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ABSTRACT 
 
 

Glioma is the collective term for cancerous glial-cell tumours. The most prominent of these 

cancers is glioblastoma (GB); the most common primary malignant brain tumour and the most 

aggressive. Treatment options for GB are severely limited, not least because of an incomplete 

understanding of the molecular mechanisms underlying disease onset and progression. 

 

SorLA is a widespread type 1 transmembrane protein involved as a sorting receptor for an 

array of ligands in multiple tissues. Most studies into SorLA have focused on its role in the 

pathological processing of amyloid precursor protein (APP) in Alzheimer’s disease. Reduced 

SorLA expression increases amyloidogenic APP cleavage to liberate toxic forms of amyloid 

beta (Aβ). A few recent reports have linked enhanced SorLA expression to various malignancies 

including leukaemia, lymphoma, pancreatic and bile duct cancers. Ectodomain shedding of 

soluble SorLA (sSorLA) has been posited as a hypoxia-induced migration inducer, contributing 

to the malignancy. Indeed, it has been proposed that sSorLA may be a viable biomarker for 

these diseases. 

 

SorLA’s involvement in glioma has received very little attention. Using a combination of 

immunofluorescence (IF) imaging of GB cell lines in vitro and immunocytochemistry (IHC) of a 

mouse xenograft glioma model, this thesis tests the hypothesis that SorLA expression is 

upregulated in GB, and that Aβ is downregulated. 

 

Analysis of IF confirmed expression of SorLA in GB cell lines and human foetal astrocytes. 

Differences in expression levels were not significant, likely owing to limitations of the 

methodology employed. 

 

Standard histochemical analysis confirmed the success of the mouse xenograft model of GB 

in forming tumours. IHC using antibodies against SorLA in this model revealed staining in both 

tumour and non-tumour regions. Within the tumour itself, staining was restricted to
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large extracellular deposits of significantly larger size than in non-tumour regions. 
 

Interestingly, the total SorLA staining was comparatively greater in non-tumour areas, where a 

more uniform pattern of intracellular staining was seen. Since the antibody employed could not 

distinguish between transmembrane and soluble forms of SorLA, due to the region of binding 

being found on both forms of the protein; this might indicate a propensity for sSorLA to be 

shed extracellularly within the tumour but remain intracellular in normal brain. Given the role 

of SorLA in Aβ production and the plaque-like structures seen within the tumours, IHC was 

performed to identify the presence of Aβ in tumour and non-tumour tissues. Aβ 

immunoreactivity was detected throughout the brain but localised to thread-like structures 

between cells and large extracellular plaques which resembled the senile plaques seen AD but 

did not co-localise with SorLA. Unexpectedly, a halo region of Aβ peripheral to the tumour was 

visible, with staining intensity decreasing with distance from the tumour margin. Whether this 

expression was an exfiltration of Aβ from the tumour or emanated from the tumour 

microenvironment was not an aim of this thesis, but would warrant further investigation. 

 

In conclusion, this investigation revealed that SorLA is expressed in astrocytes and in glioma 

cell lines. Moreover, SorLA was expressed in a mouse glioma xenograft model and formed 

extracellular plaques within the tumour, most likely comprised of aggregations of sSorLA. This 

is due to sSorLA lacking the cytosolic tail motif unlike SorLA, which is kept membrane-bound 

by said motif.  The study also found that amyloid beta was also present in tumour tissue in 

the form of extracellular plaques and in non-tumour tissue immediately peripheral to the 

tumour. Taken together, these data indicate that SorLA and Aβ may have a role in glioma and 

warrant further investigation, particularly as literature mentions that a lack of intracellular 

SorLA increases the presence of Aβ.
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1.1.       Glioma 
 

 

Glioma is a wide-ranging term for cancerous tumours of a glial-cell origin. However, it is 

purported that glioma may arise from not just glial-cells but also neural stem cells (NSCs), 

these were found to be most likely to be susceptible to oncogenic mutations. These NSCs are 

the primary progenitor which can differentiate into glia (Zong et al., 2015). Histologically, 

glioma can be classified into two types: circumscribed and diffuse. Examples of circumscribed 

glioma are; Juvenile Pilocytic Astrocytoma, Pleomorphic Xanthoastrocytoma and 

Subependymal Giant Cell Astrocytoma; which are known to not be aggressive and show clear 

differentiation between cancerous and healthy tissue. They are also able to be surgically 

resected with multimodal treatment having higher rates of success. Diffuse glioma, such as 

glioblastoma (GB), astrocytic, and oligodendroglial, is exceedingly difficult to curatively resect, 

this is due to their propensity to infiltrate other cell layers (Louis et al., 2016). 

 

GB is the most common of the primary malignant brain tumours and is the most aggressive 

with 45% of all primary brain and CNS tumours, as well as 81% of primary malignant brain 

tumours (McCarthy, 2011; Chen et al., 2012; Ostrom et al., 2014; Vogel et al., 2017) are 

glioblastoma (GB). Grading of primary gliomas may be achieved using histological and, most 

recently, molecular markers from resected samples, which indicate the tumour’s malignancy 

and invasiveness (Figure 1.1). 

One such molecular marker ubiquitous amongst glioma is the isocitrate dehydrogenase (IDH) 

mutation. With IDH1 mutations being identified in around 12% of gliomas studied by Parsons 

et al. (2008), with further studies identifying further IDH1 and IDH2 mutations in lower WHO 

grade glioma (Tateishi and Yamamoto, 2019). The IDH-mutant gliomas in the 2015 WHO 

grading is mainly associated with secondary gliomas, occurring in 10% of glioma patients 

(Louis et al., 2016). However, the IDH1 mutation largely confers a degree of more favourable 

prognosis in glioma depending upon further genetic mutations alongside the mutant as they 

tend to be less invasive (Price et al., 2017).   
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The updated WHO grading of glioma defines GB as a grade IV tumour; indicating high 

malignancy, necrosis and infiltration of surrounding tissue (Ostrom et al., 2014). In terms of GB 

aetiology, >90% of cases occur de novo, arising spontaneously within the glial tissue of the 

CNS. The remainder of GB are attributed to the malignant development of lower WHO-grade 

gliomas (Price & Chiocca, 2014). 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. WHO 2016 classification of glioma tumours (Louis et al., 2016). 
 

 
 
 
 

1.1.1.    Diagnosis and treatment of glioma 
 

 

GB previously glioblastoma multiforme – a reference to its diverse histological presentation, 

which is now known to extend to its heterogenous molecular presentation also (Gokden, 2017). 

This tumour heterogeneity combined with the diffuse nature of GB can make accurate 

classification challenging and means survival rates for patients are bleak. With the average 

survival, utilising current multimodal treatment of surgery, radiotherapy, and combined 

chemotherapy with Temozolomide (TMZ), being 20.2 months from identification, increasing 

from 14.6 months in 2005 (Stupp et al., 2005; Tamimi & Malik, 2017; Kazda et al., 2018). 

Surgery is only a temporary solution for most patients, however, as there is a 90% recurrence 

within 2 cm of the primary tumour area, known to be caused by residual neoplastic cells 

(Anghileri et al., 2016; Hamard et al., 2016). GB tumour heterogeneity (both intratumour and 
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intertumour) gives rise to new tumour cell subclones and hence poses significant challenges 

for developing new curative therapies; as treatments must be effective against all subclones 

(Anjum et al., 2017). A further barrier to the development of effective diagnostic tools and 

therapies is an incomplete understanding of the molecular mechanisms governing tumour 

onset and progression. Hence, there is currently a pressing need to those identify molecules 

which are dysregulated in tumour and surrounding tissues which might, in turn, reveal new 

pathways to target. 

 
 
 

 

1.2.       SorLA 
 

 

Sorting-related receptor, L(DLR class) with A-type repeats (SorLA) is a 230kD mosaic type1 

transmembrane protein conserved in humans (Willnow and Andersen, 2013). First identified in 

1996, SorLA has been shown to be involved in cellular ligand transport and has been shown to 

be responsible for the regulation of amyloid precursor protein in Alzheimer’s disease (AD; 

Eggert et al., 2017). Recent evidence has linked SorLA expression to the development of 

several cancers, including biliary tract cancer, pancreatic cancer, and diffuse large B-cell 

lymphoma (McCarthy et al., 2010; Terai et al., 2016; Sugita et al., 2016). This is through SorLA 

being upregulated, producing its soluble variant sSorLA at a higher rate, which the studies 

have indicated sSorLA as being a cell migrator. However, whether it has any role in GB remains 

unknown. 

 
 
 

 

1.2.1.    SorLA Structure and distribution 
 

 

SorLA’s quaternary structure (Figure 1.2. A) consists of a ~700 amino acid VPS10 domain. 

Which, in tandem with complement-type repeats, enables its increased ligand binding ability, 

than if it was solely of the VPS10 domain or LDL receptor families (Quistgaard et al., 2009; 

Nakata et al., 2011). Between these two areas is a β-propeller structure, which is involved in
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pH-dependent ligand discharge when SorLA relocates to the acidic endosome (pH <5.5) 
 

(Willnow & Andersen, 2013). Connected to the base of the complement-type repeats are six 

fibronectin-type III domains. This whole extracellular structure (excluding the VPS10 domain) 

has been found to be very similar to those on the LDL LRPs (Schmidt et al., 2017). Upon 

SorLA’s cytoplasmic tail there are three binding motifs for cytosolic adaptors within its amino 

acid sequence: FANSHY; acidic motif; the Golgi-localising, gamma-adaptin ear homology 

domain; and the ARF-interacting protein (Figure 1.2. B). 

