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Abstract: Self-reported youth physical activity (PA) is typically overestimated. We aimed to
calibrate and validate a self-report tool among English youth. Four-hundred-and-two participants
(aged 9–16 years; 212 boys) wore SenseWear Armband Mini devices (SWA) for eight days and
completed the self-report Youth Activity Profile (YAP) on the eighth day. Calibration algorithms
for temporally matched segments were generated from the YAP data using quantile regression.
The algorithms were applied in an independent cross-validation sample, and student- and school-level
agreement were assessed. The utility of the YAP algorithms to assess compliance to PA guidelines
was also examined. The school-level bias for the YAP estimates of in-school, out-of-school, and
weekend moderate-to-vigorous PA (MVPA) were 17.2 (34.4), 31.6 (14.0), and −4.9 (3.6) min·week−1,
respectively. Out-of-school sedentary behaviour (SB) was over-predicted by 109.2 (11.8) min·week−1.
Predicted YAP values were within 15%–20% equivalence of the SWA estimates. The classification
accuracy of the YAP MVPA estimates for compliance to 60 min·day−1 and 30 min·school-day−1 MVPA
recommendations were 91%/37% and 89%/57% sensitivity/specificity, respectively. The YAP generated
robust school-level estimates of MVPA and SB and has potential for surveillance to monitor compliance
with PA guidelines. The accuracy of the YAP may be further improved through research with more
representative UK samples to enhance the calibration process and to refine the resultant algorithms.
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1. Introduction

Physical inactivity and sedentary behaviour (SB) are increasingly prevalent among children
and young people [1] and are associated with undesirable health and wellbeing outcomes [2,3].
To further understand physical activity (PA) and SB in youth, it is critical to develop more effective
ways to assess these complex behaviours. Accelerometry-based devices have been shown to provide
reasonable estimates of both PA [4,5] and SB [6,7] and are widely used in various research applications.
Accelerometers rank first in validity among field-based measures of PA/SB and, for that reason, their
use in large-scale studies is becoming more common. However, accelerometers are often inaccessible
outside of well-funded research studies [8–10] or are only used with modestly sized samples due to
limited device availability to research teams [11–13]. Moreover, accelerometers are not routinely used
by PA practitioners, PA and health promotion organisations, or schools, because they are costly and
labour-intensive [14] and often require high levels of data processing expertise. Hence, the technological
improvements of accelerometers and development of built-in algorithms to assess PA and SB do
not translate in direct benefits to health and education professionals, which limits the application
of these devices beyond the research community. Although recent analytical advances demonstrate
the potential of accelerometers to classify free-living PA states (i.e., inactivity, light PA, moderate
PA etc.) [15] and postures (e.g., sitting, standing, walking) [16], on their own, accelerometers are
limited in determining PA domains and locations where PA take place, which are often integral to
understanding the context underpinning them [17].

Self-report questionnaires of PA and SB overcome some of the limitations of accelerometry, by
providing important information about context and setting [18]. Moreover, self-report questionnaires
reduce participant burden, and are more affordable than accelerometers when used at scale [14]. Recent
systematic reviews identified 89 [19] and 46 [20] different self-report questionnaires to assess youth
PA and SB, respectively. The methodological quality of these studies was generally low (e.g., flawed
design/methods, insufficient detail about comparator instruments, lack of a priori hypotheses, etc.)
and none of the questionnaires demonstrated acceptable reliability and validity, with content validity
noted as being particularly weak [19,20]. A variety of surveys are used in school and public health
surveillance to capture information about PA and SB patterns in youth. In England, no youth PA and SB
questionnaire exists that is calibrated to produce acceptable PA and SB estimates, and which is designed
to be used easily across different levels of expertise. The Health Survey for England asks youth to
recall the frequency and duration of PA over the last seven days to capture in-school and out-of-school
sports/activities. However, when compared to accelerometry, this survey under and overestimates
moderate-to-vigorous PA (MVPA) in younger and older children, respectively [21]. The recently
introduced Sport England Active Lives Survey (ALS) for Children and Young People includes a 7-day
recall list of in- and out-of-school activities, when children did these, and for how long [22], but
the validity of this instrument has not been established. Both questionnaires estimate PA based on
participants’ raw scores and are therefore subject to un-addressed systematic and random error, which
are likely to result in estimations of PA that lack equivalence with device-based estimates. Additionally,
the ALS does not assess SB. Thus, there is a need for a more accurate self-report methodology to assess
both PA and SB in youth that is suitable for youth in England and the wider UK.

Compared to accelerometers, there have been fewer efforts to improve the validity of self-report
questionnaires to provide estimates of time spent in PA and SB. One approach is the regression-based
calibration of self-report data against accelerometer-derived PA and SB estimates. This method has
shown promise in estimating whole-day [23] and context-specific estimates of youth PA [24]. From
these studies, Saint-Maurice and Welk developed the Youth Activity Profile (YAP) and demonstrated
that coded self-report responses from US youth could be calibrated to provide more accurate estimates
of school-level MVPA and SB than self-reported estimates alone [25]. The differences between calibrated
YAP estimates and MVPA using SenseWear Armbands (SWA) during school, out-of-school, and at
the weekend were −15.6, 3.4, and −21.7 min per week, respectively. Furthermore, calibrated YAP
estimates of out-of-school SB time underpredicted SWA estimates by just 49.7 min per week [25].
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In a subsequent study, school-level YAP MVPA and SB estimates were within 10%–20% of values
obtained from ActiGraph GT3X+ accelerometers [11]. The YAP has been administered by school
teachers without any specialist PA/SB measurement knowledge in over 1000 US schools through the
National Football League PLAY 60 FITNESSGRAM Partnership Project [26], which demonstrates its
utility as a cost-effective population-level PA and SB measurement tool. These findings highlight the
value in developing low-cost, standardised, and scalable self-report questionnaires and associated
analytical techniques that can produce estimates of PA and SB that are equivalent to those produced by
accelerometers [27]. Saint-Maurice and Welk (2015) advocated the testing and potential refinement
of the YAP algorithms on independent samples beyond their original study [25]. Reflecting this
recommendation, this study aimed to (1) assess the predictive accuracy of applying US-generated
YAP calibration algorithms for PA and SB in a sample of English youth, (2) develop and validate
English-specific YAP calibration algorithms, and (3) examine their potential surveillance utility to
assess compliance to PA guidelines.

