded the detection threshold. In the DD phase, although there 

are distinguishable upper bound values, around 99% of the counts in the five participating 

groups are seen to form the similar trajetory in this phase.   

From the cumulative probability plots shown in Figure 5-31, at least 99% of the AE counts 

to peak in the AA, AD and DA phases and at least 95% in the DD phase are seen to be 

relatively straight implying the exponential distribution as a good model. There are high 

percentages of overlaps, particularly in the AA and DA phases. The curves for the H3, OA1, 

and OA2 groups in the AA phase, and the H2, H3, and OA1 groups in the DA phase show 

similarities in terms of the curve exponents. Although the counts to peak values in the DD 

phase show some differences in terms of the upper bound values, the distributions for the 

other three movement phases do not show significant difference like the amplitude category 

features. 

Like the above mentioned two features, over 99% of the AE counts down in the AA, AD 

and DA phases, and over 95% of the values in the DD phase in Figure 5-32 are seen to be 

relatively straight implying the exponential distribution as a good model for the value 

distribution of this feature. There are very high percentages of overlaps (≥ 95%), with the 

curves for group H2, H3, OA1, and OA2 in the AA phase, all groups in the DA phase, as 

well as group H1, H3, OA1, and OA2 in the DD phase forming very simialr trajectories. In 

the AA phase, the upper bound value of group H1 is similar to H2, and H3 similar to OA1. 

In the AD phase, similar upper bound values are observed in group H2 and H3, as well as 

group OA1 and OA2. In the DA phase, the upper bound values for H1 and H2, as well as 

H3 and OA2 are also similar, with around 100 pulses exceeded the detection threshold 

observed from the tails of the H1 and H2 distributions, and around 1000 AE pulses 

exceeded the detection threshold observed from the tails of the OA2 and H3 distributions. 
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Although the distributions of group H3 and OA2 show significant difference in the DD 

phase, similar upper bound values are observed from the other groups in this movement 

phase.  
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Figure 5-30 Cumulative distributions of counts  
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Figure 5-31 Cumulative distributions of counts to peak 

 

 



 

92 

 

 

 

Figure 5-32 Cumulative distributions of counts down  
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5.8  CONCLUDING REMARKS 

 

This chapter devoted to the statistical evaluation of AE signals. It started with the basic 

statistics in terms of the quantity of AE events. By investigating the participants with both 

knees healthy or OA, the number of AE event were found to be low and repeatable with 

good symmetry in all four movement phases for the early adulthood group, higher and 

repeatable with certain loss of symmetry for the middle and late adulthood healthy groups, 

and highest with wider spread and asymmetry for OA knees. The trend of AE events 

increasing with age was supported by the analysis of the average AE hits per 10 movements. 

Using the average AE hits of the four movement phases, significant statistical differences 

and trends between the five age and OA groups in terms of maximum, median, minimum 

and deviation of the average AE hits were discovered, with the maximum and minimum 

increments seen to occur in the DA and DD phases, respectively, and with a trend of 

increasing deviations related to age and symptoms observed in all four movement phases. 

Moreover, the best separation was observed in the DD phase, with the values within the 

IQR non-overlapped. These observations form a basic statistical basis for the use of knee 

AE for quantitative assessment of joint ageing and degeneration.  

Via the probability distribution of each AE waveform feature generated by OA knees in the 

AA phase, the cumulative distributions of each AE waveform feature generated by all the 

participating groups in each movement phase were analysed. The statistical distributions of 

the peak amplitude and the features based on counts are seen to follow the exponential 

distribution. The statistical distribution of the peak frequency feature is seen to be bi-modal, 

with the peak frequencies lower than 100 kHz seen to resemble exponential, and the values 

above 100 kHz seen to resemble Gaussian. For other AE waveform features with the 

exception of ASL, the statistical distributions were seen to either contain a significant part 

of Gaussian distribution or appear to follow an asymmetric Gaussian distribution. 

Compared with the statistical distributions produced by the amplitude based features, the 

distributions of the other AE features show smaller differences among the five participating 

groups. In particular, the statistical distributions produced by the time based features show 
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very high percentage of overlaps with only some movement phases showing noticeable 

differences between group H1 and the other four groups. The statistical distribution 

produced by the frequency based features derived from the time-series waveforms show 

even less discrimination with all the curves forming nearly the same trajectory from the 

lowest to the highest frequencies apart from the curve for group H1 in the AA phase. 

Although there are some statistical significance between the healthy and OA groups based 

on the cumulative distribution of the peak frequency values in the AA phase, the 

differences appear to be in a small frequency range with low probabilities of occurence. For 

the cumulative distributions of the centre frequencies, although they produce better 

separation between the five participating groups, the values are distributed within the same 

range apart from group H1. The cumulative distribution curves of the signal strength and 

absolute energy values showed also a very high percentage of overlap with all the curves 

seen to have nearly the same slope. Finally, the cumulative distributions produced by the 

count based features showed some discrepancy among the five participating groups, the 

differences are not as apparent as those produced by the amplitude based features, with 

higher percentages of curve overlaps and less differences showed at the tail of distribution. 

The cumulative distributions of ASL are shown to provide the best discrimination among 

the five groups, with the lowest percentage of curve overlaps, and the distinctive value 

separations at the upper bound of the distributions. Another significant statistical factor for 

discrimination of different groups is found to be the peak amplitude, with significant 

differences observed based on the value occurrence, particularly in the DD movement 

phase.  

In this chapter, the increase in the number of AE hits from knees is shown to relate 

statistically to age and knee condition in each movement phase, and this statistical trend is 

further supported by the statistical correlation with various AE waveform features. With the 

AE peak amplitude and ASL values shown to provide the most significant statistical 

differences, the combination of them with the number of AE events makes it possible to 

identify each age and knee condition class as shown in the next chapter. 
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CHAPTER 6  MULTIVARIATE FEATURE 

VISUALISATION AND ANALYSIS  
 

6.1  INTRODUCTION 

 

Based on the statistical evaluations of AE features illustrated in the preceeding chapter, 

peak amplitude and ASL are considered to have the highest statistical significance for the 

five age and pathology related groups. With none of two knees found to be exactly the 

same in terms of the quantity of AE events and the waveform characteristics, it is necessary 

to develop an appropriate statistical model to simplify the assessment and visualisation of 

knee AE signals. As several variables are included in the analysis of AE signals emitted 

from the knees (i.e. peak amplitude, ASL and number of AE hits in different movement 

phases), multivariate based techniques are required. 

This chapter starts with a brief review of the common multivariate statistics (Section 6.2). 

With a large majority of AE events acquired, Section 6.3 introduces a statistical based AE 

feature profile to simplify the representation of AE signals emitted from the knee, and 

transform the AE signals emitted from individual knees to a uniform format (Sub-section 

6.3.1). An image based display scheme is used to facilitate visual based comparison of 

individual knee joint AE profiles (Sub-section 6.3.2). Section 6.4 devotes to PCA of AE 

patterns between five ageing and degeneration groups, with Sub-section 6.4.1 introducing 

the fundamental of PCA, Sub-section 6.4.2 showing 3D PCA projections of AE profiles for 

the knees studied with ages and other clinical scores, and Sub-section 6.4.3 investigating 

the sensitivity of PCA of the AE feature profiles constructed using various value intervals. 