 

 
 
 
 
 

 
 

Figure 1.2. Structure of SorLA. A. Representation of SorLA’s structure demonstrating the 

location of the known elements making up the protein and their functions. B. Focus on the 

53 amino acid polypeptide chain comprising the cytosolic adaptor binding site, highlighting 

the three primary binding motifs (Adapted from Schmidt et al., 2017).
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SorLA plays a central role in the intracellular trafficking within various tissues, the most 
 

relevant to this research being neurones, glia, and the brain (Riedel et al., 2002; Salgado et al., 

2013; Terai et al., 2016; Schmidt & Willnow, 2016). SorLA is localised in cells primarily around 

the trans-Golgi and early endosome but is trafficked between both the secretory pathway and 

cell surface also. Acting as a sorting receptor, it uses its cytosolic adaptors to traffic various 

proteins and unrelated ligands (Hermey, 2009). 

 

SorLA may also be released extracellularly. This soluble SorLA (sSorLA) is produced in several 

steps including cleavage of its cytoplasmic tail by the metalloprotease, TACE (Böhm et al., 

2006; Hermey, 2009). This ectodomain shedding liberates an almost-full length fragment 

(missing only the transmembrane portion) and appears to be low-level constitutive). It has 

been demonstrated that sSorLA release may be stimulated by extracellular factors and may 

have a role in interleukin-6 signaling (Hermey et al., 2006; Larsen and Petersen, 2017). 

Moreover, altered sSorLA levels in biofluids have been detected in several disease states, 

including various cancers, meaning it is potentially non-specific, opening the possibility of its 

use as a diagnostic and prognostic marker (Ogita et al., 2013; Fujimura et al., 2014; Sugita et 

al., 2016; Terai et al., 2016). 

 
 
 
 

1.3.       SorLA in cancer 
 

 

Dysregulated levels of SorLA have been identified in several cancers. SorLA has been 

specifically shown to be expressed on the cell membrane of leukaemic cells in acute 

leukaemia (AML and ALL) and serum levels of sSorLA were significantly increased (Sakai et al., 

2012). Enhanced serum sSorLA levels have also been reported in diffuse large B-cell lymphoma 

(Ohwada et al., 2015), non-Hodgkin’s lymphoma (Fujimara et al., 2014) 

 

The enhancement of SORL1 expression has also described in biliary tract and pancreatic 

cancer cells, with the patients’ bile samples showing significantly increased levels of sSorLA 
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independent of cancer cells present (Terai et al., 2016). Interestingly, the transcription levels 

of SORL1 were seen to be significantly elevated under hypoxic conditions, and during 

the peak of proliferation (Terai et al., 2016). 
 

 

There is currently limited published literature regarding SorLA’s role in glioma. SorLA has been 

reported to be expressed throughout the nervous system and both murine C6 glioma and 

human astrocytoma cell line 1321N1 show appreciable SorLA expression (Salgado et al., 

2012).  In contrast to the data gathered in studies into other cancers, which might suggest 

that elevated SorLA tissue expression and sSorLA shedding may be a common feature of 

cancers, a reanalysis of microarray data from various astrocytomas by MacDonald and 

colleagues (2007) reported decreased levels of SORL1 mRNA in high-grade astrocytomas. 

While interesting, it should be noted that this study used data pooled from a mixture of 

paediatric and adult astrocytomas of varying classifications; moreover, transcript levels do not 

necessarily correlate well with cellular protein levels, which would be responsible for any 

cellular effect (Lui et al., 2016). 

 
 
 
 

1.4.       SorLA in Alzheimer’s disease 
 

 

The clearest link between SorLA levels and human pathology is with Alzheimer’s disease (AD), 

where increasing evidence links SorLA dysfunction or loss to increased risk (Schmidt et al., 

2017). AD is an incurable, progressive neurodegenerative disorder thought to be induced by 

an abnormal build-up of aggregated amyloid beta (Aβ) in and around brain cells, leading to 

declining cognition and death (National Health Service, 2018; National Institute of 

Neurological Disorders and Stroke, 2018). Abnormal production, accumulation and 

extracellular deposition of Aβ, forming neurotoxic senile plaques, is one of the longest- 

standing hypotheses for the cause of AD’s widespread neuronal death (Du et al., 2018). It is 

suggested that the formation of a slightly elongated form of Aβ, Aβ42, is responsible for 
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neurotoxicity and induces intraneuronal tau protein neurofibrillary tangle build-up; this entire 

process is sometimes termed the amyloid cascade hypothesis (Hardy and Higgins, 1992). 

 

Willnow and Andersen (2013) summarised how the current theory for the production of 

neurotoxic Aβ peptides is due to the dysregulated proteolytic breakdown of the amyloid 

precursor protein (APP) during its movement between the secretory compartments, cell 

surface, and endosomes. 

 

1.4.1.    Amyloid precursor protein and amyloid beta 
 

 

APP is an integral type I transmembrane glycoprotein that has a primary amino acid structure 
 

639-770 length depending upon isoform (Yoshikai et al., 1990). Post-translational 

modifications of the APP polypeptide lead to the formation of the protein’s 6-domain 

quaternary structure which consists of: cytoplasmic C-terminal domain, transmembrane 

domain, E2 domain, Kunitz protease inhibitor domain, and an E1 domain (Dawkins and Small, 

2014). 
 

 

While its exact physiological functions haven’t yet been fully elucidated, some of the functions 

of APP are thought contribute to the pathways which stimulate neural stem cell (NSC) 

proliferation and differentiation, owing to processing of APP being analogous to that of Notch, 

a known regulator of NSC differentiation (Ables et al., 2011). APP has also been shown to act as 

an agent of neuronal repair through interaction with cell-adhesion molecules (Dawkins and 

Small, 2014). 

 

The most widely studied role of APP is as a precursor protein to Aβ. Post-processing, APP is 

trafficked to the cell surface before being moved into the endosomal-lysosomal pathway, this 

leads to APP being partially degraded via proteolytic processing from β-secretase. This 

cleavage results in many fragments, but it is the membrane-bound C-terminal fragment (C99) 

that is then cleaved by γ-secretase to produce Aβ. Even in healthy individuals the exact type 

of Aβ produced isn’t consistent, primarily varying between the 40-amino acid Aβ40 (80-90%) 
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and the 42-amino acid Aβ42 subtypes (5-10%), with the remaining types being isoforms of 

2-40 amino acids long (Murphy and LeVine, 2010). The build-up of both Aβ40 and Aβ42 

isoforms has been reported to be a consequence of reduced ability to degrade Aβ. Since the 

Aβ42 peptide is significantly more fibrillogenic, it drives the production of insoluble neuritic 

plaques which in turn cause neurotoxicity, tau pathology and eventual neurodegeneration. 

Hence, alterations of the levels of Aβ42 or the ratio of Aβ40:Aβ42 are key drivers of AD 

pathology (Kamentani and Hasegawa, 2018). 

 

While Aβ is highly conserved across vertebrate species relatively little of its biological function 

is known. Despite its pathological role in AD, studies have shown that a depletion of Aβ is 

counterproductive to an organism’s health, which in turn, gives an insight to the likely 

physiological roles Aβ plays or contributes to. These putative roles are many and diverse with 

one being that Aβ serves an antimicrobial function, evidenced by studies showing other 

amyloid peptides acting in that capacity (Kagan et al., 2012). This was due to their ability to 

form fibrils and create perforations in cell membranes which can induce autolysis, effective for 

countering intracellular pathogens, as well as Aβ actions lending to potentially neutrophilic 

action whereby Aβ aggregates halt microbial movement (Brothers et al., 2018). Furthermore, 

Lukiw et al. (2010) demonstrated viricidal actions with Aβ42 preventing HSV1 infection of 

human neuroglia co-cultures to the same degree as the anti-viral drug acyclovir. 

 

Brothers et al. (2018) summarise further functions of Aβ as likely having roles in tumour 

suppression, rapid-response to blood-brain barrier leakage and regulating glutamatergic and 

cholinergic synapses. 

Regarding tumour suppression, Aβ has been suggested to inhibit tumour growth when injected 

into human glioblastoma xenografts (Paris et al., 2004). This work is further expanded upon 

where Aβ was shown to be able to inhibit the formation/growth of capillaries and at high 

enough concentrations, degrade them (Paris et al., 2010). It is suggested in a review paper that 

this is linked to the affinity Aβ has for free metal ions, preventing their use by the tumour 
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(Brothers et al., 2018). This is important as neovascularisation in glioma is crucial to its rapid 

growth and malignancy. 

 

There has been little dedicated research to the role Aβ may play in glioma, with what few 

studies there are suggesting that Aβ can inhibit tumour growth, being shown to do this when 

injected into human glioblastoma xenografts (Paris et al., 2004). Furthermore, Aβ was shown to 

be able to inhibit the formation/growth of capillaries and at high enough concentrations, 

degrade them (Paris et al., 2010). It is suggested in a review paper that this is linked to the 

affinity Aβ has for free metal ions, preventing their use by the tumour (Brothers et al., 2018). 

This is important as neovascularisation in glioma is crucial to its rapid growth and malignancy. 

 
 

1.4.2.    SorLA protects against AD 
 

 

Normal levels of SorLA are thought to protect against AD in a number of ways. Under normal 

conditions, SorLA colocalises with APP via its cytoplasmic and luminal domains, recycling it 

away from the endosome, reducing the amyloidogenic processing of APP to Aβ (Spoelgen et 

al., 2006). SorLA is also thought to have a role in Aβ degradation, binding to and tagging 

monomeric Aβ for lysosomal degradation (Eggert et al., 2017). Furthermore, SorLA is involved 

in disrupting the action of β-site APP-cleaving enzyme-1 (BACE1), another enzyme involved 

in the amyloidogenic processing of APP (Spoelgen et al., 2006). 