2. Materials and Methods

2.1. Participants and Settings

Eleven schools (five primary and six secondary) from northwest England were informed about
the study. Nine of the 11 schools (four primary and five secondary) were recruited and students
from randomly selected classes in Year (i.e., Grade) 5 (primary school stage; 10.2 ± 0.3 years), Year 8
(secondary school stage; 13.2 ± 0.3 years) and Year 10 (15.2 ± 0.3 years) were invited to participate
(N = 409; 212 boys). Informed parental consent and child assent were obtained from 402 participants
(209 boys; 98% recruitment rate) who were each assigned to a unique identification code. Each school
received a £300 financial incentive for participating, and each participant received a £10 shopping
voucher following completion of data collection, which took place between March and July 2017.
The study received ethical approval from the Liverpool John Moores University Research Ethics
Committee (#14/SPS/012).

2.2. Measures

2.2.1. Anthropometric Measures

Height was measured to the nearest 0.1 cm using a portable stadiometer (Seca 213 height measure,
Seca UK, Birmingham, UK). Body mass was measured to the nearest 0.1 kg using digital scales (Seca 877
digital scales, Seca UK, Birmingham, UK). Waist circumference was measured to the nearest 0.1 cm
using a non-elastic measuring tape, which was positioned around the mid-section of the waist, over
the participants’ school shirts. All anthropometric measures were administered and recorded by pairs
of trained researchers in accordance with standardised procedures [28]. Height and weight data were
converted to body mass index (BMI), which were subsequently used to categorise participants into
weight status classifications using International Obesity Task Force BMI cut-points (11).

2.2.2. Socioeconomic Status

Socioeconomic status (SES) was assessed using the 2015 English Indices of Multiple Deprivation
(IMD) raw scores [29], which were derived from individual participants’ postcode entries. IMD scores
range from 0.5 to 92.6 and are composed of seven domains of deprivation (income, employment,
health, education, access to services, living environment and crime), with higher aggregated scores
representing higher degrees of deprivation.
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2.2.3. Device-Measured Physical Activity and Sedentary Time

PA was measured over eight days using a SenseWear Armband Mini (SWA) (Bodymedia, Inc.,
Pittsburgh, PA, USA). The SWA is a multi-sensor device that detects and records movement and
physiological responses at 60-second epochs (default setting) to provide accurate estimates of energy
expenditure. An earlier model (Sensewear Armband Pro) was used in the original US YAP calibration
study [25]. A key advantage of the SWA is that its heat flux and temperature sensors automatically
detect non-wear time, rather than rely on algorithms based solely on accelerations (e.g., strings of
zero counts) [30]. The SWA uses proprietary algorithms to estimate energy expenditure. In this study,
algorithm version 5.2 was used. This algorithm is validated for use with children and adolescents and
has increased accuracy over the earlier versions [31–33]. However, like other devices, measurement
error is evident in the SWA, which is more accurate at the school level than at the individual level [31–33].
Notwithstanding these limitations, the SWA may be more preferable for estimating energy expenditure
in youth than accelerometer-only devices such as the ActiGraph, because of its superior accuracy
during cycling which is a common free-living activity in these age groups [31]. Participants were
instructed to wear the SWA on the back of the upper arm in direct contact with the skin. They were
asked to only remove the device for water-based activities, such as bathing or swimming.

2.2.4. Self-Reported Physical Activity and Sedentary Time

Self-reported PA and SB data were collected using the YAP [25]. The YAP is an online 15-item
questionnaire comprised of three sections (school day, out-of-school, and SB), with five questions per
section. Participants are asked to recall their PA and SB over the past 7 days during context-specific
time segments. For example, the school day questions ask on how many days participants undertook
active travel to and from school, and their activity levels during break time, lunch time, and PE.
The out-of-school segment refers to activity levels before school, immediately after school, evening,
and across both Saturday and Sunday. The SB section asks about time spent watching TV, playing
video games, using a mobile phone, a computer/tablet, and overall SB. All questions are structured
using a 5-point Likert scale (e.g., for active travel to school, a score of 1 indicates 0 days per week of
active travel, whereas a score of 5 indicates 4–5 days per week). The questions referring to break time,
lunch time, and PE also include the option for participants to indicate that these PA opportunities did
not occur during the previous week. In such instances, a score of 0 is assigned.