Concluding remarks are given in Section 6.5.    
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6.2  OVERVIEW OF MULTIVARIATE ANALYSIS 

 

The generic term of multivariate analysis in statistics describes a collection of procedures 

which involve the analysis of more than one variable [53]. It focuses on the understanding 

of the latent relationships from different forms of variables. This sub-section briefly 

introduces four main multivariate statistic models which have been developed to deal with 

various scenarios, namely, clustering [53], discriminant analysis [105-106], regression 

analysis [107], and multivariate based dimension reduction techniques [108], respectively. 

Clustering [53] is a kind of technique that is able to assign a set of observations into subsets 

based on certain distance measurements, so that the observations belonging to the same 

group are formed based on the same criterion in some sense. There are two main types of 

clustering, namely, hierarchical and non-hierarchical clustering (also known as partitional 

clustering). The hierarchical clustering creates a tree structure called dendrogram to 

represent the relationships between variables based on pre-determined linkage criteria, with 

the root of dendrogram denoting the vector consisting of all the variables, and the branches 

corresponding to the individual variables. There are two main strategies to achieve the 

hierarchical clustering, namely, agglomerative approaches, which start at the leaves and 

eventually merge clusters together, and divisive approaches, which start at the root and 

eventually spread all the variables into detailed clusters. The non-hierarchical clustering is 

to divide the data into various partitions or groups based on the multi-dimensional distance 

measurement techniques (such as Euclidean and Mahalanobis distance, and correlation 

coefficients) [53], with each partition representing one individual cluster. The results of 

non-hierarchical clustering can be visualised via the scatter plot [53], a method in which 

variables can be displayed as a collection of points in the Cartesian coordinate system. Both 

hierarchical and non-hierarchical techniques are based on iterative processing, and the main 

difference between these two approaches is the number of groups to be assigned for the 

data which needs to be determined prior to the non-hierarchical clustering, but not 

necessary for the hierarchical clustering [53]. 

Multivariate discriminant analysis also aims to isolate the dependent variables into two or 

more groups. Unlike the clustering methods with separation decided by distance 
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measurement, the decision rules for the discriminant analysis are determined by fitting the 

multivariate distributions (such as multivariate normal and quadratic distributions) [105-

106] to the probability density function of the multivariable data, thereby creating the 

decision boundaries for assigning the patterns.  

Multivariate regression analysis [107] is the multivariate statistic model that is used to 

understand the variation of the dependent variables while single or multiple independent 

variables are changed. In general, this methodology creates a regression function to 

estimate the conditional expectation or the location parameter of the conditional 

distribution of dependent variables when the corresponding independent variable is 

changed. It is widely used for predicting and forecasting, in order to understand the 

intercorrelation between dependent and independent variables. Parametric and non-

parametric regressions are two major types of the regression analysis methodologies. For 

the parametric regression, the regression function needs to be estimated prior to running of 

the regression analysis. For the non-parametric regression, the regression function does not 

necessary need to be pre-determined, as the regression function can be defined according to 

the information extracted from the independent variables. 

To deal with the high dimensional data set, multivariate based dimension reduction 

techniques have been developed. The central theme of the techniques is to seek the lower 

dimension representations of the data with high dimensionality [105]. The common 

techniques consist of PCA [53, 109], factor analysis (FA) [53], random projection (RP) 

[110], and independent component analysis (ICA) [111]. All of these techniques result in 

the new data set which has a lower dimensionality than the original data set via the 

transformation. PCA seeks to reduce the data dimensionality based on the orthogonal 

transformations, thereby projecting the data with higher variations onto the lower 

dimension space in the new coordinate system. FA reduces the data dimensionality by 

estimating the particular factors that correlated with the original variables. Unlike PCA, 

which seeks the maximum variation of the multivariate data set, FA represents the 

compressed data based on the similarities. RP is a simple but powerful dimension reduction 

technique that finds the lower dimension projection of larger data using the random 

transform. Compared with the other three approaches (i.e. PCA, FA, and ICA), RP is more 
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effective in terms of reducing the computational burden by randomly projecting the data 

onto the new coordinate system. ICA also seeks the projection of the high dimension 

variables. Unlike PCA, the transformations performed by ICA are not necessarily 

orthogonal, but as nearly statistically independent as possible.  

 

6.3  MULTIVARIATE BASED AE FEATURE ANALYSIS 

 

6.3.1  Feature based profiles of knee joint acoustic emission 

 

Based on the statistical evaluation discussed in the preceeding chapter, the number of AE 

hits, as well as the peak amplitude and ASL values were shown to exhibit certain age and 

degeneration related trends. As there are vast amount of AE signals created by each knee 

performing consecutive and repeated movements, and there is a high percentage of overlap 

in the feature values extracted from signal waveforms among the five participating groups, 

direct separation of the knee joints using their waveform features is difficult. As an 

example, Figure 6-1 shows the scatter plot consisting of the peak amplitude and ASL 

values extracted from one late adulthood healthy knee in group H3, and one late adulthood 

OA knee in group OA2, and no clear boundary is seen between these two knees with most 

of the AE feature patterns overlapped. It is therefore difficult to apply the multivariate 

techniques directly to classify the knee joint AE, even with only one healthy and one OA 

knee. It will not be possible for clustering methods to decide the group distance, and 

discriminant analysis to create the decision boundary. Furthermore, very similar regression 

function will be derived due to the high pattern similarity between the two groups.   

Previously, a feature based representation of knee AE has been introduced to represent the 

discriminative AE features in two movement phases in a compact and uniform format for 

visualising and identifying the differences between knees [23]. In this thesis, the 

representation is modified by using different features and extended to the four movement 

phases. The representation of the feature based profile is given by: 
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H X ψ
=

= ∑  (6-1) 

where Xi denote the feature class in the i
th

 movement, ψ denotes movement phase (i.e. AA, 

AD, DA, and DD phases), and H denotes the average number of AE hits of particular 

feature classes in a particular movement phase over 10 repeated movements.  

 

Figure 6-1 Scatter plot of peak ampltide and ASL for one healthy and one OA knee   

By using the amplitude and ASL features to create the AE profile for each movement phase, 

the AE profile in the i
th

 movement can be defined as Xi(PEAK AMPLITUDEj ∩ ASLm). If 

the value intervals of the peak amplitude and ASL values are defined as: 

30+10(j-1) ≤ PEAK AMPLITUDEj < 30+10j    for j=1,2,…,6  (6-2) 

10+5(m-1) ≤ ASLm < 10+5m                              for  m=1, 2, …, 8 (6-3) 

and the last peak amplitude and ASL intervals are given by PEAK AMPLITUDE7 > 90 dB 

and ASL9 > 50 dB, respectively, then a total of 63 feature classes is created by the 

combination of amplitude and ASL values for each individual movement phase.  
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6.3.2  Visualisation of knee joint acoustic emission 

 

To provide a visual display of the AE feature profile, an image based representation is 

developed with the AE feature profile in each movement phase shown as a 2D colour 

histogram in each quarter of the image. The representation was firstly introduced by [23] 

and modified in this thesis for the features and movement phases used. As the display 

scheme shown in Figure 6-2, the image is partitioned into four quarters corresponding to 

the AA, AD, DA, and DD movement phases, respectively. AE hits in the ascending phase 

are allocated in the left half of the image, whereas AE hits in the descending phase are 

allocated in the right half of the image. The top half and the bottom half are for AE hits 

during acceleration and deceleration of movements, respectively. In order to gain a 

symmetrical visualisation effect of the AE profile, the direction of ASL and peak amplitude 

intervals are oriented outward in an ascending order from the centre of image along the 

horizontal and vertical axes, respectively.  