 

Several studies in vitro and in knockout mice have shown that the reduction or removal of 

SorLA increases Aβ production and conversely overexpression prevents production (reviewed 

in Schmidt et al., 2017). Genetic studies into AD patients showed that there are identifiable 

SORL1 variants that confer risk for AD seemingly associated with inefficient SORL1 

transcription/translation (Andersen et al., 2016) 

 

 
 

 
 
 



22 
 

1.5.       The role of amyloid beta in glioma 
 

 

A limited number of studies have suggested that Aβ may act to inhibit tumour growth. For 

example, injection of Aβ into human glioblastoma xenografts in mice inhibits angiogenesis 

and hence tumour growth (Paris et al., 2004, 2010). This is important as neovascularisation in 

glioma is crucial to its rapid growth and malignancy. Notwithstanding, in vitro Aβ application 

to cancer cell lines, including the U87-L human glioblastoma cell line, also inhibited cell 

proliferation in a dose-dependent manner (Zhao et al., 2009). The mechanisms behind this 

direct cellular inhibition are not known, although Aβ scavenging of free metal ions, limiting 

their availability to growing tumour cells has been suggested (Brothers et al., 2018). 

 

Given the accumulating evidence of a role for SorLA in various cancers, its expression in the 

brain and its role in producing Aβ, which has been demonstrated to inhibit tumour growth in 

glioblastoma models, investigation of a role for SorLA in glioblastoma is warranted.
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1.6.       Hypothesis 
 

 

Based on the above, the hypothesis of this thesis is that: 
 

Intracellular SorLA expression is enhanced and consequently Aβ expression is reduced in 

glioblastoma tissues. 

 
 
 
 
 
 

 

1.7.        Aims of the thesis 
 

 

The specific aims of this thesis are: 
 

 

1. To compare SorLA expression levels in human glioma cell lines to normal human 

astrocytes using western blotting and immunofluorescence. 

2. To establish any morphological characteristics of SorLA subcellular distribution in 

glioma cell lines versus normal human astrocytes via immunofluorescence microscopy. 

3. To investigate the expression of SorLA in a murine xenograft glioma model and 

quantify the expression of SorLA in tumour vs non-tumour brain regions. 

4. To determine whether Aβ is detectable and/or altered in a murine xenograft glioma 

model in tumour vs non-tumour brain regions.
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CHAPTER 2 
 
 

MATERIALS & METHODS
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2.1.       Reagents 
 
 

All general laboratory reagents were purchased from Fisher Scientific (Loughborough, UK) 

unless otherwise stated and were reagent-grade or higher. Where not otherwise indicated, all 

solutions were made up with distilled water. 

 
 
 
 

2.2.       Cell culture 
 
 

The cell lines utilised in this study for experimentation were the U87MG and T98G human 

glioblastoma cell lines (both ECACC, Porton Down, UK) and SVGp12 human foetal astrocyte cell 

line (all ATCC, Teddington, UK). All cell lines were cultured in Eagle’s Minimum Essential 

Medium (LONZA, Slough, UK) supplemented with; 10% (w/v) foetal bovine serum, 

penicillin/streptomycin (10,000 U/mL), L-Glutamine (200mM), non-essential amino acids (1x) 

and sodium pyruvate (100mM) all purchased from Fisher Scientific. 

 

Normal human astrocytes (NHA), officially foetal astrocytes, were procured from LONZA 

(Slough, UK) and cultured by Norah Ulzheimer (University of Central Lancashire) for a 

separate study.  NHA were grown in DMEM-F12 medium supplemented with 10% FBS, 

Glutamine (2mM), and 1% penicillin/streptomycin all from Fisher Scientific, Loughborough, 

UK. 

 

All cell culture work was carried out in a Class II microbiological safety cabinet and using 

appropriate aseptic technique. Cell lines were grown in T75 flasks (Nunc, Roskilde, Danmark) 

and passaged by a trypsinisation at 70-80% confluency. Cells were gently washed in phosphate 

buffered saline (PBS) solution before 1x trypsin-EDTA was added to the flask and returned to 

the incubator for 2 minutes. Flasks were agitated to free adhered cells and checked under a 

cell culture light microscope (Optika, Ponteranica, Italy) to confirm cells were free-floating. 

Trypsin activity was quenched by the addition of 20 ml medium to each flask before contents 

were transferred to a 50ml Falcon tube and centrifuged at 1000G for 5 minutes. The 

supernatant was discarded, and the pellet resuspended in an appropriate volume of medium.
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2.2.1.    Cell seeding 
 
 

For immunofluoresence imaging, cells were grown on No. 1.5 glass coverslips (Scientific 

Laboratory Supplies, Nottingham UK). Prior to seeding cells, coverslips were sterilised in 70% 

IMS and washed in PBS were placed in each well of a 12-well plate (Nunc, Roskilde, Denmark). 

Cells were seeded 24 hours prior to use as per seeding ratios in Appendix 4. Unfortunately, 

seeding density as a number of cells per cm2 is unable to be produced for these cell lines. 

 

NHA were seeded separately by Ms Norah Ulzheimer at 10,000 cells per cm2 in 24 well plates 

containing No 1.5 glass coverslips. Plates were gently agitated in a circular motion to disperse 

cells and returned to the incubator for 24 hours to grow before use. 

 
 
 
 

2.3.       Immunofluorescence staining 
 
 

Culture medium was removed from the seeded plates and the coverslips carefully washed x3 

with PBS making sure not to disturb the cells. 4% w/v formaldehyde in PBS was applied for 15 

minutes before washing x3 with PBS. Formaldehyde activity was quenched in 0.1M glycine 

(diluted in PBS) for 10 minutes and washed x3 with PBS. The cells were permeabilised with 

0.1% Triton X-100 (diluted in PBS) for 4 minutes and washed x3 again with PBS. 
 
 

The coverslips were incubated for 1 hour in a 5% bovine serum albumin (BSA) in PBS blocking 

solution at 4°C, and washed x3 afterwards with PBS. General-purpose tissue was laid on the 

laboratory bench and saturated with dH2O before parafilm applied on top. 50 µL drops of 

mouse monoclonal anti-SorLA IgG primary antibody (3B6B11; Fisher Scientific, Loughbrough, 

UK) diluted 1:200 in PBS were added to the parafilm, and coverslips placed cell-side down onto 

the antibody drop, incubating for 30 minutes at room temperature. Control coverslips were 

treated with 50 µl blocking solution only in the same manner. Post-incubation coverslips 

were transferred back to the plate, washed x3 with PBS, before incubation for 30 minutes with 

 
Alexa Fluor 555 (A555) goat anti-mouse secondary antibody diluted 1:200 in PBS (Fisher



27 
 

Scientific, Loughbrough, UK). After washing to remove unbound secondary antibody, coverslips 

were mounted to Fisherbrand T/F ground microscope slides with ProLong Diamond antifade 

with DAPI (to label nuclei). They were left to cure at room temperature in the dark overnight; 

then sealed with nail polish and stored at 4°C in the dark until use. 

 

 
 
 

2.4.       Fluorescence Microscopy 
 
 

The slides were removed from the 4°C fridge and left for 20 minutes to return to room 

temperature prior to imaging. Fluorescence was visualised using an Axio Observer.Z1 Inverted 

Microscope equipped with HXP 120 V illumination (set at 25% power for DAPI and 50% power 

for A555) and dsRed/DAPI filter sets. Images were acquired using x20 PL Apo (0.8 NA) and x40 

PL Apo (1.2 NA) oil objectives, AxioCam MRm camera and integrated Zeiss Pro 2 Blue image- 
 

capture software (Carl Zeiss Limited, Cambridge, UK). Prior to image capture optimal exposure 

levels were determined, to create a setting which worked for all slides. For overview imaging 

and calculation of IF staining intensity, a x20 PL Apo (0.8 NA) objective and exposure times of 

100ms for DAPI and 500ms for A555 were used. Single images were collected from five 

random separate fields of view at x20 magnification per coverslip, with three replicate 

coverslips produced for each cell line, for three separate experiments (n=3), giving a total of 

9 replicates. For higher magnification subcellular imaging, a x40 PL Apo (1.2 NA) oil objective 

and exposure times of 250ms for DAPI and 580ms for A555 were employed. Representative 

images from n=3 experiments are shown. 

 
 
 
 

2.4.1.    Analysis of fluorescence intensity 
 
 

ImageJ2 (Fiji, 2017) analysis software was utilised for analysis of the fluorescence images and 

calculation of relative fluorescence intensities. The fluorescence intensity for each whole 

image was measured and divided by the number of Alexa Fluor 555 positive cells present to 

determine the fluorescence intensity per cell for each field of view. The average background
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fluorescence, calculated from three random acellular regions in each image, was then 

subtracted from the relevant image’s fluorescence intensity. A mean Alexa Fluor 555 

fluorescence value per cell (indicative of SorLA staining intensity) was then calculated for each 

cell type. 

 

Shapiro-Wilk normality tests confirmed that all data were normally distributed. A p-value of 

0.05 was considered significant. Fluorescence intensities between cell types were compared 

using post-hoc one-way analyses of variance (ANOVA) on GraphPad Prism 7.04 (GraphPad 

Software, La Jolla, USA). Associated graphs were compiled to better represent the data 

where appropriate. 

 
 
 
 

2.5.       Immunohistochemistry in mouse brain tissue 
 
 

2.5.1.    Mouse xenograft glioma model 
 
 

Surgical stereotactic implantation of human U87MG glioma cells was performed by Ms Vicky 

Metcalf and Dr Chris Smith (University of Central Lancashire, UK). Mice (BALB/c homozygous, 

Charles River) weighing approximately 25g were anaesthetised with isoflurane in oxygen and 

mounted in a stereotactic frame (Kopf Instruments, Tujunga, USA) with anaesthesia 

maintained in a 50:50 isoflurane in oxygen:nitrous oxide mixture. The skin overlying the skull 

was sterilised and a midline incision made so that the sutures of bregma and lambda were 

visible when the skin was retracted. The bone 1 mm lateral and 1 mm anterior to bregma was 

thinned and approximately 40,000 

U87MG cells in 2 µl sterile PBS were injected 3 mm below the surface of the skull into the 
 

striatum. The cell suspension was injected at a flow rate of 1 µl/min and the needle slowly 

withdrawn. The hole was sealed with bone wax and the skin closed with vet bond. The animals 

were administered Metacam (5mg/kg) and Flamazine applied liberally to the wound before 

recovering. When fully recovered, mice were returned to the IVC home cage with ad libitum
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access to sterile chow and water. Mice were euthanised when clinical condition deteriorated, 

the brain was removed and fixed in 10% (w/v) formalin until use. 