Prior to the study commencing, the YAP was minimally amended by the research team to make
the clarity, language, and terminology more appropriate for English youth (e.g., the word ‘recess’ was
replaced with ‘break time’, ‘cell phone’ was replaced with ‘mobile phone’, etc.). Through this process,
the fundamental content and meaning of the YAP questions were unaltered. Differences between the
two YAP versions are highlighted in Document S1. Participants completed the YAP using desktop PCs
or iPads in classrooms eight days after receiving the SWA. This was to ensure the seven-day recall of
the YAP temporally matched the collected SWA data. All participants received the same instructions
on how to complete the YAP from a prepared script. Research staff were on hand throughout to assist
with any further questions. On completion of the YAP, researchers used recall ‘probing’ questions
as a quality assurance mechanism to improve the accuracy of responses [25]. These probes were
specifically developed for the YAP calibration and are not part of the YAP, nor are recommended for
field applications when using the tool [25]. The English YAP version used in this study is provided as
Document S2.

2.3. Study Design

The study followed a similar protocol as that detailed in the original US YAP calibration study [25].
Data were collected on a two-week cycle which consisted of two data collection visits to the schools.
At the first visit, participants were provided with instructions on how to wear the SWA devices, which
were distributed during this session. Anthropometric measures were also obtained. On the second data
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collection visit (8 days after the first visit), SWA devices were collected and the YAP was administered.
Individual students’ home postcodes, ethnicity, and sex were obtained via schools’ information
management systems. Schools also provided details of the previous week’s school timetable schedule,
which included days and times for school start and end, recess, lunchtime, and physical education
(PE) lessons.

2.4. Data Processing

2.4.1. Predictive Ability of US Algorithms with an English Sample (Aim 1)

Data were processed using an identical data processing routine to that used in the original US
YAP calibration study [25]. SWA data were downloaded using the BodyMedia SenseWear Professional
Software v8.0. The SenseWear software automatically detected non-wear time and classified the data
into PA or SB on a per minute basis, which is the default setting. Epochs spent in PA ≥4.0 metabolic
equivalents (METs) were classified as MVPA, and epochs spent in activities ≤2.0 METs were classified
as SB [34,35]. SWA MVPA and SB data were then temporally allocated to specific time segments which
corresponded to the time segments integrated into the YAP questions (Table 1; e.g., the SWA data
between 18:00 and 22:00 was classified as ‘Evening’). The process of segmentation was conducted
in R [36], using code specifically written for this purpose. This generated the number of minutes in
MVPA and SB for each segment (e.g., break time, lunch) from the SWA.

Table 1. Time segments used in the Youth Activity Profile (YAP) calibration (adapted from [25]).

Question/Segment Date Individualised
Time Start Time * End Time *

1. Before travel to
school Every day Yes 60 min before start time

for travel to school
Start time for travel

to school

2. Travel to school Every day Yes 30 min before start time
for school

Start time for
school

3. Play/Break time When provided Yes Determined by school
schedule

Determined by
school schedule

4. Physical
Education When provided Yes Determined by school

schedule
Determined by
school schedule

5. Lunch When provided Yes Determined by school
schedule

Determined by
school schedule

6. Travel from
school Every day Yes End time for school 30 min after end

time for school

7. After school Every day Yes End time for travel from
school 18:00

8. Evening Every day No 18:00 22:00

9. Saturday Saturday No 07:00 22:00

10. Sunday Sunday No 07:00 22:00

* Individualised school Start and End times were obtained from individual schools (e.g., start at 09:00 and end at 15:30).

The structure and questions of the YAP were designed to temporally link the SWA data to the
recall responses. The first 10 questions captured a discrete time segment in which there were specific
opportunities to be physically active (Table 1). Previous research has shown that the YAP segments
capture 94.6% of the total MVPA that occurs throughout the day [25]. Procedures for scoring the
YAP values and converting them to estimates of MVPA and SB are presented in Document S3 and
are briefly summarised here. After the YAP data were checked and cleaned, the segment-specific
US YAP algorithms [25] were applied to the raw scores for questions 1 to 10 to generate percentage
time in MVPA per question, and to the aggregated out-of-school SB score to generate percentage time
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in out-of-school SB. These percentage values were then multiplied by the duration of each segment
(e.g., break time), which was determined by the YAP protocol and school-specific schedules (Table 1),
to give the average minutes in MVPA per segment per day. These values were subsequently multiplied
by the number of days per week per segment (e.g., 5 days for break time), which resulted in estimates of
the average number of minutes in MVPA per week. The same procedure was used with the percentage
out-of-school SB values, to produce absolute estimates of daily and weekly SB. The YAP data were then
aggregated to reflect estimates of MVPA in-school (questions 1–5), out-of-school (questions 6–8), and
at the weekend (questions 9–10), and SB out-of-school (questions 11–15). These data were temporally
matched with the corresponding MVPA and SB estimates from the SWA to assess the predictive ability
of the US YAP algorithms in an English population. This data segmentation process was conducted at
the individual participant level according to the school day schedules provided by each school.

A key aim of our study was to validate a previously developed approach to calibration [11,25]. Hence,
it was essential to replicate the methods including the same compliance criteria and representation of
‘typical’ activity. Compliance criteria were that the SWA had to be worn for ≥70% of the corresponding
segment durations (e.g., break time) on at least three days [11]. Additionally, the number of valid days
required for SWA wear during PE classes and weekend days was set to one. We are unaware of studies
that have conducted parallel examinations for specific segments of the week, and we therefore used a
conservative approach requiring at least three sessions (i.e., days) for each segment on the basis that
less variability in three segment specific replicates would be expected when compared to three full
days. Previous studies of segment-specific PA have also used at least three weekdays and one weekend
day as a representation of the week [37–39], and these criteria exceed those suggested for reliable PA
estimates from accelerometers [40]. Following segmentation, individual records were screened for
segment-specific compliance to ensure quality and representativeness of the data. Participants with
incomplete YAP data were also removed and not considered for further analysis. From the initial
sample of 402 participants, after compliance checks, 331 (82%; 170 boys) were included in the final
analytical sample.

