

Central Lancashire Online Knowledge (CLoK)

Title	Is Coffee a Useful Source of Caffeine Preexercise?
Туре	Article
URL	https://clok.uclan.ac.uk/30526/
DOI	https://doi.org/10.1123/ijsnem.2019-0092
Date	2019
Citation	Pickering, Craig and Grgic, Jozo (2019) Is Coffee a Useful Source of Caffeine
	Preexercise? International Journal of Sport Nutrition and Exercise
	Metabolism. pp. 1-14. ISSN 1526-484X
Creators	Pickering, Craig and Grgic, Jozo

It is advisable to refer to the publisher's version if you intend to cite from the work. https://doi.org/10.1123/ijsnem.2019-0092

For information about Research at UCLan please go to http://www.uclan.ac.uk/research/

All outputs in CLoK are protected by Intellectual Property Rights law, including Copyright law. Copyright, IPR and Moral Rights for the works on this site are retained by the individual authors and/or other copyright owners. Terms and conditions for use of this material are defined in the <u>http://clok.uclan.ac.uk/policies/</u>

1	
2	Is coffee a useful source of caffeine pre-exercise?
3	
4	Authors: Craig Pickering ¹ , Jozo Grgic ²
5	
6	1. Institute of Coaching and Performance, School of Sport and Wellbeing, University of
7	Central Lancashire, Preston, UK
8	2. Institute for Health and Sport (IHES), Victoria University, Melbourne, Australia
9	
10	Corresponding Author:
11	Craig Pickering
12	Institute of Coaching and Performance, School of Sport and Wellbeing, University of Central
13	Lancashire, Fylde Road, Preston, PR1 2HE, UK.
14	Email: craigpickering1014@hotmail.com.
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

- 26 Abstract
- 27

28 Caffeine is a well-established ergogenic aid, with its performance-enhancing effects 29 demonstrated across a wide variety of exercise modalities. Athletes tend to frequently 30 consume caffeine as a performance enhancement method in training and competition. There 31 are a number of methods available as a means of consuming caffeine around exercise, 32 including caffeine anhydrous, sports drinks, caffeine-carbohydrate gels, and gum. One 33 popular method of caffeine ingestion in non-athletes is coffee, with some evidence suggesting 34 it is also utilized by athletes. In this article, we discuss the research pertaining to the use of 35 coffee as an ergogenic aid, exploring (a) whether caffeinated coffee is ergogenic, (b) whether 36 dose-matched caffeinated coffee provides a performance benefit similar in magnitude to 37 caffeine anhydrous, and (c) whether decaffeinated coffee consumption affects the ergogenic 38 effects of a subsequent isolated caffeine dose. There is limited evidence that caffeinated 39 coffee has the potential to offer ergogenic effects similar in magnitude to caffeine anhydrous; 40 however, this requires further investigation. Co-ingestion of caffeine with decaffeinated 41 coffee does not seem to limit the ergogenic effects of caffeine. Whilst caffeinated coffee is 42 potentially ergogenic, its use as a pre-exercise caffeine ingestion method represents some 43 practical hurdles to athletes, including the consumption of large volumes of liquid, and 44 difficulties in quantifying the exact caffeine dose, as differences in coffee type and brewing 45 method may alter caffeine content. The use of caffeinated coffee around exercise has the 46 potential to enhance performance, but athletes and coaches should be mindful of the practical 47 limitations.

- 48
- 49
- 50

1. Introduction

53	Caffeine is a well-established ergogenic aid, with performance-enhancing effects
54	confirmed at meta-analysis level (Grgic et al., 2019) across a variety of exercise types,
55	including aerobic and muscular endurance, muscle strength, anaerobic power, speed, and
56	jumping performance (Polito et al., 2016; Grgic et al., 2018; Southward et al., 2018; Grgic et
57	al., 2019; Grgic & Pickering, 2019). Caffeine enhances performance via a variety of
58	mechanisms, including a reduction in perceived exertion and pain perception, as well as
59	increases in motor unit recruitment (Doherty & Smith, 2004; Graham 2001). Athletes, never
60	slow to adopt practices that might enhance performance, are well aware of caffeine's
61	ergogenic benefits, with approximately 75% of athletes consuming caffeine around
62	competitions (Aguilar-Navarro et al., 2019).
63	
64	Caffeine is also widely utilized by the general public, seeking to harness caffeine's
65	positive effects on alertness (Zwyghuizen-Doorenbos et al., 1990) and concentration (Haskell
66	et al., 2008), particularly when sleep deprived (Wesensten et al., 2005), as well as a method
67	to harness caffeine's purported health benefits, such as a decreased risk of Parkinson's
68	disease and type-2 diabetes (Grosso et al., 2017). The most common method of consuming
69	caffeine is via coffee (Frary et al., 2005), with an estimated 2.25 billion cups consumed
70	globally per day (Denoeud et al., 2014).
71	
72	Like the general public, athletes regularly consume caffeine in their daily lives
73	(Tunnicliffe et al., 2008). Alongside its direct, well-established ergogenic effects,
74	consumption of caffeine can also offset the fatigue associated with regular, frequent training
75	sessions (Doherty & Smith, 2005), mask training-induced soreness (Hurley et al., 2013;

76 Maridakis et al., 2007), or overcome sleep disruption caused by early morning training 77 sessions and jet lag (Cook et al., 2011; Arendt, 2009). Athletes have a variety of options 78 available when it comes to selecting how to obtain their caffeine dose. Whilst the majority of 79 caffeine research studies utilize caffeine anhydrous, typically in tablet or capsule form 80 (Wickham & Spriet, 2018), caffeine can also be ingested through caffeinated sports drinks 81 (Souza et al., 2017)—with or without additional carbohydrate—alongside caffeinated bars 82 (Hogervorst, 2008), gels (Cooper et al., 2014; Venier et al., 2019), and gum (Ryan et al., 83 2012), in addition to more experimental methods such as caffeinated sprays (De Pauw et al., 84 2017) and mouth rinses (Beaven et al., 2013). Caffeinated coffee represents an additional 85 caffeine consumption method for athletes, with research suggesting coffee is widely used by 86 athletes (Desbrow & Leveritt, 2006; Tunnicliffe et al., 2008), although it is not necessarily 87 clear whether they consume coffee as a deliberate pre-exercise ergogenic aid, or via social 88 habits.

89

90 Whilst coffee contains caffeine, it is also comprised of a variety of other components, 91 such as chlorogenic acids (de Paulis et al., 2002), ferulic acid and caffeic acid (Hall et al., 92 2015). These additional components may modify the ergogenic effects of caffeine contained 93 in coffee, either offering additional performance benefits, or reducing caffeine's 94 performance-enhancing effects. Given the well-established ergogenic effects of caffeine 95 (Grgic et al., 2019), and that coffee represents one of the most widely used methods of 96 caffeine ingestion in athletes and non-athletes (Tunnicliffe et al., 2008; Denoeud et al., 2014), 97 it is important to fully understand whether caffeinated coffee offers ergogenic benefits, and 98 whether these benefits are similar to an equivalent dose of isolated caffeine. A previous 99 review (Higgins et al., 2016) found that five of nine studies exploring the effects of 100 caffeinated coffee on endurance performance reported that coffee was ergogenic, suggesting

101 it may be a safe alternative to anhydrous caffeine as a performance-enhancer. This previous 102 review (Higgins et al., 2016) focused only on endurance performance; however, since its 103 publication, several other studies have been published, exploring the use of caffeinated coffee 104 on both endurance (Clarke et al., 2018; Margues et al., 2018) and high-intensity (Trexler et 105 al., 2016; Richardson & Clarke, 2016) performance. Furthermore, the authors of this previous 106 review included anhydrous caffeine powder dissolved into decaffeinated coffee within their 107 definition of caffeinated coffee. While this practice is valid in research settings, it likely does 108 not mirror how caffeine is utilized by active populations in the real world (i.e. these 109 individuals would likely consume either caffeinated coffee or a caffeinated supplement, being 110 unlikely to add supplemental caffeine to decaffeinated coffee). As such, the aim of this 111 review is to re-examine and critically review the evidence for the use of caffeinated coffee-112 defined as coffee in its caffeinated form, and not as decaffeinated coffee with additional 113 caffeine anhydrous—as an ergogenic aid, with specific reference to the practical implications 114 and limitations of utilizing coffee as a pre-exercise caffeine source, allowing athletes and practitioners to better weigh the evidence regarding the use of coffee within sporting 115 116 contexts.

