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Abstract. Gland segmentation has become an important task in biomedical 

image analysis. An accurate gland segmentation could be instrumental in 

designing of personalised treatments, potentially leading to improved pa-

tient survival rate. Different gland instance segmentation architectures have 

been tested in the work reported here. A hybrid method that combines two-

level classification has been described. The proposed method achieved very 

good image-level classification results with 100% classification accuracy on 

the available test data. Therefore, the overall performance of the proposed 

hybrid method highly depends on the results of the pixel-level classification. 

Diverse image features reflecting various morphological gland structures 

visible in histology images have been tested in order to improve the perfor-

mance of the gland instance segmentation. Based on the reported experi-

mental results, the hybrid approach, which combines two-level classifica-

tion, achieved overall the best results among the tested methods. 

Keywords:  Gland segmentation, Two-level classification, Deep learning, Ran-

dom forest  

1 Introduction  

Colorectal cancer is one of the most commonly diagnosed cancers, which affects both 

women and men. Accurate cancer grading is essential for individual cancer treatment 

planning and resulting patient survival rate. Different morphological structures of the 

gland objects can be used for grading. Therefore, accurate segmentation of gland struc-

tures in histology images is important in order to support assessment of the cancer. One 

of the reasons why gland segmentation is challenging is that the structure and appear-

ance of histology images, even for the same tissue, can look significantly different. 

Furthermore, the gland size, shape, texture and appearance could vary significantly 

even within the same gland category. Due to these reasons, gland segmentation is a 

challenging problem. The proposed hybrid method deals with these challenges by di-

viding the images into tissue type categories first and solving the pixel-wise classifica-

tion separately for each predefined category of the histology image.  
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2 Related work 

A large number of published papers demonstrate that gland segmentation has become 

an important problem in biomedical image analysis [3-7]. This section reviews some of 

the approaches previously proposed for gland segmentation. 

Wu [3] proposed a region growing method where featureless areas are used as initial 

seeds for region growing. The chain of epithelial nuclei is used for termination of the 

region growing. The drawback of this method is that it only achieves good performance 

for images displaying benign tissue, and is not effective for images showing malignant 

tissue, due to the deformation of morphological structures of gland objects. 

Gunduz-Demir [4] introduced an approach that has employed graph connectivity to 

classify initial seeds for region growing. This method is different from the method pro-

posed by Wu as it uses pixel information to represent each tissue type. The edges be-

tween different gland objects are employed as the stopping criterion. Again, this method 

performs well only on images representing benign tissue.  

Recently, deep learning methods have been used and achieved excellent perfor-

mance in gland segmentation. Kainz [5] proposed an approach, which used two convo-

lutional networks as pixel level classifier. The input for these two networks was pro-

cessed by using the red channel of original images. A total weight variation of global 

segmentation was used to determine the final output.  

Chen [6] introduced a method based on fully convolutional network (FCN). This 

method takes advantage of multi-level feature representations. The network uses ge-

neric encoder-decoder architecture. The down-sampling encoder generates the multi-

level features and the up-sampling decoder is used to restore the original image size 

and provides the gland occurrence probability maps.  

Li [7] proposed an approach, which combines deep learning and handcrafted features 

to train the SVM classifier. Different sizes of the patches for both handcrafted and deep 

learning features have been tested in [7] in order to improve the performance.  

3 Method  

Segmentation approaches considered in this paper could be divided into segmentation 

with and without pre-classification. Segmentation with the pre-classification could be 

further divided into pre-classification at the image and feature levels. Fig. 1 shows these 

three options adopted for the gland segmentation problem. Method 1 is a simplest ap-

proach. Both Method 2 and Method 3 use the pre-classification and are variants of the 

Method 1. The difference between Methods 2 and 3 is that for the Method 2 the image 

features are learned and extracted separately for the benign and malignant gland im-

ages, whereas for the Method 3 the features are learned for all training images and the 

separation between benign/malignant images is performed after features are extracted 

(i.e. at the feature level). Segmentation with the pre-classification is in effect a two-

level classification and consists of image-level classification and pixel-level classifica-

tion. The image-level classification part is to separate the histology images into benign 

and malignant cases, and the pixel-level classification is to perform the actual gland 
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segmentation. The final segmentation results for method 2 and 3 are superposition of 

the segmentation results for benign and malignant cases. 