 

Figure 6-2 Display scheme of image based representation of AE feature profile 

Figure 6-3 shows the typical examples of the knee joint AE profiles for the five groups (the 

image based representation of all AE feature profiles are shown in Appendix G). From the 

early adulthood healthy knee profiles, it should be apparent that the knees in this group 
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generate AE signals with the low peak amplitude and ASL values, and with the average 

number of AE events per movement less than 6 for each feature class. More types of AE 

feature classes with higher occurrence start to appear in the middle adulthood healthy knee 

profile as shown in its AE profiles with colours extending in both horizontal and vertical 

directions. While the average number of AE events per movement for a particular 

waveform feature class in the ascending phase can be as high as 10, it can be as high as 16 

in the descending phase. From the AE profiles of the late adulthood healthy knee, AE 

signals with medium peak amplitude and medium ASL values start to appear, and the 

average number of lower level AE signal (i.e. with low amplitude and ASL values) can be 

up to a maximum of 25 in the AA movement phase. 

Comparing the OA1 middle adulthood profiles with the three healthy profiles shown in the 

same figure (Figure 6-3 and Appendix G), larger number of AE hits with a wider range of 

peak amplitude and ASL values are generated, with the values spreading along both 

horizontal and vertical directions in all of the four movment phases. In addition, there are a 

few AE events with high peak amplitudes, and medium ASL values in the OA1 profiles, 

which were not generated in the healthy profiles. Comparing the OA2 profiles with the 

OA1 profiles, even higher number of AE events with the wider range of peak amplitude 

and ASL values are generated, with the maximum number of average AE events more than 

30 hits found in OA2 group. Furthermore, there is an absence of AE events with minimum 

ASL in the deceleration phase in some of OA knees profiles. 
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Figure 6-3 Typical AE feature profiles of a knee in each group 
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6.4  BIOMARKER IDENTIFICATION BY PRINCIPAL COMPONENT ANALYSIS 

 

Using the AE feature profiles based on the four-phase model discussed in the preceeding 

section, the AE signals emitted from the individual knees were transformed into a uniform 

format, and the differences between individual knees can be visualised by using the image 

based representation. However, as the AE profiles are still expressed with high 

dimensionalities (4 × 63 dimensions for each knee), dimension reduction is necessary in 

order to give a more quantitative assessment AE score for each knee.  

The purpose of reducing the dimensionalities of AE profiles is to maximise the variations 

between the five ageing and degeneration related groups in the lower dimensional space. 

The multivariate based dimension reduction techniques were reviewed in Section 6.2. For 

FA, since it aims to seek the internal correlations among the multivariate dataset, it is not 

suitable for the purpose of study in this thesis; for RP, since it compresses the high 

dimension data based on the random transformation by saving the computational time, it 

may not result the new dataset with the maximum variation in the lower dimensional space; 

and for ICA, since it seeks the indenpence of the variables, it is not suitable for the purpose 

of study. With PCA [109] reducing the dimensionalities by maximising the variability of 

the multi-dimension dataset in the lower dimension space, it is selected to discover the 

hidden  AE patterns in the five participating groups.  

 

6.4.1  Principal component analysis 

 

As the multivariate based techniques mentioned in the preceeding section, the central theme 

of PCA is to reduce the dimensionality of the multiple variables dataset, thereby retaining 

as much variations as possible in the first few dimensions of the new dataset. The 

transformation of the original dataset to the new coordinate system can be done by 

projecting the original dataset into a new space formed by the principal components (PC), 

the representation (projection) of the original dataset in the new space can be represented 

by the PC scores. Let matrix F with x×y dimensions be the input data matrix of the PCA, 
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where x corresponds to the number of data sets and y the number of variables, the 

computation of the PC and the corresponding scores can be achieved by using two 

approaches, namely, singular value decomposition (SVD), and spectral decomposition, 

respectively. 

In the first step of both approach, matrix F is mean-corrected to give FM, and this is 

achieved by subtracting each variable in the matrix to the corresponding column mean, 

thereby ensuring all variables in the matrix receiving the same weight. 

In the SVD approach,  FM can be expressed as a triple multiplication as: 

FM = USV
T
 (6-4) 

where, V
T
 is a y×y square and orthogonal matrix consisting of the eigenvectors of matrix 

FM in each column, S is a y×y diagonal matrix with the main diagonal containing the 

corresponding square roots of eigenvalues of matrix FM [53], and U is a x×y matrix 

decomposed by SVD.  

By selecting a small number of eigenvectors associated with highest eigenvalues (i.e. PC) 

and denoting it as   
T

PCV
 with a dimension of y×s, and with s<<y,the whole set of FM  can be 

projected on a different basis formed by a small set of orthogonal and ordered PC axes with 

the first few PC axes capturing most of variation (i.e PC scores). For the visualisation 

purpose, three eigenvectors corresponding to the three highest eigenvalues are used with 

the dimension of 
T

PCV
  set to y×3, and the PC scores can be calculated by: 

T

M PC=K F V
 (6-5) 

Another way to implement PCA is based on the spectral decomposition, which is achieved 

by applying the SVD to the covariance matrix of F. If the covariance matrix of F is defined 

by: 

1
( ) ( )

1

T

x
= − −

−
F FC F µ F µ

 (6-6) 

where, µF is the column mean of  F, the SVD of the covariance matrix can be expressed as: 

C = PDP
T
 (6-7) 



 

 

105 
 

where, P is a y×y square and orthogonal matrix with each column consisting of the 

eigenvector of C, and D is the y×y diagonal matrix whose main diagonal consists of the 

corresponding eigenvalues of P. By selecting again the PC based on the first three highest 

eigenvalues in D to form 
T

PCV
 and applying equation 6-5 will produce the same PC scores. 

 

The information capture by each PC correspond to the variance of each column of K which 

can be calculated by: 

2

K K

1

1
(K( ) )

x

i

i
x

σ µ
=

= −∑
  (6-8) 

where K(i) denotes the PC score for the i
th

 row of K, and µK denotes the mean value of the 

K
th

  column of K. 

The total data variance can be calculated by using either equation 6-9 or equation 6-10: 

 

2
2 ( )

1
t trace

x
σ =

−

S

 (6-9) 

2
( )

t
traceσ = D

  (6-10) 

Hence, the percentage of the variance captured by each dimension of PC equals the ratio of 

2

K
σ

 and σt
2
. 

 

6.4.2  Classification of AE profiles by principal component analysis 

 

For the AE feature profiles constructed by the AE peak amplitude and ASL, PCA is 

performed to create the visual effects for each individual AE profiles in the lower 

dimensional space, thereby highlighting the hidden relationships between the AE profiles 

and the knee joint conditions in the five participating groups.  

With the AE features re-formated to the uniform format by using the image based profile 

discussed in the preceeding section, let J and M correspond to the total number of peak 

amplitude and ASL intervals in each movement phase, the image based profile can be 

converted from its matrix of size 2J × 2M to a row feature vector of length of 4JM by row 
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concatenation. By combining the row feature vectors of all the knees into one data matrix, 

it results in the data matrix with a size of F = 53 × 4JM for the entry of PCA with each row 

of the matrix consisting of the AE profile of each individual knee. 