117

118

2. Does caffeinated coffee provide an ergogenic benefit?

119

Before discussing the results of individual studies, some methodological aspects warrant a brief discussion. Decaffeinated coffee generally contains very low amounts of caffeine (up to 16 mg) that might not be ergogenic, therefore allowing a valid "placebo" comparison (McClusker et al., 2006). The process of decaffeinated coffee production involves treatment of the coffee beans, which results in the reduction of the caffeine content. This process alters the content of other nutritional properties in the coffee, such as

126 polyphenols (Silvarolla et al., 2004). This also needs to be considered from a study design 127 perspective, ideally, the only difference between caffeinated and decaffeinated coffee should 128 be the caffeine content. Studies exploring the ergogenic effects of coffee should employ three 129 conditions; caffeinated coffee, decaffeinated coffee, and a beverage that mimics the taste of 130 coffee but provides no caffeine or other nutritional properties. Of the discussed studies, only 131 a few (Clarke and colleagues 2016 and 2018; Hodgson et al., 2013) employed such a design. 132 Additionally, habitual caffeine use may blunt the expected ergogenic benefits of caffeine use 133 (Lara et al., 2019), although this is currently a contentious subject (Pickering & Kiely, 2019), 134 with a number of studies reporting no influence of habituation on caffeine's subsequent 135 ergogenic effect (e.g. Goncalves et al., 2017; Sabol et al., 2019). Researchers often control 136 for this by reporting the habitual caffeine use of their subjects (as detailed in the tables within 137 this manuscript), and by requiring a period of caffeine abstinence prior to experimental trials. 138

139 A number of studies, summarized in table 1, have demonstrated that caffeinated coffee can provide an ergogenic effect above decaffeinated coffee. Wiles and colleagues 140 141 (1992) demonstrated that 3g of instant caffeinated coffee, providing 150-200 mg of caffeine, 142 significantly enhanced 1500m run performance compared to decaffeinated coffee. Clarke and colleagues (2018) compared the ergogenic effects of caffeinated coffee (providing 143 144 approximately 3 mg/kg caffeine) with decaffeinated coffee and placebo on a competitive one-145 mile run, finding that race time was significantly faster in the caffeinated compared to 146 decaffeinated (+1.3%; -0.06s, 95% confidence interval [CI]: -.011 to -0.01 min:s.ms) and 147 placebo (+1.9%; -0.09, 95% CI: -0.15 to -0.03 min:s.ms) trials. No difference was observed 148 between decaffeinated coffee and placebo, even though there was a small favouring of the 149 decaffeinated coffee condition (+0.6%; -0.03: 95% CI: -0.09 to 0.03 min:s.ms). Hodgson and 150 colleagues (2013) reported that caffeinated coffee (5 mg/kg of caffeine) enhanced

151performance in a 45-minute time trial compared to decaffeinated coffee. Demura et al, (2007)152reported that caffeinated coffee ingestion (6 mg/kg caffeine; 800 to 1000 ml of fluid)153decreased RPE during a 60-minute submaximal cycle ergometer task performed at 60% of154maximum oxygen uptake (VO_{2max}) compared to decaffeinated coffee. However, by focusing155of changes in RPE, this study did not directly measure exercise performance, which156somewhat limits the practical value of these findings.

157

158 Not all studies support a performance-enhancing effect of caffeinated coffee. Graham 159 et al. (1998) reported no difference between caffeinated coffee (caffeine dose of 4.45 mg/kg) 160 and decaffeinated coffee in an endurance running task. Margues et al. (2018) found that 161 caffeinated coffee (providing 5.5 mg/kg of caffeine) did not enhance 800m time trial run 162 performance when compared to decaffeinated coffee. Lamina and Musa (2009) utilized caffeine doses of 5, 10 and 15 mg/kg, delivered through powdered coffee dissolved in 200 ml 163 164 of water, finding no ergogenic effect of any caffeine dose on 20m shuttle run performance. 165 This latter result is especially surprising, given the high caffeine doses utilized, and 166 performance tests that typically show enhancement with acute caffeine consumption 167 (Goldstein et al., 2010). However, from a practical standpoint the use of very high caffeine doses, such as 10 and 15 mg/kg, should be avoided given the reported side-effects of caffeine 168 169 ingestion, such as gastrointestinal distress, nervousness, jitters, and others, which appear to 170 increase with caffeine dose (Kaplan et al., 1997). Furthermore, such high acute intakes of 171 caffeine are above the European Food Safety Authority's general safe acute intake level of 172 200 mg (EFSA, 2015), and so are potentially unsafe.

173

174 Regarding resistance exercise, Richardson and Clarke (2016) reported no difference
175 between caffeinated coffee and decaffeinated coffee on a muscular endurance squat and

176	bench press task, whilst Clarke et al. (2016) reported no benefit of caffeinated coffee
177	compared to a placebo coffee alternative that contained no caffeine on repeated sprint
178	performance.
179	
180	INSERT TABLE 1 AROUND HERE
181	
182	In summary, when compared to decaffeinated coffee, there is some evidence that
183	caffeinated coffee, providing a typically ergogenic caffeine dose of 3-6 mg/kg, may enhance
184	aerobic endurance performance (Wiles et al., 1992; Hodgson et al., 2013; Clarke et al., 2016),
185	and can lower RPE during exercise (Demura et al., 2007). However, these findings are
186	equivocal, with some authors reporting no ergogenic effect of caffeinated compared to
187	decaffeinated coffee (Marques et al., 2018; Graham et al., 1998; Lamina & Musa 2009;
188	Church et al., 2015; Anderson et al., 2018). The limited research regarding resistance and
189	high-intensity exercise tentatively suggests no benefits to caffeinated coffee above
190	decaffeinated coffee (Richardson & Clarke, 2016; Clarke et al., 2016), but this area merits
191	further research.
192	
193	3. Is this ergogenic benefit similar to that of caffeine anhydrous?
194	
195	It appears that caffeinated coffee has the potential to exert ergogenic effects, at least
196	for endurance performance, even though the somewhat limited studies to date often provide
197	conflicting results. An important next step is to understand whether caffeinated coffee
198	provides an ergogenic effect similar in magnitude to that of caffeine anhydrous, requiring
199	direct comparison of caffeinated coffee and caffeine; this has been explored experimentally
200	in a number of trials, summarized in table 2. Graham and colleagues (1998) undertook a trial

201 in which nine trained subjects underwent five time-to-exhaustion treadmill trials at 85% of 202 VO_{2max}, comparing differences between placebo, caffeine capsules, caffeinated coffee, 203 decaffeinated coffee, and decaffeinated coffee with caffeine capsules, consumed ~60 minutes 204 prior to the exercise trial. The caffeine dose was standardised across trials to deliver 4.45 205 mg/kg of caffeine, with a total volume of liquid of 7.15 ml/kg. Despite similar changes in 206 plasma methylxanthines-downstream metabolites of caffeine-in all caffeinated trials, only 207 the caffeine capsule trial significantly improved performance. These results lead to the 208 conclusion that coffee is probably inferior to isolated caffeine as an ergogenic aid (Graham, 209 2001). This study included only nine participants, and has five repeated measures; as such, it 210 is very possible that it was statistically underpowered. Additionally, it needs to be highlighted 211 that Graham et al. (1998) used a time to exhaustion test, and these tests generally exhibit poor 212 test-retest reliability (test-retest coefficient of variation of > 10%) (Currell & Jeukendrup, 213 2006). These tests appear unsuitable when exploring the acute effects of supplements given 214 that the overall magnitude of acute improvements with most supplements-including 215 caffeine—is likely to be small to moderate. For example, the improvements in performance 216 following caffeine ingestion are generally in the range of 2% to 6% (Grgic et al., 2019); 217 utilizing tests with poor reliability may, therefore, lead to type II errors. Hodgson and 218 colleagues (2013) used a cycling time trial test, and these tests generally have a test-retest 219 variation of < 5%. The results of this study indicated that caffeine (5 mg/kg) and caffeinated 220 coffee (providing 5 mg/kg of caffeine) enhanced cycle time trial performance compared to 221 decaffeinated coffee and placebo to a similar extent, suggesting that coffee was as effective 222 as caffeine anhydrous in enhancing aerobic endurance performance.

223

224

INSERT TABLE 2 AROUND HERE

226 Other studies report no ergogenic effect of either caffeinated coffee or caffeine 227 anhydrous (3 mg/kg) on performance (Clarke et al., 2016), although these studies often 228 utilize high-intensity or resistance exercise, modalities in which the ergogenic effects of 229 caffeine are less pronounced (Grgic et al., 2019). For example, Trexler and colleagues (2016) 230 reported no beneficial effect of caffeinated coffee or caffeine, standardised to provide an 231 absolute dose of ~300 mg caffeine (3.8 mg/kg), on a number of resistance training measures 232 when compared to placebo, although both caffeinated coffee and caffeine maintained 233 repeated cycle ergometer sprint performance when compared to placebo. This study had a 234 between-group design, and, thus, the inter-individual variation in responses to caffeine 235 supplementation were not as well controlled as if the researchers had utilized a cross-over 236 design (Maclure, 1991). Clarke and colleagues (2016) reported no ergogenic effect of 3 237 mg/kg caffeine, or coffee providing 3 mg/kg caffeine, on power output or RPE across 18 x 4second cycle ergometer sprints. Richardson and Clarke (2016) reported that caffeinated 238 239 coffee enhanced muscular endurance performance compared to placebo, whilst caffeine alone 240 did not, although caffeine in combination with decaffeinated coffee did.

241

242 The results in this area are, therefore, inconsistent. Whilst Graham and colleagues (1998) reported caffeine offered enhanced ergogenic benefits compared to coffee in an 243 244 aerobic endurance task, conflicting findings were reported by Hodgson et al. (2013). This is 245 potentially due to the type of performance test utilized (as noted previously), or variation in the composition and preparation of the coffee solutions (Hodgson et al., 2013). Graham et al. 246 247 (1998) did not report the coffee brand utilized, limiting detailed between-study comparisons; 248 future studies should explicitly note the exact brands of coffee within their methodologies. In 249 terms of resistance and high-intensity exercise, it appears that, in general, caffeine and coffee 250 perform similarly, although the identified studies report mixed findings regarding the

ergogenicity of caffeine on this exercise type (Trexler et al., 2016; Richardson & Clarke,
2016; Clarke et al., 2016). Further research into the coffee versus caffeine conundrum is
therefore required, especially in light of findings suggesting differences in salivary caffeine
concentrations following ingestion of coffee or caffeine anhydrous (Liguori et al., 1997);
might these differences in absorption rates modify the performance-enhancing effects of each
caffeine modality?