The morphological structure of glands in benign and malignant cases is significantly 

different (see Fig. 3 for typical histology images showing benign and malignant tissue). 

To obtain good segmentation results, it is not only needed to separate the images into 

benign or malignant cases but also develop a way to describe the morphological struc-

ture of gland objects for these cases. In this work, two and three different target classes 

have been tested in order to find the best way to describe the local discriminative pat-

terns for benign and malignant tissue. For the two-target classes, the gland and non-

gland parts of the image were considered, whereas for a three-target classes case, gland 

inside, gland boundary, and gland outside image regions were taken into consideration. 

 

Fig 1.  Different segmentation architectures adopted for gland segmentation problem. From left 

to right: Method 1, represents the segmentation without pre-classification; Method 2, is segmen-

tation with the pre-classification at the image level; and Method 3, uses segmentation with pre-

classification at the feature level. 

3.1 Image-level classification  

As mentioned previously, image-level classification aims to separate the histology im-

ages into benign and malignant cases. Recently, deep learning techniques have 

achieved excellent performance in image classification tasks. Three different deep 

learning architectures, AlexNet [8], GoogleNet [9] and ResNet-50 [10] have been tested 

on the gland image classification problem.  

There are only 85 training images and 80 test images in the gland dataset [1, 2, 18] 

used in the reported experiments. It is therefore important to increase the number of 

training images in order to avoid overfitting. Data augmentation methods, adopted to 

increase the number of training images use local image deformations and colour jitter.  
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Colour jitter changes image appearance by modifying image tones without changing 

morphological structure. The local image deformations are used to modify shape of 

structures and textures without changing the colour. In the adopted implementation, a 

2D thin-plate spline [11] has been used to augment the training data. The deformation 

model uses fixed 10x10 grid and a random displacement of each grid point with the 

maximum displacement of 9 pixels. Fig. 2 shows an example of original images and 

images after using data augmentation.  

  

Fig 2.  Original images and images after applying the adopted data augmentations. (a) From left 

to right: an original image with benign tissue, corresponding image after colour jitter and image 

after local image deformation (b) From left to right: an original image with malignant tissue, 

corresponding image after colour jitter and image after local image deformation. 

For evaluation of different image classification architectures, 80% of training images 

from each category are used to generate additional training images using described im-

age augmentation process. As result, there are 6392 training images in total. The re-

maining 17 histology images are used for validation. The original 80 test images from 

the gland dataset are used for testing. All the tested networks employ the Adam opti-

misation method [12]. 

3.2 Pixel level classification  

Pixel level classification deals with the gland instance segmentation. There are many 

types of feature extraction methods, which have been widely used in classification 

tasks. In gland segmentation, both handcrafted features and deep learning features have 

been applied. In this work number of handcrafted features were tested, including ring 

histograms [13], rotation-invariant local uniform patterns (LBP) [14] and circular Fou-

rier HOG features [15], as well as deep features, including LeNet-5 and GoogleNet. 

As described in Section 3, the pixel level classification is to solve gland segmenta-

tion for each image category. The details of two and three target classes adopted for the 

experiments are given below.  

Two target classes. For images with benign or malignant tissue, the two target classes 

are defined as gland and non-gland (background) image areas. The labels for gland and 

(b)

(a)
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background are provided in the gland database, with a sample ground truth shown in 

Fig. 3. The images and the provided two-class ground truth have been used to train 

feature extraction methods with the random forest used as pixel level classifier. The 

results are determined by using a set of morphological post-processing steps on proba-

bility maps generated by the random forest.  