By applying the SVD approach to find the projections of the mean corrected matrix FM in 

the PC domain, the projection of the AE feature profiles from 53 knees on the PCA space 

formed by the first three principal components is shown in Figure 6-4. Based on a total of 

63 AE feature classes with 7 amplitude and 9 ASL intervals per each movement phase, 

approximately 87.97% of the total variance in the data is captured. By labelling each 

projected AE feature profile according to its age and knee condition group, there are five 

clusters in Figure 6-4 (a) corresponding to the five groups with a trajectory related to knee 

age and degeneration, progressing from group H1 with the early adulthood healthy knees to 

group H3 with late adulthood healthy knees, followed by group OA1 with the middle 

adulthood OA knees to group OA2 with the late adulthood OA knees. Furthermore, this 

trajectory shows increasing areas for each cluster. It starts from the smallest cluster for the 

early adulthood healthy knees in group H1 with significant overlapping of the projected AE 

feature profiles. With the increase in the age, the cluster areas increase with longer 

distances among the projected AE feature profiles for the middle and late adulthood healthy 

knees in group H2 and H3. As the knee condition changes from healthy to OA, the cluster 

areas are seen to spread even further with much longer distances shown among the 

projected AE feature profiles of the knees in group OA1 compared with those in group H3. 

At the end of trajectory, group OA2 with the late adulthood OA knees is seen to produce 

the largest cluster area with the widest spread of the projected AE feature profiles. 

Additionally, from the zoom-in view of the knees in group H3, there appear to be two 

potential sub-clusters, with one formed by 6 out of 7 knees with ages over 70 years and the 

other one formed by 5 out of 6 knees aged 60-70 years. 
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(c) 

Figure 6-4 PCA of AE feature profiles constructed by amplitude and ASL of AE signals (a) 

all five groups, (b) zoom-in view of H2 and H3 groups, and (c) zoom-in view of H1 group 

As mentioned in Chapter 3, data collection includes BMI, KOOS, SF-36 and K-L X-ray 

scores, and the relationships between the AE profiles in the first three PC spaces and these  

clinical scores were investigated. Because the SF-36 scores focuse on the assessment of 

participants’ daily life and general health [99], it was not investigated further as it is not 

knee specific. Although the KOOS scores are concentrated on the knee joint function 

assessment [98], the assessments are done by the the participants. As the healthy 

participants with symmptomatic knees and the OA participants with asymmptomatic knees 

are excluded from the study, KOOS scores are not viewed as a useful clinical scores for the 

analysis in this thesis, becasue the KOOS scores include a number of non-clinical 

categories such as quality of life, sports, and daily life.  

Figure 6-5 shows the PCA projections of knee joint AE profiles with the BMI values. In 

Figure 6-5, two knees belonging to group H3 are excluded due to the bodymass and height 

not recorded (mentioned in Section 3.4). From Figure 6-5(a), it is seen that, although most 

of group OA2 knees have BMI in the obesity level, and most of OA1 knees have BMI in 

the overweight level, it does not produce two BMI related clusters for these two groups. 
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From Figures 6-5 (b) and 6-5 (c) showing the zoom-in views of the three healthy groups, 

similar results are seen without clear BMI related clusters. 

Figure 6-6 shows the PCA projection of 10 OA knee joint AE profiles with X-ray scores 

(with each knee labelled ‘age, [K-L score]’). From Figure 6-6, a certain relationship 

appears to exist between the AE profile and the X-ray score, since only one particpant aged 

82 years with K-L score equal to 1 does not match the general trend. Having said that, the 

result is not conclusive due to a small number of knees available with K-L scores. 

Nevertheless, it is notworthy to mention that the K-L scores may not truly reflect the 

current conditions of the knee studied as they were based on old X-rays and that the K-L 

scores are rather coarse with observer variability.  
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Figure 6-5 PCA of AE feature profiles with BMI values (a) all groups, (b) zoom-in view of 

H2 and H3 groups, and (c) zoom-in view of H1 group 
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Figure 6-6 PCA of AE feature profiles with age and K-L scores for 10 OA knees 

The above results demonstrate the potential of using the projected AE feature profiles in the 

PCA space as a biomarker for quantitative assessment of knee age and condition. By 

increasing the number of age groups with a larger number of healthy and OA knees in each 

age group to establish the reference clusters and trajectory, a knee could be possibly 

diagnosed based on the position of its projected AE feature profile along the trajectory and 

the distance of it with respect to the reference cluster or the boundary of the nearest two 

clusters. The wide spread of the OA clusters observed in the PCA space also suggests the 

possibility of further group clustering to define sub-domains based on different pathologies. 

In particular, it has been shown that the projections of the H3 profiles could be divided into 

two sub-clusters based on age. By including additional AE descriptors to form the AE 

based profiles, further group isolation may also be achievable for other groups.  

Compared with the previous results of AE based knee joint assessment, the AE feature 

profiles introduced in this chapter enables classification of not only the early adulthood 

heathy and late adulthood OA knees, but also the knees in different age bands and 

conditions.   
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6.4.3  PCA sensitivity 

 

For the statistical AE profiles shown in the preceeding sub-sections, an issue can be raised 

regarding the sensitivity of the AE profile to the change of each feature class, or granularity 

of the multidimensional AE profile when computing PCA. An investigation was also 

performed to see the sensitivity of PCA based projection of the AE feature profiles to the 

change of the value intervals (or granularities) of the AE features. In this sub-section, the 

AE profile Xi(PEAK AMPLITUDEj ∩ ASLm) for each individual knee is changed by using 

more or less feature classes based on two other value intervals given by: 

30+5(j-1) ≤ PEAK AMPLITUDEj < 30+5j     for j=1, 2, … , 12  (6-11) 

with the last amplitude class PEAK AMPLITUDE13 >  90 dB, 

10+10(m-1) ≤ ASLm < 10+10m                       for m=1, 2, …,4  (6-12) 

with the last ASL class ASL5 > 50 dB. 

Figures 6-7 to 6-9 show the PCA projections of AE feature profiles of the 53 knees studied 

with three different granularities. Figure 6-5 shows the 3D PCA projection of AE feature 

profiles with the possible feature value intervals determined using equations 6-3 and 6-11 

(with peak amplitude feature classes increased to 13 and ASL feature classes remained the 

same). Although the projection shows a slight overlap between group H3 and OA1 knees, 

the progression for age related degenerations is clear, with the trajectory progressing from 

group H1 to OA2, and with the wide spreaded knee patterns when the ages growing older. 

The projections of AE feature profiles shown in Figures 6-6 and 6-7 are obtained using 

equations 6-2 and 6-12 (with peak amplitude feature classes remained the same and ASL 

feature classes reduced to 5), as well as equations 6-11 and 6-12 (with peak amplitude 

feature classes increased to 13 and ASL feature classes reduced to 5), respectively. The 

projections of these two types of the AE feature profiles also shown to have the trend from 

the early adulthood healthy knees (H1) to the late adulthood OA knees (OA2) with slightly 

different group distances. Based on the sensitivity evaluation discussed in this sub-section, 

it can be concluded that although the PCA results of the AE feature profiles with various 
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granularities show some discrepancy, they do not change the ageing and degeneration 

related trajectory and each cluster remains well defined by the projected point in the 

corresponding group. 

  

 

Figure 6-7 PCA results produced by 13 amplitude intervals and 9 ASL intervals 

 

Figure 6-8 PCA results produced by 7 amplitude intervals and 5 ASL intervals 
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Figure 6-9 PCA results produced by 13 amplitude intervals and 5 ASL intervals 

 

6.5  CONCLUDING REMARKS 

 

This chapter presented the multiple variables based AE feature profile developed as a 

biomarker for quantitative assessment of knee joint ageing and degenration. As it is 

difficult to classify the AE signals emitted from different knees based on the most 

significant AE features, an AE feature profile based on the statistics of the two AE features 

in four movement phases over 10 repeated sit-stand-sit cycles was introduced to represent 

the AE signals in a uniform format, and the 2D image based representation was introduced 

for visualisation of the AE signals. Based on 7 amplitude and 9 ASL classes in each 

movement phase, the image based representations showed significant visual differences 

between the AE signals emitted from different knee conditions, with the number of the 

feature classes and the number of average hits in each feature classs increasing with age 

and OA.  