- 257
- 258

4. Does decaffeinated coffee block caffeine's ergogenic effects?

259

260 There remains the possibility that other coffee constituents can modify caffeine's ergogenic effects. For example, 3,4-dicinnamoyl-1,5-quinides in coffee may raise adenosine 261 262 levels (de Paulis et al., 2002). This increase in adenosine levels could subsequently counteract the ergogenic effects of caffeine on exercise performance. Specifically, after 263 264 ingestion, caffeine binds to adenosine receptors, reduces perceived exertion, and ultimately enhances exercise performance (Graham, 2001). This effect of caffeine on adenosine 265 266 receptors is one of the primary mechanisms underpinning its ergogenic effects (Graham 267 2001). Indeed, in the study by Graham and colleagues (1998), caffeinated coffee, as well as caffeine capsules consumed alongside decaffeinated coffee, did not enhance endurance 268 performance versus placebo, whilst caffeine capsules consumed in isolation did-despite the 269 270 fact that plasma methylxanthine concentrations increased similarly in the coffee- and capsule-271 only trials.

272

Historically, researchers added caffeine anhydrous to decaffeinated coffee in caffeine ingestion trials, allowing them to utilize decaffeinated coffee as a placebo. As a result, there are a number of research studies, detailed in table 3, allowing us to explore this question. 276 Butts and Crowell (1985) reported that caffeine, when consumed with decaffeinated coffee, did not significantly improve endurance performance when compared to a decaffeinated 277 278 coffee only trial. However, the percentage improvement of 14% (+8.6 min) for females (with 279 an average caffeine dose of $\sim 5 \text{ mg/kg}$) and 3% (+2.2 min) for males (with an average caffeine dose of ~4 mg/kg) following caffeine ingestion are indicative of an effect, although this did 280 281 not reach statistical significance. Similar results have been reported by Rodrigues et al. 282 (1990). In this study, ingestion of 5 mg/kg caffeine did not affect total cycling time to 283 exhaustion; however, this study also included a small sample size of six participants.

284

285 However, contrasting findings were reported by McLellan and Bell (2004). Here, the 286 authors explored the impact of previous consumption of coffee, both caffeinated and 287 decaffeinated, on the effects of subsequent caffeine supplementation on exercise performance across a range of caffeine doses, ranging from 3 mg/kg to 7 mg/kg total caffeine intake. 288 289 Coffee was consumed approximately 30 minutes prior to the caffeine capsules, which in turn 290 were consumed approximately one hour prior to an exhaustive cycle ergometer trial. Time-to-291 exhaustion was significantly increased following caffeine capsule ingestion, regardless of 292 whether caffeinated or decaffeinated coffee was consumed beforehand. Trice and Haymes 293 (1995) explored the effects of 5 mg/kg caffeine, dissolved in decaffeinated coffee, compared 294 to decaffeinated coffee alone on intermittent cycling performance, finding that time to 295 exhaustion was significantly increased in the caffeine compared to decaffeinated coffee trial. 296 Similar results were reported by Costill et al. (1978), utilizing 330 mg (4.5 mg/kg) of 297 caffeine dissolved in decaffeinated coffee. Here, caffeine ingestion enhanced total cycling 298 time to exhaustion by approximately 15 minutes compared to decaffeinated coffee. 299 Additionally, Richardson and Clarke (2016) found that 5 mg/kg of caffeine, consumed in 300 combination with decaffeinated coffee, enhanced resistance exercise performance to a greater

301	extent than caffeine anhydrous (5 mg/kg) consumed in isolation. In this study, the mean
302	difference between the two conditions in the total number of repetitions was 3 (95% CI: 0.1
303	to 5.2). Such an increase in muscular endurance following acute caffeine ingestion is similar
304	to improvements noted following eight weeks of regimented resistance training (Mattocks et
305	al., 2017), highlighting the possible magnitude of caffeine's effects.
306	
307	INSERT TABLE 3 AROUND HERE
308	
309	At present, despite the results of Graham and colleagues (Graham et al., 1998) the
310	majority of results in this area suggest that co-ingestion of caffeine with decaffeinated coffee
311	does not limit the ergogenic effects of caffeine (Butts & Crowell, 1985; McLellan & Bell,
312	2004; Trice & Haymes, 1995; Costil et al., 1978), and may serve to enhance resistance
313	training performance to a greater extent than isolated caffeine (Trexler et al., 2016), although
314	this latter finding requires further research, especially in a cross-over type design.
315	
316	5. Practical Considerations
317	
318	As compared to caffeine anhydrous, coffee ingestion could provide similar ergogenic
319	effects (Hodgson et al., 2013). In order to exert these ergogenic effects, the caffeine content
320	likely needs to be within the commonly considered ergogenic range of 3-6 mg/kg (Goldstein
321	et al., 2010). This is illustrated by Hodgson and colleagues (Hodgson et al., 2013), in which
322	coffee was ergogenic at a caffeine dose of 5 mg/kg; here, this represented 600 ml of coffee, a
323	substantial amount of liquid to have to consume prior to exercise. This is also the case in
324	other studies; Graham and colleagues (1998) delivered 4.45 mg/kg caffeine through coffee,
325	requiring ~600 ml of fluid, and Demura et al. (2007) required 4-5 200ml cups of coffee to

326 deliver the required caffeine dose. These examples illustrate a practical issue surrounding 327 coffee's use as an ergogenic aid, specifically that it potentially requires a large volume of 328 liquid to be consumed, with an "average" cup of coffee containing approximately 100mg of 329 caffeine (Desbrow et al., 2007). Caffeine is most reliability shown to be ergogenic at doses of 330 between 3 – 6 mg/kg (Goldstein et al., 2010), meaning that, for a 70kg athlete, a minimum of 331 two cups of coffee are required to reliably elicit a performance-enhancing effect at this lower 332 threshold. Whilst caffeine can be ergogenic at lower doses (Spriet, 2014), there is 333 considerable variation between individuals when it comes to the optimal caffeine dose 334 (Pickering & Kiely, 2018), and aspects such as habitual caffeine use can further increase the 335 caffeine dose required (Pickering & Kiely, 2019), although this latter topic is still 336 controversial (Goncalves et al., 2017). Accordingly, for habitual caffeine users, caffeine 337 doses of 6 mg/kg might be required to elicit a performance benefit, which represents over four cups of coffee for a 70kg athlete, potentially comprising over a liter of fluid. 338 339 Consumption of such high amounts of fluid has the potential to lead to increased sensations 340 of fullness during exercise, increases in body weight—an important consideration for weight 341 class and weight-bearing sports-and may contribute to an increased risk of hyponatremia, 342 particularly in endurance athletes (Coyle, 2004). High fluid consumption (900 ml - similar to the volume utilized by Demura and colleagues) may also divert blood flow from the muscles 343 344 activated during exercise to the gastrointestinal system, which may subsequently hinder 345 running exercise performance (Backes & Fitzgerald, 2016). It is interesting to note that large 346 fluid intakes appear to hinder running but not cycling performance (Backes & Fitzgerald, 347 2016; Backx et al., 2003); this difference in exercise modes could be another explanation for the divergent results reported by Graham et al. (1998), who utilised a running test and 348 349 reported no ergogenic effects of coffee, and Hodgson et al. (2013), who employed a cycling 350 test and found coffee to be ergogenic.

352 A further complication regarding optimising the caffeine dose from coffee is the large 353 variability in caffeine concentrations not just between coffee brands, but within the same 354 brand over time (Desbrow et al., 2007; Desbrow et al., 2012; Desbrow et al., 2019). Desbrow 355 and colleagues (2007) reported the average caffeine concentrations of 97 espresso samples 356 collected across the Gold Coast, Australia. Whilst the mean caffeine dose per coffee was 106 357 mg per serving, it ranged from 25 to 214 mg (Desbrow et al., 2007). In a follow up study, it 358 was reported that coffees purchased at the same venue at different time points had highly 359 variable caffeine concentrations, in one case varying from 81 mg to 189 mg of caffeine in the 360 same product (Desbrow et al., 2012). At-home coffee making fairs no better, with a recent 361 study (Desbrow et al., 2019) reporting caffeine concentrations of Nespresso coffee pods 362 varying from 19 to 147 mg. Whilst this issue does not solely plague coffee (Desbrow et al., 2018), it increases the difficulty of accurate quantification of the caffeine dose ingested, 363 364 which may have important implications in the development of caffeine habituation (Pickering 365 & Kiely 2019), or the experience of negative side-effects, such as increased anxiety and 366 reduced sleep quality (Pickering & Kiely, 2018).

367

368 Additionally, coffee is often consumed hot, which may affect thermoregulatory control during exercise, modifying exercise capacity and performance (Wimer et al., 1997; 369 370 Mundel et al., 2006). As such, for athletes exercising in warm and/or humid temperatures, 371 coffee may limit exercise performance, although, to our knowledge, this has yet to be 372 explored experimentally, and any increase in core temperature may dissipate prior to the 373 onset of exercise. Furthermore, both caffeine and coffee have the potential to act as gastric 374 irritants (Boekema et al., 1999). The potential for gastric discomfort is potentially higher with 375 coffee ingestion, given the multi-ingredient nature of coffee. Accordingly, especially in

coffee-naïve individuals, coffee may increase feelings of discomfort during exercise. As with any nutritional intervention, the use of coffee as an ergogenic aid should be trialed in training or competitions of lesser importance, and, similar to the "training of the gut" concept with

379 carbohydrate ingestion (Jeukendrup, 2017), these issues could potentially be alleviated.