The animal experiments were done in full accordance with UK Animals (Scientific Procedures) 

Act 1086 and European Direct 2010/63/EU legislation. Work was performed under project 

licence 70/7938 New Strategies for the Diagnosis and Treatment of Glioma granted by UK 

Home Office following scrutiny by UCLAN Animal Welfare and Ethical Review Board. 

 
 
 

2.5.2.    Processing & embedding of mouse xenograft brains 
 
 

Brains were cut into 2 mm coronal slices in a brain matrix and stored in 10% formalin before 

being processed and embedded by Royal Preston Hospital Pathology Lab. Sections were 

exposed to a series of graded ethanol solutions, xylene, formalin, and paraffin wax in a Leica 

PELORIS Rapid Tissue Processor (see Table 2.1 for method). The processed tissue was 

orientated to allow coronal sections be taken and embedded in paraffin wax. 

 

Table 2.1 - Tissue processing protocol 
 
 

REAGENT TIME (MINS) TEMPERATURE (°C) 

FORMALIN 44 45 

ETHANOL (30%) 30 45 

ETHANOL (50%) 30 45 

ETHANOL (70%) 30 45 

ETHANOL (80%) 30 45 

ETHANOL (95%) 30 45 

ETHANOL (100%) 90 45 

XYLENE 45 45 

XYLENE 45 45 

XYLENE 90 45 

WAX 60 65 

WAX 60 65 

WAX 60 65 
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2.5.3.    Immunohistochemistry reagents 
 
 

Antibodies employed for immunohistochemistry (IHC) in this study are outlined in table 2.2. 

Avidin Biotin Complex HRP anti-mouse or anti-rabbit, and DAB (HRP) chromogen kits were 

purchased from Vector Labs, Peterborough, UK. Bovine serum albumin (BSA), citric acid 

(anhydrous), ethanol, glacial acetic acid, haematoxylin, hydrogen peroxide 30% (w/v), mercuric 

oxide, potassium alum, and Tween 20 were all purchased from Fisher Scientific, 

Loughborough, UK. Harris haematoxylin, citric acid buffer, and quenching solution preparation 

protocols can be found in Appendix 1, 2, 3 respectively. 

 

 
 
 

Table 2.2 - Antibodies 
 

 

ANTIBODY 
 
ANTI-SORLA 

ISOTYPE 
 

Rabbit 

MONO/POLYCLONAL 
 

Monoclonal 

SOURCE 
 

Abcam, 

DILUTION 
 

1:250 (IHC) 

(AB190684)   Cambridge, USA  

 

ANTI-GFAP 

(G9269) 

 

Rabbit 
 

Polyclonal 
 

Sigma-Aldrich, 

Dorset, UK 

 

1:500 (IHC) 

 

ANTI-Β- 

AMYLOID (6E10) 

 

Mouse 
 

Monoclonal 
 

BioLegend, 

London, UK 

 

1:500 (IHC) 

 

ANTI-RABBIT 

BIOTINYLATED 

(PK-6101) 

 

Goat 
 

/ 
 

Vector 

Laboratories, 

Peterborough, UK 

 

1:200 (IHC) 

 

ANTI-MOUSE 

BIOTINYLATED 

(PK-6102) 

 

Rabbit 
 

/ 
 

Vector 

Laboratories, 

Peterborough, UK 

 

1:200 (IHC) 

 

IgG isotype 
 

control 

 

Rabbit 
 

/ 
 

Fisher Scientific, 
 

Loughborough, UK 

 

1:250 (IHC) 
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2.5.4.    Immunohistochemical staining of mouse xenograft brain sections 
 
 

Mouse tissue blocks were cooled on ice before 4µm sections were cut on a microtome 

(Thermoscientific Microm HM-325) and mounted on slides (SuperFrost Plus, ThermoScientific) 

before being baked at 60°C for 1 hour. 

 

Each brain was subjected to five staining treatments; anti-SorLA with haematoxylin 

counterstain, anti-SorLA without counterstain, anti-β-Amyloid, anti-GFAP as a positive control, 

and IgG isotype control. Immunolabelling for each treatment was repeated three times for 

each brain. 

 

Sections were dewaxed and dehydrated in xylene for 5 minutes twice and ethanol for 5 

minutes twice before exposed to citric acid (pH 6.0 w/ 0.75ml Tween 20) at 95 °C for 20 

minutes (Dako PT Link) for antigen retrieval. Sections were transferred and submerged in tap 

water for 5 minutes before endogenous peroxidase activity was quenched by 0.3 % hydrogen 

peroxide solution in methanol for 15 minutes. 

 

Non-specific binding was blocked using either an anti-rabbit or anti-mouse blocking serum, as 

appropriate, for 30 minutes (Vectorstain Elite ABC kit, Vector Laboratories, UK), with excess 

serum washed off using PBS. Primary antibody against SorLA, GFAP or β-Amyloid, or isotype 

control (see Table 2.2) was applied for 1 hour before sections were washed once with PBS and 

incubated for 30 minutes with the biotinylated secondary antibody. 

 

The slides were washed with PBS before VECTASTAIN Elite ABC reagent was applied for 30 

minutes. After another PBS wash, DAB peroxidase was applied for 2 minutes. The sections 

were washed with dH2O before counterstaining, where needed, in Harris haematoxylin for 5 

minutes. Counterstained sections were left under running tap water for 5 minutes before 

washing in an acid-alcohol solution for 45 seconds and rinsed with Scott’s Tap Water. All
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sections were dehydrated in 95 % ethanol for 10 dips, twice-over, and cleared in xylene for the 

same. Slides were mounted and coverslipped using DPX mountant. 

 
 
 
 

2.5.5.    IHC image capture and analysis 
 
 

A Nikon Eclipse E200 microscope fitted with a CMEX DC.5000 camera was used to take x4 and 

x40 images of sections and visualised on a PC running ImageFocus V3.0 imaging software 

(Nikon UK Limited, Kingston Upon Thames, UK). Individual section images taken at x4 were 

stitched together image formatting tools in Microsoft Word 2016 to create a composite image 

of the whole brain section. 

 

ImageJ2 (Fiji, 2017) analysis software was utilised for the analysis of staining densities for all 

IHC images. Prior to colour deconvolution in haematoxylin-DAB (HDAB) channels, the RGB 

values were determined in the empty areas of the slide and if not within 5 % of 255 on the 

grayscale “Process – Subtract background” was used. The “colour deconvolution” plugin was 

utilised according to HDAB profile, separating the image according to haematoxylin-only, DAB- 

only, and background. The DAB-only image was termed in the software as “colour 2” and was 

selected; whereby the image had its area (µm2) and mean grey value (intensity) measured. The 

value of intensity was determined by the formula given by Fuhrich et al.: f = 255 − i, where f = 

final DAB intensity, i = mean DAB intensity obtained from the software; i ranges from 0 (zero = 

dark brown/black), to 255 (totally white). 

 

Three regions of interest within the tumour and three outside the tumour from each slide 

were analysed for each section. Cells were counted on the H&E stained images using the 

ImageJ counting tool and the average grey scale determined in similar regions of interest in the 

adjacent sections. The mean grey scale per cell or per area could therefore be reported. 

 

Statistically significant differences in mean grey scale values between tumour and non-tumour 

were determined by a paired samples t-test using GraphPad Prism 7.04 (GraphPad Software, 

La Jolla, USA). A p-value of 0.05 was considered significant throughout.
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CHAPTER 3 
 
 

RESULTS
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3.1.       Western blotting for SorLA expression in vitro 
 
 

The first aim of this thesis was to determine relative SorLA expression in glioma cell lines 

compared to a foetal astrocyte cell line and primary normal human astrocytes. Cells were 

cultured and lysates prepared for western blotting (WB), however ongoing problems were 

encountered which made the WB approach unviable for this project. Prepared lysates were 

tested for other antibodies and for beta actin, yielding clean bands of expected size. However, 

despite multiple antibodies being trialed, staining for SorLA yielded no bands, smears and/or 

inconsistently-sized faint bands. These problems may alternatively have been due incomplete 

SorLA solubilisation in lysates, as SorLA is a transmembrane protein. Harsher solubilisation and 

denaturation approaches were tested, but findings remained inconsistent. Consequently, given 

the time-pressures of the project a semi-quantitative method of immunofluorescence staining, 

and image analysis was selected to investigate relative expression levels. This approach had 

provided an additional angle for analysis; to investigate any alterations in the sub-cellular 

distribution of SorLA between cancerous and non-cancerous cells. 

 
 
 
 

3.2.       Semi-quantitative analysis of SorLA expression by immunofluorescence 
 
 

Human glioma cell lines (U87MG and T98G), a human foetal cell line (SVGp12) and normal human 

astrocytes (NHA (foetal astrocytes)) were fixed and immunostained for SorLA revealing 

fluorescence in all cell types (Figure 3.1, right-hand panel). To confirm the specificity of staining 

of the anti-SorLA antibody, negative control slides were prepared using BSA in place of the 

antibody (Figure 3.1, left-hand panel). Visualisation of these cells using the same settings as for 

the antibody-stained slides indicated only a minimum of background fluorescence, indicating 

that the clear fluorescence seen in the test slides was from specific binding of the primary 

antibody rather than from excessive autofluorescence or non-specific secondary antibody 

staining (Figure 3.1).
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Figure 3.1. SorLA Expression in cell lines. Exemplar images, taken using fluorescence deconvolution 

microscopy, showing the immunoreactivity of SorLA (red) within the cell lines. For comparison, 

controls which replaced primary antibody with BSA-only are shown. DAPI stained nuclei, blue. 