Agreement between the US YAP algorithm-predicted in-school, out-of-school, and weekend
MVPA min·week−1 and out-of-school SB min·week−1, and corresponding estimates from the SWA
were examined at the student level (i.e., variability in agreement between each individual participant’s
YAP and SWA estimates) and school level (i.e., variability in agreement between aggregated YAP and
SWA estimates for each school). The validity of each of the time segments was analysed at the student
level using correlations and the mean absolute percentage error (MAPE), while school-level agreement
was determined using the overall mean error or bias between observed and predicted values.

2.4.2. Generation of English-Specific YAP Algorithms (Aim 2)

Calibration. The analytical sample data (n = 331) were randomly allocated by school (stratified by
school stage) into calibration and cross-validation data sets. The calibration data (6 schools; 3 primary
and 3 secondary) were used to generate the YAP prediction equations for in-school, out-of-school, and
weekend MVPA and out-of-school SB. SWA and English YAP data were processed identically to the
previous US YAP studies [11,25]. During calibration, daily percent time in SWA-derived MVPA and
SB were treated as the dependent variables. School stage (primary or secondary school), sex, and the
corresponding YAP segment composite scores were the independent variables. Quantile regression
models [41] were fit separately for each time segment (in-school, out-of-school, and weekend) for
MVPA and SB (out-of-school only). Preliminary evaluations considered different combinations of
variables and their two-way interactions. Some models did not have unique solutions, and these were
not considered further. The accuracy of the final models was examined using root mean square error
(RMSE). Calibration analyses were completed in R using the quantreg [42], tidyverse [43], and modelr
packages [44].

Cross-validation. Data from the remaining three schools (1 primary and 2 secondary) were used
to independently assess the prediction accuracy of the English YAP algorithms from the calibration
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phase. Agreement was investigated by converting the YAP composite segment scores into weekly
minutes of MVPA or SB using the algorithms developed in the calibration analyses. Student-level
agreement for each YAP segment was determined using correlations and MAPE. Bias was calculated
to explore school-level agreement. Equivalence testing was also applied with the cross-validation
sample to examine whether 90% confidence intervals (CI) for YAP-predicted minutes of MVPA/SB
were within a 10% range (equivalence zone) of estimates from the SWA [45]. Where there was no
evidence of equivalence at 10%, the equivalence zone was increased by 5% until equivalence was
reached (i.e., 15%, 20%, etc.).

2.4.3. Potential Surveillance Utility of the English YAP Algorithms (Aim 3)

To examine the potential of the English YAP algorithms for PA surveillance, the ability of the
YAP to identify participants that met PA guidelines was assessed, using the SWA data as the criterion.
Using the full analytical sample (n = 331), average MVPA min·day−1 and average MVPA min·school
day−1 were computed for YAP-predicted values and SWA values. Binary codes were used to classify
participants according to whether they achieved at least an average of 60 min·day−1 MVPA, which
reflects current PA recommendations in the UK [46] and internationally [47]. The same method
was used for an average of 30 min·school day−1 MVPA, which reflects recommendations in the
UK [48] and US [49] that schools provide opportunities for youth to achieve at least 50% of the daily
recommended PA during school time. Agreements between the proportion of participants achieving
the respective 60 and 30 min MVPA recommendations according to the YAP and SWA were compared
and the classification accuracy of the YAP was evaluated using percent agreement, kappa, sensitivity,
and specificity.

3. Results

3.1. Descriptive Statistics

The descriptive characteristics of the participants who were included in the analyses are detailed
in Table 2. There were no significant differences in age, BMI, and SES between participants included
and not included in the analytical sample (p > 0.05; i.e., those who did not have complete YAP data
and/or who not meet the SWA wear time criteria).

Table 2. Descriptive statistics of complete, calibration, and cross-validation samples. (Mean (SD)
unless stated).

Variable All Calibration
Sample

Cross-Validation
Sample

n 331 202 129
Sex

Boys (%) 51.4 59.4 38.8
Girls (%) 48.6 40.6 61.2

Ethnicity
White British (%) 93.7 94.6 92.2
Other (%) 6.3 5.4 7.8

Age (years) 12.3 (2.1) 12.3 (2.1) 12.2 (2.3)
Height (cm) 154.9 (13.7) 155.0 (14.1) 154.6 (13.2)
Weight (kg) 49.6 (15.4) 50.0 (15.3) 49.0 (15.6)
Body mass index (BMI) (kg·m2) 20.3 (4.3) 20.4 (4.4) 20.1 (4.3)
Weight status

% Normal weight 71.6 71.3 72.1
% Overweight/Obese 28.4 28.7 27.9

Waist Circumference (cm) 71.0 (10.3) 71.4 (10.3) 70.4 (10.2)
Socioeconomic status (SES; 2015 English Indices of
Multiple Deprivation (IMD) score) 19.4 (13.9) 21.9 (15.5) 15.7 (10.3)

SenseWear Armband Mini devices (SWA) wear time (days) 5.8 (1.2) 5.8 (1.2) 5.9 (1.3)
SWA total wear time (min·day−1) 1014.8 (114.7) 1021.9 (115.2) 1004.5 (113.5)
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3.2. Predictive Ability of US YAP Algorithms with an English Sample (Aim 1)

Correlations between US YAP-predicted and SWA estimates were weak to moderately strong,
ranging from r = 0.09 (in-school MVPA) to r = 0.73 (out-of-school SB; Table S4). Agreement was very
poor with high MAPE values between 59.0% and 93.6% (Table S4). The US YAP algorithms performed
somewhat better at the school level but agreement was still weak (Table 3), with bias ranging from
−32.1 (116.8) min·week−1 for in-school MVPA to 445.7 (106.4) min·week−1 for out-of-school SB.