380

376

377

378

381

6. Areas for further research

382

383 Caffeine, and likely coffee, potentially exerts some of its ergogenic effects via 384 expectancy and placebo (Shabir et al., 2018), such that when individuals believe they have 385 consumed caffeine, and believe caffeine is ergogenic, their performance is often greater than if they believe they have not consumed caffeine (Saunders et al., 2017). As caffeine, ingested 386 387 via capsules or coffee, may exert negative, performance-limiting side effects such as increased anxiety (Childs et al., 2008), the use of placebos to exert performance benefits in 388 389 these cases may be advantageous, if not ethically challenging. Further research exploring the 390 expectancy effects of caffeine, potentially using decaffeinated coffee or a coffee-like scent 391 (Madzharov et al., 2018), may assist in bringing clarity to this area, particularly in situations 392 where caffeine ingestion may be difficult, such as in the later stages of a prolonged endurance 393 race.

394

Given the observations that lower doses of caffeine (i.e. <3 mg/kg) may be ergogenic for exercise performance (Lieberman et al., 1987; Spriet, 2014), more work is required to explore the minimal effective doses of both caffeine and caffeinated coffee. For example, if a caffeine dose of 2 mg/kg administered in the form of caffeinated coffee is ergogenic—and the research suggests it potentially is (Spriet, 2014)—it would require the ingestion of a much more reasonable volume of coffee (e.g. 1-2 espressos for a 70kg individual).

Future studies should also seek to explore the effects of cold brew or iced coffee compared to hot coffee on performance. This area might be relevant given the observations that cold water (4°C) ingestion, compared to water at room temperature (22°C), may result in different effects on bench press to muscle fatigue performance (Lafata et al., 2012). This could be especially important during exercise in hot temperatures, where ingestion of hot coffee may confer a performance limitation.

408

409 Additionally, a recent review (Loureiro et al., 2018) examined whether coffee 410 components, primarily caffeine, caffeic acid, cafestol, and chlorogenic acid, may exert 411 beneficial effects on muscle glycogen recovery post-exercise. Whilst the studies 412 underpinning this review were primarily conducted in vitro or in rats, this is an area worthy of potential exploration, particularly if coffee outperforms caffeine anhydrous in this regard. 413 414 However, a recent study (Nieman et al., 2018), in which participants were randomly assigned 415 to receive either a high chlorogenic acid coffee or placebo for two weeks reported no 416 beneficial effect of the coffee on post-exercise inflammation or oxidative stress, although 417 there were moderate improvements in mood.

418

Finally, compared to research on caffeine anhydrous, there is a relative dearth of studies exploring the efficacy of coffee as the method of caffeine ingestion within exercise contexts. If active individuals are utilizing coffee as a method of ingesting caffeine—and the research suggests they are (Desbrow & Leveritt, 2006; Tunnicliffe et al., 2008)—it is important that we better understand the ergogenic effects, and potential interactions, of coffee 424 on performance.

7. Conclusion

427

7. Conciu

428 In summary, based on a small number of studies, it appears that:

- 429
- Caffeinated coffee has the potential to offer ergogenic effects above placebo or
 decaffeinated coffee, at least in terms of aerobic exercise (Wiles et al., 1992; Hodgson
 et al., 2013; Graham et al., 1998).
- 2. There is limited evidence that caffeinated coffee offers a similar magnitude of
 ergogenic effect when compared to caffeine anhydrous (Hodgson et al., 2013),
 provided the caffeine doses are matched. However, the studies here are both
 conflicting and of low sample size, and therefore caution should be exercised with the
 interpretation of findings.
- 438
 3. Prior or co-ingestion of decaffeinated coffee along with caffeine anhydrous does not
 439 appear to blunt caffeine's ergogenic effects (McLellan & Bell, 2004; Trice & Haynes,
 440 1995), although, from a practical standpoint, it is difficult to identify a situation in
 441 which this ingestion type would occur.
- 442

At present it appears that caffeinated coffee ingestion, approximately 60 minutes prior to exercise and delivering a typically ergogenic caffeine dose (i.e. 3-6 mg/kg), represents a potential method of enhancing aerobic endurance performance (Higgins et al., 2016;

Hodgson et al., 2013), with some tentative positive findings for resistance and high-intensity exercise activities (Trexler et al., 2016; Richardson et al., 2016). However, the low number of overall studies, along with both low subject numbers and opposing findings, limit the strength of this conclusion. Additionally, coffee represents a number of practical hurdles regarding its use pre-exercise, including the ingestion of potentially high volumes of (often hot) liquid, or

451	highly concentrated brews which may irritate the gastrointestinal tract. Accurately
452	quantifying the caffeine dose from coffee is also difficult (Desbrow et al., 2007; Desbrow et
453	al., 2012; Desbrow et al., 2019), increasing the potential for negative side effects or a lack of
454	ergogenic effect due to under-dosing with caffeine. Finally, there is the possibility that other
455	constituents in coffee modify both performance and recovery, although this is poorly
456	understood at this point. Accordingly, at present, for athletes who wish to do so, coffee
457	appears to represent a useful method of caffeine ingestion around regular training, especially
458	if they are habitual users of caffeine; for most individuals, consumption of \sim 3 mg/kg of
459	caffeine (equivalent to approximately 2-3 espressos for a 60-70 kg individual) would likely
460	be appropriate. However, the utilization of more controlled caffeine doses, requiring less
461	liquid or concentration, may be advantageous around competitions.
462	
462 463	Novelty Statement & Practical Applications
	Novelty Statement & Practical Applications
463	Novelty Statement & Practical Applications The findings of this review demonstrate that, whilst coffee, may, in some cases, offer
463 464	
463 464 465	The findings of this review demonstrate that, whilst coffee, may, in some cases, offer
463 464 465 466	The findings of this review demonstrate that, whilst coffee, may, in some cases, offer similar ergogenic benefits to caffeine anhydrous (provided the caffeine dose is matched),
463 464 465 466 467	The findings of this review demonstrate that, whilst coffee, may, in some cases, offer similar ergogenic benefits to caffeine anhydrous (provided the caffeine dose is matched), these findings are based on a limited number of studies, with a large variability in findings. It
463 464 465 466 467 468	The findings of this review demonstrate that, whilst coffee, may, in some cases, offer similar ergogenic benefits to caffeine anhydrous (provided the caffeine dose is matched), these findings are based on a limited number of studies, with a large variability in findings. It also raises a number of practical issues regarding the use of coffee as a means of obtaining a
 463 464 465 466 467 468 469 	The findings of this review demonstrate that, whilst coffee, may, in some cases, offer similar ergogenic benefits to caffeine anhydrous (provided the caffeine dose is matched), these findings are based on a limited number of studies, with a large variability in findings. It also raises a number of practical issues regarding the use of coffee as a means of obtaining a pre-exercise dose of caffeine, including the ingestion of large amounts of liquid, variation in
 463 464 465 466 467 468 469 470 	The findings of this review demonstrate that, whilst coffee, may, in some cases, offer similar ergogenic benefits to caffeine anhydrous (provided the caffeine dose is matched), these findings are based on a limited number of studies, with a large variability in findings. It also raises a number of practical issues regarding the use of coffee as a means of obtaining a pre-exercise dose of caffeine, including the ingestion of large amounts of liquid, variation in caffeine dose across brands, and within the same brand across time, and the consumption of a

475 Acknowledgements

476	Author Contributions
477	CP conceived of the idea underlying this manuscript, and authored the first draft. JG provided
478	significant edits and writing assistance. Both authors approved the final manuscript prior to
479	submission.
480	Conflicts of Interest
481	Craig Pickering and Jozo Grgic declare they have no conflicts of interest relevant to the
482	content of this article.
483	
484	
485	References:
486	
487	Aguilar-Navarro, M., Muñoz, G., Salinero, J. J., Muñoz-Guerra, J., Fernández-Álvarez, M.,
488	Plata, M. D., & Del Coso, J. (2019). Urine caffeine concentration in doping control samples
489	from 2004 to 2015. Nutrients, 11(2), 286.
490	
491	Anderson, D. E., LeGrand, S. E, & McCart, R. D. (2018). Effect of caffeine on sprint cycling
492	in experienced cyclists. Journal of Strength and Conditioning Research, 32(8), 2221-6.
493	
494	Arendt, J. (2009). Managing jet lag: Some of the problems and possible new solutions. Sleep
495	<i>Medicine Reviews</i> , 13(4), 249-56.
496	
497	Backes, T. P., & Fitzgerald, K. (2016). Fluid consumption, exercise, and cognitive
498	performance. <i>Biology of Sport</i> , ;33(3), 291.
499	