Three target classes. For images with benign or malignant tissue, the three target clas-

ses are defined as ‘gland inside’, ‘gland boundary’ and ‘gland outside’. The ‘gland 

boundary’ labels are generated by applying the erosion to the original ground truth im-

ages with two labels, and subsequently performing the XOR operation between the 

original and the eroded images. Fig.3 shows the labels for these three target classes. 

Pixel-level classifier. Random forest technique has been used as a pixel-level classifier 

to learn the local patterns in the histology images. The forest applied for the gland seg-

mentation uses Breiman model [16]. The Gini impurity is used to split samples in each 

tree node. The mathematical expression of Gini impurity is given as: 

 Gini impurity = 1 − ∑ 𝑃𝑖
2𝑐

𝑖=1  (1) 

where 𝑐 is the total number of classes in each splitting node, and 𝑃𝑖  is the probability 

of the class 𝑖.  
The class output of the forest model is defined by the majority vote collected from 

all decision trees in the forest.  

Fig 3.  Example images and corresponding labels for two and three target classes. (a) 

From left to right: image with benign tissue, the ground truth for two target classes and 

the ground truth for three target classes (b) From left to right: image with malignant 

tissue, the ground truth for two target classes and the ground truth for three target clas-

ses. 

(b)

(a)
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4 Evaluation 

The performance of segmentation results was evaluated by using four evaluation 

measures [18, 20]: (1) detection accuracy of individual glands; (2) object-level segmen-

tation accuracy; (3) object-level shape similarity using Hausdorff distance, and (4) ob-

ject-level shape similarity using Boundary Jaccard index.  

Detection accuracy. F1 score has been used in this work in order to estimate the de-

tection accuracy for individual glands [18]. If a segmented gland object overlaps at least 

50% with the corresponding ground truth it is treated as true positive (TP); otherwise, 

it treated as false positive (FP). The difference between the number of ground truth and 

the number of true positive has been treated as the number of false negative (FN). The 

F1 score is defined as:  

 F1 =
2∙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (2) 

where Precision= 
𝑇𝑃

𝑇𝑃+𝐹𝑃
  , Recall= 

𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3) 

Segmentation accuracy. Dice index [17] is a metric to measure similarity between two 

sets. The range of Dice index is between 0 and 1, where the higher the value, the better 

the segmentation result. However, in this work, object-level Dice index has been used 

to evaluate the Dice index for individual glands. The definition of object-level Dice 

index is as follows [18]:  

 

 𝐷𝑖𝑐𝑒obj(𝒈, 𝒔) =  
1

2
[∑ 𝜔𝑖𝐷𝑖𝑐𝑒(𝐺𝑖 , 𝑺∗(𝐺𝑖))

𝑛𝑔

𝑖=1
+ ∑ 𝜔�̃�

𝑛𝑠
𝑗=1 𝐷𝑖𝑐𝑒(𝐆∗(𝑆𝑗), 𝑆𝑗)] (4) 

where 𝜔𝑖 =  
|𝐺𝑖|

∑ |𝐺𝑝|
𝑛𝑔

𝑝=1

⁄  ,   𝜔�̃� =  
|𝑆𝑗|

∑ |𝑆𝑝|
𝑛𝑠
𝑝=1

⁄  (5) 

𝑛𝑔  and 𝑛𝑠  are the total number of ground truth objects and segmented objects. 

𝐷𝑖𝑐𝑒(𝐺𝑖 , 𝑺∗(𝐺𝑖)) is to estimate the overlapping area between ground truth and corre-

sponding segmented objects, and D𝑖𝑐𝑒(𝐆∗(𝑆𝑗), 𝑆𝑗) is to evaluate the overlapping area 

between segmented objects and corresponding ground truth.  