Table 3. School-level agreement between SWA and US YAP predicted moderate-to-vigorous PA (MVPA)
and sedentary behaviour (SB) (n = 9 schools).

Segment YAP-Predicted
Estimates (min·week−1)

SWA Estimates
(min·week−1)

YAP-SWA Bias
(min·week−1)

In-school MVPA 241.1 (61.4) 273.3 (81.3) −32.1 (116.8)
Out-of-school MVPA 235.0 (42.6) 341.8 (90.9) −106.7 (60.1)

Weekend MVPA 175.4 (49.6) 249.1 (74.0) −73.7 (36.5)
Out-of-school SB 1496.0 (297.8) 1050.4 (365.8) 445.7 (106.4)

3.3. Generation of English YAP Algorithms (Aim 2)

3.3.1. Calibration

For the calibration analyses, 200 participants had valid YAP and SWA data for at least one of the
YAP segments of the week. In the final models, the predictors of MVPA and SB were school level, sex,
and the interaction between the segment YAP score and school level (Table 4). RMSE was 12.1%, 9.6%,
8.5%, and 15.3% for in-school, out-of-school, and weekend MVPA, and out-of-school SB, respectively.
More detailed summaries of the calibration models and resultant level- and sex-specific algorithms are
presented in Document S5.

Table 4. Regression coefficients (SE) for in-school, out-of-school, and weekend MVPA, and sedentary
behaviour YAP segments.

Model In-school MVPA
(n = 200)

Out-of-School
MVPA (n = 196)

Weekend MVPA
(n = 187)

Sedentary
Behaviour (n = 196)

Intercept (Primary stage) 45.51 (9.14) 12.75 (5.01) 15.17 (5.02) 34.92 (12.71)
Intercept (Secondary stage) 13.72 (5.58) 2.61 (3.41) 8.44 (3.18) 48.95 (8.91)

Sex −11.34 (2.47) −1.61 (1.95) −4.33 (1.56) 1.61 (2.99)
YAP x Primary level 1.78 (2.33) 2.01 (2.06) 1.13 (1.22) −0.84 (5.22)

YAP x Secondary level 7.31 (1.66) 4.44 (1.18) 1.44 (0.90) 5.65 (2.54)

Note. Bold type indicates significance (p < 0.05).

3.3.2. Cross-Validation

From the three cross-validation schools, there were 129 participants with valid YAP and SWA
data for at least one YAP segment of the week. Results are presented separately for each of the four
segments. Student-level results are summarised in Table S6. School-level results are presented in
Table 5 (min·week−1 in MVPA and SB for cross-validation sample), Figure 1 (plots of YAP-predicted
and SWA-estimated MVPA and SB for all schools), and Table S7 (percent of segment time in MVPA
and SB for cross-validation sample).

In-school MVPA. Student-level YAP predicted in-school MVPA min·week−1 and SWA-derived
MVPA were weakly correlated (r = 0.11), and the MAPE was 70.8%. School-level estimates of MVPA
from the YAP and SWA differed by 17.2 (34.4) min·week−1 (approximately 3.4 min·day−1). The upper
and lower limits of the 90% CI for in-school YAP MVPA (90% CI = 241.0, 282.6 min·week−1) were
within 20% of SWA-estimated MVPA (20% zone = 195.5, 293.3 min·week−1) (Table 5).
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Out-of-school MVPA. The correlation between student-level out-of-school MVPA predicted by
the YAP and MVPA from the SWA was r = 0.45 and the MAPE was 83.9%. The YAP over-estimated
school-level MVPA compared to SWA estimates by 31.6 (28.3) min·week−1 (6.3 min·day−1), and
predicted and SWA-estimated out-of-school MVPA reached agreement when the equivalence zone
was set at 20% (20% zone = 232.5, 348.7 min·week−1).

Table 5. Cross-validation sample school-level estimates of MVPA and SB, bias, and equivalence.

Segment
YAP-Predicted

Estimates
(min·week−1)

SWA Estimates
(min·week−1)

YAP-SWA bias
(min·week−1)

Equivalence
Zone

In-school MVPA 258.7 (74.9) 241.4 (97.6) 17.2 (34.4) 20%
Out-of-school MVPA 319.2 (67.0) 287.6 (93.2) 31.6 (28.3) 20%

Weekend MVPA 220.9 (83.6) 225.8 (96.8) −4.9 (13.2) 15%
Out-of-school SB 1180.3 (408.6) 1071.1 (416.1) 109.2 (20.5) 15%

Int. J. Environ. Res. Public Health 2019, 16, x 9 of 17 

 

Table 5. Cross-validation sample school-level estimates of MVPA and SB, bias, and equivalence. 