- 500 Backx, K., van Someren, K. A., & Palmer, G. S. (2003). One hour cycling performance is not
- 501 affected by ingested fluid volume. *International Journal of Sport Nutrition and Exercise*
- 502 *Metabolism*, 13(3), 333-42.
- 503
- 504 Beaven, C. M., Maulder, P., Pooley, A., Kilduff, L., & Cook, C. (2013). Effects of caffeine
- 505 and carbohydrate mouth rinses on repeated sprint performance. Applied Physiology,
- 506 Nutrition, and Metabolism, 38(6), 633-7.
- 507
- 508 Boekema, J., Samsom, M., van Berge Henegouwen, G. P., & Smout, P. (1999). Coffee and
- 509 gastrointestinal function: facts and fiction: a review. *Scandinavian Journal of*
- 510 *Gastroenterology*, 34(230), 35-9.
- 511
- 512 Butts, N. K., & Crowell, D. (1985). Effect of caffeine ingestion on cardiorespiratory
- 513 endurance in men and women. *Research Quarterly in Exercise and Sport*, 56(4), 301-5.
- 514
- 515 Childs, E., Hohoff, C., Deckert, J., Xu, K., Badner, J., & De Wit, H. (2008). Association
- 516 between ADORA2A and DRD2 polymorphisms and caffeine-induced anxiety.
- 517 *Neuropsychopharmacology*, 33(12), 2791.
- 518
- 519 Church, D. D., Hoffman, J. R., LaMonica, M. B., Riffe, J. J., Hoffman, M. W., Baker, K. M.,
- 520 Varanoske, A. N., Wells, A. J., Fukuda, D. H., & Stout, J. R. (2015). The effect of an acute
- 521 ingestion of Turkish coffee on reaction time and time trial performance. *The Journal of the*
- 522 International Society of Sports Nutrition, 12(1), 37.
- 523

- 524 Clarke, N., Baxter, H., Fajemilua, E., Jones, V., Oxford, S., Richardson, D., Wyatt, C., &
- Mundy, P. (2016). Coffee and caffeine ingestion have little effect on repeated sprint cycling
 in relatively untrained males. *Sports*, 4(3),45.

528 Clarke, N. D., Richardson, D. L., Thie, J., & Taylor, R. (2018). Coffee ingestion enhances 1529 mile running race performance. *International Journal of Sports Physiology and Performance*,
530 13(6), 789-94.

531

- 532 Cook, C. J., Crewther, B. T., Kilduff, L. P., Drawer, S., & Gaviglio, C. M. (2011). Skill
- 533 execution and sleep deprivation: effects of acute caffeine or creatine supplementation-a
- 534 randomized placebo-controlled trial. Journal of the International Society of Sports Nutrition,

535 8(1), 2.

- 536
- 537 Cooper, R., Naclerio, F., Allgrove, J., & Larumbe-Zabala, E. (2014). Effects of a
- 538 carbohydrate and caffeine gel on intermittent sprint performance in recreationally trained
- 539 males. European Journal of Sport Science, 14(4), 353-61.

540

- 541 Costill, D. L., Dalsky, G. P., & Fink, W. J. (1978). Effects of caffeine ingestion on
- 542 metabolism and exercise performance. *Medicine and Science in Sports*, 10(3), 155-8.
- 543
- 544 Coyle, E. F. (2004). Fluid and fuel intake during exercise. *Journal of Sports Sciences*, 22(1),
 545 39-55.

- 547 Currell, K., & Jeukendrup, A. E. (2008). Validity, reliability and sensitivity of measures of
- 548 sporting performance. *Sports Medicine*, 38(4), 297-316.

550	de Paulis, T., Schmidt, D. E., Bruchey, A. K., Kirby, M. T., McDonald, M. P., Commers, P.,
551	Lovinger, D. M., & Martin, P. R. (2002). Dicinnamoylquinides in roasted coffee inhibit the
552	human adenosine transporter. European Journal of Pharmacology, 442(3), 215-23.
553	
554	De Pauw, K., Roelands, B., Van Cutsem, J., Marusic, U., Torbeyns, T., & Meeusen, R.
555	(2017). Electro-physiological changes in the brain induced by caffeine or glucose nasal spray.
556	Psychopharmacology, 234(1), 53-62.
557	
558	Demura, S., Yamada, T., & Terasawa, N. (2007). Effect of coffee ingestion on physiological
559	responses and ratings of perceived exertion during submaximal endurance exercise.
560	Perceptual and Motor Skills, 105(3), 1109-16.
561	
562	Denoeud, F., Carretero-Paulet, L., Dereeper, A., Droc, G., Guyot, R., Pietrella, M., Zheng,
563	C., Alberti, A., Anthony, F., Aprea, G., & Aury, J. M. (2014). The coffee genome provides
564	insight into the convergent evolution of caffeine biosynthesis. Science, 345(6201), 1181-4.
565	
566	Desbrow, B., & Leveritt, M. (2006). Awareness and use of caffeine by athletes competing at
567	the 2005 Ironman Triathlon World Championships. International Journal of Sport Nutrition
568	and Exercise Metabolism, 16(5), 545-58.
569	
570	Desbrow, B., Hughes, R., Leveritt, M., & Scheelings, P. (2007). An examination of consumer
571	exposure to caffeine from retail coffee outlets. Food and Chemical Toxicology, 45(9), 1588-
572	92.
573	

574	Desbrow, B., Henry, M., & Scheelings, P. (2012). An examination of consumer exposure to
575	caffeine from commercial coffee and coffee-flavoured milk. Journal of Food Composition
576	and Analysis, 28(2), 114-8.

- 577
- 578 Desbrow, B., Hall, S., O'Connor, H., Slater, G., Barnes, K., & Grant, G. (2018). Caffeine
- 579 content of pre-workout supplements commonly used by Australian consumers. *Drug Testing*
- 580 and Analysis, doi: 10.1002/dta.2501
- 581
- 582 Desbrow, B., Hall, S., & Irwin, C. (2019). Caffeine content of Nespresso® pod coffee.
- 583 *Nutrition and Health*, <u>https://doi.org/10.1177/0260106018810941</u>
- 584
- Doherty, M., & Smith, P. M. (2004). Effects of caffeine ingestion on exercise testing: a metaanalysis. *International Journal of Sports Nutrition and Exercise Metabolism*, 14(6), 626-46.
- 587
- 588 Doherty, M., & Smith, P. M. (2005). Effects of caffeine ingestion on rating of perceived
- 589 exertion during and after exercise: a meta-analysis. Scandinavian Journal of Medicine and
- 590 Science in Sports, 15(2), 69-78.
- 591
- 592 EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). (2015) Scientific opinion
- 593 on the safety of caffeine. *EFSA Journal*, 13(5), 4102.
- 594 Frary, C. D., Johnson, R. K., & Wang, M. Q. (2005). Food sources and intakes of caffeine in
- 595 the diets of persons in the United States. Journal of the American Dietetic Association,
- 596 105(1), 110-3.
- 597

598	Goldstein, E. R., Ziegenfuss, T., Kalman, D., Kreider, R., Campbell, B., Wilborn, C., Taylor,
599	L., Willoughby, D., Stout, J., Graves, B. S., & Wildman, R. (2010). International society of
600	sports nutrition position stand: caffeine and performance. The Journal of the International
601	Society of Sports Nutrition, 7(1), 5.
602	
603	Gonçalves, L.D., Painelli, V.D., Yamaguchi, G., Oliveira, L.F., Saunders, B., da Silva, R.P.,
604	et al. (2017) Dispelling the myth that habitual caffeine consumption influences the
605	performance response to acute caffeine supplementation. The Journal of Applied Physiology,
606	123(1), 213-20.
607	
608	Graham, T. E., Hibbert, E., & Sathasivam, P. (1998). Metabolic and exercise endurance
609	effects of coffee and caffeine ingestion. Journal of Applied Physiology, 85(3), 883-9.
610	
611	Graham, T.E. (2001). Caffeine and exercise: metabolism, endurance and performance. Sports
612	Medicine, 31(11), 785-807.
613	
614 615 616	Grgic, J., & Pickering, C. (2019). The effects of caffeine ingestion on isokinetic muscular strength: A meta-analysis. <i>Journal of Science and Medicine in Sport</i> , 22(3), 353-360
617	Grgic, J., Trexler, E. T., Lazinica, B., & Pedisic, Z. (2018). Effects of caffeine intake on
618	muscle strength and power: a systematic review and meta-analysis. Journal of the
619	International Society of Sports Nutrition, 15(1), 11
620	
621	Grgic, J., Grgic, I., Pickering, C., Schoenfeld, B., Bishop, D., & Pedisic, Z. (2019). Wake up
622	and smell the coffee: Caffeine supplementation and exercise performance—an umbrella

- 623 review of 21 published meta-analyses. British Journal of Sports Medicine. doi:
- 624 10.1136/bjsports-2018-100278.
- 625
- 626 Grosso, G., Godos, J., Galvano, F., & Giovannucci, E. L. (2017). Coffee, caffeine, and health
- 627 outcomes: an umbrella review. *Annual Review of Nutrition*, 37, 131-56.
- 628
- Hall, S., Desbrow, B., Anoopkumar-Dukie, S., Davey, A. K., Arora, D., McDermott, C.,
- 630 Schubert, M. M., Perkins, A. V., Kiefel, M. J., & Grant, G. D. (2015). A review of the
- 631 bioactivity of coffee, caffeine and key coffee constituents on inflammatory responses linked
- 632 to depression. *Food Research International*, 76, 626-36.
- 633
- Haskell, C. F., Kennedy, D. O., Milne, A. L., Wesnes, K. A., & Scholey, A. B. (2008). The
- 635 effects of L-theanine, caffeine and their combination on cognition and mood. *Biological*
- 636 *Psychology*, 77(2), 113-22.
- 637
- Higgins, S., Straight, C. R., & Lewis, R. D. (2016). The effects of pre-exercise caffeinated
- 639 coffee ingestion on endurance performance: an evidence-based review. *International Journal*
- 640 *of Sport Nutrition and Exercise Metabolism*, 26(3), 221-39.
- 641
- 642 Hodgson, A. B., Randell, R. K., & Jeukendrup, A.E. (2013). The metabolic and performance
- 643 effects of caffeine compared to coffee during endurance exercise. *PloS One*, 8(4), e59561.
- 644
- 645 Hogervorst, E. (2008). Caffeine improves physical and cognitive performance during
- 646 exhaustive exercise. *Medicine and Science in Sports and Exercise*, 40(10), 1841-51.
- 647

648	Hurley, C. F., Hatfield, D. L., & Riebe, D. A. (2013). The effect of caffeine ingestion on
649	delayed onset muscle soreness. Journal of Strength and Conditioning Research, 27(11),
650	3101-9.
651	
652	Jeukendrup, A. E. (2017). Training the gut for athletes. Sports Medicine, 47(1), 101-110.
653	
654	Kaplan, G. B., Greenblatt, D. J., Ehrenberg, B. L., Goddard, J. E., Cotreau, M. M., Harmatz,

655 J. S., & Shader, R. I. (1997). Dose-dependent pharmacokinetics and psychomotor effects of

656 caffeine in humans. The Journal of Clinical Pharmacology, 37(8), 693-703.