Although the presentation of the knee joint AE signals was simplified by using the AE 

profile based on two AE features in four movement phases, it still has a relatively high 

dimension due to the number of feature classes, and led to the application of PCA to project 
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the high dimemsional feature classes to the low dimension space formed by the first three 

principal components. Using the projected AE profiles in the low dimension PCA space as 

the biomarker, an ageing and degeneration related trajectory were observed with five 

distinctive clusters, where the early and late adulthood healthy knees (group H1 and H3) 

were seen to occur at two extremes of the healthy groups, and they are followed by the 

middle and late adulthood OA knees (group OA1 and OA2). Furthermore, the cluster area 

was seen to increse with the increasing age for the health and OA groups, and the 

sensitivity of the trajectory and the clusters with respect to the number of feature classes 

was investigated to show its robustness. The results demonstrated the potential of the AE 

based biomarker for quantitative assessment of knee joint ageing and condition, and open 

up the possibility to diagnose the knee joint disorder at the early stage based on the position 

of the knee profiles in the projected space.  
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CHAPTER 7  CONCLUSIONS AND 

RECOMMENDATIONS FOR FUTURE WORK 
 

7.1  CONCLUSIONS 

 

The research described in this thesis deals with discovery of AE based biomarker for 

quantitative assessments of ageing and degeneration in human knee joints. AE is a type of 

high frequency ultrasound that is generated from the industrial materials or human body 

under pressure. Through the literatures reviewed in chapter 2, AE has been discovered as a 

useful marker for quantitative assessment of damage progression in machinery and human 

bone, and the knee joint flexion-extension is considered as a useful protocol for joint 

functional assessment in terms of ageing and degeneration. Along with the exploratory 

study showing distinctive differences between the young healthy knees and the old OA 

knees, a solid basis is formed for the research to investigate the potential of AE as a 

biomarker of more subtle knee joint conditions. 

Joint angle based AE signals with corresponding clinical scores were acquired from a total 

of 72 participants which include healthy, OA, RA, damage joints, and the participants after 

TKR. With a large number of AE data acquired from the knees belonging to various age 

ranges, it enables the project to focus on the discovery of ageing and degeneration related 

AE biomarker for healthy and OA cohorts. In order to ensure all signals used are collected 

from the knees under the clear clinical statuses, healthy knees without historical abnormal 

symptoms and OA knees with radiological confirmation were selected.  

By dividing each sit-stand-sit movement into four movement phases (AA, AD, DA and DD 

phases) proposed by the author based on the joint angle and angular velocity signals, 

quantitative assessments of joint angle and velocity signals based on cycle-by-cycle 

variations and movement symmetry reveal noticeable statistical differences related to joint 

age and degeneration, particularly in the descending phase.  

Via the quantitative assessment of the basic statistics of AE events in the proposed four 

movement phases, the number of AE events were found to be low and repeatable with good 
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symmetry for the early adulthood group, and to increase with certain loss of symmetry and 

higher variability as the age increases and the knee condition changed from healthy to OA. 

Significant statistical differences were also found between the five age and OA groups in 

terms of average AE events per 10 movements, with a trend of an increasing number of 

average AE events and their deviations related to age and OA in all of the four movement 

phases. Via the probability distribution analysis of AE waveform features, most of the AE 

features showed statistical differences between the healthy and OA knees, and  the AE peak 

amplitude value and ASL were showed to provide the most statistical differences between 

five age and disease groups, particularly at the upper bounds.   

A knee AE profile based on two waveform features and four movement phases was 

developed to reduce the amount of data to a manageable level, and to enable a uniform 

representation of the AE signals produced by different knee conditions. Using an image 

based representation to show the AE feature profile, there is a visual trend of increasing  

peak amplitude and ASL values with the increasing age groups and the change of knee 

condition from healthy to OA. Application of PCA to the AE feature profiles of all knees 

yields an age and disease related trajectory with five distinctive clusters of increasing sizes 

and progressing from the youngest healthy group to the oldest healthy group, then from the 

youngest OA group to the oldest OA group. 

With all the trends from knee AE signal analysis showing a strong correlation with knee 

age and condition, there is significant prima facie evidence for knee AE as a biomarker for 

quantitative assessment of joint ageing and degeneration. With the advantages of simplicity 

and accessibility, a good prospect is viewed to be offered by knee AE as a rapid and non-

invasive measurement tool for use in clinic and home settings for objective monitoring of 

condition change in knee joints. 

 

7.2  FUTURE WORK 

 

The work described in this thesis has shown AE as a potential biomarker for quantitative 

assessment of jont ageing and degeneration for knees. Based on the research findings 
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shown in this thesis and the current data collected, the recommedations for potential future 

work for the project are summarised in the following. 

 

7.2.1  Discovery of additional biomarker for comprehensive representation of knee joint 

ageing and degeneration 

 

Further analysis can be applied to the signals acquired from the five ageing and 

degeneration related groups, thereby discovering a more comprehensive biomarker for 

assessment of knee ageing and degeneration. The four-phase movement model can be 

extended to more phases to give higher angular sensitivity. For example, the median value 

of the instantaneous angular velocity in each movement phase could be used as the 

threshold to divide it into two sub-movement phases (corresponding to low and high speed). 

This will enable knee joint AE to be analysed at finer joint angle range. The repeatability of 

AE events is another area to be investigated. The AE signal appearance repeatability can be 

assessed using the AE descriptors and the detailed joint angle signals (e.g. waveforms 

described by similar AE features appeared within a similar angular range in different 

movement cycles can be treated as repeatable). This investigation will enable the use of 

repeatable, dominant and distinctive AE waveforms as a more comprehensive biomarker 

for clinicians to monitor ageing and identify the stage of joint degeneration. 

 

7.2.2  Identification of damage joints 

 

As the data collected include a number of joint damage AE signals, it provides an area for 

further work. By applying the repeatability evaluation techniques explained in Sub-section 

7.2.1 to exclude the non-repeatable AE events, and using the AE profiles with more 

detailed movement phases constructed based on the repeatable, distinctive and dominant 

AE signals, it is not unreasonable to assume that the AE profiles of damage joints in the 

PCA projected space will appear between the regions of the late adulthood healthy group 

and the middle adulthood OA group, as ligament/cartilage damage will have a high 
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probabilty to develop to OA eventually [12, 112]. Furthermore, the data selection criteria in 

this project (described in Section 3.5) excludes healthy knees with abnormal symptoms in 

the study in order to provide a clear clinical condition. By applying the repeatability and 

occurrence analysis to these excluded knees, and comparing with the asymmptomatic 

healthy knees, damage joints, as well as the OA knees, it may be able to discover additonal 

waveform features to build a more sensitive AE profile for clinicans to monitor the knees 

developing into OA, and predict the subtle joint damages at the early stage. 