Replicate data can be found in Appendix 14. Magnification x20, n=3, scale bar 50 μm.
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In order to compare staining intensities as a semi-quantitative measure of SorLA expression levels, 

fluorescence images were collected from three separate staining preparations per cell line (five 

random fields of view per slide) at 20x magnification. These data were analysed using ImageJ. 

Following the subtraction of background fluorescence, a mean fluorescence level per cell for each cell 

type was calculated on a scale of 1 to 250 (Figure 3.2). Normal human astrocytes (NHA) revealed the 

highest level of fluorescence (mean grey scale intensity, M = 50.7, SEM = 14.4), while the foetal human 

astrocyte cell line, SVGp12, returned the lowest (mean grey scale intensity, M = 17.4, SEM = 

2.4). The two glioma cell lines tested, U87MG and T98G, provided similar intensity values to one 

another (mean grey scale intensities, M = 30.2, SEM = 7.8 and M = 28.1, SEM = 13.7, respectively). A 

one-way ANOVA, however, revealed that there was no significant difference between any of the 

staining intensities of the four cell types (F(4, 20) = 1.966, p = 0.139). 
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Figure 3.2.  Fluorescence intensities between SorLA-stained glioma and non-glioma cells. 

U87MG and T98G glioma cell lines, SVG-p12 human foetal astrocytes and primary normal human 

astrocytes (NHA) were immunofluorescentally stained for SorLA. Mean fluorescence intensities 

per cell were calculated on a scale of 1-250. Tabulated data can be found in Appendix 8. P = ns, 

n=3 experiments, 5x FOV per experiment. Error bars = SEM.
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3.3.       Subcellular distribution of SorLA in glioma cell lines and non-cancerous cells 
 
 

The role of SorLA as a sorting receptor depends upon its trafficking throughout endomembrane 

compartments within the cell, and to and from the cell membrane (Schmidt & Willnow, 2016). 

Glioma cell lines and the control cells exhibited a punctate staining pattern, consistent with SorLA 

localisation to intracellular membranes (Figure 3.3). Staining was also evident at the cell surface. 

Beyond the gross overall morphological differences between each cell type, the subcellular 

staining patterns within each cell type were indistinguishable from one another. In all cases the 

distribution pattern correlate with what would be expected in SorLA expressing cells based upon 

previously published studies (Gowrishkanar et al., 2015).
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Figure 3.3. Subcellular distribution of SorLA across the cell lines. Exemplar images, taken 

using fluorescence deconvolution microscopy, showing similar patterns of intracellular 

staining. Magnification x65 ‘oil’, n=3, scale bar 10μm.
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3.4       Immunohistochemical localisation of SorLA in a mouse tumour xenograft model 
 

 

3.4.1.    Preliminary validation of tumour and antibody optimisation 
 

 

The presence of a tumour within the mouse brains A, B, and C, used in this study was 

confirmed following staining with haematoxylin & eosin. Haematoxylin selectively stained cell 

nuclei blue that contrasted with the pink/red of eosin. At low magnification a clearly 

encapsulated and demarcated tumour is evident in each brain (Figure 3.4). At higher 

magnification the smaller cells and hypercellularity is evident with an average cell density in 

the tumour of 0.63 ±0.01 cell/µm2 compared to non-tumour regions with 0.22±0.01 cell/µm2 

(Appendix 5C). 

 

 

Figure 3.4. Haematoxylin & eosin stained murine xenograft U87MG models. Composite 

images showing tumours within the anterior region following U87MG xenograft. Tumour is 

evident by the hypercellularity (black arrows) and encapsulation of these areas (arrow heads) 

within the tissue. Scale bars A, C, 1 mm; B, 500 μm, n=3.
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Antibodies were optimised in brain sections that lacked tumour. Immunoreactivity to the 
 

various antibodies were observed and a working concentration of 1:250 deemed appropriate 

for SorLA and 1:500 for Aβ (Appendix 9 and 10). In sections exposed to the IgG isotype negative 

control or when primary antibody was omitted no immunoreactivity was seen (Appendix 11). 

 
 
 

3.4.2.   SorLA expression in mouse tumour brain 
 

 

Marked SorLA immunoreactivity was seen throughout the U87MG tumours from all three mice 

(Figure 3.5). Labelling was in dense plaques that ranged between approximately 10 µm2 and 

850 µm2 and was significantly more prevalent than in non-tumour tissue when the area of 

SorLA plaques were compared (Figure 3.5 B, M = 0.268, SD = 0.149, SEM = 0.016); t(89) = 

17.07, p<0.001). The large variation in area of SorLA plaques within the tumour, reflecting the 

wide range of plaque sizes. Light immunoreactivity was seen throughout the non-tumour 

tissue and brain contralateral to the tumour but with only infrequent SorLA positive plaques. 

In some sections, a region of lower immunostaining and haematoxylin staining was seen within 

the tumour. This may be due to needle damage or a necrotic core developing within the 

tumour (Figure 3.5, black arrows). 

The greyscale intensity of SorLA confirmed quantitatively higher SorLA staining within the 

tumour as paired t-test analysis between the tumour and non- tumour regions demonstrated 

a highly significant difference in intensities (M = 64.98, SD = 44.18, SEM = 8.503); t(26) = 

7.642, p<0.001) (Figure 3.6A). 

At higher magnification and with haematoxylin counterstain the extracellular presence of 

SorLA plaques within the tumour are apparent (Figure 3.7, asterisks). In non-tumour regions 

most SorLA immunoreactivity is intracellular and associated with haemotoxylin (Figure 3.7, 

white arrows). This could be indicative of an alteration in SorLA ectodomain shedding, since 

the antibody utilised would recognise both transmembrane and shed soluble SorLA. 
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Figure. 3.5. Macroscopic images of SorLA and Aβ expression in mouse xenograft brain 

tissue: SorLA with haematoxylin (A, B, C); Aβ with hematoxylin (D, E, F); and IgG (G, H, I).  

Plaques of both SorLA (A-C) and Aβ (D-F) are evident (*) throughout the tumour. Within the 

tumours are regions absent of immunoreactivity, where the needle penetrated to graft U87MG 

cells causing damage (white arrows). Additionally, a visible halo region of marked Aβ 

immunoreactivity was seen in the non-tumour tissue surrounding the tumour (arrowheads). 

Marked Aβ immunoreactivity was seen in non-tumour tissue surrounding the tumours. Scale 

bars 100µm, mag x10, n=3. 

 

I 



47 
 

 
 

Figure 3.6. Compiled mean greyscale density (A) and mean area of SorLA deposits (B) 

between tumour and non-tumour tissue areas. SorLA immunoreactivity was significantly 

higher in tumour tissue (p<0.001 paired t-test, n=3). SorLA plaque size was also significantly 

higher within the tumour than in non-tumour tissue (p<0.01 paired t-test, n=3). Tabulated in 

Appendix 12.
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Figure 3.7. SorLA expression in tumour and non-tumour regions of mouse U87MG 
 

xenograft brain tissue. Non-tumour regions (A, C, E) showed predominantly intracellular 

SorLA expression (white arrows), contrasted by haematoxylin to indicate nuclei position. 

Some extracellular deposition is evident in A, though across the non-tumour region it was 

not as widespread or dense as the tumour region. Tumour tissue (B, D, F) showed extensive 

SorLA deposition in extracellular plaques (*). Replicate data can be found in Appendix 6. 

Scale bars 50 μm. Mag x40. 
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3.5. Immunohistochemical localization of amyloid beta in mouse tumour 

3.5.1. Amyloid beta expression in mouse tumour brain 

Aβ immunoreactivity was seen throughout the brains tested in tumour and non-tumour 

regions in all three mice (Figure 3.5). Like SorLA, highly stained localised regions of Aβ were 

seen within the tumour. Similar again to SorLA, plaques of Aβ were evident in tumour regions. 

Interestingly, plaques were also seen in non-tumour regions, although they were significantly 

larger in tumour tissue than non-tumour tissue (Figure 3.9 A, M = 0.189, SD = 0.115, SEM = 

0.012); t(89) = 15.63, p<0.001). 

 

There was, however, marked variation between animals with one mouse brain showing large 

highly immunoreactive Aβ plaques (Figure 3.5 D), also demonstrating the lightest SorLA 

staining within the tumour (Figure 3.5, A). Conversely, the other two tumours showed heavier 

SorLA staining and lighter Aβ immunoreactive plaques (Figure 3.5 B vs E and C vs F). One 

noteworthy observation therefore was the possible trend towards an inverse correlation 

between SorLA expression and Aβ expression, with high SorLA tumour expression seeming to 

be associated with lower Aβ expression. 

Densitometric analysis between tumour and non-tumour tissue staining intensity showed a 

significant difference similar to SorLA (Figure 3.8 B, M = 32.71, SD = 22.75, SEM = 5.36); t(17) 

= 6.1, p < 0.001). There was however a marked difference in the pattern of immunostaining in 

the non-tumour tissue with Aβ evident in the tissue immediately surrounding the tumour. This 

Aβ staining formed a “halo” around the tumour with the most intense staining immediately 

adjacent to the tumour margin that decreased as the distance from the tumour increased 

(Figure 3.9). Line scans of Aβ immunoreactivity gave a visual representation of the decrease 

in staining intensity with increasing distance from the tumour margin. 

Three times per brain, lines were randomly drawn perpendicular to the tumour margin and a 

greyscale value was calculated for every point along that line. Higher values represent a 

greater degree of ‘whiteness’ in the image, hence a lower level of DAB staining (Figure 3.9). 
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Line lengths were intended to be equal for all brains, however the 3101C2 mouse line length 

was necessarily shorter than the others due to the smaller size of this brain. The line scans 

demonstrated a strong positive correlation between image ‘whiteness’ and distance from 

tumour for all the mouse brains, representative of a proportionate decrease in Aβ staining with 

increasing distance from the tumour margin (#39, r = 0.9773, p<0.001; 3101C2, r = 0.9405, 

p<0.001; 3101C6, r = 0.9623, p<0.001). 