Shape similarity.  Hausdorff distance [19] is used to estimate the shape similarity be-

tween segmented object and corresponding ground truth. Object-level Hausdorff dis-

tance is to measure the shape similarity of individual gland objects for gland instance 

segmentation, and it is defined as [18]:  

 𝐇obj(𝒈, 𝒔) =  
1

2
[∑ 𝜔𝑖𝐇(𝐺𝑖 , 𝑺∗(𝐺𝑖))

𝑛𝑔

𝑖=1
+ ∑ 𝜔�̃�

𝑛𝑠
𝑗=1 𝐇(𝑮∗(𝑆𝑗), 𝑆𝑗)] (6) 

Boundary Jaccard index [20] is another measure used to estimate the similarity between 

contours. It is sensitive to the infra-segmentation and over-segmentation, but contrary 
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to the Hausdorff distance, this measure is not sensitive to boundary outliers and its value 

is bounded between 0 and 1. Object-level boundary Jaccard index is to evaluate bound-

ary Jaccard index for individual glands, and is defined as:  

 𝐁𝐉obj(𝒈, 𝒔) =  
1

2
[∑ 𝜔𝑖𝐁𝐉(𝐺𝑖 , 𝑺∗(𝐺𝑖))

𝑛𝑔

𝑖=1
+  ∑ 𝜔�̃�

𝑛𝑠
𝑗=1 𝐁𝐉(𝑮∗(𝑆𝑗), 𝑆𝑗)] (7) 

where  𝑩𝑱 =  
𝑻𝑷

𝑻𝑷+𝑭𝑷+𝑭𝑵
 (8) 

The first term measure Boundary Jaccard index between the ground truth and corre-

sponding segmented results, and the second term measures Boundary Jaccard index 

between the segmentation objects and corresponding ground truth. 𝑩𝑱 is the Boundary 

Jaccard index, see [20] for details. 

5 Results 

5.1 Results for image-level classification  

The results of image-level classification problem are shown in Table 1. TP refers to 

identifying correctly images with benign tissue, FP refers to images with malignant 

tissue predicted as benign tissue; FN refers to images with benign tissue predicted as 

malignant tissue, and TN refers to correctly identifying images showing malignant tis-

sue.  

Table 1. Results for image-level classification using three different networks on test images 

Network name TP FP FN TN 

AlexNet 23 14 13 30 

GoogleNet 34 3 8 35 

ResNet-50 37 0 0 43 

Image-level classification results show that the more up-to-date deep learning tech-

niques are better in separating images in the gland dataset. Using the proposed data 

augmentation methods, the ResNet-50 performed with 100% classification accuracy on 

the available test data. 

5.2 Results for pixel-level classification  

Tables 2, 3 and 4 show the quantitative results for pixel level classification using three 

different segmentation architectures for benign and malignant cases as well as the over-

all results. The number in bold in each column in Tables 2, 3 and 4 presents the best 

results using a corresponding evaluation measure. The best overall performance is 

achieved using Method 3 with two target classes. For the benign case, the best results 

were obtained with the LeNet-5 deep feature, whereas for the malignant and overall 

results the GoogleNet deep features turned out to perform the best. 
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Table 2. Segmentation results for benign cases with the LeNet-5 deep features 

Table 3. Segmentation results for malignant cases with the GoogleNet deep features 

Table 4. Overall Segmentation results with the GoogleNet features 

For the benign tissue, three-target class model provides better performance than using 

two-target classes. This is because the morphological structure of benign tissue is better 

described by a three-class target model. However, the morphological structure of ma-

lignant tissue, it is better represented by two-target class model. Fig. 4 shows a sample 

of qualitative segmentation results for pixel-level classification. From visual inspection, 

the segmentation results for benign cases are better than those for malignant cases. 