 

7.2.3  Identification of OA and RA 

 

Another possible direction based on the current data collected is to investigate the 

differences between OA and RA knees. These two types of arthritis are considered to be 

caused by different knee joint changes. While OA is considered to be caused by 

degeneration or post-injury disorder [3-4], RA is considered to be caused by the 

autoimmune disorder [113]. If some waveforms can be assumed to be useful to differentiate 

these two types of arthritis, then the statistical analysis methodology presented in this thesis 

could be followed. The study can be started with the analysis of AE hits from the OA and 

RA knees, and followed by the statistical distribution analysis of AE features from the OA 

and RA knees based on detail movement phases to discover the significant features to 

differentiate between the OA and RA knees. This will finally lead to construction of the AE 

profile by using the most significant features and application of the multivariate dimension 

reduction techniques to show the differnces between OA and RA.   
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APPENDIX A  SPECIFICATIONS OF 

ACOUSTIC EMISSION SYSTEM 

 

This appendix lists the specifications of the acoustic emission system extracted from the 

user operating manuals [69].  

 

A.1  SPECIFICATION OF S9204 SENSOR 

 

Dimensionality (diameter × height): 23mm×15mm. 

Weight:                                              17 g. 

Peak sensitivity (Ref V/(m/s)):         68. 

Operating frequency range:              50-200 kHz. 

Resonant frequency:                         75 kHz. 

Directionality:                                   ±1.5 dB. 

 

 

Figure A.1-1: Reference frequency response of S9204 sensor 
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 A.2  SPECIFICATION OF 2/4/6 PREAMPLIFIER  

 

Gain selectable: 20/40/60 dB±0.5% dB.                         

 Input impedance: 10 kΩ/15 pF. 

Power required: 18-28 Vdc. 

Operating current: 30 mA (With auto sensor test (AST) installed [64]). 

                               28 mA (Without AST installed). 

Dynamic range:    15 dB (Utilizing an R15 sensor). 

                              80 dB (50 Ω input). 

 

A.3  SPECIFICATION OF PCI-2 BOARD 

 

Size (L×H×T inch): 13.4×4.8×0.7. 

Weight (lbs): 1.1. 

Power consumption:   12 Watts. 

DC power:  +12 volts, 0.6 amps. 

                   -12 volts, 0.05 amps. 

                   + 5.0 volts, 0.8 amps. 

AE inputs: 2 channels. 

Input impedance: 50Ω or 1000Ω, switch selectable. 

Preamp power: 0 or 28 volts, 100 mA current limited. 

Sensor testing: AST. 
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Frequency response: 3kHz – 3MHz (-3dB). 

AE signal gain: 0/6 dB, computer selectable. 

Filters: 4 high pass 4
th

 order Butterworth filter (3 kHz, 100 kHz, 200 kHz), and 6 low pass 

6
th

 order Butterworth filter (100 kHz, 200 kHz, 400 kHz, 1000 kHz, 2000 kHz, 3000 kHz). 

Noise:   

o 3kHz-3MHz (filters). 

o 4 dB (ASL without input). 

o 17 dB w/o preamp or sensor (Minimum threshold). 

Maximum signal amplitude:  100 dB AE 

                                                99 dB ASL. 

ADC type: 18 bit 40 MSPS per channel maximum. 

Dynamic range: >85 dB. 

Sample rate: 100 kS/s, 200 kS/s, 500 kS/s, 1M/sample/sec, 2MSPS, 5MSPS, 10 MSPS, 20 

MSPS, 40 MSPS. 

Digital I/O: 8 digital inputs/outputs (0-3.3 volt, 5v tolerant, TTL level compatible).   
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APPENDIX B  AE SENSOR TESTING 

 

Prior to data acquisition, the piezoelectric transducers were tested by using the pencil lead 

breaking method. Pencil lead breaking is a standard methodology that can be used to 

simulate the source of AE signals [94]. The testing setup of the method is shown in Figure 

B-1. As the sensors were calibrated by the manufacturer, the purpose of pencil lead break 

testing is to test whether or not the two sensors used have the similar properties. As 

breaking the pencil lead on the skin will create pain to the participant, the two sensors were 

fixed on a flat wooden table by using the medical tapes in order to ensure the AE signal 

created by the pencil lead break is based on similar sensor attachment method, and the 

conductive gel was applied to smooth the contacting surfaces between the sensors and table. 

A 0.5 mm mechanical pencil lead was broken amid the transducers with the same distance 

(7.5 cm).  

 

Figure B-1 AE sensors testing based on pencil lead breaking 

Figures B-2 and B-3 illustrate the results of the same AE signal acquired by the two sensors 

in time and frequency domain. The signal was simulated by using the testing method shown 

in Figure B-1. From the time domain waveforms, it is clear that two similar signals were 
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acquired by the two sensors. From the frequency domain representation, although the 

values of peak magnitude were slightly different among the two channels, the overall 

frequency response and the frequency of peak magnitude occurred are similar. This means 

that the two transducers have the similar properties in both time and frequency domains. 

 

Figure B-2 Sensor testing response – time domain 

 

Figure B-3 Sensor testing response – frequency domain 
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APPENDIX C  SPECIFICATIONS OF 

GONIOMETER SYSTEM 

 

C.1  SPECIFICATION OF SG150 ELECTRO-GONIOMETER 

 

Number of channels: 2. 

Weight: 19 g. 

Minimum permissible bend radium: 18 mm. 

Measurement output: flexion/extension. 

Measure range: ±150
o 

. 

 

C.2  SPECIFICATION OF K800 DATA ACQUISITION UNIT      

 

Analogue channels: 8. 

Digital channels: 5. 

ADC: 13 bit. 

Digital circuitry sampling rate: 5 kHz. 

Output: Analogue. 

Power supply per channel: + 5.0 Vdc. 

Current supply per channel:  < 25 mA. 

Input voltage: ±12 mV. 

Analogue channel input impedance: 1MΩ. 
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Accuracy: ±3
o
 measured over ±90

o
. 

Bandwidth: 5 KHz. 
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APPENDIX D  GONIOMETER CALIBRATION 
 

The electro-goniometers were calibrated using the linear regression method [96]. During 

the calibration, the inputs for both channels of the goniometer is a vector of the angles in 

degrees between -130
o
 and 130

o
 with 10

o
 intervals, and the goniometer output voltages are 

represented by unit of volts. From the calibration result shown in Figure D-1, it can be seen 

that similar goniometer responses are observed from the two channels, and the 

characteristics of the left and right channels can be approached by using equations D-1 and 

D-2, respectively: 

UL = 0.028θL + 0.42  (D-1) 

UR = 0.026θR + 0.75 (D-2) 

where, UL and UR are referred to as the output voltage of goniometer for the left and right 

channel and θL and θR are the input angles. These two equations were used to obtain the 

actual angles during data acquisition. Based on the equations D-1 and D-2, the deviations of  

 

Figure D-1 Calibration curve of electro-goniometers 
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the calibration result can be measured, with the maximum difference = ± 0.9
o 

for channel 

left and = ±2.1
o 
for channel right. As the angle measurement methods applied in this project 

are based on the movement phase, these errors could be considered as acceptable. 
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APPENDIX E  GENERAL HEALTH AND WELL-

BEING QUESTIONNAIRE 
 

 

Personal information 

Forename: 

Middle initial: 

Surname: 

Date of  birth: 

Gender: 

Bodymass: 

Height: 

BMI: 

 

Health information 

1. Do you have any health conditions? If yes, please give details: 

 

 

 

2. Do you experience any of following in your knees 

(a). Difficulty moving. (b). Stiffness. (c). Locking. (d). Swelling. (e). Pain. (f). Tenderness. 

(g). Grating. (h). Clicking. 