657

Lafata, D., Carlson-Phillips, A., Sims, S. T., & Russell, E. M. (2012). The effect of a cold 658

659 beverage during an exercise session combining both strength and energy systems

660 development training on core temperature and markers of performance. Journal of the

661 International Society of Sports Nutrition, 9(1), 44.

662

Lamina, S., & Musa, D. I. (2009). Ergogenic effect of varied doses of coffee-caffeine on 663

664 maximal aerobic power of young African subjects. African Health Sciences, 9(4), 270-4 665

Lara, B., Ruiz-Moreno, C., Salinero, J. J., & Del Coso, J. (2019). Time course of tolerance to 666 667 the performance benefits of caffeine. PLoS One, 14(1), e0210275.

668

669 Lieberman, H. R., Wurtman, R. J., Emde, G. G., Roberts, C., & Coviella, I. L. (1987). The

670 effects of low doses of caffeine on human performance and mood. *Psychopharmacology*,

671 92(3), 308-12.

- 673 Liguori, A., Hughes, J. R., Grass, J. A. (1997). Absorption and subjective effects of caffeine
- 674 from coffee, cola and capsules. *Pharmacology Biochemistry and Behavior*, 58(3), 721-6.675
- 676 Loureiro, L. M., Reis, C. E., & da Costa, T. H. (2018). Effects of coffee components on
- 677 muscle glycogen recovery: a systematic review. International Journal of Sport Nutrition and
- 678 *Exercise Metabolism*, 28(3), 284-93.
- 679
- 680 Maclure, M. (1991). The case-crossover design: a method for studying transient effects on
- the risk of acute events. *The American Journal of Epidemiology*, 133(2), 144-53.
- 682
- Madzharov, A., Ye, N., Morrin, M., & Block, L. (2018). The impact of coffee-like scent on
 expectations and performance. *Journal of Environmental Psychology*, 57, 83-6.
- 685
- 686 Maridakis, V., O'Connor, P. J., Dudley, G. A., & McCully, K. K. (2007). Caffeine attenuates
- delayed-onset muscle pain and force loss following eccentric exercise. *The Journal of Pain*,
 8(3), 237-43.
- 689
- 690 Marques, A., Jesus, A., Giglio, B., Marini, A., Lobo, P., Mota, J., & Pimental, G. (2018).
- 691 Acute caffeinated coffee consumption does not improve time trial performance in an 800-m
- run: a randomized, double-blind, crossover, placebo-controlled study. *Nutrients*, 10(6), 657.
- 693
- 694 Mattocks, K. T., Buckner, S. L., Jessee, M. B., Dankel, S. J., Mouser, J. G., & Loenneke, J. P.
- 695 (2017). Practicing the test produces strength equivalent to higher volume training. *Medicine*
- 696 & Science in Sports & Exercise, 49(9), 1945-54.
- 697

- 698 McCusker, R. R., Fuehrlein, B., Goldberger, B. A., Gold, M. S., & Cone, E. J. (2006).
- 699 Caffeine content of decaffeinated coffee. *Journal of Analytical Toxicology*, 30(8), 611-3.700
- 701 McLellan, T. M., & Bell, D. G. (2004). The impact of prior coffee consumption on the
- subsequent ergogenic effect of anhydrous caffeine. International Journal of Sport Nutrition
- 703 *and Exercise Metabolism*, 14(6), 698-708.
- 704
- 705 Mündel, T., King, J., Collacott, E., & Jones, D. A. (2006). Drink temperature influences fluid
- intake and endurance capacity in men during exercise in a hot, dry environment.
- 707 *Experimental Physiology*, 91(5), 925-33.
- 708
- Nieman, D. C., Goodman, C. L., Capps, C. R., Shue, Z. L., & Arnot, R. (2018). Influence of
- 710 2-weeks ingestion of high chlorogenic acid coffee on mood state, performance, and
- 711 postexercise inflammation and oxidative stress: a randomized, placebo-controlled trial.
- 712 International Journal of Sport Nutrition and Exercise Metabolism, 28(1), 55-65.
- 713
- 714 Pickering, C., & Kiely, J. (2018). Are the current guidelines on caffeine use in sport optimal
- 715 for everyone? Inter-individual variation in caffeine ergogenicity, and a move towards
- personalised sports nutrition. *Sports Medicine*, 48(1), 7-16.
- 717
- Pickering, C., & Kiely, J. (2019). What should we do about habitual caffeine use in athletes? *Sports Medicine*, 49(6), 833-842.
- 720

/21	Polito, M. D., Souza, D. B., Casonatto, J., & Farinatti, P. (2016). Acute effect of caffeine
722	consumption on isotonic muscular strength and endurance: a systematic review and meta-
723	analysis. Science in Sports, 31(3), 119-28.
724	
725	Richardson, D. L., & Clarke, N.D. (2016) Effect of coffee and caffeine ingestion on

resistance exercise performance. *Journal of Strength and Conditioning Research*, 30(10),
2892-900.

728

- 729 Rodrigues, L. O., Russo, A. K., Silva, A. C., Picarro, I. C., Silva, F. R., Zogaib, P. S., &
- 730 Soares, D. D. (1990). Effects of caffeine on the rate of perceived exertion. Brazilian Journal
- 731 of Medical and Biological Research, 23(10), 965-8.
- 732
- 733 Ryan, E. J., Kim, C. H., Muller, M. D., Bellar, D. M., Barkley, J. E., Bliss, M. V., Jankowski-
- 734 Wilkinson, A., Russell, M., Otterstetter, R., Macander, D., & Glickman, E. (2012). Low-dose
- 735 caffeine administered in chewing gum does not enhance cycling to exhaustion. Journal of
- 736 Strength and Conditioning Research, 26(3), 844-50.
- 737
- 738 Saunders, B., de Oliveira, L. F., da Silva, R. P., de Salles Painelli, V., Gonçalves, L. S.,
- 739 Yamaguchi, G., Mutti, T., Maciel, E., Roschel, H., Artioli, G. G., & Gualano, B. (2017).
- 740 Placebo in sports nutrition: a proof-of-principle study involving caffeine supplementation.
- 741 Scandinavian Journal of Medicine and Science in Sports, 27(11), 1240-7.

742

- 743 Shabir, A., Hooton, A., Tallis, J., & Higgins, M. (2018). The influence of caffeine
- respectancies on sport, exercise, and cognitive performance. *Nutrients*, 10(10), 1528.
- 745

- Silvarolla, M. B., Mazzafera, P., & Fazuoli, L. C. (2004). Plant biochemistry: a naturally
 decaffeinated arabica coffee. *Nature*, 429(6994), 826.
- 748
- Spriet, L. L. (2014). Exercise and sport performance with low doses of caffeine. *Sports Medicine*, 44(2), 175-84.
- 751
- Southward, K., Rutherfurd-Markwick, K. J., & Ali, A. (2018). The effect of acute caffeine
 ingestion on endurance performance: a systematic review and meta–analysis. *Sports Medicine*, 48(8), 1913-28
- 755
- Souza, D. B., Del Coso, J., Casonatto, J., & Polito, M. D. (2017). Acute effects of caffeinecontaining energy drinks on physical performance: a systematic review and meta-analysis. *European Journal of Nutrition*, 56(1), 13-27.
- 759
- 760 Trexler, E. T., Smith-Ryan, A. E., Roelofs, E. J., Hirsch, K. R., & Mock, M. G. (2016).
- 761 Effects of coffee and caffeine anhydrous on strength and sprint performance. *European*762 *Journal of Sport Science*, 16(6), 702-10.
- 763
- Trice, I., & Haymes, E. M. (1995). Effects of caffeine ingestion on exercise-induced change
 during high-intensity intermittent exercise. *International Journal of Sport Nutrition*, 5(1), 3744.
- 767
- 768 Tunnicliffe, J. M., Erdman, K. A., Reimer, R. A., Lun, V., & Shearer, J. (2008). Consumption
- 769 of dietary caffeine and coffee in physically active populations: physiological interactions.
- 770 *Applied Physiology, Nutrition, and Metabolism*, 33(6),1301-10.