5.3 Methods comparison 

As already mentioned in the related work section, a number of different segmentation 

techniques have been proposed for gland segmentation. For example, segmentation re-

sults reported for the fully convolutional neural networks are particularly impressive 

[6, 21, 22]. However, interpretation and understanding of these state of the art results 

is somewhat difficult. Although the overall performance of these networks is very good 

it is not easy to associate this with any particular characteristics of the images or indeed 

specific parts of the network. The work reported in this paper has been focused on using 

random forests, as these techniques facilitate: a simple approach for using different fea-

tures, changes in number of target classes, and adjustment of the classifier to work in a  

Method 

name 

Number 

of target 

classes 

F1  

score 

Object-level 

Dice index 

Object-level 

Hausdorff  

distance 

Object-level  

Boundary Jaccard  

index 

Method 1 2 0.63 0.68 194.16 0.69 

Method 2 2 0.55 0.64 126.34 0.66 

Method 3 2 0.62 0.70 105.67 0.72 

Method 2 3 0.74 0.77 108.18 0.78 

Method 3 3 0.70 0.70 128.95 0.72 

Method 

name 

Number 

of target 

classes 

F1  

score 

Object-level 

Dice index 

Object-level 

Hausdorff 

distance 

Object-level  

Boundary Jaccard  

Index 

Method 1 2 0.64 0.67 210.65 0.68 

Method 2 2 0.60 0.62 215.46 0.64 

Method 3 2 0.61 0.70 164.69 0.71 

Method 2 3 0.57 0.56 254.08 0.57 

Method 3 3 0.52 0.53 230.68 0.55 

Method 

name 

Number 

of target 

classes 

F1  

score 

Object-level 

Dice index 

Object-level 

Hausdorff  

distance 

Object-level  

Boundary Jaccard  

index 

Method 1 2 0.67 0.70 150.38 0.71 

Method 2 2 0.63 0.65 173.76 0.67 

Method 3 2 0.66 0.73 136.49 0.75 

Method 2 3 0.68 0.69 202.48 0.70 

Method 3 3 0.61 0.67 215.57 0.68 
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Fig 4. A sample of the segmentation results using Method 3 with 2 target classes. (a) From left 

to right: test image showing benign tissue, the ground truth (gland part is highlighted) and the 

segmentation result. (b) From left to right: test image showing malignant tissue, ground truth and 

segmentation result. 

semi-supervised fashion to ease the burden for manual segmentation when much large 

datasets are available. Furthermore, operation of the classifier could be better under-

stood, by using standard random forest analysis techniques, e.g to find the important 

features, describe features interactions, or indeed relate specific features to the quality 

of the segmentation results. 

Random forest have been used for gland segmentation before. A recent work on 

applying random forest for gland segmentation has been reported in [23]. Table 5 pro-

vides the quantitative comparison between results reported in [23] and the results ofre-

ported in this paper (Method 3). It is evident that the proposed method achieves a better 

segmentation performance 

Table 5. Comparison results for the methods using random forest    

6 Conclusion  

The paper describes three methods developed for gland segmentation in histology im-

ages. The proposed methods have been assessed using number of different metrics eval-

uating detection accuracy as well as region and contour segmentation accuracy. Two of 

the proposed methods use image pre-classification assigning each image to two possi-

ble categories: benign and malignant. The adopted image pre-classification method to-

gether with the training data augmentation achieves 100% classification accuracy on 

the available test data. Overall, the best results are obtained based on using segmenta-

tion with pre-classification at the feature level. This outperforms the method with the 

pre-classification at the image level as the former enables more data for the feature 

(b)

(a)

Method name 

F1  

score 

Object-level Dice 

index 

Object-level Hausdorff  

distance 

A B A B A B 

Proposed method  0.66 0.68 0.75 0.68 107 223 

Method using ran-

dom forest [23] 
0.54 0.52 0.65 0.57 126 262 
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extraction training, what is particularly important in cases of limited training data avail-

ability. Furthermore, it has been shown that the best results for segmentation of benign 

glands are obtained with three-class setting, whereas the malignant glands when two-

class setting is used. This could be explained by noticing that for majority of malignant 

glands they lack a distinctive “inside” pattern. 
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