If others, please give detail: 

 

 



 

 

139 
 

 

3. For how long have you been experienced these? 

 

 

 

4. How long do these usually last? 

(a). Constant. (b). Seconds. (c). Minutes. (d). Hours. (e). Day. (f). Days. (g). Weeks. (h). 

Months. (i). Even longer. 

 

 

5. How would you describe the level of these feeling? 

(a).Slight annoyance. (b). Mild. (c). Moderate. (d). Severe. 

 

6. Does anything make these worse? If yes, please give details: 

 

 

 

7. Are you currently using any other methods to reduce these?   

If yes, please give details: 

 

 

 

8. Additional participant information. 
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APPENDIX F  QUANTITY OF AE EVENTS 

FROM EACH KNEE IN EACH PHASE AND 

EACH MOVEMENT CYCLE 

 

Subject ID/phase AA 

(movement 1-10) 

AD 

(movement 1-10) 

DA 

(movement 1-10) 

DD 

(movement 1-10) 

H1-1 9 2 0 3 1 

6 2 2 4 12 

6 15 16 6 3 

0 5 1 3 3 

3 2 8 3 3 

3 5 11 8 8 

2 0 5 2 9 

9 9 10 16 9 

H1-2 2 9 1 2 1 

4 1 4 6 2 

6 2 1 4 3 

3 0 5 1 6 

4 2 1 1 2 

4 0 3 2 8 

5 4 3 3 3 

3 1 1 2 4 

H1-3 12 2 1 2 3 

2 3 2 3 2 

6 1 2 3 1 

4 3 4 4 3 

1 4 2 0 0 

1 2 1 4 1 

5 8 3 3 4 

3 3 1 2 2 

H1-4 1 1 2 2 0 

6 1 2 1 1 

2 4 0 2 5 

2 2 2 2 7 

1 1 2 0 5 

2 2 4 1 1 

1 1 1 0 5 

2 1 0 0 3 

H1-5 3 0 1 0 0 

0 0 0 2 2 

0 0 0 0 0 

0 0 0 1 0 

0 0 1 0 3 

0 3 1 1 2 

3 3 4 7 2 

2 8 1 8 17 

H1-6 7 3 5 6 4 

2 2 4 4 6 

10 0 3 2 2 

2 6 4 7 12 

1 2 10 4 5 

6 3 6 4 7 

4 5 9 9 4 

8 4 2 3 4 

H1-7 3 1 1 0 0 

1 0 0 0 1 

1 2 3 3 1 

0 0 4 3 2 

7 2 4 8 4 

5 5 7 3 3 

6 5 8 7 7 

6 6 2 7 7 

H1-8 4 6 3 2 3 

6 5 2 5 4 

3 5 1 2 3 

6 0 4 2 2 

5  3  5  4  5 

2  2  4  3  8 

5 5 7 5 2 

2 2 7 4 5 

H1-9 8 5 7 8 4 

7 4 1 3 2 

0 3 4 4 4 

0 2 0 1 0 

4 3 5 0 0 

0 1 1 0 0 

2 4 7 7 9 

4 7 3 4 7 

H1-10 1 1 1 1 0 

1 2 1 2 1 

2 0 2 2 2 

7 3 6 4 2 

4 4 9 5 6 

10 10 12 11 14 

1 0 3 3 0 

3 7 5 4 4 

 

Table F-1 Number of AE events for 10 individual movements in group H1 
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Subject ID/Phase AA 

(movement 1-10) 

AD 

(movement 1-10) 

DA 

(movement 1-10) 

DD 

(movement 1-10) 

H2-1 10 10 5 4 1 

12 6 2 3 1 

4 4 8 5 6 

6 9 5 4 5 

4 2 3 4 2 

7 7 13 15 9 

8 7 11 13 20 

12 9 7 10 15 

H2-2 5 3 4 9 4 

11 4 3 3 3 

25 11 14 16 31 

23 12 16 16 13 

19 3 18 47 35 

20 13 17 33 30 

24 37 22 35 19 

12 29 19 22 29 

H2-3 8 5 3 2 2 

8 1 0 0 2 

4 0 1 0 0 

0 0 0 4 0 

13 12 11 8 9 

    12 5 7 3 11 

16 17 18 7 9 

    23 19 35 20 23 

H2-4 24 10 6 9 10 

18 11 17 16 12 

          5 8 4 5 7 

   6 6 4 4 6 

       2 2 0 0 4 

6 9 3 3 4 

29 24 25 18 26 

32 43 19 29 30 

H2-5 11 4 3 3 2 

17 4 0 2 0 

           0 1 0 2 0 

           1 1 2 0 0 

       0 0 1 1 1 

2 0 2 3 0 

25 13 13 15 11 

16 13 17 10 11 

H2-6 17 8 6 9 8 

17 14 18 17 17 

5 9 8 9 4 

2 6 4 1 1 

6 8 8 5 6 

4 7 5 7 5 

16 33 15 19 14 

    7 15 9 17 17 

H2-7 13 5 7 8 6 

7 9 5 7 10 

9 16 14 16 6 

  22 16 15 15 19 

15 7 15 10 12 

   9 14 13 14 10 

12 20 14 11 17 

18 11 12 10 13 

H2-8 17 15 15 11 12 

20 15 10 14 16 

4 5 7 4 3 

  15 9 8 3 6 

6   7   9   7   7  

12  14   8  10  10 

27 22 20 20 18 

26 20 16 20 19 

H2-9 23 10 8 10 10 

  18 9 13 2 7 

6 5 2 1 0 

4 6 4 9 4 

4 4 9 11 4 

2 7 8 16 9 

37 19 24 3 5 

    23 17 31 11 11 

H2-10 18 6 7 6 7 

12 5 9 5 4 

          0 2 1 0 1 

   2 3 3 1 2 

6 11 6 5 8 

    9 10 6 11 10 

5 1 6 7 6  

 10 8 8 14 12 

H2-11 1 2 1 4 4 

1 5 1 1 4 

15 16 7 6 4 

   8 18 16 13 17 

13 9 6 9 9   

 16 16 18 13 12 

19 19 20 17 16 

22 15 20 14 16 

 

Table F-2 Number of AE events for 10 individual movements in group H2 
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Subject 

ID/Phase 

AA 

(movement 1-10) 

AD 

(movement 1-10) 

DA 

(movement 1-10) 
DD 

(movement 1-10) 