772	Venier, S., Grgic, J., & Mikulic, P. (2019). Caffeinated gel ingestion enhances jump
773	performance, muscle strength, and power in trained men. Nutrients, 11(4) pii: E937.
774	
775	Wesensten, N. J., Killgore, W. D., & Balkin, T. J. (2005). Performance and alertness effects
776	of caffeine, dextroamphetamine, and modafinil during sleep deprivation. Journal of Sleep
777	Research, 14(3), 255-66.
778	
779	Wickham, K. A., & Spriet, L. L. (2018). Administration of caffeine in alternate forms. Sports
780	Medicine, 48(S1), 79-91.
781	
782	Wiles, J. D., Bird, S. R., Hopkins, J., & Riley, M. (1992). Effect of caffeinated coffee on
783	running speed, respiratory factors, blood lactate and perceived exertion during 1500-m
784	treadmill running. British Journal of Sports Medicine, 26(2), 116-20.
785	
786	Wimer, G. S., Lamb, D. R., Sherman, W. M., & Swanson, S. C. (1997). Temperature of
787	ingested water and thermoregulation during moderate-intensity exercise. Canadian Journal
788	of Applied Physiology, 22(5), 479-93.
789	
790	Zwyghuizen-Doorenbos, A., Roehrs, T. A., Lipschutz, L., Timms, V., & Roth, T. (1990).
791	Effects of caffeine on alertness. Psychopharmacology, 100(1), 36-9.
792	
793 794 795 796 797 798 799	

Study	Subjects	Habitual Caffeine Intake	Experimental Conditions	Coffee Brand	Performance Test	Outcome	Raw Performance Data
Anderson et al. (2018)	9 (7 male) experienced cyclists	316 ± 98 mg/day	Caffeinated coffee (6 mg/kg caffeine) compared to decaffeinated coffee	Starbucks VIA Ready Brew Italian Roast	30-second Wingate test	No significant effect of caffeinated coffee on peak power, mean power, and fatigue index.	Peak power (W)Caffeinated coffee: 942 ± 174 Decaffeinated coffee: 923 ± 168 Mean power (W)Caffeinated coffee: 754 ± 150 Decaffeinated coffee: 755 ± 156
Demura et al. (2007)	10 healthy young adults	Not presented	Caffeinated coffee (6 mg/kg caffeine) compared to decaffeinated coffee	Not specified	60 minutes cycle ergometer sub-maximal exercise @ 60% VO _{2max}	RPE was lower in caffeinated vs decaffeinated coffee.	N/A
Wiles et al. (1992)	18 male athletes	Not presented	3g instant coffee (~150-200mg caffeine) vs 3g decaffeinated instant coffee	Not specified	1500m time trial treadmill run	Caffeinated coffee significantly improved performance compared to decaffeinated coffee	Time to run 1500m(sec)Caffeinated coffee: 286 ± 32 Decaffeinated coffee: 290 ± 33
Wiles et al. (1992)	10 male athletes	Not presented	3g instant coffee (~150-200mg caffeine) vs 3g	Not specified	1100m high intensity run, with 400m	Caffeinated coffee significantly (p < 0.05)	Speed of final min (km/h) Caffeinated coffee: 24 ± 2

			decaffeinated instant coffee		"finishing burst"	improved performance compared to decaffeinated coffee	Decaffeinated coffee: 23 ± 2
Wiles et al. (1992)	6 male middle- distance athletes	Not presented	3g instant coffee (~150-200mg caffeine) vs 3g decaffeinated instant coffee	Not specified	1500m high intensity run at predetermined speed	Caffeinated coffee significantly (p < 0.025) improved performance compared to decaffeinated coffee	N/A
Clarke et al. (2018)	13 trained middle-distance runners	171 ± 250 mg/day	0.09 g/kg coffee (~3 mg/kg caffeine), decaffeinated coffee, or placebo	Nescafé Original, Nestle	Competitive one-mile run	Race time was significantly faster in the caffeinated vs decaffeinated ($p = 0.018$) and placebo ($p = 0.006$) trials.	Race completion time (min:s.ms) Caffeinated coffee: $04:35:37 \pm 00:10:51$ Decaffeinated coffee: $04:39:14 \pm 00:11:21$ Placebo: $04:41:00 \pm 00:09:57$
Marques et al. (2018)	12 well-trained adult males	Average intake of 91 mg/day	Caffeinated coffee (5.5 mg/kg caffeine) vs decaffeinated coffee	Nescafé, Nestlé.	800m running time trial	No difference in time trial performance between treatments.	Time trialperformance (min)Caffeinated coffee: 2.39 ± 0.09 Decaffeinated coffee: 2.38 ± 0.10
Lamina and Musa (2009)	20 male young adults	Not presented	Caffeinated coffee (5, 10 and 15 mg/kg caffeine)	Capra Nescafe	20-meter shuttle run test	No significant effect of caffeine on performance	Not presented

			compared to placebo				
Church et al. (2015)	Twenty subjects (10 females)	277 ± 183 mg	Turkish coffee (providing 3 mg/kg caffeine) or decaffeinated coffee	Strauss Coffee	5km running time trial, reaction to visual stimuli tests, and object tracking	Upper body reaction performance was significantly higher in the caffeinated vs decaffeinated coffee trials. No differences were reported in other performance tests.	Time trial performance (seconds) Caffeinated coffee: 1685 ± 217 Decaffeinated coffee: 1717 ± 256
Graham et al. (1998)	9 (8 male) young adult (21-47 y) trained endurance runners	One participant with no caffeine intake, two "light" users (<100 mg/day) and the reaming were "moderate" users (<500 mg/day)	4.45 mg/kg, as either caffeine capsules, caffeinated coffee, or decaffeinated coffee + caffeine	Not specified	5 treadmill trials to exhaustion @ 85% VO _{2max}	Caffeine capsule ingested significantly enhanced endurance performance compared to other trials.	Total running time (min) Decaffeinated coffee: 34 ± 12 Decaffeinated coffee + caffeine: 34 ± 11 Caffeinated coffee: 34 ± 12 Placebo: 30 ± 12 Caffeine: 40 ± 12
Richardson &	9 resistance	$241 \pm 122 \text{ mg}$	Caffeinated coffee	Nescafé	Squat and	Caffeinated	Bench press
Clarke (2016)	trained males		(0.15 g/kg; ~5 mg/kg caffeine),	Original coffee	bench press repetitions to	coffee enhanced performance	(repetitions)

			caffeine (5 mg/kg), caffeine (5 mg/kg) + decaffeinated coffee, and decaffeinated coffee		failure @ 60% 1RM	compared to placebo, but not compared to decaffeinated coffee. Decaffeinated coffee and caffeine consumed in combination significantly enhanced performance compared to decaffeinated coffee, placebo, and caffeine	Caffeinated coffee: 13 ± 2 Caffeine: 13 ± 2 Decaffeinated coffee + caffeine: 12 ± 3 Decaffeinated coffee: 12 ± 2 Placebo: 12 ± 2 Squat (repetitions) Caffeinated coffee: 17 ± 5 Caffeine: 15 ± 5 Decaffeinated coffee + caffeine: 18 ± 5 Decaffeinated coffee: 14 ± 5 Placebo: 13 ± 4
Hodgson et al. (2013)	8 trained male cyclists/triathletes	≤300 mg	Caffeine (5 mg/kg), compared to caffeinated coffee (providing 5 mg/kg caffeine), decaffeinated coffee, and placebo.	Nescafé Original coffee	30 minutes steady state cycling, followed by 45-minute time trial	alone. Performance in the time trial was significantly faster for both caffeine and caffeinated coffee trials compared to decaffeinated coffee and placebo, with no real difference	Time trial finishingtime (min)Caffeine: 38 ± 1 Caffeinated coffee: 38 ± 2 Decaffeinated coffee: 40 ± 2 Placebo: 40 ± 1 Mean power output(W)Caffeine: 294 ± 17 Caffeinated coffee: 291 ± 20

						between the two.	Decaffeinated coffee: 276 ± 20
Clarke et al. (2016)	12 recreationally active males	Not presented	Caffeine (3 mg/kg) compared to coffee (providing 3 mg/kg caffeine), placebo, and control	Nescafé Original coffee	18 x 4-second cycle ergometer sprints	No significant differences in peak or mean power output, or RPE, between all experimental conditions.	Placebo: 277 ± 11 Peak power (W)Caffeinated coffee: 949 ± 174 Placebo: 971 ± 149 Caffeine: 949 ± 199 Control: 975 ± 170 Mean power (W)Caffeinated coffee: 862 ± 44 Placebo: 887 ± 119 Caffeinie: 873 ± 172 Control: 892 ± 143
 28 perceived of 29 30 31 32 	Studies comparing ca exertion, 1RM one-re			decaffeinated c	offee; VO _{2max} ma	iximum oxygen up	otake; RPE rating of
33 34 35 36							
337 338 339 440 441							
41							