At higher magnification the extracellular nature of the tumour beta-amyloid positive 

plaques was evident. Moreover, strong immunostaining was seen to form a ‘thread-like’ 

pattern between tumour cells (Figure 3.10, B, D & F, arrows) that was not seen in non-

tumour tissue. 
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Figure 3.8. Intensity and significance of Aβ plaques inside vs outside the tumour (A), and 
 

the Aβ plaque area (B). The mean intensity between Aβ plaques within and without the 

tumour (B) was compared; as well as the area of Aβ plaques (µm2). Tabulated in Appendix 

13. FOV=3, n=3.
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Figure 3.9. Greyscale intensity at increasing distance perpendicular from tumour 

margin. 
 

A Pearson r test found a significant positive correlation in all the line scans, indicating 

a significantly reduced Aβ immunoreactivity with increasing distance from the tumour 

margin; #39 (r = 0.9773, p<0.001); 3101C2 (r = 0.9405, p<0.001); 3101C6 (r = 0.9623, 

p<0.001). 
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Figure 3.10. Aβ expression in tumour and non-tumour regions of mouse U87MG xenograft 

brain tissue. Non-tumour regions (A, C, and E) showed extracellular immunoreactivity of Aβ 

(arrowheads). Tumour regions (B, D, and F) demonstrated enhanced Aβ immunoreactivity and 

the presence of thread-like extracellular plaques between cells (white arrows). Replicate data 

can be found in Appendix 7. Scale bar, 50 μm. Mag x40.
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CHAPTER 4 
 
 

DISCUSSION
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The thesis hypothesis was that, in glioma, intracellular expression of SorLA is upregulated and 
 

Aβ is decreased. This was tested through analysis of SorLA expression via IF on human glioma 

cell lines in vitro and by IHC for SorLA and Aβ in brain sections from murine glioblastoma 

models. Importantly, initial H&E staining confirmed the presence of sizeable tumours within 

the mouse model brain sections in the right lobe of the anterior region. 

Overall, the hypothesis was not achieved, with IF data suggesting a normal distribution and 

non-significant difference of intracellular SorLA between NHAs and the glioma cell lines. 

Though this is compounded by the limitations of the techniques and the methods unable to 

be used such as more accurate protein quantification through WB for example. As well as the 

issue of the extracellular SorLA in the tumour regions making it impossible to accurately discern 

between SorLA within and outside of the cells on the IHC samples. 

Furthermore, the amyloid beta expression in the brain samples showed a clear difference 

between the tumour and non-tumour tissue. Again, running counter to the hypothesis. 

However, the results achieved do show potential for future avenues of work. 

 
 
 
 

4.1.       Relative SorLA expression in vitro 
 

 

SorLA immunoreactivity was evident in both astrocyte cell types tested, in keeping with 

previous reports that it is expressed throughout the nervous system (Willnow and Andersen, 

2013; Schmidt & Willnow, 2016).  Moreover, SorLA was similarly visualised by IF in both human 

glioma cell lines tested – U87-MG and T98G – supporting previous studies which saw 

expression in glioma cell lines (Salgado et al., 2012). The highest level of SorLA 

immunofluorescence intensity per cell was found in NHAs – primary human astrocytes derived 

from foetal tissue - in all three experimental repeats. Conversely, the lowest level per cell was 

seen in the human foetal astrocyte cell line SVGp12. These differences, although not significant, 

may be attributed to the relative size of these cell types skewing the results. SVGp12 cells are 

of a standard cell line size and shape, with cell bodies typically 20-30 µm across and exhibiting 
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only a small degree of short process growth (Major et al., 1985). The highly heterogenous 

primary NHA cells were markedly larger, with cells often reaching over 100 µm in diameter 

and frequently sending out long processes. Hence, differences in the amount of SorLA present 

may simply be a function of relative cell volumes. Another method therefore for quantifying 

expression as a function of area rather than on a per cell basis may have helped smooth these 

inequalities out, however given the complex cell shapes involved (most notably for the NHA) 

development of such an analysis protocol within the timescale of the project was unfeasible. 

Alternatively, these discrepancies could have been due to the nature of the foetal astrocyte 

cell types tested. While the NHA cells used are certified as astrocytic and have been 

validated as such in our lab, the SVGp12 cell line has been speculated to comprise neural 

progenitor cells, which might explain their morphological dissimilarity to primary human 

astrocytes in vitro (Dowling-Warriner and Trosko, 2000). A further limitation of the NHA 

control used however, is that they are not as accurate to make a comparison from as samples 

taken from non-glioma affected mice/patients. This is due to the NHAs being grown in 

conditions different to those that would be found in vivo. Although, this would bring up the 

issue of the glioma cells tested also not being as representative as glioma cells of the same 

type being xenografted and grown in mouse subjects. 

 

Ultimately there was no significant difference in SorLA expression found between either of the 

control astrocyte cell types and the two glioblastoma cell lines using this methodology. 

Notwithstanding the above, this is at odds with both the hypothesis of the thesis and findings 

of Lui et al., (2016) who reported decreased SORL1 mRNA expression in clinical astrocytoma 

samples. Importantly however, these results did confirm the expression of SorLA in the U87-

MG cells which were the basis for the murine xenograft model to be utilised for the remainder 

of the project. 

 

While direct quantification of relative protein amounts using WB would have been preferable 

to IF to compare protein levels in vitro, despite significant time and effort reliable blots could 
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not be produced within the timescale of the project. Multiple antibodies from different 

suppliers were tested and yielded no bands, streaks or bands of inconsistent size. It was 

postulated that being a transmembrane protein, SorLA may have been incompletely 

solubilised by the RIPA buffer-based lysis method employed, hence a harsher urea-based 

method (Ngoka, 2008) was tested but this also failed to provide clean blots. Given that the 

experimental plan for this work was always meant to include IHC in murine xenograft 

glioblastoma models, and such whole-tumour work is arguably of greater significance to test 

the hypotheses of the project than glioma cell lines in vitro, a decision to move on to the next 

stage of the project was taken.  

 

4.2.      Subcellular distribution of SorLA is unaltered in glioma 

 

SorLA intracellular pattern immunoreactivity within both non-cancerous astrocyte cell types 

was punctate and consistent with the localisation of endomembranes and the plasma 

membrane, in keeping with the published role of SorLA as a transmembrane trafficking protein 

which moves between cellular compartments (Hermey, 2009; Schmidt & Willnow, 2016). 

Crucially, the two glioblastoma cell lines tested exhibited an indistinguishable subcellular 

distribution of SorLA by IF, suggesting that SorLA’s membrane distribution is not overtly 

affected by the transformation of astrocytes to a glioma phenotype. Notwithstanding, while 

the methodology utilised can give a good overview of protein distribution (i.e. it can confirm 

that SorLA has not been uniquely targeted to a single cellular compartment, such as the 

lysosomes, for example), it was not possible to quantify the relative proportion of SorLA in 

each compartment. A modest shift in the relative amount of SorLA present in each of the 

intracellular compartments could conceivably have repercussions for the proper proteolytic 

processing of APP (Willnow and Andersen, 2013), altering the ratio of Aβ40:Aβ42 (Murphy and 

LeVine, 2010; Kamentani and Hasegawa, 2018), and/or affect the uptake and degradation of 

Aβ (Eggert et al., 2017). Hence, although these results do indicate that SorLA is still present and 
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localises to the correct cellular compartments in glioma in vitro, further investigation will be 

required to confirm whether or not there are any more subtle disturbances, which may have 

pathological implications. 

 

4.3.      Tissue expression of SorLA in mouse brain 
 

 

SorLA expression has a widespread distribution in both nervous and non-nervous tissue (Jiang 

et al., 2016; Højland et al., 2018) with a neuronal distribution localised to the somatodendritic 

domain (Klinger et al., 2016). The present study also showed widespread SorLA with a 

relatively uniform expression across non-tumour tissue. Where strongly labelled SorLA was 

seen in non-tumour tissue it was likely intracellular, matching the distribution of SorLA in 

non-AD control brain samples in a study by Thonberg and colleagues (2017). It is interesting 

to note that SorLA positive plaques were also reported, albeit to a lesser degree than the 

tumours here, in post-mortem brain tissue from patients with Alzheimer’s disease (Thonberg 

et al., 2017). 

 

SorLA exists as an intracellular transmembrane receptor, typically linked to the Golgi network 

and endosomes but can also shed an ectodomain through intramembrane proteolysis to yield 

soluble SorLA (sSorLA) releasing it from the cell as the cytoplasmic tail is shed (Terai et al., 

2016). It is unclear which form is being picked up here but is likely to be the sSorLA as the 

antibody targets a region of class A repeats between 1350-1550 amino acids, and not the 

cytoplasmic tail motif (UniProt, 2017). Unfortunately, no selective antibodies for the two forms 

are currently commercially available. 

 

 

4.3.1.    SorLA presence and expression in glioma 

 

A link between SorLA and cancer was speculated a number of years ago, with an initial report 

describing a role of SorLA in proliferation and differentiation of neuroblastoma (Hirayama et 

al., 2000). The soluble form, that can be retrieved from plasma, was later linked to various 
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cancers, lymphoma in particular (Terai et al., 2014; Fujimura et al., 2014; Kawaguchi et al., 

2015; Sugita et al., 2016) giving rise to the possibility that it may have potential as a novel 

biomarker. The SorLA staining in the plaques here appeared to be extracellular so when 

considered with the reported findings of sSorLA shedding in other cancers, it is likely that the 

staining here is also soluble SorLA. However, in the previous lymphoma reports, sSorLA was 

found alongside enhanced SorLA transcription (Fujimura et al., 2014; Ohwada et al., 2015), a 

consideration for future work. That SorLA can be upregulated at the transcriptional level may 

also tie in with reports suggesting sSorLA acts as a hypoxia-induced migration inducer (Nishii 

et al., 2013). It might be expected that the xenografts induced here would develop hypoxic 

regions and a necrotic core, characteristic hallmarks of glioblastoma (Joseph et al., 2015), to 

drive an increased SorLA expression. In contrast however, whilst there may be enhanced 

shedding, the macroscopic images of the murine models show no consistent discernible 

presence of necrosis, and a relatively uniform expression across the tumour. The increased 

SorLA expression may therefore indicates SorLA could have a more central role in cancer 

pathology, rather than appearing because of the tumour. 