Segment YAP-predicted estimates 
(min·week−1) 

SWA estimates 
(min·week−1) 

YAP-SWA bias 
(min·week−1) 

Equivalence 
zone 

In-school MVPA 258.7 (74.9) 241.4 (97.6) 17.2 (34.4) 20% 
Out-of-school 

MVPA 
319.2 (67.0) 287.6 (93.2) 31.6 (28.3) 20% 

Weekend MVPA 220.9 (83.6) 225.8 (96.8) −4.9 (13.2) 15% 
Out-of-school SB 1180.3 (408.6) 1071.1 (416.1) 109.2 (20.5) 15% 

 
Figure 1. School-level agreement between SWA estimates of MVPA and SB and predicted MVPA and 
SB minutes using the English YAP prediction algorithms. (A) in-school MVPA; (B) out-of-school 
MVPA; (C) weekend MVPA; (D) out-of-school SB. Each data point represents one school; red dots: 
the calibration sample schools used for generating the English YAP equations; blue triangles: the 
cross-validation sample schools used to assess prediction accuracy. 

Figure 1. School-level agreement between SWA estimates of MVPA and SB and predicted MVPA
and SB minutes using the English YAP prediction algorithms. (A) in-school MVPA; (B) out-of-school
MVPA; (C) weekend MVPA; (D) out-of-school SB. Each data point represents one school; red dots:
the calibration sample schools used for generating the English YAP equations; blue triangles: the
cross-validation sample schools used to assess prediction accuracy.
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Weekend MVPA. Weekend MVPA estimates from the YAP and SWA were moderately correlated
(r = 0.52) and the MAPE was very high (199.6%). At the school-level, the YAP under-predicted weekend
SWA MVPA by 4.9 (13.2) min·week−1 (−2.5 min·day−1). The 90% CI for the weekend MVPA YAP
values (203.4, 245.8 min·week−1) were within the 15% equivalence zone (195.1, 263.9 min·week−1).

Out-of-school SB. At the student-level, out-of-school time in SB was strongly correlated to SB
estimated from the SWA (r = 0.80), and MAPE was 50.6%. School-level YAP-predicted out-of-school
time spent in SB was 109.2 (20.5) min·week−1 (21.8 min·day−1) higher than the SWA estimates.
YAP-predicted and SWA-estimated out-of-school SB reached agreement when the equivalence zone
was set at 15% (15% zone = 897.9, 1214.9 min·week−1).

As the final calibration algorithms were specific to school-level and sex, additional sub-group
agreement analyses were performed separately for all primary and secondary schools (Table 6),
and for all boys and girls (Table 7). Bias ranged from 12.9 (10.6) min·week−1 (in-school MVPA)
to 47.2 (91.5) min·week−1 for SB in primary schools, and from −4.5 (28.8) min·week−1 (weekend
MVPA) to 118.4 (50.0) min·week−1 (SB) in secondary schools. Primary school YAP-predicted and
SWA-estimated in-school and weekend MVPA demonstrated the closest agreement (10% equivalence
zone). For secondary school students, weekend MVPA and SB were equivalent in the 15% zone.
Between-segment differences in bias were similar for boys and girls. These ranged from −2.5 (51.6)
min·week−1 (boys) and −3.9 (71.1 min·week−1 (girls) for out-of-school MVPA, to 89.7 (78.2) min·week−1

(boys) and 61.2 (84.1 min·week−1 (girls) for out-of-school SB. Boys’ YAP-predicted and SWA-estimated
out-of-school MVPA demonstrated the closest agreement (10% equivalence zone). For girls, in-school
and out-of-school MVPA were equivalent in the 15% zone. These additional school-level analyses are
also presented in Table S7 with percent of segment time as the outcome.

Table 6. School-level estimates of MVPA and SB, relative bias, and equivalence for primary and
secondary stages.

Segment
YAP-Predicted

Estimates
(min·week−1)

SWA Estimates
(min·week−1)

YAP-SWA Bias
(min·week−1)

Equivalence
Zone

Primary stage
In-school MVPA 353.4 (19.1) 340.5 (24.8) 12.9 (10.6) 10%

Out-of-school MVPA 379.1 (3.9) 408.4 (70.3) −29.3 (69.5) 25%
Weekend MVPA 300.1 (10.7) 317.9 (19.2) −17.8 (10.7) 10%
Out-of-school SB 722.1 (5.5) 674.9 (92.8) 47.2 (91.5) 20%
Secondary stage
In-school MVPA 230.4 (36.0) 219.5 (68.0) 10.9 (33.1) 20%

Out-of-school MVPA 308.3 (42.2) 288.5 (69.4) 19.8 (36.4) 20%
Weekend MVPA 192.0 (28.0) 196.4 (50.7) −4.5 (28.8) 15%
Out-of-school SB 1469.1 (89.2) 1350.7 (86.2) 118.4 (50.0) 15%

Table 7. School-level estimates of MVPA and SB, relative bias, and equivalence for boys and girls.

Segment
YAP-Predicted

Estimates
(min·week−1)

SWA Estimates
(min·week−1)

YAP-SWA Bias
(min·week−1)

Equivalence
Zone

Boys
In-school MVPA 342.1 (63.1) 328.7 (66.2) 13.4 (36.9) 15%

Out-of-school MVPA 366.7 (36.3) 369.2 (66.8) −2.5 (51.6) 10%
Weekend MVPA 282.4 (56.6) 262.7 (69.0) 19.7 (54.2) 20%
Out-of-school SB 1101.0 (426.9) 1011.3 (404.8) 89.7 (78.2) 20%

Girls
In-school MVPA 242.4 (67.2) 228.7 (81.6) 13.7 (25.4) 15%

Out-of-school MVPA 328.2 (51.4) 332.2 (109.8) −3.9 (71.1) 15%
Weekend MVPA 211.7 (56.1) 247.8 (86.9) −36.1 (36.1) 25%
Out-of-school SB 1093.8 (377.5) 1032.6 (348.6) 61.2 (84.1) 15%
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3.4. Classification Accuracy of the YAP (Aim 3)

According to the SWA, 60 min·day−1 MVPA was achieved by 81% of the participants.
YAP-predicted estimates of daily MVPA indicated that the recommendation was met by 85.8%
of participants. Agreement was 80.7% and the kappa value was 0.31 (fair agreement). Sensitivity and
specificity were 91% and 37%, respectively. The school day 30 min·day−1 MVPA recommendation
was achieved by 77.6% and 79.2% of participants, according to SWA and YAP-predicted estimates,
respectively. Percent agreement and kappa values were 82.2% and 0.47, respectively (moderate
agreement). The classification accuracy was 89% sensitivity and 57% specificity.