H3-1 20  11  10   17   19  

  30  16  11   16  11 

4  11 5   2   2 

      8   2   1   2   9 

9  15  26  35  27 

  15  22  30  15  28 

24  40  25  28  20 

20  32  32  48  28 

H3-2  27  17  14  17   7 

 28  23  15  11  32 

1   3   9  16   3 

8  10   5   8   8 

44  33  25  36  26 

 32  43  35  27  32 

37  35  35  20  32 

29  37  32  29  25 

H3-3 44  41  34  41  43 

40  31  32  27  40 

18 9  11  13  16 

 10   8  10   5   5 

7   4   5   4   6 

 8   6  12   1   8 

24  30  28  20  35 

45  42  28  31  30 

H3-4 19 11  16  16  14 

  34  16  16  11  23 

13  13   9  15  19 

 14  38  24  22  23 

2  22   5  34  20 

  12   4  19   15  19 

51  28  50  30  35 

41  54  38  70  36 

H3-5 32  14  14  17  12 

17  22  20  28  32 

14  39  12  21   9 

 23  31  29  11  16 

10  10  15  12  12 

10  27  22  20  17 

34  27  31  33  41 

38  40  39  39  34 

H3-6 38  13  11  15  15 

50  21  75  28  51 

  8   7   9   7   5 

  13   9   6  12   8 

8  8  5  2  2 

4  6  1  4  8 

41  63  44  60  49 

49  52  69  52  53 

H3-7    12   5    11  17  20 

    26  27  37  43  36 

12   9  10  14   9 

  11  15  14  22  13 

30  23  15  30  19 

26  26  26  25  31 

39  28  39  20  23 

25  18  19  22  23 

H3-8 51  45  32  35  40 

59  51  43  41  44 

  7  15   9   7  14 

  10  15  16  20  13 

5   5  11   5   7 

  10   5   5   5  14 

54  56  42  48  64 

66  59  62  57  60 

H3-9 49  46  42  39  29 

35  31  29  28  26 

25  40  43  34  32 

34  44  35  30  31 

24  42  34  20  39 

36  22  19  32  17 

34  26  18  23  22 

21  17  20  16  27 

H3-10 63  41  57  56  57 

61  48  51  41  40 

31  18  29  18  17 

23  11  43  14  15 

5   9   5  11   5 

4  10   8   9   4 

20 25  23  15  16 

33  23  21  22  25 

H3-11     11    4  18    9   6 

    16  14  15  11   7 

17 17  13  15  11 

12     6  10  10  11 

7  10  11  10   7 

    12   8   2   6   6 

32  18  23  31  51 

41  44  31  46  44 

H3-12 38  22  19  14  15 

32  20  18  16  16 

47  21  15  28  21 

41  20  28  22  25 

4  23  21  22  33 

  36  20  25  32  18 

30  20  16  23  10 

16  14  25  19  24 

H3-13 15  74   9  15  17   

14  23  13  18  14 

17  10  16   17   17 

35  15   6  13  16 

50  48  16  54  27  

44  39  29  35  34 

38  30  39  43  51  

40  41  43  43  19 

 

Table F-3 Number of AE events for 10 individual movements in group H3 

Subject 

ID/Phase 

AA 

 (movement 1-10) 

AD 

(movement 1-10) 

DA 

(movement 1-10) 

DD 

(movement 1-10) 

OA1-1 42  44  47  37  45  

69  36  44  44  36 

5  11   6   2   8 

10  6   4   4   3 

4   4   5   4   6 

 9   5   6   5  10 

68  71  57  62  54 

57  89  52  57  68 

OA1-2 27  21  23  39  21   

44  35  22  32  20 

48  44  74  65  59 

 59  79  78  76  73 

21  51  27  26  44  

50  53  46  55  39 

64   54   75   66   63 

72  79   85   87  104 

OA1-3 35  24  38  31  33   

38  16  30  30  32 

7   66   86   89   88  

86  89   79  111   80 

51 32  62  60  102   

42 44  59   54   67 

24   28   47   44   32 

103 73 115   32   46 

OA1-4 63  42  49  53  53   

64  44  43  56  46 

38  39  43  32  51   

61  43  51  58  49 

36  26  22  25  23  

37  30  43  41  27 

39  37  70  64  37  

 63  51  48  53  48 

OA1-5 72  83  83  62  58   

85  70  79  86  72 

18 23  36  21  17   

 21  19  12  12   7 

9   7   5   6   2    

   5  11  10  11  15 

 92 110 101 115 118  

128 117 118 119 135 

OA1-6 123  120  126  140  136  

128  103  109   99  146 

11  17   19  32  12   

43  12  16  13  33 

6  16   19  15  17  

31  35  24  19  13 

90   83   61   62   67 

82  110  76   67   63 

OA1-7 60  47  32  32  30   

54  41  46  45  34 

21 30  31  12  19  

 14  48  70  29  17 

22  15  15   9   3   

15  16  21  23  17 

75  76  74  68  64   

73  88  80  73  74 

 

Table F-4 Number of AE events for 10 individual movements in group OA1 



 

 

143 
 

 

 

Subject 

ID/Phase 

AA 

(movement 1-10) 

AD 

(movement 1-10) 

DA 

(movement 1-10) 

DD 

(movement 1-10) 

OA2-1 41 38 77 105 83 

64 39 41 61 45 

67 62 61 95 72 

70 86 92 91 84 

82 82 60 86 66  

 65 75 88 86 91 

81 112 98 111 67 

   90 94 60 76 64 

OA2-2  111 92 87 109 86 

129 100 109 99 88 

42 26 49 51 37  

45 59 41 47 35 

52 46 31 35 44 

38 40 33 26 22 

124 130 136 136 143 

156 171 157 137 105 

OA2-3 113 143 117 107 98 

155 117 116 120 109 

93 57 66 63 55 

50 42 62 65 51 

104 143 118 102 126 

115 113 43 61 127 

107 70 66 75 43 

   86 73 143 115 63 

OA2-4 118 94 93 94 71 

117 92 92 104 95 

42 53 60 59 49 

80 72 56 62 57 

35 45 35 30 29 

30 32 31 21 33 

88 114 136 122 118 102 

106 118 145  146 

OA2-5 74 47 48 39 44 

78 46 29 41 32 

43 43 51 46 26 

39 49 48 53 45 

18 18 19 17 9  

15 32 13 7 25 

 81 124 140 152 114   

    85 88 116 114 126 

OA2-6 129 114 117 93 85 

115 99 86 104 66 

134 125 107 140 135 

 123 148 116 150 156 

91 85 103 152 80 

    87 107 95 70 79 

162 140 148 113 138  

141 129 131 143  133 

OA2-7 113 95 100 98 81 

97 101 95 100 88 

108 129 115 151 122 

  111 107 105 121  149 

108 70 98 106 76 

91 102 73 55 70 

181 182 129 121 111  

110 103 113 146  144 

OA2-8 115 121 103 102 92  

124 101 60 67 83 

110 91 108 104 91 

  127 131 175 119 135 

38 56 50 50 60 

53 78 43 60 76 

170 124 180 154  179  

150 138 187 145  130 

OA2-9 115 106 104 107 93  

119 110 96 98 62 

98 59 45 46 66 

   87 85 117 77 104 

63 62 31 43 76 

  71 63 43 61 83 

158 93 116 129 144  

125 99 144 110 107 

OA2-10 76 61 50 59 69 

101 78 77 47 48 

43 35 43 37 47 

58 42 64 47 44 

64 43 31 31 64 

      81 55 43 5 66 

67 75 65 69 54 

  52 68 85 103 43 

OA2-11 94 60 65 44 39 

53 50 43 58 59 

100 70 68 95 90 

 94 102 89 117 81 

38 22 22 15 43 

 25 19 23 16 47 

86 62 55 60 36 

  58 64 59 65 32 

OA2-12 67 50 50 45 41 

76 55 47 71 44 

57 41 79 51 83    

99 13 73 83 101 

      22 45 34 33 58 

    24 38 52 48 87 

104 122 102 101 85  

130 113 107 111 75 

 

Table F-5 Number of AE events for 10 individual movements in group OA2 
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APPENDIX G  AE FEATURE PROFILES FOR 

ALL KNEES STUDIED 

 

Figure G-1 AE feature profiles of group H1 knees 

 

 

 

 



 

 

145 
 

 

 

 

 



 

 

146 
 

Figure G-2 AE feautre profiles of group H2 knees 
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Figure G-3 AE feature profiles of group H3 knees 
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Figure G-4 AE feature profiles of group OA1 knees 
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Figure G-5 AE feature profiles of group OA2 knees 
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