 
 
 
 

4.3.2.   Tissue and tumour expression of amyloid beta 
 

 

Significant Aβ staining was seen within the tumour and in the non-tumour tissue surrounding 

the tumour. The immunolabelling was abundant within the tumour in plaques, much like the 

extracellular SorLA. We can be confident that the plaques are indeed Aβ as such plaques have 

been found in other studies using the same anti-Aβ antibody (Vasilevko et al., 2007; Walker 

et al., 2009; Kai et al., 2012; Edrey et al., 2013; Sandoval-Hernández et al., 2015). These 

plaques also appear to be of a similar size and morphology to those seen in murine models 

of AD (Oddo et al., 2003). The plaques did not appear to co-localise with the SorLA plaques in 

near-adjacent tissue sections which is maybe not surprising as SorLA has been shown to have 
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an inverse correlation with beta amyloid expression in Alzheimer’s brains. Future studies using 

co-labelling via immunofluorescence would be able to confirm the absence of any overlap. 

 
 

4.3.3.   Relationship between SorLA and amyloid beta 
 

 

SorLA has a well characterised role regulating APP trafficking/processing (Hermey, 2009) 

where it carries out the retrograde transport and sorting of APP from the endosome, and back 

to the Golgi (Spoelgen et al., 2006). This reduces the amyloidogenic processing of APP, despite 

only accounting for 10% of APP processing, because it is suggested to have an additional 

role in tagging monomeric Aβ for lysosomal degradation (Eggert et al., 2017). This goes 

together with the results by Andersen et al. 2005, who found that SorLA knockout mice had 

significantly higher level of Aβ compared to wild-types. Consequently, data here may initially 

seem counterintuitive with tumour expressing levels of both SorLA AND amyloid beta. However, 

despite only being an anecdotal observation, it is worth noting that the mouse with lowest 

SorLA immunoreactivity had greatest amyloid beta immunoreactivity and two mice showed 

the opposite. It would be useful to explore the timecourse and establish the expression 

levels as the tumour develops to help shed light on the dynamic between SorLA and amyloid 

beta. 

As the SorLA immunoreactivity seen is likely to be from the soluble form it seems reasonable 

to consider that intracellular levels of SorLA would be decreased. This would reduce APP being 

directed to the endosome and would thus be amyloidogenic. However, this is difficult to judge 

here as the strong SorLA labelling masks a lot of the glioma cells making it difficult to discern 

if there is less intracellular SorLA within the tumour. 

 
 

4.3.4.   Influence of amyloid beta on glioma 
 

 

The effect increased expression of Aβ may have on glioma is currently unknown. Some 

previous studies have investigated APP in non-brain-associated cancers (thyroid, colon, 

pancreas, prostate) and reveal that APP is upregulated and involved in promoting oncogenic 
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effects including cell growth, proliferation and migration (Krause et al., 2008; Takayama et al., 

2009; Venkataramani et al., 2010; Lim et al., 2014) with increased levels of APP associated 

with poor prognosis (Takayama et al., 2009). Very few studies have looked at APP and glioma, 

although it has been reported that there is a significant increase in APP seen in the U87MG 

glioma cell line (Guo et al., 2017). This supports our data here as an increase in APP within 

tumour could lead to a rise in Aβ production if there was a lack of intracellular SorLA 

expression to aid in normal APP processing to the endosome. 
 

 

Only a small number of studies have considered an interaction between amyloid beta and 

tumours, and glioma in particular. It has previously been demonstrated that Aβ can inhibit 

glioma cell growth in vitro (Zhao et al., 2009, Youn et al., 2015) and that glioma cells grow 

more slowly when injected into the brains of AD mice models who overproduce Aβ (Paris et 

al. 2010). The anti-cancer effect of Aβ isn’t limited to brain tumours however as a fragment 

of Aβ also decreased proliferation and tumour vascularisation in a mouse model of breast 

cancer (Paris et al., 2010). Amyloid beta may therefore have anti-tumour properties and raises 

the possibility that Aβ is produced as a response to the tumour to try and inhibit tumour 

growth. This hypothesis is supported by a small study on human post mortem tissue that 

showed a lower proportion of AD plaques in post-mortem tissue from glioblastoma patients 

than from non-glioblastoma patients (Nelson 2002). An anti-cancer effect of Aβ has been 

speculated to occur through inhibition of formation of new blood vessels (Patel et al., 2010, 

Paris et al. 2015), although this remains unresolved as a pro-angiogenic effect of Aβ has also 

been reported (Cameron et al., 2012). The reported increase in APP seen in glioblastoma tissue 

(Culicchia et al., 2008) would also support an Aβ-mediated anti-tumour response from the 

tissue but would contrast starkly with the oncogenic properties of APP reported above in other 

tumour types. Whether this is a feature specific to glioma remains to be determined. 

 

It is interesting to note that the putative antitumour effects of amyloid beta may correspond 

with epidemiological data suggesting a co-morbidity and an inverse correlation between AD 
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and cancer (Musicco et al., 2013, Catala-Lopez et al., 2014, Shi et al., 2014). This is countered 

however by other studies which proclaim that AD and glioma are instead positively correlated 

(Lehrer S. 2018). A host of genes were identified via transcriptomic meta-analysis, finding a 

similar pattern of changes on them in AD and glioblastoma, with the study further analyzing 

these affected genes, seeing that they were deregulated and linking them to mitochondrial 

dysfunction (Sánchez-Valle et al., 2017). This dysfunction was thought to lead to an increase 

in reactive oxygen species production, a known change in AD brains mainly (Silva et al., 2011). 

Though, further affecting mitochondria function, they did find that 10 mutated genes are 

shared between the diseases, finding them to involved in downregulating oxidative 

phosphorylation and upregulating interferon alpha beta induction. Together this supported a 

hypothesis of a localized chronic inflammatory state occurring, a feature other studies have 

demonstrated as promoting tumour development (Lu et al., 2006; Galvão and Zong, 2013; 

Mcdonald et al., 2017). Also, the lack of oxidative phosphorylation in cells within the brain, 

means a lower rate of mitochondrial energy production, thus leading to synaptic transmission 

dysfunction (Pathak et al., 2015). 

 

The contribution Aβ makes to the pathogenesis of AD is complicated by the different 
 

peptides generated from APP as various enzymes cleave it in different places (Luo et al., 2016, 

Andrew et al., 2016). APP is severed by a first enzyme (β-secretase) and one of the fragments 

is then trimmed by a second enzyme (γ-secretase) complex to produce a 40 amino acid long 

Aβ40 peptide (Andrew et al., 2016). This peptide is relatively benign and may be involved in 

neuronal survival and modulating synaptic activity (Mordhwaj et al., 2011). However 

incomplete trimming of the fragment yields a longer Aβ42 peptide that is more prone to 

aggregating and makes a major contribution to the hallmark amyloid plaques seen in brains 

of AD patients (Takami et al., 2009). It is unfortunate that the previous studies linking 

cancer/glioma and Aβ did not specify which isoform of amyloid beta was studied. 

Consequently, we can only speculate which isoform was picked up here as the antibody 
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employed also could not differentiate between Aβ40 and Aβ42. As the immunoreactivity was 

seen in plaques and as SorLA is likely to be soluble and extracellular, it therefore seems likely 

that the immunoreactivity seen here would be the fibrillogenic Aβ42 form, rather than Aβ40. 

 

4.3.5.   Amyloid beta expression peripheral to the tumour 
 

 

Data here show marked amyloid beta deposition in the tissue surrounding the tumour. To 

our knowledge, this is the first time such an observation has been seen. The amyloid beta halo 

region surrounding the tumour in the mouse brain sections are distinct in that Aβ intensity 

declines the greater the distance from the tumour edge. The source of this Aβ is open to 

speculation and could either be from the non-tumour tissue or from the tumour itself. As Aβ 

plaques have been suggested to have a role as a protective ‘reservoir’ of soluble Aβ aggregates 

(Esparza et al., 2018) it’s possible that the Aβ halo region starts from the non- tumour and 

increases closer to the tumour as a defensive response to prevent exfiltration and keep 

sequestered the soluble Aβ plaques. Conversely it may be that the Aβ may be from the tumour 

and there is infiltration into non-tumour tissue of soluble Aβ due to it overwhelming the 

plaques within the tumour acting as a buffer. Amyloid beta halos have been reported 

previously, on a much a smaller scale, as soluble oligomeric Aβ halos were seen to surround 

synapses and contribute to synaptic loss in AD (Koffie et al., 2009; 2012). 
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CONCLUSION
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5.0.      Conclusion 
 

 

This investigation demonstrated the presence of SorLA in glioma cell lines and in U87MG 

xenograft, and that SorLA, likely sSorLA, formed apparent extracellular plaques within the 

tumour. In addition, the study found that amyloid beta was also present in tumour tissue in 

the form of extracellular plaques and in non-tumour tissue immediately peripheral to the 

tumour.  However, these unexpected results run counter to the hypothesis, though the 

aims of the thesis were achieved. 
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CHAPTER 6 
 
 

FUTURE WORK AND DIRECTION
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6.0.      Future work and direction 
 

 

The work carried out here is an interesting preliminary investigation into SorLA and Aβ’s role 

in glioma and supports further work be done in the area. The obvious next question is to 

determine which types of Aβ are present within the tumour as the primary anti-Aβ antibody 

used here reacts to the 1-16 amino acid residue, meaning it is impossible to distinguish the 

Aβ seen between the Aβ40 and/or Aβ42 types. This could be accomplished by using the more 

specific Aβ antibodies that are commercially available. 