4. Discussion

This study aimed to examine the predictive accuracy of the US YAP algorithms for MVPA and SB
in a sample of English youth, and to calibrate and test the validity and predictive utility of new English
YAP algorithms. We found that the US YAP algorithms poorly predicted SWA estimates of MVPA
and SB in English youth. School-level predictions of in-school, out-of-school, and weekend MVPA,
and out-of-school SB from the English YAP algorithms were promising, and the YAP demonstrated
potential as a surveillance tool to identify prevalence of compliance to youth PA guidelines.

4.1. Aim 1

There was poor student- and school-level agreement between the US YAP estimates of MVPA
and SB and estimates from the SWA. The recommendation of Saint-Maurice and Welk that the
US YAP algorithms be tested and refined on independent samples [25] is therefore well founded.
Moreover, it reinforces the notion that the content of self-report PA questionnaires is population-
and context-specific, and that questionnaires developed and validated in one population cannot
automatically be assumed to be suitable for youth elsewhere with different PA contexts and routines [50].
Cross-cultural differences exist relating to individuals as well as the contexts and settings in which they
live (e.g., school day schedules, sports practices, home routines, etc.) [51]. Although the development
of the US YAP algorithms used the same data processing steps and a similarly aged-sample as in the
present study, critically, the algorithms reflected the school schedules and out-of-school routines of the
US youth, which differed to those in our English sample. These differences were reflected in the high
MAPE values and degree of bias when the US YAP algorithms were applied to the English SWA data.

4.2. Aim 2

When the estimates from the English YAP algorithms were compared to those from the SWA,
student-level agreement was poor. This is consistent with what has been observed previously for
the YAP [11,25], for other self-report instruments [19,20], and also for most calibration equations
developed for accelerometers [52]. The high MAPE values exceeded those observed when the YAP
was compared with MVPA and SB estimates from 12–17-year-olds wearing wrist-mounted ActiGraph
GT3X+ accelerometers [11]. These results may have been influenced by a relatively high number of
small observed SWA-derived MVPA and SB estimates, which when combined with moderate absolute
error values result in very large MAPE values [53]. The data clearly indicate that the YAP estimates of
MVPA and SB lack predictive accuracy at the level of the student, and therefore should not be used to
inform or evaluate student-level intervention or PA prescription.

School-level bias between English YAP-predicted MVPA and SB and estimates from the SWA
were substantially better than those from the student-level analyses. The degree of bias between
in-school YAP and SWA MVPA was comparable with previous YAP validations [11,25]. Further, the
YAP-predicted in-school MVPA was equivalent to SWA estimates at 20% equivalence. This is the same
as that reported in the original US YAP calibration study using SWA devices [25], but higher than the
15% equivalence observed in a subsequent study using the ActiGraph GT3X+ [11]. The out-of-school
MVPA bias of 31.6 min·week−1 was much higher than the−3.0 min·week−1 [11] and 3.4 min·week−1 [25]
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previously reported for US youth. YAP and SWA out-of-school MVPA were deemed equivalent at
20%, whereas Saint-Maurice and colleagues reported 15% [25] and 10% equivalence [11] in their US
studies. Weekend MVPA was predicted to within −4.9 min min·week−1 of the SWA estimates, which is
substantially less than the −21.7 min·week−1 and −17.8 min·week−1 observed by Saint-Maurice and
Welk [25] and Saint-Maurice et al. [11], respectively. Further, the 15% equivalence between weekend
MVPA from the YAP and SWA was superior to the US studies (30% [25] and 20% [11]). Conversely,
bias and equivalence for out-of-school SB predicted by the YAP was higher than Saint-Maurice and
colleagues reported [11,25].

A key difference between the English and US YAP estimates was over-prediction of in-school and
out-of-school MVPA, and SB. The English YAP algorithms were based on the specific school schedules
and daily routines of the participants in the calibration sample, although the same data processing
methods as the previous YAP studies were used [11,25]. It is established that PA recall methods are
subject to various sources of measurement error [54], and in this study the over-predictions may
have reflected such factors related to the data collection protocol and the participants themselves.
For example, though the research assistants received the same training there may have been variation
in how and to what extent they used the probing questions to check participants’ YAP recall accuracy.
Moreover, differences in literacy and cognitive understanding of the YAP questions likely varied among
the participants, and particularly in the primary school group. Even though the probing questions
were employed, variations in how the YAP questions were interpreted would have contributed
to measurement and processing errors [54], which would have affected the resultant algorithms.
The participants in our study were also relatively active and any expected over-estimations of their
PA [55] may have been exacerbated when recalling their MVPA behaviours. YAP-predicted SB was
also overestimated but the 15% equivalence was promising. SBs tend to be more stable than active
behaviours [56]. However, the YAP overestimated SB by almost 22 min·day−1, which may reflect that
engagement in SBs, like TV viewing, or gaming occurred sporadically rather than as part of a set
structure and routine [57]. As a result, it is likely that recall of the specific SBs included in the YAP was
challenging for some participants [58,59].