Study	Subjects	Habitual caffeine intake	Experimental Conditions	Coffee Brand	Performance Test	Outcome	Raw Performance Data
Graham et al. (1998)	9 (8 male) young adult (21-47 y) trained endurance runners	One participant with no caffeine intake, two "light" users (<100 mg/day) and the reaming were "moderate" users (<500 mg/day)	4.45 mg/kg, as either caffeine capsules, caffeinated coffee, or decaffeinated coffee + caffeine	Not specified	5 treadmill trials to exhaustion @ 85% VO _{2max}	Caffeine capsule ingested significantly enhanced endurance performance compared to other trials.	Total running time (min) Decaffeinated coffee: 34 ± 12 Decaffeinated coffee + caffeine: 34 ± 11 Caffeinated coffee: 34 ± 12 Placebo: 30 ± 12 Caffeine: 40 ± 12
Trexler et al. (2016)	54 resistance trained males	$33 \pm 60 \text{ mg}$	300 mg caffeine (3-5 mg/kg) compared to 8.9g coffee (303 mg caffeine) and placebo.	Nescafé House Blend	1 RM and repetitions to fatigue @ 80% 1RM on bench press and leg press, alongside 5 x 10-second cycle ergometer sprints	No beneficial effect of coffee or caffeine on strength performance, and no difference between the two, except for leg press 1RM, where coffee outperformed caffeine, but not placebo. Total work in	Leg press IRM (kg) pre Caffeine: 284 ± 63 Coffee: 309 ± 86 Placebo: 279 ± 69 Leg press IRM (kg) post Caffeine: 291 ± 64 Coffee: 324 ± 86 Placebo: 293 ± 68 Bench press IRM (kg) pre Caffeine: 93 ± 19 Coffee: 96 ± 18 Placebo: 87 ± 17

Disbordson &	0 registance	241 ± 122	Caffeinated	Nosoofó	Squat and	the sprint test decreased with placebo ingestion, but not with caffeine or coffee. Caffeinated	Bench press $1RM$ (kg) post Caffeine: 95 ± 19 Coffee: 97 ± 18 Placebo: 89 ± 17
Richardson & Clarke (2016)	9 resistance trained males	241 ± 122 mg	Caffeinated coffee (0.15 g/kg; ~5 mg/kg caffeine), caffeine (5 mg/kg), caffeine (5 mg/kg) + decaffeinated coffee, and decaffeinated coffee	Nescafé Original coffee	Squat and bench press repetitions to failure @ 60% 1RM	Caffeinated coffee enhanced performance compared to placebo, but not compared to decaffeinated coffee. Decaffeinated coffee and caffeine consumed in combination significantly enhanced performance compared to decaffeinated coffee, placebo, and caffeine alone.	Bench press (repetitions) Caffeinated coffee: 13 ± 2 Caffeine: 13 ± 2 Decaffeinated coffee + caffeine: 12 ± 3 Decaffeinated coffee: 12 ± 2 Placebo: 12 ± 2 Squat (repetitions) Caffeinated coffee: 17 ± 5 Caffeine: 15 ± 5 Decaffeinated coffee + caffeine: 18 ± 5 Decaffeinated coffee: 14 ± 5 Placebo: 13 ± 4
Hodgson et al. (2013)	8 trained male cyclists/triathletes	≤300 mg	Caffeine (5 mg/kg), compared	Nescafé Original coffee	30 minutes steady state	Performance in the time trial	<i>Time trial finishing time (min)</i>

			to caffeinated coffee (providing 5 mg/kg caffeine), decaffeinated coffee, and placebo.		cycling, followed by 45-minute time trial	was significantly faster for both caffeine and caffeinated coffee trials compared to decaffeinated coffee and placebo, with no real difference between the two.	Caffeine: 38 ± 1 Caffeinated coffee: 38 ± 2 Decaffeinated coffee: 40 ± 2 Placebo: 40 ± 1 <i>Mean power output (W)</i> Caffeine: 294 ± 17 Caffeinated coffee: 291 ± 20 Decaffeinated coffee: 276 ± 20 Placebo: 277 ± 11
Clarke et al. (2016)	12 recreationally active males	Not presented	Caffeine (3 mg/kg) compared to coffee (providing 3 mg/kg caffeine), placebo, and control	Nescafé Original coffee	18 x 4-second cycle ergometer sprints	No significant differences in peak or mean power output, or RPE, between all experimental conditions.	Peak power (W) Caffeinated coffee: 949 \pm 174 Placebo: 971 \pm 149 Caffeine: 949 \pm 199 Control: 975 \pm 170 Mean power (W) Caffeinated coffee: 862 \pm 44 Placebo: 887 \pm 119 Caffeine: 873 \pm 172 Control: 892 \pm 143

844 Table 2 - Studies comparing caffeine with caffeinated coffee; RPE rating of perceived exertion; 1RM one-repetition maximum; VO_{2max} 845 maximum oxygen uptake.

Study	Subjects	Habitual caffeine intake	Experimental Conditions	Coffee Brand	Performance Test	Outcome	Raw Performance Data
Butts & Crowell (1985)	28 active subjects (15 female)	Not presented	300 mg caffeine + decaffeinated coffee, compared to decaffeinated coffee	Not specified	Time to exhaustion cycle ergometer test @ ~75% Vo _{2max}	Caffeine increased time to exhaustion, although these changes were not significant	Time of exercise (min) FemalesCaffeine +decaffeinatedcoffee: 69 ± 23 Decaffeinatedcoffee: 60 ± 27 MalesCaffeine +decaffeinatedcoffee: 70 ± 32 Decaffeinatedcoffee: 68 ± 33
Graham et al. (1998)	9 (8 male) young adult (21-47 y) trained endurance runners	One participant with no caffeine intake, two "light" users (<100 mg/day) and the reaming were "moderate" users (<500 mg/day)	4.45 mg/kg, as either caffeine capsules, caffeinated coffee, or decaffeinated coffee + caffeine	Not specified	5 treadmill trials to exhaustion @ 85% VO _{2max}	Caffeine capsule ingested significantly enhanced endurance performance compared to other trials.	Total running time (min) Decaffeinated coffee: 34 ± 12 Decaffeinated coffee + caffeine: 34 ± 11 Caffeinated coffee: 34 ± 12 Placebo: 30 ± 12 Caffeine: 40 ± 12

Richardson &	9 resistance	241 ± 122	Caffeinated	Nescafé	Squat and bench	Caffeinated	Bench press
Clarke (2016)	trained males			Original	-	coffee	1
Clarke (2010)	trained males	mg	coffee (0.15 g/kg; $5 mg/kg$	U	press repetitions		<i>(repetitions)</i> Caffeinated
			$\sim 5 \text{ mg/kg}$	coffee	to failure @	enhanced	
			caffeine),		60% 1RM	performance	coffee: 13 ± 2
			caffeine (5			compared to	Caffeine: 13 ± 2
			mg/kg), caffeine			placebo, but	Decaffeinated
			(5 mg/kg) +			not compared	coffee + caffeine:
			decaffeinated			to	12 ± 3
			coffee, and			decaffeinated	Decaffeinated
			decaffeinated			coffee.	coffee: 12 ± 2
			coffee			Decaffeinated	Placebo: 12 ± 2
						coffee and	Squat
						caffeine	(repetitions)
						consumed in	Caffeinated
						combination	coffee: 17 ± 5
						significantly	Caffeine: 15 ± 5
						enhanced	Decaffeinated
						performance	coffee + caffeine:
						compared to	18 ± 5
						decaffeinated	Decaffeinated
						coffee,	coffee: 14 ± 5
						placebo, and	Placebo: 13 ± 4
						caffeine alone.	
McLellan and	13 subjects (9	608 ± 446	Decaffeinated	Royal Blend	Cycle ergometer	Prior	Time to
Bell (2004)	male)	mg	coffee + placebo,		time to	consumption	exhaustion (min)
			decaffeinated		exhaustion @	of coffee did	Decaffeinated
			coffee + caffeine		80% VO _{2max}	not reduce the	coffee + placebo:
			(5 mg/kg), coffee			subsequent	22 ± 8
			(1.1 mg/kg			ergogenic	Decaffeinated
			caffeine) +			effect of	coffee + caffeine
			caffeine (5			anhydrous	$(5 \text{ mg/kg}): 29 \pm 7$
			mg/kg), coffee +			caffeine.	

Trice and Haymes (1995)	8 trained male subjects	Non regular caffeine users	caffeine (3 mg/kg), coffee + caffeine (7 mg/kg), placebo + caffeine (5 mg/kg). 5 g decaffeinated coffee + 5 mg/kg caffeine, compared to 7g decaffeinated coffee	Sanka	3 x 30-min cycle ergometer trials @ 70 rpm	Time to exhaustion was significantly longer in the caffeine compared to no caffeine trial	Coffee (1.1 mg/kg caffeine) + caffeine (5 mg/kg): 28 ± 11 Coffee + caffeine (3 mg/kg): 25 ± 8 Coffee + caffeine (7 mg/kg): 26 ± 8 Placebo + caffeine (5 mg/kg): 27 ± 8 <i>Time to</i> <i>exhaustion (min)</i> Caffeine + decaffeinated coffee: 78 ± 15 Decaffeinated coffee: 61 ± 6
Costill et al. (1978)	9 competitive cyclists (7 males)	Not presented	Coffee + 330 mg caffeine anhydrous, compared to decaffeinated coffee	Not specified	Cycle ergometer time to exhaustion task @ 80% VO _{2max}	Subjects were able to perform significantly more work in the caffeine vs decaffeinated coffee trial	Time to exhaustion (min) Caffeine + decaffeinated coffee: 90 ± 22 Decaffeinated coffee: 76 ± 15

851 Table 3 – Studies comparing the ergogenic effects of caffeine added to decaffeinated coffee, compared to decaffeinated coffee alone, or placebo;

852 VO_{2max} maximum oxygen uptake; 1RM one-repetition maximum