 

Future work should establish if the SorLA detected in the extracellular space is sSorLA. This 

would go towards validating the idea that there may be enhanced proteolytic shedding of 

SorLA within the glioma cells. One way to do this would be through sSorLA ELISA kits upon 

various glioma short term primary culture and glioma cell line media, and their corresponding 

lysates, alongside NHAs to provide a comparison, as it would quantify the amount both intra- 

and extracellularly. To expand upon this in context of the work already done, would be to do 

the same for Aβ in glioma cell lines and STC lysate and medium too. 

 

In the context of what was discussed in the previous chapter, APP expression could be 

investigated to confirm the reported upregulation within glioma cells. This should utilise 

western blotting detection of NHAs, multiple glioma cell lines and STC lysates to enable a 

greater comparison and lend validity to any conclusions drawn. ELISA upon the lysates to 

quantify the levels APP and SorLA would provide additional evidence also. 

 

To further enhance the results that might be obtained from the ELISA in determining 

intracellular and extracellular levels of sSorLA, FACS would be allow for an understanding of 

whether SorLA is expressed within the glioma cells in comparison to NHAs for example. 

 

To test the idea that sSorLA is a hypoxia-induced migration inducer, glioma cell lines/STCs 

could be grown in a hypoxic chamber and the culture medium measured for sSorLA levels at 

varying intervals through a combination of FACS and ELISA.
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This project did not look at the tumour development and its relation to SorLA and Aβ 

 

expression. As such, future work in this regard may incorporate a longitudinal study to 

determine expression of SorLA and amyloid beta as the tumour develops. In particular this 

may help understand whether the amyloid beta is present in non-tumour tissue as a 

consequence of the tumour or emanate from the tumour itself. 

 

An inherent limitation of using U87MG cell lines is that it is not human glioma tissue. Utilising 

human patient biopsy tissue would add much validity to the study here if the findings were 

mirrored in human tissue. Acquiring tissue of varying age groups, genders, and glioma grades 

would yield important data as expression could be correlated to the various patient groups 

available. SorLA and amyloid beta can both exist as soluble forms with the potential to be 

released. This is particularly significant given the suggestion that Aβ can be detected in plasma 

(Roher et al. 2009) and therefore could have biomarker potential for AD which may indicate 

potential for it to also be a biomarker for glioma as well.
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Appendix 1. Haematoxylin solution protocol: 
 

 

-    Heat up 2L dH2O to boil and then turn off heat. 
 

-    Slowly add 200g potassium alum to dissolve in the 2L dH2O. 
 

-    Separately, dissolve 10g haematoxylin in 100ml of ethanol 
 

-    The solutions are mixed left for 1 minute before then slowly adding 5g mercuric oxide. 
 

-    The solution is to be then rapidly cooled on ice and stored in the dark. 
 

- Prior to use, the required amount of haematoxylin is filtered, with 0.5ml glacial acetic 

acid per 60ml haematoxylin added. Storage is indefinite. 

- The haematoxylin solution can be used up to three times, with it being filtered 

between each use if the time between exceeds 12hrs.
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Appendix 2. Antigen retrieval solution preparation: 
 

 

-    Dissolve 2.88g citric acid (anhydrous) in 1500ml dH2O. 
 

-    Adjust the solution to pH 6.0. 
 

-    Add 0.75ml Tween 20.



81  

Appendix 3. Endogenous peroxidase quench solution: 
 

 

- Depending upon the volume required, add the equivalent to 0.3% of the amount of 

methanol used of 30% (w/v) hydrogen peroxide.



82  

Appendix 4. Seeding ratio for cell lines from confluent T75 flask to coverslips on 12-well 
 

plates for IF 
 

 

-    SVGp12 = 1:20 
 

-    U87MG = 1:30 
 

-    T98G = 1:30
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Appendix 5. Murine xenograft animal qualitative data (A), cell count significance 

between tumour and non-tumour region (B), and cell density data (C). Cell counts between 

all the tumour and non-tumour regions show a significant difference (p ≤ 0.05). FOV=3, n=3. 
 

 
 

A 
 

Brain Designation 
 

 
 
 
 
 
 
 

 

B 

 

 

 

  

 

 

Brain Designation 
Non-Tumour Area 
(µm2) 

Average Non-Tumour Cell 
Count Cell Density (per µm2) 

#39 295553.97 68,672 0.232349596 

3101C2 31029.083 6,573.65 0.211854449 

3101C6 255724.454 52,248 0.204314749 

Brain Designation 
Tumour Area 
(µm2) Average Tumour Cell Count Cell Density (per µm2) 

#39 227827.544 139,646 0.612944177 

3101C2 44448.616 29,283.61 0.658819448 

3101C6 220039.235 139,148 0.632377427 
 

 

 

Brain 
Designation 

Surgery 
Date Cull Date 

Days 
Passed Reason for Cull 

#39 25/10/2017 20/11/2017 
26 

Weight Loss 

3101C2 23/05/2017 17/06/2017 

25 

Weight Loss, Lack of Movement 

3101C6 25/05/2017 22/06/2017 

28 

Weight Loss, Lack of Movement, Pale 
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Appendix 6. Montage composites of SorLA and haematoxylin stained non-tumour and 

tumour image replicates used for analysis. #39 SorLA & Haematoxylin non-tumour 

tissue replicates being rows A-C and tumour tissue being rows D-F. 3101C2 SorLA & 

Haematoxylin non-tumour are G-I and tumour being J-L. 3101C6 SorLA & Haematoxylin 

non-tumour are M-O and tumour being P-R. 
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Appendix 7. Montage composites of amyloid beta and haematoxylin stained non-

tumour and tumour image replicates used for analysis. #39 Amyloid beta and 

haematoxylin non-tumour tissue replicates being rows A-C and tumour tissue being 

rows D-F. 3101C2 Amyloid beta and haematoxylin non-tumour are G-I and tumour being 

J-L. 3101C6 Amyloid beta and haematoxylin non-tumour are M-O and tumour being P-

R.  
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Appendix 8. Tabulated data on IF fluorescence. 

 

Column1 Mean Std. Deviation Standard Error Mean 

SVG 14.711 5.418 2.423 

U87MG 22.562 17.462 7.809 

T98G 23.538 30.69 13.725 

NHA 36.733 33.322 14.337 
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Appendix 9. Optimisation of the anti-SorLA antibody on non-tumour tissue sections. 
 

 

SorLA                                            BSA Control 

 
 
 
 
 

1: 

 
 
 
 
 
 

 

1:250 

 
 
 
 
 
 
 

 

1:5 
 
 
 
 
 
 
 
 
 
 
 
 

1:750 

 
 
 
 
 
 

 

1:1000 

 
 
 
 

Concentration dependent immunoreactivity was detected in sections exposed to anti-SorLA 

antibody (black arrows). Sections where primary antibody had been omitted lacked 

immunoreactivity, with only the haematoxylin being taken up (blue/purple nuclei). Mag x40. 

Scale bar, 5μm, n=3. 



92  

 
 
 
 
 

00 

 
 
 

A 

 
 
 

B 

 
 
 
 
 

50 

 
 
 

C 

 
 
 

D 

 
 
 
 

 

00 

 
 
 

E 

 
 
 

F 

 

 
 
 
 
 

000 

 
 
 

G 

 
 
 

H 

Appendix 10. Optimisation of the anti-Aβ antibody on tumour tissue sections. 

 

Amyloid-β                                                        BSA 
 
 
 
 
 

1:5 
 
 
 
 
 
 
 
 
 
 
 
 

1:7 
 
 
 
 
 
 
 
 
 
 
 
 

1:10 
 
 
 
 
 
 
 
 
 
 
 
 

1:2 

 
 
 
 
 
 
 

 

Aβ expression was detected as brown DAB staining within the tumour as Aβ plaques (black 

arrows). BSA control shows no DAB immunoreactivity with only the haematoxylin 

counterstain being taken up (blue/purple nuclei). The final concentration chosen to use was 

1:500. Scale bar 5μm. n=3. Mag x40.
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Appendix 11. Validation of immunohistochemical labelling of murine xenograft brain. 
 

 

                                              Tumour                                                 Non-Tumour 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
IgG 

 
 
 
 
 
 
 

 

A degree of intracellular SorLA was observable in the non-tumour (A) (white arrows), with little 

immunoreactivity within the tumour (B). GFAP expression was detected in the non- tumour 

region (C) (black arrow) and reduced expression detected within the tumour (D). The negative 

isotype (IgG) control for non-specific binding showed minimal binding within both non-

tumour and tumour regions (E, F). Scale bar 5μm. FOV=3, n=3. Mag x40. 
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Appendix 12. Tabulated data on SorLA intensity and average area of SorLA deposits.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Column1 Mean Std. Deviation Std. Error Mean t Degrees of Freedom Significance α

#39 95.02 33.94 7.999 -2.065 8 0.073 0.05

3101C2 78.1 27.95 6.587 0.348 8 0.737 0.05

3101C6 94.84 47.01 11.081 -1.688 8 0.13 0.05

Normalised 89.318 37.324 5.079133311 -2.379 26 0.025 0.05

Column1 Mean Std. Deviation Std. Error Mean t Degrees of Freedom Significance α

#39 160.6 60.93 20.31 7.906 8 <0.001 0.05

3101C2 40.06 14.89 4.964 8.069 8 <0.001 0.05

3101C6 66.26 37.49 12.5 5.303 8 <0.001 0.05
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Appendix 13. Tabulated data on amyloid beta intensity and average area of amyloid beta 

plaques. 
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            Appendix 14. Montage composite of replicate IF-stained cells used in intensity analysis. 

U87MG control and SorLA replicates (A), followed by T98G control and SorLA (B), SVGp12 control 

and SorLA (C), ending with NHA control and SorLA replicates (D). Scale bar 20μm x40 ‘oil’ mag. 
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B 



98  

                   Control          SorLA 
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     Control                 SorLA 
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