Agreement between YAP-predicted and SWA-estimated MVPA was greatest for the weekend YAP
segment. Weekends often involve greater choices and time for recreational activities, but weekend
schedules can also reflect regularly occurring activities such as household chores, caring for siblings,
and sports practices, etc. Although not as structured as the school day, weekends can represent familiar
and routinised contexts for some youth. Moreover, the YAP uses two of the 15 questions to ask about
PA during whole weekend days. Longer recall periods (i.e., a full day) are hypothesised to inhibit
accurate recall of PA behaviours [60]. It is, however, possible that only focusing on two specific days,
rather than five, reduced recall burden and facilitated more accurate responses, which contributed to
the low observed error for weekend MVPA.

4.3. Aim 3

The English YAP algorithms demonstrated their utility to evaluate compliance with health-related
PA recommendations. Sensitivity values associated with the 60 and 30 min MVPA·day−1

recommendations indicated that 91% and 89% of youth who achieved the respective recommended
daily MVPA would be correctly identified as ‘active’ based on the English YAP algorithm predicted
MVPA. These sensitivity values are superior to those reported in the original US YAP calibration
study [25] and reinforce the utility of the English YAP algorithms for identifying youth that meet PA
guidelines. Saint-Maurice and Welk also reported specificity values of 69% (60 min MVPA·day−1) and
61% (30 min MVPA·school-day−1) [25], compared to 37% and 57%, respectively in the present study.
This suggests that the English YAP MVPA algorithms were relatively less able to accurately classify
youth who did not achieve PA guidelines as ‘inactive’. Hence, further refinement of the YAP MVPA
algorithms is needed to improve classification accuracy.
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4.4. Strengths and Limitations

The calibrated YAP estimates of MVPA and SB have great potential utility for future research
and PA promotion, as existing calibrated self-report instruments for English youth are not available.
Strengths of the study included (1) the use of a proven, rigorous YAP protocol and methodology; (2) the
use of manageable group sizes for data collection, which allowed the use of recall probes to enhance
the participants’ recall accuracy; (3) the recording of detailed timetable information from each school
to accurately determine each participant’s schedule during the week when they wore the SWA, so
as to enhance the degree of temporal precision required for the calibration analyses; (4) the use of an
independent sample for the cross-validation analyses, and (5) the choice of the SWA as the device-based
measure, which has previously demonstrated superior agreement with criterion measures of free-living
energy expenditure than other research-grade and consumer activity monitors [31]. There are also
limitations which require consideration. Schools were not selected at random and so a degree of
sampling bias in favour of more active participants may have been evident. Data were collected in the
spring and summer months which may have reflected the relatively high estimates of MVPA. Therefore,
the English YAP algorithms do not account for seasonal variation in the participants’ PA and SB.
The YAP content means that it can only be used to predict MVPA and SB during school-term time and
not during vacation periods, and all modes of MVPA and SB may not be captured. However, schools in
England are in session for around 39 weeks of the year so typical activity would be captured by the YAP.
The YAP-predicted MVPA and SB estimates demonstrated good school-level agreement, but like values
from all PA measurement tools, they cannot be considered exact values reflecting student-level activity
behaviours. Moreover, the calibration algorithms are based on MVPA and SB estimates from the SWA
as the field-based criterion measure. Further, MVPA and SB are estimated by the SWA algorithm from
energy expenditure calculations adjusted for age, sex, and BMI, which are subsequently converted to
epoch-level MET values. Thus, like all PA measurement instruments student-level error will be present
in these estimations, which is something we could not control, and which may have attenuated the
effects of the analyses [11]. Incorporating measurement error modelling against a criterion measure
has been shown to help reduce the effects of measurement error and improve the precision of PA
estimates from self-report questionnaires [54]. A true criterion measure of free-living PA and SB
requires accurate ground-truth measurement (e.g., wearable cameras) to label activity behaviours [61]
(although unsupervised machine learning methods are now emerging, which may remove the need
for criterion measures [15]). However, these approaches are yet to be feasible in large samples, and
therefore, currently offer limited value for the calibration of self-report questionnaires. Lastly, the SWA
uses a default 60-second epoch setting to record data, which may not have fully captured intermittent
bouts of higher intensity PA that are characteristic of school-aged youth [62]. However, this monitor
has been shown to provide valid estimates of PA in this population [31].

5. Conclusions

Poor agreement was observed in MVPA and SB derived from the US YAP algorithms and SWA
worn by the English sample. YAP algorithms developed using the English sample data resulted in
MVPA and SB estimates that had promising school-level agreement with the lowest error observed
for weekend MVPA and out-of-school SB. The YAP has potential as a surveillance tool to monitor
compliance with youth PA guidelines, but more refinement is needed to improve its classification
accuracy. The school-level YAP estimates of MVPA indicate that the YAP is a promising self-report
questionnaire for use with English youth, and potentially with samples from other countries in the UK.
The YAP is a cost-effective, easy to implement instrument that can be used at scale and implemented by
researchers and practitioners to provide meaningful school-level estimates of MVPA and SB. Further
refinement of the YAP algorithms with a more representative UK sample and by employing replicate
measurement error modelling procedures to enhance the precision of the calibration algorithms
is advocated.
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